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Abstract 

Small- and fine-scale biological and oceanographic processes may have a measurable 

electromagnetic signature. These types of processes inherently involve turbulence and 

three-dimensional dynamics. Traditional models of the electromagnetic signature of 

oceanographic processes are of an analytical nature, do not account for three-dimensional 

boundary layer dynamics or turbulence, self-inductance, and may not describe the variety 

of the environmental conditions occurring in the ocean. In order to address this problem, I 

have implemented magnetohydrodynamic (MHD) computational fluid dynamics (CFD) 

tools, which has allowed for the evaluation of the electromagnetic signature of a number 

of small- and fine-scale biological and oceanographic processes in the ocean. The suite of 

computational tools has included the commercial models ANSYS Fluent, coupled with the 

MHD module, and ANSYS Maxwell. These computational tools have been well-

established in fluid and electromagnetic engineering. The application of CFD and MHD 

tools in oceanography is new but is undergoing rapid development. In this work, 

substantial effort was made toward the CFD, MHD, and magnetostatic model verification 

and identification of model limitations. Verifications of the CFD, MHD, and 

magnetostatic models were conducted by successfully comparing their results with the 

field measurements and laboratory experiments.  

Comparison with the traditional (analytical) models for surface and internal waves, 

has revealed their limitations related to bottom boundary layer physics, effect of self-

inductance, and, to a lesser extent, the magnetic permeability difference at the air-sea 

interface. These limitations become important for shallow water internal waves. As a 

result, the traditional models significantly overestimate the magnetic signature of internal 

waves observed at the Electromagnetic Observatory.  

After model verification with the field and laboratory data, the computational models 

were then applied to evaluate the magnetic signature of diel vertical migration (DVM) of 

zooplankton, surface waves, internal wave solitons, freshwater lens spreading, and 

Langmuir circulation. The quantitative estimates have been made for typical 

environmental conditions. In other environmental conditions, their magnetic signature 

may be somewhat different. The suite of computational models developed in this 

dissertation work allows for the estimation of the magnetic signature of fine- and small-

scale oceanographic processes in virtually any environmental conditions (e.g., in oil 

emulsions). I anticipate the result of this study will have Naval, environmental, and oil 

exploration applications. 

Keywords: computational fluid dynamics, magnetohydrodynamics, turbulence, 

electromagnetics, diel vertical migration, internal wave, surface wave 
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1. Introduction 

Seawater is a conductive medium and when it moves in the Earth’s magnetic field, it 

induces eddy currents that flow through the seawater, thereby generating electromagnetic 

signatures representative of the velocity field in the ocean (Faraday 1832). As we 

continue to understand and exploit the marine environment, electromagnetic effects are 

becoming widely applicable (https://www.marelec.co.uk/). Electromagnetics in the 

ocean, including small- and fine-scale processes, are relevant to a growing number of 

applications including oil and mineral exploration, maritime sensing, influences on 

marine life, etc. The magnetic signature of the oceanographic processes can be viewed as 

electromagnetic noise from the perspective of underwater monitoring. The quantification 

of this ambient noise in the ocean environment could help to establish the limits of 

underwater electromagnetic background sensing. Additionally, some biological 

organisms can produce a turbulent wake, which may have a measurable magnetic 

signature. In particular, diel vertical migration (DVM) of zooplankton has been found to 

produce turbulence when large concentrations of zooplankton are undergoing migration 

(Dean et al. 2016a). This dissertation explores the effect of the concentration of 

zooplankton on the turbulence generation and its respective electromagnetic signature 

produced during migration.  

The small- and fine-scale processes inherently involve three-dimensional (3D) 

dynamics. In the oceanographic literature, the term fine-scale structure refers to 

inhomogeneities relating to stratification (layering), while the term small-scale structure 

(or microstructure) has often been applied to 3D inhomogeneities associated with 

turbulence (Gregg 1975, Soloviev and Lukas 2014). Understanding 3D fluid dynamics, 

including biophysical interactions, in the ocean is essential in quantifying the 

electromagnetic signatures. 

Since the 1950s, the models based on Maxwell’s electromagnetic theory were 

developed to predict the magnetic signature of surface and internal ocean waves (Weaver 

1965, Beal and Weaver 1970, Podney 1975, Lilley et al. 2004). These traditional models 

of the electromagnetic signatures of oceanographic processes were of an analytical 

nature, did not account for three-dimensional dynamics or turbulence, and were not able 
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to describe the variety of the environmental conditions occurring in the ocean. 

Furthermore, none of these models have been confidently validated with field or 

laboratory data. This dissertation aims to quantify the magnetic signature of small- and 

fine-scale oceanographic processes using computational fluid dynamics (CFD), 

magnetohydrodynamic (MHD), and magnetostatic model tools verified with analytical 

solutions and laboratory and field data.  

In this introduction chapter, Section 1.1 reviews DVM of zooplankton; while, Section 

1.2, surface and internal waves, Section 1.3, freshwater lenses, and Section 1.4, coherent 

structures. Section 1.5 discusses the theory behind small-scale oceanographic processes 

producing a magnetic signature. Section 1.6 states the main research hypotheses and the 

objectives of this dissertation, and outlines the work conducted. 

1.1. Diel vertical migration (DVM) 

DVM of zooplankton is the largest animal migration on Earth (Andersen and Nival 

1991) with approximately 15% of all zooplankton biomass undergoing DVM (Ianson et 

al. 2004). In certain nutrient-rich areas, such as coastal areas and the Southern Ocean, 

very large concentrations of zooplankton can undergo migrations; in particular, 

concentrations of up to 30,000 organisms/m3 have been reported (Hamner 1984).  

DVM is thought to be a predator avoidance behavior. This migratory behavior is 

based on the abundance of predators, food, and level of satiation (Gliwicz 1986, Lampert 

1989, De Robertis et al. 2003). The amount of food in deep waters is not sufficient to 

meet the metabolic energy requirements for many zooplankton so these organisms must 

migrate to the surface waters to feed (Stich and Lampert 1981). However, visually 

oriented predators are more likely to be able to see their prey during the daylight hours, 

which leads to zooplankton remaining in darker, deeper waters during the day and 

migrating toward the surface waters in the evening (Enright 1977). 

DVM of zooplankton can be observed with acoustic instruments as a deep scattering 

layer. This migration has been observed in the Straits of Florida with an acoustic Doppler 

current profiler (ADCP) Workhorse Longranger 75 kHz for an 11-month period (Dean et 

al. 2016a). The 75 kHz ADCP responds to particles or aggregates of particles 8 mm or 
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larger. The contour plot of acoustic backscatter signal from the ADCP clearly shows a 

periodic pattern with high backscatter in the surface water at night, followed by high 

backscatter in the mid-depths during the day (Fig. 1). Sunrise and sunset times have been 

superimposed on the same plot where sunrise is indicated by a solid white line, and 

sunset as a dashed white line (Fig. 2). Sunrise and sunset times clearly coincide with the 

changes in the backscatter signal in the upper ocean, suggesting the presence of a DVM 

cycle.  

 

Figure 1. Acoustic backscatter from bottom-mounted ADCP for a subset of an 11-month 

data set in the Straits of Florida. (After Dean et al. 2016a.) 

Munk (1966) first proposed the term biological mixing, also known as biomixing, in 

jest, suggesting that biological mixing may contribute to the ocean energy budget to some 

extent. Since then, there have been a number of studies that indicated biology may, in 
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fact, increase mixing in the ocean (see e.g., Dewar et al. 2006, Kunze et al. 2006, 

Wilhelmus and Dabiri 2014). Dewar et al. (2006) used three methods to calculate the 

impact of the biology on the global ocean energy budget, and all three indicated that the 

biosphere input approximately 1 TW of energy into this budget. Migrating organisms can 

transport cold water from the deep ocean toward the surface and warm water from the 

near-surface toward deep layers of the ocean, which may have an effect on global 

circulation (Dewar et al. 2006). This cooler, nutrient-rich water may enhance primary 

production in the near-surface layers of the ocean (Jenkins and Doney 2003). 

 

Figure 2. Acoustic backscatter from bottom-mounted ADCP for a subset of an 11-month 

data set with sunrise times indicated by a solid white line, sunset by a dashed white line, 

new moon by a solid black line, and full moon by a dashed black line. Near surface bins 

have been removed due to multiple reflections. (After Dean et al. 2016a.) 
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Swimming-induced turbulence is caused by the migration of zooplankton through the 

water column (Huntley and Zhou 2004), which has been confirmed in laboratory studies 

(Catton et al. 2011, Wilhelmus and Dabiri 2014). Wilhelmus and Dabiri (2014) 

artificially induced DVM of Artemia salina, a brine shrimp, in a tank and used particle 

image velocimetry technology to visualize the flow field (Fig. 3). These results indicated 

that DVM caused eddy-like structures with length scales larger than individual 

organisms. Swimming organisms in schools or swarms can generate dissipation rate of 

turbulent kinetic energy on the order of 10-5 W kg-1, which is several orders of magnitude 

higher than average dissipation rates of turbulent kinetic energy in the stratified ocean 

(Huntley and Zhou 2004, Dewar et al. 2006). This increase in dissipation is comparable 

with that associated with major storms (MacKenzie and Leggett 1993). Hence, biomixing 

may be a source of fine-scale turbulent mixing on local spatial and temporal scales. 

 

Figure 3. Flow visualization from particle image velocimetry experiment showing 

zooplankton swimming creates turbulent motions on scales larger than individual 

organisms. (After Wilhelmus and Dabiri 2014.) 

Kunze et al. (2006) observed a spatially localized increase in dissipation rate of 

turbulent kinetic energy of four to five orders of magnitude over background turbulence 
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in the wake of a school of vertically migrating krill, Euphausia pacifica (Fig. 4). The 

DVM and associated elevated levels of turbulence were short in duration but resulted in 

an increase in the daily-averaged turbulent eddy diffusivities by two to three orders of 

magnitude. In schools or swarms of swimming organisms, the small-scale turbulence 

generated from an individual organism does not have time to decay before being 

encountered by another organism, causing an increase in the turbulence length and 

temporal scale (Gregg and Horne 2009). 

 

Figure 4.  Turbulence signature of DVM of krill in Saanich Inlet. (Top) Acoustic 

backscatter data from a 200-kHz echosounder reveals vertical migration of the 

backscatter layer. (Bottom) Profiles of the vertical microstructure profiler. Red indicates 

the increase of dissipation rate of turbulent kinetic energy over background levels. (After 

Kunze et al. 2006.) 

New research has shown that organisms undergoing DVM produce a distinctive low-

frequency humming or buzzing sound. Baumann-Pickering et al. (2016) observed DVM 

cycles in the San Diego Trough through a calibrated multiple-frequency split-beam 

echosounder. Sound produced by organisms undergoing DVM were recorded using a 

high-frequency recording package (10 Hz to 100 kHz). The organisms produced sound 

with a frequency ranging from 300 and 900 Hz that was three to six decibels louder than 
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background noise and lasted for one to two hours close to the time of DVM (Fig. 5). It is 

still uncertain why this noise is produced. It could be due to turbulence generated by 

DVM of zooplankton or it could simply be used for communication between organisms. 

Note that turbulence can produce sound through vortex shedding (White and Neph 2003). 

If this sound is indeed coming from turbulence generation, this finding could potentially 

provide an alternative method of detection of the turbulence generated by DVM.  

 

Figure 5. Measurement of DVM in the San Diego Trough. (Top) Migration of animals 

up to surface waters at sunset and down at sunrise. (Bottom) Sound associated with 

migration (outlined by rectangles). (After Baumann-Pickering et al. 2016.) 

Other physical oceanographic features like density differences due to freshwater 

lenses can affect DVM of zooplankton. Freshwater lenses in the near-surface layer of the 

ocean produced by convective rains or river runoff are usually localized in space and 



18 

NAVAIR Public Release 2018-983.  Distribution Statement A – “Approved for public release; 

distribution is unlimited" 

typically involve both salinity and temperature anomalies. Zooplankton which undergo 

DVM tend to be in larger concentrations in freshwater lenses produced by river runoff 

due to higher nutrient levels (Diaz et al. 2008, Nicolle et al. 2009).  

During oil spills, emulsions can form. The viscosity of oil emulsions can be 

considerably greater than the viscosity of either the oil or water because of non-

Newtonian behavior (PetroWiki 2015). The high viscosity of emulsions may act as a 

barrier to DVM of zooplankton. If zooplankton do encounter oil and dispersants in the 

water column during migration, that can have an impact on the vertical transport of the 

anthropogenic pollutants through the water column. Moreover, anthropogenic pollutants 

such as oil spills and dispersants may also affect behavioral patterns of zooplankton, 

including DVM, with largely unknown but possibly dramatic, or even lethal effects on 

marine ecosystems. The study of DVM of zooplankton can help to improve the 

understanding of how marine ecosystems will respond to potential oil spill events (e.g., in 

the Gulf of Mexico and the Straits of Florida).  

1.2. Surface and internal waves 

In the ocean, wave-type disturbances can take the form of surface waves or internal 

waves. The large density difference between air and water prevents the surface waves 

from becoming too high. However, the density differences within the ocean are much 

smaller and much less energy is required to move the water vertically. Therefore, 

amplitudes of internal waves can be quite large.  

The study of surface gravity waves is one of the oldest areas of fluid dynamics. In 

particular, the motion of waves was one of the earliest applications of classical potential 

theory, which is a good approximation for surface waves. The fluid can be assumed to be 

inviscid and the motion irrotational.  

