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Abstract 

Ocean models are increasingly able to synthesize a large temporal domain with fine spatial 

resolution.  With this increase in functionality and availability, ocean models are in high 

demand by researchers, establishing a critical need for validating a model’s ability to 

represent interior ocean dynamics. Satellite measurements are typically used for validation, 

however these measurements are limited to the upper layers of the ocean and therefore 

satellite measurements of sea surface height and sea surface temperature are the most 

validated output parameters of three-dimensional ocean models. Unfortunately there is a 

paucity of model validation studies for the interior ocean.  This study fills a knowledge gap 

by contrasting model data from the Hybrid Coordinate Ocean Model (HYCOM) for the 

interior ocean in the Tongue of the Ocean (TOTO), Bahamas and the Gulf of Mexico 

(GoM) against observational (i.e., in situ) data collected in both locations.   Conductivity 

temperature and depth (CTD) data in the GoM were collected during five research cruises 

by the DEEPEND Consortium between May of 2015 and May 2017.  These data were 

collected as part of the investigation into the impact of oil spills on faunal communities in 

deep water of the GoM.  CTD and expendable CTD (XCTD) data in the TOTO were 

collected by the Naval Undersea Warfare Center (NUWC) detachment Atlantic Undersea 

Test and Evaluation Center (AUTEC) in support of U.S. Navy acoustic testing between 

1997 and 2017 to characterize the sound velocity profile of the water column.  The global 

1/12° HYCOM configuration (GLBu0.08) was found to be a better fit in the upper 400 and 

250 meters of the TOTO for temperature and salinity, respectively, than the GoM 1/25° 

HYCOM configuration (GOMI0.04 1/25°) fit the GoM in situ data for the same depths.  

The GoM 1/25° HYCOM configuration (GOMI0.04 1/25°) provided a better fit in the GoM 

for depths of 500 and 300 meters and deeper for temperature and salinity, respectively, 

than the global 1/12° HYCOM configuration (GLBu0.08) fit the TOTO in situ data at the 

same depths.  A comprehensive comparison of the vertical profile between the model and 

observational data for each of the regions of interest provides insight into using HYCOM 

forecast data for future applications.    

Keywords: HYCOM, Model Validation, Tongue of the Ocean, AUTEC, Gulf of Mexico, 
DEEPEND Consortium   
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1.0 Introduction 

A near real-time forecast of the ocean’s physical characteristics (i.e., geostrophic 

water flow, salinity, temperature, etc.) is invaluable for a wide range of oceanographic 

studies.  Insight into these physical characteristics provides oceanographers and biologists, 

for example, with information to assess potential oceanic distribution of contaminates, 

model connectivity of native and invasive species, predict El Nino Southern Oscillation 

events, and project future levels of ocean acidification (Liu et al., 2001; Luo et al., 2008; 

Steinacher et al., 2009; Robinson et al., 2011). 

An accurate picture of the physical ocean environment can be obtained through a 

variety of resources, but each has its limitations.  For example, satellite imagery can 

provide empirical measurements of the ocean’s surface characteristics at a specific location 

and for a point in time, but cannot acquire data for the entire earth contemporaneously.  

Satellite measurements of reflectance are also limited to the upper layers of the ocean due 

to attenuation of light in deep water (Kantha & Clayson, 2000) and satellites cannot 

measure temperature at depth.   On the other hand, empirical measurements from buoys, 

floats, and conductivity temperature and depth (CTD) sensors provide accurate and 

instantaneous information regarding interior ocean (i.e., the portion of the ocean which 

excludes the surface mixing layer and boundaries) dynamics, but are limited in horizontal 

coverage and are only able to capture a relatively short time series (Chassignet et al., 2006; 

Kara & Hurlburt, 2006; Chassignet et al., 2007; Sandvik, et al., 2016).  Obtaining empirical 

measurements is optimal, but due to the cost of collection, limited spatial and temporal 

scope, field measurements do not lend themselves to studies and experiments that require 

full ocean coverage at a fine scale, such as biophysical modeling (Kantha & Clayson, 

2000).   

One solution to the limitations of relying on in situ ocean measurements is the use 

of synthetic ocean models.  Ocean models utilize atmospheric forcing algorithms to 

synthesize complete, near real-time physical ocean data for a region of interest, in addition 

to the ability to produce forecasts and hindcasts.   While these data are typically of high 

spatial and temporal resolution, it is important that ocean models make accurate predictions 
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in order to be a reliable information source regarding ocean dynamics (Kara & Hurlburt, 

2006).  By their nature however data derived from numerical models are estimates and 

therefore have an associated amount of error introduced by atmospheric forcing conditions, 

resolution, and finite spatial precision, for example (Kantha & Clayson, 2000; Sandvik et 

al., 2016).  By characterizing this error, the value of a model for a given situation can be 

determined and perhaps corrected for to increase accuracy of the model output.   

1.1 Types/Examples of Ocean Models  

Bryan (1969) formulated the first numerical comprehensive ocean model in the late 

1960’s for studying ocean circulation while integrating irregular coastlines and variable 

bottom topography (Kantha & Clayson, 2000). This model was the first suitable for global 

simulations, yet constraints in available computing power limited it to regional applications 

(Semtner, 1986).  Since that time, advances in computation have given way to Ocean 

General Circulation Models (OGCM) as important tools in the field of ocean dynamics.  

OGCMs integrate the environmental factors which influence the general circulation of the 

ocean and have been utilized to study various physical scenarios, such as thermohaline 

circulation, eddy turbulence, and heat flux (Madec et al., 1997).   

Ocean models can be generally classified by the type of vertical coordinate system 

they utilize: isopycnal, z-level, and sigma level.  Isopycnal models delineate layers based 

on water density (i.e., isopycnals) and are best suited for the deep stratified ocean because 

mixing occurs primarily along and not across isopcynals in the deep ocean (Kantha & 

Clayson, 2000).  In the mixed layer (0-200 m), z-levels are the best coordinate choice as 

they provide high vertical resolution by using constant fixed depths.  In unstratified or 

shallow coastal regions, sigma levels are the best choice for a coordinate layer as they 

follow the terrain (Chassignet et al., 2003; Wallcraft et al., 2005; Chassignet et al., 2006; 

Chassignet et al., 2007). 

Many OGCMs have been developed which utilize one of these vertical coordinate 

systems, such as the Regional Ocean Modeling System (ROMS), which utilizes 

topography following (i.e., sigma) coordinates, and the Miami Isopycnic Coordinate Ocean 

Model (MICOM), which is isopycnal (Bleck et al., 1995; Shchepetkin & McWilliams, 
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2005).  HYCOM, the Hybrid Coordinate Ocean Model, was developed to maintain many 

of the properties of the MICOM while improving on it vertical coordinate selection. This 

ability allows the model to be optimized for different portions of the ocean including 

shallow coastal regions, the stratified open ocean, or the mixed layers (Castellanos et al., 

2016).  The global HYCOM is publicly available from 1992 to present at a 1/12° spatial 

resolution and is divided into multiple experiments.  The HYCOM is also available at finer 

spatial resolutions for regional and basin configurations (Additional information can be 

found in Sections 2.1 and 3.1.1). 

1.2 Model Validation and Assimilation  

As an ocean circulation model is developed, designers take care in the application 

of the theory and equations utilized, but tend not to validate the model outputs with 

observational data as part of the initial design process.  This responsibility typically falls 

back to the end user, as he or she is most interested in the quality of the model output (Dee, 

1995).  A typical approach to quantitatively evaluating an ocean model’s performance in 

the ocean interior, from a user perspective, is to compare the model outputs with 

unassimilated observational data from expendable bathythermograph (XBT), CTD and 

Argo floats at a given spatial-temporal location (Chassignet et al., 2006; Kara & Hurlburt 

2006; She et al., 2006; Chassignet et al., 2007; Castellanos et al., 2016).  Understandably, 

the goal of end user validation is to determine a model’s accuracy in its given application 

(Dee, 1995).   Due to an overall deficiency in observational data of quality and duration 

however most ocean models have not been thoroughly evaluated for accuracy against in 

situ measurements (Kara & Hurlbert, 2006; She et al., 2006), especially in the deep ocean.  

What observational data is available is concentrated at the ocean surface, therefore sea 

surface height and sea surface temperature are the most validated model outputs for 3D 

ocean models (She et al., 2006)  

Ocean models are estimates of true ocean conditions and therefore are subject to 

atmospheric forcing errors or imperfect parameterizations of physical processes, which 

may cause the model to deviate from the actual ocean conditions during a forecast (Kantha 

& Clayson, 2000).  Developers of some ocean models, such as the HYCOM, attempt to 
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integrate primitive model validation into their predictive algorithms, producing 

‘assimilated models’.  An assimilated model is one in which observational data is 

incorporated into the model to perform a real-time correction of the model.  Data 

assimilation is a method of combining observed data taken from different locations and 

different points in time with that produced by the model to yield the best estimation of the 

true state of the ocean throughout the model domain.  Assimilated models are generally 

thought to be more accurate than unassimilated models, because even if a model could 

parameterize the ocean’s physical processes correctly, it would be unable to correctly 

account for the nature of instability processes (Kantha & Clayson, 2000).       

1.3 Study Motivation and Purpose 

As computational capacity increases, ocean models are increasingly able to 

synthesize larger domains with increased spatial resolution, establishing a need for further 

model versus in situ data comparison studies to characterize a model’s ability to represent 

ocean dynamics (Castellanos et al., 2016). Given the lack of model validation studies for 

the interior ocean, the purpose of this study was to validate HYCOM data against 

unassimilated (i.e., not integrated into HYCOM) CTD and expendable CTD (XCTD) data 

sets collected in situ by two different organizations, the Deep-Pelagic Nekton Dynamics of 

the Gulf of Mexico Consortium (DEEPEND) and the Naval Undersea Warfare Center 

(NUWC) detachment Atlantic Undersea Test and Evaluation Center (NUWC det. 

AUTEC), in the GoM and Tongue of the Ocean (TOTO), respectively.  In addition to the 

validation performed, a correction factor was formulated that can be applied to correct the 

HYCOM for applications in each region.   Each organization has a vested interest in the 

validation of the HYCOM for their respective experiments and operations.  Validation of 

the model in the GoM provides the DEEPEND Consortium with an accurate representation 

of the physical oceanographic characteristics which will aid community analysis of deep 

pelagic fauna.  Validation of the HYCOM in the TOTO has implications for the NUWC 

det. AUTEC, improving predictions of the sound velocity profile and increasing in-water 

accuracy during Navy operations.  The results of this study can also be used by other 

organizations which conduct experiments in the GoM and TOTO that may use HYCOM 

data.   
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2.0 Background 

2.1 The Hybrid Coordinate Ocean Model  

The HYCOM is the basis for the Global Ocean Forecast System (GOFS) and 

provides a near real time, three-dimensional assimilated model of the water conditions with 

global, basin and regional resolution.  The present horizontal resolution of water conditions 

for the global HYCOM is 1/12°, while a 1/25° horizontal resolution global model is 

scheduled for operation in 2018.  Basin-scale resolution can be as fine as 1/50°, while 

regional configurations have been developed to a horizontal resolution as fine as 1/100° 

(Chassignet & Wallcraft, 2016).  For broad application throughout Earth’s oceans, the 

HYCOM combines the three vertical coordinate systems and smoothly transitions as 

determined by a hybrid vertical coordinate generator, a decision made at each time iteration 

(Chassignet et. al., 2003; Chassignet et al., 2006; Chassignet et al., 2007).  This unique 

hybridization extends the range of previous OGCMs and allows the HYCOM to achieve 

the optimum simulation of open-ocean and coastal circulation features (Chassignet et al., 

2009).   

