
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2018

Metrics for Aspect Mining Visualization
Gisle J. Jorgensen
Nova Southeastern University, jjorgensen2311@gmail.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Gisle J. Jorgensen. 2018. Metrics for Aspect Mining Visualization. Doctoral dissertation. Nova Southeastern University. Retrieved from
NSUWorks, College of Engineering and Computing. (1048)
https://nsuworks.nova.edu/gscis_etd/1048.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu


 

 

 

 

 

 

 

Metrics for Aspect Mining Visualization 

 

 

 

 

 

 

 

 

by 

 

Gisle J. Jorgensen 

 

 

 

 

 

 

A dissertation report submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy 

in 

Computer Information Systems 

 

 

 

 

 

 

 

College of Engineering and Computing 

Nova Southeastern University 

 

2018 
 



 

 

 



 

 

An Abstract of a Dissertation Submitted to Nova Southeastern University 

in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy 

 

Metrics for Aspect Mining Visualization 

 

by 

Gisle J. Jorgensen 

 

2018 

 
Aspect oriented programming has over the last decade become the subject of intense research 

within the domain of software engineering. Aspect mining, which is concerned with 

identification of cross cutting concerns in legacy software, is an important part of this domain. 

Aspect refactoring takes the identified cross cutting concerns and converts these into new 

software constructs called aspects. Software that have been transformed using this process 

becomes more modularized and easier to comprehend and maintain. The first attempts at mining 

for aspects were dominated by manual searching and parsing through source code using simple 

tools. More sophisticated techniques have since emerged including evaluation of execution 

traces, code clone detection, program slicing, dynamic analysis, and use of various clustering 

techniques. The focus of most studies has been to maximize aspect mining performance 

measured by various metrics including those of aspect mining precision and recall. Other metrics 

have been developed and used to compare the various aspect mining techniques with each other. 

Aspect mining automation and presentation of aspect mining results has received less attention. 

Automation of aspect mining and presentation of results conducive to aspect refactoring is 

important if this research is going to be helpful to software developers. This research showed that 

aspect mining can be automated. A tool was developed which performed automated aspect 

mining and visualization of identified cross cutting concerns. This research took a different 

approach to aspect mining than most aspect mining research by recognizing that many different 

categories of cross cutting concerns exist and by taking this into account in the mining process. 

Many different aspect mining techniques have been developed over time, some of which are 

complementary. This study was different than most aspect mining research in that multiple 

complementary aspect mining algorithms was used in the aspect mining and visualization 

process. 

 



 

 

Acknowledgements 

I would like to thank Dr. Mitropoulos (chair) for all his helpful feedback at the various stages 

during the dissertation process. I would also like to thank the committee members Dr. Mukherjee 

and Dr. Sun for all their helpful feedback and the document revision suggestions. 

 



v 

 

 

Table of Contents 

 

Abstract  ii 

Acknowledgements  iii 

List of Tables  vii 

List of Figures  viii 

 

 

Chapters 

 

1. Introduction  1 

Background  1 

Problem Statement  4 

Dissertation Goal  4 

Research Questions  5 

Relevance and Significance  5 

Barriers and Issues  7 

Limitations and Delimitations  8 

Definition of Terms  9 

Summary  10 

 

2. Review of the Literature  11 

Introduction  11 

Aspect Mining Techniques  11 

Visualization of Aspect Mining Results  16 

 

3. Methodology  18 

Overview of Research Methodology  18 

Aspect Mining and Visualization Tool  18 

Aspect Mining Using Model Based Clustering  22 



vi 

 

Aspect Mining Clone Detection  24 

Aspect Mining Using Event Tracing  26 

Synthesis of Aspect Mining Results  29 

Visualization of Cross Cutting Concerns in Source Code  31 

Resource Requirements 32 

 

4. Results  34 

Data Generation  34 

Data Analysis  45 

Summary of Results 56 

 

5. Conclusions, Implications, Recommendations, and Summary  57 

Conclusions  57 

Implications  57 

Recommendations  58 

Summary  59 

 

      Appendices  62 

A. Aspect Mining and Visualization Tool Architecture  62 

B. Aspect Mining and Visualization Tool Application Components  63 

C. Aspect Oriented Programming Artifacts for Method Execution Trace Log  65 

D. Fan-In Results File Excerpt  70 

E. Aspect Mining Results DTD  71 

  

      References  72 

  



vii 

 

List of Tables 

Tables 

 

1. Ordered Method Call Analysis Results  46 

 

2. Code Clone Analysis Results  47 

 

3. Methods in JHotDraw with Highest Fan-In Values  47 

 

4. Cross Cutting Concern as Interface Analysis Results  48   

 

5. Identified Calls in Clones Cross Cutting Concern  50 

 

6. Identified Calls at the Beginning of Methods Cross Cutting Concern  51 

 

7. List of Methods Calling CollectionsFactory.createList Method at the Beginning  52 

 

  



viii 

 

 

 

List of Figures 

Figures 

1.  Aspect Mining and Visualization Tool User Interface  20 

2.  Aspect Mining and Visualization Tool  21 

3.  Event Trace Information from Fictitious Program Executions  27 

4.  Venn Diagram Representing Identified Sets of Cross Cutting Concerns  29 

5.  Fully Duplicated Code for Methods in Different Classes  36 

6.  Duplicated Code at the Beginning of Methods, Candidate for Before Advice  37 

7.  Duplicated Code at the End of Methods, Candidate for After Advice. 38 

8.  Method Candidate for Around Advice  39 

9.  Identification of Ordered Method Call Cross Cutting Concerns with Inside Relation 42 

10.  Identification of Ordered Method Call Cross Cutting Concerns with Inside Relation 42 

11.  Sample XML Representation of Aspect Mining Results  45 

12.  Identification of Cross Cutting Concern as Interface  49 

13.  Example of Frequent Calls in Clones Cross Cutting Concern  50 

14:  Example of Calls at the End of Methods Cross Cutting Concern  53 

15.  User Selects Cross Cutting Concerns Categories to Mine for  53 



ix 

 

16.  User Clicks Cross Cutting Concern Details Link to get more Information  54 

17.  User Clicks Cross Cutting Concern Details Link (clicked line in red)  55 

18.  The Remaining Detail for the Calling Methods is Displayed when Scrolling Down  55 

19.  Aspect Mining and Visualization Application (AMV) Architecture  62 

20.  Aspect Mining and Visualization Tool Application Components  63 

21.  Configuration of MethodExecutionTrace Aspect  65 

22.  Sample Ignore and Include Calling Relations from method_execution_trace.log  66 

23: Inside Relations Identified by Automated Analysis of Generated Execution Trace Log  67 

24.  Shade Plugin Used to Create Executable jar File for Method Tracing  68 

25.  Log4j Configuration Capturing Trace Log in C:/log/method_execution_trace.log  69 

26.  Fan-In Results File Excerpt  70 

27.  DTD for XML Representing the Aspect Mining Results  71



1 

 

 

 

Chapter 1 

Introduction 

 

Background 

Functional business requirements representing core concerns can be successfully 

implemented using object oriented programming techniques. Nonfunctional requirements such as 

logging, transaction management, persistence, and error handling do not fit well into the object 

oriented model (Bruntink, Deursen, Engelen, & Tourwe, 2005). Code representing these 

concerns are often tangled in with code implementing core concerns when traditional software 

engineering principles are applied (Cojocar, & Czibula, 2008). Further, the code implementing 

cross cutting concerns are scattered throughout the code base in modules implementing core 

concerns. Legacy systems where the code base is composed of modules that implements both 

core and cross cutting concerns tend to be complex, hard to maintain, and difficult to enhance 

(Cojocar, Czibula, & Czibula, 2009). Aspect Oriented Programming (AOP) a relatively new 

software engineering invention which makes it possible to separate the implementation of cross 

cutting concerns from that which implements the core concern (Martin, Deursen, & Moonen, 

2004). The cross cutting concerns are implemented in software constructs called aspects when 

AOP is used. The aspects are, depending on the specific implementation of the AOP system, 

woven into the code base of the executable unit at compile time, load time, or execution time.  

The design of legacy systems can be transformed into one in which core concerns and 

cross cutting concerns are implemented in separate modules.  The first step in this process is to 

identify the aspect seeds in the legacy code (Shepherd, Gibson, & Pollock, 2004). The aspect 

seeds are discovered in the legacy code through the process of aspect mining. Much research has 



2 

 

 

 

been devoted to aspect mining and many aspect mining techniques have been developed. The 

quality of the aspect mining techniques has improved over the years which has resulted in better 

results for aspect mining recall (the percentage of cross cutting concerns discovered compared to 

all cross cutting concerns in the software) and aspect mining precision (the percentage of actual 

cross cutting concerns retrieved compared to all instances retrieved) (Moldovan, & Serban, 

2006b). Recent clustering based aspect mining techniques are more automated than earlier 

techniques. Metrics have been developed to measure and compare various aspect mining 

clustering techniques (Rand McFadden, & Mitropoulos, 2013b).  

This research will focus on visualization metadata which will be used to depict cross 

cutting concerns in source code after this has been mined for cross cutting concerns. The goal is 

to make aspect mining results practically available to the software developer through 

visualization so that legacy software can be effectively transformed to aspect oriented software. 

An aspect mining visualization prototype tool will be developed to show the usefulness of the 

aspect mining visualization metadata by demonstrating how these are used to depict cross cutting 

concerns for aspect refactoring purposes in source code. 

Cross cutting concerns comes in many different forms. Still most aspect mining research 

treats them as a whole. This is also one of the reasons why less effective aspect mining and 

aspect refactoring tools have been developed to date. The focus of this research is to identify 

what category each of the located cross cutting concerns belong to and then graphically represent 

these. Each visualized cross cutting concern will be annotated indicating which cross cutting 

concern category they belong to. This will help the software developer in the design decisions he 

must make when transforming cross cutting concerns by, (1) where and how to implement point 

cuts, (2) deciding on type of advice, and (3) the implementation of aspects.  



3 

 

 

 

The different categories of aspects that the tool will be used to mine for include: (1) 

Ordered Method Call: These calls that are always called relatively to other method calls 

(Shepherd, Palm, & Pollock, 2005). (2) Code Clone: These are cross cutting concerns 

characterized by identical or very similar code that is in many different parts of the application 

(Bruntink, Deursen, Engelen, & Tourwe, 2005). Transaction demarcation code falls into this 

category. This code demarcates transaction begin, commit, and rollback. This code can be 

encapsulated in a transaction aspect which can then be advised using point-cut expressions. (3) 

Unique Class Fan In: This concern is characterized by many unique classes that makes calls to 

one specific method (Martin, Deursen, & Moonen, 2004). (4) Calls In Clones: This concern is 

characterized by code clones scattered in the application. The cloned code contains frequently 

calls to a method M which is a good candidate for a cross cutting concern that can be aspectized 

(Bruntink, Deursen, Engelen, & Tourwe, 2005). (5) Calls at Beginning and End of a Method: 

Calls placed at the beginning and at the end of a methods are often implementing a cross cutting 

concern. One such example is logging for debugging purposes when the façade pattern is used. 

Developers often place log statements at the beginning and at the end of façade APIs to trace 

execution flow entry and exit points. Façade is a commonly used design pattern in client server 

application architectures. AOP can also be implemented for design patterns (Hannemann, & 

Kiczales, 2002; Laddad, 2003). The following categories of cross cutting concerns that relates to 

design patterns will be investigated: (6) Persistence, (7) Command, (8) Observer, and (9) 

Decorator. Aspect visualization metadata describing these will be designed and used when 

mining for cross cutting concerns. The last category of cross cutting concerns that will be 

investigated is: (10) Cross-cutting concerns that are represented as an interface with method 

implementations that appear to be consistent (Shepherd, & Pollock, 2005). 



4 

 

 

 

 

Problem Statement 

The problem addressed by this research is that the various categories of cross cutting 

concerns cannot be automatically mined and visualized in legacy code. There are three reasons 

why this problem has not been solved: (1) Current aspect mining techniques are focused on 

identification of cross cutting concerns in general and not on categories of cross cutting 

concerns. (2) Most aspect mining techniques are focused on improving aspect mining 

performance. This study will visualize the identified cross cutting concerns.   

(3) Most aspect visualization tools are focused on showing aspects in software where cross 

cutting concerns already have been implemented as aspects. 

 

Dissertation Goal 

The goal of this research is to automatically find aspects using aspect mining techniques 

based on clustering, cloning, and execution traces. Each cross cutting concern will automatically 

be identified and visualized using the prototype that will be built as part of this study. Each 

visualized cross cutting concern will be annotated with the category it belongs to. The visualized 

cross cutting concerns represents aspect mining refactoring candidates. Aspect mining 

benchmark software will be used when mining for aspects.  

 

 

 

 

 



5 

 

 

 

Research Questions  

(1) Is it possible to capture enough information using aspect mining clustering, cloning, 

and analysis of execution traces to identify and categorize cross cutting concerns in 

legacy source code? 

