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ABSTRACT 

Fishes within the family Scombridae (i.e. tunas, mackerels and bonitos) are of high 

ecological and economic value, as they are heavily targeted by commercial and recreational 

fisheries. In coastal and open-ocean environments, adults are high-level predators, while 

larvae and juveniles serve as prey for numerous species. Much is known about the 

distribution and abundance of adult tunas, but high taxonomic uncertainty and limited 

knowledge regarding the distributional patterns of larval and juvenile tunas have led to an 

“operational taxonomic unit” gap in our understanding of tuna ecology. Scombrids were 

collected across the Gulf of Mexico (GoM, hereafter) during seven research cruises from 

2010-2011, as part of the NOAA-supported Offshore Nekton Sampling and Analysis 

Program, and during five research cruises from 2015-2017, as a part of the GOMRI-

supported Deep Pelagic Nekton Dynamics of the Gulf of Mexico Consortium. In this thesis, 

species composition, distribution, and abundance of tunas collected from the surface to 

1500 m depth are characterized in relation to depth, time of year, and physical 

oceanographic features. A synthesis of the morphological characteristics used to identify 

the taxonomically challenging larval and juvenile stages of tunas is presented, along with 

length-weight regressions to fill the data gap on the growth patterns of these early life 

stages. A total of 945 scombrid specimens were collected, representing 11 of the 16 species 

that occur in the GoM. The dominant species included: Euthynnus alletteratus (Little 

Tunny), Thunnus atlanticus (Blackfin Tuna), Auxis thazard (Frigate Mackerel), and 

Katsuwonus pelamis (Skipjack Tuna). Evidence of sampling gear selectivity was observed, 

with a MOCNESS (rectangular, research-sized trawl) collecting larvae predominantly, and 

a large, high-speed rope trawl catching only juveniles. Scombrids were collected primarily 

in the upper 200 m of the water column. Species-specific environmental preferences and 

seasonality were identified as the main drivers of tuna spatial distributions across the 

epipelagic GoM. Integrating aspects of scombrid ecology in neritic and oceanic 

environments improves management and conservation efforts for this highly important 

taxon. 

Keywords: early life stages, oceanic Gulf of Mexico, tuna ecology  
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1. INTRODUCTION 

1.1. Global importance of scombrid fishes. 

Scombridae (i.e. the tunas, mackerels, and bonitos) are high-level predators in 

tropical to temperate waters worldwide (Matthews et al. 1977). In many coastal and oceanic 

ecosystems, scombrids exhibit top-down control in pelagic food webs (Polovina et al. 

2009). In addition to their ecological significance, larger scombrids are economically 

important, as they are targeted and valued for their meat. Smaller tunas are often caught as 

incidental catch in commercial fisheries and are used recreationally as bait to catch larger 

pelagic fishes. It is well-established that overexploitation has directly affected scombrid 

species-specific population dynamics and stock sizes (IUCN 2018).  

Massive overfishing with purse seines, longlines, and traps has led to global 

population declines of scombrids, on average by 60% over the past half century (Juan-

Jordá et al. 2011). Abundances of Thunnus albacares (Yellowfin Tuna), T. obesus (Bigeye 

Tuna), and T. thynnus (Atlantic bluefin tuna) have been decreasing in areas such as the 

GoM, where their populations are considered to be depleted or fully exploited (Majkowski 

2007, Juan-Jordá et al. 2011). As a result of increasing fishing pressures, several species 

have been placed on the International Union for Conservation of Nature (IUCN) Red List 

of Threatened Species since 1994. On a global scale, T. obesus is listed as vulnerable, T. 

alalunga (Albacore) and T. albacares are near threatened, and T. thynnus is endangered. 

More specifically in the GoM, T. obesus is listed as near-threatened and T. thynnus remains 

categorized as endangered. Moreover, T. thynnus, a heavily targeted species whose 

populations have been driven close to extinction (IUCN 2018), is only considered a 

“species of concern” under the Endangered Species Act (ESA). A petition to list T. thynnus 

as endangered under the ESA had been previously submitted to the federal government in 

2010 by the Convention on Biological Diversity in order to promote their protection 

(Center for Biological Diversity 2010). 

Due to their high economic value and ecological importance, several research 

programs have been created in order to understand and monitor the population dynamics 

of adult and larval scombrids. Tagging studies of adult tunas of the Tribe Thunnini have 

collected valuable information regarding their movement and stock structure (Scott et al. 
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1990, Block et al. 2005, Rooker et al. 2007). The National Oceanic and Atmospheric 

Administration’s (NOAA) Southeast Fisheries Science Center established a large-scale 

tagging program in the 1980s off the southeastern coast of the United States, now known 

as the Cooperative Tagging Center (CTC). Cumulatively in the western North Atlantic, 

40743 releases were made between 1954 and 2005 (Scott et al. 1990, Rooker et al. 2007). 

Due to the enormous commercial interest in T. thynnus, several initiatives involving both 

scientists and recreational fishermen have been created to promote scientific research and 

conservation of this endangered species. For example, the Tag-A-Giant Foundation 

electronically tags large T. thynnus to gather data regarding their migrations, behaviors, 

and environmental preferences in both the Atlantic Ocean and Pacific Ocean (Block et al. 

1998, Gunn & Block 2001, Wilson et al. 2005, Marcek et al. 2016).  

Management and conservation efforts require information on the population 

dynamics of early life stages in addition to spawning adults. Thus, ichthyoplankton surveys 

have been conducted since 1982 by the NOAA National Marine Fisheries Service (NMFS) 

Southeast Area Monitoring and Assessment Program (SEAMAP) in order to describe 

spawning times and abundance of eggs and larvae found in epipelagic zone of the northern 

GoM. SEAMAP focuses on developing an annual index of larval abundance for the 

western population of T. thynnus to use for international management (Richards et al. 1984, 

Habtes et al. 2014).  

Declines in large-tuna fisheries are expected to directly affect and increase fishing 

pressures on small tunas (e.g., T. atlanticus and Euthynnus alletteratus). Small tunas 

(maximum of 110 cm fork length (FL), Collette 2010) typically receive less attention, as 

there are currently no federal management plans or stock assessments for these species 

(ICCAT 2016b). Thunnus atlanticus and E. alletteratus are not included in the Highly 

Migratory Species (HMS) management plan implemented by the NMFS (NMFS 2006) and 

are listed as least concern under the IUCN Red List (IUCN 2018). As a result, limited 

knowledge regarding their basic ecology, biology, and distribution and abundance patterns 

has hindered the ability to manage small tuna species that may be heavily fished in the 

future. Thus, understanding the ecology of early life stages of both large and small 
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scombrids will improve the assessment and management of their populations on local, 

regional, and global scales. 

1.2. Systematics of the Family Scombridae. 

Tunas, mackerels, and bonitos historically belonged to the order Perciformes 

(suborder Scombroidei: family Scombridae). However, recent taxonomic revisions now 

place scombrids in the order Scombriformes (Eschmeyer et al. 2018). Recent uncertainties 

regarding the evolutionary origin of the family Scombridae have hindered the 

understanding of interrelationships within the teleost radiation Percomorpha, more 

specifically the suborder Scombroidei (Miya et al. 2013). Dating back to the group’s 

original definition by Regan (1909), the taxonomic limits within Scombroidei remain 

unclear (Collette et al. 1984, Johnson 1986, Block et al. 1993, Orrell et al. 2006). 

Scombroidei originally included six families: Sphyraenidae (barracudas), 

Gempylidae (snake mackerels), Trichiuridae (cutlassfishes), Scombridae (tunas, 

mackerels, and bonitos), Xiphiidae (swordfish), and Istiophoridae (billfishes). However, 

molecular studies (Block et al. 1993, Orrell et al. 2006) questioned the relationship between 

scombrids and billfishes, as more recent studies suggest that the latter are more closely 

related to flatfishes, jacks, and remoras (Near et al. 2012). As of this writing, the 

Scombroidei comprises three families: Gempylidae, Trichiuridae, and Scombridae. 

Xiphiidae and Istiophoridae now belong to the suborder Xiphioidei, and Sphyraenidae to 

the suborder Sphyraenoidei (Eschmeyer et al. 2016). As the suborder Scombroidei 

represents a polyphyletic group, ongoing molecular studies show that Scombridae, along 

with Trichiuridae and Gempylidae, form a monophyletic group with 12 other perciform 

families: Pomatomidae (bluefish), Bramidae (pomfrets), Arripidae (Australian salmons), 

Chiasmodontidae (swallowers), Stromateidae (butterfishes), Icosteidae (ragfish), 

Scombrolabracidae (longfin escolar), Centrolophidae (medusafishes), Nomeidae 

(driftfishes), Caristiidae (manefishes), Ariommatidae (ariommatids), and Tetragonuridae 

(squaretails) (sensu Miya et al. 2013). Although these are non-scombroid fishes, they all 

possess similarities in their pelagic ecology, such as long-distance migrations (Yagishita et 

al. 2009). While there is strong morphological heterogeneity among these 15 families, 

Miya et al. (2013) suggested that they represent an undetected adaptive radiation in the 
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pelagic realm from a deep-sea ancestor that began after the Cretaceous-Paleogene mass 

extinction. Betancurr et al. (2013) hypothesized that these 15 families belong to a new 

order, Scombriformes. The debate regarding the classification of scombrids remains 

unresolved and requires further analysis.  

The family Scombridae, a group of ecologically, morphologically and 

physiologically specialized epipelagic fishes, consists of 51 species in 15 genera 

worldwide. Scombridae is further divided into two subfamilies, Gasterochismatinae and 

Scombrinae. Gasterochisma melampus (Richardson, 1845), also known as the butterfly 

kingfish, is the only species in the subfamily Gasterochismatinae and is confined in 

southern temperate waters (Collette & Nauen 1983). The subfamily Scombrinae further 

divides into four tribes, which include: Thunnini (tunas), Sardini (bonitos), Scombrini 

(mackerels), and Scomberomorini (Spanish mackerels). Each of these four tribes are 

represented among the 16 species in eight genera of the family Scombridae found in the 

GoM: Thunnini with nine species: Auxis rochei (Bullet Mackerel), Auxis thazard, E. 

alletteratus, Katsuwonus pelamis, Thunnus alalunga, T. albacares, T. atlanticus, T. obesus, 

and T. thynnus; Sardini with one species: Sarda sarda (Atlantic Bonito); Scombrini with 

one species: Scomber colias (Atlantic Chub Mackerel); and Scomberomorini with five 

species: Acanthocybium solandri (Wahoo), Scomberomorus brasiliensis (Serra), 

Scomberomorus cavalla (King Mackerel), Scomberomorus maculatus (Spanish Mackerel), 

and Scomberomorus regalis (Cero) (Collette & Nauen 1983, Richards 2005).  

1.3. Scombrid biology and ecology. 

Scombrids are robust, elongate and streamlined pelagic fishes. Some are recognized 

among the largest and fastest predators in the oceans (Collette 1978). They are 

characterized by having a pair of caudal keels in the middle of their slender caudal peduncle 

at the caudal fin base and at least four finlets (typically seven to ten) behind the dorsal and 

anal fins. Their small dorsal and ventral finlets minimize turbulence, helping the fish propel 

its body forward. Their fusiform bodies and lunate tail also minimize drag as they rapidly 

swim through the water (Collette 1978, Collette & Nauen 1983, Schulze-Haugen et al. 

2003). Additionally, their first dorsal and anal fins can fold into grooves and the pectoral 
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and pelvic fins into depressions in the body, allowing the fishes to prolong their high-speed 

swimming (Collette & Nauen 1983).  

Their morphological characteristics allow tunas to travel at high speeds and far 

distances, compared to other pelagic fishes (Collette & Nauen 1983). Seasonal migrations 

over long distances for feeding or reproduction are common in scombrid species. For 

example, T. alalunga and T. thynnus form large schools to migrate from temperate feeding 

waters to low-latitude waters for spawning (Richards 1975). However, K. pelamis and T. 

albacares remain in warm waters year-round.  

Their global distributions depend on species-specific thermal tolerances. Tropical 

tunas can be found in waters greater than 18 ˚C, and temperate tunas can be found in water 

temperatures as cold as 10 ˚C (Brill 1994). This definition is flexible, as T. obesus is 

considered a tropical tuna despite its largest and most valuable fishery being in the Grand 

Banks (ICCAT 2016a). Their unique physiology allows them to tolerate a broad thermal 

niche, ranging from 3 to 31 ̊ C waters (Carey & Lawson 1973). However, their endothermic 

ability to tolerate high temperatures can reduce their cardiac function (Blank et al. 2004). 

Therefore, the physiological abilities of some adult species are challenged during the 

warmer spring and summer spawning seasons in the GoM, when water temperatures 

approach or exceed 31 ˚C. In response to high sea surface temperatures (SSTs), some adult 

tunas, such as T. thynnus, are found at colder, deeper mesopelagic depths between 500 and 

1000 m (ICCAT 2016a). In contrast, other thunnine species (e.g., T. albacares and T. 

atlanticus) rarely encounter mesopelagic depths (ICCAT 2016a).  

Scombrids spawn in warm, open-ocean waters in the GoM, as high temperatures 

improve the development of eggs and larvae and in turn increase their growth rates 

(Miyashita et al. 2000). All scombrid species are oviparous, with the majority spawning 

buoyant, pelagic eggs (Richards 2005). The annual batch fecundities of most tunas range 

from 2 to 70 million eggs (Collette 1978, Collette & Nauen 1983), with the higher annual 

batch fecundities reported for K. pelamis (7 to 76 million) and other small tunas (Collette 

& Nauen 1983, ICCAT 2016a). Spawning behavior is species-specific, and varies from 

directed spawning within a season (e.g., T. thynnus; (Richards 1975) to more protracted or 

year-round spawning (e.g., T. albacares; (Richards 2005). However, Lutcavage et al. 
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(1999) also found through electronic tagging and experiments in captivity that T. thynnus 

might spawn once every two or three years. Most tuna species spawn in waters with surface 

temperature greater than 24 ˚C. As rapidly growing species, these pelagic fishes typically 

reach maturity after 2 to 5 years (Collette 1978, Collette & Nauen 1983), but it can extend 

to 8 years, as exhibited by the western population of T. thynnus (ICCAT 2016a). 

While the distribution of adult tunas is adequately understood (ICCAT 2016a), the 

distributions of tuna early life stages (more specifically, juveniles) have not been 

sufficiently characterized. Lindo-Atichati et al. (2012) identified that larval E. alletteratus, 

Auxis thazard, and Thunnus spp. distributions were associated with different mesoscale 

oceanographic features. Muhling et al. (2010) found that T. thynnus larvae were rarely 

collected within the Loop Current and anticyclonic rings, but preferred oligotrophic 

conditions. Moreover, Thunnus spp. distributions were found to be driven by SST and 

salinity and were associated with anticyclonic regions and the Loop Current (Rooker et al. 

2013, Cornic & Rooker 2018, Cornic et al. 2018). While a few studies have been conducted 

on the spatial distributions of tuna larvae (Richards et al. 1984, Muhling et al. 2013), there 

is limited knowledge regarding the distributional patterns of juvenile tunas in the GoM. 

1.4. The biophysical milieu: major oceanographic features of the Gulf of Mexico. 

The GoM is a semi-enclosed oceanic ecosystem that connects the Caribbean Sea to 

the Atlantic Ocean by water entering through the Yucatan Channel and exiting through the 

Straits of Florida. Encompassing 4000 km of coastline and reaching a maximum depth of 

3750 m (McEachran & Fechhelm 1998), the GoM can be divided into two distinct areas: 

the eastern and western GoM. The eastern side encompasses the Loop Current and its 

frontal zone, while the western GoM experiences fluctuating mesoscale eddies that pinch 

off the anticyclonic Loop Current. 

The circulation in the eastern GoM is dominated by the Loop Current, which 

transports more than 25 million m3 s-1 of water at 2.5 m s-1 throughout the GoM. This warm 

current enters the GoM through the Yucatan Channel. As the current flows to the center of 

the GoM, it makes an anticyclonic (clockwise) turn before the water exits through the 

Straits of Florida and becomes the Florida Current. Ultimately, the warm water serves as 
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the primary source of the Gulf Stream. Furthermore, the current’s pattern is controlled by 

the topography of the eastern GoM basin. The Loop Current is typically confined between 

Campeche Bank and the Florida Shelf, with its core closer to the bank on the west (Capurro 

& Reid 1972). However, the northern and western extensions of the Loop Current have 

strong seasonal and annual variability, which alter the current’s location, flow patterns, 

temperature, and hydrographic features (Molinari 1980, Nakata et al. 2000). 

