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RESEARCH ARTICLE

Modeling the Geographic Spread of Rabies in
China
Jing Chen1, Lan Zou2, Zhen Jin3, Shigui Ruan1*

1Department of Mathematics, University of Miami, Coral Gables, Florida, United States of America,
2Department of Mathematics, Sichuan University, Chengdu, Sichuan, People's Republic of China,
3Complex Systems Research Center, Shanxi University Taiyuan, Shanxi, People's Republic of China

* ruan@math.miami.edu

Abstract
In order to investigate how the movement of dogs affects the geographically inter-provincial

spread of rabies in Mainland China, we propose a multi-patch model to describe the trans-

mission dynamics of rabies between dogs and humans, in which each province is regarded

as a patch. In each patch the submodel consists of susceptible, exposed, infectious, and

vaccinated subpopulations of both dogs and humans and describes the spread of rabies

among dogs and from infectious dogs to humans. The existence of the disease-free equilib-

rium is discussed, the basic reproduction number is calculated, and the effect of moving

rates of dogs between patches on the basic reproduction number is studied. To investigate

the rabies virus clades lineages, the two-patch submodel is used to simulate the human ra-

bies data from Guizhou and Guangxi, Hebei and Fujian, and Sichuan and Shaanxi, respec-

tively. It is found that the basic reproduction number of the two-patch model could be larger

than one even if the isolated basic reproduction number of each patch is less than one. This

indicates that the immigration of dogs may make the disease endemic even if the disease

dies out in each isolated patch when there is no immigration. In order to reduce and prevent

geographical spread of rabies in China, our results suggest that the management of dog

markets and trades needs to be regulated, and transportation of dogs has to be better moni-

tored and under constant surveillance.

Author Summary

In 1999, human rabies cases were reported in about 120 counties in Mainland China,
mainly in the southern provinces. Now outbreaks of human rabies have been reported in
about 1000 counties and the disease has spread geographically from the south to the
north. Phylogeographic analyses of rabies virus strains indicate that prevalent strains in
northern provinces are indeed related to the remote southern provinces. It is believed that
the geographical spread of rabies virus is caused by the transportation of dogs. In this
paper, a multi-patch model is proposed to describe the spatial transmission dynamics of
rabies in China and to investigate how the immigration of dogs affects the geographical
spread of rabies. The expression and sensitivity analysis of the basic reproduction number
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indicates that the movement of dogs plays an essential role in the spatial transmission dy-
namics of rabies. Numerical simulations on the effect of the immigration rate in three
pairs of provinces, Guizhou and Guangxi, Hebei and Fujian, Sichuan and Shaanxi, are also
performed. It is shown that the immigration of dogs is the main factor for the long-dis-
tance inter-provincial spread of rabies and it is necessary to manage such inter-provincial
transportation of dogs.

Introduction
Rabies, as an acute and fatal zoonotic disease, is most often transmitted through the bite or
scratch of a rabid animal. The rabies virus infects the central nervous system, ultimately caus-
ing disease in the brain and death. Once the symptoms of rabies have developed, its mortality
rate is almost 100%. Rabies causes tens of thousands of deaths worldwide per year ([1]), more
than 95% of which occur in Asia and Africa. More human deaths from rabies occur in Asia
than anywhere else in the world ([2]). It was first recorded in ancient China in about 556 BC
([3]) and nowadays it is still a very serious public-health problem in China. It has been classi-
fied as a class II infectious disease in the National Stationary Notifiable Communicable Dis-
eases and the annual data of human rabies have been archived by the Chinese Center for
Disease Control and Prevention since 1950. From 1950 to 2013, 128,769 human rabies cases
were reported in China ([4–7]), an average of 2,012 cases per year. It is estimated that 85%–

95% of human rabies cases are due to dog bites in mainland China ([5]).
Recently, there are some studies on modeling the transmission dynamics of rabies in main-

land China. Zhang et al. [8] proposed a deterministic model to study the transmission dynam-
ics of rabies in China. The model consists of susceptible, exposed, infectious, and vaccinated
subpopulations of both dogs and humans and describes the spread of rabies among dogs and
from infectious dogs to humans. The model simulations agree with the human rabies data re-
ported by the Chinese Ministry of Health from 1996 to 2010. It was shown that reducing dog
birth rate and increasing dog immunization coverage rate are the most effective methods for
controlling rabies in China and large scale culling of susceptible dogs can be replaced by immu-
nization of them. Based on the model of Zhang et al. [8], Hou et al. [9] considered a determin-
istic model for the dog-human transmission of rabies, taking into account both domestic and
stray dogs, and used the model to simulate the reported human cases in Guangdong Province,
China. It was shown that the quantity of stray dogs also plays an important role in the trans-
mission of rabies. Based on the fact that the monthly rabies data in China exhibit periodic pat-
terns, Zhang et al. [10] constructed a susceptible, exposed, infectious, and vaccinated (SEIVS)
model with periodic transmission rates to investigate the seasonal rabies epidemics. They eval-
uated the basic reproduction number, analyzed the dynamical behavior of the model, used the
model to simulate the monthly data of human rabies cases reported by the Chinese Ministry of
Health from January 2004 to December 2010, and explored some effective control measures
for the rabies epidemics in China.