The isopycnal coordinate model is the default for HYCOM.  In areas where 

isopycnals provide diminished vertical resolution, HYCOM allows for deviation of the 

coordinate surface by identifying grid points that do not lie within their reference isopycnal 

layer.  The model then attempts to move the point vertically to the appropriate reference 

isopycnal.  Constraints are in place to prohibit the crowding of points in shallow water and 

keep the grid points at a fixed depth (Chassignet et al., 2007; HYCOM 2017b).  HYCOM 

uses atmospheric forcing conditions provided by empirically-derived surface wind stress, 

air temperature, specific humidity, shortwave radiation and longwave radiation 

(Chassignet, et al., 2006; Chassignet, et al., 2007). The Navy Coupled Ocean Data 

Assimilation (NCODA) is responsible for assimilating these observational data from 

satellites, ships, buoys, XBTs, CTDs, gliders and ARGO floats into the HYCOM to predict 

ocean dynamics and characterize mesoscale variability (Chassignet, et al., 2006; 

Chassignet, et al., 2007; Kelly et al., 2007; HYCOM, 2017b; U.S. Naval Research 

Laboratory, 2017).  
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2.2 The DEEPEND Consortium and the GoM 

The DEEPEND Consortium is a member of the Gulf of Mexico Research Initiative, 

the latter whose mission is to investigate the impact of oil spills on GoM ecosystems in 

addition to expanding the knowledge of the GoM in order to increase preparedness for 

future oil spills. (Gulf of Mexico Research Initiative, 2013).  The DEEPEND Consortium’s 

goal is to characterize and establish baseline conditions for the pelagic ecosystems in the 

northern GoM so that anthropogenic and natural changes over time can be detected and 

monitored (DEEPEND, 2017a). In prior DEEPEND work (Johnston et al., in review), 

waters of the GoM were classified into three separate categories: 1) Gulf Common Water 

(GCW), described by cooler water (approximately 5°C to 25°C, <1000m) where salinity 

ranges between 34.9 and 36.5 PSU, 2) Loop Current Origin Water (LCOW), which is warm 

(6°C to 30°C) to a depth of approximately 1000 meters with a higher salinity maximum 

between 19°C and 26°C, and 3) mixed waters (MIX), which are frontal regions of the LC 

and a mixture of LCOW and GCW with a temperature range between 5°C to 30°C and a 

salinity range between 34.9 and 37 PSU (Johnston et al., in review). As these mesoscale 

features in the GoM may dramatically impact the native biology, understanding ocean 

dynamics will help DEEPEND assess their influence on deep water faunal communities 

(DEEPEND, 2017b).  DEEPEND relies upon GoM HYCOM model data for many phases 

of their work, therefore validating HYCOM against empirical measurements is valuable in 

understanding discrepancies between HYCOM model and in situ ocean conditions.     

2.3 Atlantic Undersea Test and Evaluation Center and the TOTO 

The NUWC det. AUTEC is located on Andros Island in the Bahamas, proximal to 

the TOTO.   The TOTO is a deep-water basin approximately 20 miles wide and 150 miles 

long, with a maximum depth of 2000 meters.  The deep basin is surrounded on three sides 

by shallow banks, reefs, and other islands, with its only connection to the open ocean at 

the north end, through the Northeast Providence Channel. This isolated geography with 

limited shipping traffic results in low acoustic ambient noise, making it the ideal ocean 

environment for acoustic measurements, detection and tracking.  The water temperature 

and salinity of the TOTO varies little over the year with a seasonal thermocline centered at 
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approximately 180 meters and a maximum salinity at 150 meters spanning the length of 

the TOTO (Shonting, 1970; U.S. Navy, 1967). Due to the TOTO’s location and 

surrounding topography, it is greatly influenced by evaporation and precipitation.  In fact, 

the monthly salinity profile varies greatly near the surface and is dependent on rainfall and 

the wind and tidal flushing of bank water of varying salinities (Shonting, 1970).  TOTO 

water deeper than 400 meters is characterized as North Atlantic Central Water (NACW) 

and North Atlantic Depp Water (NADW), bathing the bottom between 1500 and 2000 

meters.  These waters closely resemble and are in free circulation with the Sargasso Sea, 

which lies west of the Bahamas (Ridley, 1962; Shonting, 1970).  

AUTEC’s primary mission is to provide a deep-water range for the testing, 

calibration and evaluation of U.S. Navy assets with high positional accuracy through 

underwater, surface, and in-air tracking (Cecil, 1992).  The velocity of sound through sea 

water during acoustic testing is affected by three parameters; temperature, salinity and 

pressure.  For applications like those at NUWC det. AUTEC which require accurate depth 

or distance, precise knowledge of the sound velocity is required (Urick, 1983).  Although 

the TOTO is a relatively stable basin, seasonal fluctuations in solar radiation and wind 

stress impact the surface mixing layer which in turn affect the accuracy of acoustic 

operations (Shonting, 1970; Metzger et al., 2017).  To adjust for this, different sound 

velocity profiles are utilized throughout the year at NUWC det. AUTEC based on historical 

in situ observational data.  NUWC det. AUTEC does not currently utilize the HYCOM or 

other OGCMs for forecasting the environmental conditions of the TOTO, however the 

ability of the NUWC det. AUTEC to utilize an ocean circulation model, such as the 

HYCOM, could provide an early indication of annual and decadal trends in the TOTO’s 

oceanographic characteristics as well as seasonal variability.  With up-to-date knowledge 

of the TOTO’s internal parameters through the HYCOM, sound velocity profiles which 

best characterize the current conditions can be implemented, resulting in improved 

accuracy for naval acoustic operations.   
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3.0 Methods 

3.1 Data Collection 

3.1.1 HYCOM 

The publicly-available, assimilated configurations of both the global 1/12° and 

GoM 1/25° HYCOM were used for this study (available for download at www.hycom.org).  

The HYCOM+NCODA GoM 1/25° resolution configuration GOMI0.04 (hereafter 

“GOMI0.04 configuration”) provides an hourly snapshot in Coordinated Universal Time 

(UTC) of GoM conditions, interpolated to 40 standard vertical layers, and was used in this 

study to compare against the CTD cast data (hereafter “observational data”) collected by 

the DEEPEND Consortium in the GoM.  The GOMI0.04 configuration was selected 

because its resolution in the GoM is finer than the GLUb0.08 1/12° HYCOM configuration 

and the GOMI0.04 configuration spans the period of time in which CTD observational data 

was collected.   

In the TOTO, the global GOFS 3.0 HYCOM+NCODA Global 1/12° resolution 

configuration GLBu0.08 (hereafter “GLUb0.08 configuration”) was utilized, which 

provides a daily snapshot at zero hours UTC beginning in October 1992 (HYCOM, 2017a).  

The GLBu0.08 configuration was selected over the GLBa0.08 configuration as it has a 

higher spatial resolution in the upper ocean and 40 standard z levels, while the GLBa0.08 

configuration has fewer (33) z levels with low spatial resolution in the upper ocean.  In 

addition, the GLBu0.08 configuration includes in-situ temperature, while the GLBa0.08 

configuration only includes potential temperature (Wallcraft, 2014).  Due to the extended 

time series covered by the observational data in the TOTO, both the global 1/12° “analysis” 

and “reanalysis” experimental runs of the GLBu0.08 configuration were utilized to provide 

historical coverage from 1992.  The HYCOM analysis runs (hereafter “analysis”) are 

snapshots in time produced from either real-time runs or real-time run simulated by a 

hindcast.  Over time, the results are typically broken into different experiments based on 

upgrades to the model version, data assimilation version, or changes in the available 

atmospheric forcing (Wallcraft, 2015).  For its duration, the reanalysis run (hereafter 

“reanalysis”) uses a constant software system maintaining the same version of the 

HYCOM, the same atmospheric forcing source (Climate Forecast System Reanalysis), and 
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the same data assimilation version (NCODA 3DVAR).  In addition, the bathymetry in the 

reanalysis follows the coastline more closely.   The observational data in the TOTO 

spanned four experiments during the analysis and one experiment during the reanalysis 

(Table 1).  The analysis and reanalysis overlap for approximately eight months, during 

which time six CTD casts were collected.   

Both the HYCOM configurations used in this study (GOMI0.04 1/25° and the 

GLBu0.08 1/12°) are available with 40 standard vertical layers, although the vertical layers 

utilized by the two configurations differed in the upper ocean (See Appendix 1).    In 

addition, the NetCDF file for each model configuration had a slightly different format, with 

five variables (time, depth, latitude, longitude, and temperature) defined differently and 

two variables (time and longitude) formatted differently.  In addition, time and longitude 

were also formatted differently between the analysis and reanalysis in the GLBu0.08 

configuration. 

Table 1: The HYCOM configurations and experiments utilized during this study 

Model 
Configuration Experiment Extent Resolution 

Output 
Frequency 

Experiment  
Date Range 

GOM10.04 Expt 32.5 GoM 1/25° Hourly 
4/1/2014 - 

Present 
GOFS 3.0 Analysis 
GLBu0.08 Expt 91.2 Global 1/12° Daily 

4/18/2016 - 
Present 

GOFS 3.0 Analysis 
GLBu0.08 Expt 91.1 Global 1/12° Daily 

4/5/2014 - 
4/18/2016 

GOFS 3.0 Analysis 
GLBu0.08 Expt 91.0 Global 1/12° Daily 

8/21/2013 - 
4/4/2014 

GOFS 3.0 Analysis 
GLBu0.08 Expt 90.9 Global 1/12° Daily 

1/3/2012 - 
8/20/2013 

GOFS 3.0 Reanalysis 
GLBu0.08  Expt 19.1 Global 1/12° Daily 

8/1/1995 - 
12/31/2012 

 

3.1.2 DEEPEND and the GoM 

CTD sensor data in the GoM were obtained by the DEEPEND Consortium over 

five research cruises between 2015 and 2017, for a total of 85 casts (Sutton, 2015; Sutton, 

2016; Sutton, 2017, Sutton, 2018 a; Sutton, 2018 b).  Research cruise DP01 took place in 

May of 2015, DP02 in August 2015, DP03 in May of 2016, DP04 in August 2016, and 
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cruise DP05 in May of 2017.  The casts span the latitudes between 26.85 North and 29.07 

North and between longitudes 85.99 West and 89.99 West at 23 stations (Figure 1).  The 

deepest cast was 2002 meters, with the average deepest depth across all casts of 1385 

meters.  Two casts were not utilized in this study; one was noted to be a duplicate cast, 

while the other was corrupt.  The CTD system included two temperature and two 

conductivity sensors, while fourteen casts used only one salinity sensor.  For casts which 

two temperature and conductivity measurements were taken, the mean of the two 

measurements was calculated after data quality checks were performed, but prior to 

analysis.  The GoM cast data included only the downcast (i.e., data collected while the 

instrument was lowered through the water column) which were binned using medians into 

one-meter depth intervals using custom MATLAB scripts and functions (English, D., 

unpublished data logs).   

 

Figure 1: GoM Observational CTD Cast Collection Locations 
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3.1.3 AUTEC and the TOTO 

371 CTD and XCTD sensor data casts were collected between 1997 and 2017 by 

the NUWC det. AUTEC between latitudes 23.834 degrees North and 24.962 degrees North 

and between longitudes 76.862 degrees West and 77.822 degrees West (Figure 2).  The 

deepest cast was to 1903 meters, with the average deepest depth across all casts of 1243 

meters.  The long-time series and changes in data formatting of the TOTO data left many 

gaps and inconsistencies between data sets, requiring tedious review by hand.  For datasets 

after 2005, the time, date, and location were corrected by hand using cast logs.  

Unfortunately, for datasets prior to 2004, this information was not available and 123 CTD 

casts were unusable due to a lack of position or units documentation.  Of the remaining 22 

casts, the depths were limited to less than 200 meters and were in non-consistent formats, 

and therefore all casts prior to 2005 were omitted from the analysis.  There were 226 

AUTEC CTD and XCTD casts between 2005 and 2017 and two casts were omitted because 

of suspect data or a lack of HYCOM data in the vicinity of the cast for comparison.   
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Figure 2: TOTO Observational CTD Cast Collection Locations 

Of the 224 casts retained for this study, format of the time, date, and location were 

inconsistent among the data therefore MATLAB was used to standardize the format of the 

data.  Time was documented in both local and UTC time throughout the AUTEC casts and 

a majority of the data were in local time. Remaining entries were converted to local time 

to standardize.  Raw cast data in the TOTO were provided in English Engineering units 

and included both the downcast and upcast (i.e., data collected while the instrument is 

raised from the bottom to the surface).  The upcast was manually removed from the data 

set as it may contain contaminated sensor data from disturbances to the water column 

caused by the instrument’s initial decent (R. Bolin, pers. communication 2018).  The data 

was converted to scientific units using MATLAB to ensure all datasets were consistent.   
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3.2 Code development  

MATLAB was used to extract the HYCOM netCDF data (i.e., latitude, longitude, 

day, time, depth, salinity and temperature), analyze the raw CTD casts, check data quality, 

perform interpolation, analyze the HYCOM and the CTD data, calculate statistics and plot 

the study results.  Due to the differences between both the HYCOM and observational data, 

separate MATLAB m files were composed for extracting and analyzing the data for each 

basin.  Additionally, the XCTD data collected in the TOTO were in a different format than 

the CTD data, requiring a separate code.     

3.2.1 Quality Control Procedures 

Prior to analysis, the raw observational CTD data were vetted through control 

procedures to identify outliers and erroneous measurements following Boyer & Levitus 

(1994) and Johnson et al. (2013).  For each observational data point, the data were checked 

for depth duplications, depth inversions, excessive temperature and salinity gradients and 

inversions, and to ensure temperature and salinity measurements were within an acceptable 

range.  All measurements which were flagged during quality control were omitted from the 

CTD interpolation to standard levels.  Depth duplication occurred when a depth reading 

was identical to the reading immediately preceding it. Depth duplications were eliminated 

from the data set.  A depth inversion occurred when an observation was at a depth shallower 

than the depth immediately before it.  When found, the second observation was flagged.  

