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Abstract 

Seagrass beds are among the most ecologically important systems in the marine 

environment. They provide the primary production to nearby coral reef and mangrove 

communities, and seagrasses comprise a large component of the diets of many marine 

organisms including fishes, small invertebrate species, and many protected species such 

as manatees and sea turtles. This consumption provides a pathway for many contaminants 

to enter the marine food web via the seagrasses. The coastal location of seagrass beds 

causes them to be especially susceptible to anthropogenic pollution, including 

accumulation of heavy metals, which has been shown to have many adverse health 

effects in the seagrasses and marine organisms that feed on them. This study assessed the 

heavy metal concentrations of seagrasses in three regional locations in South Florida: 

Port of Miami, Card Sound Aquatic Preserve, and Florida Bay. Three species of 

seagrasses, Thalassia testudinum, Halodule wrightii, and Syringodium filiforme, which 

comprise the majority of South Florida seagrass beds, were collected monthly for a 

period of one year and analyzed for ten heavy metals: (arsenic (As), cadmium (Cd), 

copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), selenium 

(Se), zinc (Zn)). Concentrations were compared across locations, season, species, and 

plant part (leaves, shoots, roots, and rhizomes). Concentration ranges, in µg/g (ppm), 

found in seagrass tissues for all included locations, species, and plant parts were:  As 

(0.02-2.95), Cd (0.09-10.72), Cu (0.38-33.68), Fe (1.52-1877.43), Pb (0.78-156.20), Mn 

(0.79-300.15), Hg (0.03-16.46), Ni (0.67-87.74), Se (0.01-4.79), Zn (1.48-669.44).  

Statistical analysis showed significant difference in concentrations among locations, 

season, species, and plant morphology. 
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Introduction 

Seagrass 

Seagrasses are ecologically important, widespread, marine flowering plants that 

are found along coastlines of tropical and temperate seas around the world at water 

depths up to 90 meters (Duarte, 1991; Orth et al., 2006; Short et al., 2007). Seagrass 

communities have been ranked among the most productive systems in coastal waters. 

They support rich and diverse food webs and fulfill a key role in the structure and 

functioning of coastal ecosystems (Schlacher-Hoenlinger et al., 1998; Duarte, 2002). 

Seagrass beds have also been identified as the most productive submerged marine habitat 

(Whelan et al., 2005). High photosynthetic activity in these systems provides a large 

amount of primary production necessary to marine ecosystems and helps to support major 

grazing and detrital food webs (Lanyon et al., 1989; Lewis et al., 2007). 

This high production refers not only to the seagrasses themselves, but also to the 

macrophytes and algae attached to the plants. Leaves of seagrasses greatly increase the 

amount of surface area available for algal epiphytes to attach and grow (Bell et al., 1984; 

Schlacher-Hoelinger et al., 1998). Seagrass beds are also of importance to the 

surrounding habitats, including coral reefs, as they produce much of the organic carbon 

that is exported to these areas through the foraging activities of reef organisms, 

generating a substantial contribution to nearby food webs (Behringer et al., 2006).  

Seagrass meadows perform extensive and diverse roles in coastal marine 

ecosystems. They help to promote water quality by filtering the water of contaminants, 

sequestering carbon, and lessening the turbidity of the waters by trapping sediment 

(Larkum et al., 2006). This sediment trapping, along with the root system of the grasses, 

helps to stabilize the sediment and protect the shoreline by preventing erosion. Seagrasses 

are so important for stabilization because they are the only aquatic plant with a root and a 

rhizome system found under the sediment. The seagrasses are also a necessary part of the 

food cycle because of their role in the trapping and cycling of nutrients as well as 

production of food and oxygen (Larkum et al., 2006; Short et al., 2007).  
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Dominant Seagrass Species in South Florida 

Thalassia testudinum, commonly known as turtle grass, is one of the most 

abundant and important seagrass species in South Florida waters. It grows in shallow 

sand or mud up to a water depth of 12 meters. These beds are most successful in clear, 

high salinity waters around 20-30º C with minimal wave action. They form dense mats of 

horizontal rhizomes that can be buried up to 25 cm. This species is an important diet 

component of manatees, sea turtles, fish and invertebrates. Though the population is 

currently stable, it is threatened by coastal development along with increased 

sedimentation and eutrophication (Williams, 1987; Dawes and Tomasko, 1988; 

Fourqurean et al., 1995; Short et al., 2010a).  

Halodule wrightii, commonly known as shoal grass, is very abundant locally and 

widely distributed around the world. It is found growing in sand or mud up to a depth of 

5 meters and is often mixed in beds with other species. It is very tolerant of a wide range 

of environmental conditions including salinity, turbidity, disturbance, and temperature, 

though the optimal range for temperature is 20-30º C.  The population is currently stable 

and may even be increasing in some areas due to its high tolerance for changing 

environmental conditions, including water temperature and pH. The major threats to H. 

wrightii are coastal development and mechanical destruction of the beds (Zieman et al., 

1989; Fourqurean et al., 1995; Amado Filho et al., 2004; Short et al., 2010b).  

Syringodium filiforme, commonly known as manatee grass, is abundant in local 

waters and is one of the most important habitat builders in the Florida area. It grows in 

sandy or muddy bottoms to a depth of 20 meters but is often found at deeper depths in 

clear waters. This species is very sensitive to environmental and water quality changes, 

and will not grow in low salinity waters, areas with high turbidity, or waters with a 

temperature below 20º C. It is a major food source for manatees, parrotfish, urchins, and 

surgeonfish.  The population is currently stable but is threatened by sewage discharge, 

increased sedimentation, and eutrophication (Williams, 1987; Kenworthy and 

Schwarzschild, 1998; Short et al., 2010c).  
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Seagrass as a Resource 

One of the most significant roles of seagrass meadows is their use as a resource 

for a wide variety of marine species. They provide protection from predators, habitat, and 

nursery grounds for many marine species, including fish, benthic organisms, and large 

herbivorous grazers (Duarte, 2002; Whelan et al., 2005). There are numerous federally 

listed species that utilize the seagrass communities, including American crocodile, green, 

leatherback, loggerhead, and Kemp’s Ridley sea turtles, roseate tern, wood stork, bald 

eagle, and Florida manatee (USFWS, 2017). Abundance and biomass of key species were 

found to be lower in unvegetated areas when compared to nearby seagrass beds. Seagrass 

environments also serve as critical habitat at some point in the life cycles of many species 

targeted for recreational and commercial fishing (Connolly, 1995; Orth et al., 2006). 

These species often settle as larvae in the seagrasses which provide shelter and food 

during the early life stages when they are more susceptible to predation (Bell and Pollard, 

1989). High abundances of prey species living among the seagrasses also lead to greater 

densities of predators in continuum throughout the food web. In this way, seagrass 

meadows are extremely important to the trophic structure of the ecosystem (Virnstein et 

al., 1983; Bell et al., 1984). 

One of the most important resources seagrasses provide is as food for marine 

organisms. Over 154 species are known to feed on living seagrass, which comprised 

more than 10% of the diets of over half of these species, most of which are fish (Klumpp 

et al., 1992, Duarte, 2002; Larkum et al., 2006). The nutritive value of seagrasses is 

comparable to terrestrial vegetation and forage crops, and they provide similar energy 

levels as algae. Vaslet et al. (2012) showed that organisms that shelter in nearby 

environments, such as mangroves and coral reefs, will often obtain the majority of their 

food by grazing in seagrass beds. Food is abundantly available for these grazers in the 

form of seagrass leaves and periphyton. Heavy grazing on seagrasses is used by a wide 

variety of species, including macroinvertebrates, numerous species of fishes, and large 

marine herbivorous grazers such as manatees and sea turtles (Bell et al., 1984; Lanyon et 

al., 1989; Klumpp et al., 1992). Invertebrates comprise a major part of the marine food 
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web while manatees and sea turtles are ecologically important species that rely on 

seagrasses for a large portion of their nutritional requirements (Prange and Dennison, 

2000).   