In the last 20 years or so, rural communities and areas in Mainland China are invaded by ra-
bies gradually. The range of infected hosts has expanded and the number of counties with re-
ported human rabies increased significantly (See Fig 1). Moreover, human rabies has been
expanded geographically from the south provinces to the central and north provinces (see
[10]). Some provinces such as Shaanxi and Shanxi in the north, used to be rabies free, have re-
ported more and more rabies cases in the past few years ([11]). Since the trade and transporta-
tion of dogs are regarded as the main cause for the spatial spread of rabies, Zhang et al. [10]
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extended their early ODE model to a reaction-diffusion model to study how the movement of
dogs impacts the spatial spread of rabies. Their analysis indicates that the movement of dogs
leads to the traveling wave of dog and human rabies and has a large influence on the minimal
wave speed.

Although dogs remain the major infection source, contributing 85%–95% of human cases
in China ([5]), there are very little scientific studies and very few data on the population dy-
namics of dogs, let alone diseases of dogs. In order to improve rabies control and prevention, in
2005 the Chinese government implemented a trial surveillance program to monitor rabies at
the national level in an attempt to obtain a more comprehensive epidemiological dataset. In ad-
dition to recording statistics on human cases, the Institute for Viral Disease Control and Pre-
vention of China CDC cooperated with the provincial CDC laboratories and began collecting
samples from dog populations in regions where human rabies cases had been reported. The
positive samples were then submitted for DNA sequencing and combined with a second subset
of selected sequences from publicly available sequences. Yu et al. [12] selected a subset of sam-
ples for sequencing and investigated the history and origin of the virus in China and examined
the variation from a geographical perspective. Guo et al. [13] used comprehensive spatial anal-
ysis methodology to describe the spatiotemporal variation of human rabies infections in China
from 2005 to 2011, detected spatiotemporal clusters of human rabies, modeled the transmis-
sion trend of rabies, and provided a scientific basis for improved targeted human rabies control
interventions in China. Guo et al. [14] collected rabies virus nucleoprotein gene sequences
from different provinces and investigated their phylogenetic and phylogeographic relationship.
More specifically, their phylogeographical analyses of two rabies virus clades (China I and
China II) lineages identified several provinces that appear to be epidemiologically linked and
China I lineage plays the dominant role in the spread of rabies in China. Moreover, their analy-
sis indicates that east China appears to be not only epidemiologically related to adjoining

Fig 1. The number of counties in China with human rabies reported from 1999 to 2011.

doi:10.1371/journal.pntd.0003772.g001
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provinces but also to distant provinces, and seems to act as an epidemic hub for transmission
of rabies virus to other regions, which is consistent with previous results by Yu et al. [12].
Other long distance translocations of rabies virus can also be identified as well as translocation
events between neighboring provinces. Their analysis demonstrates a strong epidemiological
linkage between Shaanxi to Sichuan and between Sichuan to Yunnan. This is consistent with
surveillance data for human rabies cases which show dissemination of the virus from southwest
China to neighboring provinces and into regions such as Shaanxi in the northern part of the
county that have previously been incident free for several years (Yin et al. [11]). For both clades
there appears to be a general trend of longitudinal transmission (Guangdong-Shandong, Fu-
jian-Hebei, Zhejiang-Shandong) and latitudinal transmission (Yunnan-Shanghai, Guizhou-
Shanghai, Hunan-Shanghai). That is also consistent with human rabies surveillance data which
highlights a flow of cases from high incidence regions in the south of the country to medium
and low incidence regions (Yin et al. [11]). For example, discrete phylogeographic analysis for
China I strain ([12, 14]) indicates the linkage of rabies virus between Sichuan and Shaanxi,
Guangxi and Guizhou, and Fujian and Hebei (Fig 2).

Zhang et al. [15] used a reaction-diffusion model to study the spatial spread of rabies in
China. However, reaction-diffusion equations are based on the mathematical assumptions that
the spatial domain is connected and the movement of dogs is a continuous process in the

Fig 2. The linkage of rabies virus China I strain between Sichuan and Shaanxi, Guangxi and Guizhou,
and Fujian and Hebei ([12, 14]).

doi:10.1371/journal.pntd.0003772.g002
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domain. While the phylogeographical analyses of rabies virus indicate that there are long dis-
tance inter-provincial spread of rabies in China, in order to investigate how the movement of
dogs affects the geographic spread, we propose a multi-patch model to study the spatial trans-
mission of rabies between dogs and from dogs to humans. We will describe the model in de-
tails, discuss the existence of the disease-free equilibrium, calculate the basic reproduction
number, and study how the moving rates between patches affect the basic reproduction num-
ber. To investigate the epidemiological linkage (such as Guizhou and Guangxi, Hebei and Fu-
jian, and Sichuan and Shaanxi) observed in Guo et al. [14], we will use the two-patch submodel
to simulate the human rabies data to understand the inter-provincial spread of rabies in China.