The boundary of the Loop Current is a highly dynamic region with meanders and 

strong convergence and divergence zones that generate cyclonic and anticyclonic eddies 

(Olson & Backus 1985). In the eastern GoM, the anticyclonic flow of the Loop Current 

favors the formation of frontal zones due to differences in water density between the current 

and the surrounding ocean waters. Along the eastern boundaries (frontal zone) of the Loop 

Current, meanders create cold “tongues” (large isolated perturbations 400 km or more in 

size of cold water) extending from the warm Loop Current (Vukovich et al. 1979). As these 

cold tongues pinch off of the Loop Current into circular currents of water, eddies are 

created. Vukovich and Maul (1985) discovered that cold-core, cyclonic (counterclockwise) 

eddies form in the center of these cold tongues on or near the frontal boundary of the Loop 

Current. The Loop Current frontal eddies are 80 to 120 km in diameter, and they experience 

a vertical flow from the lower layers upward towards the divergent surface layer in the 

eddy’s center, known as active cyclonic upwelling (Bane et al. 1981). Upwelling in the 

eddy’s center brings cold, nutrient-rich water from depth to the surface, and it enhances 

primary and secondary production (Bakun 2006). Therefore, the cyclonic eddies and 

frontal zone in the eastern GoM are associated with high productivity (Olson 1991). 

Anticyclonic eddies are also prominent oceanographic features created by the Loop 

Current. After the Loop Current extends into higher latitudes in the GoM, which it does 

quasi-seasonally, the retraction of the current towards the south in the spring generates 

large rapidly rotating anticyclonic, warm-core eddies. These large, mesoscale eddies, 

which can reach diameters of 300 to 400 km and depths of 1000 m, propagate westward at 

about 4 km d-1 (Elliott 1982, Dietrich & Lin 1994) until they diminish along the western 

GoM shelf between a few days up to possibly a year later (Elliott 1982). Water converges 

toward the center of the anticyclonic eddies, creating a local high and downwelling in their 
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centers. The centers of downwelling, anticyclonic cores can serve as areas of enhanced 

retention, especially for buoyant particles (Olson 1991).  

The Mississippi River, the largest river in North America, drains 41% of the 

adjoining United States into the GoM (Van der Leeden 1990). Turbid, low-density plumes 

extend from the river into the coastal waters, making a clear front. Plumes and fronts 

change the physical oceanography, distribution of plankton, variation in nutrient inputs, 

and primary and secondary production (Le Fevre 1986, Grimes & Kingsford 1996). 

Specifically, the Mississippi River empties large quantities of nutrients into the GoM, 

creating a zone of high primary productivity at the shallow water near the river’s mouth. 

Large filaments of nutrients can be driven to the shelf edge and offshore by eddies. 

Anthropogenic inputs of nitrogen, as well as changes in the river channel morphology and 

land use, have increased the nitrate concentrations leaving the Mississippi River. 

Phosphorous concentrations have increased around the mouth of the Mississippi River as 

well, extending from Mobile Bay westward to longitude 91˚W (Riley 1937, Turner & 

Rabalais 1991). Increases in nitrate and phosphorous levels have led to an increase in 

primary production of organic carbon in the GoM ecosystem (Turner & Rabalais 1991, 

Dinnel & Bratkovich 1993). 

Higher primary production supports higher concentrations of microzooplankton 

(mostly copepod nauplii) and macrozooplankton productivity (Dagg & Whitledge 1991, 

Grimes & Finucane 1991) in the Mississippi River Plume region. Zooplankton promote 

higher ichthyoplankton concentrations by offering rich trophic resources that can be 

utilized for growth. Larval and juvenile fishes (e.g., T. atlanticus, T. albacares, and E. 

alletteratus) prey upon macrozooplankton (Grimes & Finucane 1991), while other fish 

species (e.g., Scomberomorus cavalla and Scomberomorus maculatus) prey primarily upon 

larval fishes (De Vries et al. 1990, Grimes & Finucane 1991). Copepod nauplii and various 

microzooplankton also act as critical components of other larval fish diets (Peterson & 

Ausubel 1984, Grimes & Finucane 1991). These enhanced food resources sustain larval 

and small juvenile fish assemblages (Grimes & Finucane 1991) in the Mississippi River 

Plume, offering ideal conditions for growth, survival and recruitment of local fishes, such 

as tunas (e.g., T. atlanticus, T. albacares, E. alletteratus, and Scomberomorus cavalla) and 
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other ichthyoplankton (e.g., Leiostomus xanthurus, Brevoortia patronus, and 

Chloroscombrus chrysurus, Grimes & Finucane 1991). In turn, the Mississippi River 

Plume significantly influences larval fish distributions, feeding patterns, and recruitment. 

1.5. Statement of problem. 

It is difficult to differentiate larval and juvenile scombrid stages, since there is not 

a clearly marked metamorphosis between these stages. Adult characteristics usually 

develop gradually and separately, which makes distinguishing the two early life history 

stages challenging. However, Matsumoto et al. (1971) reported that once a larva develops 

the full complement of fin spines and rays, all of its vertebrae ossify, and its anal opening 

moves back near the anal fin origin, the larval stage ends and the individual is considered 

a juvenile. Scombrids typically develop these characteristics when they grow to about 10 

to 13 mm SL (Matsumoto et al. 1971). This definition is generally accepted among larval 

tuna specialists (Matsumoto et al. 1971, Boehlert & Mundy 1994), and it will be the 

definition for the purpose of this thesis. 

Genetic barcoding studies have revealed misidentifications of larval and juvenile 

tunas when using morphology-based taxonomy, largely due to the lack of defined 

characters (Puncher et al. 2015). Diagnostic keys are available for larvae between 3 and 12 

mm standard length (SL) (Nishikawa & Rimmer 1987, Richards 2005); however, larger 

larvae and smaller juveniles lack morphological descriptions. Due to high taxonomic 

uncertainty of this size range, the ecological and biological aspects of large larvae and 

smaller juvenile are lacking, which prevents adding this cohort in a life history model. 

Smaller juvenile tuna assemblages in the GoM remain inadequately described due to 

limited sampling across their wide range of coastal and oceanic habitats, as small juveniles 

are agile enough to avoid  small sampling nets and too small to be collected using 

conventional fishing gear.  

Information on the spatiotemporal distribution and abundance data of this cohort 

provides insight into scombrid recruitment patterns. Thus, understanding the biological 

information of small juveniles of these commercially important species will provide new 

data for fisheries management efforts and will increase our understanding of juvenile 
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habitat and spawning areas that can be protected from exploitation. In turn, the lack of data 

on these important life history stages (larger larvae and smaller juveniles) can make 

managing adult populations problematic. In summary, incomplete taxonomy, lack of 

knowledge regarding the ecology of scombrid early life stages, and the dearth of large-

scale sampling efforts of juvenile tunas relative to larvae and adults in the GoM have 

impeded our base knowledge of these keystone taxa. 

1.6. Objectives. 

The initial goal of this study was to synthesize the known early life stage taxonomy 

and supplement current information regarding juvenile taxonomy. A combination of 

genetic analyses and morphological characteristics (meristic counts and body 

measurements) was used to compare and identify qualitative morphological differences 

among scombrid genera and/or species found in the GoM. The taxonomic synthesis was 

then applied to larval and juvenile specimens to address the ecological knowledge gap of 

tuna early life stages (specifically juveniles) in the GoM. The primary goal of this study 

was to characterize the faunal composition, abundance, and spatiotemporal distribution of 

tuna early life stages with respect to depth, time of year, and physical oceanographic 

features in the GoM.  

The samples collected in 2010-2011 and 2015-2017 represent one of the few 

juvenile tuna time-series datasets of its kind (larger larvae and smaller juveniles collected 

with large, rectangular midwater trawls). The Offshore Nekton Sampling and Analysis 

Program (ONSAP) sampled over a 10-month interval from December 2010 to September 

2011, while the Deep Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND) 

Consortium sampled in the spring (April to May) and late summer (August) each year 

between 2015 and 2017. Such large-scale surveys taken over seasonal cycles across 

multiple years are extremely rare in oceanic ecosystems. Moreover, multiple gear types 

were used during the two programs. During ONSAP and DEEPEND sampling, a multiple-

net rectangular trawling system was used to sample larvae and smaller juveniles in a 

quantitative, discrete-depth fashion. This system allowed for precise vertical distribution 

determination, primarily of larvae and smaller juveniles. Additionally during ONSAP, a 

second gear type, a large, dual-warp pelagic trawl, allowed for the collection of more and 
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larger scombrid specimens, specifically larger juveniles. As opposed to larval scombrids, 

juvenile individuals are a rarity in collections, which makes this dataset a significant 

contribution to global scombrid research. From a modeling perspective, juveniles are 

important, as they are the cohort that have survived the high-mortality gauntlet experienced 

by larvae (Anonymous 1984, ICCAT 2016a).  

Advancements in the identification processes of larval and juvenile tunas can 

improve our knowledge of these critical life stages and enhance conservation methods for 

the taxon. This study provided quantitative data on the assemblage structure of tuna early 

life stages, which is useful for population dynamics and essential habitat models. Figure 1 

depicts the lack of juvenile data currently available in the GoM for the essential habitat of 

the highly migratory T. thynnus. Through this thesis, additional essential habitats and 

preferences of several juvenile tuna species were identified. This thesis identified the 

assemblage structure of scombrid early life stages in the GoM and characterized the 

primary drivers (location, oceanography, and seasonality) of this assemblage structure. 

 

Figure 1. NOAA Gulf of Mexico Data Atlas map of the essential fish habitats for the highly migratory Thunnus thynnus 

(Cooper 2011), emphasizing the lack of knowledge on juvenile distributions. 
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2. METHODS 

2.1. Scombrid sample collection and processing. 

Larval and juvenile scombrids were collected in the northern GoM during seven 

research cruises in 2010-2011, as part of the NOAA-supported ONSAP, and during five 

research cruises from 2015-2017, as a part of the DEEPEND Consortium research 

program. Specimens were identified to the lowest taxonomic level possible. The ONSAP 

was created to assess the damage imposed on the deep-water invertebrates and fishes in the 

GoM from the Deepwater Horizon oil spill (DWHOS) in April - September, 2010. The 

ONSAP sampling was conducted on two research vessels, the M/V Meg Skansi and the 

NOAA FRV Pisces. From 2015-2017, the DEEPEND Consortium continued sampling on 

the R/V Point Sur visiting the same stations as ONSAP (Figure 2). All station’s bottom 

depths were greater than 1000 m, and the maximum sampling depth was 1500 m. Two 

different types of sampling gear were utilized in these surveys: a discrete-depth sampling 

gear known as a Multiple Opening/Closing Net and Environmental Sensing System 

(MOCNESS) in 2011 and from 2015-2017, and a larger, commercial-sized, pelagic 

sampling gear known as high-speed rope trawl from 2010-2011. The analyses in this thesis 

will be grouped based on gear type. 

2.1.1. MOCNESS sampling, 2011 and 2015-2017. 

The M/V Meg Skansi 6 (MS6), Meg Skansi 7 (MS7), and Meg Skansi 8 (MS8) 

cruises used a 10-m2 mouth area, 3-mm mesh MOCNESS to sample the designated stations 

from January 28 to March 30, 2011 (MS6), April 14 to June 30, 2011 (MS7), and July 18 

to September 30, 2011 (MS8). Samples in each survey were collected across a 46-station 

grid (Table 1, Figure 2, Appendix Table 1). The MOCNESS, a six-net discrete-depth 

sampling system (Wiebe et al. 1985), surveyed specific depth strata in the water column 

from the surface down to 1500 m depth, with deployments centered around solar noon and 

night. The net depth intervals were from 0 to 200 m, 200 to 600 m, 600 to 1000 m, 1000 to 

1200 m, and 1200 to 1500 m. A Tsurumi-Seiki-Kosakusho (T.S.K.) magnetically sensed 

flowmeter determined the water filtered by each net, which was used to standardize the 

abundance per unit of effort (no. individuals 10-6 m-3). This cruise series will be referred to 

as the MOCNESS 2011 survey, hereafter. 
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Figure 2. MOCNESS 2011 stations sampled aboard the M/V Meg Skansi. 

The DEEPEND cruises on the R/V Point Sur utilized the same size MOCNESS 

(10-m2 mouth area with a 3-mm mesh) previously used during the MOCNESS 2011 series. 

Select stations (Appendix Table 1) were sampled from 2015-2017 during the spring (April 

to May; Figure 3a, c, and e) and late summer (August; Figure 3b and d; Table 1). The 

sampling was centered around the approximate minimum and maximum outflow from the 

Mississippi River. This cruise series is referred to as the MOCNESS 2015-2017 survey, 

hereafter. 
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(c)

 

(d)

 

(e)  

 

Figure 3. MOCNESS 2015-2017 stations and cruise tracks for cruises (a) DP01, (b) DP02, (c) DP03, (d) DP04, and (e) 

DP05, relative to the SEAMAP/ONSAP station grid. Stations were sampled aboard the R/V Point Sur. 
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2.1.2. High-speed rope trawl sampling, 2010-2011. 

The NOAA FRV Pisces 8 (PC8), Pisces 9 (PC9), Pisces 10 (PC10), and Pisces 12 

(PC12) cruises utilized a commercial-sized, high-speed rope trawl with a 165-m2 mouth 

and a graded mesh (3.2-m to 19-mm) to survey the water column. The net sampled from 

the surface to depth and back to the surface in an oblique “V” without closing, during both 

day and night, in two patterns: “shallow” (0-700 m) and ‘deep” (0-1500 m) (Table 1). 

Sampling occurred from December 2 to December 19, 2010 (PC8), March 23 to April 6, 

2011 (PC9), June 23 to July 13, 2011 (PC10), and September 8 to September 27, 2011 

(PC12) at a subset of the previously mentioned MOCNESS stations (Figure 4, Appendix 

Table 1). This cruise series will be referred to as the high-speed rope trawl 2010-2011 

survey, hereafter. 

 

Figure 4. High-speed rope trawl 2010-2011 stations sampled aboard the FRV Pisces. 

Samples collected across all cruise series were fixed in 10% buffered 

formalin:seawater onboard and later were transferred to 70% ethanol:water. Several 

specimens were frozen or preserved in 99% ethanol:water for genetic analyses. In addition 

to initial sample processing on board each ship, the fish taxonomic identifications and 

quantitative analyses were completed in the Oceanic Ecology Laboratory at the Halmos 

College of Natural Sciences and Oceanography at Nova Southeastern University (NSU). 

SL in millimeters and weight in grams were recorded for each individual.  
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Table 1. Summary of the seven surveys conducted by the ONSAP (three M/V Meg Skansi and four FRV Pisces 

surveys) and the five surveys by the DEEPEND Consortium (R/V Point Sur) in the GoM; MOC10 = 10-m2 

MOCNESS, HSRT = High-speed rope trawl. No. of Samples indicates the amount of quantitative tows per cruise. The 

gray line designates the separation of gear types 

Cruise Dates Gear Type 
No. of 

Samples 

Combined 

Volumes (m3) 

MS6 January 28 - March 30, 2011 MOC10 211 8077563.70 

MS7 April 14 - June 30, 2011 MOC10 302 10362542.90 

MS8 July 18 - September 30, 2011 MOC10 377 11616293.50 

DP01 May 1- 8, 2015 MOC10 34 1179842.00 

DP02 August 8 - 21, 2015 MOC10 95 2880308.00 

DP03 April 30 – May 14, 2016 MOC10 75 2239905.80 

DP04 August 5 – 19, 2016 MOC10 112 2674249.30 

DP05 May 1 -11, 2017 MOC10 74 3278176.60 

PC8 December 2 - 19, 2010 HSRT 22 89419063.84 

PC9 March 23 - April 6, 2011 HSRT 3 11714434.26 

PC10 June 23 - July 13, 2011 HSRT 42 98686682.90 

PC12 September 8 - 27, 2011 HSRT 48 106376488.60 

 

2.2. Morphological and genetic taxonomy. 

Larval and juvenile scombrid specimens were identified to the lowest taxonomic 

level possible. Body shape, myomere counts, and pigmentation (Figure 5) were the key 

morphological characteristics examined to correctly identify each larva; however, 

pigmentation can migrate or disappear following preservation, which complicated the 

identification process. Overall, larval scombrid descriptions are relatively well known, 

with the exception of Scomberomorus brasiliensis, which was not identified in this study. 

However, larvae in the Tribe Thunnini are the most difficult larvae to identify, specifically 

those in the genus Thunnus (Richards 2005). Quality Assurance/Quality Control were 

conducted with leading scombrid taxonomic experts, Dr. John Lamkin (NOAA NMFS, 

Miami) and Aki Shiroza, M.S. (NOAA NMFS, Miami), in order to ensure the accuracy of 

larval specimen identifications. 
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In order to confirm our identifications and help correctly identify the challenging 

and poorly described scombrid species (namely juveniles), genetic barcoding (COI gene 

region) of a range of specimens was conducted in collaboration with Drs. Mahmood Shivji 

and Andrea Bernard (NSU, Conservation Biology and Genetics Laboratory). Genetic 

barcoding facilitates species identifications and enables identifications where 

morphological characteristics cannot be applied (e.g., for undescribed juvenile scombrids) 

(Ward et al. 2009). A total of 70 larval and juvenile scombrids were taken for genetic 

barcoding from the high-speed rope trawl 2010-2011 survey (PC10 and PC12) and 

MOCNESS 2015-2017 survey (DP02, DP03, and DP04). These genetically confirmed 

individuals were used to produce voucher specimens for each species and used to identify 

morphological characteristics that are unique to the currently undescribed juvenile 

scombrid species. 