In linear wave theory (Phillips 1977), the wave amplitude is small compared to the 

wavelength. Here a sinusoidal disturbance is considered. This theory can easily be 

expanded to account for a more complicate wave field since, by Fourier’s theorem, any 

arbitrary disturbance can be viewed as a superposition of elementary waves. In this case, 

the surface displacement of the 2D plane harmonic waves is described as follows: 
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 cosa kx t                   (1) 

and the associated velocity potential for linear waves is  
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where  is the wave frequency, k is the wave number, a is the amplitude, h is the height 

of the water column, and z is the depth. The wave frequency and wavenumber are related 

through the dispersion relation as follows: 
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              (3) 

where g is the acceleration due to gravity and s is the surface tension (Soloveiv and 

Lukas 2014). The phase velocity of the wave is c l
k

 
  
 

, where 
k
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 is the unit vector 

in the direction of the wavenumber. The group velocity is  g kc k , where 
k is the 

gradient operator in wavenumber space (Phillips 1977). 

Deep water waves are defined as 1kh  . In this special case, Equation (2) reduces to   
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with the dispersion relation 
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Following Equation (5), the phase speed becomes  
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The phase speed of gravity waves increases with wavelength or with decreasing wave 

number.  
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In reality, however, surface waves are not always as simple as described above. The 

waves are not necessarily deep water waves (see Equations (7)-(11)). When the ratio of 

wave amplitude to wavelength increases, waves are deformed, become nonlinear (e.g., 

see Equation (13) for the Kortweg-de Vries (KdV) theory) and unstable, and eventually 

break. Waves that break disrupt the sea surface and entrain air in the ocean in the form of 

whitecaps, bubbles, and spray droplets. In this way surface waves play an important role 

in the transport of energy from the atmosphere (Melville 1996). 

Internal waves are gravity waves moving through a continuously stratified fluid, 

while interfacial waves are gravity waves at the interface of two water layers of different 

constant densities. Typical wavelengths of internal waves range from hundreds of meters 

to tens of kilometers, and have periods ranging from minutes to hours. Maximum orbital 

velocities occur at the pycnocline and decrease in both directions away from the 

pycnoclines (Massel 2015).  

A simplified two-layer model of internal waves can prove useful for describing some 

internal waves, such as those in coastal regions or where well-mixed oceanic water 

overlies deeper water, creating a sharp thermocline. In this model, a layer of water with 

depth 1h and uniform density 1 lies on top of a water layer with height 2h and uniform 

density 2 , where 2 1  . The total water depth is 1 2h h h  . The internal wave with 

frequency and wavenumber k propagates at the interface between the two layers. It is 

assumed that 
2 2f so that the Earth’s rotation can be ignored. For this model, the 

velocity potentials are as follows: 
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for the upper and lower layers, respectively. The dispersion relation is defined as 
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and the phase velocity is 
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The orbital velocities u and w are determined from Equation (7) as follows 
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in the upper layer and  
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in the lower layer. 

If the wavelength of the internal wave is longer than the ocean depth and the 

amplitude is small, these waves can be treated as the weakly nonlinear waves with 

steepening crests. Kortweg-de Vries (KdV) theory can describe these types of waves 

(Korteweg and de Vries 1895, Miles 1981). The KdV theory has a balance between 

nonlinearity and dispersion and is parameterized by the following: 

2

,
A h

h l
 

 
   

 
              (12) 

where A is the wave amplitude and l  is the length scale. Both of these parameters must be 

small and of the same order. When these two effects are balanced, the solution to the 

KdV equation can result in solitary internal waves, also known as solitons. For these 

solitary waves the classical KdV equation is  
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where  is the displacement of the interfacial wave, 0C is the linear phase velocity, 
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and the shape of the wave is  

   2

3

3
, cosh

4 r

A
x t A x Ut

h
 

 
  

 
             (15)  

where the characteristic water depth 
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Internal waves can play an important role in mixing the ocean. They contribute to the 

vertical velocity in the ocean, which helps to support the global thermohaline circulation 

(Munk 1966, Massel 2015). Internal waves can also have an impact on biological 

productivity. The mixing produced by the waves can increase the nutrient concentration 

locally, increasing primary production (Kahru 1983). Additionally, internal waves can 

transport planktonic larvae from remote larval pools, enhancing genetic variability 

(Botsford et al. 1994). Internal wave solitons also have a prominent magnetic signature. 

1.3. Freshwater lenses 

The upper ocean turbulent boundary layer is a dynamically active zone of the ocean. 

Fluxes of momentum, mass, heat and kinetic energy at the air-sea interface result in a 

variety of turbulent and organized structures developing in the near-surface layer of the 

ocean. These structures are inherently three-dimensional. 

Convective rains and/or river runoff produce freshwater lenses. These lenses of 

freshened water in the near surface layer of the ocean are localized in space and typically 
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involve both salinity and temperature anomalies. The significant density anomalies 

created by these freshwater lenses produce horizontal pressure gradients in the near-

surface layer of the ocean. As a result, these lenses can spread and propagate as classical 

gravity currents, producing a typical gravity current "head". These structures resemble a 

complex pattern of three-dimensional water flow motions in the leading edge of the 

gravity current and trailing fluid, previously reported by Ozgökmen et al. (2004) and 

Soloviev et al. (2015b). There is some asymmetry of the lens edges due to the effect of 

the wind (Soloviev and Lukas 1997). An interesting phenomenon is the development of 

coherent structures at the frontal edge of the spreading freshwater lens, which apparently 

intensifies mixing. The patterns in gravity currents are inherently three dimensional. 

The freshwater lens can either completely mix with the environment or achieve a 

compensated state when temperature and salinity anomalies compensate each other in the 

density field. At this stage, the horizontal pressure gradients diminish and lateral 

spreading ceases. The compensated lenses are then subject to erosion by double diffusion 

and cabbeling (Dean et al. 2016b). 

The dynamics of freshwater lens spreading can be linked to the formation of the 

barrier layer (Lukas and Lindstrom 1991) and sharp frontal interfaces (Soloviev and 

Lukas 1997), thus influencing large scale oceanographic processes. Freshwater lens 

spreading has a number of practical applications including pollution propagation in 

coastal waters (e.g., oil spills), open ocean dynamics (e.g., Madden-Julian Oscillation), 

and interpretation of Aquarius and SMOS sea surface salinity satellite measurements. The 

lens spreading also plays an important component of the tropical ocean environment in 

the Intertropical Convergence Zone (e.g., Wijesekera et al., 1999). 

1.4. Coherent structures 

The ocean temperature-salinity structure, circulation, and mass exchanges (including 

greenhouse gases and pollutants) depend on turbulent mixing and non-local transport in 

the near-surface layer of the ocean. Spatially coherent organized motions have been 

recognized as an important part of turbulent boundary layer processes (Thorpe 1985; 

Thorpe et al. 2003). Langmuir cells and ramp-like structures are believed to vertically 
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transfer an appreciable portion of the momentum, heat, gases, pollutants (e.g., oil), and 

other substances in the upper layer of the ocean. The free surface of the ocean 

significantly complicates the analysis of turbulent exchanges at the air-sea interface and 

the coherent structures are not yet completely understood. 

Langmuir cells are parallel and oriented nearly downwind in developed seas, with 

alternating longitudinal vorticity, producing convergence and divergence zones (Pollard 

1977). The convergence zones are substantially narrower than the divergence zones. The 

spacing between the Langmuir vortices ranges from a few meters to a few hundred 

meters. Langmuir circulation can be seen on the sea surface due to the collection of 

flotsam or foam from breaking waves in convergence zones and appear to be transient in 

nature. For fully developed local seas, the orientation of wind, wave, and Langmuir cells 

is practically the same. In general, however, they do not necessarily coincide.  

The atmospheric boundary layer above land exhibits spatially coherent organized 

motions in the form of “ramps” (Antonia et al. 1979; Phong-Anant et al. 1980). Ramp-

like structures are discovered to be a widespread feature in the upper ocean as well and 

have been found under both stable (Thorpe and Hall 1987) and unstable (Soloviev 1990) 

stratification.  

Wijesekera et al (1999) collected large statistics on ramp-like structures during 

TOGA COARE. These data suggested that the direction of frontal interfaces produced by 

ramp-like structures is approximately perpendicular to the wind direction.  

According to the field study performed by Thorpe et al. (2003) using an autonomous 

underwater vehicle, both types of coherent structures, Langmuir cells and ramp-like 

structures coexist. Vortices associated with ramp-like structures have transverse axes, 

while Langmuir circulations have longitudinal axes, relative to the wind direction.  

In traditional models, Langmuir circulation is driven by the Stokes vortex force 

(Leibovich 1983), which in the case of aligned winds and waves is as follows:  

   S S S y x S zF u U ju u v ku u                      (16) 
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where Su  is the Stokes drift velocity vector and Su is its component along the wave 

direction , U the water velocity vector, u and v the horizontal velocity components in the 

wind stress and across wind stress direction, respectively; j and k  are the unit vectors in 

the horizontal and vertical direction, respectively. 

Kudryavtsev et al. (2008) found the velocity gradients beneath the sea surface to be 2 

to 5 times weaker than in the “wall” (logarithmic) boundary layer. The near-surface 

ocean is almost uniform due to wave-breaking stirring. Furthermore, Terray et al. (1999) 

conduced that due to wave stirring, the near surface layer becomes like a “slab” layer 

(Fig. 3c). As a result,  

/ 0u z   .               (17)  

Thus, the vertical component of the vortex force 
v S zF ku u   may vanish in that 

layer due to wave-breaking mixing (Terray et al. unpublished manuscript). The horizontal 

component of the vortex force  h S y xF ju u v   is associated with the vertical 

component of vorticity  y xu v    , which is of a fluctuational nature. There are 

significant fluctuations of  in the wave-breaking layer (see, e.g., Sullivan et al. 2007). 

However, these fluctuations are random and, thus, uncorrelated with the Stokes drift 

velocity Su , which is an average over many wave periods. As a result, the horizontal 

component of the vortex force hF  can produce only random convergence-divergence 

zones, resulting in "fish scale"- like patterns on the sea surface but not in spatially-

coherent organized motion typical for Langmuir circulation. There is no mechanism 

which could couple and synchronize Stokes drift with the near-surface turbulence in the 

wave-breaking layer. 

Li et al. (2013) simulated the observations collected at the Martha’s Vineyard Coastal 

Observatory’s Air-Sea Interaction Tower during the CBLAST experiment in 2003 using 

an LES model. The model showed that breaking waves dominated turbulence generation 

near the ocean surface over the Stokes term production. In fact, diagnostic analysis of the 

TKE budget in the model of Li et al. (2013) shows a dominant balance between turbulent 
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transport and dissipation near the surface and a dominant balance between shear 

production and dissipation at deeper depths. Although the Stokes production is a 

significant term in the TKE budget balance near the surface, it is smaller than shear 

production (Li et al. 2013). Langmuir circulation could develop deeper in the water 

column; though, according to Li et al. (2013), the Stokes production is much smaller than 

shear production and dissipation below the wave stirred layer. It is therefore not obvious 

that large eddies below the layer of wave breaking turbulence were driven by Stokes drift 

in the Li et al. (2013) model. Based on the above considerations, Soloviev and Dean 

(2015) and Soloviev et al. (for submission) have developed a coupled model of ramp-like 

structures and Langmuir Circulation, which does not require the Craik-Lebovich vortex 

force. 

1.5. Magnetic signature of small- and fine-scale oceanographic processes 

Under certain conditions, some small- and fine-scale processes in the ocean can 

produce measurable magnetic signatures. In particular, the magnetic field fluctuations 

produced by ocean waves are dependent on many parameters including wave frequency, 

wave propagation direction with respect to the Earth’s magnetic field, seafloor 

conductivity and permeability, and conductivity of the seawater, as well as the location of 

the observations (Smagin et al. 2014). Fluctuations in Earth’s magnetic field induced by 

ocean waves, both surface and internal, have been theoretically investigated since the 

1950s (Longuet-Higgins et al. 1954, Weaver 1965, Podney 1975, Chave 1984). Lilley et 

al. (2004) compared these theoretical investigations with magnetic measurements 

collected off the southern coast of Australia and found a qualitative consistency between 

the measurements and the theoretical investigations. There, however, has been no 

quantitative verification of the above models with observations, either in Lilley et al. 

(2004) or others. 

A CFD model with a MHD add-on module had been applied to model and internal 

wave soliton with ambient stratification (Matt et al. 2014, Soloviev and Dean 2015). This 

model was verified with the magnetostatic model developed at the Naval Research 

Laboratory. These authors modeled an internal wave soliton in a domain 2 km long, 1 km 
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wide, and 250 m deep. The mesh resolution was 10 m in the horizontal direction and 2 m 

in the vertical direction with increased vertical mesh resolution in the thermocline. The 

thermal stratification was similar to that observed on the South Florida shelf. The MHD 

solution for this soliton simulation (Soloveiv et al. 2013, Soloviev et al. 2015a) was 

calculated with the “frozen” velocity field of this hydrodynamic simulation and using a 

steady MHD model (as described in Section 2.2). Water conductivity was 4.788 S/m. The 

top wall had a conducting boundary condition with 5.5x10-15 S/m and the bottom wall 

had a conducting boundary condition with 0.4788 S/m. All other boundaries had an 

insulating boundary condition. The Earth’s magnetic field was set as follows: Bx=-

2.7x10-5 T, By=2.52 x10-6 T, Bz=-3.7x10-5 T. The MHD model results indicated that the 

internal wave soliton produced a magnetic signature on the order of 10 nT.  

The modeled internal wave soliton produced a strong magnetic signature reaching 

several nT at the leading edge of the wave. This magnetic field signature was well within 

the range detectable by modern magnetometers and was consistent with the Naval 

Research Laboratory magneto-static model for the same domain size and wave size (Fig. 

6). Note that the magnetic boundary conditions and mesh spatial resolution are somewhat 

different between the two simulations. Also, the Matt et al. (2014) and Soloviev and 

Dean (2015) simulation does not account for the boundary layer effects or self-

inductance. This may explain the difference in the magnetic signature between the Naval 

Research Laboratory and the Matt et al. (2014) and Soloviev and Dean (2015) models. 

This deficiency of the CFD model has been corrected in this dissertation by accounting 

for self-inductance and bottom boundary layer physics.  