The temperature and salinity data were also verified to be within an acceptable range of 

values based on the geographic location of data collection to eliminate outliers.  As both 

the GoM and the TOTO fall within the North Atlantic geographic boundary as defined by 

the World Ocean Database User’s Manual (Appendix 2) (Johnson et al., 2013), the ranges 

were established based on frequency distributions, statistical analysis, literature values, and 

atlases and are broad enough to account for variations by season and year (Boyer & Levitus, 

1994; Johnson et al., 2013).  Measurements which fell outside of the acceptable ranges 

were flagged.  For both temperature and salinity, gradients checks were performed to verify 

measurements did not excessively increase or decrease over a depth range.  A gradient is 
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the change in the value of a variable between two depths divided by the change in depth, 

defined by Johnson et al. (2013) as 

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =
∆𝑣

∆𝑧
=  

𝑣 − 𝑣

𝑧 −  𝑧
 

where  

 𝑣 = the value of the variable at the current depth level 

 𝑣 = the value of the variable at the next depth level 

 𝑧 = the depth of the current depth level 

 𝑧 = the depth of the next depth level 

Acceptable maximum gradient (MGV) and inversion (MIV) values were obtained from 

Johnson et al. (2013) and utilized for this check (Table 2).  A negative (or excessive) 

gradient was one in which the measurement decreases over depth at a rate higher than the 

MGV, while a positive gradient (or excessive inversion) occurred where the measurement 

increases over depth at a rate higher than the MIV.  Measurements which did not meet the 

gradient checks were flagged in the CTD file.   

Table 2: Maximum Acceptable Inversion and Gradient Values for Temperature and 
Salinity (Johnson et al., 2013) 

Variable 

Maximum 
Inversion Value  

 
(Depths<400m) 

Maximum 
Gradient Value 

  
(Depths<400m) 

Maximum 
Inversion Value 

  
(Depths>400m) 

Maximum 
Gradient Value 

  
(Depths>400m) 

Temperature 0.300 0.700 0.300 0.700 

Salinity 9.000 9.000 0.050 0.050 

 

3.2.2 HYCOM Interpolation 

The HYCOM data were selected for the date, time and locations associated with 

each CTD cast.  The HYCOM data are available only on the prescribed grid (1/25° in the 

GoM and 1/12° in the TOTO) and at the defined time increment (1 hour in the GoM and 1 
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day in the TOTO).  In order to calculate the HYCOM estimation at the exact location and 

time (in the GoM) of the CTD cast, two types of interpolation were required.    

The hourly snapshots available from the GOMI0.04 configuration allowed for a 

direct comparison in the GoM between the model and CTD data at the exact time of the 

cast at each depth level and each latitude-longitude pair using spline interpolation.  Spline 

interpolation was selected over other interpolation methods as it resulted in a better fit for 

the HYCOM hourly temperature and salinity fluctuations observed over the course of a 

day.   

The HYCOM data were isolated using the four nearest latitude-longitude pairs 

surrounding the CTD cast location.  The HYCOM data from the surrounding grid were 

interpolated to the exact location of the CTD cast using bilinear interpolation, or linear 

interpolation when a cast fell on the HYCOM grid.  For CTD casts that occurred near the 

boundary of the basin, the HYCOM data were not always available at the four surrounding 

grid points for the full depth of the cast.  In the GoM, the HYCOM grid surrounding one 

data point was not complete due to its proximity to the Continental Shelf.  Due to the 

narrowness of the TOTO and the 1/12° resolution HYCOM grid, the grid was typically 

incomplete for CTD casts which took place on the western side of the basin off of Central 

Andros.  When the entire HYCOM grid was not available at a particular depth, linear or 

bilinear interpolation was performed on the remaining grid points and the interpolated data 

point was flagged as less certain.  In the GoM, the required HYCOM grid was unavailable 

for 0.04% of the data.  In the TOTO, 6.47% and 6.51% of the required temperature and 

salinity data were missing.   

3.2.3 Lagrangian Interpolation of CTD data 

The HYCOM model outputs were interpolated to 40 standard depth levels.  As the 

raw observational CTD/XCTD data captured the entire water column, the CTD data were 

interpolated to HYCOM’s standard depth levels to compare the two.    Data flagged during 

the quality control steps were not used for interpolation to standard levels.  The standard 

depth level interpolation was based on that described by Boyer and Levitus (1994) and 

Johnson et al. (2013) and consisted of conducting two three-point Lagrangian 



 

17 
 

interpolations on the four observational data points surrounding the standard depth level 

after which an average of the two interpolated values was taken as the value for the standard 

depth.  Linear interpolation was performed in cases where there were not enough data 

points to perform Lagrangian interpolation, such as near the surface and when a cast began 

or ended near a standard depth level.  If an observed measurement was collected exactly at 

a standard depth level, a direct substitution was made.  When observed values occurred 

within 5 meters of the surface, the shallowest value was taken as the surface value.   Data 

used for interpolation had to fall within a reasonable distance from the standard level, 

otherwise measurements too far from the standard depth could adversely influence the 

interpolated value.  Documentation in other studies regarding the maximum distance used 

for vertical interpolation was poor, so a distance of 25 meters was selected for this study.   

3.2.4 Comparison to HYCOM 

After the CTD cast was interpolated to the standard depth levels, the interpolated 

CTD data was compared to the HYCOM estimation at each depth level.  For all data points, 

the CTD measurement was subtracted from the HYCOM estimate.  The differences were 

plotted along with the raw data for verification as well as saved to an output file for 

statistical analysis.   

The statistical analyses done in this study included descriptive statistics and 

regression analysis, primarily evaluating the error, mean error and root mean square error 

(RMS error).  The error is the difference between an observational data point at a particular 

location (latitude, longitude, and depth) and time the corresponding HYCOM estimate.  

The mean error is the mean of the error between the HYCOM estimate and observational 

data using the full set of comparisons and can be analyzed for a particular criteria (depth, 

month, year, experiment, cruise in this study) and over the entire data set.  The RMS error 

measures the amount of error between two data sets, or as presented here, the fit of the 

HYCOM model’s estimation to the observed CTD data.  RMS error is extensively used at 

NUWC det. AUTEC for determining accuracy.   

Ocean condition data from the HYCOM are estimations of the true ocean, and as 

such are subject to input condition errors and the very nature of trying to emulate imperfect 
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physical processes.  Some level of error in the estimation of the ocean parameters in the 

GoM and the TOTO was therefore expected, while this study quantifies that error.  The 

validation of the HYCOM model was taken a step further by determining a correction 

factor for the model for more accurate application of the model in the regions presented.  

The depth levels of the GLBu0.08 1/12° HYCOM configuration used in this study were 

focused near the surface, while the depth levels in the GOMI0.04 1/25° HYCOM 

configuration were distributed more through the water column.  This discrepancy between 

experiments in combination with the variability in mean error values made a non-linear 

regression fit impractical (Mean error data available in Table 10).  Due to the complexity 

of the mean error as a function of the standard depth levels, Generalized Additive Models 

(GAM) were required to find the optimal fit of the mean error data as a function of depth 

in each region.  A GAM is an optimized spline-fitting model in which the model is defined 

in terms of smoothing functions which are additive (Wood, 2006).   

4.0 Results  

4.1 Observational Measurements 

The observational measurements through the entire water column were analyzed to 

characterize and identify trends when compared to the HYCOM data (Table 3). For 

temperature and over all CTD and XCTD casts, the GoM and the TOTO had approximately 

the same range in values at the surface (Figure 3 and Figure 4).  With increasing depth, the 

CTD temperature profiles had more variability in the GoM than in the TOTO.  The salinity 

profiles were similar in the two regions (Figure 5 and Figure 6). The minimum salinity was 

at the surface in both regions, with a minimum in the GoM that was 2.13 PSU lower than 

in the TOTO, likely due to the larger fresh water influences from the Gulf Coast and 

evaporation that exceeds precipitation in the TOTO (Ridley, 1962).  Depending on the 

season, both regions reached their maximum salinity between 100 and 200 meters, with 

higher readings in the TOTO than in the GoM.  At depths deeper than 1000 meters, the 

salinity in both regions was stable at approximately 35 PSU.   
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Table 3: Observational Data Summary by Region 

 

 

 

 

 

 

 

Figure 3: Temperature vs Depth for Observational Cast Data in the GoM 

 

  TOTO GoM 
Maximum Temperature (°C) 30.66 31.49 
Minimum Temperature (°C) 3.40 4.27 

Maximum Salinity (PSU) 37.23 37.55 
Minimum Salinity (PSU) 29.60 27.47 

Maximum Depth (meters) 1903.8 2001.5 
Mean Max Depth (meters) 1060.4 1396.8 
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Figure 4: Temperature vs Depth for Observational Cast Data in the TOTO 

 
Figure 5: Salinity vs Depth for Observational Cast Data in the GoM 

 



 

21 
 

 

Figure 6: Salinity vs Depth for Observational Cast Data in the TOTO 

 

Although the GoM observational data were only measured during two months, the 

temporal resolution within each month was high, allowing for three successive 

comparisons in the month of May and two in August.   Observational data collected in 

August 2015 (DP02) and August 2016 (DP04) plotted a similar profile, whereas both the 

temperature and salinity show more variability over the course of each cruise.  The 

temperature and salinity profiles in May of 2015 (cruise DP01) and 2017 (DP05) however 

were fairly consistent over the course of each cruise.  Interestingly, the data from the May 

2016 (DP03) cruise more closely resembled that taken during the two August cruises rather 

than the May 2015 and 2017 cruises.    

The variability between the cruises in the GoM was observed in the upper 200 

meters in the CTD casts.  In May 2015 the thermocline was between 20 to 40 meters, while 

the water temperature in the surface layer ranged between 24.22°C and 26.29°C (Appendix 

3).  The surface salinity during May 2015 ranged from 33.61 PSU to 36.39 PSU (Appendix 

4).  In August 2015 the thermocline was sometimes present between 20 and 40 meters, 



 

22 
 

with surface temperatures between 29.07°C and 31.49°C (Appendix 5).  In August 2015 

the surface salinity was between 29.13 PSU and 36.31 PSU (Appendix 6).  In May 2016 

the temperature data showed more variability than the other two May cruises (Appendix 

7).  The temperature in the surface layer during May 2016 presented with two distinct 

profiles.  The first had a thermocline between 20 and 40 meters with surface temperatures 

between 24.65°C and 25.92°C.  Three CTD casts followed the second profile with surface 

temperatures between 26.31°C and 26.67°C and two thermoclines, the first between 60 and 

80 meters and the second between 130 and 140 meters.  May 2016 had the most variability 

in salinity measurements of the five cruises, predominately in depths 50 to 125 meters and 

400 to 800 meters (Appendix 8), although the surface salinity had the least variability with 

a range of 0.33 PSU.   In August 2016, the thermocline was present for most CTD casts 

between 20 and 30 meters, while for two casts the thermocline was between 125 and 150 

meters (Appendix 9).  The surface temperatures range in August 2016 between 29.25°C 

and 31.39°C.  The salinity in August 2016 ranged between 27.47 PSU and 36.37 PSU 

(Appendix 10).  In May 2017 the thermocline was predominately present between 50 and 

70 meters, with a few CTD casts presenting a thermocline between 20 and 30 meters 

(Appendix 11).  The range in surface temperatures in May 2017 was between 23.7°C and 

25.32°C.  The surface salinities in May 2017 were between 36.3 PSU and 36.48 PSU 

(Appendix 12).  

The coldest surface temperature in the GoM occurred in May 2017 (23.7°C), while 

the warmest surface temperature occurred in August 2015 (31.49°C).  The greatest range 

in surface temperatures occurred in August 2015 (2.42°C), while the smallest range was in 

May 2016 (1.27°C).  The maximum salinity of all casts occurs at a depth between 80 and 

200 meters, with the shallowest occurring in May 2015, while the deepest occurred during 

one cast in August 2016.  The greatest range in surface salinities occurred in August 2016 

(8.9 PSU). 

In the TOTO, the temperature remained warm (between 23.19°C and 30.66°C for 

all casts) for the first 100-150 meters before beginning a gradual decrease with depth, 

reaching its minimum temperature at the deepest depth of each cast.  The range in salinity 

values in the TOTO was highest between the surface and 250 meters, after which the range 
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of values decreased at each depth, reaching a consistent salinity at approximately 1100 

meters.    

 Seasonal variation in the TOTO was observed in the upper 150 meters in the CTD 

casts.  Between the months of February and April the thermocline was at a constant depth 

of 150 meters with a surface layer that warmed over the period.  The temperatures in the 

surface layer ranged between 23.37°C and 25.38°C (Appendix 14 through Appendix 16).  

As the surface layer continued to warm in May, the observational data indicated two 

thermoclines, one at 70 meters and one at 150 meters with a surface layer between 23.99°C 

and 26.67°C (Appendix 17).  During the summer months (June through August), the 

thermocline was shallow (20-40 meters) or not present in the observational data and the 

surface layer ranged in temperatures between 25.89 °C and 30.13°C (Appendix 18 through 

Appendix 20).  By September and October, the thermocline reestablished itself at a depth 

of 50 meters with a surface layer between 28.62°C and 30.65°C (Appendix 21 and 

Appendix 22).  During November and December, the thermocline deepened to between 60 

and 120 meters, with temperatures in the surface layer ranging between 25.46°C and 

28.94°C, cooling predominately during November (Appendix 23 and Appendix 24).  The 

warmest surface layer was found in September when the temperatures were between 

29.02°C and 30.65°C, while the coolest layer occurred during February (23.37°C to 

24.62°C). 