(2) Can visualization metadata be created to depict cross cutting concern in source code 

and identify which category of cross cutting concerns they belong to? 

(3) Can visualization metadata in XML format be used to describe cross cutting concerns 

so that software developers can refactor these into aspects? 

(4) How successful is this research at identifying the cross cutting concerns in the 

benchmark software?  

 

Relevance and Significance 

A large body of software systems falls under the category of legacy systems. These are 

software systems that have lived beyond the first generation of programmers (Kontogiannis et al. 

2003). The cost of maintaining and evolving these systems are disproportionally larger than the 

amount of code changed or the resulting change in software behavior (Griswold, Yuan, & Kato, 

2001). One cause of difficulty in maintaining these systems is lack of modularity. Business 

requirements representing core concerns of the system are usually successfully implemented 

according to well established object-oriented design patterns and principles. System 

requirements such as logging, transaction management, and persistence are cross cutting and 

require implementations across core concerns if only object-oriented software principles are 

applied during software construction.  



6 

 

 

 

Aspect oriented programming techniques facilitate implementation of cross cutting 

concerns in modules called aspects. These can be invoked using point-cuts and advice (Czibula, 

Cojocar, & Czibula, 2009b). Software systems that are easier to maintain and evolve can be 

constructed by encapsulating core concerns in modules based on object oriented principles and 

by encapsulating cross cutting concerns in modules using aspect oriented techniques. Legacy 

systems that contain cross cutting concerns can be reverse engineered to aspect oriented systems. 

This process has two steps (Zhang, Guo, & Chen, 2008). The first step is to locate the cross 

cutting concerns or the aspects seeds. This is the process of aspect mining. Much research has 

been focused on aspect mining. The second part of this problem is to transform the identified 

aspect candidates into actual aspects (Binkley, Ceccato, Harman, Ricca, & Tonella, 2005; 

Monteiro, & Fernandes, 2004). This is the process of aspect refactoring.  

Less research has been focused on aspect refactoring. Most of the research in this area is 

still immature and the proposed techniques have not lived up to their expectations (Mens, 

Kellens, & Krinke, 2008). Aspect mining has come far in automating the process of identifying 

aspect candidates. (Rand McFadden, & Mitropoulos, 2012), but little progress has been made 

using these aspect mining results in the next step of aspect refactoring. Tools that automates 

large parts of the refactoring process is needed if reverse engineering large software systems for 

aspect oriented programming is ever going to become practically viable. Most tools that have 

been developed are either lexical (Hanneman, & Kiczales, 2001; Griswold, Yuan, & Kato, 2001) 

or exploratory (Janzen, & Volder, 2003; Robillard, & Murphy, 2002). Neither of these 

approaches are automatic. The tools depend on user familiarity with the software and that the 

user can find aspects seeds in the legacy software that is being mined.  



7 

 

 

 

Shepherd, Gibson, and Pollock, (2004) developed Timna which is a tool for aspect 

mining and analysis. This tool is based on Fan-in analysis for the aspect mining part and manual 

tagging for identification of cross cutting concerns in the legacy code. While this tool has more 

support for automation than preexisting tools it still relies on Fan-in analysis for identification of 

aspect mining candidates. More sophisticated clustering techniques have since been used for 

better cross cutting concern identification and automation. Another shortcoming of this tool and 

prior attempts at automating aspect mining and visualization is that user involvement is required 

in the identification phase of aspect mining candidates. The tool that will be developed as part of 

this study will identify aspect candidates automatically by using a combination of aspect mining 

techniques based on model based clustering (Rand McFadden, & Mitropoulos, 2012), program 

dependency graph based clone detection (Komondoor, & Horwitz, 2001; Krinke, 2001), and 

event based program tracing (Breu, & Krinke, 2004). The usability of the aspect mining 

visualization metadata will be demonstrated with the aspect mining visualization prototype. 

 

Barriers and Issues 

JHotDraw (v.5.4b1) is the most commonly used benchmark software for aspect mining 

algorithms. This medium sized application has well defined cross cutting concerns, but may not 

be representative of larger software systems (Rand McFadden, & Mitropoulos, 2013). Another 

shortcoming with JHotDraw is that the software does not contain many of the different 

categories of cross cutting concerns that will be mined for. JHotDraw will be used for this study 

because many other aspect mining and refactoring studies have used this software and the results 

can therefore be compared to that of other studies. JHotDraw is a very clean implementation 

since it was built to showcase specific design patterns and principles. JHotDraw is implemented 



8 

 

 

 

in more than 12,000 lines of code. JHotDraw will be seeded with code snippets as necessary 

when mining for certain categories of cross cutting concerns. Cross cutting concerns categories 

that builds upon code clones will be seeded in JHotDraw since this software does not because of 

its clean implementation contain much clones. This will allow for a complete set to cross cutting 

concerns representing all categories relevant to this study will be present in the software to be 

mined. 

 

Limitations and Delimitations 

JHotDraw will be used as input for the Aspect Mining and Visualization Tool. JHotDraw 

is the most commonly used benchmark software for aspect mining studies and is therefore good 

for measuring relative effectiveness of aspect mining algorithms. The software has a known set 

of cross cutting concerns which makes it possible to obtain values for metrics such as precision 

and recall. The software is highly structured and does therefor not contain much code 

duplication. Some seeding will therefore be performed so that it will be possible to find results 

when mining for cross cutting concerns that are based on code clones. JHotDraw is a medium 

sized software system and will not give a good measure for how well the aspect mining 

techniques will perform for large or very large software systems.  

 

 

 

 

 

 



9 

 

 

 

Definition of Terms 

Aspect Functionality implemented as separate modules that can be executed 

as part of core modules during program execution. 

 

Aspect Mining Identification of cross cutting concerns or aspect candidates in the 

source code of an existing software system. 

 

Aspect Refactoring The transformation of the identified cross cutting concerns into 

aspects. 

 

Abstract Syntax Tree A tree representation of the abstract syntactic of source code written 

in a programming language. 

 

Aspect Mining Recall The fraction of cross cutting concerns discovered compared to all 

cross cutting concerns in the software. 

 

Aspect Mining 

Precision 

The fraction of actual cross cutting concerns retrieved compared to 

all instances of cross cutting concerns in the software. 

 

Code Scattering When a single functionality is implemented in multiple modules. 

 

Code Tangling When code to handle multiple concerns is interleaved in the same 

module. 

 

Core Concerns The main business functionalities of the system. 

 

Code Clone Sequences of duplicate code, or sequences of code which with the 

same input produces the same output. 

 

Cross Cutting Concern 

 

Functionalities that cuts across multiple modules. 

Design Patterns A general solution to a design problem that occurs repeatedly in may 

software systems. 

 

Dynamic Analysis Evaluation of program by executing data in real time. 

 

Execution Traces Trace information, such as method entry and method exit, recorded 

when control flows through a program during program execution. 

 

Point Cut A program construct that selects join points and selects context at 

those points. 

 

Program Dependency 

Graph 

Graph representing program control and data dependencies. 

 

 



10 

 

 

 

Static Analysis Examination of code without executing the program. 

 

Separation of Concerns

  

Design principle for separation of source code into modules so that 

each represents a distinct concern. 

 

 

  

Summary 

Object oriented programming has played a significant role in reducing the complexity of 

software systems. Core concerns can be implemented in separate cohesive core modules where 

each module has a single responsibility. Cross cutting concerns such as logging, transaction and 

error handling are required across core modules and are therefore better implemented as aspects. 

Mining for cross cutting concerns is the first step when refactoring legacy software into an aspect 

oriented system a software system. This study uses two static and one dynamic aspect mining 

technique when performing automated aspect mining. The cross cutting concerns are assigned to 

ten different aspect mining categories and visualized using a prototype tool that will be 

developed for this study. 

 

  



11 

 

 

 

Chapter 2 

Review of the Literature 

Introduction 

Literature from aspect mining and aspect visualization is reviewed. Aspect mining 

literature is reviewed since clustering and other aspect mining techniques will be used to identify 

cross cutting concern in source code. Aspect visualization literature is reviewed since the 

identified cross cutting concerns will be visualized. 

 

Aspect Mining Techniques 

Early aspect mining techniques were manual and tool based. One of the first attempts to 

localize concerns that could be encapsulated in aspects was performed by Hanneman and 

Kiczales (2001). They developed the Aspect Mining Tool (AMT) which presents an interface 

that can be used with text based searches based on regular expressions. The Aspect Browser 

(Griswold, Yuan, & Kato, 2001) is another example of a tool that can be used when mining 

aspects. This tool uses a combination of the source code mapping tool Nebulous and Aspect 

Emacs. Aspect Emacs is an Emacs-Lisp extension to GNU Emacs which is used to provide map-

indexing, map-insert, and code editing functionality. DynAMiT detects method entry and exit 

points and uses this information to build execution traces (Breu, & Krinke, 2004).  

Aspect mining based on pattern matching and clone detection was the focus of the 

research performed by Bruntink, Deursen, Engelen, and Tourwe (2005). These researchers 

annotated manually clones in code and then used three different tools in the aspect mining effort. 

The goal of this research was to investigate the feasibility of using clone detection as a means for 

automated aspect mining.  Shepherd, Pollock, and Tourwe (2005) used natural language 



12 

 

 

 

processing for aspect mining. Analysis of execution traces was the basis of the research 

performed by Tonella and Ceccato (2004). This analysis was a form of dynamic code analysis 

where the execution of main use cases was analyzed. When specific computational units are 

determined to be present in several use cases then these becomes candidates for aspects. The 

early tool oriented approaches have all in common that they are highly interactive, time and 

resource consuming, inefficient, and rely on extensive manual processing. 

Bruntink, Deursen, Engelen, and Tourwe (2005) evaluated the suitability of using clone 

detection as a technique for identification of cross cutting concerns. Five specific cross cutting 

concerns were identified in an industrial C system and clone detection was used as a means for 

discovering these. The researchers concluded that cross cutting concerns implemented with 

similar code scattered throughout the code base was effectively identified using clone detection 

whereas other cross cutting concerns such as exception handling was not identifiable using this 

method. Shepherd, Gibson, and Pollock, (2004) developed an aspect mining tool that looks for 

code duplications using a dependency graph. The results are used to discover cross cutting 

concerns in the source code.   

Shepherd, Palm, and Pollock (2005) implemented the Timna Eclipse plugin which is an 

automated classification tool that uses a combination of different analyses techniques for aspect 

mining.  The application takes a program as input, identifies methods, and uses machine learning 

for classification of these into possible aspect mining refactoring candidates. The first step in the 

machine learning process is training. Training is performed by first tagging the methods in the 

software systems as either candidates or not candidates. Training is performed on JHotDraw 

(version 5.3). The machine learning testing phase is performed on JHotDraw and Tomcat 

(version 3.2). Timna demonstrated that better precision and recall was achieved when using a 



13 

 

 

 

combination of analyses than when a single analysis method such as when Fan-In analysis was 

used in isolation. In Fan-In analysis a method is denoted with m. The number of distinct method 

bodies that call each method m in the software system is calculated when Fan-In analysis is 

performed. This number for each method m is the Fan-In count for the method. Aspect mining 

using Fan-In analysis builds on the notion that methods with higher Fan-In counts is likely to 

represent functionality that is required across the application.  Methods with higher Fan-In 

counts are therefore more likely to represent cutting concerns than methods with lower Fan-In 

counts (Martin, Deursen, & Moonen, 2004).  

Clustering, a form of unsupervised machine learning, is another approach that has been 

used to mine for aspects in legacy code. Clustering has the advantage that little manual 

intervention is needed. Several clustering based techniques have been proposed for aspect 

mining. Cojocar and Czibula (2008) conducted a study where they evaluated the usefulness of 

clustering for aspect mining. The study compared the results when performing aspect mining 

using several different clustering techniques. They found that clustering can be useful if the 

clustering technique is successful in finding the optimal partition of the software system. They 

recommended that other clustering techniques should also be tried for aspect mining. Other early 

works in cluster based techniques include approaches based on Fan-In analysis (Martin, Deursen, 

& Moonen, 2004). 

Fan-in analysis has, in addition to being used as a standalone method for aspect mining, 

also been used as the foundation for development of vector space models. Variations of these 

vector space models have been used as input for several cluster based aspect mining algorithms. 

Moldovan and Serban (2006) was one of the first to utilize vector space models for clustering. 

Partition and hierarchical clustering based algorithms have become popular choices for detection 



14 

 

 

 

of aspects in legacy code. Serban and Moldovan (2006a) developed a new aspect mining 

adaptation of the popular k-means clustering technique. These algorithms achieve higher degrees 

of automation than the standard k-means clustering algorithm by utilizing a heuristic for 

choosing the initial number and placement of centroid locations.  