Methods

Mathematical model
Since the data on human rabies in mainland China are reported to the China CDC by prov-
inces, we regard each provinces as a single patch and, in each patch, the submodel structure fol-
lows the SEIR model proposed by Zhang et al. [8] (see Fig 3). We use superscripts H and D to
represent human and dog, respectively, and a subscript i to denote the ith-patch. We assume
there are n patches where n� 2 ([16]). For patch i, the dog population is divided into four sub-
classes: SDi ðtÞ, ED

i ðtÞ, IDi ðtÞ, and VD
i ðtÞ; which denote the populations of susceptible, exposed in-

fectious and vaccinated dogs at time t, respectively. Similarly, the human population in patch i
is classified into SHi ðtÞ, EH

i ðtÞ, IHi ðtÞ, and VH
i ðtÞ, which denote the populations of susceptible, ex-

posed, infectious and vaccinated humans at time t, respectively. Our assumptions on the dy-
namical transmission of rabies between dogs and from dogs to humans are presented in the
flowchart (Fig 3). The model in patch i is described by the following differential equations:

dSDi
dt

¼ Ai þ lD
i V

D
i þ sD

i ð1� gDi ÞED
i � bD

i S
D
i I

D
i � ðmD

i þ kDi ÞSDi þ
Xn

j¼1

�S
ijS

D
j ;

dED
i

dt
¼ bD

i S
D
i I

D
i � ðmD

i þ sD
i þ kDi ÞED

i þ
Xn

j¼1

�E
ijE

D
j ;

dIDi
dt

¼ sD
i g

D
i E

D
i � ðmD

i þ mD
i ÞIDi þ

Xn

j¼1

�I
ijI

D
j ;

dVD
i

dt
¼ kDi ðSDi þ ED

i Þ � ðmD
i þ lD

i ÞVD
i þ

Xn

j¼1

�V
ij V

D
j ;

dSHi
dt

¼ Bi þ lHi V
H
i þ sH

i ð1� gHi ÞEH
i �mH

i S
H
i � bH

i S
H
i I

D
i þ

Xn

j¼1

cS
ijS

H
j ;

dEH
i

dt
¼ bH

i S
H
i I

D
i � ðmH

i þ sH
i þ kHi ÞEH

i þ
Xn

j¼1

cE
ijE

H
j ;

dIHi
dt

¼ sH
i g

H
i E

H
i � ðmH

i þ mH
i ÞIHi þ

Xn

j¼1

cI
ijI

H
j ;

dVH
i

dt
¼ kHi E

H
i � ðmH

i þ lH
i ÞVH

i þ
Xn

j¼1

cV
ij V

H
j :

ð1Þ

All parameters and their interpretations are listed in Table 1.
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Ai describes the annual birth rate of the dog population in patch i; bD
i denotes the transmis-

sion coefficient between dogs in patch i and bD
i S

D
i I

D
i describes the transmission of rabies from

infectious dogs to susceptible dogs in this patch; 1=sD
i represents the incubation period of in-

fected dogs in patch i; gDi is the risk factor of clinical outcome of exposed dogs in patch i. There-
fore, sD

i g
D
i E

D
i denotes dogs that develop clinical rabies and enter the susceptible class and the

rest sD
i ð1� gDi ÞED

i denotes the exposed dogs that do not develop clinical rabies;mD
i is the non-

disease related death rate for dogs in patch i; kDi is the vaccination rate of dogs and lD
i denotes

the loss rate of vaccination immunity for dogs in patch i; mD
i is the disease-related death rate for

dogs in patch i.

Fig 3. Flow chart for the transmission of rabies virus between dogs and from infectious dogs to humans within patches and from patches to
patches via transportation of dogs.

doi:10.1371/journal.pntd.0003772.g003
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For the human population, similarly Bi describes the annual birth rate of the human popula-

tion in patch i; bH
i denotes the transmission coefficient from dogs to humans in patch i and

bH
i S

H
i I

D
i describes the transmission of rabies from infectious dogs to susceptible dogs in this

patch; 1=sH
i represents the incubation period of infected humans in patch i; sH

i g
H
i E

H
i describes

exposed people that become infectious and sH
i ð1� gHi ÞEH

i describes the exposed people that re-
turn to be susceptible;mH

i is the non-disease related death rate for humans in patch i; kHi is the

vaccination rate of dogs and lHi denotes the loss rate of vaccination immunity for huamns in
patch i; mH

i is the disease-related death rate for humans in patch i.

�K
ij � 0 (K = S, E, I, V) is the immigration rate from patch j to patch i for i 6¼ j of susceptible,

exposed, infectious, and vaccinated dogs, respectively; cK
ij � 0 (K = S, E, I, V) is the immigra-

tion rate from patch j to patch i for i 6¼ j of susceptible, exposed, infectious, and vaccinated hu-

mans, respectively. Then
P

j 6¼i�
K
ij K

D
i (K = S, E, I, V) describes the corresponding subclass of the

dog population that enter into patch i from other patches and
P

j6¼i�
K
ji K

D
i denotes the corre-

sponding subclass dog population that leave patch i. Meanwhile, the immigrations of humans

are described in the same way by cK
ij (K = S, E, I, V).

Table 1. Parameters and descriptions.