 The observational data from the TOTO had the lowest surface salinities in May 

(31.74 PSU) through September (29.6 PSU), while the highest surface salinities occurred 

in July (36.97 PSU) and between January and April (the highest in February and March 

with 36.93 PSU each).  The greatest variability in TOTO salinity occurred in the upper 2 

meters of the water column.  September and July had the greatest range in values (7.15 

PSU and 6.35 PSU, respectively), while November and October had the smallest range in 

the top 2 meters (0.45 PSU and 0.51 PSU).  The maximum salinity of all casts occurred at 

a depth between 120 and 180 meters.  The shallowest occurred in October and November 

(120 meters), while the deepest occurred between February and June (between 160 and 180 

meters) (Appendix 25 through Appendix 36).   
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4.2 HYCOM Estimated Variables  

In general, the HYCOM estimations were consistent with observational CTD data in each 

region.  In the GoM, the HYCOM temperature estimations and variability of the 

temperatures decreased quickly with depth, consistent with the observational data (Figure 

7).   In the TOTO, the temperature remained warm until approximately 100 meters before 

slowly decreasing with depth in both the HYCOM estimate and observational data (Figure 

9).  Notably, in the TOTO the range of temperature extremes at each depth and variability 

in values was narrower than in the GoM.   The HYCOM’s minimum estimation of salinity 

in the GoM was approximately 3 PSU higher than the minimum observational data point 

(Figure 8).  Both the HYCOM estimations and the observational data for salinity in the 

GoM had the most variability at depths between 100 to 700 meters.  At depths greater than 

700 meters the range in salinity values decreased, becoming more consistent through the 

remainder of the water column.  The HYCOM estimation for salinity in the TOTO varied 

less than 1 PSU in the first 100 meters while the observational salinity data had a range of 

7.63 PSU (Figure 10).  Below 100 meters the HYCOM estimates had more variability in 

salinity range than the observational data.    In the TOTO, the HYCOM data were only 

available for the upper 1250 meters of water for all but one station, yet 59% of the TOTO 

casts extend deeper than 1250 meters.  
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Figure 7: Observational CTD and HYCOM Model Temperature Data in the GoM 
 

 
Figure 8: Observational CTD and HYCOM Model Salinity Data in the GoM 
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Figure 9: Observational CTD and HYCOM Model Temperature data in the TOTO 

 

Figure 10: Observational CTD and HYCOM Model Salinity Data in the TOTO 
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4.3 Summary of the HYCOM Estimation and Observational CTD Data Comparison 

The long timespan of the observational data collected in the TOTO allowed for 

several comparisons both within the region as well as against the results in the GoM, 

including the month, year, experiment, and between individual GoM cruises.  Still, trends 

were only noted between the two basins and between the different depth levels.  The 

collection dates of CTD casts in the two regions did not correspond, and therefore a direct 

comparison of HYCOM’s performance between the two could not be made for a given 

moment in time. Except where noted (Section 4.10), the results presented do not include 

the HYCOM data that were flagged during the bilinear interpolation or observational data 

that failed the quality control check.   

The mean error between the HYCOM and observational data through the entire 

water column was characterized to evaluate the performance of the HYCOM in each 

region.  The mean error between the HYCOM temperature estimation and observational 

data in the GoM was higher than in the TOTO, indicating that the HYCOM predicted the 

temperature in the TOTO better than in the GoM (Table 4).    The HYCOM also predicted 

salinity better in the TOTO than in the GoM, as the mean error between the HYCOM 

salinity estimation and the observational data was also smaller than in the GoM (Table 5).  

Although the HYCOM predicted the ocean conditions in the TOTO better than in the GoM, 

for both variables the range between the minimum and maximum error was higher in the 

TOTO than in the GoM.  Because the standard deviation was lower in the TOTO for both 

temperature and salinity, the variability in the HYCOM’s ability to estimate the conditions 

was lower in this region.   

Table 4: Summary of Statistics of the Error between the HYCOM and Observational 
Temperature by Region 

 GoM TOTO 
Mean  -0.6690 -0.2798 
Standard Deviation 1.2851 0.8491 
RMS Error 1.4486 0.8939 
Maximum 3.3746 4.4187 
Minimum -6.8053 -8.0386 



 

28 
 

 

Table 5: Summary of Statistics for the Error between the HYCOM and Observational 
Salinity by Region 

 GoM TOTO 
Mean  -0.2100 -0.0152 
Standard Deviation 0.6121 0.2531 
RMS Error 0.6470 0.2535 
Maximum 7.7979 4.2197 
Minimum -5.9452 -1.2424 

 

4.4 Error between the HYCOM Estimation and Observational CTD Data  

In this study, the HYCOM was more likely to underestimate the ocean conditions 

than over estimate them in both the TOTO and the GoM (Table 6 and Table 7).  When 

plotting the error between the HYCOM estimation and the observational data at the 

standards depth levels in the GoM (Figure 11), the HYCOM underestimated temperature 

more often than overestimated at each depth, with the most variability in the upper 400 

meters.  Not only was temperature underestimated more often than overestimated in the 

GoM, but the HYCOM also underestimated by a greater magnitude than it overestimated.  

Although the HYCOM also underestimated the temperature in the TOTO more often than 

it overestimated, between the depths of 2 meters and 100 meters the mean error was close 

to zero (Figure 12).  The HYCOM underestimated the temperature more often between 125 

and 500 meters in the TOTO, while deeper than 600 meters the HYCOM overestimated 

more often.  In the GoM, there was a strong tendency for HYCOM to underestimate the 

salinity between the surface to 800 meters (Figure 13). In the TOTO, the HYCOM was 

almost as likely to overestimate as it was to underestimate salinity.  Underestimation 

occurred more often between 35 and 400 meters, while overestimation occurred more often 

for all other depths (Figure 14).   
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Table 6:  The HYCOM under- and overestimation percentages of temperature in the 
TOTO and GoM 

  TOTO GoM 
HYCOM Under Estimates 69.97% 72.81% 

HYCOM Over Estimates 30.03% 27.19% 
 

Table 7: The HYCOM under and overestimation percentages of salinity in the TOTO and 
GoM 

  TOTO GoM 
HYCOM Under Estimates 54.39% 74.77% 

HYCOM Over Estimates 45.61% 25.23% 
 
 

 

Figure 11: Temperature errors between the HYCOM estimate and observational data at 
each standard depth level in the GoM 
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Figure 12: Temperature errors between the HYCOM estimate and observational data at 
each standard depth level in the TOTO 

 

Figure 13: Salinity errors between the HYCOM estimate and observational data at each 
standard depth level in the GoM 
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Figure 14: Salinity errors between the HYCOM estimate and observational data at each 
standard depth level in the TOTO 

 

4.5 Depth Analysis of RMS Error 

Plotting RMS error against depth was the most indicative of a trend in the 

HYCOM’s performance over the study period.  The GoM 1/25° and the global 1/12° 

HYCOM models use different standard depth levels in the water column and therefore 

direct comparisons could not be made at all depths, but an overall trend was quantified.  

Based on the mean error, the HYCOM underestimated ocean temperature at most depths.  

In the TOTO, the HYCOM underestimated the temperature for all depths 500 meters and 

shallower, while in the GoM, HYCOM underestimated the temperature at all depths except 

0, 1300, and 1400 meters.  For salinity mean error in the TOTO, HYCOM underestimated 

the conditions between 30 and 400 meters, while overestimating for all other depths.  In 

the GoM, salinity was under estimated for all depths 800 meters and shallower.   
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For temperature, the RMS error in the TOTO was less than that in the GoM for all 

comparable depths shallower than 500 meters, while the TOTO’s RMS error was greater 

than in the GoM for all depths 500 meters and below (Figure 15).  The salinity RMS error 

in the TOTO was less than the GoM for all depths less than 300 meters, after which the 

GoM RMS error was less than the error in the TOTO (Figure 16).  The temperature and 

salinity error in the GoM converged towards zero with increasing depth, while the error in 

the TOTO remained around 1°C and 0.2 PSU, respectively, with increasing depth.   

 

Figure 15: Temperature RMS Error vs Depth 
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Figure 16: Salinity RMS Error vs Depth 

 

4.6 Monthly Analysis of RMS Error 

When comparing the months of the year, the temperature RMS error in May and 

August in the GoM were higher than the same months in the TOTO (as well as all other 

months) (Figure 17).  The temperature RMS error in the GoM was greater than 1.2 °C for 

both May (1.2194°C) and August (1.6898°C), while the highest error in the TOTO was 

during the month of May (1.1520 °C).  The lowest temperature RMS errors in the TOTO 

were in October and December.  There was no discernable association between the 

TOTO’s RMS error and the month of year.  Although the error was lower in May than in 

August in the GoM, there was not enough year-round data to make a statement regarding 

the relationship between temperature error and time of year.   The mean error for 

temperature during each month indicates that the HYCOM underestimated the ocean 

conditions year-round in both regions.   
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For salinity, the RMS error in the GoM was higher in both May and August than 

during the same months in the TOTO (as well as all other months) (Figure 18).  In the GoM 

the salinity RMS error was greater than 0.5 PSU for both May (0.5442 PSU) and August 

(0.7552 PSU), while in the TOTO June and September had the highest RMS error (0.3232 

PSU and 0.3244 PSU, respectively).  There was a slight difference between the salinity 

error and the time of year, whereas the RMS error was higher during summer months (May 

through September) than the rest of the year, with the exception of December, which was 

also higher.  Additional year-round data would be required to further evaluate this 

assessment.  Although the salinity RMS error was lower in May than in August in the GoM, 

there was not enough year-round data to make a statement regarding the relationship 

between the HYCOM’s performance and time of year. 

 

 

Figure 17: Temperature RMS Error vs Month 
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Figure 18: Salinity RMS Error vs Month 
 

4.7 Yearly Analysis of RMS Error 

Although both the temperature and salinity RMS error (Figure 19 and Figure 20 

respectively), decreased over the three years of GoM observational data, the time series 

analyzed here was not long enough to isolate a definitive relationship between the 

HYCOM’s performance and year.   The observational data in the TOTO spans 13 years, 

though during the years 2009-2013 and 2017 a limited number of CTD casts were taken - 

seven or less casts were taken during these years and only two casts were taken in 2013.  

The temperature RMS error was the greatest in the TOTO in 2007 (1.0759 °C), while the 

smallest RMS error was in 2012 (0.5896 °C), with no discernable relationship between the 

RMS error and years.  The salinity RMS error in the TOTO ranged between 0.1068 °C in 

2013 and 0.4455 °C in 2011, also without an apparent relationship to the year.   
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Figure 19: Temperature RMS Error vs Year 

 
Figure 20: Salinity RMS Error vs Year 
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4.8 GoM Cruise Analysis of RMS Error 

Although the research cruises in the GoM were only conducted during two months 

of the year for three years, the high volume of observational CTD casts taken during the 

five cruises made it possible to analyze the cruises individually.  The temperature RMS 

error ranged from 0.6577 °C during cruise DP05 (May 2017) to the greatest RMS error of 

1.9343°C during DP02 (August 2015) (Figure 21).  With the exception of DP01 (May 

2015), the temperature RMS error decreased over the course of the remaining four cruises 

(DP02 to DP05).  The salinity RMS error ranged from 0.3945°C, occurring in DP05 (May 

2017), to 0.8900°C during DP04 (August 2016) (Figure 22).  The salinity RMS error 

decreased with each cruise, with the exception of DP04. 

 

 

Figure 21: Temperature RMS Error vs GoM Cruise 
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Figure 22: Salinity RMS Error vs GoM Cruise 

 

4.9 Experiment Analysis of RMS Error 

The observational data in the TOTO spans the course of 13 years and the GLBu0.08 

configuration contains multiple experiments (both analysis and reanalysis) over this period 

which were used in this study.  171 CTD casts were collected in the TOTO from 2005 to 

2012 and the reanalysis experiment 19.1 was used to analyze these casts.  Four analysis 

experiments (90.9, 91, 91.1, and 91.2) were used for the remaining 57 casts collected 

between 2012 and 2017.  The reanalysis and analysis overlapped approximately eight 

months in 2012, the HYCOM estimations during this period were analyzed as part of each 

experiment 19.1 and 90.9 with their corresponding CTD casts (4 casts) (Additional analysis 

in Section 4.11).  For both temperature and salinity, the RMS error using the GOMI0.04 

1/25° HYCOM configuration in the GoM (experiment 32.5) was higher than the RMS error 

in all analysis and reanalysis experiments used for the TOTO (Figure 23 and Figure 24, 

respectively).  Within the GLBu0.08 1/12° configuration, there did not appear to be an 
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improvement between the analysis and reanalysis, nor within the analysis experiments.  For 

both temperature and salinity, the RMS error was the least for experiment 90.9 and the 

greatest for experiment 91.2.  It should be noted that there were far fewer casts during 

experiments 90.9 (6 casts) and 91 (5 casts), while experiments 19.1 covered the most (171 

casts), while experiments 91.1 and 91.2 covered 29 and 17 CTD casts, respectively.   