The formal model for partitioning based aspect mining was developed by Moldovan and 

Serban (2006). A theoretical foundation based on metrics for cluster based aspect mining was 

formed with this model. Subsequent research used this foundation as a framework when 

developing cluster based aspect mining clustering techniques. Serban and Moldovan (2006b) 

proposed in another study to use a Genetic Algorithm for aspect mining (GAM). The authors 

found that the kAM algorithm performed better than the GAM algorithm. Recommendations for 

future work included using different representation schemas for the GAM, to try different 

mutation schemas for improved accuracy, to use a heuristic when creating the initial population, 

and to make other changes to GA parameters. The Carla Laffra implementation of Dijkstra 

algorithm was used as the benchmark software for this case study. The authors recommended 

using JHotDraw for future case studies of GAM variations.  

The GAM algorithm was later rejected in a comparative study of six different clustering 

algorithms for aspect mining (Cojocar, & Czibula, 2008). This study compared Hard K-Means, 

Fuzzy C-Means, Standard Genetic Algorithm, Hierarchical Agglomerative, and K-Means with 

heuristic based selection of initial number and location of centroids. The study was inconclusive 

as to which algorithm performed the best. The researchers recommended further studies to 

improve the clustering techniques and metrics. The four clustering algorithms kAM, hierarchical 

agglomerative with heuristic (HAM), partition clustering algorithm (PACO), and hierarchical 

agglomerative clustering (HACO) were compared by Cojocar, Czibula, & Czibula, (2009). In 



15 

 

 

 

this study HACO performed the best. HACO was the only algorithm where elements from one 

cross cutting concern did not mix with elements from other cross cutting concerns.  

Recent model based aspect mining algorithms which automatically determine the optimal 

number of clusters have produced good clustering results. Rand McFadden and Mitropoulos 

(2012) achieved better results than prior studies with a careful selection of vector space models. 

Aspect mining data was used to calculate metrics such as diversity, measuring to which extent 

each cluster has different cross cutting methods from other concerns and dispersion, measuring 

how the cross cutting concerns are spread across the clusters. Recent unsupervised aspect mining 

clustering techniques provide for a high level of automation and perform well in identifying 

cross cutting concerns in legacy systems where AOP has not been used.  

Aspect mining addresses only the first part of the problem of reverse engineering legacy 

software into aspect oriented systems (Mens, Kellens, & Krinke, 2008). Aspect refactoring is the 

second part of this problem. This is the process where the cross cutting concerns or aspects seeds 

are transformed into aspect modules with corresponding point cuts and advice forming an aspect 

oriented software system (Binkley, Ceccato, Harman, Ricca, & Tonella, 2005; Monteiro, & 

Fernandes, 2004). Using tools for visualization is a well-established practice within the reverse 

engineering community (Fabry, Kellens, & Ducasse, 2011). Tools that depend on visualization 

are available for examining control flow and program comprehension in software that was 

originally developed as aspect oriented systems or legacy systems that have already been 

converted to aspect oriented systems. This study will apply aspect visualization to legacy 

software at the aspect mining step which is before any aspect refactoring has taken place.  

 

 



16 

 

 

 

Visualization of Aspect Mining Results 

Visualization tools exist for study of software where the crosscutting concerns have 

already been implemented as aspects. Understanding execution flow in applications where cross 

cutting concerns have been implemented as aspects can be challenging. It can be hard to 

understand how advice, such as before, after and around affects execution flow and at which join 

points these are executed for the given point-cut expressions. AspectJ, the leading Interactive 

Development Environment for aspect oriented programming, has visualization capabilities for 

aspects. Coelho and Murphy (2006) created a visualization tool which allows the software 

developer to browse crosscutting structures and to display these in diagrams. The diagrams show 

the advice, the advising methods and their relationships. Asbro is an aspect browsing and 

visualization tool which uses tree maps to show packages and classes that contain aspects 

(Pfeiffer, & Gurd, 2006). Aspect Maps was developed to show at which join points aspects 

execute (Fabry, Kellens, & Ducasse, 2011; Fabry, & Bergel, 2013). This tool was designed to 

help software developers understand the program flow in complex situations where multiple 

aspects intervene at the same point cut.  

Little research has been conducted in order to visualize automated aspect mining results. 

Shepherd and Pollock (2005) created the Aspect Miner and Viewer (AMV) which performs 

aspect mining using agglomerate hierarchical clustering (ACL) to group methods that belongs to 

the same cluster. A simple distance measure is used to find groups of methods that belong to the 

same cross cutting concern. The viewer presents the clusters with the cross cutting results, the 

methods that belong to the clusters, and the editor pane displays the Java file for a method. The 

tool is limited in that it only provides for the ability to use one clustering method as input. 



17 

 

 

 

Manual inspection is performed to identify cross cutting concerns in the clusters. Methods are 

clustered based on common substrings in their names (Czibula, Cojocar, & Czibula, 2009).  

Orphir, is a tool that was developed for automatic identification of aspect mining 

candidates (Shepherd, Gibson, & Pollock, 2004). The tool identifies cross cutting concerns that 

can be refactored into before advice using a four-step process: (1) Construct a source level 

Program Dependency Graph (PDG) to detect clones. (2) Identify a set of refactoring candidates. 

(3) Filter undesirable refactoring candidates. (4) Coalesce related sets of candidates into classes. 

Good results were reported with precision of more than 90% of the identified candidates as 

desirable for aspect mining refactoring. The visualization framework contains an aspect viewer 

that was implemented as an Eclipse plugin. 

  



18 

 

 

 

Chapter 3 

Methodology 

Overview of Research Methodology 

The methodology and the steps that was performed in this study can best be explained by 

describing the design and steps performed by the aspect mining and visualization tool. This tool 

was built as part of this study. The aspect mining and visualization tool takes a set of input 

parameters, performs aspect mining on the JHotDraw source code and visualizes the cross 

cutting concerns identified in the source code. JHotDraw was chosen as the source code because 

it has a set of well-defined cross cutting concerns and is commonly accepted as the benchmark 

software for aspect mining. This source code has been used in many prior aspect mining studies 

including (Martin, Moonen, & Deursen, 2006; Rand McFadden, & Mitropoulos, 2012; 

Moldovan, & Serban, 2006; Shepherd, Gibson, & Pollock, 2004). 

 

Aspect Mining and Visualization Tool 

 The aspect mining and visualization tool (figure 1) accepts input parameters as described 

below:  

(1) JHotDraw is the legacy source code that was mined for cross cutting concerns. This 

source code was seeded with code clones so that all categories of cross cutting concerns 

could be mined for.  

(2) The type of model based clustering to perform. The user chose to use, either the model-

based algorithm (MCL) implemented by Fraley and Raftery (2006) in the R language 

(mclust package: Mclust), or the model-based agglomerative hierarchical clustering 



19 

 

 

 

algorithm (HC) implemented by Raftery and Dean (2006) in the R language (mclust 

package: hc, hclass). 

(3) The user chose to apply one of six vector space models when performing the clustering 

process:  

(1) fanIn_numCallers, (2) fanIn_hasMethod, (3) sigTokens, (4) fanIn_sigTokens, (5) 

fanIn_numCallers_sigTokens, and (6) fanIn_numCallers_hasMethod_sigTokens. 

(4) One or more of 10 categories of cross cutting concerns to mine for: 

(1) Ordered Method Call, (2) Code Clone, (3) Unique Class Fan In, (4) Calls In 

Clones, (5) Calls at Beginning and End of a Method, (6) Persistence, (7) 

Command, (8) Observer, (9) Decorator, and (10) Cross-cutting concerns 

represented as interface.  

(5) The aspect mining process started when the user clicks the Mine for Aspects button. The 

Aspect Mining Results Tab in figure 1 is revealed when the aspect mining process has 

completed and the results were visualized. 



20 

 

 

 

 

Figure 1: Aspect Mining and Visualization Tool User Interface. 

The overall flow and sequence of steps performed by the Aspect Mining and 

Visualization Tool is depicted below (Figure 2). These steps were: 

(1) Aspect mining using model based clustering as was performed by (Rand McFadden, & 

Mitropoulos, 2012).  

(2) Aspect mining based on clone detection was performed. Two Program Dependency 

Graph algorithms was applied (Komondoor, & Horwitz, 2001; Krinke, 2001).  

(3) Aspect mining using event traces (Breu, & Krinke, 2004) was be performed.  



21 

 

 

 

(4) Aspect mining results was synthesized at step four and visualized in the source code at 

step five. The visualization process was guided by XML. The XML metadata was created 

and used to depict the individual cross cutting concerns. Each individual cross cutting 

concern identified in source code were annotated with the aspect mining category it 

belonged to.  

The Aspect Mining and Visualization tool is interactive. The user can, after visualization 

has been completed at step five chose to run the tool again to perform a new analysis with a 

different set of input parameters or exit the application. A discussion of each step performed 

by the tool follows. 

 

Figure 2: Aspect Mining and Visualization Tool. 



22 

 

 

 

  

Aspect Mining Using Model Based Clustering 

The tool performs first model based clustering. Model based clustering was chosen 

because it is fully automated. This form of clustering does not require the user to specify an 

initial number or location of centroids prior to starting the clustering process. Rand McFadden 

and Mitropoulos performed model based clustering for aspect mining with good results (2012) 

and the methodology with corresponding steps that was performed in that study was repeated in 

this study.  

The vector space models were in the first step constructed from raw data collected using 

the Eclipse FINT plugin (Martin, Deursen, & Moonen, 2004). The plugin was configured with 

no filtering and threshold set to zero. The resulting text file produced by the FINT tool was 

preprocessed to remove results from calling getters and setter and methods belonging to Java 

utility methods. A filter was applied so that only methods which belong to classes that are under 

the root package CH.* was included in the results. This ensured that the clustering algorithm was 

only mining methods in application source. The results were written to a file that contains 

application classes, method signatures, FIV values, number of calling classes, and tokenized 

method signatures.  

The data read from this input file was further filtered and grouped before six vector space 

models was created. The user selects one of these vector space models when performing aspect 

mining (see figure 1 above). These vector space models are the same as those used by Rand 

McFadden and Mitropoulos (2012): 

(1) Model 1: fanIn_numCallers - A two-dimensional vector where method M1 = {FIV, CC}. 

The FIV represents the fan-in value, and the CC represents the number of calling classes. 



23 

 

 

 

(2) Model 2: fanIn_hasMethod - The x-dimensional vector where method M = {FIV, B1, B2, 

… Bn} and x = 1 + m. The FIV represents the fan-in value and Bi represents whether the 

method M is called by a method in class Cj (1 ≤ j ≤ m) The m value represents all the 

application classes in the software system. Bj = {1 if Mi is called from at least one 

method in class Cj,  0 otherwise}. 

(3) Model 3: sigTokens - The x-dimensional vector where method Mi = {O1, O2,…, Op} and 

x = p. Each method signature is split into tokens (a through z) and each unique token 

represents an attribute Aa through Az. The p represents the summation of all unique 

tokens from all the methods (Mi * Aiz) after filtering out the duplicates and non-

significant ones, such as “in”, “to”, etc. Oj = {1 if Mi has attribute Ah that equals Oj,  0 

otherwise}. 

(4) Model 4: fanIn_sigTokens - Combines the FIV described in model 1 and 2 with model 3. 

(5) Model 5: fanIn_numCallers_sigTokens - Combines model 1 and model 3. 

(6) Model 6: fanIn_numCallers_hasMethod_sigTokens - Combines model 1, model 2, and 

model 3. 

The one of the two below listed model based clustering algorithms that was selected as the 

input parameter for model based clustering in figure 1 above, will then be used in the clustering 

process:  

(1) The model-based algorithm (MCL) implemented by Fraley and Raftery, (2006) in the R 

language (mclust package: Mclust). This algorithm uses the EM initialized by the 

hierarchical clustering for the parameterized Gaussian mixture models. 

(2) The model-based agglomerative hierarchical clustering algorithm (HC) implemented by 

Fraley and Raftery, (2006) in the R language (mclust package: hc, hclass). This algorithm 



24 

 

 

 

is based on the maximum likelihood criteria for MVN mixture models parameterized by 

eigenvalue decomposition.  

The Aspect Mining and Visualization Tool saved the result from the model based clustering 

so that this can later be synthesized with the aspect mining that was be performed the next two 

steps. 

 

Aspect Mining Using Clone Detection  

 Aspect mining using clone detection was the second aspect mining technique that was 

performed after input parameters were collected. Shepherd, Gibson, and Pollock (2004) 

developed a method level automated aspect mining technique based on cloning which looks for 

clones at the beginning of each method. A modified version of this algorithm was used. This 

modified version looks for code clones in the beginning, at the end, and clones that covers the 

entire method. This made it possible to identify cross cutting candidates for before, after and 

around advice. Code clones appearing in the beginning of methods are candidates for before 

advice. Code clones appearing at the end of methods are candidates for after advice. Code clones 

appearing at the beginning and the end but not in the middle are candidates for around advice. 