Parameter Description Reference

Ai the annual birth rate of dogs in patch i estimation

lDi the loss rate of vaccination immunity for dogs in patch i [19]
1
sD
i

the time duration in which infected dogs in patch i remain infectious [18]

gDi the risk factor of clinical outcome of exposed dogs in patch i [5]

mD
i the non-disease related death rate for dogs in patch i [24]

kD
i the vaccination rate of dogs in patch i [5]

mD
i the disease-related death rate for dogs in patch i [5]

bD
i

the transmission coefficient of infectious dogs to susceptible dogs in
patch i

fitting

Bi the annual birth rate of humans in patch i [17]

lHi the loss rate of vaccination immunity of humans in patch i [25]
1
sH
i

the time duration of infectiousness of infected humans in patch i [2]

gHi the risk factor of clinical outcome of exposed humans in patch i [20]

mH
i the natural death rate of humans in patch i [17]

kH
i the vaccination rate of humans in patch i [5]

mH
i the disease-related death rate of humans in patch i [5]

bH
i

the transmission coefficient of infectious dogs to susceptible humans in
patch i

fitting

�K
ij � 0 (K = S, E,

I, V)
the immigration rate from patch j to patch i for i 6¼ j of susceptible
(exposed, infectious, and vaccinated) dogs

fitting

cK
ij � 0 (K = S, E,

I, V)
the immigration rate from patch j to patch i for i 6¼ j of susceptible
(exposed, infectious, and vaccinated) humans

fitting

doi:10.1371/journal.pntd.0003772.t001
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Data and parameters
Data used to simulate our model are from the Data-Center of China Public Health Science re-
ported by China CDC. After the 2003 SARS outbreak, the Chinese government strengthened
its public health disease surveillance system. From 2004, the digital monthly reporting system
has been replaced by a web-based, real-time reporting system which covers 39 diseases across
all regions of the country. Each case is reported with the detailed information including sex,
age, date of infection, diagnosis and death, the address of reporting hospital, and the reporting
district administrative code. This well-established surveillance system provides valuable data
for mathematical modelers in studying these infectious diseases.

We used a two-patch submodel to simulate the data of human rabies from 2004 to 2012 in
three pairs of provinces: Guangxi and Guizhou, Fujian and Hebei, and Sichuan and Shaanxi
(see Fig 2). Each province is regarded as a patch in the model (n = 2). The parameters about hu-
mans inculding the annual birth rate and natural death rate of humans in each province are
adopted from the “China Health Statistical Yearbook 2012” ([17]). The incubation period for
rabies is typically 1–3 months ([2]), we assume that it is 2 months on average, thus
sH
i ¼ 6=year. Similarly, we also have sH

i ¼ 10=year ([18]). The disease induced death rates of
humans and dogs are assumed to be 1 ([5]). According to [5], the vaccination rate kHi of hu-
mans in China is about 0.5 and the risk factor of clinical outcome of exposed dogs gDi is 0.4.
Based on studies the minimum duration of immunity for canine is 3 years ([19]), we assume

that the loss rate of vaccination immunity for dogs in patch i is lDi ¼ 1=3=yaer � 0:33=year.
Rabies mortality after untreated bites by rabid dogs varies from 38% to 57% ([20]), thus we
take the average 47.5% as the risk factor of clinical outcome of exposed humans.

The difficulty in parameter estimations is that there is no scientifically or officially reported
data on dogs in China. So the values of Ai used in simulations are estimated based on the dog
density from the household survey ([21]), the total areas of provinces, the density of human
population and other research results ([9, 10, 15]). Now we assume that the immigration rates
of susceptible, exposed, infectious and vaccinated dogs are same. Additionally, susceptible, ex-
posed and vaccinated humans also move in the same rate but infectious humans do not move

inter-provincially which is set as cH
ij ¼ 0. All other parameters are left to be unknown and esti-

mated through simulating the model by the data.

Basic reproduction number and sensitivity analysis
The basic reproduction numberR0 is defined as the expected number of secondary cases pro-
duced by a typical infection in a completely susceptible population ([22]). Here, the basic re-
production number of rabies which reflects the expected number of dogs infected by a single
infected dog, is derived from the mathematical model that describes the transmission dynamics
of rabies following the method in van den Driessche and Watmough [23]. Mathematically, R0

is defined as the dominant eigenvalue of a linear operator. In S1 Text, the overall basic repro-
duction numberR0 for the whole system is calculated. The isolated basic reproduction num-
ber,

Ri
0 ¼

bD
i s

D
i g

D
i AiðmD

i þ lD
i Þ

mD
i ðmD

i þ mD
i ÞðmD

i þ sD
i þ kDi ÞðmD

i þ lDi þ kDi Þ
; ð2Þ

is the basic reproduction number in one single patch (patch i here) when all the immigration
rates are zero. That is the basic reproduction number in an isolated patch under the
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assumption that there is no immigration at all. For the two-patch submodel, R0 can be express-
ed as