The primary food source within seagrass communities is epiphytic periphyton, 

mainly microscopic algae that grow on the surface of the leaves which contributes 

significantly to the trophic system in terms of photosynthetic activity. The epiphytic 

community usually begins with rapid colonization by micro-algae and bacteria, and later 

expands to include large algal species and invertebrates, such as tunicates, sponges, and 

crustaceans. Seagrasses contain no chemical or physical mechanisms to inhibit this 

colonization (Borowitzka and Lethbridge, 1989; Klumpp et al., 1992; Duarte, 2002). In 

one study, epiphytic algae were found to represent 46% of total system primary 

production, making them the most important productivity component (Moncrieff and 

Sullivan, 2001).  

Faunal Grazing 

Invertebrates 

Seagrass beds contain large quantities of invertebrate species due to the high 

habitat complexity. Virnstein et al. (1983) found that seagrass beds contained three times 

the microbenthic invertebrates and thirteen times the epifaunal species found in 

surrounding unvegetated areas. Macrofauna also reside in the sediments among the root 

system where they function as nutrient recyclers and serve as prey items for species at 

higher trophic levels. Various nematodes, polychaetes, gastropods, isopods, crustaceans, 

and ostracods are included in this group. Crustaceans and mollusks are especially 

important contributors to biomass and energy flow and are the major link between 

primary producers and higher consumers. Not only do seagrasses prove to be an area for 

heavy grazing, they also trap detritus for utilization by small benthic invertebrates that 

live among the seagrasses. Decomposition of detritus from seagrass beds is also a main 

source of production for the coastal planktonic and benthic communities (Bell et al., 

1984; Lewis, 1984; Thresher et al., 1992). 



 

14 

  

 The invertebrate faunal community that lives among seagrass beds is very diverse, 

and studies have shown a high level of activity, even at night. These species, mainly 

crustaceans and polychaetes, have been shown to serve as the pollinators for the flowers 

of Thalassia testudinum. Invertebrates transfer pollen between the male and female 

flower organs by carrying the pollen grains on their bodies. This activity improves the 

reproductive success of the plants as well as helps to maintain genetic diversity within the 

species (van Tussenbroek et al., 2016).  

Fishes 

 Abundances of small and large fish are greater in vegetated habitats (Connolly, 

1995). In the presence or absence of predators, abundances of all fish species decreased 

in thinned and unvegetated plots, suggesting that predation is not the proximate cause of 

this habitat preference. Seagrasses provide the physical structure used as habitat, dampen 

hydrodynamic forces, and create greater stability (Bell and Westoby, 1986; Connolly, 

1995).  

 Numerous species are prevalent in seagrasses, including juvenile and adult 

snappers, groupers, grunts, butterflyfish, gobies, and surgeonfishes. Different fish species 

are found at different positions within the seagrass canopy; they dwell above the 

meadows, on or under the leaves, and among the sediment. Locational preference appears 

to reflect the feeding mode and morphology of each fish species, and several species may 

make use of the same microhabitat. Fish reside in the seagrass beds for various lengths of 

time and at different life stages. Not all fish species that associate with seagrass live there 

permanently; many species enter the beds as ichthyoplankton and spend their early life 

within the canopy. The majority of species remain in the beds as juveniles and move on 

to other habitats as adults; however, most species remain in close proximity to the beds to 

take advantage of the abundant food (Weinstein and Heck, 1979; Bell and Pollard, 1989). 

Many of these fishes, especially parrotfishes and surgeonfishes, have been observed 

feeding directly on large amounts of seagrass tissue. In one case, it made up 95% of 

stomach contents in one individual (Randall, 1965).  
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Sea Turtles 

The green sea turtle (Chelonia mydas) is an endangered, herbivorous reptile that 

depends predominantly on seagrasses and occasionally algae for its nutritional needs. 

This species is the only sea turtle in Florida that depends upon seagrasses as a food 

source (Lanyon et al., 1989).  The green sea turtle population is currently in decline and 

is restricted to tropical regions, limiting their diet. Coastal Florida is an important area for 

these turtles as they feed and nest along the coastline. Green sea turtles are solitary 

feeders and it has been shown that seagrass meadows are their chief feeding location. The 

largest component of the green sea turtle diet is Thalassia testudinum, commonly known 

as turtle grass, which is one of the most common species in Florida seagrass beds 

(Lanyon et al., 1989; Zug and Glor, 1998). 

Manatees 

 Seagrasses are a major component of the diet of the Florida manatee (Trichechus 

manatus latirostris), which is a subspecies of the West Indian manatee. The Florida 

manatee is a threatened species and is of special interest to researchers and 

conservationists because it has one of the lowest population numbers among all 

mammals. Manatees are year-round residents of Florida waters that move between warm 

and cold-water sites, often returning to the same seasonal foraging locations (O’Shea et 

al., 1984; Anzolin et al., 2012; USFWS, 2017). Alves-Stanely et al.  (2010) found that 

seagrasses were the most frequently required component of the Florida manatee’s diet. 

Manatees are grazers and will forage on the above ground parts of the seagrasses, 

including the leaves and shoots. They must consume large amounts of vegetation daily, 

up to 10% of their body weight, to support their body functions (Haynes et al., 2005).  

Though manatees are fairly immune to infectious agents, they are susceptible to 

diseases and pollution, especially while in large aggregations. These environmental 

stressors cause the immune systems of the manatees to be suppressed and leaves them 

vulnerable to pathogens. Manatees often aggregate around municipal outfalls, which also 

contain potential pathogens such as endocrine disruptors. They can also be indirectly 
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impacted by pollution due to a reduction in their food source. This will decrease the 

carrying capacity, cause nutritional stress, and reduce reproduction rates (O’Shea et al., 

1984; Bonde et al., 2004).   

Threats to Seagrass 

Though seagrasses currently cover approximately 0.1-0.2% of the global ocean 

(Duarte, 2002), they are severely lacking in protective regulations, and are presently 

experiencing worldwide decline which is primarily human caused (Duarte, 2002; Orth et 

al., 2006). There are currently 247 marine protection areas globally that include 

seagrasses; however, the seagrasses themselves are rarely, if ever, singled out as the 

object of protection (Spalding et al., 2003; Erftemeijer and Lewis, 2006). Seagrasses are 

exceedingly sensitive to anthropogenic threats, and the combined pressures of direct 

mechanical destruction and the toxic effects of chemical pollutants place seagrasses 

among the most endangered ecosystems in the world. Widespread loss of seagrasses is 

caused by direct and indirect human impacts, as well as natural phenomenon such as 

large storms and grazing pressure. Direct impacts include mechanical damage caused by 

dredging, fishing, and anchoring, as well as eutrophication, aquaculture, siltation, coastal 

construction, and food web alteration. Indirect impacts on seagrasses include the effects 

of climate change, such as sea level rise, increase in storm frequency and intensity, and 

increases in UV radiation (Schlacher-Hoelinger et al., 1998; Duarte, 2002; Govers et al., 

2014).   

Heavy Metals 

A major concern for seagrasses, especially those near highly industrialized areas, 

is excessive nutrient loading along with the addition of a wide range of contaminants. 

The coastal locations of seagrass beds increase their susceptibility to contaminant 

overload as they receive input from many agricultural and industrial sources via rivers or 

other waterways, runoff, and atmospheric deposition (Duarte, 2002; Lafabrie et al., 

2007).   
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Heavy metals are defined as trace metals that have a high atomic weight and a 

density that is at least five times that of water. These metals exist in trace amounts 

throughout all environmental reservoirs but can cause issues for marine organisms if they 

are present in excess of tolerance levels (Tovar-Sanchez et al., 2010; Tchounwou et al., 

2012). Some heavy metals are needed in various amounts by marine organisms to support 

a variety of biochemical functions, while others can be toxic in even very small amounts. 

These two groups are known as the essential and non-essential elements, respectively. 

Essential elements are generally used in a catalytic role and non-essential, or pollutant, 

elements do not have a functional biochemical role. These metals normally only reach 

high concentrations through anthropogenic activities (George, 1982; Tovar-Sanchez et 

al., 2010). In seagrasses, essential heavy metals include iron, copper, manganese, nickel, 

selenium, and zinc, while non-essential heavy metals include arsenic, cadmium, lead, and 

mercury (Ambo-Rappe et al., 2011; Sudharsan et al., 2012).  