This is an expansion of the algorithm used by Shepherd, Gibson, and Pollock (2004). Their focus 

was on before advice and the algorithm used was therefore only concerned with clones appearing 

in the beginning of methods. The algorithm is performed in three steps. 

The goal in the first, the identify step, was to create Program Dependency Graphs (PDG) 

(Ferrante, Ottenstein, & Warren, 1987) for all methods in the system and to identify pairs of 

these PDGs. These pairs represent code clones. The source level PDG is built on the IR level and 

points back to the source level by collapsing nodes at the same source code statement. 



25 

 

 

 

Comparison of the Abstract Syntax Tree (AST) at the statement level (Baxter et al. 2003) was 

performed to improve the accuracy of the algorithm. Comparison of AST alleviates many of the 

problems associated with lexical comparisons. Only control edges and not data edges between 

vertices are followed when constructing the individual PDGs. This improves the performance of 

the algorithm. This is necessary because looking for code clones in the middle and the end of 

methods is more time consuming than looking for coded clones just in the beginning of methods. 

The output from the first step was a set of paired PDGs representing code clones. 

Undesirable candidates PDGs pairs are filtered out by following the data dependencies between 

the individual vertices in the PDGs. The Similar Data Dependence filter discarded pairs of PDGs 

when the PDGs in a pair have different data dependencies. An Outside Data Dependence filter is 

performed to eliminate PDGs where the data dependence coming on to the PDGs are different 

because AspectJ does not allow variables referenced before the advice to be referenced in the 

aspect. The filters applied in this second step are the same as those applied by Shepherd, Gibson, 

and Pollock (2004). 

The goal of the third step was to coalesce candidate sets from pairs of PDGs. The 

algorithm used by Baxter et al. (2003) which identifies pairs of clones was expanded to identify 

sets of clones. This is necessary because duplicate cross cutting concern code is frequently 

located in multiple modules of the source code. This was performed by taking one PDG from 

each pair of PDGs identified in step two and comparing these to each other. The ASTs that is 

created for each PDG in step one is used in this comparison. The result of coalescing the 

candidates is identification of groups of PDGs which are the same. Remembering that each PDG 

represents a code segment, the net result is that code clones in the software have been identified. 

These are the code clones that the code clone detection algorithm could identify.  



26 

 

 

 

 

Aspect Mining Using Event Tracing 

Aspect mining by tracing events during program execution was the third form of aspect 

mining technique performed. Aspect mining using event trace is different than most other aspect 

mining techniques in that dynamic analysis is applied to identify aspect candidates. The data 

pool to be analyzed was generated by collecting event trace information from program 

executions. This study utilized the aspect mining technique that was developed by Breu and 

Krinkle (2004) where event traces were constructed by recording when execution flow enters 

and exits methods. The sequence of method entry and exit events were recorded for each use 

case executed in the software system. It is the patterns of events formed during method 

executions, the frequency at which these occur, and the context in which these occur that 

determines whether aspect candidates are located or not.  

An example illustrates how Breu and Krinkle (2004) performed aspect mining using 

event traces. Figure 2 depicts sequences of event traces harvested in a fictitious program 

execution in a software system. In this example the method entry and exit points are recorded 

with one entry per line. The notation used to represent a method is m(){}. Six different methods 

A, B, C, D, E, and F are represented. Method pair executions are of interest in the analysis of 

event execution traces.  

Event trace information is depicted in Figure 3. Sequentially executed methods are at the 

same level of indentation whereas when one method calls another then the second method is at 

the next level of indentation. Line 1 and 2 represents the sequential execution of two methods 

A(){} and B(){}. This is called an outside relation. An inside before relation is represented on 

line 2 and 3. In this case method B(){} calls method C(){}. The return from one method to the 



27 

 

 

 

calling method is called an inside after relation. One such example is method D(){} on line 4 

returning to method B(){} on line 2. These are also the call sequence relations that are of interest 

when looking for cross cutting concerns based on method event trace information. The example 

below shows a simple trace of events that have been recorded as part of fictitious program 

executions: 

1 A(){} 

2    B(){} 

3       C(){} 

4       D(){ 

5    } 

6   E(){} 

7 A(){} 

8    B(){ 

9       C(){ 

10         F(){} 

11      } 

12      D(){}  

13      E(){} 

14   } 

 

Figure 3: Event Trace Information from Fictitious Program Executions. 

The event traces were examined for recurring execution patterns. Recurring execution 

patterns in the software system represents recurring functionality in the system which may 

contain aspect mining candidates. Classification and analysis of execution patterns is necessary 

to identify potential aspect candidates.  

Three conditions must to be satisfied for an execution relation to be identified as a cross 

cutting concern: (1) The execution relation must be recurring. Recurring is defined as when at 

least two instances of the execution relation must be present. (2) The relation must be present in 

two or more different calling contexts. A calling context is composed of the method that is 

calling into the execution relation and the method that is called by the method in the execution 

relation. (3) The execution relation must be uniform. Consider and outside relation where method 



28 

 

 

 

A(){} is always called before method B(){}. The relation is said to be uniform if A(){} is always 

called before method B(){}. Consider and inside before relation where method C(){} is calling 

method D(){}. This relation is uniform if method C(){} is always calling method D(){}. 

Consider and inside after relation where method D(){} is always returning to method B(){}. This 

relation is uniform if D(){} is always returning to method B(){}. The relations that satisfies the 

constraints of recurring, uniform and are present in more than one calling context are aspect 

candidates since these represent potential cross cutting concerns. The above explanation with 

associated example represents an abbreviated version of the full discussion with mathematical 

model that is presented in Breu and Krinkle (2004).  

Aspect mining using event traces consisted of three steps. These steps are the same as 

those Breu and Krinkle, (2004) performed in their aspect mining study. The first step was to 

identify the set of use cases in the legacy software that will be executed to obtain execution trace 

information. JHotDraw was the legacy software that was evaluated in this study. The use cases 

that was executed included the class(es) containing main method and the input parameter(s) that 

the main method(s) is called with. Focus was on use cases which are most likely to contain cross 

cutting concerns (Ceccato, & Tonella, 2009).  

The second step consisted of collecting call stack information for all method entry and 

exit points during execution of each use case. This was performed by an aspect that was written 

in Java. This aspect is depicted in Appendix C. The aspect was configured with a point cut 

expression that records method entry and exit information for each method visited in the 

software when executing the various use cases.  

The third and final step consisted of executing a program module that was written as part 

of the Aspect and Visualization Tool. This module analyzes the execution trace information 



29 

 

 

 

produced as part of step 2. The trace output was analyzed by looking for outside before, outside 

after, inside before, and inside after execution relations. The discovered execution relations were 

evaluated and a set of cross cutting concern candidates was formed from the execution relations 

which are uniform, appears in different calling contexts, and are consistent. This set of cross 

cutting concern candidates represents the result of aspect mining using event traces (depicted at 

step 3 in figure 2 on page 27). 

 

Synthesizing Aspect Mining Results 

The Aspect Mining and Visualization Tool synthesized the results after the three aspect 

mining algorithms has been completed. The synthetization process resulted in identification of 

cross cutting concerns that belongs to sets as illustrated in the below Venn diagram.  

 

Figure 4: Venn Diagram Representing Identified Sets of Cross Cutting Concerns. 

Region 1 through 3 represents cross cutting concerns identified by a single aspect mining 

technique. Region 4 through 6 represents cross cutting concerns identified by two aspect mining 

techniques. Region 7 represents cross cutting concerns identified by all three aspect mining 

techniques. The amount of knowledge about mined cross cutting concerns increases with the 

number of aspect mining techniques able to identify the cross cutting concerns. Likewise, the 



30 

 

 

 

ability to classify a cross cutting concern in a category increases with the amount of knowledge 

known for the cross cutting concern. Most knowledge is known about cross cutting concerns that 

are in region 7. Less knowledge is known about cross cutting concerns that are in regions 4, 5, 

and 6. Least knowledge is known about cross cutting concerns located in regions 1, 2, and 3. The 

knowledge that was extracted about the cross cutting concerns identified by the three cross 

cutting concern algorithms was used to categorize the various cross cutting concerns.   

An example where a cross cutting concerns was identified as belonging to the Calls at 

Beginning and End of a Method category illustrates this: A cross cutting concern was identified 

after clustering because of its presence in a cluster. The same concern was also identified by 

aspect mining using execution traces. Lastly, the concern was identified by the clone detection 

aspect mining algorithm. The following deductions and conclusions were drawn by the Aspect 

Mining and Visualization Tool during the Synthesize step: (1) The two methods in question are 

likely to be part of cross cutting concern due to their presence in clusters. (2) The identified 

methods are consistently present at the beginning and end of other enclosing methods. The clone 

detection algorithm revealed that there were no code clones between the first and last method 

calls in these enclosing methods. The cross cutting concern were therefore classified as 

belonging to the fifth category: Calls at Beginning and End of a Method. The software developer 

can now refactor the cross cutting concern into a new aspect with corresponding around advice. 

Similar analysis was performed for all cross cutting concerns in the ten cross cutting concern 

categories.  

The Aspect Mining and Visualization Tool user interface switches automatically to the 

Aspect Mining Results tab (see Figure 1) when the automated analysis had been completed. 

Visual representations appear for each cross cutting concern that was located.  



31 

 

 

 

Summary statistics is displayed at the bottom showing:  

(1) Number of cross cutting concerns located using Clustering. 
(2) Number of cross cutting concerns located using Event Traces. 
(3) Number of cross cutting concerns located using Clone Detection. 
(4) Number of cross cutting concerns located using Clustering and Clone Detection. 
(5) Number of cross cutting concerns located using Clustering and Event Traces. 
(6) Number of cross cutting concerns located using Clone Detection and Event Traces. 
(7) Number of cross cutting concerns located using Clustering, Clone Detection, and Event Traces. 

Summary statistics displays also how many cross cutting concerns that was found for each of the 

selected categories. 

  

Visualization of Cross Cutting Concerns in Source Code  

The aspect mining and visualization tool was implemented as a state of the art RESTful 

Web services Web application. The UI was implemented as a thin web application using a 

combination of HTML, Bootstrap (Bootstrap, 2018), and Angular (AngularJS, 2018). The UI 

calls methods on the RESTful web application using AJAX. The client AJAX call to start mining 

for aspects calls the updateAspectMine method on the RESTful web application. Basic validation 

was performed on the AspectMine java class which is passed from the Angular client as a JSON 

object to the RESTful web services implementation. This web application calls the 

mineForAspects Java method on the controller jar file. The controller jar file dispatches call to 

three separate modules packaged in their respective jar files, one for each aspect mining 

technique. The Java code in these Jar files perform the aspect mining operations. The results 

from these mining operations were returned to the controller jar file which synthesized the results 

and returned these to the RESTful web application. The results were converted from Java class to 

JSON object representation and displayed in the user interface in the web application for the user 

to see. If the user chose to drill down into individual concerns for additional information, then 

this information was retrieved and presented in the UI.  



32 

 

 

 

Fabry, Kellens, and Ducasse (2011) have set forth six guidelines that should be fulfilled 

for a visualization tool to perform well. These guidelines, listed next, was followed when 

implementing the visualization tool: (1) The user of the visualization tool should not be 

overwhelmed by the number of colors used. (2) The information conveyed should not be too 

complex and it should not be too simplistic as this would leave out important detail. (3) There 

should be a clear mapping between the entities presented and the domain being visualized. (4) 

The visualization should provide the right density of information. (5) The visualization should 

scale well and depict adequate detail when viewing small samples and when viewing large 

quantities of data. (6) The visualization should facilitate good interactivity and enable ease of 

use.  

 

Resource Requirements 

The proposed research was implemented using Java version 1.8 with the IntelliJ 

Interactive Development Environment (IntelliJ IDE, 2018). All visualization components were 

implemented using the AngularJS framework (AngularJS, 2018) with Bootstrap for CSS 

(Bootstrap, 2018) for rendering results in the UI. JSON objects were used for transportation of 

data between the UI web application and the RESTful web application.  A 64-bit version of 

System R installed on Windows 7 was used for the clustering process. 

The study was performed using the JHotDraw (version 5.4b1) benchmark application. 

JHotDraw has been used extensively in prior aspect mining research. A 64-bit Dell windows 

laptop computer with 64 GB of memory and an Intel(R) Xeon(R) CPU E3-1505M v5 @ 

2.80GHz processor was used for all Java development and documentation work. This research 



33 

 

 

 

study did not involve human subjects and no approvals was therefore needed from the Institute 

Review Board (IRB).  



34 

 

 

 

Chapter 4 

Results 

Three aspect mining techniques was used when mining for aspects: (1) Code Clone Detection, 

(2) Execution Traces, and (3) Cluster Analysis. 