R0 ¼ ðbD
1 S

D�
1 sD

1 g
D
1 ðmD

2 þ sD
2 þ kD2 þ �E

12ÞðmD
2 þ mD

2 þ �I
12Þ

þbD�
2 SD�2 sD

2 g
D
2 ðmD

1 þ sD
1 þ kD1 þ kD1 þ �E

21ÞðmD
1 þ mD

1 þ �I
21Þ

þbD
2 S

D�
2 sD

1 g
D
1�

E
12�

I
21 þ bD

1 S
D�
1 sD

2 g
D
2�

E
21�

I
12

þððbD
1 S

D�
1 sD

1 g
D
1 ðmD

2 þ sD
2 þ kD2 þ �E

21ÞðmD
2 þ mD

2 þ �I
12Þ

þbD
2 S

D�
2 sD

2 g
D
2 ðmD

1 þ sD
1 þ kD1 þ �E

21ÞðmD
1 þ mD

1 þ �I
21Þ

þ�E
12�

I
21b

D
2 S

D�
2 sD

1 g
D
1 þ �E

21�
I
12b

D
1 S

D�
1 sD

2 g
D
2 Þ2

�4ððmD
1 þ sD

1 þ kD1 þ �E
21ÞðmD

2 þ sD
2 þ kD2 þ �E

12Þ � �E
21�

E
12Þ

ððmD
1 þ mD

1 þ �I
21ÞðmD

2 þ mD
2 þ �I

12Þ � �I
21�

I
12ðbD

1 S
D�
1 bD

2 S
D�
2 sD

1 g
D
1s

D
2 g

D
2 ÞÞ

1

2=

f2ððmD
1 þ sD

1 þ kD1 þ �E
21ÞðmD

2 þ sD
2 þ kD2 þ �E

12Þ � �E
21�

E
12Þ

ððmD
1 þ mD

1 þ �I
21ÞðmD

2 þ mD
2 þ �I

21ÞðmD
2 þ mD

2 þ �I
12Þ � �I

21�
I
12g:

ð3Þ

The value of R0 gives an important threshold that determines if the disease will die out or
not eventually. Roughly speaking, ifR0 > 1 each primary infected dog averagely will produce
more than one secondary infected dog. Therefore the disease will persist. Conversely, ifR0 < 1
the expected number of secondary case produces by the primary case is less than one. Thus the
disease will die out. The purpose is to reduce R0 by possible disease control strategies. However,
the formula is very complicated and impossible to analyze the relationship between the param-
eters andR0 even for a two-patch model. Sensitivity analysis can aid in discovering how each
parameter quantitatively affects R0. Furthermore, we will study how the immigration rate affect
the basic reproduction numbers of the whole system and the isolated patchs by performing
some sensitivity analyses.

Results
In this section, we first use the two-patch submodel to simulate the reported human rabies data
from Guangxi and Guizhou, Sichuan and Shaanxi, and Fujian and Hebei, respectively. Then
we carry out some sensitivity analyses of the basic reproduction number in terms of some pa-
rameters of dogs, especially the immigration rates between provinces.

Numerical simulations
Fig 4 presents the reported human rabies cases in different provinces in Mainland China in the
years 2004, 2008, and 2012. Although the numbers of cases decrease in some of the endemic
provinces such as Guangxi and Hunan, some other provinces such as Shanxi and Shaanxi keep
increasing. Some non-endemic provinces are becoming endemic in recent years. For example,
Hebei, Shanxi and Shaanxi. Discrete phylogeographic analysis for China I strain ([12, 14]) indi-
cates the linkage of rabies virus between Sichuan and Shaanxi, Guangxi, and Guizhou, and Fu-
jian and Hebei (Fig 2).

(a) Hebei and Fujian. From Guo et al. [14], we know that Hebei and Fujian are epidemiolog-
ically linked. In Hebei, there was only one human rabies case reported in 2000 ([5]), while it is
now one of the 15 provinces having more than 1,000 cumulative cases and is included in “Mid-
to-long-term Animal Disease Eradication Plan for 2012–2020” project. We take Hebei and Fu-
jian as two patches in model Eq (1) (when n = 2) and simulate the numbers of human cases
from 2004 to 2012 by the model. In Fig 5, the solid blue curves represent simulation results and
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the dashed red curves are reported numbers of human rabies cases from 2004 to 2012, which
show a reasonable match between the simulation results and reported data from China CDC.
Based on the values of parameters in the simulations and the formula of the basic reproduction
number in the two-patch model, we calculated thatR0 = 1.0319. That means the disease will
not die out in this two-patch system.

Interestingly, now we assume there is no immigration of both dogs and humans in this sys-
tem and calculated the isolated basic reproduction number in each province. The isolated basic

Fig 4. Reported human rabies cases by provinces in mainland China in 2004, 2008, and 2012 (data from [25]).

doi:10.1371/journal.pntd.0003772.g004

Fig 5. Simulations of the numbers of reported human rabies cases in Hebei and Fujian from 2004 to 2012. The solid blue curves are simulation results
by our model and the dashed red curves are the numbers of reported cases by China CDC [25]. Values of parameters: A1 = 3 × 105, A2 = 5 × 105, B1 =
8.797 × 105, B2 = 4.101 × 105, lD1 ¼ lD2 ¼ 0:33, lH1 ¼ lH2 ¼ 2, sD
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reproduction numbers for Hebei and Fujian areRHebei
0 ¼ 0:5477 andRFujian

0 ¼ 0:8197, respec-
tively. Under this assumption the disease would die out in both provinces since their isolated
basic reproduction number is less than one. This example theoretically shows the possibility
that the immigration of dogs can lead the disease to a worse scenario even it could be eliminat-
ed in each isolated patch. It is remarkable that we only mentioned the dog immigration here
because a simple observation to the formula of the basic reproduction number in the S1 Text

shows that only the immigration rates of dogs (�K
ij for K = S, E, I, V) can affect it. In fact, only

dogs can carry the rabies virus and then spread it to humans and other dogs. This transmission
feature supports our mathematical analysis.