28 

NAVAIR Public Release 2018-983.  Distribution Statement A – “Approved for public release; 

distribution is unlimited" 

 

Figure 6. Magnetic signature of internal waves. (Top) ANSYS Fluent simulation of 

internal wave. (Bottom) Naval Research Laboratory magneto-static model. (After Matt et 

al. 2014.) 

The magnetic signature of oceanographic phenomena such as surface waves, 

turbulence, spatially coherent structures, internal waves, diurnal jets, propagating 

freshwater lenses, and other small- and fine-scale processes can potentially be measured 

using sensitive magnetometers. Turbulence produced by DVM of zooplankton may have 

a measurable magnetic signature as well (Dean and Soloviev 2018). The magnetic 

signature of these processes can also be modeled using coupled CFD and MHD 

simulations (Soloviev and Dean 2018). These models are presented in more detail in 

Section 2. Magnetics measurements and simulations may also provide a method for 

indirectly determining the turbulence generation of DVM and other processes. 

1.6. Goal  

The overarching goal of this dissertation research is to introduce CFD methods in the 

calculation of the electromagnetic signature of small- and fine-scale oceanographic 

processes. To achieve this goal, the following tasks have been performed: 

 Review of the literature related to small- and fine-scale oceanographic features  

 Review existing analytical models of the electromagnetic signature of surface and 

internal waves 
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 Develop a suite of CFD, MHD, and magnetostatic models based on ANSYS Fluent 

with the MHD module and ANSYS Maxwell 

 Verify these models with known analytical solutions, laboratory experiments, and 

available field data 

 Identify shortcomings of the computational models 

 Account for the seawater and seafloor electromagnetic properties 

 Calculate the magnetic signature of DVM of zooplankton, internal waves, surface 

waves, freshwater lenses, and coherent structures for typical environmental 

conditions 

 Evaluate the relative contributions of these processes in the magnetic noise in the 

ocean 

The outline of the remainder of this dissertation is as follows: Chapter 2 describes the 

suite of numerical models developed and implemented for quantitative estimation of the 

magnetic signatures of various small- and fine-scale oceanographic processes. Chapter 3 

discusses the magnetic model verifications with field and laboratory data and comparison 

with traditional, analytical models. Chapter 4 provides results of the modeling of DVM of 

zooplankton including the turbulence and magnetic signatures. Chapter 5 compares the 

magnetic signatures of various small scale oceanographic processes and Chapter 6 

concludes this work. 

2. Numerical models 

2.1. Computational fluid dynamics model 

A 3D, non-hydrostatic computational fluid dynamics (CFD) modeling software, 

ANSYS Fluent, is used in this work to simulate fine-scale processes in the ocean including 

DVM of zooplankton, freshwater lenses, surface waves, internal waves, undercurrent jets, 

and Langmuir circulation. Turbulence is modeled with the Large Eddy Simulation 

Viscosity model (LES), with Wall Adapting Local Eddy (WALE) as the sub-grid scale 

model (Nicoud and Ducros 1999) where the eddy viscosity is modeled by  
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where 
sL and d

ijS  in the WALE model are defined as 
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, respectively. Here 

sL is the mixing length for the 

subgrid scales,   is the von Karman constant, d  is the distance closest to the wall, and V

is the volume of the computational cell and the local grid scale 
1
3V  .  In Fluent, the 

default value of the WALE constant wC  is 0.325 (ANSYS Fluent 2013). The rate-of-strain 

tensor is 
1
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. Note, the LES model has an artificial length scale 

separation between explicitly resolved and subgrid components (ANSYS Fluent 2013).  

The LES WALE turbulence model does not directly solve for dissipation rate of 

turbulent kinetic energy. For verification of the CFD model, dissipation rate must be 

calculated in order to compare the simulation results with turbulence measurements 

during DVM by Kunze et al. (2006). Dissipation rate of turbulent kinetic energy,  is 

calculated from Delafosse et al. (2008) as 
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and 
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x




are calculated by the model, Tv  is subgrid 

turbulent viscosity (exported from the model), and v is the molecular viscosity of water. 

The partial derivatives are explicitly calculated in the LES model, while the turbulent 

viscosity is calculated from the subgrid-scale model, which accounts for turbulence 

produced by particle motion.  

The discrete phase model (DPM) allows for the simulation of a discrete second phase 

in a Lagrangian frame of reference. In this work, the DPM is used to inject rigid spherical 

particles into the domain to simulate the DVM cycles of zooplankton (Dean et al. 2016a). 

The material of the particles is set as water, with the buoyancy adjusted to 1.2% more or 

less dense than the seawater to allow sinking or floating, depending on whether upward 
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or downward migration is simulated. Tests have been conducted to determine the correct 

buoyancy difference, which ensures a realistic vertical migration speed of several cm s-1. 

The top and bottom walls of the domain are set to allow particles to escape, while the side 

walls are set to allow particles to reflect. The inlet is set to a periodic boundary condition, 

allowing particles to flow out of one side of the domain and back into the other side with 

the flow of the fluid. (The DPM model is also used for the injection of particles to 

simulate the presence of a nepheloid layer in the model of an internal wave breaking on 

the continental slope.)  

A multiphase, volume of fluid (VOF) model is used to simulate air, water, and in 

some cases, a sediment layer in this dissertation. The VOF method can model immiscible 

fluids by solving an individual set of momentum equations and tracking the volume 

fraction of the separate fluids throughout the numerical domain. The VOF method tracks 

the volume fraction  of each fluid, where any fraction of the qth fluid is possible

0 1q  . The VOF method always ensures the sum is unity. 

At the interfaces where more than one fluid is present in a cell, the VOF model uses 

the geometric interface reconstruction scheme, which is a piecewise‐linear interpolation 

to calculate the advected fluid through each face (Youngs 1982). The tracking of the 

interface uses the following continuity equation: 

     
1

1 n

q q q q q q pq qp

pq

v S m m
t

   
 

 
    

 
 ,         (19) 

where q  is the density of the qth fluid, qv  is the velocity of the  fluid, pqm  is the 

mass transfer from the pth to the qth fluid and qpm  is the mass transfer from the qth  to 

the pth fluid. qS is a user‐defined source term that remained at the default value of zero 

for our numerical simulations. 

2.2. Magnetohydrodynamic model 

An MHD module combined with a 3D CFD model, based on ANSYS Fluent software 

is used in this work to study electromagnetic signatures of fine-scale oceanographic 
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phenomena. The Fluent MHD add-on module provides an opportunity to analyze the 

behavior of an electrically conducting fluid flow (e.g., seawater) under the influence of a 

stationary magnetic field (the Earth’s magnetic field). The MHD model is also able to 

accommodate the effect of a discrete phase (particles as a proxy for zooplankton).  

The Fluent MHD model describes the electromagnetic fields by Maxwell’s equations: 

0B                 (20) 

B
E

t


  

                  (21) 

qD 


               (22) 

J
H J

t


  

               (23) 

where B  is the magnetic field (Tesla), E is the electric field (V m-1), D  is the induction 

field for the electric field, and H is the induction field for the magnetic field, q is the 

electric charge density (C m-3), and J is the electric current density (A m-2). Induction 

fields are defined as follows: 

1
H B


                        (24) 

D E                (25) 

where  is magnetic permeability (H m-1) and  is electrical permittivity (F m-1). 

The magnetic induction method is used to evaluate the current density, which is 

derived from Ohm’s law and Maxwell’s equations. Ohm’s law is defined as 

1
J E v B


  

               (26) 

where  is the electrical conductivity (S m-1) and v is the fluid velocity (m s-1). From (19) 

and (24) the induction equation becomes 
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From the solved magnetic field, B , the current density, J , can be calculated using 

Ampere’s law 

B
J


  .                (28)  

However, in the derivation of these equations, two terms appear to be neglected in the 

Fluent MHD model. The equation that should be obtained for induction is  

         21 1 1B
v B B v B E v B

t
 

  
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            


.      (29) 

The last two terms on the right side of (29) are missing from the Fluent MHD model. 

These terms are important for variable conductivity and have been tested with the help of 

a user-defined function (UDF) but showed no significant impact on the solution. 

The magnetic field, B , can be decomposed into the externally imposed field, 
0B , and 

the induced field, b , due to fluid motion where 
0B B b  . Only the induced field b is 

solved and Equation (26) becomes  

      2 0
0 0

1 Bb
v b B b v b v B

t t


         

 
.          (30) 

It is assumed that the externally imposed magnetic field doesn’t change in time so 

0 0
B

t





, which results in   

      2

0 0

1b
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t 


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
.           (31) 

The MHD solver is initialized with a hydrodynamic solution from the CFD model. 

Two methods have been used for calculating the MHD solution. For the magnetostatic 

solution method (Soloviev et al. 2013), the velocity field from the hydrodynamic solution 



34 

NAVAIR Public Release 2018-983.  Distribution Statement A – “Approved for public release; 

distribution is unlimited" 

is “frozen” by turning off equations for energy, flow, and multiphase and the MHD 

model is turned on. The MHD model is then run for 1 time-step with a time-step size of 

0.001 s including 1000 iterations.  

For the magnetodynamic solution, the above described method was improved upon to 

include the effect of self-inductance. In this method, at the time-step of interest, the MHD 

and CFD models are run for 500 time-steps, with a time-step size of 0.001 s including 20 

iterations per time-step. Note that convergence of the MHD solution requires a stricter 

convergence criteria than the hydrodynamic component. The selection of the number of 

time-steps is based on a convergence test. The convergence time of 500 0.001 0.5s s  is 

still much less than the time for the velocity field evolution with the selected mesh grid 

size. With the aforementioned convergence process, the MHD model is able to account 

for the self-inductance phenomenon (Appendix). Nevertheless, this convergence time is 

not sufficient for convergence in the air. The magnetic signature above the sea surface is 

beyond the scope of this dissertation.  

One limitation of the MHD model is that it assumes a sufficiently conductive fluid so 

that the charge density and displacement current terms can be neglected. The 

displacement current term is important for high frequency processes (e.g., radio waves). 

This research is focused on oceanographic processes with relatively low frequencies, and 

the displacement term does not appear to be prominent, even in the air. 

Another limitation is that the MHD model is not able to reproduce a small jump in the 

magnetic induction due to the relatively small difference in permeability at the interface 

between the air and water. Though this jump is very small, in the Earth’s magnetic field it 

can result in a total magnetic field difference of up to 0.2-0.3 nT. In order to account for 

the small difference in magnetic permeability, I have used the ANSYS Maxwell model, 

which is described next.  

2.3. Magnetostatic model 

ANSYS Maxwell is an electromagnetic modeling tool, which is capable of analyzing 

low-frequency phenomena using finite element analysis to solve magnetic problems. 

Here, this software is used to explore the effect of materials with different magnetic 
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properties such as permeability (or susceptibility) on magnetic field deviations. Maxwell 

solves Maxwell’s Equations (20) – (23) in a finite region of space with defined boundary 

and initial conditions. In the 3D magnetostatic solver, the Maxwell equations are as 

follows:  

H J                            (32) 

0B                                  (33) 

 0 rB H H                              (34) 

Magnetic permeability is the measure of the ability of a material to support the 

formation of a magnetic field within itself or the degree of magnetization that a material 

obtains in response to an applied magnetic field. Relative permeability, r , is the ratio of 

the permeability of some material to the permeability of the free space: 
0

r





 . 

Magnetic susceptibility m  is related to magnetic permeability as follows: 1m r   . It 

is indicative of whether a material is attracted to or repelled from a magnetic field. 

Paramagnetic materials form internal, induced magnetic fields in the direction of the 

applied magnetic field, while diamagnetic materials form induced magnetic fields in the 

direction opposite to that of the applied magnetic field (Miessler and Tarr 2010). 

Different materials can have different magnetic permeabilities. For example, air is a 

paramagnetic material, while water is a diamagnetic material. These different magnetic 

material properties can affect the Earth’s magnetic field near the interface of the two 

materials. In this work, I use ANSYS Maxwell to explore how differences in these 

magnetic properties between materials affect the Earth’s magnetic field near their 

interface. This model is verified with a laboratory experiment (see Section 3.5).  

ANSYS Maxwell is well-suited to simulate the effect of magnetic permeability 

differences at the interface of two materials with different permeabilities (e.g., air and 

water). However, due to the limitations of ANSYS Maxwell, motion can only be 

translational or rotational. Therefore, this model is unable to account for the velocity field 

in the ocean, including surface and internal waves.  
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Neither of the two magnetic models, ANSYS Fluent MHD or ANSYS Maxwell, is able 

to describe both the magnetic signature of velocity field in a conducting media and the 

difference of magnetic permeability of different materials. Each model has advantages 

and disadvantages, therefore the combination of these two models may compensate, at 

least partially, for their disadvantages. 

3. Model verifications 

To quote Box and Draper (1987): “all models are wrong, but some are useful.” This 

essentially means that all models must make some simplifications/approximations to 

simulate our complex, non-linear world. In order to be sure that these simplifications do 

not result in artifacts, the model must be verified. The models developed in this work are 

compared with known analytical solutions of surface (Section 3.1) and internal waves 

(Section 3.2). Related boundary effects are discussed in Section 3.3. The models are also 

verified with field measurements (Section 3.4) and a laboratory experiment (Section 3.5). 

The results of this work are summarized in Section 3.6. 

3.1  Comparison of MHD model with known analytical solutions of surface 

waves 

Weaver (1965), Beal and Weaver (1970), and Podney (1975) developed analytical 

models for the magnetic field generated by surface and internal waves in the ocean and in 

the air above the ocean surface. In this section, the ANSYS Fluent MHD model is 

compared with these known analytical models.  