 

Data Generation 

Aspect Mining: Code Clone Detection 

The amv-clone-detection.jar file contains the code that was written to perform aspect mining 

using code clone detection. This analysis found cross cutting concerns within the cross cutting 

concern category of Code Clone. Specifically, the three different types: (1) Before Advice, (2) 

After Advice, and (3) Around Advice. Duplicate methods were also detected. These are 

candidates for code refactoring that removes duplicates. This aspect mining process was 

performed in two stages:  

Stage I: Create a collection of method representations for each method in the entire 

JHotDraw source code. Stage II: Compare the method representations in the collection of method 

representations identified in stage I with each other to identify code clones. The steps at each 

stage is explained in detail: 

Steps at Stage I:  

(1) Identify all source files in the source file directory to be scanned. A FileScanner class 

was developed to accomplish this task. The FileScanner class recursively scans and identifies all 

Java files in the entire source tree to be examined. The FileScanner class takes three input 

parameters: (a) The source root directory from where to start the file scanning. (b) A list of 

directories which should be omitted from the file scanning process. (c) The file extension of the 



35 

 

 

 

files to be scanned. The source root directory to start scanning was CH/ifa which is the top 

package in JHotDraw source directory. The root packages samples, jdk11, jdk12 are also part of 

the JHotDraw source distribution, but contains testing related files and were therefore listed as 

part of directories to skip in the file scanning process. Only files with file extension java was 

included in the file scan and this extension was therefore passed in as the third parameter for the 

extension of files to be included in the file scanning process. The FileScanner class returns an 

ArrayList of files for further processing. (2) Each Java file is examined to identify the methods in 

each of these Java files. This was done by building an Abstract Syntax Tree for each class 

contained in the java source files. The widely used open source Java Parser and Aspect Syntax 

Tree (Van Bruggen, 2017) project was used for this purpose. (3) A collection of abstract syntax 

tree representations of the methods in each class was extracted. All MethodRepresentation class 

instances for all Java files were stored in an ArrayList. This ArrayList represents all methods in 

the JHotDraw source distribution and is the input to the next stage in the aspect mining process. 

Steps at Stage II: 

(1) All MethodRepresentations instances were compared with each other to find code 

duplications. There are five possible outcomes when any two MethodRepresentations are 

compared with each other. (1) No code duplication, (2) code duplication in the beginning of the 

two compared methods, (3) code duplication in the middle of the methods compared, (4) code 

duplication at the end of the methods, and (5) the methods compared are fully duplicated 

methods. Code duplication at the beginning of compared methods are cross cutting candidates 

for Before Advice. Code duplication in the middle of methods are candidates for Around Advice. 

Code clones for methods at the end of methods are candidates for After Advice. 

Candidates from all categories were found in the code.  



36 

 

 

 

Naturally, most code clone comparisons resulted in that the methods compared were 

found to be totally different from each other. This means that there was no code duplication 

between the methods compared. Thirty-three instances were found where methods were 

complete clones. Forty methods were found to have the same beginning. One method was found 

to have the same beginning and ending. Five methods were found to have the same ending. A 

code token is delimited by a semicolon on both ends. Code comments were excluded before 

performing method clone comparisons. Tabulated results are located below in the Data Analysis 

section. Fully duplicated code of methods in different classes was also found: 

 

Figure 5: Fully Duplicated Code for Methods in Different Classes. 

As mentioned, code duplication at the beginning of compared methods are cross cutting 

candidates for Before Advice. See example below: 



37 

 

 

 

 

Figure 6: Duplicated Code at the Beginning of Methods, Candidate for Before Advice. 

Code duplication at the end of compared methods are cross cutting concern candidates 

for After Advice. See example below: 



38 

 

 

 

 

Figure 7: Duplicated Code at the End of Methods, Candidate for After Advice. 

Only one method was found to have the same beginning and ending. The figure below 

shows these methods. The two methods are identical except for the two lines:  

chunked = startPos; 

chunked = startPos + 1; 

 



39 

 

 

 

 

Figure 8: Method Candidate for Around Advice. 

Aspect Mining: Execution Traces 

The aspect mining method for execution of traces was implemented using Aspect 

Oriented Programming. The AMV Execution Tracing project (amv-execution-tracing) was 

developed. This project is a multimodule Maven project housing two modules, trace-criteria, 



40 

 

 

 

and trace-subject. These are packaged in the trace-criteria.jar and trace subject trace-subject.jar 

jar files respectively. 

The trace criteria jar file contains only one class which is the 

MethodExecutionTraceAspect class. This class contains (a) a pointcut expression which selects 

the pointcuts where the advice is applied, (b) the before advice that is applied at the selected join 

points, and (c) the after advice which is applied after execution of the selected pointcuts. The 

pointcuts selected by the pointcut expression are all methods in the JHotDraw software. The 

before advice logs a trace of the signature. The Log4j logging framework was used to create a 

trace of methods called during program execution. The NDC object, which is part of the Log4J 

framework was used to produce indentation levels for the logged methods, and thereby show 

method depth in the method call trace. Before advice pushes spaces using the NDC on to the 

stack when entering methods, and after advice pops these off the stack with the NDC when 

exiting from methods. This creates an indented method calls trace log. This helps understanding 

the method call sequence and method call depth. The output from the execution trace run was 

logged to the C:/log/method_trace.log log file. The MethodExecutionTraceAspect 

implementation is like the one developed by Laddad, (2003). The aspect and excerpt from trace 

log file are depicted in Appendix C. 

The trace subject jar-file contains a compiled version of all the Java files in the source 

code that is to be traced. In this case the entire JHotDraw software tree. In addition, the AspectJ 

Maven Plugin (aspectj-maven-plugin) was used for aspect weaving purposes. This Maven plugin 

wove the source code in together with the aspect criteria and produced an executable jar file 

trace-subject.jar. This was run to create the log trace. The executable jar file (trace-subject.jar) 

was created using the Maven Shade Plugin (maven-shade-plugin). This implementation was 



41 

 

 

 

inspired by Laddad, (2003). Significant effort was spent getting the Maven configuration set up 

correctly to get the pointcut expression, before and after advice, and to get all the proper jar files 

included in the build so that the desired execution trace would be logged to the Log4J log file. 

Further detail on the tracing aspect and the shade plugin configuration is included in Appendix 

C. 

The JHotDraw source code distribution comes with a full set of JUnit tests covering the 

JHotDraw source code. These were used to generate the initial raw log of execution relations. 

The event trace log file produced when running these JUnit tests contains (1) relations when the 

JUnit test methods calls into the JHotDraw source code, and (2) relations generated when 

methods in the source code calls other methods in the source code. The relations extraction 

process consists of three steps: (1) Identify all calling relations in the trace log file. Any relations 

generated by calls from JUnit methods were filtered out in this step. Each calling sequence 

would always consist of JUnit calling in to the source code to be executed for the use case. All 

subsequent calling relations after the JUnit initial test method call were included. The set of all 

calling relations were collected and saved in a Java ArrayList. (2) Only recurring relations were 

considered in the next step. (3) Relations were extracted when these occurred in at least two 

different calling contexts. Of these, only uniform relations were included (i.e. relations in which 

the calling sequence is always the same). These are scattered cross cutting concerns of type 

Ordered Method Call. These can be refactored into aspects. All relations where JUnit calls were 

present were removed. 

The automated analysis of the method tracing log file revealed a total of five different 

inside relation cross cutting concerns.  Four of these were called from two different calling 

contexts and one was called from three different calling contexts. The inside relation that was 



42 

 

 

 

called from three different calling contexts is depicted below. All inside relations that was 

identified has been depicted in Appendix D. 

Figure 9: Identification of Ordered Method Call Cross Cutting Concerns with Inside Relation. 

 The automated analysis of the method tracing log file revealed a total of eleven different 

outside relation cross cutting concerns.  Five of these were called from two different calling 

contexts, four were called from three different calling contexts, one was called from four 

different calling contexts, and one was called from six different calling contexts.  

 

Figure 10: Identification of Ordered Method Call Cross Cutting Concerns with Outside Relation. 

Please see the section on Aspect Mining using Execution Traces for further information 

on the characteristics of Inside and Outside Relations, the difference between these, and how 

these manifests themselves in source code.  

Aspect Mining: Fan-in Analysis 

Aspect mining based on the results of fan-in analysis was performed by the code in the 

amv-fan-in-analysis.jar module. The aspect mining using fan-In analysis takes the file 

AnalysisResults.txt as an input parameter when mining for cross cutting concerns. This file was 



43 

 

 

 

generated by the FINT tool with parameter settings as described at the Software Engineering 

Group Web Site for Fan-in Analysis Results web site 

(http://swerl.tudelft.nl/bin/view/AMR/FanInAnalysisResults). The threshold was set at 10 so to 

filter out methods with too low fan-in value. The following filters were applied: 

(1) Filter out any methods from the test package 

(2) Filter out any utility methods: 

CH.ifa.draw.test.* (also filtered from the set of callers - see filters for callers in FINT) 

CH.ifa.draw.util.collections.* (this includes CH.ifa.draw.util.collections.jdk11.* and 

CH.ifa.draw.util.collections.jdk1.2.*) 

CH.ifa.draw.util.CollectionsFactory 

CH.ifa.draw.util.ReverseListEnumerator 

CH.ifa.draw.standard.ReverseFigureEnumerator 

CH.ifa.draw.standard.HandleAndEnumerator 

CH.ifa.draw.standard.SingleFigureEnumerator 

CH.ifa.draw.standard.FigureAndEnumerator 

CH.ifa.draw.standard.HandleEnumerator 

CH.ifa.draw.standard.FigureEnumerator 

CH.ifa.draw.framework.FigureEnumeration 

CH.ifa.draw.framework.HandleEnumeration  

 

The generated results file containing only cross cutting concern seeds was 3222 lines 

long and contained methods that had fan-in value equal to or more than 10. A small sample of 

this file is depicted in Appendix D. This file was read by the fan-in analysis module in the amv-

fan-in-analysis.jar file. The concern seed methods with corresponding calling methods were 

loaded by the Java module into instances of the FanInConcernSeed class. The entire array of 

FanInConcernSeed instances was passed back to the clone-detection.jar file where these concern 

seeds were synthesized with results from aspect mining using code clone detection and execution 

traces (see Figure 11 for details). The synthesized results for the different cross cutting concern 

categories were passed back to the web service interface and presented to the user.   

 

http://swerl.tudelft.nl/bin/view/AMR/FanInAnalysisResults


44 

 

 

 

Aspect Mining: Cluster Analysis 

Aspect mining using cluster analysis was found to be effective for cross cutting concerns 

of the following categories: (1) Decorator, (2) Observer, (3) Command, and (4) Persistence. The 

method call patterns was most similar for these types of cross cutting concern categories. 

Consequently, the implementing methods for the same concern were most likely to appear in the 

same cluster.  Cluster analysis brings the additional capability that it can identify sets of methods 

that belongs to a specific concern. Cluster analysis was for this reason found to be effective in 

identifying complex cross cutting concerns such as the above mentioned which are based on 

design patterns.  

 

Capturing Aspect Mining Visualization Metadata in XML 

 The cross cutting concerns found for the various cross cutting concern categories were 

represented in XML. This was done so that the aspect visualization user interface 

implementation has a standard format for representing the retrieved cross cutting concern 

information in the user interface. The XML representation accounts for two different types of 

cross cutting concern categories: (1) The most common is that where there is one method that is 

called by other methods. This requires a one to many method caller to method called XML 

representation. (2) Another type is that when there is a collection of methods that composes a 

cross cutting concern. This is the case for cross cutting concerns that are based on code clones. 

This requires a different form of XML representation. All cross cutting concern categories were 

successfully represented using either one of these two types of XML representations.  

An aspect mining session produces an aspect mining result XML. The aspect mining 

result XML contains XML representations of all cross cutting concerns that were found. These 



45 

 

 

 

are grouped by cross cutting concern category. The below example XML in figure 11 illustrates 

this. In this case the aspect mining that was performed resulted in that two cross cutting concerns 

were found. One cross cutting concern type of Duplicate Method and another cross cutting 

concern of type Calls At The End Of A Method. The general DTD representing valid XML 

results is included in Appendix E.  