(b) Guizhou and Guangxi. A statistically significant translocation event is also predicted be-
tween Guizhou and Guangxi in Yu et al. [12]. Fig 4 shows that Guizhou and Guangxi have
large numbers of human rabies cases (both are in top 5 endemic provinces in China) in recent
years. Particularly, the number of human deaths caused by rabies virus in Guangxi is ranked
the highest in China. Similar simulations were carried out here to these two provinces and re-
sults are shown in Fig 6. The isolated basic reproduction numbers for Guizhou and Guangxi

are calculated asRGuizhou
0 ¼ 1:5998 andRGuangxi

0 ¼ 6:1905, respectively, while the basic repro-
duction number for the whole system is estimated to beR0 = 4.9211. To eliminate rabies we
need some effective control strategies that can reduceR0 significantly. Thus it is even more
challenging to control and prevent the disease in Guangxi and Guizhou from a
numerical perspective.

(c) Sichuan and Shaanxi. Shaanxi, which is now an alarming province for rabies in China,
had only 15 cumulative human cases from 2000 to 2006 (only 2 to 3 cases every year on aver-
age). However, 26 human cases were reported in 2009 and the number keeps increasing after
that. Rabies was found to spread along the road network [13]. With the parameters in Fig 7, the

isolated basic reproduction numbers for Sichuan and Shaanxi areRSichuan
0 ¼ 1:3414 and

RShaanxi
0 ¼ 1:0061, respectively, while the basic reproduction number for the two provinces

Fig 6. Simulations of the numbers of reported human rabies cases in Guizhou and Guangxi from 2004 to 2012. The solid blue curves are simulation
results by our model and the dashed red curves are the numbers of reported cases by China CDC [25]. Values of parameters: A1 = 3 × 106, A2 = 8.5 × 105, B1

= 7.223 × 105, B2 = 5.143 × 105, lD
1 ¼ lD2 ¼ 0:33, lH1 ¼ lH2 ¼ 2, sD
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doi:10.1371/journal.pntd.0003772.g006
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with immigration isR0 = 1.5085 which is greater than both of these two isolated ones. Numeri-
cally, that means more efforts may be needed to eliminate the virus in humans if the immigra-
tion is involved.

Additionally, we show some direct comparisons of numerical simulations on the number of
human cases from the model with immigration and without immigration. The additional
green curves represent simulations of the human cases without any immigration in Hebei, Gui-
zhou and Shaanxi, respectively. In Hebei, Fig 8(a) indicates the human infectious population
size goes to zero faster without immigration which is consistent with the fact that the isolated

Fig 7. Simulations of the numbers of reported human rabies cases in Sichuan and Shaanxi from 2004 to 2012. The solid blue curves are simulation
results by our model and the dashed red curves are the numbers of reported cases by China CDC [25]. Values of parameters: A1 = 3 × 105, A2 = 3 × 105, B1 =
7.184 × 105, B2 = 3.634 × 105, lD1 ¼ lD2 ¼ 0:33, lH1 ¼ lH2 ¼ 2,sD
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Fig 8. Simulations of the numbers of reported human rabies cases in Guizhou, Hebei, and Shaanxi with dog immigration and without dog
immigration. The dashed red curves are reported cases by China CDC; the solid blue curves correspond to simulations with immigration and the dashed
green curves correspond to simulations without immigration (�K

12 ¼ �K
21 ¼ 0 for K = S, E, I, V).

doi:10.1371/journal.pntd.0003772.g008
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basic reproduction number (0.5477) in Hebei is less than one. Similarly result can be observed
in Fig 8(b) for Guizhou. Furthermore, Fig 8(c) shows that if there is no dog immigration in
Shaanxi, the human rabies cases would decrease fast while it increased fast in reality.

Sensitivity analysis
We now study how the basic reproduction numberR0 depends on parameters of dogs, espe-

cially the immigration rates �K
ij , where K = S, E, I, V. For the sake of implicity, we consider the

two-patch submodel and the corresponding basic reproduction number given in Eq (3). We
consider the following three cases.

(i) Immigration of dogs between patches with different transmission rates. Suppose

bD
1 ¼ 3� 10�7 > bD

2 ¼ 1� 10�7, �K
12 ¼ �12 and �

K
21 ¼ �21, where K = S, E, I, R. A1 = 2 × 66,

lD1 ¼ 0:42, sD
1 ¼ 0:42, gD1 ¼ 0:4,mD

1 ¼ 0:08, kD1 ¼ 0:09, mD
1 ¼ 1, the remaining parameters of

dogs in patch 2 are the same as the corresponding parameters of dogs in patch 1. Here the only
difference between the two patches in that the transmission coefficients of infectious dogs to
susceptible dogs are different. Then the isolated basic production numbers satisfy the inequali-

ty:R1
0 ¼ 2:3246 > R2

0 ¼ 0:7749. So rabies is endemic in patch 1 and will die out in patch 2.
First, let (the immigration rate of dogs from patch 1 to patch 2) ϕ12 = 0.02. It is shown in Fig 9
thatR0 decreases as ϕ21 (the immigration rate of dogs from patch 2 to patch 1) increases.
Then, let ϕ21 = 0.5,R0 increases as ϕ12 increases. Furthermore, if ϕ21 is small and ϕ12 is large,