Weaver (1965) considers the magnetic fields generated by ocean swell and wind-

driven waves and concludes that ocean swell is as important of a generating mechanism 

of magnetic signatures as local wind-waves of a greater amplitude. Therefore, in the open 

ocean, magnetic signals may be significant even in calm seas due to ocean swell. Weaver 

(1965) assumes that the air and seawater have a negligible difference in permeability and 

that the ocean bottom has no effect. Based on these assumptions, Weaver (1965) 

calculated the component of the magnetic field of the Earth, F , that is measured by a 

total field magnetometer in the ocean as  
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        (35) 

and in the air as 

  
2' 2 2/ s gh a Fg S C e      ,              (36) 

where h and 'h are the horizontal components of the magnetic field in the water and air, 

respectively; a  is the amplitude of the ocean wave at the surface,   is electrical 

conductivity,   is angular frequency of the ocean waves, g  is gravity, d is depth, s  is 

the altitude above the sea , sinS I , I is the dip angle, cos cosC I  ,   is the 

eastward inclination of the direction of wave propagation from the magnetic meridian. 

For these calculations, typical values of Earth’s constant magnetic field, F, and dip angle, 

I, for midlatitudes in the northern hemisphere were used and the waves were traveling in 

the direction of magnetic north. Equations (35) – (36) follow from Maxwell’s 

electromagnetic theory with some unavoidable assumptions due to the analytical nature 

of this model. 

Weaver (1965) assumed that “…applying the conditions that normal and tangential 

magnetic field components must be continuous across the air-sea boundary.” However, a 

subsequent work (Podney 1975) stated that “…transverse magnetic type fields vanish 

above an ocean surface” and only the normal component of the magnetic induction is 

continuous at the air-water interface. There is apparently a contradiction between these 

two papers regarding the magnetic field in the air. 

The above analytical solution by Weaver (1965) was reproduced using the ANSYS 

Fluent MHD model. The domain for this simulation was 500 m long by 250 m wide by 

500 m deep, with a mesh resolution of 2 m in the horizontal and 0.14 m in the vertical at 

the air-sea interface, expanding to 3 m at the top (of the air layer) and bottom of the 

domain. This is a two-phase, Volume of Fluid model (see, Section 2.1) with air (top 250 

m) and water (bottom 250 m) layers. The velocity field was initialized using a UDF to set 

the u and w components of orbital velocities of the surface waves for a flat ocean surface, 

which allowed for comparison with Weaver’s (1965) analytical solution (that implied a 

flat ocean surface). The velocity of surface waves were defined as follows:  
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where A is wave amplitude,   is the wave frequency, H is the height of the water 

layer, z is depth, and k is wavenumber (Phillips 1977). The simulation was run for 5 s 

period surface waves. Figures 7 and 8 show the initial velocity condition in the water for 

the MHD simulation, according to Equation (37). The velocity was initialized to 0 m/s in 

the air. The MHD solver is initialized with the hydrodynamic solution from the CFD 

model. The computational procedure is described in Section 2.2.  

In the Weaver (1965) analytical solution, the orbital velocity of the wave is fixed; 

while, the Fluent solution evolves after initialization according to the Navier-Stokes 

equations, which resulted in some decay of the orbital velocity with time. Due to the 

relatively short period of surface waves (5 s), the velocity field in the Fluent model 

evolved by approximately 29% during the 0.5 s convergence time of the 

magnetohydrodynamic solution implemented in this work, which is corrected in the 

magnetic solution by multiplying by a factor of 1.29. (Note that this effect is negligible 

for internal waves due to their much longer periods.) 

To be consistent with Weaver (1965), the surface wave direction was in the direction 

of magnetic north. The Earth’s magnetic field was set as follows: Bx=1.71x10-5 T, By=0 

T, Bz= -4.698x10-5 T, corresponding to 70°N latitude. The electrical conductivity of 

water and air were set to 4 S/m and 5.5x10-15 S/m, respectively. The bottom and top of 

the domain had a conducting boundary conditions with conductivity of 0.4 S/m and 

5.5x10-15 S/m, respectively. Figure 9 shows the comparison of the amplitude of the 

magnetic field fluctuations produced by the MHD model with the analytical solution of 

Weaver (1965). Though Weaver’s (1965) solution resulted in 1-D (vertical) magnetic 

profiles; technically, this model is 2-D. In order to ensure that the 3-D Fluent MHD was 

comparable with Weaver’s (1965) results, both 2-D and 3-D simulations were conducted. 

It appears that both the 2-D and 3-D Fluent MHD models are consistent with the 

analytical model in the water column (Fig. 9).  
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Figure 7. Orbital velocity of 5 s period surface waves (under the assumption of a flat 

surface) following Weaver (1965). a) Contour plot on the center plane of the numerical 

domain of u and b) w velocities in the water layer applied for the initialization of the 

Fluent MHD model.  

 

Figure 8. The amplitude of velocity components calculated from the values on center 

plane of the numerical domain of a) u and b) w orbital velocities of a 5 s period surface 

waves compared to Equation (37).  
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The boundary effects at the sides of the numerical domain in the horizontal direction 

have been removed in the calculation of the vertical profile shown in Figure 9, by 

removing 150 m from either side of the domain. There are some boundary effects near 

the top and bottom of the numerical domain, but the magnetic signatures at these 

locations are far below the level that can be measured with current magnetometers. The 

boundary effects at the top and bottom of the numerical domain will be considered in 

more detail in Section 3.3. 

As mentioned above, there is a contradiction between the traditional models (Weaver 

1965, Podney 1975) about the magnetic field at the air-sea interface, which has not been 

resolved. (Due to the lack of sufficient details in Weaver (1965) and Podney (1975), I 

have not been able to resolve it either.) Therefore, comparison of the Fluent MHD model 

results with the analytical model solutions in the air is not feasible.  

 

Figure 9. Magnetic signature of 5 s surface wave from the center plane of the Fluent 

MHD model compared to Weaver (1965) analytical solution zoomed to the depth/altitude 

near the air-sea interface on a linear scale.  
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3.2  Comparison of MHD model with known analytical solutions of internal waves 

An additional Fluent MHD model verification was conducted for the case of internal 

waves, using Beal and Weaver (1970) analytical solution for comparison. Beal and 

Weaver (1970) consider the magnetic fields generated by internal waves with periods 

between 1 – 30 minutes in a two-layer ocean with an infinite depth and uniform 

conductivity. They determine that this signal is less important than that produced by 

ocean swell. Beal and Weaver (1970) calculated the components of the magnetic 

signature produced by the internal waves with a 1% density difference between the two 

ocean layers. Respectively, the x and z components of the magnetic field produced by 

deep-water internal waves in the ocean layer above the internal wave interface in Beal 

and Weaver’s model were 

  
1 2

22 2 2 1xh Ae C S     ,   
1 2

22 2 2 1zh Ae S C             (38) 

and in the layer below the internal wave interface,  

  
1 2

22 2 2 1xh Ae C S     ,   
1 2

22 2 2 1zh Ae S C     ,        (39) 

where     
1 2

2 1 / 1A a F g k      ,  k z d   , 1 2 1.01    , a  is the 

amplitude of the ocean wave at the interface. For these calculations, typical values of 

Earth’s constant magnetic field, F, and dip angle, I, for midlatitudes in the northern 

hemisphere were used and the waves were traveling in the direction of magnetic north. 

Equations (38) – (39) follow from Maxwell’s electromagnetic theory with some 

unavoidable assumptions due to the analytical nature of the model. 

To simulate the internal wave case from Beal and Weaver (1970), the velocity field 

was initialized using a UDF to set the u and v components of orbital velocities of the 

internal waves centered at 100 m depth to compare with the analytical solution for a flat 

interface. The velocity of internal waves were defined as follows (see Section 1.2):  
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for the upper layer and the lower layer, respectively, where 1h is the height of the upper 

layer and 2h is the height of the lower layer (Massel 2015). In this case 1 100h m  and

2 150h m . Note that for comparison with Beal and Weaver (1970), the interface 

between the upper and lower layers is set to be flat in the Fluent model as well. 

A 50 m wavelength was chosen for verification of the analytical model, which 

corresponds to a deep water wave. Figures 10 and 11 show the initial velocity condition 

in the water for the MHD simulation with a 50 m long internal wave. The velocity field 

was initialized to 0 m/s in the air.  

 

Figure 10. Orbital velocity of 50 m long internal wave. (under the assumption of a flat 

interface) following Beal and Weaver (1970) a) Contour plot on the center plane of the 

numerical domain of u and b) w velocities in the water layer applied for the initialization 

of the Fluent MHD model. 
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Figure 11. The amplitude of velocity components calculated from the values on center 

plane of the numerical domain of a) u and b) w orbital velocities of a 50 m long internal 

wave compared to Equations (40) – (41). 

The analytical model of Beal and Weaver (1970) for internal waves is based on 

Weaver’s (1965) model for surface waves, which was considered above. Figure 12 shows 

the comparison of the Fluent MHD model results with the analytical model. The Fluent 

MHD model setup was the same as in the surface waves case. The Fluent MHD shows 

remarkably consistent results with the analytical model for the 50 m long internal wave 

(Fig. 12). Since a 50 m internal wave can be classified as a deep water wave, the 

boundary effects at the air-sea interface and at the seafloor are negligible. Note, 

horizontal boundary effects have been removed in this analysis by removing 100 m from 

either side of the numerical domain in the calculation of the amplitude of the magnetic 

signature in the same way as the analysis of surface waves. 



44 

NAVAIR Public Release 2018-983.  Distribution Statement A – “Approved for public release; 

distribution is unlimited" 

 

Figure 12. Magnetic signature of 50 m internal wave from the center plane of the 

compared to Beal and Weaver (1970) analytical solution. a) Zoomed into the area of the 

internal wave interface on a linear scale, b) zoomed near the internal wave interface on a 

semi log scale. The horizontal line indicates the wave interface. 

The orbital velocities of deep water internal waves have practically no interaction 

with the seafloor. For these short waves, the Fluent model produces results that are 

remarkably similar to that of the analytical models. Based on these results, I conclude that 

the Fluent MHD compares well with the analytical solution in the water column for deep 

water waves. When the waves become longer, there is interaction of the wave orbital 

velocities with the boundaries and the Beal and Weaver (1970) analytical model becomes 

questionable. The shallow water waves interact with the bottom and surface of the ocean. 
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3.3  Boundary Effects 

One factor, which may affect the magnetic signature of internal shallow water waves 

near the seafloor, is hydrodynamic boundary layer effects. Shallow water internal waves 

produce convergence/divergence patterns near the seafloor with relatively large shear, 

which may enhance the magnetic signature of internal waves. Figures 13 and 14 

demonstrate the effect of the addition of a 10 m thick bottom boundary layer for a 500 m 

and a 1000 m idealized internal wave, respectively. Both linear and logarithmic 

horizontal velocity profiles were tested, though the difference is not substantial. 

For 500 m and 1000 m long internal waves, there is a substantial difference between 

the Beal and Weaver (1970) analytical solution and the Fluent MHD solution (Figures 13 

and 14). Since these are shallow water waves, Beal and Weaver (1970) use the shallow 

water approximation in their model. At the same time, the Fluent MHD model solves for 

the magnetic field in the entire domain and no additional assumptions about shallow or 

deep water waves are involved in the solution. Further comparison of the Fluent MHD 

model with the Beal and Weaver (1970) analytical solution with respect to the field 

measurements can be found in Section 3.4. 

The logarithmic velocity profile for the u component was determined by the 

following equation: 

  *

0

'
' ln

u z
u z

z

 
  

 
              (42) 

where *u is friction velocity,  is the Karman constant, 0 0.01z m is the surface 

roughness. At the top of the logarithmic velocity layer (10 m above the seafloor) the u 

velocity is defined as 
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0
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,                              (43) 

and, therefore,  
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 
,              (44) 
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where 0' 10z m  is the height of the logarithmic velocity layer. By plugging Equation 

(44) into Equation (42) and using the internal wave velocity profile in the bottom layer 

(Equation 41), the velocity profile in the bottom 10 m of the domain is defined as 

follows: 

 
    

 
 0

0 00 2 0

0 0

cosh' ' 1 250
' ln ln cos

' 'sinh
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k H zu z z z
u z A kx t

z zz kh z

z z

 
  

   
 

,        (45) 

where 'z is the height above the bottom in the logarithmic velocity layer. The w 

component of velocity profile in the boundary layer was calculated as a linear 

interpolation from 10 m height above the bottom, which may not exactly satisfy the 

continuity equation. 

The addition of the velocity profile due to the presence of the bottom boundary layer 

resulted in an increase of the amplitude of the total magnetic field fluctuations predicted 

by the Fluent MHD model by a factor of 2.3 and 3.5 for the 500 m (Fig. 13) and 1000 m 

(Fig. 14) idealized internal waves, respectively. 

The addition of a boundary layer appears to be important for the generation of the 

magnetic signature of oceanographic processes near the seafloor. Incorporation of the 

bottom boundary layer effects is necessary for modeling of the magnetic signature of 

these processes. This is especially critical for the field measurements analyzed in Section 

3.4 since the magnetometers are located approximately 1 m above the seafloor. More 

details on these measurements and the MHD model based on them can be found in 

Section 3.4.  
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Figure 13. (a) Magnetic signature of 500 m long internal wave with different seafloor 

and boundary conditions from the center plane of the Fluent MHD in comparison with 

Beal and Weaver’s (1970) analytical model, (b) near-bottom area shown in more detail. 

Note that the traditional Beal and Weaver (1970) model does not appear to be consistent 

with the measurements (Section 3.4). 
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Figure 14. (a) Magnetic signature of 1000 m long internal wave with different seafloor 

and boundary conditions from the center plane of the Fluent MHD compared to the Beal 

and Weaver (1970) analytical solution, (b) near-bottom area shown in more detail. 

3.4  Model verification in oceanic conditions 

Further verification of the MHD model was done applying the model used in Section 

3.1 and 3.2 to the case of internal wave solitons measured by NSWCCD during the 

Ambient Weather Experiment at the EM Observatory. Velocity and total magnetic field 
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were measured during this experiment using two magnetometer/ADCP pairs. The internal 

wave solitons observed on 30 April 2017 and 3 May 2017 are analyzed here in detail 

(Figs. 16 and 20).  