Genetic analyses additionally provided validation for morphometric analyses. A 

total of 13 morphometric variables were used for juvenile morphometric analyses (Figure 

6). Measurements were obtained for SL, head length (HL), upper jaw length, snout length, 

eye diameter, pelvic fin, and interdorsal length. Finlets and caudal fin rays were counted 

and assisted in species identifications. The first dorsal, second dorsal, pectoral, and anal 

fins were measured and fin elements (spines and rays) were counted. All measurements 

were taken with a digital caliper to the nearest 0.01 millimeter. Gill rakers were pulled from 

the largest genetically identified specimens of each species in order to determine the size 

Figure 5. Identifiable characteristics of larval scombrids. Features include: (A-B) snout length, (B-C) eye diameter, (A-

D) head, (D-E) trunk, (D-G) body, (E-F) tail, and (F-G) caudal peduncle (edited from Nishikawa & Rimmer 1987). 
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at which adult gill raker counts are obtained. Livers were also examined for Thunnus spp. 

to help with species identifications. 

 

Figure 6. Morphometrics used to analyze the genetically identified juvenile specimens. Black represents features that 

were measured, blue represents features that were counted, and red represents features that were both measured and 

counted. 

The ratio of measured morphometric features were expressed in relation to SL 

and/or to HL in order to demonstrate how the ratio changes ontogenetically (as an 

individual grows). Investigating these ratios helped determine if morphometric features 

grow isometrically and elucidated the combination of variables that best identify scombrid 

specimens. Principal component analysis and discriminant analysis could not be used in 

this study due to an inadequately small sample size per species. Therefore, descriptive 

statistics of all measurements and ratios were recorded for all possible species. Curvilinear 

(power) regressions of various body parts were plotted against SL or HL for the two species 

with the largest sample size (i.e. Euthynnus alletteratus and Thunnus atlanticus) in order 

to analyze the differences in growth patterns between the two species. All data and 

statistical analyses were conducted with R and R Studio (Version 1.1.442, R Foundation 

for Statistical Computing). 

2.3. Species composition and spatiotemporal distribution analyses. 

Faunal composition was determined for all three cruise series (MOCNESS 2011, 

high-speed rope trawl 2010-2011, and MOCNESS 2015-2017). Assemblage abundances 

were calculated using quantitative samples. Standardized abundances were calculated by 
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dividing the sum of the raw count of individuals by the sum of the volume of water filtered. 

Percent frequency of occurrence per species was determined by cruise series. Comparisons 

between gear type and SL was investigated using a non-parametric Kruskall-Wallis test. 

Length-weight regressions were created for all scombrid species. Ratio plots of E. 

alletteratus and T. atlanticus were analyzed in order to identify differences in growth 

patterns. Seasonal abundances were determined for the three most-abundant taxon groups 

for each cruise series in order to gain a better understanding of the GoM habitat as spawning 

and nursery grounds. 

Diel vertical distributions of scombrids species were determined using the 

standardized abundances for each species per depth interval by day and night. Standardized 

abundances and percent frequency of occurrence per species were further investigated in 

the epipelagic zone for both MOCNESS surveys, as the majority of specimens were caught 

in the upper 200 m of the water column. The differences between day and night abundance 

estimates in the top 200 m for the entire family and the top four species from the 

MOCNESS 2011 cruises were analyzed with a two-sample non-parametric Mann-Whitney 

Wilcox t-test to determine if the catch rates of scombrids was affected by time of day 

(specifically, light environment).  

Both generalized additive models (GAMs) and presence-absence models were 

created for the most-abundant species collected in the epipelagic zone during the 

MOCNESS 2011 cruise series. These models are further described in the following section. 

Presence-absence models were constructed using binomial distributions in order to further 

investigate the results produced by the GAMs. Presence-absence models were used to 

determine whether the chances of catching a given scombrid (e.g., family Scombridae, E. 

alletteratus, T. atlanticus, and Auxis thazard) were greater under specific environmental 

conditions (i.e. previously identified using GAMs). A more detailed description of the 

GAMs and presence-absence models are included below. 

Spatial maps of the horizontal distributions of the most-abundant larval and juvenile 

scombrids, apportioned by diel cycle (day vs. night), were created using R and R Studio. 

The patterns in the standardized abundances were visually compared with chlorophyll a 

concentrations, minimum salinity levels, bathymetry, and sea surface height anomaly 
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(SSHA). Seasonal occurrences were used to identify spawning patterns and potential areas 

of increased recruitment in the GoM. 

2.3.1. Generalized additive models/presence-absence models. 

GAMs were developed in R in order to examine the spatiotemporal distributions of 

scombrids in the GoM. GAMs allow for non-linear relationships between response and 

multiple explanatory variables using additive smoothing functions (Zuur 2009). The family 

Scombridae and the three most-abundant scombrid species caught during the MOCNESS 

2011 survey were analyzed using GAMs. Scombrids were collected in higher abundances 

in the epipelagic zone; therefore, individual species abundances were compared solely in 

the upper 200 m of the water column in the models. Due to the small sample size during 

the MOCNESS 2015-2017 survey and oblique tow sampling during the high-speed rope 

trawl 2010-2011 survey, GAMs were not constructed with these data.  

Scombrid densities were modeled by including counts (integer values) as dependent 

variables with volume as an offset term and several environmental (categorical and 

numerical) variables as the independent variables. Therefore, in order to create a model 

that described which covariates were associated with scombrid densities, collinearity was 

tested. A pair-plot or pairwise scatterplot was used to compare covariates. SST and Julian 

date were collinear. Thus, one of the collinear variables (e.g., SST) was dropped in order 

to create a model without covariance. The inclusion of variables that appeared to covary in 

the pair-plots were verified using the variance inflation factors (Zuur et al. 2010).  

As a result of comparing the covariates using a pair-plot, the original dataset was 

reduced and the full model consisted of five explanatory variables, which included: 

minimum salinity of the epipelagic zone, distance to the nearest 200-m isobath, water mass, 

Julian date (2011), and diel cycle (day vs. night). Minimum salinity values, indicative of 

coastal runoff and riverine input, were collected from the MOCNESS sensors. Distance to 

the nearest 200-m isobath, which related to coastal influence, was calculated in R with the 

marmap package (Pante & Simon-Bouhet 2013). Water mass of the sample denoted either 

Loop Current Origin Water (LCOW), Gulf Common Water (CW), or Mixed Water (MIX) 

and was based on the mean temperature between 200 and 600 m, following Johnston et al. 

(submitted) and Milligan (unpub. data). Water mass classifications were used as a 



21 

simplified factor that related to SSHA, which was too complex to fit the model. Diel cycle 

was used to investigate differential catch patterns exhibited during the day and at night. 

Day samples referred to deployments centered around solar noon, while night samples were 

centered around solar midnight. The full model is defined as: 

counts = minimum salinity + distance to the nearest 200-m isobath + water mass  

  + Julian date + diel cycle + offset(log(volume)). 

In order to create a GAM to determine whether scombrid densities were affected 

by the five explanatory variables, the appropriate distribution of the response variable, 

which was represented as integer or count data, was determined and the terms were 

selected. The distributions of the response variables (i.e. Poisson, negative binomial, zero-

inflated Poisson, and zero-inflated negative binomial) were compared by investigating the 

residuals, Akaike information criterion (AIC) values, and degrees of freedom (Zuur 2009). 

The lowest AIC values and degrees of freedom indicated the best model (distribution) for 

describing scombrid abundances in this study (Zuur et al. 2010). Due to the high amount 

of zeros in the dataset (Zuur 2009), zero-inflation distribution models were included in the 

distribution comparisons. The Penalized Beta-splines (pb) smoother was used with a fine-

scaled, mixed model focusing between 50 and 200 and a log link. The pb smoother is a P-

spline smoother that uses singular value decomposition to fit the model and estimates the 

smoothing parameters using different local (performance iteration) methods (Eilers & 

Marx 1996, Eilers et al. 2015). 

Term selection was conducted by dropping one explanatory variable at a time and 

comparing the AIC values of the reduced models to the full model’s AIC value. If the 

difference between the full and reduced models’ AIC values (dAIC) was: 1) less than 2, 

the models were considered to be equivalent, 2) between 2 and 4, the explanatory variable 

marginally affected scombrid abundance, and 3) greater than 4, the explanatory variable 

was an important determinant of scombrid densities (Zuur 2009). If dropping a term 

resulted in a negative dAIC, the model fit was improved (the AIC value of the reduced 

model was lower than the full model) and the variable was removed. A positive dAIC 

indicated that dropping the variable weakened the model fit (higher AIC value), and the 

variable was retained.   
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3. RESULTS 

3.1. Larval and juvenile scombrid taxonomy. 

 A total of 945 scombrid larvae and juveniles were collected during the MOCNESS 

2011, MOCNESS 2015-2017, and high-speed rope trawl 2010-2011 surveys. Overall, 

68.6% of individuals were identified fully to species, 30.7% to genus only, and 0.7% to the 

family Scombridae only. 

3.1.1. Genetic analyses. 

Mitochondrial CO1 Sequence Basic Local Alignment Search Tool (BLAST) on 

was used to genetically identify scombrid specimens. Eight species from five genera were 

genetically identified, apportioned between the two survey types. A total of 28 specimens 

were collected using the high-speed rope trawl during PC10 and PC12 cruises and were 

preserved frozen. All specimens were juveniles, ranging from 15.0 – 124.8 mm SL. The 

smallest genetically identified scombrid collected using the high-speed rope trawl was 

Thunnus albacares (15.0 mm SL), while the largest was T. thynnus (124.8 mm SL). 

Additionally, 42 specimens were collected for genetic analyses from the MOCNESS 2015-

2017 survey during DP02, DP03, and DP04 cruises and preserved in 99% Ethanol. These 

specimens ranged in size from 8.2 – 87.8 mm SL, with a larger Euthynnus alletteratus 

(175.2 mm SL) collected using a dip net. The smallest and largest genetically identified 

scombrids from 2015 to 2017 were both E. alletteratus. Table 2 presents a summary of the 

genetically identified specimens. Table 3 shows the frequency of occurrence of countable 

meristic features (e.g., fin rays and finlets) from the genetically identified juvenile 

specimens.  



23 

 

Table 2. Summary of the life stage and size range of the genetically identified specimens separated by cruise series 

 

 

Species 

High-speed rope 

trawl  

2010-2011 

MOCNESS  

2015-2017 Total 
Size range  

(mm SL) 

Larvae Juveniles Larvae Juveniles 

Euthynnus alletteratus - 2 11 20 33 8.2 - 175.2 

Thunnus atlanticus - 12 4 1 17 8.3 - 121.7 

Thunnus albacares - 4 1 - 5 9.0 - 18.3 

Auxis rochei - 4 - - 4 75.4 - 108.4 

Auxis thazard - 2 - 2 4 17.8 - 87.8 

Katsuwonus pelamis - 2 1 - 3 12.0 - 32.5 

Thunnus thynnus - 1 2 - 3 10.0 - 124.8 

Acanthocybium solandri - 1 - - 1 47.0 

Total per Life History 

Stage/Cruise 
- 28 19 23 70 8.2 - 175.2 



 

 

 

2
4
 

 

Table 3. Meristics of genetically identified juvenile scombrid 

 First Dorsal Fin Second Dorsal Fin Anal Fin 

  10 11 12 13 14 15 16 17 23 10 11 12 13 14 15 16 11 12 13 14 15 

Acanthocybium solandri                 1       1           1     

Auxis rochei 1 1 1             2   2         2   2     

Auxis thazard   1 3             1 2 1         1 1   1   

Euthynnus alletteratus           5 11 4     1 10 10       1 8 5 6 1 

Katsuwonus pelamis           1 1               1 1       1 1 

Thunnus albacares         4                   4       1 2   

Thunnus atlanticus       3 9 1               2 11       1 10 1 

Thunnus thynnus       1                   1         1     

Total 1 2 4 4 13 7 12 4 1 3 3 13 11 3 16 1 4 9 11 20 3 

  Pectoral Fin Caudal Fin 
Top 

Finlets 

Bottom 

Finlets 

  23 24 25 26 27 28 30 31 32 34 35 46 47 48 49 50 51 7 8 9 7 8 9 

Acanthocybium solandri 1                     1               1     1 

Auxis rochei 2   2                     4         4   4     

Auxis thazard 1 2                       3       1 2   3     

Euthynnus alletteratus     3 3 8 7             6 8 7     1 17 3 18 3   

Katsuwonus pelamis                               1 1   2   2     

Thunnus albacares               1           2   1   1 2   3     

Thunnus atlanticus             2 2 3 1 1   2 3 5 2 1 1 11   11     

Thunnus thynnus                 1               1   1     1   

Total 4 2 5 3 8 7 2 3 4 1 1 1 8 20 12 4 3 4 39 4 41 4 1 
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3.1.2. Morphological analyses. 

The following paragraphs describe the key morphological characteristics used to 

identify larval and juvenile scombrids found in the GoM. The taxonomic results comprised 

a synthesis of existing knowledge based on: 1) the available literature, predominately 

(Nishikawa & Rimmer 1987, Richards 2005), 2) personal communications with Dr. John 

Lamkin and Aki Shiroza, M.S. (NOAA NMFS, Miami, Florida), and 3) original data 

presented herein. The meristics of the 16 scombrid species found in the GoM are included 

in the Appendix Table 2, in order to improve the identification process (Richards 2005). 

The ratio of measured morphometric features of the genetically verified juvenile 

specimens were expressed in relation to SL and/or to HL. An r2 value of 0.997 illustrated 

the tight correlation of HL and SL, suggesting that either can be used as a ratio base (Figure 

7). The juvenile descriptions were based on and compared to morphometric ratios that were 

previously described for adult scombrids (Matsumoto et al. 1971, Hammond & Cupka 

1975, ICCAT 2016a). For example, Hammond and Cupka (1975) identified the large gap 

between the first and second dorsal fins of Auxis spp. that is approximately 80% of the HL. 

A summary of the important morphometric ratios (represented as percentages) is listed by 

species and separated into size classes in Table 4 and 5. 

 

Figure 7. Correlation of standard length (SL) and head length (HL) from genetically identified juveniles 
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Table 4. Summary of morphometric ratios for genetically identified specimens. The ratios (presented as percentages) were compared to standard length (mm) and are presented by 

size class (0-50, 50-100, 100-150, and 150-200 mm SL). N represents the number of specimens collected for each species. Informative ratios are highlighted 

Species N 
Interdorsal Length: First Dorsal Fin Length Interdorsal Length: SL Eye Diameter: Snout Length 

0-50 50-100 100-150 0-50 50-100 100-150 0-50 50-100 100-150 150-200 

Acanthocybium solandri 1 7 - - 2 - - 50 - - - 

Auxis rochei 4 - 103-111 130 - 16-17 19 - 62-72 74 - 

Auxis thazard 4 71-82 84 - 13 14   90-91 67 - - 

Euthynnus alletteratus 22 2-4 4-7 - 1 1-2 - 58-85 56-61 - 56 

Katsuwonus pelamis 2 4-6 - - 1-2 - - 87 - - - 

Thunnus albacares 4 4-5 - - 1 - - 100-122 - - - 

Thunnus atlanticus 13 3-6 - 7 1 - 2 88-138 - 79 - 

Thunnus thynnus  1 - - 5 - - 1 - - 94 - 
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Table 5. Summary of morphometric ratios for genetically identified specimens. The ratios (presented as percentages) were compared to head length (mm) and are presented by size 

class (0-10, 10-20, 20-30, 30-40, 40-50 mm HL). N represents the number of specimens collected for each species. Informative ratios are highlighted 

(a) 
Species N 

Interdorsal Length: HL Upper Jaw Length: HL 

 0-10 10-20 20-30 30-40 40-50 0-10 10-20 20-30 30-40 40-50 

 Acanthocybium solandri 1 - 7 - - - - 55 - - - 

 Auxis rochei 4 - - 56-71 - - - - 37-38 - - 

 Auxis thazard 4 28-42 - 52 - - 42-43 - 39 - - 

 Euthynnus alletteratus 22 1-2 1-5 4-6 - - 54-62 47-51 45-47 - 43 

 Katsuwonus pelamis 2 4-5 - - -   49-61 - - - - 

 Thunnus albacares 4 2-3 - - - - 48-56 - - - - 

 Thunnus atlanticus 13 2-3 2-3 - 6 - 46-59 47-51 - 45 - 

 Thunnus thynnus  1 - - - 4 - - - - 41 - 

             

(b) 
Species N 

Eye Diameter: HL Snout Length: HL 

 0-10 10-20 20-30 30-40 40-50 0-10 10-20 20-30 30-40 40-50 

 Acanthocybium solandri 1 - 22 - - - - 44 - - - 

 Auxis rochei 4 - - 19-21 - - - - 28-31 - - 

 Auxis thazard 4 27-32 - 20 - - 28-32 - 29 - - 

 Euthynnus alletteratus 22 24-28 19-27 18-19 - 17 38-44 31-35 32 - 31 

 Katsuwonus pelamis 2 29 - - - - 33 - - - - 

 Thunnus albacares 4 31-35 - - - - 28-33 - - - - 

 Thunnus atlanticus 13 30-40 29-34 - 23 - 29-35 26 - 29 - 

 Thunnus thynnus  1 - - - 23 - - - - 25 - 

2
7
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3.1.2.1. Thunnini (tunas). 