R0 is greater than bothR1
0 andR

2
0. To reduceR0, we need to control ϕ12 small enough. For ex-

ample, let ϕ21 = 0.5, ϕ12 = 0.01, then we obtain thatR0 < minfR1
0;R

2
0g. If ϕ21 = 0.4, ϕ12 = 0.3,

thenR0 = 1.6274, which is smaller thanR1
0 but greater thanR2

0. Thus, if we can control the im-
migration rates of dogs in an appropriate range, the endemic level will be lower.

Fig 9. Plots ofR0 in terms of (a) the immigration rate of dogs from patch 1 to patch 2 (ϕ21) and (b) the immigration rate of dogs from patch 2 to
patch 1 (ϕ12) when patch 1 has a higher transmission coefficient than patch 2 (bD

1 ¼ 3� 107 > bD
2 ¼ 1� 107). Values of other parameters: A1 = A2 =

2 × 106, lD1 ¼ lD
2 ¼ 0:42, sD

1 ¼ sD
2 ¼ 0:42, gD1 ¼ gD2 ¼ 0:4,mD

1 ¼ mD
2 ¼ 0:08, kD
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doi:10.1371/journal.pntd.0003772.g009
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(ii) Immigration of dogs between patches with different vaccination rates.We assume that

dogs move at the same rate regardless of their subclasses (�K
12 ¼ �12 and �

K
21 ¼ �21 for K = S, E,

I, V). Then let dogs in patch 1 have a higher vaccination rate than those in patch 2:
kD1 ¼ 0:5 > kD2 ¼ 0:09. All the remaining parameters of dogs in patch 2 are the same as the cor-
responding parameters of dogs in patch 1. Fig 10 presents the basic reproduction numberR0

in terms of the immigration rates. Firstly,R0 increases as the immigration rates increase at
most of the time. This is consistent with our previous simulation results: the dog movements
bring difficulties to rabies control. Secondly, a detailed observation in the range ofR0 indicates
that it is more sensitive in ϕ12. Therefore we conclude that immigration of dogs from the patch
with lower vaccination rate to a patch with higher vaccination rate is more dangerous.

It is notable thatR0 might be greater than both isolated basic reproduction numbers. For
example, let ϕ21 = 0.95 and ϕ12 = 0.4, and all other parameters be the same as in Case (ii). Then

R0 ¼ 1:2974 > maxfR1
0;R

2
0g. That is, the immigration of dogs might lead to a more

serious situation.
(iii) Immigration of infective dogs between patches.Now we fix all immigration rates of dogs

to 0.2 except �I
21 (the immigration rate of infective dogs from patch 1 to patch 2), thenR0 in-

creases quickly as �I
21 increases, as it is shown in Fig 11(a). On the other hand we fix all immi-

gration rates of dogs to 0.2 except �I
12 (the immigration rate of infective dogs from patch 2 to

patch 1), thenR0 decreases as �
I
21 increases, as it is shown in Fig 11(b). Interestingly, compare

with Case ii, we found that immigration of infectious dogs from the patch with a high vaccina-
tion rate to a patch with a low vaccination rate is more dangerous. The patch with a low vacci-
nation rate actually has a week protection from the virus, thus infectious dogs from another
patch may spread the disease faster.

Fig 10. Plots ofR0 in terms of (a) the immigration rate of dogs from patch 1 to patch 2 (ϕ21) and (b) the immigration rate of dogs from patch 2 to
patch 1(ϕ12) when patch 1 has a higher vaccination rate than patch 2 (kD1 ¼ 0:5 > kD2 ¼ 0:09).We assume immigration rates of susceptible, exposed,
infectious and vaccinated dogs are same, that is, �21 ¼ �S

21 ¼ �E
21 ¼ �I

21 ¼ �V
21 and �12 ¼ �S

12 ¼ �E
12 ¼ �I

12 ¼ �V
12. Values of other parameters:

bD
1 ¼ bD

2 ¼ 1:58� 10�7, A1 = A2 = 2 × 106, lD1 ¼ lD
2 ¼ 0:42, sD
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doi:10.1371/journal.pntd.0003772.g010
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Discussion
In 1999, human rabies cases were reported in about 120 counties in mainland China, mainly in
the southern provinces. Now outbreaks of human rabies have been reported in about 1000
counties and the disease has spread geographically from the south to the north. Phylogeo-
graphic analyses for rabies virus strains ([12, 14]) indicate that prevalent strains in northern
provinces are indeed related to the remote southern provinces. It is believed that the geographi-
cal spread of rabies virus are caused by the transportation of dogs.