 

Figure 23: Temperature RMS Error vs Experiment 
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Figure 24: Salinity RMS Error vs Experiment 

 

4.10 Quality Control of HYCOM data 

In the GoM, the required HYCOM grid was unavailable for 0.04% of the data, the 

equivalent of one HYCOM data point.  In the TOTO, the required HYCOM grid was 

unavailable for 6.47% and 6.51% of the temperature and salinity data, respectively (454 

total data points).  Overall statistics were evaluated to determine the impact of the HYCOM 

uncertainty on RMS error.  In the GoM, the removal of the uncertain point resulted in a 

minimal change of RMS error on the order of 0.0003 °C for temperature and .0001 PSU 

for salinity Table 8).  In the TOTO, the overall temperature RMS error decreased by 0.0343 

°C, while the overall salinity RMS error increased by 0.0016 PSU (Table 9). 
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Table 8: Overall Statistics for the GoM with and without Quality Control of the HYCOM 

data 

Temperature Salinity 

 

Without 
Quality 
Control 

With 
Quality 
Control  

Without 
Quality 
Control 

With 
Quality 
Control 

Mean Error -0.6690 -0.6690 Mean Error -0.2099 -0.2100 
Standard 
Deviation 1.2848 1.2851 

Standard 
Deviation 0.6120 0.6121 

RMSE 1.4483 1.4486 RMSE 0.6469 0.6470 

Maximum 3.3746 3.3746 Maximum 7.7979 7.7979 

Minimum -6.8053 -6.8053 Minimum -5.9452 -5.9452 
 

Table 9: Overall Statistics for the TOTO with and without Quality Control of the 
HYCOM data 

Temperature Salinity 

 

Without 
Quality 
Control 

With 
Quality 
Control  

Without 
Quality 
Control 

With 
Quality 
Control 

Mean Error -0.2898 -0.2798 Mean Error -0.0157 -0.0152 
Standard 
Deviation 0.8819 0.8491 

Standard 
Deviation 0.2514 0.2531 

RMSE 0.9282 0.8939 RMSE 0.2519 0.2535 

Maximum 4.4187 4.4187 Maximum 4.2197 4.2197 

Minimum -8.7652 -8.0386 Minimum -1.2424 -1.2424 
 

The results in the TOTO were further evaluated to describe the influence of the missing 

HYCOM data on the RMS error.   Evaluating the different depth levels in the TOTO, the 

RMS error changed the most at the deepest depth of 1250 meters, increasing for both 

salinity and temperature with the removal of the uncertain data points.  For temperature 

(Appendix 46), the RMS error increases with the removal of the uncertain data points for 

all depths between 0 and 50 meters and at 1000 and 1250 meters and decreases between 60 

and 900 meters.  For salinity (Appendix 47), the RMS error increases with the removal of 

the uncertain data points at depths of 2 to 45 meters, 60 to 70 meters, 300 to 400 meters, 

1000 and 1250 meters, while decreasing at 0 meters, 80 to 90 meters, 125 to 250 meters, 

500 to 900 meters and remained unchanged at 50 and 100 meters.  While evaluating the 
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different months analyzed for the TOTO data, the RMS error for temperature decreased 

with the removal of the data for all months with the exception of February (Appendix 49).  

For salinity, the RMS error increased in eight out of twelve months, only decreasing in 

March, April, October and November (Appendix 50).  The RMS error for temperature 

decreased in nine of the years analyzed, increasing in 2007, 2008, and 2012, while 

remaining unchanged in 2009 (Appendix 52).  Salinity RMS error also remained 

unchanged in 2009, while increasing in six of the years studied (2005, 2007, 2010, 2011, 

2012, and 2017) and decreasing in six years (2006, 2008, 2013, 2104, 2015, and 

2016)(Appendix 53).  For the different HYCOM experiments, the RMS error for 

temperature decreased with the removal of uncertain data points for experiments 19.1, 91, 

91.1 and 91.2, with a slight increase in error for experiment 90.9 (Appendix 55).  For 

salinity, the RMS error decreased in experiments 91 and 91.1, increased by 0.0035 PSU 

for experiment 19.1, with a slight increase for experiments 90.9 and 91.2 (Appendix 56). 

4.11 Reanalysis and Analysis RMS Error Comparison 

The observational data in the TOTO spanned four experiments during the analysis 

(90.9, 91, 91.1, and 91.2) and one experiment during the reanalysis (19.1).  The analysis 

and reanalysis overlap for approximately eight months, during which time six CTD casts 

were collected.  Of the six CTD casts, two did not contain enough HYCOM data in the 

analysis to make a comparison.  Of the remaining four CTD casts, a definitive conclusion 

cannot be made as to which experiment performed better during the overlap with the 

limited quantity of data.  For temperature, experiment 19.1 performed better in the upper 

ocean for three of the four CTD casts, from the surface to at least 100 meters (Appendix 

57).  Experiment 19.1 also performed better in the upper ocean for two of the four casts for 

salinity (to at least 50 meters), while 90.9 performed better in the upper ocean in the other 

two casts (to at least 60 meters) (Appendix 58). 

4.12 HYCOM Correction  

Due to the complexity of the mean error as a function of the standard depth levels 

(Mean error data available in Table 10), Generalized Additive Models (GAM) were used 
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to find the optimal fit of the mean error data as a function of depth in each region.  Using 

R Studio, a separate GAM was computed to find the optimal fit for each variable and 

predict its range within each region.  The GAM for the temperature mean error in the GoM 

produced the best fit to the data, explaining 97% of the deviation with an R-squared of 

0.959 (Appendix 59).  The GAM for the GoM salinity mean error explained 79.4% of the 

deviation with an R-squared of 0.722 (Appendix 60).   In the TOTO, the GAM for 

temperature mean error explained 89.9% of the deviation with an R-squared of 0.865 

(Appendix 61).  The GAM for salinity mean error in the TOTO explained 87.2% of the 

deviation with and R-squared of 0.842 (Appendix 62).   
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Table 10: Mean error data for each depth level in the GoM and the TOTO 

GoM Depth 
Level 

GoM 
Temperature 
Mean Error 

GoM 
Salinity 

Mean Error 
TOTO 

Depth Level 

TOTO 
Temperature 
Mean Error 

TOTO 
Salinity 

Mean Error 

0 0.0916 -0.4655 0 0.0025 0.2719 

5 -0.0899 -0.5941 2 -0.0875 0.0911 

10 -0.0765 -0.7557 4 -0.1024 0.0327 

15 -0.0785 -0.8031 6 -0.0896 0.0270 

20 -0.0811 -0.6945 8 -0.1168 0.0219 

25 -0.1053 -0.5731 10 -0.1282 0.0167 

30 -0.1550 -0.4584 12 -0.1446 0.0131 

40 -0.4401 -0.2513 15 -0.1604 0.0101 

50 -0.7681 -0.1617 20 -0.1791 0.0083 

60 -1.0190 -0.1055 25 -0.2138 0.0025 

70 -1.1414 -0.1019 30 -0.2523 0.0003 

80 -1.2261 -0.0772 35 -0.2720 -0.0041 

90 -1.3596 -0.0794 40 -0.2890 -0.0082 

100 -1.5425 -0.0891 45 -0.2904 -0.0138 

125 -1.9958 -0.1888 50 -0.2719 -0.0246 

150 -1.9262 -0.2320 60 -0.1907 -0.0423 

200 -1.6078 -0.2260 70 -0.0531 -0.0552 

250 -1.3428 -0.1910 80 0.0032 -0.0761 

300 -1.0643 -0.1443 90 -0.0408 -0.1060 

400 -0.7893 -0.0735 100 -0.1374 -0.1407 

500 -0.6741 -0.0439 125 -0.8987 -0.2073 

600 -0.6552 -0.0288 150 -1.3809 -0.2566 

700 -0.5945 -0.0141 200 -1.0683 -0.1808 

800 -0.5116 -0.0016 250 -1.0050 -0.1550 

900 -0.4304 0.0030 300 -0.9756 -0.1250 

1000 -0.3145 0.0087 350 -0.7801 -0.0706 

1100 -0.1815 0.0106 400 -0.8493 -0.0461 

1200 -0.0414 0.0111 500 -0.5244 0.0778 

1300 0.0119 0.0144 600 0.1150 0.1934 

1400 0.0006 0.0206 700 0.5172 0.2069 

1500 -0.0303 0.0257 800 0.3940 0.0946 

1750 -0.0703 0.0274 900 0.1808 0.0766 

2000 -0.0564 0.0735 1000 0.5679 0.0962 

    1250 0.9966 0.1882 
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5.0 Discussion and Conclusion 

The primary focus of this study was to validate the HYCOM in the GoM and 

TOTO, achieved by comparing the HYCOM estimations to observational CTD cast data 

at standard depth levels.  A comprehensive comparison of the vertical profile between the 

model and observational data characterized both oceanic areas of interest and provides 

insight to the application of HYCOM data in future applications in the respective basins.   

The results indicate that overall, the GLUb0.08 1/12° HYCOM configuration is a better fit 

in the TOTO than the GOMI0.04 1/25° HYCOM configuration is in the GoM for both 

temperature and salinity over the study period.  When considering depth, the GLUb0.08 

configuration fit in the TOTO for temperature was better in water depths shallower than 

500 meters, while the GOMI0.04 configuration fit better for depths 500 meters and deeper.  

For salinity, the GLUb0.08 configuration was a better predictor in water depths shallower 

than 300 meters, while the GOMI0.04 configuration fit better at depths 300 meters and 

deeper.  The long term and seasonal trends in GLUb0.08 configuration’s fit to the TOTO 

did not show any trends of improving or worsening over the 13 years the study span or 

over the change of seasons. 

Seasonal variation in the TOTO CTD data was observed in the upper 150 meters.  

This variation is likely because waters of the TOTO are subject to seasonal variation in 

precipitation and the influx of high salinity waters from surrounding shallow banks.  

Therefore, salinity remains high in the winter dry season, while surface salinity is lower in 

the wet summer months.   The surface temperature range in this study also fluctuated with 

the seasons, as did the depth of the thermocline.  Interestingly, the highest mean error was 

found at the depth of the prominent thermocline (150 meters).   

Prior research characterized hydrographic station data for one location in the TOTO 

in 1956 (See Figure 25 in Shonting (1970)).  The study found that the TOTO is made up 

of North Atlantic Central Water (NAWC) and North Atlantic Deep Water (NADW).  

NAWC was found at depths greater than 400 meters, defined by water temperatures 

between +4°C and +17°C and salinity between 35 PSU and 36.3 PSU, while NADW is 

between 1500 and 2000 meters and the sea floor and defined by water temperature between 
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+2°C and +4°C and salinity between 34.9 PSU and 35.0 PSU.  The TOTO’s observational 

data from the present study (Figure 26), falls into the same characterizations as the data 

collected in 1956, albeit with slightly warmer bottom water.  For waters deeper than 1500 

meters, the minimum and maximum water temperatures were 3.41°C and 4.52°C 

respectively, while the salinity maximum was 34.94 PSU and the minimum was 35.01 

PSU.   

 

Figure 25: Temperature-Salinity relationship in the TOTO from 1956 data collection 
(Shonting, D. H., 1970) 
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Figure 26: Temperature -Salinity Relationship in the TOTO between 2005 and 2017.  
Data collected between 400 and 1500 meters are displayed in blue, while data deeper 

than 1500 meters are in black. 

 

The GoM is a more dynamic region than the TOTO with influences from the 

different water types (LC, GCW, and MIX) and fresh water input from river water.  As 

such the thermocline and salinity profiles in the GoM were not static over the course of a 

month as they were in the TOTO for the study period.   The profiles in August 2015 and 

August 2016 were similar, offering more variability over the duration of the cruise.  The 

data in May 2015 and May 2017 showed less variation through the water column, while 

the cruise in May 2016 was more variable and consistent with the data collected in August.  

In the GoM the largest mean error for temperature was between a depth of 125 and 150 

meters.  The largest error for salinity was concentrated at the surface with a second rise in 
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mean error around 150 meters.  The variability observed between cruises can likely be 

explained by the location of the LC and its associated eddies.    