Heavy metals are exceptionally dangerous in the environment as they do not 

biodegrade, but persist, causing their concentrations to continually increase (Luy et al., 

2012; Zakhama-Sraieb et al., 2016). Uptake occurs through three mechanisms -  

bioconcentration, bioaccumulation, and ingestion. Bioconcentration is uptake directly 

from the abiotic environment; bioaccumulation is the uptake from all sources, including 

abiotic and biotic; and ingestion occurs during feeding. Introduction into the food chain 

occurs via direct herbivory or indirectly through detritivore food webs (Reinfelder et al., 

1998; Gray, 2002; Coelho et al., 2009; Tovar-Sanchez et al., 2010). 

Sources of Heavy Metals 

Heavy metals are found in the environment in four phases: dissolved, colloidal, 

particulate, and sedimentary; and they are constantly being cycled (Zakhama-Sraieb et 

al., 2016). Metals from natural and anthropogenic sources enter the marine environment 

mainly through runoff and atmospheric deposition. Once in the ocean, some metals can 

be sequestered in marine sediments and will remain biologically unavailable unless 

disturbed (Lafabrie et al., 2007; Fathollahzadeh et al., 2015). Those that are not 
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sequestered, however, can be taken up by marine organisms through their gills or can 

enter marine plants through their roots and leaves, thereby introducing them into the food 

web. Trace element accumulation and the impact that the metals may have on biological 

systems is determined by their bioavailability which is controlled by abiotic factors. In 

the ocean environment these factors may include temperature, salinity, pH, and pressure 

with increasing depth, and the bioavailability will also vary due to the nature of the 

element itself, including its stability, dissolved concentration, interactions with other 

metals, and how it cycles throughout the environment (Reinfelder et al., 1998; Demirezen  

and Aksoy, 2006; Tchounwou et al., 2012).    

Heavy metals are released into the environment from both natural and 

anthropogenic sources. All heavy metals occur naturally in the environment and many 

have sources in the ocean; however, they are not homogenously distributed. 

Anthropogenic activities largely impact their abundance and distribution, causing their 

concentrations in the marine environment to vary spatially and temporally (Das et al., 

2003). Various human activities are known to be sources of heavy metals to the 

environment, including aquaculture, discharge of sewage, mining and smelting, 

deforestation, agriculture (herbicide or pesticide use), and various industries including 

leather production, shipyards, electronics, and paints (Stavros et al., 2008; Tovar-Sanchez 

et al., 2010; Govers et al., 2014).  

Heavy metals can be released by atmospheric deposition, evaporation of metals 

from water resources, erosion and leaching from soils, metal corrosion, and resuspension 

of sediments. One of the current major source of heavy metals in the coastal zone is the 

dredging of contaminated sediments in ports around the world (Erftemeijer and Lewis, 

2006; Tchounwou et al., 2012).  

Dredging 

Dredging is required in many large ports to maintain depth and aid in navigation 

through channels and harbor entrances. These ports require continuous deepening of the 

channel to maintain accessibility as a result of sedimentation (Erftemeijer and Lewis, 
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2006; van Maren et al., 2015). This process causes a large-scale disturbance and can 

result in a variety of unfavorable changes in the water and seagrass beds, including 

physical removal or burial of the plants, increased turbidity and sedimentation, increases 

in nutrient level, reduction of dissolved oxygen, shifts in trophic structure, decreased 

nutritional quality of associated organisms, and hydrographic changes (Lohrer and Wetz, 

2003; Behringer et al., 2006, Erftemeijer and Lewis, 2006). These changes, in turn, cause 

numerous indirect effects. Increased turbidity inhibits phytoplankton primary production, 

reduces the feeding success of visual predators, and has many adverse effects on benthic 

species, particularly filter feeders (Essink, 1999).  

Studies looking at adverse effects of dredging projects have focused on seagrass 

meadows or coral reefs because these areas suffer the most detrimental impacts 

(Erftemeijer and Lewis, 2006; Erftemeijer et al., 2012; van Maren et al., 2015). The most 

significant issues related to seagrass environments are mechanical damage to the beds 

during the project and the lasting effects caused by disturbing the sediments. Dredging of 

the sea floor has caused physical damage to seagrass beds by uprooting and burying the 

plants (Fredette and French, 2004). In addition to this damage, many of the dredged 

sediments are contaminated due to anthropogenic input from urbanization, tourism, 

agriculture, aquaculture, industries, and marine traffic, and the disturbance of this 

material can substantially affect water quality and increase the exposure of marine 

organisms to contaminants (Tovar-Sanchez et al., 2006; Hedge et al., 2009).  

Metals in sediments are often considered immobile if they remain undisturbed. 

Resuspension of sediments leads to remobilization of these metals (Erftemeijer and 

Lewis, 2006; Hedge et al., 2009; Fathollahzadeh et al., 2015). This remobilization occurs 

when anoxic sediment is disturbed, and oxidation takes place in the water column (Hedge 

et al., 2009). Dredging is one of the only processes that allows metals in the solid-phase 

to be released into the water column as most released metals are in the dissolved phase 

(Kalnejais et al., 2007). Dredging causes contamination mainly through the resuspension 

of fine particles, such as silt and clay. Silt load is usually highest in sediments post-

dredging. Many nutrients, environmental contaminants, and organic pollutants are known 
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to selectively bind to these fine particles due to their high surface area. The increased 

turbidity during and post-dredging adds particulates to the waters that can act as 

scavengers, acquiring metals from the surrounding waters (Caccia et al., 2003; Nayar et 

al., 2007). 

The dredged material becomes suspended during excavation, as overflow from 

barges and machinery during transport to the disposal site, as overspill from the hopper, 

and during disposal and deposition of rejected material. The now bioavailable metal ions 

are absorbed by marine organisms through their gills and taken up by seagrasses through 

their roots and leaves (Newell et al., 1998; Erftemeijer and Lewis, 2006; Nayar et al., 

2007). This process provides a link between dredging-related resuspension of 

contaminated sediments and transfer into the marine trophic system which results in 

metal accumulation in marine organisms. Hedge et al. (2009) observed an increase in 

metal concentrations in oyster tissues with the onset of nearby dredging activities, some 

showing over a 100% increase. The bioavailability of metals due to dredging is site 

specific and the amount is dependent on the degree of sediment contamination, the 

volume of suspended sediment, and the duration of dredging activities (Eggleton and 

Thomas, 2004).  

Sewage Outfalls 

The concentrations of heavy metals within raw sewage can be very high, and 

these concentrations are not lessened through the treatment processes. Sewage has been 

found to be a significant source of metal dispersion into the environment and can contain 

a multitude of different metals, including chromium, copper, nickel, lead, and zinc, from 

a wide variety of sources (Carrondo et al., 1978; Gaber et al., 2011). Ocean outfalls have 

been used in southeast Florida for over 30 years and are utilized for the disposal of 

untreated or partially treated sewage into the ocean. It has been found that approximately 

10% of the released sewage may remain untreated and contain metals, chemicals, and 

viruses. The amount of effluent being released into the global ocean can reach almost one 

billion gallons of sewage and other wastes per day, and though it has been speculated that 
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this effluent does not reach the shore, it is contaminating the marine environment. The 

effects of this pollution are demonstrated by the presence of diseased fishes and a lack of 

aquatic vegetation (U.S. EPA, 1973).  

Agriculture 

Agricultural activities, including pesticide and herbicide use, release several 

heavy metals into the environment which are sequestered in the soils or incorporated by 

crops. At the end of the growing season, crop residues left behind can be severely 

contaminated. Crop residues have been shown to have higher than normal levels of 

cadmium, copper, nickel, and zinc (Diaz and Massol-Deya., 2003; Lee et al., 2017). In 

Florida one of the main agricultural pollution concerns is the elevated level of copper 

from herbicide used for weed control. The copper concentrations found in treated aquatic 

vegetation in Florida exceed the levels capable of causing negative toxicity effects in 

mammals (O’Shea et al., 1984). 

Seasonality 

 Seasonality in South Florida presents as the wet and the dry seasons. The wet 

season occurs from June to October during which approximately seventy percent of the 

rainfall for the year occurs. The dry season occurs between November and May. Between 

these two seasons, there will be variations in water temperature and salinity and changes 

in the amount of runoff entering the ocean. Larger amounts of runoff will increase the 

pollutants entering the coastal zone. These abiotic factors will also impact the growth 

rate, and in turn, the biomass of aquatic vegetation (Duever et al., 1994).   