Thunnine larvae are the most difficult to identify to species-level. Large heads, 

triangular guts, and large jaws are distinguishable features of this tribe. Tunas also have 

relatively short bodies and typically lack pigmentation compared to other oceanic larvae. 

The first dorsal fin develops before the second dorsal fin, preopercular spines are present, 

and a supraoccipital crest is absent. Myomeres of thunnine larvae exceed 38, with all 

Thunnus spp. having 39 myomeres. Similar to the larvae, thunnine juveniles are poorly 

described and difficult to identify, with Thunnus being the most problematic genus. 

Reference tools for identifying larval thunnine specimens are presented in Table 6 and 

juveniles in Table 7, followed by a detailed synopsis of species-specific morphological 

descriptions.  

Table 6. Quick reference chart for identifying larvae in the Tribe Thunnini 

Genus/Species 

Forebrain 

pigment 

present? 

Cleithral 

symphysis 

pigment 

present? 

Further identification 

Euthynnus alletteratus Yes Yes - 

Katsuwonus pelamis Yes No - 

Auxis spp. No Yes 
No lateral midline pigment (A. rochei) vs. 

lateral midline pigment (A. thazard) 

Thunnus spp. No No Investigate pigmentation patterns further 

 

Table 7. Diagnostic key for identifying genera/species in the Tribe Thunnini using known meristics 

Key to Thunnine Species/Genera 

1a. Pectoral fin rays ≥ 30 (30-36) ……………………………………..……Thunnus spp. 

1b. Pectoral fin rays < 30 ………………………………………………..………………2 

2a. First dorsal fin ≤ 12 fin rays (10-12) ………………………………....……Auxis spp. 

2b. First dorsal fin > 12 fin rays…………………………………...……….……………3 

3a. Second dorsal fin < 14 fin rays (11-13)……………………….Euthynnus alletteratus 

3b. Second dorsal fin ≥ 14 fin rays (14-16)………………………....Katsuwonus pelamis 
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Auxis spp. – Bullet and Frigate Mackerel 

Pigmentation patterns differentiate Auxis rochei (Risso, 1810) and Auxis thazard 

(Lacepède, 1800). Primary characteristics for identifying A. rochei include: pigmentation 

on the cleithral symphysis, a row of pigmentation on the dorsal and ventral margins of tail, 

and the lack of pigmentation on the forebrain (Figure 8a). Pigmentation is also located on 

their midbrain, hindbrain, and gut. Jaw pigmentation and Post-Anal Ventral (PAV) 

pigment may be present. The previously described pigmentation patterns for A. rochei also 

apply to A. thazard, except A. thazard larvae possess a line of pigmentation along the tail 

as seen in Figure 8c. Additional dorsal midline spots appear as larvae develop. 

Meristically, juvenile Auxis spp. are separated from other thunnine species by 

having less than 30 pectoral fin rays (23-25) and between 10-12 first dorsal fin rays (Table 

7, Appendix Table 2). Juvenile A. rochei and A. thazard are pictured in Figure 8b and d. 

Adult Auxis spp. can be distinguished from other tuna species by the wide gap between the 

first and second dorsal fins, which is approximately 80% of their HL. However, the 

interdorsal length of juvenile Auxis spp. ranging from 17.8 to 108.4 mm SL had not reached 

the adult ratio (80% of their HL, Figure 9 and Table 5). The ratio increased, but did not 

level off at the adult ratio. Additionally, the interdorsal length of adult Auxis spp. is 

approximately equal to the first dorsal length. Juvenile A. rochei exceeded the 1:1 ratio, 

while juvenile A. thazard possessed a ratio that is slightly lower that the previously 

recorded adult ratio (Figure 10 and Table 5).  

Adult identifications between the two Auxis spp. is problematic. Both Auxis spp. 

have between 38 and 47 gill rakers, which indicates that gill rakers are not useful in 

identifying the two species. While investigating the relationship between interdorsal length 

and SL, it appeared that the two species could possibly be separated (Figure 11). Results 

show that the interdorsal length of A. rochei was between 16 and 19% of the SL, while the 

interdorsal length of A. thazard was between 13 and 14% of the SL (Table 4). 

In addition to interdorsal length being a key feature for identifying juvenile Auxis 

spp., the upper jaw length compared to HL was a slightly informative ratio. Auxis spp. 
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between 17.8 and 108.4 mm SL had a smaller upper jaw length to HL ratio compared to 

all other thunnine species and Acanthocybium solandri (Figure 12 and Table 5).  

 

 

Figure 8. Images of (a) larval Auxis rochei, (b) juvenile Auxis rochei, (c) larval Auxis thazard, and (d) juvenile Auxis 

thazard. 

(a)  

(b)  

(c)  

(d)  
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Figure 9. Ratio of interdorsal length to head length vs. head length for all genetically identified juvenile specimens. 

 

 

 

Figure 10. Ratio of interdorsal length to first dorsal length vs. standard length for all genetically identified juvenile 

specimens. 
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Figure 11. Ratio of interdorsal length to standard length vs. standard length for all genetically identified juvenile 

specimens. 

 

 

 

Figure 12. Ratio of upper jaw length to head length vs. head length for all genetically identified juvenile specimens. 
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Euthynnus alletteratus – Little Tunny 

Euthynnus alletteratus (Rafinesque, 1810) larvae are distinguished from other 

scombrids by their unique combination of pigmentation, development patterns, and 

myomeres. Pigmentation on the forebrain and cleithral symphysis along with early 

development of the pigmented first dorsal fin (ca. 6.0 mm SL, Figure 13a) are critical 

taxonomic identifiers of E. alletteratus. A large amount of jaw pigment (tips of both jaws 

and ramus of lower jaw) is a distinct characteristic of E. alletteratus. Pigmentation on the 

jaw tip may wrap around the symphysis of the upper and lower jaws. Larval E. alletteratus 

also have pigmentation on the midbrain and a row of ventral tail midline pigment spots. 

Euthynnus alletteratus has 39 myomeres, and the PAV pigment series may be present. 

Larval E. alletteratus may have a weak, rounded supraoccipital crest, although the crest 

may be absent.  

Juvenile E. alletteratus are separated from other thunnine species by having less 

than 30 pectoral fin rays (25-29), more than 12 first dorsal fin rays (13-17) and less than 

14 second dorsal fin rays (11-13) (Table 7, Appendix Table 2). Juveniles collected in this 

study are pictured in Figure 13b and c. Their interdorsal length was previously recorded as 

less than the diameter of the eye apart; however, this feature was shared with Thunnus spp. 

When comparing juvenile E. alletteratus to juvenile Thunnus spp., the ratios of eye 

diameter to snout length and eye diameter to HL were lower for E. alletteratus (Figure 14 

and 15). However, the ratio of snout length to HL was higher in E. alletteratus compared 

to Thunnus spp. (Figure 16 and Table 5). Thus, these were informative ratios when 

determining the differences between these two taxonomic groups. The key features for 

morphology describing juvenile E. alletteratus were snout length and eye diameter. 

 

 

 

 



 

34 

(a)  

(b)  

(c)  

Figure 13. Images of (a) larval and (b and c) juvenile Euthynnus alletteratus. 

 

 

Figure 14. Ratio of eye diameter to snout length vs. standard length for genetically identified juvenile specimens, 

including Acanthocybium solandri, Euthynnus alletteratus, and all Thunnus spp. 
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Figure 15. Ratio of eye diameter to head length vs. head length for genetically identified juvenile specimens, including 

Acanthocybium solandri, Euthynnus alletteratus, and all Thunnus spp. 

 

 

 

Figure 16. Ratio of snout length to head length vs. head length for genetically identified juvenile specimens, including 

Acanthocybium solandri, Euthynnus alletteratus, and all Thunnus spp. 
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Katsuwonus pelamis – Skipjack Tuna 

Katsuwonus pelamis (Linnaeus, 1758) larvae are characterized by forebrain 

pigmentation, lack of pigmentation on the cleithral symphysis (separating this species from 

E. alletteratus), and two to three ventral tail midline spots as seen in Figure 17a. A ventral 

tail midline spot appears blotchier on K. pelamis compared to single dot, which is distinct 

of T. atlanticus larvae. Pigmentation is rarely found on the dorsal margin of the tail. Black 

pigmented spots may appear on the jawline, but they do not create a full jawline of 

pigmentation, such as E. alletteratus. Larvae also have pigmentation on the midbrain, 

hindbrain, and gut. The first dorsal fin appears late (ca. 8.0 mm SL), and K. pelamis has 41 

myomeres.  

Juvenile K. pelamis are separated from other thunnine species by having less than 

30 pectoral fin rays (26-28), more than 12 first dorsal fin rays (14-16), and greater than or 

equal to 14 second dorsal fin rays (14-16, Table 7, Appendix Table 2). Fin ray counts of 

well-developed second dorsal fins can be used to differentiate smaller E. alletteratus (11-

13) and K. pelamis (14-16) specimens. Juvenile K. pelamis are pictured in Figure 17b. 

The morphometric analyses in this study did not differentiate this species from the 

other scombrids, thus the gill raker counts of the two genetically identified specimens were 

analyzed. Adult K. pelamis have between 53 and 63 gill rakers. At 26.8 mm SL, K. pelamis 

had 25 gill rakers (3+1+21). The top gill rakers were small buds and underdeveloped. The 

lower lobe had several notches where more gill rakers were apparently going to develop. 

Additionally at 32.5 mm SL, a juvenile K. pelamis had approximately 29 gill rakers (4+25). 

Again, the four gill rakers on the top were small buds and underdeveloped, and the bend 

did not possess a gill raker in this specimen. The lower lobe of this specimen had developed 

more gill rakers than the smaller specimen. It is most likely that as the bone grows, more 

gill rakers would grow, mainly on the longer lower lobe. Because the juvenile K. pelamis 

still did not possess the full complement of adult gill rakers at 32.5 mm SL, gill raker counts 

could not be used to identify this species. However, it is important to note that K. pelamis 

appears to have higher gill raker counts, even at this smaller size, compared to other 

thunnine species.  
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(a)  

(b)  

Figure 17. Images of (a) larval and (b) juvenile Katsuwonus pelamis. 

Thunnus spp. – “True Tunas” 

 Thunnus larvae have large heads, triangular guts, a short body, and large jaws. They 

lack pigmentation on the cleithral symphysis and forebrain. There are a few or no spots on 

ventral tail midline. Larval species-specific pigmentation patterns are explained below. 

Meristically, juvenile Thunnus spp. are separated from other thunnine species by having 

greater than or equal to 30 pectoral fin rays (30-36, Table 7, Appendix Table 2). However, 

species cannot be distinguished based on fin ray counts. As a result, other characteristics 

needed to be analyzed. 

When comparing juvenile Thunnus spp. to juvenile E. alletteratus, the ratios of eye 

diameter to snout length and eye diameter to HL were higher for Thunnus spp. (Figure 14 

and 15). However, the ratio of snout length to HL was lower in Thunnus spp. compared to 

E. alletteratus (Figure 16). Thus, these were informative ratios when determining the 

differences between these two taxonomic groups. The key morphological features for 

identifying juvenile Thunnus spp. were snout length and eye diameter. 
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Figures 9-12 and 14-16 show that juvenile Thunnus spp. could not be separated 

with the available sample set. Larger T. thynnus and T. atlanticus had similar ratios 

throughout (Table 4 and 5). Additionally, smaller T. albacares and T. atlanticus possessed 

similar ratios as well, which is comparable to their larval stage, when T. atlanticus 

specimens lack ventral midline pigmentation. Larval and juvenile T. alalunga and T. 

obesus were excluded from the morphometric analyses, as they were not collected in this 

study. Genetic identifications remain necessary for juvenile Thunnus spp. until more 

distinct characteristics are identified.  

Thunnus alalunga – Albacore  

 Thunnus alalunga (Bonnaterre, 1788) larvae possess pigmentation on their 

midbrain, gut, first dorsal fin (when greater than 5.0 mm SL) and tips of their jaws (when 

greater than 7.0 mm SL). From 5.0 to 9.0 mm SL, pigment is only seen on the upper jaw. 

Pigmentation is not present on the ventral tail or lower jaw tip. Specimens between 9.0 

and 10.8 mm SL start developing juvenile pigment, which begins appearing on the 

outside of the lower jaw. Larval and juvenile T. alalunga were not collected in this study. 

Adults have a striated liver with a large center lobe and between 25 and 31 gill rakers. 

Thunnus albacares – Yellowfin Tuna 

Thunnus albacares (Bonnaterre, 1788) larvae have pigmentation on the midbrain, 

gut, tips of their jaws, and first dorsal fin (when greater than 5.0 mm SL, Figure 18a). From 

4.5 to 7.0 mm SL (and as early as 3.8 mm SL), pigment is only seen on the lower jaw tip, 

but from 7.0 to 9.0 mm SL, pigment is present on both the upper and lower jaws. Lower 

jaw pigment is found inside the jaw of T. albacares that are 9.0 to 10.0 mm SL. For 

specimens less than 4.5 mm SL, T. albacares and T. alalunga are morphologically 

indistinguishable, unless there is lower jaw pigment present, in which the larval specimen 

would be T. albacares.  

Larval T. albacares are differentiated from T. atlanticus by the absence of ventral 

tail midline spots. Due to the lack of pigmentation being the defining characteristic for this 

species, the certainty of morphological identifications is lacking. Therefore, questionable 

specimens in this study were labeled as Thunnus spp. Genetic analyses would verify 
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identifications, although the majority of specimens in this study were previously preserved 

in formalin. Moreover, the genetically identified juvenile T. albacares (Figure 18b) showed 

that they develop spots along their ventral tail midline, similar to larval T. atlanticus. This 

identifies a controversial feature for differentiating these two species and it needs to be 

reconsidered once the individual scombrid is considered a juvenile. 

The morphometric analyses in this study did not differentiate T. albacares from 

other Thunnus spp. (Table 4 and 5). Thus, the gill raker counts of the largest, undamaged 

genetically identified specimen (17.9 mm SL) were analyzed. Adult T. albacares have 

between 26 and 34 gill rakers. The gill rakers of a juvenile T. albacares at 17.9 mm SL has 

underdeveloped gill rakers. The top and bend of the gill raker did not have gill rakers, and 

there were approximately four gill rakers that were visible on the bottom. Since the 

genetically identified juvenile T. albacares still did not possess the full complement of 

adult counts, gill rakers could not be used to identify this species. The size range at which 

adult gill rakers fully develop remains unknown. Additionally, the livers of adult T. 

albacares lack striations and have a larger right lobe. Due to the small size of the 

genetically identified specimens, the livers were not analyzed.  

(a)  

(b)  

Figure 18. Images of (a) larval and (b) juvenile Thunnus albacares. 
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Thunnus atlanticus – Blackfin Tuna 

Thunnus atlanticus (Lesson, 1831) larvae have pigmentation on the midbrain, gut, 

jaw tips, and first dorsal fin (when greater than 5.0 mm SL). The diagnostic characteristics 

of T. atlanticus include: the presence of small pigment spots on the ventral tail midline and 

the absence of black pigmentation on the forebrain, hindbrain, and cleithral symphysis 

(Figure 19a). The ventral tail midline spot on T. atlanticus appears as a more circular dot 

compared to a blotchy spot, which identifies K. pelamis larvae. A well-developed first 

dorsal fin also helps differentiate T. atlanticus and K. pelamis, in which the latter develops 

the dorsal fin later. Moreover, T. atlanticus has two morphs: one with ventral tail midline 

pigment and the other without, which in turn could easily be misidentified as T. albacares. 

Thus, the lack of ventral pigmentation led to Thunnus spp. as the lowest taxonomic 

identification of these taxonomically challenging specimens.  

The morphometric analyses in this study did not differentiate T. atlanticus from 

other Thunnus spp. (Table 4 and 5). At smaller sizes, their ratios were similar to T. 

albacares, and at larger sizes, they mimicked T. thynnus ratios. Thus, the gill raker counts 

of the two largest genetically identified specimens were analyzed. Adult T. atlanticus have 

between 19 and 25 gill rakers. The largest T. atlanticus specimen (121.7 mm SL) had 21 

gill rakers (5+1+15), exhibiting adult counts. The second largest specimen (42.5 mm SL) 

only had 16 gill rakers (6+10), which demonstrated that a juvenile at this size does not 

possess adult gill raker counts. As a result, gill raker counts could only identify T. atlanticus 

specimens that were greater than or equal to 121.7 mm SL. In addition, adult T. atlanticus 

livers lack striations and have a larger right lobe. The livers of both the 121.7 and 42.5 mm 

SL (Figure 20a and b) genetically identified specimens possessed these features. Juvenile 

T. atlanticus are pictured in Figure 19b and c. 
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(a)  

(b)  

(c)  

Figure 19. Images of (a) larval, and (b and c) juvenile Thunnus atlanticus. 