<ASPECT-MINING-RESULT> 

    <CROSS-CUTTING-CONCERN-CATEGORIES> 

        <CROSS-CUTTING-CONCERN-CATEGORY> 

            <CROSS-CUTTING-CONCERN-CATEGORY-TYPE>CODE_CLONE_BEFORE_ADVICE</CROSS-CUTTING-CONCERN-CATEGORY-TYPE> 

            <DUPLICATE-METHOD> 

                <METHOD-NAME>undo</METHOD-NAME>  

                <FILE-NAME>C:\work\0_NSU\CH\ifa\draw\figures\ConnectedTextTool.java</FILE-NAME> 

                <STARTING-LINE-NUMBER>173</STARTING-LINE-NUMBER> 

                <ENDING-LINE-NUMBER>187</ENDING-LINE-NUMBER> 

            </DUPLICATE-METHOD> 

            <DUPLICATE-METHOD> 

                <METHOD-NAME>redo</METHOD-NAME>  

                <FILE-NAME>C:\work\0_NSU\CH\ifa\draw\figures\ConnectedTextTool.java</FILE-NAME> 

                <STARTING-LINE-NUMBER>130</STARTING-LINE-NUMBER> 

                <ENDING-LINE-NUMBER>151</ENDING-LINE-NUMBER> 

            </DUPLICATE-METHOD> 

        </CROSS-CUTTING-CONCERN-CATEGORY> 

        <CROSS-CUTTING-CONCERN-CATEGORY> 

            <CROSS-CUTTING-CONCERN-CATEGORY-TYPE>CALLS_AT_THE_END_OF_A_METHOD</CROSS-CUTTING-CONCERN-CATEGORY-TYPE> 

            <REFERENCED-METHOD> 

                <METHOD-NAME>readStorable</METHOD-NAME>  

                <FILE-NAME> C:\work\0_NSU\CH\ifa\draw\util\StorableInput.java</FILE-NAME> 

                <STARTING-LINE-NUMBER>10</STARTING-LINE-NUMBER> 

                <ENDING-LINE-NUMBER>87</ENDING-LINE-NUMBER> 

            </REFERENCED-METHOD> 

            <REFERENCING-METHODS> 

                <REFERENCING-METHOD> 

                    <METHOD-NAME>read</METHOD-NAME>  

                    <FILE-NAME>C:\work\0_NSU\CH\ifa\draw\contrib\GraphicalCompositeFigure.java</FILE-NAME> 

                    <STARTING-LINE-NUMBER>338</STARTING-LINE-NUMBER> 

                    <ENDING-LINE-NUMBER>342</ENDING-LINE-NUMBER> 

                </REFERENCING-METHOD> 

                <REFERENCING-METHOD> 

                    <METHOD-NAME>read</METHOD-NAME>  

                    <FILE-NAME>C:\work\0_NSU\CH\ifa\draw\contrib\html\TextHolderContentProducer.java</FILE-NAME> 

                    <STARTING-LINE-NUMBER>90</STARTING-LINE-NUMBER> 

                    <ENDING-LINE-NUMBER>95</ENDING-LINE-NUMBER> 

                </REFERENCING-METHOD> 

                <REFERENCING-METHOD> 

                    <METHOD-NAME>read</METHOD-NAME>  

                    <FILE-NAME>C:\work\0_NSU\CH\ifa\draw\standard\LocationConnector.java</FILE-NAME> 

                    <STARTING-LINE-NUMBER>96</STARTING-LINE-NUMBER> 

                    <ENDING-LINE-NUMBER>99</ENDING-LINE-NUMBER> 

                </REFERENCING-METHOD> 

           </REFERENCING-METHODS> 

        </CROSS-CUTTING-CONCERN-CATEGORY> 

    </CROSS-CUTTING-CONCERN-CATEGORIES> 

</ASPECT-MINING-RESULT> 

 

Figure 11: Sample XML Representation of Aspect Mining Results. 

 
 

 

Data Analysis   

Data analysis of cross cutting concern categories identified by the Aspect Mining and 

Visualization Tool follows. The table below shows the results that was found for cross cutting 

category of Ordered Method Call. The aspect mining technique used to identify cross cutting 

concerns belonging to this cross cutting category was Execution Traces. 



46 

 

 

 

 

 

Type of Relation Number of Different Calling Contexts Number of Instances 

Inside Relation 2 4 

Inside Relation 3 1 

 Total Number of Inside Relations 5 

   

Outside Relation 2 5 

Outside Relation 3 4 

Outside Relation 4 1 

Outside Relation 6 1 

 Total Number of Outside Relations 11 

   

 Total Number of Relations (Inside and Outside) 16 

 

Table 1: Ordered Method Call Analysis Results. 

 

The Aspect Mining and Visualization Tool reported results as follows when mining for 

aspects in the category of code cloning detection. Thirty-three methods were found to be 

complete clones of each other. These are candidates for reverse engineering using Extract 

Method refactoring (Fowler, 1999).  

Two configurable parameters were used to determine how many tokens in each method 

would have to be the same for methods to contain code clones either at the beginning of a 

method or at the end of a method. The top of method token threshold and bottom method 

threshold parameters were both set to 4. That means that at least 4 of the tokens in the beginning 

or ending would have to be the same for one method to be reported to contain a clone of another 

method.  

Forty methods were found to have cloned code at the beginning of the methods. Five 

methods were found to have cloned code at the end of the methods. Two methods were found to 

have code clone at the beginning and code clone at the end of the method. Methods with code 

clones at the beginning are candidates for before advice aspects. Methods with code clones at the 



47 

 

 

 

end are candidates for after advice candidates. Methods with code clones at the beginning and 

the end are candidates for around advice. The results when mining for code clones are 

summarized in the table below.  

Methods with 

beginning code 

clones  

Methods with 

ending code 

clones 

Methods with 

beginning and 

ending code 

clones 

Methods that are 

complete clones 

of each other 

Methods where 

no code clones 

were found 

Before Advice 

Candidates 

After Advice 

Candidate 

Around Advice 

Candidate 

Refactor using 

Extract Method 

Methods are 

totally different 

40 5 1 33 3,755,091 

 

Table 2: Code Clone Analysis Results. 

 

 The cross cutting concern category of Unique Class Fan In is when methods from 

unique classes make calls to one specific method (Martin, Deursen, & Moonen, 2004). Finding 

cross cutting concerns by using fan in analysis is one that is particularly well suited for 

automation and was therefore a natural fit for this study. The procedure for generating the input 

file to be processed for finding the cross cutting concerns for this category is described above 

with the FINT tool. The results after having processed the generated input file were presented in 

the user interface of the Aspect Mining and Visualization tool.  The calling methods are not 

included in the table below since these are so numerous. The called method becomes candidate 

for advice implementation and the calling methods become candidates for point cut locations. 

Method  Fan-In Value 

CH.ifa.draw.standard.AbstractFigure.displayBox()  90 

CH.ifa.draw.standard.AbstractFigure.displayBox() 90 

CH.ifa.draw.figures.TextFigure.displayBox() 60 

CH.ifa.draw.contrib.TextAreaFigure.displayBox() 60 

CH.ifa.draw.samples.net.NodeFigure.displayBox() 60 

CH.ifa.draw.figures.RoundRectangleFigure.displayBox() 59 

 

Table 3: Methods JHotDraw with the highest Fan-In values. 

 

 



48 

 

 

 

 

The cross cutting concern category of Cross Cutting Concern as Interface is present 

when code duplication is found in interface implemented methods. The duplicated code is in 

these instances good candidates for aspect implementation. The automated analysis starts by 

finding all code clones in the entire source tree. The interfaces for classes containing methods 

with code clones are then identified. Code clones within methods that implement the same 

interfaces are identified as belonging to the cross cutting concern category of Cross Cutting 

Concern as Interface. There are no natural occurrences of Cross Cutting Concern as Interface in 

the JHotDraw source code. Methods were therefore seeded with a common interface named 

CommonInterface before aspect mining for this concern were performed. The tool found all 

occurrences of the cross cutting concern category of Cross Cutting Concern as Interface. The 

table below table show the mining results.  

Methods with 

beginning code 

clones  

Methods with 

ending code 

clones 

Methods with 

beginning and ending 

code clones 

Code clones with common 

interfaces 

Before Advice 

Candidates 

After Advice 

Candidate 

Around Advice 

Candidate 

Refactored using Extract 

Method 

3 2 1 15 

 

Table 4: Cross Cutting Concern Implementing Interface Analysis Results. 

The following is one such representation where these are implementing methods of the 

CommonInterface interface. These are a subset of the code clones at the beginning of a method. 

These are good candidates for Before Advice aspect implementations since the developer has 

already determined that these methods have similar meaning by making these implementations 

of an interface. Cross Cutting Concern as Interface also comes as candidates for Around Advice 

and After Advice when the code clones appear in the middle or at the end of methods.  



49 

 

 

 

 

 Figure 12: Identification of Cross Cutting Concern as Interface. 

The cross cutting concern category of Calls in Clones is present when the same method 

calls are made from various clones. This concern is characterized by code clones scattered in the 

application. The cloned code contains frequent calls to a method M which is a good candidate for 

a cross cutting concern that can be aspectized (Bruntink, Deursen, Engelen, & Tourwe, 2005). 

Mining for these cross cutting concerns was performed in four steps. (1) The code clones that 

had been previously identified was used as the starting point. (2) The Aspect Syntax Tree (Van 

Bruggen, 2017) was utilized when isolating the methods that were called from the code clones. 

(3) Representations of all methods in the entire JHotDraw source code were created. (4) The 

calling methods from the code clones were compared with all method representations and 

matches were saved and reported on. Table 4 below shows the identified Calls in Clones cross 

cutting concerns with class in which it was found, the specific method in the class, and the 

frequency at which these were detected. The best candidates for refactoring into cross cutting 

concerns are those with the highest frequency. 



50 

 

 

 

Class  Method Frequency 
CH\ifa\draw\util\PaletteButton.java PaletteButton.select 1 

CH\ifa\draw\contrib\zoom\DoubleBufferImage.java DoubleBufferImage.getSource 1 

CH\ifa\draw\contrib\zoom\ScalingGraphics.java ScalingGraphics.fillPolygon 1 

CH\ifa\draw\contrib\zoom\ScalingGraphics.java ScalingGraphics.drawPolygon 1 

CH\ifa\draw\contrib\html\DisposableResourceManagerFa

ctory.java 

DisposableResourceManagerFactory.create

StandardHolder 

1 

CH\ifa\draw\util\StorableInput.java StorableInput.readStorable 1 

CH\ifa\draw\contrib\zoom\ScalingGraphics.java ScalingGraphics.clearRect 2 

CH\ifa\draw\contrib\zoom\ScalingGraphics.java ScalingGraphics.fillRect 2 

CH\ifa\draw\util\StorableOutput.java StorableOutput.writeBoolean 2 

CH\ifa\draw\contrib\zoom\ScalingGraphics.java ScalingGraphics.getClip 5 

CH\ifa\draw\util\StorableOutput.java StorableOutput.writeInt 4 

CH\ifa\draw\contrib\zoom\ScalingGraphics.java ScalingGraphics.setColor 9 

CH\ifa\draw\contrib\zoom\ScalingGraphics.java ScalingGraphics.drawOval 9 

CH\ifa\draw\contrib\zoom\ScalingGraphics.java ScalingGraphics.fillOval 11 

  

Table 5: Identified Calls in Clones Cross Cutting Concern. 

The figure below shows a frequently recurring set of methods that are called in clones 

and are therefore excellent candidates for aspect refactoring. 

 

 
 

Figure 13: Example of Frequent Calls in Clones Cross Cutting Concern. 

 

The cross cutting concern category of Calls at the Beginning and End of Method is 

present when the same method is called either in the beginning or at the end of methods. These 

are often good candidates for cross cutting concerns that can be aspectized. Examples of such are 

logging and methods implementing transaction demarcations such as begin transaction, commit, 



51 

 

 

 

and rollback. Mining for these concerns were performed in two steps. First, mine for Calls at the 

Beginning of Methods and then for Calls at the End of Methods.  

Mining for Calls at the Beginning of Methods was performed in four steps. (1) 

Representations for all methods for all classes in the JHotDraw was first created. (2) Candidates 

for this cross cutting concern category was located by iterating over all these methods and 

extracting those which are calling another method in the first line of the method. Seventy-four 

such methods were discovered. (3) The Aspect Syntax Tree was then examined to identify 

methods which are calling out to another method in the first line of the method. (4) Methods that 

are calling the same method in the first line of the code were then grouped together. The methods 

which are calling other methods are candidates for cross cutting concerns. The table below 

shows the findings for cross cutting concern category of Calls at the Beginning of Methods. A 

total of nine sets of method calls at the beginning calling to a common method was found. 

Class Called Method Called Method Called From Count 
CH\ifa\draw\util\CollectionsFactory.java CollectionsFactory.createList 23 

CH\ifa\draw\contrib\zoom\DoubleBufferImage.java DoubleBufferImage.getSource 7 

CH\ifa\draw\util\FloatingTextField.java FloatingTextField.addActionListener 2 

CH\ifa\draw\contrib\ComponentFigure.java ComponentFigure.getComponent 2 

CH\ifa\draw\figures\PolyLineHandle.java PolyLineHandle.getPointIndex 2 

CH\ifa\draw\contrib\PolygonFigure.java PolygonFigure.smoothPoints 2 

CH\ifa\draw\util\StorableInput.java StorableInput.readString 2 

CH\ifa\draw\util\Bounds.java Bounds.getLesserX 2 

CH\ifa\draw\application\DrawApplication.java DrawApplication.print 6 

  

Table 6: Identified Calls at the Beginning of Methods Cross Cutting Concern. 