In a stratified ocean having a Brunt-Väisälä frequency profile,  N z , the vertical 

component of the vector profile of velocity of a progressive wave, is a solution of the 

integral equation (Podney 1975) 

       
  
 

2

02 0

sinh1
,

sinh

D

z z z

k D z
v z N v G z k d v

kD
   




           (46) 

where  
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k k D z
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
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
  , 2 2 2   ,    2 2 2N z N z   , 

 is the angular frequency,   is the local vertical component of the Earth’s rotation 

vector, k is wavenumber, 
0zv  is the velocity at the free-surface, and D is the depth of the 

internal wave interface (Cox 1962). 

Internal wave solitons can often be represented in a two-layer approximation. In this 

case, the ocean stratification can be represented by two homogenous layers with a density 

discontinuity at an interface; as a result, the Brunt-Väisälä frequency disappears from 

Equation (46), and the hydrodynamic eigenfunctions decay exponentially (Chave 1984). 

For a two-layer ocean of finite depth, the solution for the vertical component of the 

orbital velocity of a soliton is as follows: 
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 As a first approximation, this equation can be significantly simplified if 2 D  ,   
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The measurements from the ADCPs are in the temporal domain, while the CFD 

modeling is conducted in the spatial domain. The wavelength of the internal wave soliton 

is a necessary parameter to be able to properly model the magnetic signature of these 
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processes. Therefore, the temporal data from ADCPs have to be transformed into the 

spatial domain. For this purpose, we will use exponential decay of the horizontal 

component of the orbital velocity, as follows from the theoretical Equation (48). 

The slope of the linear polynomial interpolation of this decay in a semi log scale 

gives an estimated wavenumber of the internal wave soliton (Fig. 15). The wavenumber 

was calculated for both ADCP Nodes at the crest and trough of the internal wave for both 

30 April and 3 May (Table 1).  

 

Figure 15. Example of wavenumber calculation from 30 April 2017 Node 1 ADCP 

northward velocity during internal wave soliton passing. The dashed lines are the initial 

data, the solid lines are the 7th order polynomial fit to the data. The red lines are from the 

time that the wave crest passed over the ADCP. The blue lines are when the trough 

passed over the ADCP, and the black lines are the linear interpolations used to calculate 

wavenumber. 

Two cases (30 April and 3 May) were modeled with the Fluent MHD model and 

compared with the magnetic measurements. On 30 April, the wavelength was 
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approximately 465 m (Fig 16). A 15,717 m long numerical domain was designed using 

the internal wave soliton wavelength as the length scale for conversion of the temporal to 

spatial scale. The domain was 120 m wide, with a 231 m water layer, and 250 m thick air 

layer. The height of the air layer was approximately one-half of the internal wave soliton 

wavelength. The mesh resolution was 3 m in the vertical (to match the ADCP resolution) 

and 23.25 m in the horizontal. The horizontal size of the mesh corresponded to one 

ensemble of the ADCP measurement. On 3 May, the internal wave soliton with a 

wavelength approximately 1190 m was observed (Fig 20). Respectively, the domain was 

designed with the following dimensions: 14,552 m long, 120 m wide, with a 231 m water 

layer, and 600 m thick air layer. The mesh resolution was 3 m in the vertical and 34 m in 

the horizontal.  

Table 1. Wavenumber calculation for internal wave solitons observed during the 2017 

Ambient Weather Experiment. 

Date Node Crest/ 

Trough 

Ensemble Depth 

1 (m) 

Depth 

2 (m) 

Vel 1 

(m/s) 

Vel 2 

(m/s) 

Wavenumber 

(1/m)  

Wave 

Length 

(m) 

April 

30 

1 Crest 567 132.6 

  

174.6 0.638 0.0723 0.0135 466.57 

April 

30 

1 Trough 587 147.6 177.6 0.540 0.1318 0.0136 461.43 

April 

30 

3 Crest 519 130.4 175.4 0.641 0.0875 0.0132 476.60 

April 

30 

3 Trough 538 139.4 178.4 0.598 0.1038  0.0127 495.84 

May 

3 

1 Crest 196 115.1 

  

169.1 0.794 0.5023 0.0054 1161.6 

May 

3 

1 Trough 161 142.1 187.1 0.833 0.6067 0.0050 1215.1 

May 

3 

3 Crest 214 115.5 166.5 0.791 0.4885 0.0059 1058.3 

May 

3 

3 Trough 172 133.5 181.5 0.814 0.5503 0.055 1142.8 

The CFD model was initialized with the velocity field measured at the EM 

Observatory (Figs. 17 and 21). Due to the lack of information on the 3D velocity field, 

the model has been initialized under the assumption that the internal wave soliton 
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propagates in the x-direction. As a result, there is no spatial variability of the velocity 

field in the y-direction. For both cases, the velocity measurements began at 

approximately 7 m above the seafloor. Below this level, the vertical mesh resolution was 

increased to 0.25 m and logarithmic velocity profiles for the horizontal components of 

velocity were implemented. Note, that the vertical component of velocity was linearly 

interpolated to the seafloor, which may not completely satisfy the continuity equation. 

For both cases, the MHD model was initialized with the Earth’s constant magnetic field 

at the location of the measurements (Bx=2.53 x 10-5 T, By=2.99 x 10-6 T, Bz=-3.6 x 10-5 

T). The conductivities of the water and air were set at 4.788 S/m, 5.5 x 10-15 S/m, 

respectively. The permeability of the air and water were set at 1.257 x 10-6 H/m. 

 

Figure 16. The velocity field on 30 April 2017 during the Ambient Weather Experiment 

measured by NSWCCD. The top, middle, and bottom plots show northward, eastward, 

and vertical velocity components, respectively. All scales are in mm/s.  
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Figure 17.  Contour plot on the center plane of the velocity field initialization of the 

model on 30 April from the field measurements. The domain includes air and seafloor 

layers. The top, middle, and bottom plots show northward, eastward, and vertical velocity 

components, respectively. The horizontal line indicates the air-sea interface. 

The MHD model was initialized with the velocity field from the 30 April 

measurements. Figure 18 shows the magnetic signature produced by the MHD model.  

 

Figure 18. Contour plot on the center plane of the magnitude of the modeled magnetic 

field fluctuations induced by the velocity field on 30 April shown in log scale. The 

horizontal black line indicates the air-sea interface. 

Figure 19 compares the field measurements with the model results and the Beal and 

Weaver (1970) analytical model. The vertical current velocity measured by the ADCP on 
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30 April indicates the passing of an internal wave soliton (Fig. 19a). Note that the model 

operates in the spatial domain, while the velocity observations used for the model 

initialization are from a fixed mooring. The transformation from the time to the space 

domain is conducted based on the wavenumber of the internal wave as determined from 

the exponential decay of its orbital velocity (Table 1). Consequently, I have modeled an 

internal wave soliton propagating exactly in the x (northward) direction. (In reality, the 

internal wave soliton may be propagating at some angle to the northward direction.) 

Under the above assumptions, the model has no meaningful output for the y-component 

of the magnetic field fluctuations from the internal wave soliton. Due to the extremely 

small vertical component of the velocity field near the bottom, the vertical component of 

the magnetic signature is negligible.  

In order to distinguish the internal wave soliton electromagnetic signature from the 

background ocean circulation, a band-pass filter has been applied total magnetic field 

measured in the field data set. Correspondingly, the x-component of the magnetic field 

fluctuations produced by the model have been filtered in the same way (Figure 19b). 

There is reasonably good consistency between the model and the field measurements. At 

the same time, the Beal and Weaver (1970) model corresponding to the observed internal 

wave soliton with 7.5 m amplitude (see Table 1) shows significantly higher magnetic 

signature of the internal wave compared to the field data. 
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Figure 19. a) Vertical current velocity on 30 April showing the passing of an internal 

wave soliton. b) Comparison of total magnetic field calculated by the model (5 m off the 

bottom in the center of the domain in the y-direction), measured during the Ambient 

Weather Experiment on 30 April, and the Beal and Weaver (1970) analytical model.  

The MHD model for the internal wave observed on 3 May was initialized with the 

velocity field data (Fig. 20). The initialization is shown in Figure 21. 
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Figure 20. The velocity field on 3 May 2017, during the Ambient Weather Experiment 

measured by NSWCCD. The top, middle, and bottom plots show northward, eastward, 

and vertical velocity components, respectively. All scales are in mm/s. 

The MHD model was initialized with the velocity field from the 3 May 

measurements. Figure 22 shows the magnetic signature produced by the MHD model.  
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Figure 21.  Contour plot on the center plane of the velocity field initialization of the 

model on 3 May from the field measurements. The domain includes air and seafloor 

layers. The top, middle, and bottom plots show northward, eastward, and vertical velocity 

components, respectively. 

Figure 23 compares the field measurements with the model results corrected for the 

resolution in the bottom boundary layer and the Beal and Weaver (1970) analytical 

model. The vertical current velocity measured by the ADCP on 3 May indicates the 

passing of an internal wave soliton (Fig. 23a). In order to distinguish the internal wave 

soliton from the background ocean circulation, a band-pass filter has been applied to the 

field data and in the model in the same way as in Figure 19b. There is also good 

consistency in the magnetic signature amplitude between the model and the field 

measurements (Fig. 23b). Apparently, there is some difference between the phases of the 

field data and model results, which can be explained by the spatial separation by 

approximately 500 m in the cross-shelf direction between the ADCP and magnetometer 

during the experiment on May 3. Notably, the Beal and Weaver (1970) model 

corresponding to the observed internal wave soliton with 13.5 m amplitude (see Table 1) 
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shows significantly higher magnetic signature compared to observational data, in this 

case as well. 

 

Figure 22. Contour plot on the center plane of the magnitude of the modeled magnetic 

field fluctuations induced by the velocity field on 3 May shown in log scale. The 

horizontal black lines indicate the air-sea interface and the sea-bottom interface. 

 

Figure 23. a) Vertical current velocity on 3 May showing the passing of an internal wave 

soliton. b) Comparison of total magnetic field calculated by the model (5 m off the 

bottom in the center of the domain in the y-direction), measured during the Ambient 

Weather Experiment on 3 May, and the Beal and Weaver (1970) analytical model.   
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3.5  Verifications of the magnetohydrodynamic and magnetostatic models with 

laboratory experiment 

An additional verification of the ANSYS Fluent MHD and Maxwell models was 

conducted using the University of Miami Rosenstiel School of Marine and Atmospheric 

Science SUrge STructure Atmosphere INteraction (SUSTAIN) tank using results from 

Kluge et al. (2018) with surface waves in saltwater and freshwater environments. 

Additionally, an empty tank test was done to determine the magnetic signature produced 

by the wave maker at SUSTAIN.  

In the experiment at the SUSTAIN facility (Fig. 24), the water level in the tank was 

0.75 m and waves were produced at 0.56 Hz and with 0.1 m amplitude. An acoustic 

elevation sensor was located on top of the tank and was used to measure the surface 

waves generated in the tank. Two Geometrics G-824 magnetometers measured Earth’s 

total magnetic field and its fluctuations due to surface waves and two high-resolution 

accelerometers (TE Connectivity Model 4630A-005-060) were used to measure the tank 

vibrations. Accelerometers were placed on the tank to determine the contribution of and 

remove vibrations of the tank from the measured magnetic signature during experiments. 

A differential method was used by placing the two magnetometers on the outer tank 

walls, separated horizontally by approximately one-half wavelength (1.83 m). This 

method effectively suppressed extraneous magnetic distortions (such as passing cars), 

while doubling the magnetic signal of surface waves. The experiments were conducted 

around midnight in order to further reduce the effect of extraneous sources of magnetic 

distortions.  

Spectral analysis of the experimental magnetic signal of surface waves indicates that 

most of the energy in the signal was at the wave frequency of 0.56 Hz and less energy 

was at higher frequency harmonics, which are due to non-linearity of shallow water 

surface waves (Fig. 25).  
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Figure 24. Setup of magnetometer pair during SUSTAIN laboratory experiment to 

measure the magnetic signature of surface waves. 1) Two magnetometers placed on the 

side of the tank near the water level. 2) Sensors placed above the tank on two tripods. 3) 

One magnetometer on tripod and one on the glass. 4) Acoustic transducer. 

 

Figure 25. Spectra from surface waves magnetic signature time series. The red solid line 

shows the spectrum from the master magnetometer, the blue line indicates the spectrum 

from the slave magnetometer, and the green represents the difference spectrum calculated 

by taking the difference between the master and slave magnetometers time series. The 

dashed lines indicate the confidence intervals of the spectra (After Kluge et al. 2018). 

Experimental results suggest that the magnetic signature generated by surface waves 

in the SUSTAIN tank was an order of magnitude larger than predicted by the traditional 
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model (Podney 1975). Based on theoretical calculations, the discrepancy may come from 

the difference of magnetic permeability in water and air that is not accounted for in the 

traditional model.  

Further verification of the Fluent and Maxwell models was conducted by simulating 

this laboratory experiment. The Fluent MHD model can effectively reproduce the 

mangetohydrodynamic effect of surface waves (Section 3.1). The Maxwell model is a 

magnetostatic model and may help to elucidate the difference between the measured 

magnetic signature of surface waves and the predicted value of the traditional models. 

 

Figure 26. Center plane contour plot of initial velocity U (top) and W (bottom) produced 

by 0.1 m amplitude 0.56 Hz linear surface wave in SUSTAIN tank in the ANSYS Fluent 

CFD model. 

A magnetohydrodynamic simulation of the SUSTAIN tank experiment was 

conducted using the ANSYS Fluent MHD model. The numerical domain is 22 m long, 6 

m wide, and 2 m deep with mesh resolution of 0.04 m in all directions. The mean water 

level was set to 0.75 m, which is the same as in the SUSTAIN experiment. Two cases 

were run: linear and non-linear surface waves. The linear surface waves were initialized 

with 0.1 m amplitude and 4.18879 m length (equivalent to 0.56 Hz as in the experiment). 