 

(a)  (b)  

Figure 20. The (a) left and (b) right lobes of a liver from a genetically identified Thunnus atlanticus specimen (42.5 mm 

SL), preserved in 99% ethanol. 
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Thunnus obesus – Bigeye Tuna 

 Thunnus obesus (Lowe, 1839) larvae possess pigmentation on the midbrain, gut, 

tips of the jaws, ventral margin of the tail, and first dorsal fin (when greater than 5.0 mm 

SL). The ventral tail spots are large and distinct, which is characteristic of this species. 

The larger size of the ventral spots differentiates T. obesus from T. atlanticus. The 

presence or absence of the large, distinct ventral tail spots is the only method for 

distinguishing T. obesus from T. albacares, as clearing and staining mechanisms do not 

separate the two species. Adults have 23 to 31 gill rakers and livers with striations along 

the ventral edges of the three equal-sized lobes. Larval and juvenile T. obesus were not 

collected in this study. 

Thunnus thynnus – Atlantic bluefin tuna 

Thunnus thynnus (Linnaeus, 1758) larvae have pigment on the midbrain, hindbrain, 

gut, tips of jaws, dorsal and ventral margins of the tail, and first dorsal fin (when greater 

than 5.0 mm SL, Figure 21a and b). One to four pigment spots on the dorsal midline identify 

T. thynnus larvae. Thunnus thynnus is the only species of the genus Thunnus to have dorsal 

tail pigmentation, and it rarely possesses lateral pigmentation as well. The lack of forebrain 

pigmentation differentiates T. thynnus from K. pelamis when there is a single pigment spot 

on dorsal edge of caudal peduncle. Thunnus thynnus larvae also lack pigmentation on the 

cleithral symphysis. 

The morphometric analyses in this study did not differentiate T. thynnus from other 

Thunnus spp. Thus, the gill raker counts of the only genetically identified specimen were 

analyzed. Adult T. thynnus have between 34 and 43 gill rakers. The T. thynnus specimen 

(124.8 mm SL, Figure 21c) had 36 gill rakers (9+1+26), exhibiting adult counts. As a result, 

gill raker counts could only identify T. thynnus specimens that were greater than or equal 

to 124.8 mm SL. Additionally, adult T. thynnus livers possess striations and all three lobes 

are equal in length. The liver of the frozen, genetically identified specimen (124.8 mm SL) 

had equal lobes, but lacked striations, indicating that preservation methods may have 

altered its appearance or the striations do not develop at this size.  
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The pectoral fin length for an adult T. thynnus is less than 80% of the HL (ICCAT 

2016a). However, the pectoral fin length for a juvenile T. thynnus at 124.8 mm SL was 

43% of the HL (Table 5). Presumably the pectoral fin length in juveniles will grow 

allometrically until reaching the adult proportion. This study shows that a 124.8 mm SL, 

T. thynnus does not yet have the adult length ratios. 

(a)  

(b)  

(c)  

Figure 21. Images of (a and b) larval and (c) juvenile Thunnus thynnus. 

3.1.2.2. Sardini (bonitos). 

One species of the Sardini tribe occurs throughout the GoM and Atlantic Ocean, 

Sarda sarda. 

Sarda sarda – Atlantic Bonito 

 Sarda sarda (Bloch, 1793) larvae have a weakly developed and rounded 

supraoccipital crest. The snout is about 1-1.5 times the eye diameter and the mouth is large. 
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Pigmentation is present on the tips of the jaws, but there is no pigment found inside the 

mouth or on the gular area (Figure 22). Additional pigmentation is found on the forebrain, 

midbrain, gut, cleithral symphysis and pelvic fin rays. A prominent pigment spot on the 

caudal peduncle above the hypural plate along with ventral tail pigment spots distinguish 

Sarda spp. larvae from other scombrids. Ventral tail pigment spots migrate dorsally above 

the ventral midline between the myomeres. Sarda sarda have 53 myomeres, which is 

similar to Scomberomorus maculatus. Juvenile Sarda sarda were not collected in this 

study. Fin ray counts (Appendix Table 2) and gill raker counts (16-22) can differentiate 

this species from other scombrids once the adult features fully develop. 

 

Figure 22. Image of a larval Sarda sarda. 

3.1.2.3. Scombrini (mackerels). 

One species of the Sardini tribe spawns in the GoM, Scomber colias. Unlike other 

scombrid species in the GoM, Scomber is the only genus that lacks preopercular spines, a 

large head, and large jaws in the larval phase. 

Scomber colias – Atlantic Chub Mackerel 

 The absence of preopercular spines and the order of fin development distinguish 

Scomber colias Gmelin, 1789 from other scombrid larvae. Additionally, the first dorsal fin 

of S. colias appears late, specifically after the second dorsal and anal fins, which is also 

unique to this species. Larval S. colias have pigmentation on their midbrain, hindbrain, 

over the gut and ventral margin of tail. Scomber colias larvae have smaller jaws and a 

rounder snout compared to other scombrid species. Scomber colias has 31 myomeres. 

Larval S. colias were not collected in this study.  
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Juvenile S. colias are separated from other scombrids by having 4-5 top finlets and 

5 bottom finlets (Figure 22, Appendix Table 2)  Moreover, fin ray counts and gill raker 

counts (25-35) can be used to identify this species once the adult features are fully 

developed.  

 

Figure 23. Image of a juvenile Scomber colias. 

3.1.2.4. Scomberomorini (Spanish mackerels). 

 The Scomberomorini tribe consists of two distinct genera: the monotypic 

Acanthocybium solandri and Scomberomorus spp. All larval Scomberomorus spp. possess 

a pointed and distinct supraoccipital crest, preopercular spines, a long snout that is about 

twice the diameter of their eye, a large mouth, and well-developed teeth. The first dorsal 

fin of Scomberomorus spp. develops before the second dorsal fin. This genus usually has 

pigment in the mouth or gular area. Scomberomorus spp. have more than 48 myomeres, 

except for Scomberomorus cavalla (41-43). Meristic counts used to identify 

Scomberomorus spp. are found in Appendix Table 2. The monotypic Acanthocybium 

solandri has a unique morphology, which will be explained below. 

Acanthocybium solandri – Wahoo 

Acanthocybium solandri (Cuvier, 1832) larvae possess a long and slender body. 

Larval A. solandri have long snouts that distinguish them from other larval scombrid 

species. High myomere counts (62-64) characterize this species. Acanthocybium solandri 

larvae develop the second dorsal fin before the first dorsal fin and lack a supraoccipital 

crest. Pigmentation is found on the jaw tips, nasal area, forebrain, midbrain, and over the 

gut. There is also a ventral spot on the tail in addition to a spot under their second dorsal 

fin (Figure 24a).  
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Juveniles are separated by their fin ray counts, with their high first dorsal counts 

(23-27) and low second dorsal counts (11-16; Figure 24b, Appendix Table 2). They also 

lack gill rakers. When analyzing the ratio of eye diameter to snout length, A. solandri has 

the lowest ratio compared to E. alletteratus and Thunnus spp. (Table 5 and Figure 14). The 

snout length is approximately two times the eye diameter (eye diameter was 50% of the 

snout length) for an individual at 47.0 mm SL. Similar to the larval and adult phases, the 

snouts of juvenile A. solandri cover a large proportion of the head. It has been previously 

reported that the snout length is 50% of the HL in adult A. solandri. Results from this study 

indicate that for an individual at 47.0 mm SL, the snout length was approximately 44% of 

the HL. Therefore, the adult size range is still not obtained by an individual at 47.0 mm SL. 

Thus, the ratio of eye diameter to snout length and the ratio of snout length to HL were 

informative ratios used to identify this species. The key features for morphologically 

identifying juvenile A. solandri were snout length and eye diameter. 

(a)  

(b)  

Figure 24. Images of (a) larval and (b) juvenile Acanthocybium solandri. 
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Scomberomorus brasiliensis – Serra  

Scomberomorus brasiliensis Collette, Russo & Zavala-Camin, 1978 larvae remain 

undescribed. In past studies, S. brasiliensis has been erroneously identified as 

Scomberomorus maculatus. All Scomberomorus spp. in this study were identified to 

species, prolonging the taxonomic uncertainty of S. brasiliensis.  

Scomberomorus cavalla – King mackerel 

 The previous morphological description of Scomberomorus spp. applies to 

Scomberomorus cavalla (Cuvier, 1829). Larval S. cavalla have pigmentation on their 

forebrain, midbrain, over their gut, cleithral symphysis, and ventral margin of their tail 

(Figure 25). Its long preopercular spine, distinct patch of pigmentation on each side of the 

tongue, and low myomeres counts (41-43) characterize S. cavalla from other 

Scomberomorus spp. The PAV pigment series and pigment spots on the inside of the lower 

jaw rami are present. Juvenile S. cavalla were not collected in this study. Adults possess 9 

– 10 gill rakers.  

 

Figure 25. Image of a larval Scomberomorus cavalla. 

Scomberomorus maculatus – Spanish Mackerel 

 Scomberomorus maculatus (Mitchill, 1815) larvae possess pigmentation on the 

forebrain, midbrain, over gut, cleithral symphysis, ventral margin of the tail, and gular area. 

Scomberomorus maculatus larvae are distinguished from other Scomberomorus spp. by a 

distinct patch of pigment by the gular area. Scomberomorus maculatus have 53 myomeres. 

Adults possess 10-16 gill rakers. Larval and juvenile S. maculatus were not collected in 

this study. 
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Scomberomorus regalis – Cero 

 Scomberomorus regalis (Bloch, 1793) larvae have pigmentation on the forebrain, 

midbrain, over gut, cleithral symphysis, ventral margin of tail, and gular area. Gular 

pigmentation is used to distinguish S. regalis from other Scomberomorus spp. The 

supraoccipital crest, myomeres, and pigmentation separate S. regalis larvae from other 

scombrid species. Scomberomorus regalis has 38 myomeres, similar to S. brasiliensis. 

Adults have between 12 and 18 gill rakers. Larval and juvenile S. regalis were not collected 

in this study. 

3.2. Larval and juvenile scombrids faunal composition and ecology. 

3.2.1. Assemblage structure. 

3.2.1.1. Comparison of fauna collected by different gear types and at different times of 

collection.  

Table 8 lists the ranked abundances and frequency of occurrence of all scombrids 

collected during the three cruise series. The highest number of species collected (n = 11) 

occurred during the MOCNESS 2011 sampling, while the lowest number (n = 6) was 

collected during the MOCNESS 2015 – 2017 sampling (Table 8 and Figure 26). During 

the three cruise series, the five most frequently caught taxa included: E. alletteratus, T. 

atlanticus, Auxis thazard, Thunnus spp., and K. pelamis. However, differences in 

abundances and catch frequencies were observed.  

Higher abundance estimates were associated with the MOCNESS sampling, 

typically 10-fold higher than those of high-speed rope trawl sampling. In 2011, the 

MOCNESS collected 10.85 individuals (ind., hereafter) 10-6 m-3, while in 2015-2017 a total 

of 7.67 ind. 10-6 m-3 were collected. The high-speed rope trawl collected 1.15 ind.  

10-6 m-3. However, taxa were collected more frequently with the high-speed rope trawl. 

The frequency of occurrence for the family Scombridae was highest with the high-speed 

rope trawl (50%) compared to the MOCNESS in 2011 (15 %) and 2015-2017 (5%). 

Differences were also seen in the size ranges collected by each gear type. Figure 27 

shows the lengths of scombrids collected by each sampling method. The MOCNESS 

primarily collected larval scombrids, with a few juveniles. The high-speed rope trawl 
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collected only juveniles, and these were typically larger than the juveniles collected by the 

MOCNESS. The null hypothesis of a non-parametric Kruskall-Wallis test was rejected, 

which indicated that there was a significant difference between the SLs of three cruise 

series (p<<<0.0001). A non-parametric, multiple-comparison, post-hoc test utilizing the 

pgirmess package in R indicated that there were significant differences among the three 

cruise series.  

 

Figure 26. Standardized abundances from the three cruise series. 

 

Figure 27. Size-frequency plot of larval and juvenile scombrids, color-coded by cruise series. 
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Table 8. Standardized abundance (No. ind. 10-6 m-3), rank, and frequency of occurrence (FO) of each species collected during the three cruise series. FO is listed as percent of trawls 

in which taxon was collected. Dashes indicate no collections 

 MOCNESSS 2011 High-speed rope trawl 2010-2011 MOCNESS 2015 - 2017 

Species Abundance Rank FO  Abundance Rank FO Abundance Rank FO 

Euthynnus alletteratus 4.026 1 5.2 0.160 2 20.0 6.366 1 2.6 

Thunnus atlanticus 2.063 2 4.7 0.059 5 7.8 0.490 2 0.8 

Auxis thazard 1.397 3 1.9 0.007 9 1.7 0.163 6 0.5 

Thunnus spp. 1.131 4 2.7 0.650 1 28.7 0.245 4 0.3 

Katsuwonus pelamis 0.865 5 2.4 0.154 3 7.0 0.245 4 0.8 

Auxis spp. 0.333 6 0.7 0.078 4 7.0 - - - 

Auxis rochei 0.200 7 0.6 0.013 8 1.7 - - - 

Sarda sarda 0.166 9 0.5 - - - - - - 

Scombridae (UNID.) 0.166 9 0.6 0.003 11 0.9 - - - 

Acanthocybium solandri 0.133 11 0.5 0.013 8 3.5 - - - 

Thunnus thynnus 0.133 11 0.5 0.003 11 0.9 0.163 6 0.5 

Scomber colias 0.100 12 0.3 - - - - - - 

Scomberomorus cavalla 0.067 14 0.2 - - - - - - 

Thunnus albacares 0.067 14 0.2 0.013 8 0.9 - - - 

5
0
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3.2.1.1.1. MOCNESS 2011. 

A total of 344 individuals were collected in the GoM from January to September in 

2011 (Table 9). The scombrid assemblage comprised seven genera and 11 species. A total 

of 84.6% of individuals were identified to species, 13.7% to genus only, and 1.7% to family 

only. A total of 79.9% were classified as larvae and 20.1% as juveniles.  

Specimens ranged in size from 3.0 to 111.4 mm SL. The smallest identifiable larval 

scombrid was K. pelamis (3.2 mm SL) and the largest was Auxis sp. (111.4 mm SL). From 

890 quantitative tows, E. alletteratus was the most-abundant species caught in these 

surveys (4.03 ind. 10-6 m-3), making up roughly 38% of the total abundance of scombrids. 

Thunnus atlanticus was the second-most abundant species collected (2.06 ind. 10-6 m-3), 

comprising 19% of the scombrid abundance. Thunnus atlanticus, along with the other 

Thunnus spp., comprised 32% of the total scombrid abundance. Thunnus thynnus was 

collected in low abundance (0.13 ind. 10-6 m-3). 

 

Table 9. Counts and size range of scombrid specimens caught during the MOCNESS 2011 survey. Dashes indicate no 

collections 

Species Larvae Juvenile Total Size range (mm SL) 

Euthynnus alletteratus 91 34 125 4.9 - 44.5 

Thunnus atlanticus 65 1 66 4.0 - 16.0 

Auxis thazard 34 13 47 5.7 - 21.0 

Thunnus spp. 34 1 35 4.3 – 47.0 

Katsuwonus pelamis 25 3 28 3.2 - 16.0 

Auxis spp. juv. - 11 11 15.2 - 111.4 

Auxis rochei 5 1 6 5.4 - 86.7 

Scombridae UNID. 5 1 6 3.0 - 9.0 

Sarda sarda 5 - 5 5.0 - 9.0 

Acanthocybium solandri 4 - 4 7.5 - 13.0 

Thunnus thynnus 4 - 4 5.3 - 7.0 

Scomber colias - 3 3 11.4 - 51.9 

Scomberomorus cavalla 1 1 2 6.3 - 16.2 

Thunnus albacares 2 - 2 5.0 - 8.5 

Total 275 69 344 3 - 111.4 
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3.2.1.1.2. MOCNESS 2015-2017. 

A total of 108 individuals were collected in the GoM during both the spring (April-

May) and late summer (August) of 2015, 2016, and 2017 (Table 10). The scombrid 

assemblage comprised four genera and six species. A total of 97.2% of individuals were 

identified to species and 2.8% to genus. A total of 42.6% of individuals were larvae and 

57.4% were juveniles (namely individuals that recently transformed into juveniles).  