 Fritioff et al. (2005) found metal concentrations in plant tissues varied with both 

salinity and temperature. The concentrations of Cu, Cd, Pb, and Zn in two species of 

submerged aquatic vegetation, Elodea canadensis and Potamogeton natans, increased 

with increasing temperature and decreasing salinity. Concentrations were also found to 

increase with decreasing biomass of plant material. Metal accumulation tends to be 

higher in early spring when the biomass of vegetation is low, causing any given amount 

of metal to be assimilated by a smaller number of plants, and each plant to acquire a 
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proportionally larger amount of metals. When biomass is at a maximum, the proportion 

of each metal taken up by individual plants would be smaller as the same amount would 

be more widely distributed.  

Heavy Metals in Seagrasses 

Seagrasses all over the globe, including the three species in this study, show 

various levels of numerous heavy metals. Seagrasses accumulate toxins both through leaf 

surfaces and the roots from sediments and interstitial waters. The majority of 

contaminants are absorbed through the roots and are then translocated to the leaves. 

Contamination of the seagrasses varies among plant compartments, showing different 

levels in the roots, rhizomes, leaves, and shoots. The metal content is generally higher in 

tissues located above the sediment than found below (Amado Filho et al., 2004; 

Llagostera et al., 2011). Seagrasses are more susceptible to heavy metal accumulation 

because of the composition of their cellular walls. The walls are composed of 

polysaccharide groups that act as a binding site for metal and metalloid cations (Brito et 

al., 2016).  

Heavy Metals in Marine Fauna  

Ward et al., 1986 concluded that seagrass leaves were likely the major route for 

transfer of heavy metals into marine fauna. Metals are incorporated into seagrasses can 

then be transferred into the marine food web through herbivory (Amado Filho et al., 

2004). Though many metals are needed in trace amounts by marine organisms for 

biological processes, they can be toxic above a certain threshold, and at some level, all 

heavy metals become toxic. Aquatic organisms are subject to chronic and episodic 

exposure to heavy metals (Rainbow, 1985; Reinfelder et al., 1998). Though the research 

on toxicity limits and direct consequences of heavy metal contamination is limited, many 

studies have shown correlation between contamination and adverse health effects (Bryan, 

1971; Das et al., 2003; Deforges et al., 2016).  
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Materials and Methods 

Study Area 

Samples of Thalassia testudinum, Halodule wrightii, and Syringodium filiforme 

were collected from three regional locations (Figure 1a). The first location was within 

two miles of the Port of Miami (POM) (Figure 1b), which is an extremely important 

seaport and is the second most important economic center in Miami-Dade County. The  

port is 520 acres and has a depth of approximately 52 feet (16 m). It supports nearly 

225,000 jobs and contributes approximately $30 billion to the local economy. It is also 

known worldwide as one of the most important cruise and cargo centers. The recent 

PortMiami Deep Dredge project was completed by the U.S. Army Corps of Engineers in 

September 2015 (PortMiami, 2018). Among environmental concerns about the project 

was the threat of contaminated sediment disturbance and resuspension, which is known to 

be a source of heavy metals to aquatic vegetation (Tovar-Sanchez et al., 2006; Hedge et 

al., 2009). The port is also threatened by high levels of industrial and suburban runoff, 

which increases during the wet season (Miami-Dade Seaport Business Plan, 2014). 

Samples were collected from two sites around Virginia Key and one site adjacent to 

Rickenbacker Causeway. All sites were approximately 2.5 miles from the mouth of the 

port.  

The second location was within the Card Sound portion of Biscayne Bay Aquatic 

Preserve (CAP) (Figure 1c), which extends from the headwaters of the Oleta River south 

to Key Largo. The region contains approximately 17,000 acres of lagoon and numerous 

mangrove islands and was designated a state preserve since 1975. The seagrasses here are 

major feeding areas for wading birds and nursery ground for juvenile fish and 

invertebrates, including some of commercial interest (Florida DEP, 2017). Samples were 

collected from three locations around Barnes Sound, the body of water between Card 

Sound Road and US Highway 1. 

The third sampling location was in Florida Bay (FLB) (Figure 1d). Samples were 

collected from one site off the north shore of Islamorada. Florida Bay is the body of  
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a)  

b)  
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c)  

d)  

Figure 1. Locations from which samples were collected: a) Full view of all three regional 

locations, b) Port of Miami (POM), c) Card Sound Aquatic Preserve (CAP), and d) 

Florida Bay (FLB). White pins represent individual collection sites within each regional 

location.  
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water that lies between the Everglades and the Florida Keys, and is approximately 1100 

square miles. The water is brackish as a result of Everglades freshwater drainage mixing 

with salty water from the Gulf of Mexico. The area is composed of seagrass meadows, 

hard bottom, and mangrove islands, and is home to a wide variety of marine species 

(USGS, 2013). Florida Bay does not contain large scale industry or shipping operations 

but is exposed to high volumes of agricultural runoff passing through southern Florida, 

exposing the area to a wide range of contaminants.  

The closest prevailing current in this area is the Florida Current, which is 

considered the official beginning of the Gulf Stream and carries waters from the Florida 

Keys northward along the Atlantic Ocean coastline. This transport creates the potential 

for exogenous contaminants to be incorporated into Florida’s seagrasses. The innermost 

edge of this current in Miami is thought to lie approximately 10 miles offshore with 

significant meanders that can be miles wide and shift the current daily or weekly 

(Leaman et al., 1987; Gyory et al., 2013). 

Sampling Design 

Three species of seagrasses, Thalassia testudinum, Halodule wrightii, and 

Syringodium filiforme (Figure 2), were collected from each site monthly in 2017 and 

included both the wet (June-October) and dry (November-May) seasons. Sampling was 

not possible during September 2017 due to the impact of Hurricane Irma. Global 

Positioning System (GPS) identified each sample site and allowed for identical location 

sampling each month. Collections took place during ebb to slack low tide resulting in a 

water depth range of 5 to 15 inches (13-38 cm). Abiotic data, including temperature and 

salinity, were measured with an environmental YSI meter (model #030130). Multiple 

individuals of each species were collected from within a randomly placed 0.5m grid using 

a 25 cm² shovel sieve. Entire plants, including leaves, shoots, roots, and horizontal 

rhizomes, were removed for analysis by shovel (Table 1). Samples were rinsed with 

seawater in a box sieve, placed in individual plastic bags, and frozen in a standard freezer 

(-20° C) until processed.  
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a)  

b)  

c)    

Figure 2. Seagrass species collected: a) Thalassia testudinum (turtle grass); b) Halodule 

wrightii (shoal grass); c) Syringodium filiforme (manatee grass). Source: 

http://texasseagrass.org/TxSeagrasses.html 
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Table 1. Number of samples collected and analyzed for each species and plant part.   

 Leaves/Shoots Roots/Rhizomes Leaves with 

Epiphytes 

Total 

Thalassia 

testudinum 

60 60 60 180 

Halodule 

wrightii 

70 70 X 140 

Syringodium 

filiforme 

39 39 X 78 
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In the laboratory, specimens were separated by species and plant part, rinsed three 

times with deionized water, and cleaned of epiphytes and other particles with the edge of 

a clean glass slide. Leaves with attached epiphytes were also analyzed to determine 

epiphyte contribution of metals to species grazing in the seagrass beds. Samples were 

dried for a minimum of 4 hours in an Isotemp Vacuum Oven (Model 282A) at 75°C and 

1x10-3 torr, manually ground into a composite powder consisting of multiple individual 

plants, and weighed to approximately 0.2 g of dry weight. They were then digested in 

8ml of 99.999% metals basis nitric acid and 2 ml of concentrated sulfuric acid until plant 

material was dissolved and a clear liquid remained. The solution was then diluted to a 

total volume of 50 ml with ultrapure (18.2 MOhm-cm) water. Heavy metal analysis was 

conducted using a Shimadzu AA-6200 Atomic Absorption Flame Emission 

Spectrophotometer equipped with a Hydride Vapor Generator (Shimadzu, HVG-1) 

(Table 2). Samples were tested for 10 heavy metals; As, Cd, Cu, Fe, Hg, Mn, Ni, Pb, Se, 

and Zn. These elements were chosen based on their presence in the common contaminant 

sources in South Florida, including industrial and municipal wastes, sewage, and 

agriculture. They are also thought to have negative health effects on the marine 

organisms that feed on seagrasses at high levels (Bryan, 1971; Rainbow, 1985; Das et al., 

2003; Deforges et al., 2016).   