The GoM was characterized by DEEPEND personnel for water features present 

during cruises DP01 through DP04 (May 2015 and August 2016) (Figure 27).  They found 

that during DP01 (May 2015) CTD samples were taken in GCW, during DP02 (August 

2015) samples were taken in GCW, MIX, and LCOW, during DP03 (May 2016) samples 

were collected in GCW and MIX, and during DP04 (August 2016) samples were collected 

in GCW, MIX, and LCOW.  Although the features indicate that DP03 was collected in 

similar waters as DP01, the temperature and salinity profiles of DP03 assembled for this 

study resemble casts taken through the conditions present in both DP02 and DP04.  Three 

samples from DP03 bordered the LCOW, resulting in MIX conditions, these three samples 

correlate with the present study which found a temperature profile with two deep 

thermoclines (60-80 meter and 130-140 meter) and warmer surface temperatures compared 

to those of the remaining DP03 samples. These MIX conditions can likely explain 

deviation of the DP03 temperature and salinity profiles from those collected during DP01 

and DP05. 
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Figure 27: Temperature-Salinity relationship in the GOM of DP01-DP04 (Johnston et al., 
in review) 

 

 This study’s validation of the HYCOM in the GoM and TOTO was a first step in 

evaluating the performance of the model in the interior ocean for the regions of interest in 

this study.  It should be noted however that this study has limitations.  For example, the 

data in the TOTO spanned 13 years, but the number of casts available by year or month 

were limited, and in the GoM observational data were of high resolution during May and 

August, but lacked consistent data collection over time to analyze seasonal and long-term 
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dependability.  Therefore, future studies that aim to validate the model should collect CTD 

or XCTD casts at more frequent and regular intervals in order to increase the confidence 

in the HYCOM’s performance.  XBT casts are also taken in the TOTO in support of U.S. 

Navy testing and could be used for validation, though they only measure temperatures.  

Still, evaluating the XBTs against the HYCOM could fill in additional gaps in the historical 

time scale for the water temperature.   

More than half (59%) of the CTD casts in the TOTO extend deeper than the 

HYCOM’s estimation - most of the HYCOM data only extended half to two-thirds of the 

1,800 meter total depth of the TOTO.  As AUTEC’s testing utilizes the entire water column, 

removing the depth constraint used by the HYCOM would provide a complete estimation 

that could be used to evaluate the deep interior of the TOTO. Additionally, the reanalysis 

uses a bathymetry contour close to the coastline, which is likely why the complete HYCOM 

grid was available during the reanalysis but not for the analysis (experiment 90.9) during 

the same time period.  As further reanalysis model runs become available, it would be 

valuable to compare these data to the analysis data to validate closer to the coastline and 

ideally to deeper TOTO depths.   Further evaluation of the reanalysis would also show 

more reliable long-term trends in the HYCOM’s performance.   

This study used the HYCOM GOMI0.04 configuration in the GoM and the 

GLUb0.08 configuration in the TOTO, yet the spatial extent of each HYCOM 

configuration includes both the GoM and the TOTO.  An evaluation of the 1/12° GLUb0.08 

configuration in the GoM would allow for a direct performance assessment between the 

two model configurations (GLUb0.08 and GOMI0.04) with the same set of DEEPEND 

observational data.   Additionally, a direct assessment could be made in the TOTO between 

the two model configurations using the AUTEC observational CTD data.  The GLUb0.08 

configuration has a finer depth resolution in the upper ocean, making a comparison 

between the two configurations invaluable for GoM applications near the surface.  The 

horizontal resolution of the GOMI0.04 configuration is finer than the GLUb0.08 

configuration, although the TOTO is proximal to the boundary of the GOMI0.04 model 

configuration.  Further evaluation of the GOMI0.04 configuration in the TOTO would 

identify if model boundary limitations impact the HYCOM’s performance or show if 
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AUTEC could benefit from the increased spatial resolution.  Additionally, the GLUb0.08 

reanalysis is available in both daily snapshots taken at zero UTC and 3-hour snapshots.  

This study evaluated the reanalysis’ daily snapshot in the TOTO.  The 3-hour snapshots 

account for local diurnal effects that may be aliased during the daily snapshot.  A 

comparison of the two temporal resolutions available in the reanalysis would be invaluable 

for determining the influence of the local effect on fine time scale.   

A thorough understanding of HYCOM validity in the GoM and the TOTO can be 

used to help characterize the impact of ocean dynamics on deep pelagic fauna and enhance 

acoustical accuracy for naval exercises, respectively.  For DEEPEND, mesoscale features 

in the GoM may dramatically impact the native biology, therefore a validated HYCOM 

can provide DEEPEND with reliable insight into this dynamic ocean region.  Furthermore, 

by understanding the discrepancies between the HYCOM and observational ocean 

conditions, DEEPEND can apply the correction factor outlined here to adjust HYCOM 

outputs to better match true ocean conditions in the GoM. The mission at NUWC det. 

AUTEC is to provide precise under water tracking.  This is possible by determining the 

sound velocity profile of the water column, but doing so requires an accurate knowledge 

of changing ocean conditions.  As the climate warms, the sound velocity profile and ocean 

dynamics of the TOTO may shift more rapidly, and by using the HYCOM model’s forecast 

feature, AUTEC may be able to predict these rapid shifts.  Without the use of an ocean 

model such as HYCOM, sound velocity discrepancies are currently isolated too late, only 

after experiencing poor underwater track.  By using HYCOM’s five day forecast in 

conjunction with the correction noted here, early indications of annual and decadal 

variability within the basin may be detected and allow AUTEC to update their sound 

velocity profiles in advance, avoiding delays and inaccuracies in testing.    
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Appendices 

Appendix 1: Standard Depth Levels used in the GOMI0.04 and the GLBu0.08 HYCOM 
Configurations 

Standard 
Level 

GoMI0.04 
Standard 

Depths 

GLBu0.08  
Standard 

Depths 

Standard 
Level 

GoMI0.04 
Standard 

Depths 

GLBu0.08  
Standard 

Depths 
1 0 0 21 500 125 
2 5 2 22 600 150 
3 10 4 23 700 200 
4 15 6 24 800 250 
5 20 8 25 900 300 
6 25 10 26 1000 350 
7 30 12 27 1100 400 
8 40 15 28 1200 500 
9 50 20 29 1300 600 

10 60 25 30 1400 700 
11 70 30 31 1500 800 
12 80 35 32 1750 900 
13 90 40 33 2000 1000 
14 100 45 34 2500 1250 
15 125 50 35 3000 1500 
16 150 60 36 3500 2000 
17 200 70 37 4000 2500 
18 250 80 38 4500 3000 
19 300 90 39 5000 4000 
20 400 100 40 5500 5000 
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Appendix 2: Ocean basin boundaries as defined in World Ocean Database 2013.  The GoM 
and the TOTO both fall within the boundaries of the North Atlantic. (Johnson et al., 2013) 
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Appendix 3: Observational Temperature Data vs Depth in the GoM during May 2015 

 

Appendix 4: Observational Salinity Data vs Depth in the GoM during May 2015 
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Appendix 5: Observational Temperature Data vs Depth in the GoM during August 2015 

 

Appendix 6: Observational Salinity Data vs Depth in the GoM during August 2015 
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Appendix 7: Observational Temperature Data vs Depth in the GoM during May 2016 

 

Appendix 8: Observational Salinity Data vs Depth in the GoM during May 2016 
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Appendix 9: Observational Temperature Data vs Depth in the GoM during August 2016 

 

Appendix 10: Observational Salinity Data vs Depth in the GoM during August 2016 
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Appendix 11: Observational Temperature Data vs Depth in the GoM during May 2017 

 

Appendix 12: Observational Salinity Data vs Depth in the GoM during May 2017 
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Appendix 13 Observational Temperature Data vs Depth in the TOTO during January 

 

Appendix 14: Observational Temperature Data vs Depth in the TOTO during February 

 



 

66 
 

Appendix 15: Observational Temperature Data vs Depth in the TOTO during March 

 

Appendix 16: Observational Temperature Data vs Depth in the TOTO during April 

 



 

67 
 

Appendix 17: Observational Temperature Data vs Depth in the TOTO during May 

 

Appendix 18: Observational Temperature Data vs Depth in the TOTO during June 
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Appendix 19: Observational Temperature Data vs Depth in the TOTO during July 
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Appendix 20: Observational Temperature Data vs Depth in the TOTO during August 

 

Appendix 21: Observational Temperature Data vs Depth in the TOTO during September 
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Appendix 22: Observational Temperature Data vs Depth in the TOTO during October 

 

Appendix 23: Observational Temperature Data vs Depth in the TOTO during November 
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Appendix 24: Observational Temperature Data vs Depth in the TOTO during December 
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Appendix 25: Observational Salinity Data vs Depth in the TOTO during January 

 

Appendix 26: Observational Salinity Data vs Depth in the TOTO during February 
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Appendix 27: Observational Salinity Data vs Depth in the TOTO during March 

 

Appendix 28: Observational Salinity Data vs Depth in the TOTO during April 
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Appendix 29: Observational Salinity Data vs Depth in the TOTO during May 

 

Appendix 30: Observational Salinity Data vs Depth in the TOTO during June 
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Appendix 31: Observational Salinity Data vs Depth in the TOTO during July 

 

Appendix 32: Observational Salinity Data vs Depth in the TOTO during August 
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Appendix 33: Observational Salinity Data vs Depth in the TOTO during September 
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Appendix 34: Observational Salinity Data vs Depth in the TOTO during October 

 

Appendix 35: Observational Salinity Data vs Depth in the TOTO during November 
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Appendix 36: Observational Salinity Data vs Depth in the TOTO during December 
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Appendix 37: Statistics Summary of Error as a Function of Depth in the GOM 

Depth Temperature Salinity  

 Mean 
Standard 
Deviation 

RMS 
Error Maximum Minimum Mean 

Standard 
Deviation 

RMS 
Error Maximum Minimum 

0 0.0916 0.5326 0.5371 1.6034 -1.8970 -0.4655 1.7857 1.8344 7.6308 -5.9452 

5 -0.0899 0.4783 0.4838 0.6954 -2.2996 -0.5941 1.7101 1.8002 7.7979 -5.6926 

10 -0.0765 0.4643 0.4678 0.9868 -2.3519 -0.7557 1.2599 1.4626 5.1659 -3.5927 

15 -0.0785 0.4821 0.4856 1.0282 -2.1761 -0.8031 0.8713 1.1811 3.4413 -2.6082 

20 -0.0811 0.5496 0.5523 1.0905 -2.0297 -0.6945 0.5770 0.9007 1.7769 -1.8316 

25 -0.1053 0.6449 0.6496 1.3363 -2.0377 -0.5731 0.4257 0.7124 0.7539 -1.5830 

30 -0.1550 0.9104 0.9181 3.3746 -2.6689 -0.4584 0.3415 0.5704 0.4107 -1.1893 

40 -0.4401 1.0827 1.1627 3.1718 -2.8467 -0.2513 0.2207 0.3336 0.3663 -0.7063 

50 -0.7681 1.2032 1.4213 2.3124 -4.1921 -0.1617 0.1710 0.2346 0.2322 -0.6543 

60 -1.0190 1.3639 1.6959 2.5860 -4.7490 -0.1055 0.1472 0.1804 0.2589 -0.4162 

70 -1.1414 1.5246 1.8971 2.1461 -5.1484 -0.1019 0.1738 0.2006 0.2872 -0.6473 

80 -1.2261 1.6930 2.0821 1.8869 -5.5071 -0.0772 0.1550 0.1723 0.3540 -0.4560 

90 -1.3596 1.8663 2.3000 1.9501 -6.0494 -0.0794 0.1644 0.1817 0.3608 -0.4219 

100 -1.5425 1.9853 2.5045 2.1367 -6.8053 -0.0891 0.1913 0.2100 0.4278 -0.4998 

125 -1.9958 2.1059 2.8921 1.8554 -6.3265 -0.1888 0.2341 0.2996 0.3753 -0.7752 

150 -1.9262 2.0243 2.7853 2.3624 -6.3907 -0.2320 0.2564 0.3446 0.4373 -0.7959 

200 -1.6078 1.7490 2.3679 2.4420 -5.8336 -0.2260 0.2758 0.3553 0.6353 -0.7849 

250 -1.3428 1.5226 2.0232 2.6419 -5.3276 -0.1910 0.2278 0.2962 0.4335 -0.7647 

300 -1.0643 1.4626 1.8017 2.4332 -4.5837 -0.1443 0.2073 0.2515 0.3916 -0.6511 

400 -0.7893 1.1276 1.3706 1.7589 -3.3011 -0.0735 0.1454 0.1621 0.2619 -0.4891 

500 -0.6741 0.7959 1.0392 1.3515 -2.0292 -0.0439 0.1146 0.1221 0.1907 -0.5855 

600 -0.6552 0.5901 0.8793 0.5983 -1.9954 -0.0288 0.0923 0.0961 0.1584 -0.3206 

700 -0.5945 0.4524 0.7452 0.3152 -1.7848 -0.0141 0.0666 0.0677 0.1376 -0.1453 
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Appendix 37 – Continued 