  

  



52 

 

 

 

The first entry in table 6 shows that 23 methods calling the CollectionsFactory.createList 

method. These calls are listed in the table below: 

Method number Methods calling the CollectionsFactory.createList method 
1  QuadTree.getAllWithin 

2  StandardDrawingView.addForeground 

3  PolygonFigure.points 

4  RoundRectangleFigure.handles 

5  PolygonFigure.handles 

6  StandardDrawingView.add 

7  RectangleFigure.handles 

8  ImageFigure.handles 

9  StandardDrawingView.addBackground 

10  EllipseFigure.handles 

11  StandardDrawingView.selectionZOrdered 

12  DesktopEventService.getDrawingViews 

13  UndoableAdapter.rememberFigures 

14  GroupFigure.handles 

15  StandardDrawing.handles 

16  TextFigure.handles 

17  StandardDrawing.addDrawingChangeListener 

18  GraphicalCompositeFigure.handles 

19  HandleEnumerator.toList 

20  TextAreaFigure.handles 

21  AbstractFigure.decompose 

22  CompositeFigure.figures 

23  ComponentFigure.handles 

 

Table 7: List of methods calling CollectionsFactory.createList method at the beginning. 

Mining for Calls at the End of Methods was performed in the same four steps as 

described above when mining for Calls at the Beginning of Methods. The only difference was 

that instead of finding methods that had a call to another method as the first method statement, 

the algorithm was looking for methods that had calls to another method as the last statement in 

the method. More candidates were found for this category of Calls at the End of Methods. A total 

of 55 instances were found. An example of one of these with associated source code is depicted 

below. 

 



53 

 

 

 

Figure 14: Example of Calls at the End of Methods Cross Cutting Concern. 

Drill Down and Inspect Individual Cross Cutting Concerns 

 The categories of cross cutting concerns that will be mined for depends on the selections 

that has been made by the user in the aspect mining tool. For example, when the user makes the 

selection for categories to mine for as depicted in figure 15, then the aspect mining results 

depicted in figure 16 appears after the aspect mining has been completed. 

 

Figure 15: User Selects Cross Cutting Concerns Categories to Mine for. 



54 

 

 

 

 

Figure 16: User Clicks Cross Cutting Concern Details Link to get more Information. 

The user can now click on the Cross Cutting Concern Details for a cross cutting concern 

category to drill down into and inspect individual cross cutting concerns. The user clicks to see 

details for Calls At The End Of A Method in this example (figure 16). 

The below depicted section of the aspect mining tool is displayed after the user has 

clicked the Cross Cutting Concern Detail link. In this case the user clicked the link to see more 

details for the Calls At The End Of A Method cross cutting concern category. Further, the user 

has clicked the CH\ifa\draw\util\StorableInput.java : readStorable  cross cutting concern. Details 

for the called method and the three calling methods are now displayed on the right-hand side on 

the screen (figure 17). 

 



55 

 

 

 

 

Figure 17: User Clicks Cross Cutting Concern Details Link (clicked line in red). 

 

Figure 18: The Remaining Detail for the Calling Methods is Displayed when Scrolling Down. 

 

 

 

 

  



56 

 

 

 

Summary of Results   

This study showed that all cross cutting concern categories covered by this study can be 

successfully mined for in source code. Further, an XML cross cutting concern metadata 

representation was successfully implemented capturing cross cutting concerns mining results. 

This XML representation was used in the aspect mining and visualization process. The study 

showed that the three aspect mining techniques complemented each other well and was good at 

detecting different types of cross cutting concern categories. All three aspect mining techniques 

were successful in capturing sufficient information for XML metadata representations of the 

cross cutting concerns.  

The aspect mining technique used for cloning, which is based on examining an Aspect 

Syntax Tree (AST) representation of the software, was found to be particularly well suited for 

real time aspect mining. This technique was found to be robust, have wide software system 

application, and to be useful when mining for a wide variety of cross cutting concerns. The 

cornerstone of this implementation is the MethodRepresentation.java class. This class was used 

in the method identification process and instances of this method encapsulates all methods in all 

classes in the JHotDraw software system. This method abstraction facilitated automated analysis 

of static relationships and call patterns between methods in the JHotDraw application.  

 

 

  



57 

 

 

 

Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

Conclusions 

This dissertation set out to perform automated aspect mining and visualization using three 

different aspect mining algorithms. Mined for was a set of predetermined cross cutting concern 

categories. Three very different aspect mining techniques were chosen. Two static aspect mining 

techniques and one dynamic aspect mining technique. The study showed that aspect mining and 

visualization can be performed successfully in real time with a mid-sized application such as 

JHotDraw. A common XML representation for cross cutting concerns was developed. This is 

important because the XML representation separates the concern of aspect mining from that of 

aspect visualization. This architectural implementation is significant because it makes it possible 

for tool builders to decouple implementation activities and develop aspect mining and 

visualization software independently given a common understanding of how metadata for the 

cross cutting concerns is going to be represented.  

 

Implications  

This study showed that it is possible to do meaningful aspect mining in real time using an 

automated aspect mining tool. Further, that the results can be visualized and can be used as input 

for reverse software engineering activities to improve software quality by refactoring cross 

cutting concerns into aspects. Software developers can with this aspect mining and visualization 

tool reverse engineer legacy software in real time. The leading Integrated Development 

Environments (IDEs) for Java development IntelliJ (IntelliJ IDEA, 2018) and Eclipse (The 

Eclipse Foundation, 2018) already have plugins that are used for refactoring software to improve 



58 

 

 

 

quality. These and other IDEs support refactoring of software by extracting common code to 

methods and constants, global renaming of variable, methods, classes, and packages, etc. Little 

work has been done to reverse engineer software for increased modularity and understandability 

by application of aspect oriented refactoring. This study is important because it demonstrates that 

such reverse software engineering is possible and that this can be used to improve software 

quality. This tool showed further that a variety of cross cutting concern candidates can in real 

time be mined for, inspected, and refactored into aspects for increased software modularity and 

maintainability. 

 

Recommendations 

 The aspect mining and visualization tool can be extended and used as a plug-in in 

Interactive Development Environments (IDE) such as IntelliJ and Eclipse. The tool can also be 

used as a standalone application deployed in a web application architecture. The purpose is in 

either case to aid software developers in identifying cross cutting concerns and help refactoring 

these into aspects through visualization. This study found that static analysis using an aspect 

syntax tree (AST) was most successful and easiest to apply for identification of cross cutting 

concerns. AST analysis is very robust, has wide application, and can detect a variety of cross 

cutting concern categories. The legacy software under study does not even have to compile for 

this analysis to be successful. All that is needed is access to the source code. Further, the tool can 

be used for investigation and understanding of compiled code and jar files after first decompiling 

these. Many decompilers are available. IntelliJ uses the IntelliJ JD plugin which does an 

excellent job of decompiling class files into human readable Java source code.  



59 

 

 

 

This study showed that aspect mining using execution traces was an excellent 

complimentary aspect mining technique to that of static analysis using the AST. Stricter 

requirements apply when using tracing. The code must compile and a set of predefined 

executable use cases with good code coverage must be present for aspect mining using execution 

traces to be effective. Organizations are increasingly adopting continuous integration and testing 

as part of the software development lifecycle. This makes for wider application of aspect mining 

using execution traces as part of the build process.  

Using the aspect mining and visualization tool as part of the build process benefits the 

software development effort. The software development team can by applying static aspect 

mining (AST) and dynamic aspect mining (execution traces) discover aspect refactoring 

candidates during implementation of new features in the continuing integration software 

development process. 

 

Summary 

This study showed that it is possible to automatically mine for cross cutting concerns in 

legacy code and that it is possible to create a common foundation for the cross cutting concern 

categories and to create a representation of these in XML. This study demonstrated that cross 

cutting concerns can be described with XML. Two complementary cross cutting concern XML 

structures with corresponding DTD was developed to cover various cross cutting concern 

categories.    

Cluster analysis of software for detection of cross cutting concerns was found to be most 

valuable for complex cross cutting concerns such as those based on design patterns. Cluster 

analysis can detect such cross cutting concerns because it is looking for the presence of a set of 



60 

 

 

 

methods that characterizes these types of cross cutting concerns. The cross cutting concerns of, 

Persistence, Decorator, Command, and Observer are all examples of such cross cutting concerns. 

The downside to this type of analysis from an automated aspect mining perspective is that 

knowledge about the cross concerns searched for must be applied to identify in which clusters 

these cross cutting concerns are located. This knowledge is method naming conventions and 

expected method call patterns. 

Further, this study showed that static analysis of an aspect syntax tree representation of 

the software that is mined for is well suited when mining for cross cutting categories. This 

technique allows for full analysis of the entire code base without having to compile or run the 

software. This is very important because it allows for aspect mining of any Java software that 

can benefit from this type of analysis. Further, analysis based on an abstract syntax tree 

representation of software allows for mining for a variety of different types of cross cutting 

concern categories, not just code clones.  

Dynamic aspect mining using event tracing proved to be valuable and excellent at finding 

cross cutting categories if the software traced satisfy the following three criteria: (1) The 

software must compile. (2) The software must be runnable so that execution traces can be 

generated when use cases are executed against the software. (3) The use cases must cover a high 

percentage of the software (80% or more is commonly referred to as good code coverage). For 

well-engineered and maintained software systems this is not a problem since these systems tend 

to have good code coverage from unit and integration tests that are executed against the software 

system in a continuous integration environment. There is a trend toward looking at software as 

assets in today’s organizations and using continuous integration for software development is 



61 

 

 

 

becoming more commonplace. This makes it possible to take better advantage of aspect mining 

using execution traces than what has traditionally been the case.  



62 

 

 

 

Appendices 

 

Appendix A 

Aspect Mining and Visualization Tool Architecture 

The architecture diagram for the Aspect Mining and Visualization Tool is depicted in the 

diagram below. This consists of two contemporary web applications and a database. The web 

applications are deployed in the Apache Tomcat Application Server (version 9.0.0.M20). 

Aspect Mining and 
Visualization Database

Tomcat Application Web 
Server

AMV UI 
Web 

Application

1
2

3

MySQL DBMS

AMV Web 
Services 

 Application

User

 

            Figure 19: Aspect Mining and Visualization Application (AMV) Architecture. 

(1) The user brings up the User Interface by going to the URL in Chrome (or any other web 

browser) for the AMV UI Web Application.  

(2) Any requests the user submits in the AMV UI Web Application is forwarded to the AMV 

RESTful Web Services Web Application. This is implemented in Java using Spring WS 

(3) Data collected for individual runs are stored in the MySQL. 



63 

 

 

 

Appendix B 

Aspect Mining and Visualization Tool Application Components 

The Aspect Mining and Visualization Tool is composed of two collaborating web applications: 

(1) AMV UI Web Application and (2) AMV Web Services Application. 

The AMV UI Web Application (packaged in a war file) is a thin single page web application 

which uses HTML, AngularJS, and Bootstrap CSS. This web application communicates with 

AJAX calls with the AMV Web Services Application. This RESTful web application is 

composed of components as depicted below. This Java application uses the Maven build tool to 

build war and jar files: 

 

Figure 20: Aspect Mining and Visualization Tool Application Components. 

(1) This war houses the RESTful APIs the AMV UI web application makes AJAX calls to.  

(2) This module delegates responsibilities to (2), (3), (4), and (5) and synthesize results. 



64 

 

 

 

(3) This module performs clone detection aspect mining. 

(4) This module performs execution tracing aspect mining. 

(5) This module performs aspect mining based on fan in analysis results. 

(6) This module contains common code and data structures. 

  



65 

 

 

 

Appendix C 

 

Aspect Oriented Programming Artifacts for Method Execution Trace Log 

Figure 21 shows the aspect that was developed for tracing method calls in the JHotDraw 

software when executing all Junit tests that comes with the JHotDraw distribution. The pointcut 

expression, before advice, and after advice makes it possible to trace all method invocations 

during program execution and log these to a Log4J log file using indentation to show method call 

depth.  

 

Figure 21: Configuration of MethodExecutionTrace Aspect. 

  



66 

 

 

 

Figure 22 shows an excerpt from the method_execution_trace.log log file that was 

produced when running all JUnit tests with the MethodExecutionTraceAspect included. The 

tracing process writes two groups of relations to the log file. Those to be included in the analysis 

and those to be excluded from further consideration. Relations to be excluded include those 

generated by the running the Junit tests themselves. Other relations are included unless these are 

part of sample code that is not part of the JHotDraw core source code. Samples of these two 

types of relations is annotated in the excerpt from the method_execution_trace.log.  

 

Figure 22: Sample Ignore and Include Calling Relations from method_execution_trace.log. 