For the case with the linear waves, the velocity field was “frozen” after one time-step and 

the MHD model was applied (Fig. 26). To produce non-linear waves, the CFD model was 

allowed to run for 2.5 s until the waves became non-linear and the MHD model was 

applied to the “frozen” velocity field at that time. The Earth’s magnetic field in these 

simulations was Bx = 1.99x10-5 T, By = -1.56x10-5 T, Bz = -3.6x10-6 T, which accounts 
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for the angle of the SUSTAIN tank relative to magnetic north (wave propagation is 45° to 

the left of magnetic north).  

 

Figure 27. Center plane contour plot of initial velocity U (top) and W (bottom) produced 

by 0.1 m amplitude 0.56 Hz non-linear surface wave in SUSTAIN tank in the ANSYS 

Fluent CFD model after 2.5 s of simulation. 

These linear surface waves produced fluctuations in the z-component of the magnetic 

field of approximately 0.026 nT (Fig. 28a). The non-linear surface waves produced 

fluctuations in the z-component of the magnetic field of approximately 0.03 nT (Fig. 

28b).  

The Fluent MHD model produces a magnetic signature of the surface waves in the 

SUSTAIN experiment very similar to that predicted by the traditional model but smaller 

than what was measured. It is possible that the small difference in magnetic permeability 

between the air and water coupled with the angle change of the wave could account for 

the difference between the model prediction and the observations.  
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Figure 28. ANSYS Fluent MHD simulation of laboratory experiment with (a) linear 

surface waves and (b) nonlinear waves. Contour plot shows magnetic field fluctuations 

for the z-component. 

The difference in magnetic permeability between the air and water results in the 

magnetic field refraction (Pendry et al. 2006). At the air-water interface, the normal 

component of the magnetic field is continuous while the tangential component has a 

discontinuity, which can be described by the following equations: 

0n an wnB B B                  (49) 

 0 sint at wt a wB B B B                                        (50) 

where the subscripts t and n denote the tangential and normal components of the 

magnetic field, respectively.  
1/2

2 2

0 0 0t nB B B   is the magnetic field in the free space, aB

is the magnetic field in the air, wB  is the magnetic field in the water,  is the inclination 

angle, and a and b are the volume magnetic susceptibilities of the air and water, 

respectively (a=0.36x10-6, w=-9.05x10-6). The change in the magnetic field due to 

refraction as it passes through the air-water interface is determined as follows: 

    2 2

0 0 0 0 0' 1 cos cos 0.1391 nTw a w aB B B B B B                      (51)  
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where 0B =43,926.2 nT is the Earth’s magnetic field entering the air-water interface, 0 'B is 

the Earth’s magnetic field after passing through the interface and undergoing refraction, 

and  is 54.5358° at the Miami location.  

The presence of the wavy surface results in variations of the magnetic field caused by 

the effect of magnetic field refraction (Soloviev and Dean 2018). The amplitude of 

magnetic field variations is calculated as follows: 

     

  

2 2
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2 2

0
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    
        (52) 

where is the maximum slope of the wavy surface, which is estimated as 8.9° for the 

waves in the SUSTAIN facility during the above-described experiment.  

To explore this effect of magnetic permeability difference, a magnetostatic simulation 

of the laboratory experiment has been conducted using the ANSYS Maxwell model (Fig. 

29). The model accounts for the difference in electrical conductivity between air and 

water, but the conductivity differences should have no impact on the solution because 

ANSYS Maxwell does not allow for the introduction of wave motion in fluid (only 

translational or rotational motion - see Section 2.3). The relative magnetic permeability of 

air was set to 1.0000004 H m-1 and water was set to 0.999991 H m-1, which results in an 

approximately 0.14 nT jump of the magnetic field at the air-water interface. The results 

produced by the ANSYS Maxwell model are quantitatively consistent with estimates of B  

and 'B  from a simple analytical model. 

 The magnetic signature of surface waves consists of the magnetohydrodynamic (Fig. 

28) and magnetostatic (Fig. 29) components. These magnetic components have somewhat 

different phases and decay rates, depending on the height of surface waves and their 

direction relative to the Earth’s magnetic field. Note that in the laboratory settings with 

relatively small surface waves, the magnetostatic component appears to be an order of 

magnitude larger than the magnetohydrodynamic component. The model and laboratory 

experiment results (Kluge et al. 2018) appear to be in general agreement (Fig. 30). 

However, there are vibrations of the SUSTAIN tank in high-gradient magnetic fields in 
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the SUSTAIN facility (Kluge et al. 2018), which might result in the additional errors that 

have not yet been analyzed and corrected, if necessary. The analysis of the SUSTAIN 

data is still in progress. 

 

Figure 29. ANSYS Maxwell simulation of laboratory experiment with linear surface 

waves. Contour plot shows total magnetic field fluctuations (Soloviev and Dean 2018). 

 

Figure 30. Comparison of traditional model, measurements, and magnetohydrodynamic 

(linear and non-linear wave), and magnetostatic models of the amplitude of the magnetic 

signature of surface waves. 

In this work, both the ANSYS Fluent MHD and the ANSYS Maxwell models were used 

because neither model can reproduce both the effects of magnetic induction in a moving 
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fluid and magnetic permeability jump at the interface of air and water. ANSYS Fluent 

MHD is able to account for magnetic induction due to wave motion, while Maxwell is not 

able to reproduce motion of water (see Section 2.3). ANSYS Maxwell is able to simulate 

the effect of the magnetic permeability jump at the air-water interface, while ANSYS 

Fluent MHD always compensates the permeability differences in the environment and 

therefore is not able to account for the magnetic permeability jump at the air-water 

interface.  

3.6  Summary  

The Fluent solution is reasonably close to the analytical solution of Weaver (1965) 

for surface waves of a 5 s period except near the air-water interface. The comparison with 

analytical models in the upper few meters and in the air is complicated by the fact that 

these models (Weaver 1965, Podney 1975, and others) contradict each other on the 

magnetic field at the air-sea interface. Unfortunately, there are no reliable magnetic 

measurements in the air above the wavy surface in order to verify either the analytical or 

the Fluent model near the air-sea interface or in the air. Therefore, comparison of the 

Fluent MHD model results with the analytical model solutions in the air is not feasible.  

The Fluent MHD model appears to coincide well with the results of the analytical 

models for the 50 m internal wave that can be classified as a deep water internal wave 

(deep water means kh<<1). There is, however, a significant difference between the 

Fluent MHD model and the analytical solutions for the 500 m and 1000 m internal waves 

(Figs. 12 and 13). These waves can be classified as shallow water internal waves, which 

inherently involve boundary effects. The analytical models either ignore or do not 

properly account for the boundaries.  

The intercomparison of the Fluent MHD model with the field data (Figs. 19 and 23) 

suggests that the Fluent MHD model is able to produce more consistent results than the 

Beal and Weaver (1970) analytical model. Initialization of the Fluent model with the 3D 

spatial velocity field can further increase the accuracy of the magnetic signature 

prediction. In particular, in this work, there was not sufficient information from the field 

measurements on the direction of internal wave soliton propagation. Additionally, 
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velocity measurements near the seafloor in the bottom boundary layer are needed for 

initialization of the model since the magnetic measurements used for model verification 

are located at approximately 1 m above the seafloor. 

The effect of self-inductance appears to be important in the generation of the 

magnetic signature of shallow water waves. Self-inductance is a result of a non-stationary 

solution, which Fluent MHD can properly account for. The analytical models typically do 

not account for self-inductance.  

The results of the laboratory measurements at SUSTAIN are well described with the 

combination of the Fluent MHD and Maxwell models. The measurements are dependent 

on both the magnetostatic and magnetohydrodynamic solutions due to the combination of 

orbital velocities of the waves and the difference in magnetic properties of the air and 

water. 

In general, the magnetic models do a good job describing the magnetic field 

fluctuations produced by the field measurements and the laboratory experiment. The 

verified model suite is then applied to other small-scale oceanographic phenomena and 

their magnetic signatures are compared (Section 5). In Sections 4 and 5, I implement the 

approach of Matt et al. (2014) and Soloviev and Dean (2015) that does not include self-

inductance or boundary layer effects, which may result in an underestimation of the 

magnetic signature in the bottom boundary layer. This, however, is not expected to affect 

the comparison of the magnetic signature produced by submesoscale oceanographic 

processes since the signature maxima reported in Table 2 do not occur in the bottom 

boundary layer. 

4. Magnetic signature of DVM 

4.1 Modeling of DVM in the Straits of Florida 

Dean et al. (2016a) simulated DVM of zooplankton in the Straits of Florida in a 50 m 

by 50 m by 250 m domain. In order to ensure adequate mesh resolution, they performed a 

validation test for three different mesh resolutions: 2 m, 1 m, and 0.5 m. There was some 

difference in the results between the 2 m and 1 m mesh resolutions, but no significant 

difference between the 1 m and 0.5 m mesh resolutions. Therefore, a homogenous 1 m 
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mesh resolution was used for all calculations. Figure 31 shows the initial conditions used 

in the Dean et al. (2016a) model to simulate DVM in the Straits of Florida. The velocity 

profile was based on 11 months of observations from a 75 kHz bottom mounted ADCP at 

a 240-m isobath. However, there was no temperature or salinity information collected 

during this time so the density profile was estimated from historical data. The Straits of 

Florida is a very energetic area, and changes in current velocity and density can occur 

over different time scales, which may have an impact on the effect of DVM of 

zooplankton on turbulence generation. 

Boundary conditions of the model are no-slip on the bottom wall, slippery on side 

walls, and a fixed wind stress on the top wall to simulate an approximately 5 m s-1 wind. 

Periodic boundary conditions are imposed at the inlet and outlet to allow for infinite 

fetch, as well as to allow the particles simulating zooplankton to stay in the domain 

indefinitely. The heat flux at the top wall is 20 W m-2 during daytime (just before sunset 

or just after sunrise) and -100 W m-2 during nighttime. 

 

Figure 31. Straits of Florida CFD model setup: (a) numerical domain; (b) initial density 

profile; (c) measured current velocity profile compared to the linearized average profile 

initiated in the model. 

Solution methods for the model are set as follows: pressure-based solver with the 

SIMPLE scheme for pressure-velocity coupling; for spatial discretization, PRESTO! 

scheme was used for pressure, Least Squares Based scheme for gradient, Bounded 
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Central Differencing for momentum, and Second Order Upwind for energy. Second 

Order Implicit scheme was used for the transient formulation. 

 

Figure 32. Modeling turbulence produced by DVM of zooplankton in the Straits of 

Florida by injecting 10,000 positively buoyant particles with 0.01 m diameter at 100 m: 

(a) particle locations at five-minute intervals; (b) contour plots of vertical velocity (m s-1); 

(c) average profiles of dissipation rate ε (W kg−1). Background turbulence dissipation rate 

in the Straits of Florida is set at 10−8 W kg−1 following measurements by Gregg et al. 

(1999). In the upper few meters, dissipation rate exceeded 10−8 W kg−1 due to surface 

wind stress and has been removed. 

Dean et al. (2016a) simulated the effect of a range of concentrations of zooplankton 

undergoing DVM on small-scale turbulence. Three different concentrations were tested: 

10,000 individuals/m3 (extreme concentration), 5,000 individuals/m3 (intermediate 

concentration), and 1,000 individuals/m3 (low concentration). The case with the extreme 

concentration of particles (proxy for migrating zooplankton) showed an increase in 
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dissipation rate of turbulent kinetic energy by two to three orders of magnitude over 

background turbulence (Fig. 31c). Background turbulence for the Straits of Florida was 

reported by Gregg et al. (1999) as 10-8 W kg-1. At intermediate concentrations, the 

increase in dissipation rate of turbulent kinetic energy was one to two orders of 

magnitude above background turbulence levels (Fig. 33c). At low concentrations, there 

was less than one order of magnitude increase in dissipation rate of turbulent kinetic 

energy over background levels (Fig. 34c). The model results suggest that the level of 

turbulence caused by DVM is likely concentration-dependent. 

 

Figure 33. Same as in Fig. 32, but by injecting 5000 particles m−3. 
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Figure 34. Same as in Fig. 32, but by injecting 1000 particles m−3. 

These preliminary model results were compared with current velocity profiles from 

ADCP data collected in the Straits of Florida (USCG 2008). Figure 35a shows averaged 

northward current velocity profiles over an 11-month ADCP data set during migration as 

compared to three hours before and after migration times. Only cases where the Florida 

Current was present above the bottom ADCP mooring were considered (maximum 

northward velocity component greater than 0.75 m s-1) to eliminate the influence of 

coastal waters, which may have different biophysical interactions. There is a small, but 

statistically significant, decrease in northward current velocity during migration as 

compared to the three-hour difference (Fig. 35b). A three-hour difference was chosen to 

emphasize the higher frequency process associated with DVM and suppress lower 
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frequency, high-energy processes such as mesoscale eddies, diurnal and semidiurnal 

tides, and inertial oscillations.  

The modeled average current velocity was compared in cases with particles and 

without particles. In the extreme concentration of particles case (10,000 org/m3), 25 

minutes after injection, there was a decrease in current velocity (Fig. 36) qualitatively 

similar but an order of magnitude larger than that seen in the field data (Fig. 35b). In the 

low concentration of particles case (1000 org/m3), there was a smaller decrease in current 

velocity (Fig. 37), which was quantitatively similar to that observed from the field data 

(Fig. 38). Based on this information, it is possible to have an idea about the average 

concentration of zooplankton undergoing migration during the 11 month period of 

measurements. Comparison of the model and average ADCP velocity profiles is, of 

course, complicated by their substantial dependence on the environmental conditions, not 

directly related to DVM, including wind/wave mixing, Florida Current meandering, and 

tides. In principle, diurnal cycles, breezes, and tides can have an effect on the velocity 

field even at 20–30 m depth. 