Permitting 

Permits for seagrass collection were provided by NOAA National Marine 

Sanctuaries- Florida Keys National Marine Sanctuaries (Permit # FKNMS-2016-133), 

Florida Fish and Wildlife Conservation Commission (Permit # SAL-17-1865-SR), and 

Crocodile Lake National Wildlife Refuge (Permit # 41581-2017-01). 

Results 

Average heavy metals concentrations for all specimens ranked as follows: iron > 

zinc > manganese > lead > nickel > copper > mercury > cadmium > selenium > arsenic. 

Concentration values for all metals combined ranged from 0.02 to 1877.43 µg/g. Mean, 

range, and standard deviation of each heavy metal separately are presented in Table 3.  
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Table 2. Parameters used on the AA-6200 including number of repetitions, maximum 

number of repetitions, relative standard deviation limit, and standard deviation limit. 

   

 Number of 

Reps. 

Max Number 

of Reps. 

RSD Limit SD Limit 

Blank 2 2 99.90 0.000 

Standard 2 3 5.00 0.005 

Sample 3 5 7.00 0.008 

Reslope 2 3 5.00 0.005 
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Table 3. Range, mean, and standard deviation (µg/g) of each heavy metal in Thalassia testudinum, Halodule wrightii, and 

Syringodium filiforme across all locations, seasons, and plant parts.  

 As Cd Cu Fe Pb Mn Hg Ni Se Zn 

Range (µg/g)  0.02-

2.95 

0.09-

10.72 

0.38-

33.68 

1.52-

1877.43 

0.78-

156.20 

0.79-

300.15 

0.03-

16.46 

0.67-

87.74 

0.01-

4.79 

1.48-

669.44 

Mean (µg/g) 0.59 1.48 9.49 222.38 19.40 32.14 1.96 11.15 0.61 76.03 

Std. Deviation (µg/g) 0.51 1.19 6.83 249.83 26.01 40.23 2.64 14.25 0.84 57.55 



 

32 

 

 

Heavy metals were detected in 79% of samples overall, 71% contained arsenic, 

73% contained cadmium, 96% contained copper, 100% contained iron, 62% contained 

lead, 97% contained manganese, 74% contained mercury, 62% contained nickel, 48% 

contained selenium, and 100% contained zinc. In this study, no correlation existed 

between heavy metal concentrations and salinity or water temperature; however, 

freshwater input into the coastal environmental all along the Florida margin did show 

correlation with changes in metal concentrations. Significant differences in heavy metal 

concentrations were seen across location, season, species, and plant part (Table 4). The 

non-parametric Kruskal-Wallis and pairwise Wilcoxon rank sum tests were used to 

investigate these differences. 

Correlation among Heavy Metals 

            Significant correlations at the p<0.05 and p<0.001 levels existed among all ten 

metals for at least one metal (Table 5). Concentrations of arsenic, copper, iron, and zinc 

were significantly correlated (p<0.001) with each other while a strong correlation existed 

solely between cadmium and lead concentrations. Significant correlation between metals 

at p<0.05 occurred for cadmium, copper, iron, nickel and lead. The only significant 

relationship for mercury existed with selenium (p<0.05). Correlated metal relationships 

are likely due to the metals originating from similar sources or similar accumulation rates 

in the seagrasses.  

Location 

 Significant differences among regional locations were seen in copper (X² = 108.0, 

df = 2, p < 0.001), iron (X² = 14.4, df = 2, p<0.001), manganese (X² = 44.3, df = 2, 

p<0.001), and zinc (X² = 73.4, df = 2, p < 0.001). Copper concentrations were higher in 

FLB than POM (p<0.001) or CAP (p<0.001) and were higher in POM than CAP 

(p<0.001). Iron concentrations were higher in CAP (p=0.01) and POM (p<0.001) than 

FLB, but no difference existed between CAP and POM. Manganese concentrations were 

higher in CAP than FLB (p<0.001) or POM (p<0.001); no difference existed between 
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Table 4. Significance for each heavy metal among the four main variables: location, season, species, and plant morphology (NS- not 

significant, p<0.05, or p<0.001).  

 As Cd Cu Fe Hg Mn Ni Pb Se Zn 

Location NS NS <0.001 <0.001 NS <0.001 NS NS NS <0.001 

Season NS <0.001 <0.05 <0.001 <0.001 <0.05 <0.001 <0.05 <0.001 <0.001 

Species NS NS NS <0.05 NS <0.001 NS NS NS NS 

Plant Morphology  NS NS <0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

<0.001 NS <0.001 NS NS <0.05 <0.001 
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Table 5. Correlation coefficients (r) among the concentrations of the 12 heavy metals in all combined seagrass tissues. (*significant at 

p<0.05; **significant at p<0.001). 

 As Cd Cu Fe Hg Mn Ni Pb Se Zn 

As X -0.02 0.01 -0.06 -0.01 -0.02 -0.01 -0.01 -0.01 0.13** 

Cd  X 0.07* 0.09* 0.02 0.06 -0.03 0.12 0.00 -0.02 

Cu   X 0.07* 0.02 0.04 0.15** 0.04 0.01 0.30** 

Fe    X 0.01 0.01 0.09* 0.09* 0.04 0.13** 

Hg     X 0.03 0.06 0.00 0.08* 0.03 

Mn      X 0.09* 0.02 0.00 0.02 

Ni       X 0.09* 0.03 0.07 

Pb        X 0.09* 0.01 

Se         X 0.03 

Zn          X 
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concentrations in FLB and POM. Zinc concentrations were higher in FLB than POM 

(p<0.001) or CAP (p<0.001) and higher in POM than CAP (p<0.001). Annual mean and  

standard deviation of each heavy metal for all tissue samples by location are presented in 

Table 6. The inclusion of multiple variables likely explains the large deviations. 

Season 

Arsenic was the only metal not significantly affected by season. During the wet 

season, significantly higher concentrations of cadmium (X² = 21.3, df = 1, p<0.001), 

copper (X² = 6.6, df = 1, p = 0.009), iron (X² = 66.4, df = 1, p<0.001), lead (X²= 9.04, df 

= 1, p = 0.002), manganese (X² = 7.54, df = 1, p = 0.006), mercury (X² = 49.9, df = 1, 

p<0.001), nickel (X² = 16.9, df = 1, p<0.001), and selenium (X² = 62.1, df = 1, p<0.001) 

were found. Zinc was the only heavy metal with significantly higher concentrations 

during the dry season (X² = 41.8, df = 1, p<0.001) (Table 7).  

Seagrass Species  

  Eight of the ten heavy metals tested showed no significant variability among the 

three seagrass species. Species had a significant effect on two heavy metals, iron (X² = 

8.13, df = 2, p = 0.01) and manganese (X² = 46.7, df = 2, p<0.001). Iron concentrations 

were significantly higher in H. wrightii than T.testudinum (p=0.01) but no other 

significant differences existed between either species and S. filiforme. Manganese 

concentrations were significantly higher in T.testudinum than H.wrightii (p<0.001) and 

S.filiforme (p<0.001) and significantly higher in H.wrightii than S.filiforme (p=0.004).  A 

comparison of each heavy metal among the three seagrass species collected is shown in 

Figure 3.  

Morphology 

Five metals demonstrated no significant difference among seagrass parts but those 

that did included copper (X² = 21.6, df = 2, p<0.001), iron (X² = 24.3, df = 2, p<0.001), 

manganese (X² = 232.7, df = 2, p<0.001), selenium (X² = 6.51, df = 2, p = 0.03), and zinc 

(X² = 9.10, df = 2, p-value = 0.01). Copper concentrations were higher in leaves with or 

without epiphytes than roots (p<0.001), but there was no difference in concentrations 
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Table 6. Annual mean and standard deviation (µg/g) of each heavy metal in the Port of Miami (POM), Card Sound Aquatic Preserve 

(CAP), and Florida Bay (FLB).  