  



67 

 

 

 

The inside relations depicted in figure 14 shows the five inside relations that was identified. Four 

of these were called from two calling contexts whereas the fifth was called from three different 

calling contexts.  

 

Figure 23: Inside Relations Identified by Automated Analysis of Generated Execution Trace log. 

  



68 

 

 

 

Figure 24 shows the maven-shade-plugin that was used to merge the contents from the 

trace-criteria and trace-subject maven modules into a single executable jar file which was used to 

produce the method-trace.log file.  

 

 

Figure 24: Shade Plugin Used to Create Executable Jar File for Method Tracing. 

 

  



69 

 

 

 

The log4j.xml file depicted below contains the log4j configuration that was used when 

producing the method-trace.log file. Log4j was chosen because it exposes the NDC object that 

was used to show the method trace an indented list of method calls depicting method call depth. 

 

Figure 25: Log4j Configuration Capturing Trace Log in C:/log/method_execution_trace.log. 

  



70 

 

 

 

                                             Appendix D 

 

Fan-In Results File Excerpt 

Excerpt from the file generated from the Fan-In analysis with fan in threshold value of 10 has 

been included below. 

 

Figure 26: Fan-In Results File Excerpt. 



71 

 

 

 

                                                                   Appendix E 

  Aspect Mining Results DTD 

This DTD show how cross cutting results are represented when mining for 

CODE_CLONES_BEFORE_ADVICE and CALLS_AT_THE_END_OF_A_METHOD. 

 

Figure 27: DTD for XML Representing the Aspect Mining Results. 



72 

 

 

 

References 

AngularJS (2018) Web Application Development Framework, Retrieved from  

 https://angularjs.org/ 

 

Baxter, I.D., Yahin, A., Moura, L., Sant'Anna, M., & Bier, L. (1998) Clone Detection using  

Abstract Syntax Trees. International Conference on Software Maintenance. IEEE, 368-

377. 

 

Bootstrap (2018) Open source toolkit for developing with HTML, CSS, and JS, Retrieved from 

 https://getbootstrap.com/ 

 

Breu, S., & Krinke, J. (2004). Aspect mining using event traces. In Ase ’04: Proceedings 

of the 19th International Conference on Automated Software Engineering (pp. 

310–315). Washington, DC, USA: IEEE Computer Society. 

 

Bruntink, M., Deursen, A., Engelen, R., & Tourwe, T. (2005) On the use of clone detection for  

 identifying crosscutting concern code. Transactions on Software Engineering IEEE, 

 804-818. 

 

Binkley, D., Ceccato, M., Harman, M., Ricca, F., & Tonella, P. (2005). Automated refactoring of  

object oriented code into aspects. International Conference on Software Maintenance. 

ICSM, 27–36. 

 

Ceccato, M., Tonella, P. (2009) Dynamic aspect mining. Software, IET. IEEE, 3(4), 321-336. 

 

Coelho, W., Murphy, G.C. (2006) Presenting crosscutting structure with active models.  

Proceedings of the 5th International Conference on Aspect-oriented Software 

Development. ACM, 158-168. 

 

Cojocar, G.S., & Czibula, G. (2008) On clustering based aspect mining. Proceedings 

of the 4th International Conference on Intelligent Computer Communication and 

Processing. IEEE, 129-136. 

 

Cojocar, G.S., Czibula, G., & Czibula, I.G. (2009a) A Comparative Analysis of Clustering  

 Algorithms. Aspect Mining. Informatica, 75-84. 

 

Czibula, G., Cojocar, G. S., & Czibula, I. G. (2009b). A partitioned clustering algorithm for 

crosscutting concerns identification. In Sepads’09: Proceedings of the 8th WSEAS 

International Conference on Software Engineering, Parallel and Distributed Systems,         

111–116.  

 

Fabry, J., Bergel, A. (2013) Design decisions in AspectMaps. Software Visualization  

 (VISSOFT). IEEE, 1-4. 

 



73 

 

 

 

Fabrya,J., Kellensb,A., Denierc, & S., Ducasse, S (2012) AspectMaps: Extending Moose to

 visualize AOP software. Science of Computer Programming. 79, 6-22. 

 

Fabry, J., Kellens, A., & Ducasse, S. (2011) AspectMaps: A Scalable Visualization of Join Point  

 Shadows. 19th International Conference on Program Comprehension (ICPC). IEEE, 121  

 - 130. 

  

Fowler, Martin (1999) Refactoring: Improving the Design of Existing Code. Boston,  

 Massachusetts, Addison-Wesley. 

 

Ferrante, J., Ottenstein, K.,J., & Warren, J.,D. (1987) The program dependence graph and its use  

 in optimization. Transactions on Programming Languages and Systems. ACM, 319-349. 

 

Fraley, C. & Raftery, A. E. (2006) MCLUST Version 3 for R: Normal Mixture Modeling and  

 Model-Based Clustering. Technical Report 504, University of Washington, 1-56. 

 

Griswold, W.G., Yuan, J.J., & Kato, Y. (2001) Exploiting the map metaphor in a tool for  

 software evolution. Proceedings of the 23rd International Conference on Software  

 Engineering. IEEE, 265-274. 

 

Hannemann, J., & Kiczales, G. (2001). Overcoming the Prevalent Decomposition in Legacy  

Code. Proceedings of the ICSE Workshop on Advanced Separation of Concerns. 

Retrieved from 

http://www.research.ibm.com/hyperspace/workshops/icse2001/Papers/hannemann.pdf 

 

Hannemann, J., Kiczales, G. (2002) Design pattern implementation in Java and AspectJ.  

Proceedings of the 17th ACM SIGPLAN conference on Object-oriented Programming, 

Systems, Languages, and Applications. ACM, 161-173.  

 

Hacoupian, Y. (2013). Mining Aspects through ClusterAnalysis Using Support Vector  

 Machines and Generic Algorithms. (Doctoral dissertation). Retrieved from  

 ProQuest Dissertations and Theses. (Accession Order No. 3567556). 

 

IntelliJ IDE (2018) The Java IDE for Professional Developers Retrieved from 

 https://www.jetbrains.com/idea/ 

 

Jain, A.K, Murty, M.N., Flynn, P.J. (1999) Data clustering: A Review. ACM Computer Surveys.  

 ACM, 264-323. 

 

Janzen, D., & Volder, K. (2003) Navigating and Querying Code Without Getting Lost. 2nd  

 International Conference on Aspect-oriented Software Development. ACM 

 

Komondoor, R., Horwitz, S. (2001) Using Slicing to identify Duplication in Source Code.  

Static Analysis (2001). 

 

Kontogiannis, K. , R. Demori, R., Merlo, E., Galler, E., and Bernstein, M. (2003). Evaluation  



74 

 

 

 

Experiments On the Detection of Programming patterns Using Software Metrics. In 

Proceedings of the 2nd Working Conference on Reverse Enginering, pp. 96–103. 

 

Krinke, J. (2006). Mining Control Flow Graphs for Crosscutting Concerns. Proceedings of the  

 2nd Working Conference on Reverse Enginering.   

 

Krinke, J. (2001). Identifying Similar Code with Program Dependency Graphs. Proceedings of  

 the Eight Working Conference on Reverse Engineering. 

  

Laddad,R.(2003) AspectJ in Action: Practical Aspect-Oriented Programming. Chap.8, Chap.10   

 Greenwich,CT,USA: Manning Publications Co. 

 

Maisikeli, S.G., Mitropoulos, F.J. (2010) Aspect mining using Self-Organizing Maps with  

 method level dynamic software metrics as input vectors. Proceedings 

of 2nd International Conference on Software Technology and Engineering (ICSTE). 

IEEE, 212-217. 

 

Martin, M., Deursen, A., & Moonen, L. (2004). Identifying Aspects using fan-in  

 analysis. Proceedings of the 11th Conference on Reverse Engineering. 132-141. 

 

Martin, M., Moonen, L., & Deursen, A. (2006). FINT: Tool Support for Aspect Mining.  

 Proceedings of the 13th Working Conference on Reverse Engineering, 299-300. 

 

Mayrand, J.; Leblanc, C.; Merlo, E.M. (1996) Experiment on the Automatic Detection of  

Function Clones in a Software System Using Metrics. International Conference on 

Function Clones in a Software System Using Metrics. IEEE, 244-253. 

 

Mens, K., Kellens, A., & Krinke, J. (2008) Pitfalls in Aspect Mining. Proceedings of the 15th 

 Working Conference on Reverse Engineering. IEEE, 113-122. 

 

Moldovan, G. S., & Serban, G. (2006) Aspect mining using a vector-space model based 

clustering approach. Proceedings of Linking Aspect Technology and Evolution (late) 

workshop. 36–40, Bonn, Germany. 

 

Monteiro, M. P., Fernandes, J. M. (2004) Object-to-aspect refactorings for feature  

 extraction. International Conference on Aspect-Oriented Software Development. 

 

Pfeiffer, J.H., Gurd, J.R. (2006) Visualization-based tool support for the development of aspect- 

oriented programs. Proceedings of the 5th International Conference on Aspect-oriented 

Software Development. ACM, 146-157 

 

Rand McFadden, R.R., & Mitropoulos, F.J. (2012) Aspect mining using model-based clustering. 

  2012 Proceedings of Southeastcon. IEEE, 1-8. 

 

Rand McFadden, R.R., & Mitropoulos, F.J. (2013a) Survey of Aspect Mining Case Study  

 Software and Benchmarks. 2013 Proceedings of Southeastcon. IEEE, 1-5. 



75 

 

 

 

 

Rand McFadden, R.R., & Mitropoulos, F.J. (2013b) Survey and Analysis of Quality Measures  

 Used in Aspect Mining. 2013 Proceedings of Southeastcon. IEEE, 1-8. 

 

Rand McFadden, R.R., & Mitropoulos, F.J. (2013) Survey of Aspect Mining Case Study  

 Software and Benchmarks. 2013 Proceedings of Southeastcon. IEEE, 1-5. 

 

Robillard, M., Murphy, G.C. (2002) Concern Graphs: Finding and Describing Concerns Using  

Structural Program Dependencies. Proceedings of the 24th International Conference on 

Software Engineering. ACM, 406-416. 

 

Serban, G., & Moldovan, G.S. (2006a) A New k-means Based Clustering Algorithm in Aspect  

 Mining. Eighth International Symposium on Symbolic and Numeric Algorithms for  

 Scientific Computing. IEEE, 69-74. 

 

Serban, G., & Moldovan, G. (2006b) A New Genetic Clustering Based Approach in Aspect  

 Mining. Proceedings of the 8th WSEAS International Conference on Mathematical  

 Methods and Computational Techniques in Electrical Engineering. 135-140. 

 

Shepherd, D., Gibson, E., & Pollock, L. (2004). Design and evaluation of automated 

aspect mining tool. Software Engineering Research and Practice, 601−607. 

 

Shepherd, D., Palm, J., & Pollock, L. (2005). Timna: A Framework for Automatically  

Combining Aspect Mining Analysis. Proceedings of the 20th international Conference 

on Automated Software Engineering ACM, 184-193. 

 

Shepherd, D., & Pollock, L. (2005) Interfaces, Aspects, and Views. Workshop on Linking Aspect  

 Technology and Evolution (LATE 2005), Co-located with International Conference on  

 Aspect Oriented Software Development. 

 

Shepherd, D., Pollock, L., & Tourwe, T. (2005) Using language clues to discover crosscutting  

 concerns. Proceedings of the 2005 Workshop on Modeling and Analysis of Concerns  

 in Software. ACM, 1-6  

 

The Eclipse Foundation. (2018). Eclipse. Retrieved from 

http://www.eclipse.org/aspectj/ 

 

Tonella, P., & Ceccato, M. (2004). Aspect mining through the formal concept analysis of 

execution traces. Proceedings of the 11th Working Conference on Reverse 

Engineering (WCRE’04), 112−121. 

 

Tribbey, W., Mitropoulos, F., (2012) Construction and analysis of vector space models for use in  

 aspect mining. Proceedings of the 50th Annual Southeast Regional Conference.  

 ACM, 220-225. 

 

Van Bruggen, Danny (2017) Javaparser [Software] Available from 



76 

 

 

 

 https://github.com/matozoid/javaparser 

 

 

Zhang, D., Guo, Y., Chen, X. (2008) Automated Aspect Recommendation through Clustering- 

Based Fan-in Analysis. 23rd International Conference on Automated Software 

Engineering. IEEE, 278 – 287 

 

Zhu, J., Yin, Q., Zhu, R., Guo, C., Wang, H., Wu, Q (2008) A Plugin-Based Software Production

 Line Integrated Framework. International Conference on Computer Science and Software

 Engineering. IEEE, 562-565. 

 


	Nova Southeastern University
	NSUWorks
	2018

	Metrics for Aspect Mining Visualization
	Gisle J. Jorgensen
	Share Feedback About This Item
	NSUWorks Citation


	tmp.1537979971.pdf.94Ng4