Specimens ranged in size from 6.8 - 87.8 mm SL, with a larger E. alletteratus 

specimen (175.2 mm SL) collected with a dip net. The smallest scombrid was T. atlanticus, 

while the largest was Auxis thazard. From 390 quantitative tows, E. alletteratus was the 

most-abundant species caught in these surveys (6.37 ind. 10-6 m-3), making up 83% of the 

total abundance of scombrids. One tow collected 51 specimens, suggesting patchiness 

and/or schooling behavior. Thunnus atlanticus was the second-most abundant species 

collected (0.49 ind. 10-6 m-3). This species, along with the other Thunnus spp., combined 

made up 12% of the total scombrid abundance. Thunnus thynnus was collected in low 

abundance (0.16 ind. 10-6 m-3). 

 

Table 10. Counts and size range of scombrid specimens caught during the MOCNESS 2015-2017 survey. Dashes 

indicate no collections 

Species Larvae Juvenile Total Size range (mm SL) 

Euthynnus alletteratus 32 58 90 
7.3 - 79.1  

(175.2 dip-netted) 

Thunnus atlanticus 6 1 7 6.8 - 42.5 

Katsuwonus pelamis 3 - 3 8.8 - 12.1 

Thunnus spp. 2 1 3 9.8 - 14.6 

Auxis thazard - 2 2 17.8 - 87.8 

Thunnus thynnus 2 - 2 10.5 - 12.5 

Total 46 62 108 6.8 - 87.8 
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3.2.1.1.3. High-speed rope trawl 2010-2011. 

A total of 492 individuals were collected in the GoM from December 2010 to 

September 2011 (Table 11). The scombrid assemblage comprised six genera and nine 

species. A total of 43.9% of individuals were identified to species, 55.9% to genus only, 

and 0.2% to family only.  

All individuals were juveniles, ranging in size from 10.2 - 136.7 mm SL. Both the 

smallest and largest scombrids were T. atlanticus. Scomber colias was the numerically 

dominant species caught throughout these surveys, but all specimens were collected in tows 

designated as non-quantitative (i.e. gear malfunction, no volume filtered calculation, and/or 

irregular towing pattern). Patchiness and/or schooling behavior was indicated for S. colias, 

as 83% of specimens were collected during one tow. Thus, from 115 quantitative tows, the 

taxonomically problematic genus Thunnus was collected in the highest abundance. The 

remaining Thunnus spp. (23 individuals) were identified to species using genetic barcoding 

and existing pigmentation. Euthynnus alletteratus ranked second in abundance (0.16 ind. 

10-6 m-3) and K. pelamis ranked third (0.15 ind. 10-6 m-3). 

Table 11. Counts and size range of scombrid specimens caught during the high-speed rope trawl 2010-2011 survey. 

Dashes indicate no collections 

Species Larvae Juvenile Size range (mm SL) 

Thunnus spp. - 205 12.7 - 118.9 

Scomber colias - 106 27.3 - 97.5  

Euthynnus alletteratus - 61 13.3 - 112.5 

Katsuwonus pelamis - 49 17.2 - 91.1 

Auxis spp. - 36 18.7 - 111.8 

Thunnus atlanticus - 18 10.2 - 136.7 

Acanthocybium solandri - 4 36.0 – 63.0 

Auxis rochei - 4 75.4 - 108.4 

Thunnus albacares - 4 15.0 - 18.3 

Auxis thazard - 3 13.6 - 28.9 

Scombridae UNID. - 1 damaged 

Thunnus thynnus - 1 124.8 

Total - 492 10.2 - 136.7 
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3.3. Length-weight regressions of larval and juvenile scombrids in the northern Gulf of 

Mexico. 

Species and taxa length-weight regressions exhibited a curvilinear relationship. 

Thus, non-linear regressions were analyzed (e.g., power, exponential, and logarithmic 

models), and the best model was chosen using the AIC values. The power model was the 

best model for all species and taxa. This model is represented by the equation: 𝑊 = 𝑎𝑆𝐿𝑏, 

where W is weight (g), SL is standard length (mm), 𝑎 is the scaling factor that moves values 

of 𝑆𝐿𝑏 up or down as 𝑎 increases or decreases, and 𝑏 is the exponent or power that 

determines the function’s rate of growth or decline.  

Power models were created for species and taxa with a sample size greater than 10 

individuals and data that encapsulated a wide range of lengths and weights (Figure 28). 

The majority of species had a slope close to three, which is common for all fish species. 

However, Acanthocybium solandri had a value of 1.795, due to the small range in lengths 

(7.5 – 47.0 mm SL). Species with a low sample size and size ranges, and thus omitted in 

this section, included: Sarda sarda, T. thynnus, T. albacares, and Scomberomorus cavalla. 
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Figure 28. Length-weight regressions of all species/taxa collected during the three cruise series. 
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3.4. Variation in the morphometrics of juvenile Euthynnus alletteratus and Thunnus 

atlanticus. 

 The differences in morphometric ratios were analyzed for the two genetically 

identified juvenile species with the larges sample size, Euthynnus alletteratus and Thunnus 

atlanticus. Power regressions were plotted in Figures 29-32. SL was plotted against the 

ratio of HL to SL (Figure 29). The species curves overlapped and maintained a similar 

declining pattern, indicating smaller individuals have larger heads compared to their body 

length. HL was plotted against the ratio of snout length to HL (Figure 30). Both species 

possessed declining power curves, but E. alletteratus maintained a larger ratio than T. 

atlanticus at all sizes, indicating that juvenile E. alletteratus have larger snouts than T. 

atlanticus. HL was also plotted against the ratio of upper jaw length to HL (Figure 31). The 

power curves of E. alletteratus and T. atlanticus overlapped, and followed the same 

declining pattern, with smaller specimens having larger jaws compared to their HL. HL 

was plotted against the ratio of eye diameter to HL (Figure 32). Both species possessed 

decreasing power curves, indicating that smaller specimens have larger eyes compared to 

their head. Thunnus atlanticus maintained a higher ratio at all sizes, indicating that juvenile 

T. atlanticus have larger eyes than E. alletteratus. 
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Figure 29. Ratio of head length (HL) to standard length (SL) vs. standard length for genetically identified juvenile 

Euthynnus alletteratus and Thunnus atlanticus specimens. 

 

Figure 30. Ratio of snout length (SN) to head length (HL) vs. head length for genetically identified juvenile Euthynnus 

alletteratus and Thunnus atlanticus specimens. 
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Figure 31. Ratio of upper jaw length (UPJL) to head length (HL) vs. head length for genetically identified juvenile 

Euthynnus alletteratus and Thunnus atlanticus specimens. 

 

Figure 32. Ratio of eye diameter (ED) to head length (HL) vs. head length for genetically identified juvenile Euthynnus 

alletteratus and Thunnus atlanticus specimens. 
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3.5. Spatiotemporal distributions of larval and juvenile scombrid fishes in the northern 

Gulf of Mexico. 

3.5.1. Vertical distributions and diel catch rates. 

 Vertical distributions and diel catch rates were identified using MOCNESS data 

from the 2011 and 2015-2017 cruise series. The sampling effort is presented in Table 12.  

Table 12. Sampling effort (number of tows) based on day (D) vs. night (N) sampling, depth (m), and cruise series. 

 MOCNESS 2011 MOCNESS 2015-2017 

Depth D N D N 

0 - 200 100 107 33 41 

200 - 600 104 103 35 41 

600 - 1000 92 91 33 39 

1000 - 1200 80 82 34 42 

1200 - 1500 64 67 36 39 

 

3.5.1.1. MOCNESS 2011. 

The majority of Scombridae collected occurred in the epipelagic zone during both 

day and night samples, confirming their epipelagic tendencies for early life stages 

(Richards 2005, Figure 33). Higher abundances were recorded at night (69.84 ind.  

10-6 m-3) than during the day (23.06 ind. 10-6 m-3). A few larval scombrids were collected 

in deeper waters, reaching 1500 m depth.  However, these deeper catches were observed 

in small numbers (e.g., four T. thynnus larvae were collected below the epipelagic zone). 

The dominant species, E. alletteratus, occurred in highest abundances in the 

epipelagic zone. More E. alletteratus were collected at night (25.02 ind. 10-6 m-3) than 

during the day (11.93 ind. 10-6 m-3). Thunnus atlanticus larvae were also most-abundant in 

the epipelagic zone, with higher abundances at night (12.70 ind. 10-6 m-3).  

Auxis thazard and K. pelamis abundances were highest in the epipelagic zone, with 

higher abundances at night (13.45 ind. 10-6 m-3 and 5.23 ind. 10-6 m-3, respectively). The 

remaining species (e.g., Acanthocybium solandri, Auxis rochei, Sarda sarda, Scomber 

colias, Scomberomorus cavalla, T. albacares and T. thynnus) were collected at low 

abundances and had patchy distributions throughout the water column.  
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Figure 33. Vertical distribution of larval and juvenile scombrids collected during the MOCNESS 2011 survey. 
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3.5.1.2. MOCNESS 2015-2017. 

Results from the MOCNESS 2015-2017 survey were similar to those of 

MOCNESS 2011 survey, in which larval and juvenile scombrids were predominately 

collected in the upper 200 m of the water column. From 2015 – 2017, all scombrids were 

collected in the epipelagic zone (Figure 34). At night, 79.41 ind. 10-6 m-3 were caught, while 

only 1.42 ind. 10-6 m-3 were caught during the day. This further confirms the epipelagic 

distribution of early life stages and higher catch rates at night.  

The dominant species, E. alletteratus, occurred in highest abundances in the 

epipelagic zone at night (65.75 ind. 10-6 m-3), and was the only species collected during the 

daytime (1.42 ind. 10-6 m-3). Thunnus atlanticus (5.12 ind. 10-6 m-3), K. pelamis (2.56 ind. 

10-6 m-3), Auxis thazard (1.70 ind. 10-6 m-3), and T. thynnus (1.70 ind. 10-6 m-3) were caught 

at lower abundances, also occurring only in the epipelagic zone at night.  
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Figure 34.Vertical distribution of scombrids collected during the MOCNESS 2015 – 2017 survey.
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3.5.1.3. Epipelagic abundances and frequency of occurrence – all MOCNESS data. 

 MOCNESS discrete-depth sampling results clearly demonstrated that scombrid 

early life stages are primarily distributed within the epipelagic zone. Thus, further analysis 

of the abundances and frequency of occurrence of all species and taxa collected were 

restricted to samples collected in the top 200 m of the water column (Table 13). In 2011, 

the scombrid abundance estimates were 23.09 ind. 10-6 m-3 during the day and 69.84 ind. 

10-6 m-3 at night. From 2015-2017, scombrid abundance estimates were 1.41 ind. 10-6 m-3 

during the day and 79.41 ind. 10-6 m-3 at night. Euthynnus alletteratus exhibited the highest 

abundance in the epipelagic zone during both day and night over both cruise series. 

For both cruise series, the majority of species and taxa were collected at higher 

abundances and higher frequencies at night than during the day. In 2011, there was 27.0% 

frequency of occurrence during the day and 43.9% at night. From 2015 – 2017, there was 

3.0% frequency of occurrence during the day and 48.8% at night.  

In 2011, E. alletteratus also had a higher frequency, occurring in 11.0% of the day 

trawls and 15.0% of the night trawls. From 2015-2017, E. alletteratus occurred in 3.0% of 

day trawls and 22.0% of night trawls. Thunnus atlanticus exhibited a frequency of 

occurring in 7.0% (2011) of the day trawls and 7.3 - 14.2% (2015-2017 and 2011, 

respectively) of the night trawls. Auxis thazard frequency of occurring increased between 

day and night samples, with 2% of the day trawls (2011) and 4.9 - 10.3% (2015-2017 and 

2011, respectively) of the night trawls. Katsuwonus pelamis exhibited a frequency of 

occurring in 2% of day trawls (2011) and 7.3 - 8% (2015-2017 and 2011, respectively of 

night trawls. 

A few rare-event species and taxa were not collected more often at night in the 2011 

series. For example, Acanthocybium solandri was caught at relatively similar abundances 

and frequencies at night (0.75 ind. 10-6 m-3 and 1.9%, respectively) compared to the daytime 

(0.80 ind. 10-6 m-3 and 2.0%, respectively). Similarly, Sarda sarda and Scomberomorus 

cavalla were only collected during the daytime in 2011.  

For the MOCNESS 2011 cruise series, the results of a Mann-Whitney Wilcoxon 

test for the family Scombridae (p = 0.0032) rejected the null hypothesis of no significant 
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difference in abundances by diel cycle, as higher abundances were caught at night than 

during the day. However, there were no significant differences in the abundance of fish 

caught based on diel cycle for E. alletteratus (p = 0.343) and T. atlanticus (p = 0.088). 

Auxis thazard (p= 0.013) and K. pelamis (p= 0.0396) were caught at significantly higher 

abundances at night than during the day. Statistical significance was not tested on the 

MOCNESS 2015-2017 samples due to only one specimen (E. alletteratus) being collected 

during the daytime, showing higher catch rates at night. Thus, all abundances and 

frequencies were higher at night than during the day from 2015 – 2017. 
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Table 13. Standardized abundance (No. ind. 10-6 m-3) and frequency of occurrence (FO) of scombrid larvae and juveniles collected in the epipelagic zone of the GoM using a 

MOCNESS trawl. FO is listed as percent of trawls in which a taxon was collected. Samples were separated based on day (D) and night (N) sampling. Dashes indicate no collections 

 MOCNESS 2011  MOCNESS 2015 – 2017 
 Abundance  FO  Abundance  FO 

Species D N D N  D N D N 

Euthynnus alletteratus 11.93 25.02 11.0 15.0  1.42 65.75 3.0 22.0 

Thunnus atlanticus 3.18 12.70 7.0 14.0  - 5.12 - 7.3 

Auxis thazard 0.80 13.45 2.0 10.3  - 1.71 - 4.9 

Katsuwonus pelamis 0.80 5.23 2.0 8.4  - 2.56 - 7.3 

Auxis rochei - 0.75 - 0.9  - - - - 

Sarda sarda 0.80 - 2.0 -  - - - - 

Acanthocybium solandri 0.80 0.75 2.0 1.9  - - - - 

Thunnus thynnus - - - -  - 1.71 - 4.9 

Scomber colias - 0.75 - 2.8  - - - - 

Scomberomorus cavalla 0.40 - 1.0 -  - - - - 

Thunnus albacares 0.40 - 1.0 -  - - - - 

Thunnus spp. 3.98 6.35 7.0 9.3  - 2.56 - 2.4 

Auxis spp. - 3.74 - 5.6  - - - - 

UNID. Scombridae - 1.10 - 1.9  - - - - 

Family Scombridae 23.09 69.84 27.0 43.9  1.42 79.41 3.0 48.8 
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3.5.1.4. Diel differences in the high-speed rope trawl 2010-2011 survey shallow tows.  

 Since the high-speed rope trawl does not have the capacity to open or close during 

a tow, it only allows for oblique tows from the surface to some depth. Since scombrids 

were most likely caught near the surface, vertical distributions and day vs. night 

abundances were analyzed only for the “shallow” (0 – 700 m depth) tows (Figure 35). 

Euthynnus alletteratus, Thunnus spp. juveniles, and T. atlanticus were collected during the 

day and at night. Acanthocybium solandri and Auxis thazard were only collected during 

the day, while Auxis spp. juveniles, Auxis rochei, K. pelamis, and T. thynnus were only 

collected at night.  

 

 

Figure 35. Standardized abundances collected in quantitative shallow tows separated by day vs. nighttime sampling. 

 

 

 

 

0 0.1 0.2 0.3 0.4 0.5

Acanthocybium solandri

Auxis spp. juv.

Auxis rochei rochei

Auxis thazard

Euthynnus alletteratus

Katsuwonus pelamis

Thunnus spp. juv.

Thunnus atlanticus

Thunnus thynnus

Standardized Abundances (N x 10-6 m-3)

Day Abundances Night Abundances



 

67 

3.5.2. Horizontal distributions of larval and juvenile scombrids in the northern Gulf of 

Mexico. 

3.5.2.1. MOCNESS 2011. 

3.5.2.1.1. Mapping the spatial distributions of the three most-abundant scombrids. 

Spatial distribution plots were created for the three most-abundant species (e.g., 

Euthynnus alletteratus, Thunnus atlanticus, and Auxis thazard) collected in 2011. The 

abundances of each species were analyzed across the sampling grid by month and diel cycle 

(day vs. night). Each species abundance was compared to three environmental features by 

month (chlorophyll a, SSHA, and minimum salinity, Appendix Figures 1-3).  

Euthynnus alletteratus was collected over three months during the day (March, 

August, and September, Figure 36) and six months at night (March-August, Figure 50). 

Seasonal abundances were evident, with an increase in August in both day and night 

sampling. Euthynnus alletteratus was rarely collected west of -90⁰, except for one catch in 

July at night. Specimens were predominantly collected in the center of the sampling grid. 

High abundances appeared to be related to higher chlorophyll a concentrations, specifically 

in August when a large plume was funneled into the GoM from the Mississippi River. 