 

Figure 35. Average ADCP northward current velocity profiles in full 11-month data set 

during migration compared to before migration from ADCP. The velocity profile during 

migration was calculated as an hour-long average around sunrise/sunset and the before 

migration velocity profile was calculated as an hour-long average, three hours prior to 

and after sunrise/sunset.  a) Average velocity profile. b) Difference between during 

migration and ±3 hours using a 67% confidence interval (dashed lines). 
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This small, on the order of 0.01 m/s, but statistically significant decrease in current 

velocity can be linked to the presence of zooplankton undergoing DVM and is likely 

caused by the change in the vertical mixing coefficient produced by additional turbulence 

from the DVM of zooplankton. The increased turbulent friction could affect the current 

velocity profiles. It should be noted that most of the decrease in current velocity from the 

model took place in the upper 50 m of the ocean. However, the near surface bins of the 

ADCP data had to be removed from the calculation due to multiple reflections. If current 

velocity measurements were available closer to the surface of the ocean, a larger effect on 

current velocity might be seen. 

 

Figure 36. Average model current velocity in Straits of Florida in extreme concentration 

case (10,000 org/m3). a) Average current velocity profiles in particles and no particles 

cases. b) No particles case at 25 minutes after injection minus particles case at same time.  

Particles representing zooplankton were released at 100 m depth. 
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Figure 37. Average model current velocity in Straits of Florida in case with low 

concentration of particles (1000 org/m3). a) Average current velocity profiles in particles 

and no particles cases. b) No particles case at 25 minutes after injection minus particles 

case at same time.  Particles representing zooplankton were released at 100 m depth. 

 

Figure 38. Comparison of effect of DVM of zooplankton on current velocity in the 

model with a low concentration of particles and observations. 
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4.2  Modelling of DVM in Saanich Inlet 

The above-described ANSYS Fluent CFD model has also been applied to Saanich 

Inlet, British Columbia, Canada with a somewhat different domain (50 x 50 x 150 m) and 

the same mesh that was used in the Straits of Florida simulation. For the initial 

conditions, stratification information was taken from temperature and salinity profiles 

averaged over several days of sample collection (Fig. 39) (Rousseau 2010). Current 

velocity profiles were not available for this specific location so it was estimated from the 

VENUS observatory in the Strait of Georgia, which is just outside of Saanich Inlet 

(https://data.oceannetworks.ca/). 

 

Figure 39. Saanich Inlet model setup: a) numerical domain; b) measured potential 

density profile compared to the linearized average profile initiated in the model; c) initial 

current velocity average profile. (After Dean et al. 2016a.) 

In Saanich Inlet, the case with extreme concentration of particles (10,000 

individuals/m3) showed an increase in ε by approximately 2 - 3 orders of magnitude over 

background turbulence dissipation rate when particles, a proxy for migrating 

zooplankton, were present in the mixed layer (Fig. 40). The measured background 

dissipation rate of turbulence was reported in Kunze et al. (2006) on the order of 10-9 W 

kg-1. The turbulence induced in the model by the particles remains in the wake of the 



76 

NAVAIR Public Release 2018-983.  Distribution Statement A – “Approved for public release; 

distribution is unlimited" 

particles for some time after they have migrated out of the area, which is seen on the 

vertical velocity contour plots (Fig. 41).   

The case with an intermediate concentration of particles (5000 individuals/m3) 

showed an increase in dissipation rate of turbulent kinetic energy of approximately 1 - 2 

orders of magnitude during particle migration (Fig. 41). There is also an increase of 

turbulence in the wake of the particles, but it is less pronounced than at the extreme 

concentration of particles.  

 

Figure 40. Modelling the turbulence produced by DVM of zooplankton in Saanich Inlet 

by injecting 10,000 m-3 positively buoyant particles with 0.01 m diameter at 100 m: a) 

particle locations at five minute intervals; b) contours of vertical velocity; c) average 

profiles of dissipation rate ε (W kg-1). Background turbulence dissipation rate in Saanich 

Inlet is set at 10-9 W kg-1 following measurements by Kunze et al. (2006). In the upper 

few meters dissipation rate exceeded 10-9 W kg-1 due to surface wind stress and has been 

removed. 
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The case with low concentration of particles (1000 individuals/m3) showed almost no 

change in dissipation rate of turbulent kinetic energy over background turbulence during 

particle migration; though, there were still relatively small fluctuations of vertical 

velocity on the contour plots (Fig. 42). Note that the background turbulence dissipation 

rate in the model without particles was comparable to or lower than the measurement 

noise reported by Kunze et al. (2006). 

 

Figure 41. Same as in Figure 40, but by injecting 5000 particles m-3. 
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Figure 42. Same as in Figure 40, but by injecting 1000 particles m-3. 

These results suggest that DVM of zooplankton can cause a measurable increase of 

dissipation rate of turbulent kinetic energy in the upper layer of the ocean, though 

strongly dependent on zooplankton concentration. However, there may be some 

discrepancies between simulated and measured dissipation rates during migration. The 

model results show horizontally averaged dissipation rate over the 50 m by 50 m model 

domain, while measurements of turbulence are instantaneous profiles (Kunze et al. 2006). 

Zooplankton undergoing DVM tend to be spatially inhomogeneous, which leads to 

locally increased areas of turbulence in the ocean.  

Modeling the zooplankton as buoyant ridged spherical particles may result in either 

the overestimation or underestimation of turbulence generation. Swimming behavior is 

not taken into consideration in this model, which could cause the underestimation of 

turbulence (Huntley and Zhou 2004). However, this work also does not account for the 
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streamlined body shape of most migrating zooplankton, which could cause 

overestimation of turbulence.  

Mixing efficiency depends on the length scale of turbulence generated, relative to the 

vertical buoyancy scale (Visser 2007). As the length scale of the generated turbulence 

increases, the mixing efficiency increases (Kunze 2011). Therefore, the mixing efficiency 

from turbulence generated by an individual organism is likely very low. However, 

turbulence generation by organisms with a collective behavior depends on volume and 

concentration of organisms, as well as their shape and orientation (Katija 2012), 

increasing the mixing efficiency over a single organism. This model likely oversimplified 

the effect of collective behavior on turbulence generation by the use of spherical 

particles. 

4.3  Modeling of DVM in the Gulf of Mexico during oil spill 

The above-described ANSYS Fluent CFD model has also been applied to the Gulf of 

Mexico using the same domain and mesh that were used in the Straits of Florida 

simulation. Initial conditions were determined from ADCP and CTD data taken aboard 

the R/V F.G. Walton Smith during the CARTHE LAgrangian Submesoscale ExpeRiment 

(LASER) cruise in January and February 2016. Several CTD casts were taken during this 

month-long cruise at different locations, including near the mouth of the Mississippi 

River. The CTD data from the cast on 29 January 2016, at 20:00 UTC near the mouth of 

the Mississippi River was used to determine the initial density profile and ADCP data 

from a one-hour average around the time of the CTD cast have been used to determine 

the initial velocity profile (Fig. 43).  
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Figure 43. Gulf of Mexico CFD model setup. The domain was a 50 x 50 x 250 m box 

representing a section of the Gulf of Mexico. Initial density and velocity profiles were 

determined from interpolated profiles of ARGO floats.  

Results of the simulation with an extreme concentration of particles (10,000 org/m3) 

show an increase in dissipation rate of turbulent kinetic energy by two to three orders of 

magnitude over background turbulence (Fig. 44c). The background turbulence for the 

Straits of Florida (reported by Gregg et al. (1999) as 10-8 W kg-1) was used as a 

preliminary estimate. More research needs to be done to determine the appropriate level 

of background turbulence for this location. Additional concentrations of zooplankton will 

be tested in the model to determine their effect on turbulence dissipation. 
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Figure 44. Modeling turbulence produced by DVM of zooplankton in the Gulf of Mexico 

by injecting 10,000 positively buoyant particles with 0.01 m diameter at 100 m: (a) 

particle locations at five-minute intervals; (b) contour plots of vertical velocity (m s-1); (c) 

average profiles of dissipation rate ε (W kg−1). Background turbulence dissipation rate in 

the Straits of Florida is set at 10−9 W kg−1 following measurements by Kunze et al. 

(2006). 

Propulsion speed of some organisms may be somewhat changed because of buoyancy 

effects due to varying salinity stratification in the upper layer of the ocean. The highly 

viscous nature of oil emulsions may slow zooplankton migration and increase dissipation 

rate due to upward migration. The presence of oil emulsions, however, can have a more 

dramatic effect on the DVM of zooplankton (with dire consequences for the marine 

ecosystem). 

4.4  Modeling of Magnetic Signature of DVM 

In order to simulate the magnetic signature of DVM of zooplankton, the ANSYS 

Fluent MHD model was applied to the hydrodynamic solution (“frozen” velocity field) as 

described in Section 4.1. The Earth’s magnetic field in South Florida (Bx = 2.51x10-5 T, 

By = 3x10-6 T, and Bz = -3.59x10-5 T, http://www.ngdc.noaa.gov/geomag-web) is applied 

as an external magnetic field. Material properties of the seawater are set as follows: 

http://www.ngdc.noaa.gov/geomag-web
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electrical conductivity is 4.788 S m-1 and magnetic permeability is 1.257x10-6 H m-1. The 

bottom and top of the domain had a conducting boundary conditions with conductivity of 

0.4 S/m and 5.5x10-15 S/m, respectively. All other walls are set as insulating boundaries. 

The calculation is performed with a very small time-step size (e.g., 0.001 s) for a single 

time-step for 1000 iterations in order to ensure convergence of the magnetic solution. 

The MHD model has been applied to the Straits of Florida simulations with extreme 

and low concentrations of zooplankton. The MHD model results indicate that migrating 

zooplankton can cause magnetic fluctuations of approximately 70 pT in the case of an 

extreme concentration of zooplankton undergoing migration and approximately 15 pT for 

a low concentration of zooplankton (Fig. 45). This signal is relatively small but is well 

within the range of modern magnetometers. DVM also produces an electric signal. The 

extreme concentration of zooplankton produces an electric signal of approximately 10 

V/m and the low concentration of zooplankton produces an electric signal of 15 V/m 

(Fig. 46). 

 

Figure 45. Magnetic signature of bio-turbulence 20 min after injecting positively buoyant 

particles with 0.01 m diameter at 100 m: (Left) Magnetic signature of extreme 

concentration of zooplankton and particle location 20 min after injection; (b) magnetic 

signature of low concentration of zooplankton and particle location 20 min after 

injection. 
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Figure 46. Electric signature of bio-turbulence 20 min after injecting positively buoyant 

particles with 0.01 m diameter at 100 m: (Left) Electric signature of extreme 

concentration of zooplankton and particle location 20 min after injection; (b) electric 

signature of low concentration of zooplankton and particle location 20 min after 

injection. 

5. Comparison of magnetic signature of DVM to magnetic signature of other 

fine-scale oceanographic processes 

Hydrodynamic simulations using ANSYS Fluent have been conducted exploring other 

fine-scale oceanographic processes such as surface waves, internal wave soliton, internal 

wave breaking on the continental slope, freshwater lenses, and Langmuir circulation. 

MHD simulations have also been conducted for these processes (Soloviev et al. 2015a, 

Soloviev et al. 2018) using the verified Fluent MHD model. The magnitude of the 

magnetic signature produced by the DVM of zooplankton with these other oceanographic 

magnetic sources are compared below. 

5.1 Idealized surface waves 

Ocean surface waves are an important mechanism for the generation of magnetic 

signatures. The orbital motion of seawater produced by wind-driven surface waves 

(Warburton and Caminiti 1964) and ocean swell (Weaver 1965) in the Earth’s magnetic 

field creates a measurable magnetic signature above and below the water’s surface. The 
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magnetic signature produced by these waves is dependent on both wavelength and 

amplitude.  

Soloviev et al. (2015a) compared the ANSYS Fluent MHD simulation of surface 

waves with the analytical solution by Warburton and Caminiti (1964). This work has 

updated the simulation of the magnetic signature using the Fluent MHD model (Section 

3). The domain for this simulation was 500 m long, 300 m wide, and 600 m high. The 

water layer was 300 m deep and the air layer was 300 m high. The mesh resolution was 5 

m in the horizontal and 0.75 m in the vertical at the air-sea interface, increasing in both 

directions away from the interface. Surface waves with an amplitude of 2 m and a 

wavelength of 36 m were imposed in this simulation using a wave boundary condition 

(Fig. 47). The bottom boundary had a no slip condition, while all other boundaries were 

slippery.  

 

Figure 47. CFD simulation of 2 m amplitude, 36 m long surface waves. Contour plots of 

U velocity (left) and W velocity (right) with an isosurface of density showing the air-sea 

interface. 

The verified ANSYS Fluent MHD model was applied to the hydrodynamic 

calculation with the Earth’s magnetic field set as follows: Bx=2.51x10-5 T, By=3 x10-6 T, 

Bz=-3.59x10-5 T. The electrical conductivity of water and air were set to 4.788 S/m and 

5.5x10-15 S/m, respectively. The bottom boundary had a conducting wall, with electrical 

conductivity of 0.4 S/m. The ANSYS Fluent MHD model produced the magnetic 
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signature on the order of 1 nT, which is in reasonable agreement with the analytical 

solution (Fig. 48). As mentioned in Section 2.2, the ANSYS Fluent MHD model was 

missing two terms in the Maxwell equations, which deal with changing electrical 

conductivity. In this simulation, those additional terms have been recovered with a UDF, 

but there was no substantial change to the solution.  

 

Figure 48. Magnetic signature of surface waves. (Left) Center plane, side-view contour 

plot of the magnetic signature, B0, produced by surface waves. (Right) Amplitude of the 

magnetic signature of surface waves. 

5.2 Internal wave soliton breaking on the continental slope 

It is well known that internal waves in the ocean can interact with continental slopes. 