 As Cd Cu Fe Hg Mn Ni Pb Se Zn 

Port of Miami 0.58 ± 

0.55 

1.68 ± 

1.51 

10.8 ± 

6.11 

258.6 ± 

288.6 

2.22 ± 

6.14 

19.1 ± 

18.1 

9.16 ± 

6.95 

15.9 ± 

14.0 

0.66 ± 

0.94 

86.3 ± 

51.7 

Card Sound 

Aquatic Preserve 

0.59 ± 

0.43 

 1.27 ± 

0.72 

6.13 ± 

4.76 

199.6 ± 

207.2 

2.36 ± 

3.25 

49.1 ± 

55.5 

14.7 ± 

21.6 

22.8 ± 

32.5 

0.59 ± 

0.75 

54.2 ± 

32.1 

Florida Bay 0.61 ± 

0.60 

1.26 ± 

0.52 

21.2 ± 

7.01 

97.0 ± 

68.5 

2.32 ± 

2.56 

17.7 ± 

18.5 

9.21 ± 

11.0 

22.9 ± 

38.3 

0.28 ± 

0.09 

145.2 ± 

122.5 
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Table 7. Mean and standard deviation (µg/g) of each heavy metal in the wet (June-

October) and dry (November-May) seasons. 

 Wet Dry 

As 0.57 ± 0.44 0.59 ± 0.53 

Cd 1.87 ± 1.55 1.20 ± 0.73 

Cu 10.17 ± 6.30 9.08 ± 7.09 

Fe 336.67 ± 301.54 155.36 ± 183.14 

Hg 4.08 ± 3.82 1.60 ± 5.02 

Mn 42.72 ± 57.04 26.52 ± 29.19 

Ni 19.56 ± 23.62 7.07 ± 3.77 

Pb 31.02 ± 37.83 12.20 ± 8.53 

Se 1.80 ± 1.16 0.29 ± 0.20 

Zn 55.26 ± 30.92 87.84 ± 65.61 
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Figure 3. Mean and standard deviation (µg/g) of each heavy metal in Thalassia testudinum (T), Halodule wrightii (H), and 

Syringodium filiforme (S). Due to the wide range in values, the concentrations were plotted on a logarithmic scale for comparative 

purposes. 
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between leaves with and leaves without epiphytes. Iron concentrations were significantly 

higher in leaves with epiphytes than cleaned leaves (p<0.001) or roots (p=0.005) and 

higher in cleaned leaves than roots (p<0.001). Manganese concentrations were 

significantly higher in leaves with epiphytes than cleaned leaves (p<0.001) or roots 

(p<0.001), and concentrations in cleaned leaves were higher than those found in roots 

(p<0.001).  Selenium concentrations were significantly higher in roots than leaves with 

epiphytes (p=0.03), but there was no difference between leaves with or without epiphytes 

or cleaned leaves and roots. No significant difference in zinc concentrations between 

cleaned leaves and those with epiphytes was found, though both had higher 

concentrations than roots (p= 0.02 and 0.03, respectively). Annual mean and standard 

deviation of each heavy metal in cleaned leaves, leaves with epiphytes, and roots and 

rhizomes in the three species analyzed is shown in Table 8. Iron, manganese, and zinc 

were the only heavy metals to have significantly higher concentrations in leaves with 

attached epiphytes (Figure 4).  

Interactions 

 No significant heavy metal relationship existed between seagrass species and 

location or species and plant part. Metal concentrations among the three species did vary  

between wet and dry season. Se concentrations (F=3.69, p=0.027) were higher during the 

wet season in T.testudinum (F=63.1, p<0.001), H.wrightii (F=99.55, p<0.001), and S. 

filiforme (F=27.8, p<0.001).  

 Metal concentrations for all species combined at each location and season had a 

significant impact on iron (F= 6.45, p=0.001), lead (F=8.22, p=0.0003), nickel (F=6.93, 

p= 0.001), and zinc (F=7.55, p=0.0006). Concentrations of iron were higher in the wet 

season in POM (F=48.4, p<0.001), CAP (F=8.92, p=0.003), and FLB (F=12.7, p=0.001). 

Concentrations of lead were higher during the wet season in POM (F=5.1, p=0.02) and  

CAP (F=29.3, p<0.001). Concentrations of nickel were higher during the wet season in 

POM (F=13.95, p<0.001) and CAP (26.1, p<0.001). Concentrations of zinc were higher 

in the dry season in POM (F=44.8, p<0.001) and CAP (F=7.34, p=0.007). 
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Table 8. Mean and standard deviation (µg/g) of leaves/shoots and roots/rhizomes of Thalassia testudinum, Halodule wrightii, and 

Syringodium filiforme, and leaves with epiphytes of Thalassia testudinum.  
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a)     

b)  

c)  

 

Figure 4. Boxplots displaying the mean concentrations (µg/g) of a) iron, b) manganese, 

and c) zinc in each plant part including leaves with attached epiphytes (E), cleaned leaves 

(L), and roots and rhizomes (R). 
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 Location and plant part had a significant impact on iron (F=2.55, p=0.03), 

manganese (F=9.46, p<0.001) and zinc (F=4.23, p=0.002). Concentrations of iron were 

higher in leaves with epiphytes in POM (F=16.3, p<0.001) and CAP (F=10.8, p<0.001). 

Concentrations of manganese were higher in leaves with epiphytes in POM (F=85.9, 

p<0.001), CAP (F=6.05, p=0.008), and FLB (F=43.5, p<0.001). Concentrations of zinc 

were higher in leaves with epiphytes in POM (F=9.16, p<0.001) and FLB (F=6.15, 

p=0.002).  

 The interaction between season and plant part had a significant impact on iron 

(F=6.23, p=0.002) and manganese (F=3.76, p=0.02). Concentrations of iron were higher 

during the wet season in cleaned leaves (F=51.7, p<0.001), leaves with epiphytes 

(F=8.50, p=0.004), and roots (F=19.5, p<0.001). Concentrations of manganese were 

higher during the wet season in leaves (F=12.3, p<0.001) and roots (F=13.1, p<0.001).  

 

Discussion 

 The heavy metals analyzed in this study were chosen due to their commonality 

in coastal communities. All ten metals were found in detectable concentrations in all 

three species of seagrass tested. Heavy metal concentrations did not show any correlation 

to the abiotic factors collected; neither water temperature nor salinity appeared to have an 

impact on the accumulation of heavy metals in seagrasses. Though previous studies have 

found opposite results (Fritioff et al., 2005), the variation in environmental factors in this 

study were very small by comparison. In this study bottom water temperature ranged 

from 22.9º C in January to 33.9º C in July with a range of 11º C. Salinity showed more 

variation, ranging from 22.5 to 38.8‰ with a range of 16.3‰. We can only speculate that 

these differences were not large enough to enact changes in the accumulation rates.  

Results of this study were compared to finding from various other locations and 

seagrass species (Table 9). Concentrations of arsenic, cadmium, iron, and manganese 

were generally lower than those found in previous studies, especially when compared to 

concentrations in H.ovalis from Jordan or Z.capricornii from Australia. Zinc 

concentrations were lower than those found along the Australian coast, the Mediterranean
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 Table 9. Means and standard deviation (µg/g) of heavy metal concentrations (µg/g) reported from various locations and 

species compared to results from this study. 

 

 

Species As Cd Cu Fe Hg Mn Ni Pb Se Zn 

This Study 

(Florida, USA) 
T. testudinum 0.65 ± 

0.56 

1.49 ± 

1.12 

8.62 ± 

5.37 

234.0 ± 

298.4 

2.65 ± 

6.47 

42.7 ± 

47.0 

11.1 ± 

16.1 

19.1 ± 

23.5 

0.55 ± 

0.74 

81.9 ± 

55.8 

This Study 

(Florida, USA) 

H. wrightii 0.52 ± 

0.46 

1.51 ± 

1.25 

10.67 ± 

8.22 

229.58 ± 

214.91 

2.16 ± 

3.04 

28.9 ± 

41.5 

12.6 ± 

15.5 

21.2 ± 

30.1 

0.64 ± 

0.92 

70.8 ± 

63.4 

This Study 

(Florida, USA) 
S. filiforme 0.57 ± 

0.46 

1.43 ± 

1.25 

9.46 ± 

6.88 

183.53 ± 

168.22 

1.67 ± 

2.19 

13.8 ± 

15.2 

11.1 ± 

14.8 

16.8 ± 

23.1 

0.68 ± 

0.87 

72.0 ± 

48.4 

Barwick & 

Maher (2003) 

(Australia) 

Z.capricornii 1.20 ± 

0.1 

10.0 ± 

0.5 

9.40 ± 

0.5 

- - - - 1.70 ± 

0.2 

0.38 ± 

0.08 

133 ± 

20 

Brito et al., 2016 

(Brazil) 
H. wrightii 2.78 0.57 6.50 - - - 5.65 2.68 - 20.1 

Campanella et 

al. (2001) 

(Mediterranean) 

P. oceanica - 2.22 ± 

0.75 

11.6 ± 

6.1 

- - - - 0.91 ± 

0.23 

- 112 ± 

5.0 

Lafabrie et al. 