Euthynnus alletteratus was also collected along the cusps of these plume waters in April 

and May, however, a few specimens were sampled in low chlorophyll a concentrated 

waters. Moreover, E. alletteratus were collected in Common Water and along frontal 

boundaries, indicated by SSHA. High abundances in August were associated with low 

salinity levels, but some individuals were collected in areas of higher salinity as well, 

indicating a wide range of salinity preferences. Thus, pristine conditions appeared in 

August for E. alletteratus, although individuals persisted outside of these suitable areas. 

Thunnus atlanticus was collected over five months during the day (May-

September, Figure 38) and four months at night (May-August, Figure 39). Individuals were 

collected across the entire sampling grid throughout the year. However, seasonality was 

evident, with more individuals collected in August and more specifically, at night. Thunnus 

atlanticus appeared to be found in high salinity and low chlorophyll a concentrated waters. 

This species also was collected in Common Water and along frontal boundaries.  
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Auxis thazard individuals were collected during the day in July and August (Figure 

40) and at night from February-May and July-September (Figure 41). Highest abundances 

appeared at night in April along the shelf break and slope. Auxis thazard was mainly caught 

along the southern-most section of the sampling grid, but abundances were also found 

along the shelf break and slope. Auxis thazard appeared to prefer intermediate and low 

chlorophyll a concentrations, as this species was prevalent along the edges of the 

Mississippi River Plume. This species concentrated in areas of low SSHA, along with some 

possible frontal boundaries. Auxis thazard was collected in high salinity waters.   
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Figure 36. A heat map of Euthynnus alletteratus standardized abundances in the epipelagic zone collected during the day time in 2011 using the MOCNESS. White indicates that 

no individuals were collected. Abundances range from blue (1 ind. 10-6 m-3) to red (550 ind. 10-6 m-3).  
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Figure 37. A heat map of Euthynnus alletteratus standardized abundances in the epipelagic zone collected at night in 2011 using the MOCNESS. White indicates that no 

individuals were collected. Abundances range from blue (1 ind. 10-6 m-3) to red (550 ind. 10-6 m-3).  
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Figure 38. A heat map of Thunnus atlanticus standardized abundances in the epipelagic zone collected during the day time in 2011 using the MOCNESS. White indicates that no 

individuals were collected. Abundances range from blue (1 ind. 10-6 m-3) to red (550 ind. 10-6 m-3).  7
1
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Figure 39. A heat map of Thunnus atlanticus standardized abundances in the epipelagic zone collected at night in 2011 using the MOCNESS. White indicates that no individuals 

were collected. Abundances range from blue (1 ind. 10-6 m-3) to red (550 ind. 10-6 m-3).  7
2
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Figure 40. A heat map of Auxis thazard standardized abundances in the epipelagic zone collected during the day time in 2011 using the MOCNESS. White indicates that no 

individuals were collected. Abundances range from blue (1 ind. 10-6 m-3) to red (550 ind. 10-6 m-3).  7
3
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Figure 41. A heat map of Auxis thazard standardized abundances in the epipelagic zone collected at night in 2011 using the MOCNESS. White indicates that no individuals were 

collected. Abundances range from blue (1 ind. 10-6 m-3) to red (550 ind. 10-6 m-3).  7
4
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3.5.2.1.2. Generalized additive models of the three most-abundant scombrids. 

Data were obtained from 326 specimens collected from 890 quantitative samples 

in the GoM from January 28 - September 30, 2011. Due to the high amount of zeros in the 

dataset, GAMs were used to analyze the abundance and distribution of entire family 

Scombridae and the three most-abundant species collected in this study, Euthynnus 

alletteratus, Thunnus atlanticus, and Auxis thazard. The Poisson residuals suggested over-

dispersion, and the zero-inflated models were not required in this study based on the 

residuals. Therefore, the negative binomial distribution models were used to assess the 

importance of the explanatory variables with respect to scombrid abundances (Table 14, 

Figures 42-45). GAMs only investigated patterns within the upper 200 m of the water 

column. 

 

Table 14. AIC values and degrees of freedom (df) of each GAM tested for the family Scombridae, and the species 

Euthynnus alletteratus, Thunnus atlanticus, and Auxis thazard. The best models with the lowest AIC score are bolded 

 

GAM AIC df Notes 

Scombridae     

Poisson 569.9 17 Highest AIC/high df 

Negative binomial 441.2 15 Lowest AIC value 

Zero-inflated Poisson 456.3 25 High AIC/df 

Zero-inflated negative binomial 470.9 9 
More complex model than negative 

binomial 

Euthynnus alletteratus    

Poisson 200.3 22 Lowest AIC, but high df/over dispersion 

Negative binomial 205.1 12 Simplest model 

Zero-inflated Poisson - - Model did not compile 

Zero-inflated negative binomial 235.1 7 Highest AIC value 

Thunnus atlanticus    

Poisson 153.3 17 High df/over dispersion  

Negative binomial 152.6 7 Lowest AIC value 

Zero-inflated Poisson 154.9 7 Negative  binomial is better 

            Zero-inflated negative binomial - - Model did not compile 

Auxis thazard    

Poisson 195.0 5 High df/over dispersion  

Negative binomial 115.3 6 Lowest AIC value 
Zero-inflated Poisson 134.8 6 Higher AIC 

             Zero-inflated negative binomial - - Model did not compile 
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Figure 42. Scombridae negative binomial residuals. 

 

Figure 43. Euthynnus alletteratus negative binomial residuals. 
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Figure 44. Thunnus atlanticus negative binomial residuals. 

 

Figure 45. Auxis thazard negative binomial residuals. 
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Table 15. AIC values of GAMs with dropping one explanatory variable for (a) Scombridae, (b) Euthynnus alletteratus, 

(c) Thunnus atlanticus, and (d) Auxis thazard. The full models’ AIC values are highlighted in gray and are referred to 

as “none.” Important explanatory variables are bolded 

Explanatory variable 

dropped 
AIC 

value 
dAIC 

Julian date 471.9 +30.7 

Water mass 451.7 +10.5 

Diel cycle 449.6 +8.4 

Distance to 200-m isobath 448.2 +7.0 

None 441.2 - 

Minimum salinity 439.0 -2.2 

a. Scombridae b. Euthynnus alletteratus 

Explanatory variable 

dropped 
AIC 

value 
dAIC 

Julian Date 226.5 +21.4 

Minimum salinity 212.9 +7.8 

Distance to 200-m isobath 212.7 +7.6 

Diel cycle 205.7 +0.6 

None 205.1 - 

 

c. Thunnus atlanticus 

Explanatory variable 

dropped 

AIC 

value 
dAIC 

Julian date 169.3 +16.7 

Minimum salinity 163.9 +11.3 

Diel cycle 154.8 +2.2 

None 152.6 - 

Water mass (LCOW/CW) 150.4 -2.2 

Distance to 200-m isobath 148.3 -4.3 

 

d. Auxis thazard 
 

 

Explanatory variable 

dropped 

AIC 

value 
dAIC 

Diel cycle 119.4 +4.1 

Distance to 200-m isobath 115.4 +0.1 

None 115.3 - 

Julian date 113.6 -1.7 

Minimum salinity 113.2 -2.1 

The highest catches of the family Scombridae were associated with Julian date 

(dAIC: +30.7), water mass (dAIC: +10.5, Common Water), diel cycle (dAIC: +8.4, 

nighttime sampling), and distance to the nearest 200-m isobath (dAIC: +7.0), as seen in 

Table 15a. The most prominent findings were that scombrids preferred Common Water 

(Figure 46a) and were caught at higher abundances at night (Figure 46b). The abundances 

of the entire family Scombridae in relation to Julian date and distance to the nearest 200-

m isobath were driven by E. alletteratus, T. atlanticus, and Auxis thazard. Thus, species-

specific environmental preferences in the GoM were investigated for these three species. 

(a)  (b)  

Figure 46. Term plots for Scombridae abundances in relation to (a) water body with LCOW as Loop Current Origin 

Water, CW as Common Water, and INT as Intermediate/Mixed Water, and (b) diel cycle. 
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Euthynnus alletteratus, the most-abundant species in the study, was only collected 

in Common Water; therefore, E. alletteratus GAMs only included samples caught in 

Common Water. Results of the full and reduced models are seen in Table 15b. Euthynnus 

alletteratus abundances were highly seasonal (Julian date, dAIC: +21.4, Figure 47a and b) 

with a peak occurring later in the sampling period around August. Minimum salinity was 

also an important determinant (dAIC: +7.8, Figure 47c and d), with more E. alletteratus 

caught in lower salinity waters. Euthynnus alletteratus abundances were also associated 

with distance to the nearest 200-m isobath (dAIC: +7.6, Figure 47e and f), with more 

individuals collected near the shelf break and continental slope regions. 

(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 47. Term plots and standardized abundances for Euthynnus alletteratus in relation to (a and b) Julian date, (c 

and d) minimum salinity, and (e and f) distance to the nearest 200-m isobath. 
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Thunnus atlanticus was the second-most abundant species caught during this study. 

Only one T. atlanticus specimen was collected in Intermediate/Mixed Water; thus, the 

GAMs only included samples from Loop Current Origin Water and Common Water. 

Results of the full and reduced models are seen in Table 15c. Thunnus atlanticus 

abundances were strongly seasonal (Julian date, dAIC: +16.7, Figure 48a and b), with 

higher abundances beginning in June and continuing through September. Higher T. 

atlanticus abundances strongly related to high salinity levels (dAIC: +11.3, Figure 48c and 

d) and marginally to diel cycle (dAIC: +2.2, Figure 48e and f), more specifically nighttime 

sampling. Lastly, Auxis thazard was the third-most abundant species caught in this study. 

In Common Water, A. thazard was caught at higher abundances at night than during the 

day (dAIC: +4.1, Table 15d, Figure 49a and b). The remaining variables were not important 

indicators of scombrid distributions in the GoM, and the model could not be applied to the 

other scombrid species due to insufficient sample size. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 48. Term plots and standardized abundances of Thunnus atlanticus in relation to (a and b) Julian date, (c and d) 

minimum salinity, and (e and f) diel cycle. 

(a)  
(b)  

Figure 49. (a) Term plot and (b) standardized abundances of Auxis thazard in relation to diel cycle, showing a 

dominance in nighttime samples. 
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3.5.2.1.3. Presence-absence models of the three most-abundant scombrids. 

Presence-absence models with a binomial distribution were used to investigate the 

probability that a given scombrid (e.g., family Scombridae, E. alletteratus, T. atlanticus, 

and A. thazard) would be caught in the epipelagic zone based on each explanatory variable. 

As a whole, the family Scombridae catches were most correlated to Julian date (dAIC: 

+13.1, Table 16a, Figure 50a) and marginally to water mass (dAIC: +2.1, Table 16a, Figure 

50b). Similar to the GAMs results, more scombrids were collected later in the year and in 

Common Water. 

(a)  (b)  

Figure 50. Term plots of Scombridae in relation to (a) Julian date and (b) water mass. 

Table 16. AIC values of the presence-absence models with dropping one explanatory variable for (a) Scombridae, (b) 

Euthynnus alletteratus, (c) Thunnus atlanticus, and (d) Auxis thazard. The full model's AIC values are highlighted in 

gray and are refered to as “none.” Important explanatory variables are bolded 

Explanatory variable 

dropped 

AIC 

value 
dAIC 

Julian date 235.7 +13.1 

Water mass 224.7 +2.1 

Diel cycle 224.4 +1.8 

Distance to 200-m isobath 223.4 +0.8 

None 222.6 - 

Minimum salinity 222.0 -0.6 

a. Scombridae 

 

 

 

b. Euthynnus alletteratus 

Explanatory variable 

dropped 

AIC 

value 
dAIC 

Julian Date 111.2 +11.0 

Minimum salinity 106.4 +6.2 

Distance to 200-m isobath 103.6 +3.4 

None 100.2 - 

Diel cycle 98.0 -2.2 

c. Thunnus atlanticus 

Explanatory variable 

dropped 

AIC 

value 
dAIC 

Julian date 122.6 +20.8 

Minimum salinity 105.6 +3.8 

Diel cycle 102.3 +0.5 

None 101.8 - 

Distance to 200-m isobath 101.3 -0.5 

Water mass (LCOW/CW) 100.6 -1.2 
d. Auxis thazard 

Explanatory variable 

dropped 

AIC 

value 
dAIC 

Diel cycle 119.4 +4.1 

Distance to 200-m isobath 115.4 +0.1 

None 115.3 - 

Julian date 113.6 -1.7 

Minimum salinity 113.2 -2.1 
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 Euthynnus alletteratus and T. atlanticus abundances were associated with 

seasonality (dAIC: +11.0, Table 16b, Figure 51a; and dAIC: +20.8, Table 16c, Figure 51d, 

respectively) and salinity levels. Both species were caught later in the year, but the 

probability of being caught varied with salinity levels. Euthynnus alletteratus was most 

likely caught in lower salinities (dAIC: +6.2, Table 16b, Figure 51b), while T. atlanticus 

was marginally associated with higher salinities (dAIC: +3.8, Table 16c, Figure 51e). 

Euthynnus alletteratus was marginally associated with distance to the nearest 200-m 

isobath (dAIC: +3.4, Table 16b, Figure 51c), where it was more likely to be collected closer 

to the shelf break. The probability of catching A. thazard was higher at night (dAIC: +4.1, 

Table 16d, Figure 51f). 

(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 51. Term plots of: Euthynnus alletteratus in relation to (a) Julian date, (b) minimum salinity, and (c) distance to 

200-m isobath; Thunnus atlanticus in relation to (d) Julian date and (e) minimum salinity; and Auxis thazard in relation 

to (f) diel cycle. 
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3.5.2.2. MOCNESS 2015-2017. 

The spatiotemporal distributions of the most-abundant species, E. alletteratus, was 

investigated. GAMs were unable to be conducted on the E. alletteratus count data due to 

the detection of patchiness (i.e. about 47% of the specimens were collected in one tow). 

Presence-absence models did not work as well due to a small sample size and variance 

across tows. Thus, the environmental conditions previously investigated in the MOCNESS 

2011 survey (i.e. epipelagic minimum salinity, Julian date, distance to the nearest 200-m 

isobath, water body, and diel cycle) in relation to larval E. alletteratus catches are described 

below.  

Euthynnus alletteratus was only caught in August, with higher abundances 

collected in 2016 compared to 2015 due to patchiness. Larvae were only collected in the 

epipelagic zone in Common Water, and all specimens were caught at night except for one. 

Individuals were collected in waters with minimum salinities ranging from 32.39 to 35.72. 

Euthynnus alletteratus larvae were caught from 69.5 to 243.8 km from the nearest 200-m 

isobath.  

3.5.2.3. High-speed rope trawl 2010-2011. 

Spatial distribution maps were created for the three most-abundant species and/or 

taxa (e.g., Thunnus spp., E. alletteratus, and K. pelamis) collected from December 2010 to 

September 2011, with only quantitative tows and months plotted. The standardized 

abundances of each species were analyzed across the sampling grid by both month and diel 

cycle (day vs. night). Each species abundances were compared with three environmental 

features (chlorophyll a, SSHA, and minimum salinity; Appendix Figures 1-3). None of the 

three taxa were collected in December 2010 and April 2011. 

Thunnus spp. were the most-abundant taxa in this study and were collected across 

the entire sampling grid during both the day and night, specifically in the northern and 

eastern stations (Figure 52 and 53). Thunnus spp. were collected over three months during 

the day and night (June, July, and September). Seasonal abundances were evident, as 

individuals were not collected in December and April. High abundances related to 

Common Water with low chlorophyll a concentrations. Individuals were collected between 

the 1200- and 2700-m isobaths. 
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Euthynnus alletteratus, the second-most abundant species, was collected over three 

months (June, July and September) during the day and at night (Figure 54 and 55). 

Euthynnus alletteratus was collected in the northern portion of the grid in June, the eastern 

stations in July, and both the eastern and northern sections in September. Euthynnus 

alletteratus appeared to reside in water bodies with maximum depths between 1200 and 

2700 m and additionally near the De Soto Canyon and DWHOS site. High abundances 

were associated with Common Waters with moderate chlorophyll a concentrations. 