Under certain conditions, energy produced by breaking internal waves is concentrated 

near the seafloor, creating boundary layer instabilities and thus vortices that stir up 

sediment and produce layers of suspended particles, known as nepheloid layers 

(Cacchione and Drake 1986).  Nepheloid layers are a prominent feature on continental 

margins worldwide and can significantly contribute to the transportation of matter and 

energy in these environments (Eisma 1993). The thickness of this layer depends on the 

current velocity produced by wave breaking and the type of sediment present in the area.  
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A hydrodynamic simulation of an idealized internal wave soliton breaking on the 

continental slope was run and the effect of the creation of a nepheloid layer was explored 

using a DPM model (Section 2.1). The domain was 2000 m long, 200 m wide, and 275 m 

high, with a 13.2° slope representing the continental slope. The mesh resolution was 5 m 

in all directions. There was a no slip boundary condition on the bottom of the domain 

including the slope. All other boundaries were slippery. The model was initialized with a 

14.6°C temperature anomaly, 1.25 psu salinity anomaly, and resulted in a 4.5 kg/m3 

density anomaly (Fig. 49). This anomaly propagated as an internal wave soliton. As the 

wave broke on the continental slope, the Lagrangian particles were entrained in the 

gravity current head and formed a nepheloid layer.  

 

Figure 49. Initial condition for the internal wave breaking on the continental slope. (Top) 

Center plane contour plot of the initial density anomaly; (bottom) center plane contour 

plot of density at the time of the MHD simulation. 

At the time of wave breaking on the slope, the verified MHD model was run on the 

“frozen” velocity field to determine its magnetic signature. The Earth’s magnetic field 

was set to be that in Dania Beach, FL (Bx=3x10-6 T, By=-2.51x10-5 T, Bz=-3.59 x10-5 T). 

Note, the difference in the Earth’s field in this simulation compared to the others in this 

section is due to the coordinate system. Here x is west and y is south. In other 

simulations, x is north and y is west. The electrical conductivity of water and air were 

4.788 S/m and 5.5 x 10-15 S/m, respectively. The bottom boundary had a conducting 
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boundary condition with 0.4 S/m conductivity. The magnetic signature produced by the 

internal wave breaking was approximately 1.4 nT and the electrical signature was 

approximately 60 µV/m (Fig. 50). The highest magnetic signature produced by this wave 

breaking was in the area of highest shear and very little signal was observed near the 

bottom of the domain. 

 

Figure 50. Center plane contour plot at 1500 s of (top) magnitude of the magnetic field 

fluctuations and (bottom) magnitude of the electric field fluctuations due to an internal 

wave breaking on the continental slope. 

5.3 Freshwater lens spreading  

Convective rains and river runoff can produce freshwater lenses on the ocean surface. 

The large density gradient between the lens and its surrounding environment produce 

strong pressure gradients causing the lens to spread laterally as a gravity current 

(Soloviev and Lukas 1997). The water motion of spreading gravity current can produce a 

magnetic signature. The stronger the density difference, the faster the lens will spread, 

and presumably, the larger the magnetic signature it will produce. 

A hydrodynamic simulation was conducted to explore the dynamics of the 

propagation freshwater lenses produced by river runoff similar to that observed in the 
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Mississippi River Delta (Soloviev et al. 2015b). The domain for this simulation was 1000 

m long, 40 m wide, and 40 m deep with a 1 m mesh resolution in the y-direction, 50 cm 

in the x-direction, and 12 cm in the vertical at the top of the domain, and expanding to the 

bottom. The model was initialized with an initial 6.1°C temperature anomaly and a 5.4 

psu salinity anomaly, resulting in a 2.5 kg/m3 density anomaly representing a freshwater 

lens produced by river runoff (Fig. 51). Wind stress was applied, which was equivalent to 

15 m/s (Fairall et al. 2003). The freshwater plume spread like a gravity current (Fig. 51 

bottom).  

 

Figure 51. Model setup of freshwater lens simulation. Top shows the density center 

plane contour plot at the model initialization. Bottom shows the density center plane 

contour after the freshwater lens has spread for 660 s.  

The MHD model was then applied to the “frozen” velocity field after 660 s of the 

CFD simulation. Water conductivity was 4.788 S/m. The magnetic boundary conditions 

were insulating on all walls. The Earth’s magnetic field was set as follows: Bx=2.51x10-5 

T, By=3 x10-6 T, Bz=-3.59x10-5 T. The magnetic signature of freshwater lens propagation 

from this hydrodynamic simulation is approximately 0.53 nT (Fig. 52b) (Soloviev et al. 

2017). The electric signature produced by this freshwater lens was 10.41 µV/m (Fig. 

52c).  

This simulation was conducted for freshwater lens produced by river runoff. In areas 

of larger river run off with a larger density anomaly, this signal may be much stronger. 
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Figure 52. Magnetic signature of freshwater lens after 660 s of propagation. Center plane 

contour plot of a) temperature, b) magnitude of the magnetic signature of the freshwater 

lens spreading, and c) electric signature of the lens spreading. 

5.4 Langmuir circulation and ramp-like structures 

Langmuir cells and ramp-like structures are an important feature in the upper ocean 

turbulent boundary layer. Langmuir cells and ramp-like structures are believed to 

vertically transfer an appreciable portion of the momentum, heat, gases, pollutants (e.g., 

oil), and other substances in the upper layer of the ocean.  Soloviev and Dean (2015) uses 

computational fluid dynamics tools to model Langmuir cells and ramp-like structures 
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coexisting in space, though intermittent in time by injecting shear-free turbulence due to 

breaking waves by altering the water viscosity as a material property in the near-surface 

layer of the ocean. 

A 3D CFD simulation with an LES turbulence model has been conducted to simulate 

Langmuir circulation and ramp-like structures for developing seas, including high wind 

speed conditions (Soloviev and Dean 2015). This model does not include the Stokes drift 

term and thus is not locked to the wave direction. The domain was 500 m long, 200 m 

wide, and 80 m deep with 1 m horizontal mesh resolution, and a 0.1 m vertical mesh 

resolution near the surface, increasing with depth. A periodic boundary condition was set 

along the numerical domain. Wind stress to the equivalent of approximately 9 m s-1 wind 

speed at 10 m height (Fairall et al. 2003). The material viscosity of water in the wave 

stirred and turbulent diffusion layers corresponding to developing seas were set according 

to  

     
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         (53) 

as follows: 1 msH  , 4.5  , 
6 2

0 1 10  m s    , 
2 21.8 10  m sm

   . A no shear 

boundary condition was applied at the bottom and side walls of the numerical domain. 

No stratification effects have been considered in this case. The CFD model is able to 

reproduce both Langmuir cells and ramp-like structures coexisting in space though 

intermittent in time (Fig. 53). 
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Figure 53. CFD simulation of Langmuir cells and ramp-like structures. Contour plots of 

U velocity after 10,000 s.  

The verified MHD model was applied to the “frozen” hydrodynamic solution at 

10,000 s once Langmuir circulation had developed. The Earth’s magnetic field for the 

Dania Beach, FL area was set as follows: Bx=2.51x10-5 T, By=3 x10-6 T, Bz=-3.59x10-5 T. 

Electrical conductivity of the water was 4.788 S/m and the bottom boundary was set to be 

conducting with a conductivity of 0.4 S/m. The coherent structures produced a magnetic 

signature on the order of 0.07 nT (Fig. 54) (Soloviev et al. 2015a). 
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Figure 54. Magnetic signature of Langmuir circulation. (Top) Contour plot at 10 m depth 

(top view) of the magnetic signature of Langmuir circulation. (Bottom) Contour plot in 

the center plane of the domain (side view) of the magnetic signature of Langmuir 

circulation. 

5.5 Comparison of magnetic signature of different processes 

The results described in Section 4.4 show that DVM of zooplankton produces a 

magnetic signature on the order of 0.1 nT. This result indicates that the magnetic signal 

of DVM of zooplankton is comparable with that produced by Langmuir circulation and 

ramp-like structures. Internal wave solitons produce the largest signal, on the order of 1-

10 nT, of the processes studied in this work. Surface waves produce a magnetic signature 

on the order of 1 nT, freshwater lenses produce a magnetic signature of approximately 
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0.5 nT (Table 2). Under different initial conditions the magnetic signature produced by 

these processes may be somewhat different.  

Table 2. Comparison of the typical magnetic signature produced by different small-scale 

oceanographic processes as produced by the verified MHD model. 

Oceanographic Process Maximum Magnetic Signature (nT) 

Diel vertical migration of zooplankton 0.07 

Surface waves 0.9 

Idealized internal wave soliton  10 

Internal wave soliton breaking on continental 

slope 

1.4 

Freshwater lens  0.5 

Langmuir circulation 0.07 

 

6. Conclusions  

In this work, a computational fluid dynamics (CFD) model was used to determine the 

magnetic signature of various small- and fine-scale oceanographic processes. These types 

of processes inherently involve three-dimensional dynamics. Respectively, the model 

suite included the non-hydrostatic type model ANSYS Fluent, coupled with the MHD 

module, and ANSYS Maxwell models.  

In this dissertation, substantial effort has been made in the model verification. I have 

had the opportunity to compare the model results with field and laboratory data. 

Verifications of the Fluent CFD and MHD and Maxwell models have been conducted by 

comparing with the laboratory experiments, and field measurements. One limitation of 

the MHD module is the assumption of a sufficiently conductive fluid so that the charge 

density and displacement current terms in Maxwell’s equations can be neglected. 

However, the displacement current term is important for high frequency processes (e.g., 

radio waves). In this dissertation work, I am focused on the magnetic signature of oceanic 

processes with relatively low frequencies, and the displacement term does not appear to 

be prominent, even in the air. I, however, have not been able to verify the MHD model 
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above the sea surface, due to the lack of proper available field data. The profiles in the air 

should be treated as non-verified model results. 

The verification of the model has been conducted with the SFOMF EM Observatory 

field measurements during the Ambient Weather Experiment. In this test, the ADCP data 

were used for the MHD model initialization. The magnetic signature of the ocean 

circulation including internal wave solitons produced by the model was consistent with 

the field measurements of the total magnetic field near the seafloor.  

The CFD model was also compared with the traditional, analytical models of 

electromagnetic signatures of surface and internal waves (Weaver 1965, Beal and Weaver 

1970, Podney 1975, Lilley et al. 2004). In the case of surface waves, the computational 

model is close to the analytical solution in water. There is, however, some difference in 

the air, which is likely because the analytical models incorrectly extend the transverse 

component of the magnetic field into the air (Beal and Weaver 1970, Podney 1975). 

Weaver (1965) does not reveal the magnetic model results in the upper few meters of the 

ocean by setting a logarithmic scale for depth. 

In the case of the model verification with the analytical theory of internal waves, I 

considered three cases including internal waves with 50 m, 500 m, and 1000 m 

wavelengths. For the 50 m internal waves, the computational model was consistent with 

the analytical solution. For longer waves, 500 m and 1000 m, there is a significant 

difference between the computational and traditional models. This difference is explained 

by the two factors that are not included in the traditional models. The first factor is the 

effect self-inductance in seawater. The second factor is the structure of the bottom 

turbulent boundary layer. Both of these factors appear to be significant for the magnetic 

signature of oceanographic processes. In contrast to the traditional, analytical models, the 

MHD model is able to account for both of these factors.  

The suite of computational models was also verified in the laboratory conditions. For 

this purpose, we conducted a series of laboratory experiments at the UM RSMAS air-sea 

interaction facility SUSTAIN including saltwater, freshwater, and an empty tank (Kluge 

et al. 2018). These experiments revealed another feature, the difference in magnetic 

permeability between the air and water, which is ignored in the traditional, analytical 
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models. This feature was modeled using ANSYS Maxwell and demonstrated consistency 

with the observations (Soloviev and Dean 2018).  

This suite of models was then applied to evaluate the magnetic signature of DVM of 

zooplankton, surface waves, internal wave solitons, freshwater lens spreading, and 

Langmuir circulation. The comparison of the magnetic signature of these processes 

provided in Table 2 gives a quantification of the magnetic noise induced by 

hydrodynamic processes. These evaluations have been done for typical environmental 

conditions. In other environmental conditions, their magnetic signature may be somewhat 

different. However, the suite of computational models developed in this dissertation 

allows estimation of the magnetic signature of submesoscale and fine- and small-scale 

oceanographic processes in virtually any environmental conditions. I anticipate the result 

of this study will have Naval, environmental, and oil exploration applications. 

As a recommendation for future development of the EM Observatory, the velocity 

measurements in the bottom boundary layer should be made with higher vertical 

resolution. The cabled ADCPs (3 m vertical resolution with a 7 m gap above the bottom) 

are not sufficient to resolve convergence/divergence motions of seawater near the bottom, 

which may affect the simulation of the magnetic signature of the oceanographic processes 

near the bottom. The vertical resolution of current velocity measurements should be 

sufficient to resolve the bottom boundary layer (e.g., using a downward-looking ADCP 

as implemented on the NSU mooring). The local gradients near the bottom are expected 

to be increased, resulting in a higher magnetic signature. Additionally, the 3D velocity 

structure should be measured to account for the direction of internal wave soliton 

propagation. The higher resolution mesh and larger domain needed to incorporate this 

additional data requires increased computational power, which is expected be available in 

the future.   
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Appendix 

Smagin et al. (2014) have shown that the effect of self-inductance can increase the 

magnetic signature of internal waves. In Smagin’s analytical model, the vertical 

component of the amplitude of the magnetic field 0zB in the upper layer of the ocean 

(above the internal wave) is governed by the following equation: 

2

0 21 0 11 12'' cosh sinhz zB B D kz D kz              (A1) 

where 
2 2
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In the lower layer of the ocean, 0zB is governed by 

   2

0 22 0 21 22'' cosh sinhz zB B D k D z D k D z             (A2) 

where 
2 2

22 0 22k i     , 
 

2

2

21 0 22

sinh cosh

sinh
x

kd kd
gk

D i k A iF
k D d



 






, and 

 

2
2

22 0 22

sinh cosh

sinh
x

kd kd
D k A iF

k D d


 





. 

The solution to these equations in all four layers (air, seafloor, and two seawater layers) is 

as follows: 

 
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where
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G1 and G3 are found from the conditions at the boundaries between the water layers as 

follows: 
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