800 -0.5116 0.3729 0.6316 0.2005 -1.8135 -0.0016 0.0511 0.0508 0.1339 -0.0826 

900 -0.4304 0.3369 0.5452 0.2090 -1.6858 0.0030 0.0406 0.0405 0.0836 -0.0590 

1000 -0.3145 0.2753 0.4167 0.2039 -1.3442 0.0087 0.0422 0.0428 0.0880 -0.0468 

1100 -0.1815 0.2474 0.3055 0.2223 -1.0421 0.0106 0.0442 0.0452 0.1030 -0.0423 

1200 -0.0414 0.1735 0.1772 0.1876 -0.7738 0.0111 0.0427 0.0439 0.0986 -0.0373 

1300 0.0119 0.1220 0.1217 0.1917 -0.4745 0.0144 0.0426 0.0447 0.1103 -0.0335 

1400 0.0006 0.0851 0.0845 0.1503 -0.2641 0.0206 0.0436 0.0479 0.1560 -0.0278 

1500 -0.0303 0.0585 0.0655 0.0948 -0.1266 0.0257 0.0408 0.0480 0.1399 -0.0210 

1750 -0.0703 0.0000 0.0703 -0.0703 -0.0703 0.0274 0.0000 0.0274 0.0274 0.0274 

2000 -0.0564 0.0000 0.0564 -0.0564 -0.0564 0.0735 0.0000 0.0735 0.0735 0.0735 
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Appendix 38: Statistics Summary of Error as a Function of Depth in the TOTO 

Depth Temperature Salinity  

 Mean 
Standard 
Deviation 

RMS 
Error Maximum Minimum Mean 

Standard 
Deviation 

RMS 
Error Maximum Minimum 

0 0.0025 0.5143 0.5132 2.0622 -1.3126 0.2719 0.7796 0.8239 4.2197 -0.4283 

2 -0.0875 0.4310 0.4388 1.7084 -1.2897 0.0911 0.2974 0.3104 1.9873 -0.4282 

4 -0.1024 0.4107 0.4224 1.6888 -1.2643 0.0327 0.1727 0.1754 0.4717 -0.4128 

6 -0.0896 0.4033 0.4122 1.6558 -1.1594 0.0270 0.1700 0.1718 0.4617 -0.4190 

8 -0.1168 0.3865 0.4029 1.5998 -1.1203 0.0219 0.1656 0.1667 0.4346 -0.4201 

10 -0.1282 0.3783 0.3987 1.5429 -1.1108 0.0167 0.1632 0.1637 0.4256 -0.4292 

12 -0.1446 0.3715 0.3979 1.4839 -1.1089 0.0131 0.1624 0.1626 0.4166 -0.4318 

15 -0.1604 0.3717 0.4041 1.4711 -1.1078 0.0101 0.1620 0.1620 0.3978 -0.4262 

20 -0.1791 0.3907 0.4290 1.4767 -1.1701 0.0083 0.1604 0.1603 0.3794 -0.4042 

25 -0.2138 0.4115 0.4630 1.4890 -1.2824 0.0025 0.1592 0.1589 0.3736 -0.4056 

30 -0.2523 0.4463 0.5118 1.5044 -1.4267 0.0003 0.1585 0.1581 0.3798 -0.3792 

35 -0.2720 0.5027 0.5706 1.7589 -1.6455 -0.0041 0.1575 0.1572 0.4352 -0.3727 

40 -0.2890 0.5596 0.6287 1.9082 -1.7081 -0.0082 0.1558 0.1556 0.4022 -0.3664 

45 -0.2904 0.6165 0.6803 2.1404 -1.8327 -0.0138 0.1536 0.1539 0.4410 -0.3785 

50 -0.2719 0.6576 0.7102 2.1349 -2.0274 -0.0246 0.1532 0.1548 0.4525 -0.4153 

60 -0.1907 0.7154 0.7389 2.0828 -2.0300 -0.0423 0.1462 0.1519 0.3997 -0.5031 

70 -0.0531 0.8386 0.8384 3.0479 -3.5947 -0.0552 0.1440 0.1539 0.3270 -0.4631 

80 0.0032 0.8224 0.8206 2.4392 -1.8126 -0.0761 0.1455 0.1639 0.2339 -0.6230 

90 -0.0408 0.8395 0.8386 2.6172 -1.7681 -0.1060 0.1408 0.1760 0.2617 -0.5066 

100 -0.1374 0.8630 0.8720 3.1349 -1.7836 -0.1407 0.1512 0.2063 0.3354 -0.5698 

125 -0.8987 0.6451 1.1054 1.4203 -2.6516 -0.2073 0.1558 0.2591 0.3425 -0.8147 

150 -1.3809 0.8429 1.6169 1.7757 -3.5694 -0.2566 0.1933 0.3210 0.3309 -1.2424 

200 -1.0683 0.9937 1.4575 1.5910 -5.9512 -0.1808 0.2269 0.2897 0.5838 -0.7390 
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Appendix 38 – Continued 

250 -1.0050 1.3466 1.6776 1.5483 -8.0386 -0.1550 0.2460 0.2902 0.7106 -0.9962 

300 -0.9756 1.3959 1.7002 2.0864 -7.4696 -0.1250 0.2588 0.2869 0.7924 -0.9741 

350 -0.7801 0.8435 1.1474 2.0737 -2.9050 -0.0706 0.2088 0.2199 0.7744 -0.5055 

400 -0.8493 1.0689 1.3631 2.6490 -5.9176 -0.0461 0.2252 0.2293 0.6262 -1.0553 

500 -0.5244 0.9167 1.0539 2.4689 -2.6176 0.0778 0.2023 0.2162 0.8201 -0.5292 

600 0.1150 0.9128 0.9174 3.2934 -2.1002 0.1934 0.2198 0.2923 1.1017 -0.3325 

700 0.5172 0.9935 1.1168 4.4187 -1.4639 0.2069 0.2417 0.3174 1.1889 -0.1594 

800 0.3940 0.9219 0.9994 4.0295 -1.8956 0.0946 0.1834 0.2058 1.0373 -0.1864 

900 0.1808 0.9319 0.9458 1.9764 -2.5735 0.0766 0.1317 0.1520 0.5301 -0.0966 

1000 0.5679 0.7229 0.9168 2.2299 -0.7852 0.0962 0.1340 0.1645 0.4164 -0.1408 

1250 0.9966 0.6439 1.1812 2.3112 0.2480 0.1882 0.1361 0.2311 0.4743 0.0217 
 

 

Appendix 39: Statistics Summary of Error as a Function of Month in the GoM 

Month 
Number 
of Casts Temperature Salinity  

  Mean 
Standard 
Deviation 

RMS 
Error Maximum Minimum Mean 

Standard 
Deviation 

RMS 
Error Maximum Minimum 

May 47 -0.5454 1.0915 1.2198 2.5860 -6.0489 -0.2517 0.4829 0.5444 2.3210 -5.9452 

August 36 -0.8224 1.4769 1.6898 3.3746 -6.8053 -0.1583 0.7388 0.7552 7.7979 -3.4705 
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Appendix 40: Statistics Summary of Error as a Function of Month in the TOTO 

Month 
Number 
of Casts Temperature Salinity  

  Mean 
Standard 
Deviation 

RMS 
Error Maximum Minimum Mean 

Standard 
Deviation 

RMS 
Error Maximum Minimum 

January 30 -0.4650 0.6299 0.7826 2.2012 -4.1038 -0.0317 0.1950 0.1975 2.0907 -0.4918 

February 14 -0.5422 0.7792 0.9486 2.0054 -6.9949 -0.0905 0.2010 0.2203 2.7072 -0.8687 

March 12 -0.3279 0.7159 0.7866 1.4603 -3.0720 -0.0954 0.1608 0.1868 0.5143 -1.0553 

April 22 -0.2106 0.8251 0.8510 4.4187 -5.4603 -0.0039 0.2063 0.2062 1.1889 -0.8173 

May 13 -0.4234 1.0730 1.1520 1.5044 -8.0386 -0.0163 0.3032 0.3032 3.9808 -0.9962 

June 17 -0.1823 0.9192 0.9362 2.1404 -4.3833 -0.0363 0.3215 0.3232 4.2197 -0.7984 

July 24 -0.2089 0.9580 0.9799 2.3514 -5.2988 0.0155 0.2777 0.2779 4.0432 -0.8147 

August 14 -0.2215 0.9491 0.9735 2.6172 -3.2641 0.0080 0.2568 0.2566 3.0175 -0.4862 

September 29 -0.1723 1.0126 1.0266 3.1349 -5.7866 0.0117 0.3244 0.3244 3.2931 -1.2424 

October 21 -0.1558 0.6737 0.6910 3.2255 -2.8606 0.0380 0.1950 0.1986 1.1017 -0.5292 

November 16 -0.3142 0.9658 1.0147 2.4912 -6.6479 -0.0216 0.1937 0.1948 0.8008 -0.8094 

December 12 -0.4203 0.5185 0.6669 1.0286 -2.6289 -0.0367 0.2845 0.2865 3.1792 -0.4641 
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Appendix 41: Statistics Summary of Error as a Function of Year in the GOM 

Year 
Number 
of Casts Temperature Salinity  

  Mean 
Standard 
Deviation 

RMS 
Error Maximum Minimum Mean 

Standard 
Deviation 

RMS 
Error Maximum Minimum 

2015 30 -0.9354 1.5080 1.7739 2.5860 -6.8053 -0.2796 0.6555 0.7123 2.4250 -5.9452 

2016 36 -0.6647 1.2357 1.4026 3.3746 -6.0899 -0.1897 0.6534 0.6801 7.7979 -1.9553 

2017 17 -0.1814 0.6328 0.6577 2.1367 -3.0620 -0.1250 0.3745 0.3945 1.4194 -1.8164 
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Appendix 42: Statistics Summary of Error as a Function of Year in the TOTO 

Year 
Number 
of Casts Temperature Salinity  

  Mean 
Standard 
Deviation 

RMS 
Error Maximum Minimum Mean 

Standard 
Deviation 

RMS 
Error Maximum Minimum 

2005 21 -0.2342 0.8344 0.8659 3.0479 -6.6479 -0.0894 0.1424 0.1680 0.3492 -0.8094 

2006 67 -0.3043 0.8284 0.8823 2.7128 -6.1420 -0.0488 0.1749 0.1815 0.4757 -0.7838 

2007 51 -0.4349 0.9831 1.0747 3.5008 -8.0386 -0.0060 0.3224 0.3224 4.2197 -0.9962 

2008 13 -0.4783 0.5837 0.7541 0.8897 -2.1478 -0.0275 0.1630 0.1651 0.3958 -1.0553 

2009 3 -0.3764 0.5576 0.6702 0.4895 -4.1038 -0.1151 0.0885 0.1449 0.1983 -0.4918 

2010 5 -0.3579 0.4996 0.6132 1.0286 -1.7699 -0.0286 0.4035 0.4032 3.1792 -0.4482 

2011 5 0.0777 0.7629 0.7645 2.1569 -2.3130 0.1150 0.4317 0.4455 3.2931 -0.4692 

2012 6 -0.0810 0.6861 0.6899 2.4823 -2.9169 0.0391 0.2039 0.2073 0.5748 -0.4462 

2013 2 -0.3818 0.4961 0.6230 0.9433 -1.7256 -0.0369 0.1010 0.1068 0.2597 -0.2300 

2014 12 0.0257 0.9836 0.9827 4.4187 -2.9614 0.0890 0.2634 0.2777 1.1889 -0.4318 

2015 19 -0.0525 0.7964 0.7975 2.3514 -2.0274 0.1264 0.1733 0.2143 0.7924 -0.1927 

2016 13 -0.5207 0.9129 1.0500 2.2214 -3.5694 -0.1124 0.2350 0.2603 0.6944 -0.8147 

2017 7 -0.0992 0.6300 0.6364 2.1698 -2.1198 -0.1049 0.2844 0.3026 2.0907 -0.4056 
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Appendix 43: Statistics Summary of Error as a Function of Cruise in the GOM 

Cruise 
Number 
of Casts Temperature Salinity  

  Mean 
Standard 
Deviation 

RMS 
Error Maximum Minimum Mean 

Standard 
Deviation 

RMS 
Error Maximum Minimum 

DP01 8 -0.4771 1.1265 1.2212 2.5860 -3.2594 -0.3536 0.7832 0.8579 2.3210 -5.9452 

DP02 22 -1.1002 1.5922 1.9343 1.8017 -6.8053 -0.2530 0.6015 0.6521 2.4250 -3.4705 

DP03 22 -0.8459 1.2534 1.5113 2.4164 -6.0489 -0.3094 0.3784 0.4886 0.2372 -1.9553 

DP04 14 -0.3977 1.1600 1.2251 3.3746 -6.0899 -0.0134 0.8910 0.8900 7.7979 -1.5225 

DP05 17 -0.1814 0.6328 0.6577 2.1367 -3.0620 -0.1250 0.3745 0.3945 1.4194 -1.8164 

 