(2007) 

(Mediterranean) 

P. oceanica - 5.38 ± 

0.14 

- - 0.13 ± 

0.00 

- 60.30 ± 

3.67 

1.8 ± 

0.00 

- - 

Wahbeh (1984) 

(Jordan) 
H. ovalis - 5.1 ± 0.6 - 29125.9 

± 6865.4 

- 244.5 ± 

62.2 

- - - 217.9 

± 53.5 
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Sea, and Jordanian waters. Concentrations of copper and selenium were comparable to 

those found in these studies, while nickel concentrations were higher than those found off 

Brazil but much lower than those from the Mediterranean Sea. Lead and mercury 

concentrations were consistently higher than those found in other studies (Wahbeh, 1984; 

Barwick & Maher, 2003; Lafabrie et al., 2007; Brito et al., 2016).   

Correlation between metals showed a significant positive correlation relationship 

between mercury and selenium, which are known to have strong antagonistic effects in 

mammals. Metal handling strategies can be very different between taxa, and this 

difference may be due to plants containing different lipid or protein classes than 

mammals and would therefore bioaccumulate these metals differently (Nichols and Johns 

1985; Khan and Wang, 2010). The two major heavy metal-binding protein classes in 

plants are phytochelatins and metallothioneins. Phytochelatins are peptides that have 

been identified across various plant species. Though a small number of microorganisms 

have also been found to contain these proteins, they appear to be more functional in 

plants than animal tissues. Metallothioneins are polypeptides that were originally thought 

to be animal-specific ligands. It is now apparent that various categories of 

metallothioneins are found in plants, though they do not appear to serve the same purpose 

as they do in animals (Steffens, 1990; Cobbet and Goldsbrough, 2002). This difference in 

binding ligands may also help to explain the variation in heavy metal behavior in plant 

tissues.  

Location 

 Seagrasses in the Port of Miami presented with high levels of iron. Iron can 

originate from natural sources, such as erosion and leaching of the Earth’s crust. 

However, the main sources of iron in this area are anthropogenic, specifically sewage 

discharge, fertilizers, and herbicides. Of the three sampling locations, Miami is the most 

highly populated, with a total population of approximately 400,000 people in 2017. 

Miami-Dade County also contains approximately 158,000 homes with yards and over 

81,000 acres of agricultural land (USDA, 2012). The prominent heavy metals found in 

seagrasses in Card Sound Aquatic Preserve were manganese followed by iron and 

arsenic. All three of these metals are related to agricultural activities, including fertilizer, 
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herbicides, and pesticides. (Zhang et al., 1997; He et al., 2004). The seagrasses in Florida 

Bay had high concentrations of copper and zinc, both of which are also related to 

agricultural activities. Drainage through this area begins in the Everglades Agricultural 

Area (EAA), just south of Lake Okeechobee, which is an area of over 700,000 acres of 

farmland. Water flow from the EAA down through the Everglades is currently controlled 

by a series of manmade canals (Guardo et al., 1995). The crops in this area consist mainly 

of sugarcane, but seasonal vegetables are also grown. Agricultural runoff that originates 

in the EAA croplands would transport fertilizers and herbicides down through the 

Everglades and into Florida Bay and the Card Sound area (Snyder and Davidson, 1994).  

Major Sources 

Runoff 

 These data showed that seasonality had a significant impact on heavy metals 

concentrations in all locations. Impacts of seasonality are related to the change from the 

dry season to the wet season and the amount of run-off entering the coastal zone. Runoff 

is known to collect and transport potential pollutants such as sediment, pesticides and 

herbicides, metals, and petroleum by-products (USGS, 2016). Eight of the ten heavy 

metals presented had significantly higher concentrations during the wet than dry season. 

This is presumably related to the increase in run-off transport of pollutants and 

contaminants that accumulate on the ground and in soils and delivering them to the 

ocean, either directly or through other waterways. The creation of manmade canals 

throughout South Florida facilitates this transport. Data from the closest South Florida 

Water Management District (SFWMD) rain gauge in Miami-Dade County show a major 

increase of approximately 480% in rainfall in June 2017 which continues until a drop 

begins in November 2017. This pattern correlates to the spikes in concentrations of 

cadmium, copper, iron, lead, manganese, mercury, nickel, and selenium (Figure 5). These 

results also show that seasonality had less of an impact in FLB than POM and CAP. This 



 

 

 

 

4
6 

 

 

 

 

Figure 5. Comparison of rainfall between the wet (June-October) and dry (November- May) seasons in inches from 

the nearest SFWMD rain gauge in Miami-Dade (Gauge ID: Dade) to the mean concentrations (µg/g) of the eight 

metals significantly impacted by seasonality. The most noticeable difference with the seasons was seen in iron 

concentrations, which were also higher overall than all other metals. 
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could be due to the lower amount of land in close proximity to this site, leading to a 

lesser volume of contaminants entering the waterways.  

Agriculture 

 Agriculture is an important part of Florida’s economy, with cropland reaching 

2,744,064 acres according to the USDA 2012 census. Exports from these lands include 

corn, cotton, sugarcane, peanuts, and citrus. Farming practices in Florida include spraying 

of copper, pesticides, and fertilizers, and application of compost or sewage sludge, 

potentially increasing the heavy metal content of the soils (Zhang et al., 1997). The soils  

used for citrus groves are often sandy, which easily lose metals with heavy rains, as they 

are not resistant to erosion (Zhang et al., 2004). He et al. (2004) found higher 

concentrations of copper, iron, manganese, and zinc in agricultural soils than forest soils 

in South Florida. They also found that the concentration of these metals in soils of citrus 

and vegetable fields correlated with the amounts measured in surface runoff, showing 

how agricultural contaminants can be deposited in the coastal zone. Schuler et al. (2008) 

noted levels of Cu in South Florida surface waters and biota had increased at the same 

time copper herbicide use for growth control of fungi and weeds increased.  

Tourism  

 Only one heavy metal, zinc, presented with higher concentrations during the dry 

season, suggesting that the main source of this metal to the coastal zone is not run-off. 

One possible explanation is that anthropogenic activities involving zinc products increase 

during the dry season. Many of these sources, such as the use of sacrificial zinc anodes on 

recreational watercraft and zinc oxides in sunscreen, increase with the spike in tourism to 

Florida during the drier months. Sacrificial zinc anodes are used to prevent corrosion on 

submerged structures. This induces dissolution of the anodes into the seawater and can 

lead to zinc contamination. A study performed by Rousseau et al. (2009) showed that 

dissolution of zinc anodes did raise the zinc concentration in the seawater and surface 

sediments nearby. With the large population and growing tourism along the coast of 

Florida, sunscreen is a widely used product. Tovar-Sanchez et al. (2013) found high 

levels of zinc in the nearshore surface waters of a highly populated beach in the western 



 

48 

 

 

Mediterranean Sea. Zinc is one of the major chemicals used in sunscreens, and 

concentrations in seawater were highest when the maximum number of beachgoers were 

likely present and when sunlight radiation peaked, which would correspond to the highest 

sunscreen application rates. These results suggest that sunscreen has the potential to 

pollute coastal waters and impact marine organisms.  

Morphology 

 Heavy metal concentrations were generally highest in blades with attached 

epiphytes and lowest in the underground complex of roots and rhizomes. This finding is 

in agreement with a previous study by Llagostera et al. (2011) which determined that 

heavy metal concentrations in seagrasses were generally higher in tissues located above 

the sediment than below. Three heavy metals - iron, manganese, and zinc - were found to 

have significantly higher concentrations in leaves with attached epiphytes than leaves that 

were cleaned or roots and rhizomes (Figure 4).  