In this paper, a multi-patch model is proposed to describe the spatial transmission dynamics
of rabies in China and to investigate how the immigration of dogs affects the geographical
spread of rabies. The expression and sensitivity analysis of the basic reproduction number indi-
cates that the movement of dogs plays an essential role in the spatial transmission of rabies. As
mentioned in [8], reducing dog birth rate and increasing dog immunization coverage rate are
the most effective methods in controlling human rabies infections in China. They also play im-
portant roles in controlling the spatial spread of rabies based on the multi-patch model. WHO
(World Health Organization) recommends that 70% of dogs in a population should be immu-
nized to eliminate the rabies. Unfortunately, this rate is still lower than 10% in most regions in
China. Therefore, efforts to bring the awareness of the importance of treatments and enhance
the vaccination coverage in dogs are important to control the disease in China.

We also performed some numerical simulations to study the effects of the immigration rate
in three pairs of provinces in China: Guizhou and Guangxi, Hebei and Fujian, Sichuan and
Shaanxi, as shown in Fig 2. First of all, the immigration may lead a basic reproduction number
to be larger than one even if the isolated basic reproduction numbers are all less than one.
Therefore, the immigration of dogs is the main factor for the long-distance inter-provincial
spread of rabies. We note that the transportation of dogs even between non-endemic provinces,

Fig 11. Plots ofR0 in terms of (a) immigration rate of infectious dogs from patch 1 to patch 2 (�I
21) and (b) the immigration rate of infectious dogs

from patch 2 to patch 1 (�I
12) when patch 1 has a higher vaccination rate than patch 2 (kD

1 ¼ 0:5 > kD
2 ¼ 0:09). Fix the immigration rates of susceptible,

exposed and vaccinated dogs, that is, �S
12 ¼ �E

12 ¼ �V
12 ¼ 0:2, �S

21 ¼ �E
21 ¼ �V

21 ¼ 0:2. Values of other parameters: bD
1 ¼ bD

2 ¼ 1:58� 10�7, A1 = A2 = 2 × 106,
lD1 ¼ lD2 ¼ 0:42, sD

1 ¼ sD
2 ¼ 0:42, gD1 ¼ gD2 ¼ 0:4,mD

1 ¼ mD
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doi:10.1371/journal.pntd.0003772.g011
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such as Fujian and Hebei, can cause human rabies in Hebei to increase greatly. Additionally,
the movement of dogs from regions with a low vaccination rate also makes the situation worse.
Attention should be paid not only to the provinces with more reported cases but also to the
provinces with low vaccination rates. In those extremely poor areas, where dogs have a low vac-
cination coverage, the dog trade business and transportation to other areas will contribute to
the geographical spread of rabies significantly. To control the disease at a national level, more
efforts are needed in these regions.

The primary purpose of the transportation of dogs in China is believed to be related to food
business. In some areas, such as the endemic provinces Guizhou and Guangxi, people eat dogs
due to minority culture or harsh climate. There is no open market for selling and buying dogs
for business purpose, however the black market always exists. It is frequently reported that
trucks sometimes full of dogs are intercepted by animal lovers in the inter-provincial highway.
Sometimes more than one thousand dogs were crammed into many tiny cages in one truck.
The efficiency of such dog transportation has been enhanced by the fast development and ex-
pansion of the highway system in China in the past ten years. Chinese law requires that the
transported animals must be certified as vaccinated for rabies and other diseases. However, dog
traders are found to falsify the paperwork for most of the dogs in the truck to reduce their cost.
Thus it would be important to regulate the market and implement certain policies on dogs
(such as vaccine records) and the dog traders (such as licenses). During our research, we found
that it was very difficult to find the information on dog population in China due to the lack of
dog registration management. Since a large number of dogs are transported from provinces to
provinces, it is necessary to register and manage such transportation properly. In particular,
dogs carrying rabies viruses can easily spread the virus to other dogs when they are crowded
into a small space during the trip. The last case of our sensitivity analysis shows the oblivious
dangers resulted from the transportation of infectious dogs that has a destination with a low
vaccination rate. We suggest creating strict and uniform procedures to test the dogs that will
be transported.

We used a deterministic system to study the geographical spread of rabies in China and sim-
ulated the annual data in some provinces. Stochasticity is not considered in our model, and we
also think seasonality plays an important role in the transmission of rabies. Therefore a mathe-
matcal model which includes certain randomness and seasonality may help us to understand
this problem better. Meanwhile, we only applied two-patch model to simulate the data in two
provices. A more general case which can discuss the complex transmission among three or
more provinces is interesting to study.

Chinese government has devoted a large amount of financial resource to the control of ra-
bies, particularly in vaccinations. According to the statistics reported in “Chinese Rabies Pre-
vention and Control Status” ([17]), about 12–15 million doses of human rabies vaccines are
administered in China each year, accounting for 80 percent of the total global consumption.
The production and administration of human rabies vaccines cost the country more than RMB
10 billion ($1.56 billion) each year. However, most of these efforts focused on humans and the
vaccination rate of dogs in China still remains low. Under this high-risk environment for ra-
bies, the only way to reduce deaths caused by rabies is to provide treatment immediately to ex-
posures (contacts with category II and III). Then the total cost could be about RMB 24.5 billion
annually if all of these exposures receive PEP treatments. Remarkably, the vaccines for dogs are
less expensive than that for humans, but the dog vaccination implementation requires a contin-
uously huge human, material and financial resources. It will be interesting to investigate how
to optimize the resources and efforts and how to take the socioeconomic factors into consider-
ation in order to pursue the control and elimination of rabies virus in humans.
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