Appendix 44: Statistics Summary of Error as a Function of Experiment in the TOTO 

Experiment 
Number 
of Casts Temperature Salinity  

  Mean 
Standard 
Deviation 

RMS 
Error Maximum Minimum Mean 

Standard 
Deviation 

RMS 
Error Maximum Minimum 

19.1 171* -0.3166 0.8401 0.8977 3.1349 -8.0386 -0.0273 0.2530 0.2544 4.2197 -1.2424 

90.9 6* -0.2333 0.7234 0.7584 1.7607 -2.9169 -0.0047 0.1895 0.1890 0.4429 -0.4462 

91 5 0.0630 0.9442 0.9433 4.4187 -1.5755 0.1201 0.2248 0.2543 1.1889 -0.3456 

91.1 29 -0.0685 0.8493 0.8516 3.2255 -2.9614 0.0973 0.2088 0.2303 1.1017 -0.4318 

91.2 17 -0.3798 0.8803 0.9580 2.2214 -3.5694 -0.1269 0.2660 0.2945 2.0907 -0.8147 

*Four CTD casts overlapped between Experiments 19.1 and 90.9 
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Appendix 45: Statistics Summary of Error as a Function of Depth in the TOTO without HYCOM Quality Control Checks 

Depth Temperature Salinity  

 Mean 
Standard 
Deviation 

RMS 
Error Maximum Minimum Mean 

Standard 
Deviation 

RMS 
Error Maximum Minimum 

0 0.0024 0.5105 0.5093 2.0622 -1.3126 0.2734 0.7842 0.8288 4.2197 -0.4283 

2 -0.0895 0.4212 0.4297 1.0633 -1.2897 0.0896 0.2967 0.3092 1.9873 -0.4282 

4 -0.1057 0.3968 0.4098 1.0871 -1.2643 0.0315 0.1701 0.1726 0.4717 -0.4128 

6 -0.0928 0.3895 0.3995 1.1114 -1.1594 0.0257 0.1674 0.1690 0.4617 -0.4190 

8 -0.1200 0.3727 0.3907 1.0272 -1.1203 0.0206 0.1628 0.1638 0.3901 -0.4201 

10 -0.1311 0.3652 0.3872 0.9965 -1.1108 0.0155 0.1604 0.1608 0.3821 -0.4292 

12 -0.1472 0.3593 0.3875 0.9856 -1.1089 0.0119 0.1596 0.1597 0.3739 -0.4318 

15 -0.1631 0.3598 0.3943 1.1845 -1.1078 0.0090 0.1594 0.1593 0.3586 -0.4262 

20 -0.1825 0.3789 0.4198 1.4689 -1.1701 0.0073 0.1579 0.1577 0.3647 -0.4042 

25 -0.2184 0.3994 0.4544 1.4547 -1.2824 0.0015 0.1570 0.1567 0.3684 -0.4056 

30 -0.2556 0.4365 0.5050 1.5044 -1.4267 -0.0013 0.1559 0.1556 0.3718 -0.3792 

35 -0.2744 0.4975 0.5671 1.7589 -1.6455 -0.0060 0.1550 0.1548 0.3751 -0.3727 

40 -0.2908 0.5573 0.6275 1.9082 -1.7081 -0.0098 0.1538 0.1538 0.3992 -0.3664 

45 -0.2907 0.6172 0.6810 2.1404 -1.8327 -0.0155 0.1524 0.1529 0.4410 -0.3785 

50 -0.2710 0.6600 0.7121 2.1349 -2.0274 -0.0264 0.1528 0.1548 0.4525 -0.4153 

60 -0.1848 0.7219 0.7436 2.0828 -2.0300 -0.0440 0.1452 0.1514 0.3997 -0.5031 

70 -0.0489 0.8406 0.8402 3.0479 -3.5947 -0.0568 0.1424 0.1530 0.3270 -0.4631 

80 -0.0378 1.0100 1.0084 2.4392 -8.7652 -0.0819 0.1544 0.1745 0.2271 -0.8951 

90 -0.0446 0.8441 0.8433 2.6172 -1.7681 -0.1071 0.1408 0.1766 0.2617 -0.5066 

100 -0.1422 0.8685 0.8782 3.1349 -1.7836 -0.1410 0.1508 0.2063 0.3354 -0.5698 

125 -0.9061 0.6516 1.1153 1.4203 -2.6516 -0.2082 0.1565 0.2602 0.3425 -0.8147 

150 -1.3861 0.8467 1.6232 1.7757 -3.5694 -0.2576 0.1936 0.3220 0.3309 -1.2424 

200 -1.0959 1.0025 1.4837 1.5910 -5.9512 -0.1891 0.2247 0.2933 0.5838 -0.7390 
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Appendix 45 - Continued 

250 -1.0615 1.3451 1.7111 1.5483 -8.0386 -0.1642 0.2427 0.2926 0.7106 -0.9962 

300 -1.0219 1.3828 1.7169 2.0864 -7.4696 -0.1325 0.2548 0.2866 0.7924 -0.9741 

350 -0.8252 0.8396 1.1759 2.0737 -2.9050 -0.0768 0.2051 0.2185 0.7744 -0.5055 

400 -0.8803 1.0525 1.3702 2.6490 -5.9176 -0.0493 0.2203 0.2252 0.6262 -1.0553 

500 -0.5119 0.9546 1.0811 2.4689 -2.6176 0.0797 0.2037 0.2183 0.8201 -0.5292 

600 0.1138 0.9333 0.9378 3.2934 -2.1002 0.1933 0.2201 0.2924 1.1017 -0.3325 

700 0.5608 1.0085 1.1508 4.4187 -1.4639 0.2160 0.2462 0.3269 1.1889 -0.1594 

800 0.4177 0.9294 1.0159 4.0295 -1.8956 0.0981 0.1867 0.2103 1.0373 -0.1864 

900 0.2102 0.9379 0.9578 1.9764 -2.5735 0.0829 0.1354 0.1583 0.5301 -0.0966 

1000 0.5277 0.7497 0.9145 2.2636 -0.7852 0.0904 0.1350 0.1621 0.4164 -0.1408 

1250 0.7728 0.6377 0.9995 2.4553 -0.5353 0.1517 0.1267 0.1971 0.5282 -0.0069 
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Appendix 46: Temperature RMS Error vs Depth in the TOTO with and without Quality 
Control of HYCOM data 
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Appendix 47: Salinity RMS Error vs Depth in the TOTO with and without Quality 
Control of HYCOM data 
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Appendix 48: Statistics Summary of Error as a Function of Month in the TOTO without HYCOM Quality Control Checks 

Month 
Number 
of Casts Temperature Salinity  

  Mean 
Standard 
Deviation 

RMS 
Error Maximum Minimum Mean 

Standard 
Deviation 

RMS 
Error Maximum Minimum 

January 30 -0.4666 0.6486 0.7987 2.2012 -4.1038 -0.0324 0.1945 0.1971 2.0907 -0.4918 

February 14 -0.5333 0.7785 0.9429 2.0054 -6.9949 -0.0882 0.2006 0.2189 2.7072 -0.8687 

March 12 -0.3633 0.7741 0.8542 1.4603 -3.2576 -0.0949 0.1628 0.1883 0.5143 -1.0553 

April 22 -0.1963 0.8673 0.8886 4.4187 -5.4603 0.0027 0.2141 0.2140 1.1889 -0.8173 

May 13 -0.4487 1.0862 1.1739 1.5044 -8.0386 -0.0243 0.2894 0.2901 3.9808 -0.9962 

June 17 -0.2254 0.9923 1.0167 2.1404 -8.7652 -0.0425 0.3160 0.3185 4.2197 -0.8951 

July 24 -0.2043 0.9755 0.9961 2.4553 -5.2988 0.0072 0.2754 0.2754 4.0432 -0.8147 

August 14 -0.2344 0.9514 0.9788 2.6172 -3.2641 0.0061 0.2556 0.2554 3.0175 -0.4862 

September 29 -0.1621 1.0145 1.0268 3.1349 -5.7866 0.0121 0.3211 0.3212 3.2931 -1.2424 

October 21 -0.1439 0.6789 0.6935 3.2255 -2.8606 0.0399 0.1948 0.1988 1.1017 -0.5292 

November 16 -0.2840 0.9851 1.0243 2.4912 -6.6479 -0.0154 0.1991 0.1995 0.8008 -0.8094 

December 12 -0.4168 0.5363 0.6787 1.0286 -2.6289 -0.0352 0.2809 0.2828 3.1792 -0.4641 
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Appendix 49: Temperature RMS Error vs Month in the TOTO with and without Quality 
Control of HYCOM data 
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Appendix 50: Salinity RMS Error vs Month in the TOTO with and without Quality 
Control of HYCOM data 
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Appendix 51: Statistics Summary of Error as a Function of Year in the TOTO without HYCOM Quality Control Checks 

Year 
Number 
of Casts Temperature Salinity  

  Mean 
Standard 
Deviation 

RMS 
Error Maximum Minimum Mean 

Standard 
Deviation 

RMS 
Error Maximum Minimum 

2005 21 -0.2447 0.8368 0.8712 3.0479 -6.6479 -0.0880 0.1419 0.1668 0.3492 -0.8094 

2006 67 -0.3325 0.8718 0.9328 2.7128 -8.7652 -0.0518 0.1767 0.1841 0.4757 -0.8951 

2007 51 -0.4339 0.9806 1.0720 3.5008 -8.0386 -0.0074 0.3175 0.3175 4.2197 -1.2424 

2008 13 -0.4688 0.5889 0.7521 0.8897 -2.1478 -0.0256 0.1634 0.1652 0.3958 -1.0553 

2009 3 -0.3764 0.5576 0.6702 0.4895 -4.1038 -0.1151 0.0885 0.1449 0.1983 -0.4918 

2010 5 -0.3666 0.6136 0.7132 1.0286 -3.2576 -0.0294 0.3904 0.3904 3.1792 -0.4482 

2011 5 0.0860 0.7621 0.7647 2.1569 -2.3130 0.1151 0.4291 0.4430 3.2931 -0.4692 

2012 6 -0.0130 0.5917 0.5904 2.4823 -1.7388 0.0582 0.1891 0.1974 0.5748 -0.3444 

2013 2 -0.3634 0.5147 0.6269 0.9433 -1.7256 -0.0334 0.1043 0.1088 0.2597 -0.2300 

2014 12 0.0933 1.0334 1.0364 4.4187 -2.9614 0.1028 0.2707 0.2893 1.1889 -0.4318 

2015 19 -0.0419 0.8039 0.8043 2.4553 -2.0274 0.1275 0.1735 0.2152 0.7924 -0.1927 

2016 13 -0.4731 0.9524 1.0625 2.2214 -3.5694 -0.1028 0.2399 0.2608 0.6944 -0.8147 

2017 7 -0.0793 0.6427 0.6462 2.1698 -2.1198 -0.0994 0.2851 0.3014 2.0907 -0.4056 
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Appendix 52: Temperature RMS Error vs Year in the TOTO with and without Quality 
Control of HYCOM data 
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Appendix 53: Salinity RMS Error vs Year in the TOTO with and without Quality Control 
of HYCOM data 
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Appendix 54: Statistics Summary of Error as a Function of Experiment in the TOTO without HYCOM Quality Control Checks 

Experiment 
Number 
of Casts Temperature Salinity  

  Mean 
Standard 
Deviation 

RMS 
Error Maximum Minimum Mean 

Standard 
Deviation 

RMS 
Error Maximum Minimum 

19.1 171* -0.3413 0.8703 0.9347 3.5008 -8.7652 -0.0304 0.2490 0.2509 4.2197 -1.2424 

90.9 6* -0.2159 0.7274 0.7571 1.7607 -2.9169 -0.0016 0.1890 0.1885 0.4429 -0.4462 

91 5 0.1484 1.0221 1.0298 4.4187 -1.5755 0.1376 0.2396 0.2757 1.1889 -0.3456 

91.1 29 -0.0475 0.8609 0.8617 3.2255 -2.9614 0.1005 0.2090 0.2318 1.1017 -0.4318 

91.2 17 -0.3395 0.9115 0.9719 2.2214 -3.5694 -0.1178 0.2698 0.2942 2.0907 -0.8147 
*Four CTD casts overlapped between Experiments 19.1 and 90.9 
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Appendix 55: Temperature RMS Error vs HYCOM Experiment in the TOTO with and 
without Quality Control of HYCOM data 
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Appendix 56: Salinity RMS Error vs HYCOM Experiment in the TOTO with and 
without Quality Control of HYCOM data 
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Appendix 57: Comparison of Temperature Difference between Experiments 19.1 and 
90.9 of the Global 1/12° HYCOM Model 

 

 

Appendix 58: Comparison of Salinity Difference between Experiments 19.1 and 90.9 of 
the Global 1/12° HYCOM Model 
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Appendix 59: GAM of Temperature Mean Error as a Function of Depth in the GoM 

 

 

Appendix 60: GAM of Salinity Mean Error as a Function of Depth in the GoM 
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Appendix 61: GAM of Temperature Mean Error as a Function of Depth in the TOTO 

 

Appendix 62: GAM of Salinity Mean Error as a Function of Depth in the TOTO 
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