 Epiphytes are sessile organisms that settle and grow on plants. On seagrasses 

common epiphytes include micro- and macro-algae, bacteria, tunicates, sponges, 

crustaceans, and mollusks. These epiphytes are directly consumed by seagrass grazers 

and, therefore, any heavy metals in the epiphytes combined with metal concentrations in 

the seagrass leaves would be reflected in the overall increased metal concentration. 

Patrick and Loutit (1977) found that epiphytes on the freshwater plant Alisma plantago-

aquatica contained significant amounts of Cu, Cr, Fe, Pb, and Zn, which contributed to 

the overall heavy metal concentrations of the plant. Thus far, no studies have assessed the 

heavy metal concentrations of seagrass epiphytes in Florida waters. Abundance of 

epiphytes on seagrass leaves is impacted by various parameters such as water 

temperature, light, nutrient availability, and seasonal changes. They are usually most 

abundant on the oldest leaves as they accumulate over time. Nutrient loading near a 

seagrass meadow can lead to excessive growth of epiphytes on the leaves (Larkum et al., 

2006). Iron, manganese, and zinc had the highest concentrations of tested metals overall, 

suggesting that epiphyte growth due to nutrient loading may be a major source of heavy 

metals to marine organisms during seagrass grazing. The epiphytes in this study were not 
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identified to species before processing, though they consisted of both flora and fauna. 

Insufficient mass prevented epiphyte analysis to confirm or refute our hypothesis that 

epiphytes contained significant concentrations of heavy metals. 

Toxicity 

 Data on heavy metal toxicity thresholds and health consequences are very 

limited for seagrasses, though many studies have worked to determine possible associated 

health impacts for various heavy metals (Lyngby and Brix 1984; Brackup and Capone, 

1985; Malea, 1994; Malea et al., 1995a; Hamoutene et al., 1996; Ralph and 

Burchett,1998; Prange and Dennison, 2000; Macinnis-Ng and Ralph, 2004) (Table 10). 

Some heavy metals are more toxic than others, and concentrations of essential to non-

essential metals may impact the toxicity to the organism of concern. Of the elements in 

this study, copper, iron, manganese, nickel, selenium, and zinc are essential elements, 

while arsenic, cadmium, lead, and mercury are non-essential elements (Ambo-Rappe et 

al., 2011; Sudharsan et al., 2012). It is worth noting that the heavy metals with the highest 

concentrations in this study were essential heavy metals and would presumably pose less 

of a threat even at high concentrations than low concentrations of non-essential metals.  

Seagrasses 

Studies on the phenology and morphology of seagrasses have shown that they are 

highly sensitive to pollution and will show many adverse effects with continued exposure 

(Bucalossi et al., 2006, Ralph et al., 2007). Heavy metal contamination can inhibit their 

metabolic processes and vital pathways which may cause reduction of photosynthetic 

activity and can lead to decreased growth rates and slower development (Prange et al., 

2000). Due to their role as a pathway for metal incorporation into the biota, along with 

the fact that they are widespread and sensitive to environmental changes, seagrasses are  

considered a good bioindicator of ecosystem contamination and environmental variability  

(Tovar-Sanchez et al.,2006; Coelho et al., 2009; Govers et al., 2014).



 

 

 

 

5
0 

Table 10. Biological processes impacted by various heavy metals in laboratory and in situ studies.  

 Biological Impacts References 

Cadmium • Oxidative metabolism 

• Leaf cell viability 

• Growth rate 

• Photosynthetic process 

Lyngby and Brix, 1984; Brackup and Capone, 1985; Malea, 1994; 

Hamoutene et al., 1996; Ralph and Burchett, 1998 

Copper • Leaf cell viability 

• Growth rate 

• Amino acid concentrations 

• Photosynthetic activities 

• Browning/loss of leaves 

Lyngby and Brix 1984; Malea et al., 1995a; Ralph and Burchett, 1998; 

Prange and Dennison, 2000; Macinnis-Ng and Ralph, 2004 

Iron • Amino acid concentrations Prange and Dennison, 2000 

Lead • Growth rate 

• Nitrogen fixation 

• Photosynthetic processes 

Lyngby and Brix 1984; Brackup and Capone, 1985; Ralph and Burchett, 

1998 

Mercury • Growth rate 

• Nitrogen fixation 

Lyngby and Brix 1984; Brackup and Capone, 1985 

Nickel • Nitrogen fixation Brackup and Capone, 1985 

Zinc • Leaf cell viability 

• Growth rate 

• Photosynthetic processes 

Lyngby and Brix 1984; Malea et al., 1995b; Ralph and Burchett, 1998 
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Marine Fauna 

 Toxicity in an organism is observed when vital processes are disturbed. The 

effects of heavy metal toxicity range from minor health impacts and morphological 

changes to severe health effects and even death through direct and indirect exposure. The 

concentration of a heavy metal needed to cause mortality depends upon the metal in 

question and the organism, though these specific levels are not known for many metals 

and many organisms. Fishes have been shown to suffer morphological changes in the 

gills, and their larvae exposed to heavy metals may present with numerous structural 

abnormalities (Bryan, 1971; George, 1982; Zeitoun and Mehana, 2014).   

Beyond these physical defects, heavy metals cause issues with growth and 

development. Marine organisms, including crustaceans, fish, phytoplankton, and bacteria, 

have shown slow growth in the presence of heavy metals. One aspect of diminished 

growth is the inability to feed and digest food properly. They also suffer from delayed or 

a lack of sexual maturation and the inability to spawn successfully. Some of the most 

detrimental impacts are the sub-lethal health effects occurring inside the body. Exposure 

to heavy metals has been associated with necrosis of the liver, enzyme inhibition, 

hypoxia in tissues due to impaired gas exchange, diminished protein formation, improper 

cell division, and a variety of metabolic issues. Some heavy metals can take the place of 

other essential metals in the body and can ultimately block metabolic pathways when 

they do not perform correctly (Bryan, 1971; Rainbow, 1985). The avenue of heavy metal 

loss from the body occurs mainly through excretion (Reinfelder et al., 1998).  

High levels of metals in green sea turtles from the southern Atlantic Ocean have 

been linked to fibropapillomatosis, which is known to cause severe health impacts and 

death in many cases. The disease was found to be most closely associated with copper, 

iron, and lead contamination (Carneiro da Silva et al., 2016). Studies of heavy metal 

impacts on marine mammals have also linked them to reproductive impairments, organ 

damage and disease, neurological deficits, impaired development, population declines, 

and even large-scale die-offs. Most of these health effects can be traced back to 

immunosuppression caused by the high levels of metals (Das et al., 2003; Deforges et al., 
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2016; Romero-Calderon et al., 2016). Copper concentrations found in the livers of 

manatees in Florida have been higher than those of many other marine mammal species, 

though the health effects of this are undetermined (O’Shea et al., 1984). A recent study 

also found elevated levels of copper, manganese, and zinc in whole blood samples of 

Florida manatees (Takeuchi et al., 2016). Manatees may also have elevated levels of 

arsenic, zinc, lead, and cadmium in various tissues, though it is not known what impacts 

this may cause (Siegal-Willott et al., 2013). 

Conclusion 

These results demonstrate that seagrasses in southeastern Florida contain a variety 

of heavy metals and that the concentrations of these metals vary by location, season, 

seagrass species, and morphology of the plant. The heavy metals with the highest 

concentrations were those found in high amounts in leaves with attached epiphytes, 

suggesting epiphytes may be a major source of contaminants to marine grazers. 

Contamination spikes during the wet season suggest that run-off contributes significantly 

to heavy metal accumulation in seagrasses.  

Since baseline data on toxicity thresholds of heavy metals for marine species is 

limited, more research is needed to determine if the concentrations found in this study 

pose a health risk to seagrasses or the organisms that feed on them. Future research on the 

extent of transfer of these heavy metals in grazing organisms would help determine if 

contaminants in the seagrasses contribute substantially to the heavy metal load in 

organisms that feed on them. A separate study to investigate the strong correlations 

among heavy metals would help to identify their sources and which sources pose the 

greatest threat to the marine ecosystem. Separate analysis of epiphytes would help 

determine if they contribute substantially to the heavy metal intake of grazing organisms. 

It would also be useful to increase the time period over which seagrasses are analyzed to 

determine if heavy metal concentrations are relatively stable or increasing over time.  
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