Katsuwonus pelamis was the third-most abundant species collected with the high-

speed rope trawl. This species was only caught in June, July and September at night, with 

highest abundances in July (Figure 56 and 57). Katsuwonus pelamis was found in offshore 

waters between the 2200- and 2700-m isobaths, and this species was typically collected in 

Common Waters with moderate chlorophyll a concentrations and moderate salinity levels.
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Figure 52.  A heat map of Thunnus spp. standardized abundances in the epipelagic zone collected during the day using the high-speed rope trawl from 2010-2011. White indicates 

that no individuals were collected. Abundances range from blue (1 ind. 10-6 m-3) to red (550 ind. 10-6 m-3).  
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Figure 53.  A heat map of Thunnus spp. standardized abundances in the epipelagic zone collected at night using the high-speed rope trawl from 2010-2011. White indicates that no 

individuals were collected. Abundances range from blue (1 ind. 10-6 m-3) to r to red (550 ind. 10-6 m-3). 
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Figure 54. A heat map of Euthynnus alletteratus standardized abundances in the epipelagic zone collected during the day using the high-speed rope trawl from 2010-2011. White 

indicates that no individuals were collected. Abundances range from blue (1 ind. 10-6 m-3) to r to red (550 ind. 10-6 m-3). 
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Figure 55. A heat map of Euthynnus alletteratus standardized abundances in the epipelagic zone collected at night using the high-speed rope trawl from 2010-2011. White 

indicates that no individuals were collected. Abundances range from blue (1 ind. 10-6 m-3) to r to red (550 ind. 10-6 m-3). 
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Figure 56. A heat map of Katsuwonus pelamis standardized abundances in the epipelagic zone collected during the day using the high-speed rope trawl from 2010-2011. White 

indicates that no individuals were collected. Abundances range from blue (1 ind. 10-6 m-3) to r to red (550 ind. 10-6 m-3). 
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Figure 57. A heat map of Katsuwonus pelamis standardized abundances in the epipelagic zone collected at night using the high-speed rope trawl from 2010-2011. White indicates 

that no individuals were collected. Abundances range from blue (1 ind. 10-6 m-3) to r to red (550 ind. 10-6 m-3). 
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3.5.3. Seasonal distributions. 

3.5.3.1. MOCNESS 2011. 

Euthynnus alletteratus was collected from March to September, with highest 

abundances in August (Figure 58a). Thunnus atlanticus was collected in March and also 

from May to September at higher abundances (Figure 58b). Higher abundances of T. 

atlanticus were collected in June and August. Auxis thazard was collected from February 

to September (Figure 58c), with highest abundances in April. None of the three species 

were collected in January (Figure 58).  
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(a)  

(b)  

(c)  

Figure 58. Seasonal occurrence of the top three most-abundant scombrid species, (a) Euthynnus alletteratus, (b) 

Thunnus atlanticus, and (c) Auxis thazard, collected during the MOCNESS 2011 survey. 
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3.5.3.2. MOCNESS 2015 – 2017. 

 Euthynnus alletteratus was caught in August 2015 and 2016, with higher 

abundances in 2016 due to patchiness (i.e. about 47% of the specimens from this cruise 

were collected in one tow, Figure 59a). Thunnus atlanticus, Thunnus spp., and Auxis 

thazard were only collected in August 2016, while T. thynnus was only collected in May 

2016 (Figure 59b). Katsuwonus pelamis was collected in May and August 2016 and in May 

2017 (Figure 59b).  

(a)  

(b)  

Figure 59. Seasonal occurrence of (a) Euthynnus alletteratus and (b) all other scombrids collected during the 

MOCNESS 2015 - 2017 survey. 
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3.5.3.3. High-speed rope trawl 2010 – 2011. 

Months that contained quantitative tows were only included in the seasonal analyses 

for the high-speed rope trawl 2010-2011 survey. Thunnus spp. was the most-abundant 

taxon group, high taxonomic uncertainty at the species-level precluding further faunal 

resolution. Thunnus spp. were collected in June, July and September with highest 

abundances in June (Figure 60a). Euthynnus alletteratus was the second-most abundant 

species, which was also caught in June, July and September with highest abundances in 

June (Figure 60b). Katsuwonus pelamis was caught in June, July and September. Highest 

abundances peaked in July, with relatively low abundances in June and September (Figure 

60c). These three species were not collected in December 2010 and April 2011.  
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(a)  

(b)  

(c)  

Figure 60. Seasonal occurrence of the top three most-abundant scombrid taxon (a) Thunnus spp., (b) Euthynnus 

alletteratus, and (c) Katsuwonus pelamis collected during the high-speed rope trawl 2010-2011 survey. Only months 

with quantitative samples were included. 
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4. DISCUSSION 

While adult scombrids are well-described, this thesis developed and updated 

taxonomic descriptions for the GoM scombrid early life stages (larvae and more 

specifically, juveniles). Gear selectively was observed, with the MOCNESS collecting 

predominately larvae and the high-speed rope trawl catching only juveniles. The dominant 

species and taxa in the GoM during all cruise series included: Euthynnus alletteratus, 

Thunnus atlanticus, Auxis thazard, Katsuwonus pelamis, Thunnus spp., and Auxis spp. The 

morphometric ratios of the two most-abundant species (E. alletteratus and T. atlanticus) 

were compared and analyzed based on their ecology. Specific-specific environmental 

preferences were identified for the dominant scombrids collected in this study. 

4.1. Larval and juvenile scombrid taxonomy. 

Species discrimination is needed for scombrid early life stages, as this is a key 

element of conservation and fisheries management (Ibañez et al. 2007). The identification 

of species has heavily relied on morphological and meristic characteristics (Cadrin 2000), 

though genetic and environmental variability on growth and development processes can 

often create shape variation among populations. Previously, biometric descriptions have 

been reported for scombrid species such as T. thynnus and E. alletteratus from the eastern 

and/or western Mediterranean, Pacific Ocean, and the eastern Atlantic Ocean (Frade 1931, 

Miyashita et al. 2001, Hajjej et al. 2011, Tičina et al. 2011, Hajjej et al. 2013, Addis et al. 

2014, Karakulak et al. 2016). However, juveniles from these previous studies ranged from 

12.2 – 130.0 cm FL. Scombrids from previous studies were larger and from different 

regions than the size range of specimens used in this thesis from the GoM. Thus, 

understanding the different methodologies used to identify scombrids can aid in the 

management of fish stocks and sustainable fishing and identify differences among regions.  

4.1.1. Genetic analyses. 

Puncher et al. (2015) found that genetic barcoding studies have previously revealed 

misidentifications of larval and juvenile tunas solely using morphology-based taxonomy, 

due to the lack of defined characters. As juvenile scombrids remain taxonomically 

challenging, it was necessary to obtain several genetically identified specimens in order to 

initiate the morphological analyses of this taxonomically challenging life stage. The change 
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in pigmentation patterns and the lack of adult features complicates the juvenile 

identification process. Incorrect identifications are probable until further genetic and 

morphometric analyses are conducted in combination and distinct characteristics by life 

stage and size class are identified. Thus, genetic barcoding remains obligatory for juvenile 

scombrids in order to ensure proper identifications. 

4.1.2. Morphological analyses. 

This thesis improved the knowledge of larval diagnostic features in regard to their 

pigmentation patterns for all scombrid species, except for T. alalunga, T. obesus, Scomber 

colias, Scomberomorus brasiliensis, Scomberomorus maculatus, and Scomberomorus 

regalis, which were not identified in this study. After the analysis of the different larval 

morphologies, there still remains some taxonomic issues and data gaps. The quick 

reference chart for identifying thunnine larvae can successfully guide the identification of 

these difficult larval stages if all pigmentation is present. However, Thunnus remains the 

most difficult genus to identify, as previously noted by Richards (2005). For example, the 

lack of pigmentation along the ventral tail region makes distinguishing the difference 

between T. albacares and T. atlanticus difficult. Thus, genetic analyses are necessary for 

correct identifications when pigmentation does not exist along the ventral midline of a 

Thunnus larva. Richards (2005) also noted that T. atlanticus has two larval morphs, one of 

which can often be misidentified as T. albacares, strengthening the need for using genetic 

barcoding. As larval specimens reach about 10.0 to 13.0 mm SL, their larval pigmentation 

patterns change and these descriptions cannot be used for identification purposes. For 

example, Auxis spp. develop additional dorsal midline spots as the individual grows, 

hindering the ability to distinguish between the two Auxis species. Incorrect morphological 

identifications will occur if these new pigmentation patterns are not recognized for these 

newly-transformed juvenile specimens. 

Juvenile descriptions were provided for all species, except T. alalunga, T. obesus, 

Sarda sarda, Scomberomorus brasiliensis, Scomberomorus cavalla, Scomberomorus 

maculatus, and Scomberomorus regalis, which were not collected in this study. Similar to 

the larval stages, thunnine juveniles are the most difficult tribe to identify. This thesis 
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provided novel descriptions for these smaller juvenile specimens that were previously 

unidentifiable.  

The diagnostic key for identifying genera/species in the Tribe Thunnini using fin 

ray counts is a quick and reliable method when fins are not damaged. Larval and juvenile 

E. alletteratus, K. pelamis, and Acanthocybium solandri can be identified to species using 

a combination of fin ray counts. There are finite characters to investigate and this study 

identified each of those characters that were informative and non-informative for the 

genetically identified species (Appendix Table 3). The juvenile descriptions in this study 

provide a more robust method for identifying juvenile tunas. 

Meristic counts of the pectoral and first dorsal fins are useful in identifying the 

genus Auxis when a specimen is not damaged, and when gill raker counts cannot 

differentiate these species as adults. The morphometric ratios of this genus can also be used 

to distinguish these two species from the other thunnine species. Auxis spp. can be 

differentiated by having high ratios of interdorsal length to HL and low ratios of upper jaw 

length to HL. The ratios of the interdorsal length to HL and of the interdorsal length to first 

dorsal fin length are slightly informative as they do not agree with adult characteristics 

(interdorsal length is 80% of HL, Hammond and Cupka 1975), yet they still distinguish 

these two Auxis spp. from all other scombrids (higher ratios). Upper jaw length compared 

to HL was a slightly informative ratio, as Auxis spp. had smaller ratios compared to all 

other thunnine species and Acanthocybium solandri. This feature may be valuable for 

rough sorting specimens, and the usefulness of the ratio could be confirmed with a larger 

sample size.  

Furthermore, the two species of the genus Auxis could possibly be separated by 

using interdorsal length to SL and/or interdorsal length to first dorsal length. Auxis rochei 

maintains a higher interdorsal length to SL ratio compared to A. thazard. Interdorsal length 

to the first dorsal fin length is typically 1:1 in adult Auxis spp. (Hammond and Cupka 1975), 

but A. rochei exceeded this ratio, while A. thazard possessed a slightly lower ratio. These 

differences could be verified with a larger sample size and wider size-range per species. 
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Euthynnus alletteratus can be distinguished from all other scombrids using fin ray 

counts (pectoral and both dorsal fins) when fins are intact. Using morphometric ratios, E. 

alletteratus have lower snout length to eye diameter and higher snout length to HL ratios 

compared to Thunnus spp. (T. albacares, T. atlanticus, and T. thynnus). It was previously 

reported that juvenile E. alletteratus from 14.0 to 174.0 mm SL develop the adult 

appearance as their body becomes a more fusiform and elongated (Hammond and Cupka 

1975). This elongated body shape was observed in this study; however, fin ray counts and 

morphological ratios were more important for identifying E. alletteratus.  

Katsuwonus pelamis can also be distinguished from all other scombrids using fin 

ray counts (pectoral and both dorsal fins) when fins are intact. Katsuwonus pelamis was 

insufficiently sampled in terms of the genetically identified specimens. Its ratios 

overlapped with various thunnine species. Gill raker counts were not useful as well, 

although this species maintained higher counts compared to other thunnine species. Gill 

raker counts are discussed in detail below. Further analyses need to be conducted on this 

species, as two individuals was not a sufficient sample size for identifying morphological 

differences among other thunnine species. 

Additionally, Thunnus spp. could not be separated with a small sample size, as 

smaller T. albacares and T. atlanticus had similar ratios and larger T. atlanticus and T. 

thynnus had similar ratios. Moreover, the ratios of eye diameter to snout length and eye 

diameter to HL are informative for differentiating between E. alletteratus and an all-

encompassing Thunnus spp. More specifically, T. albacares needs to be collected at a 

larger sample size and size range. All T. albacares specimens were between 12.0 - 32.5 

mm SL, which did not allow for comparisons of slightly larger juveniles, like T. atlanticus 

and T. thynnus, which contained an individual that was approximately 120 mm SL. 

Moreover, T. alalunga and T. obesus were not identified in this study; in turn, the 

morphological comparisons of these two Thunnus species were impossible. Thus, further 

analyses of the entire Thunnus genus needs to be conducted in order to identify accurate 

morphological differences among species. 

Understanding the size at which livers become reliable features for species 

identifications is also important in ensuring correct species identifications of juvenile 
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Thunnus spp. It is believed that T. alalunga, T. obesus, and T. thynnus develop striations 

(ICCAT 2016a) as the scombrid grows (B. Collette pers. comm.); thus, finding the size at 

which the striations develop is critical in differentiating Thunnus spp. The only genetically 

identified specimen that was expected to possess striations was T. thynnus. However, the 

specimen (124.8 mm SL) did not possess striations, as it is possible that the preservation 

method (frozen) may have altered its appearance or that the striations did not develop by 

this size. The liver of a 121.7 mm SL T. atlanticus fit the adult description (lack of striations 

and larger right lobe). Further analyses are needed in determining size (and age) at which 

striations appear in order to utilize livers as diagnostic characteristics for the genus 

Thunnus. 

Juvenile Scomber colias were identifiable by having 4 to 5 top finlets and 5 bottom 

finlets in addition to an anal spine (Richards 2005). All three meristic features were critical 

in juvenile identifications. This species develops an elongate body shape as it develops into 

a juvenile, which also aided in the identification process. 

Acanthocybium solandri can be identified by fin ray counts (high first dorsal fin 

counts and low second dorsal fin counts) the lack of gill rakers. Moreover, A. solandri had 

the lowest eye diameter (~50%) to snout length ratio compared to E. alletteratus and 

Thunnus spp., as A. solandri have long snouts. The snout length of adult A. solandri is 

approximately 50% of its HL (Hammond & Cupka 1975). The ratio of snout length to HL 

may also be a slightly informative ratio for A. solandri, as a juvenile maintained a higher 

ratio than all other scombrids (44% of HL of a 47.0 mm SL individual). Although adult 

ratios were not observed, using the snout length is a more robust method of identifying this 

species. 

All of the morphometric ratios identified in this study are valuable for rough sorting 

specimens. These ratios need to be verified with a larger sample size of genetically 

identified juveniles over a wider size range of specimens. Genetic identifications remain 

necessary for juvenile scombrids until additional distinct characteristics are identified.  

In addition to the morphometric ratios, investigating the development of adult gill 

raker counts is critical for identifying young scombrid species. Gill raker counts are not 
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useful to distinguish Auxis spp., as adult counts overlap (ICCAT 2016a). However, it is 

imperative to know when (e.g., specific size in mm SL) a juvenile possesses a full 

complement of gill rakers. This will help further identify the difference between poorly 

described juvenile scombrids (i.e. Thunnus spp.). This study found that a T. atlanticus 

possessed adult counts (19-25, ICCAT 2016a) at 121.7 mm SL, but did not at 42.5 mm SL. 

A juvenile T. thynnus also had adult gill raker counts (34-43, ICCAT 2016a) at 124.8 mm 

SL. However, there were large data gaps due the limited size range of genetically identified 

specimens. All other genetically identified juvenile specimens within the Thunnus genus 

did not contain adult counts. Katsuwonus pelamis (32.5 mm SL) did not possess adult 

counts, but did contain higher counts compared to all other thunnine species at that size. 

Having higher gill raker counts in juvenile size classes within the Tribe Thunnini mimics 

the adult characteristics, as adult K. pelamis have 53-63 gill rakers (ICCAT 2016a). 

Moreover, Acanthocybium solandri lacks gill rakers (ICCAT 2016a), which is 

taxonomically useful.  

Overall, this thesis extended existing morphological descriptions of scombrid 

larvae and provided baseline descriptions of the juvenile stage as well. Larger sample sizes 

of juvenile specimens for genetic analyses are need to identify the differences between 

species of this problematic life stage. Genetic sequencing is essential until further 

descriptions are developed. Samples would also ideally include all 16 species found within 

the GoM for proper taxonomic analyses. The combination of all features (e.g., fin ray 

counts, morphometric ratios, gill raker counts, liver morphology, etc.) will provide 

valuable knowledge for differentiating these species. An individual feature cannot stand 

alone for the identification process of juvenile scombrids. 

4.2. Larval and juvenile scombrids faunal composition and ecology. 

4.2.1. Assemblage structure. 

 The MOCNESS 2011 survey collected the highest number of species (n = 11) 

compared to both the MOCNESS 2015-2017 survey (n = 6) and the high-speed rope trawl 

2010-2011 survey (n = 8). Similar to the ranks, this high species occurrence can relate to 

the continuous surveying method, the longevity of the cruise series (January to September 

2011), and the specific seasons that were sampled during the MOCNESS 2011 survey. 
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Quantitative data from the high-speed rope trawl survey were only derived from December 

2010 and April, June, July, and September 2011, while the MOCNESS 2015-2017 only 

sampled from April to May and in August each year. 

Both MOCNESS surveys collected higher abundances of scombrids per species 

than the high-speed rope trawl survey. Moreover, larval and juvenile scombrids reside in 

the upper surface waters of the epipelagic zone, which was targeted by the MOCNESS 

discrete-depth sampling. However, the high-speed rope trawl conducted oblique tows to a 

maximum of 1500 m during each deployment; thus, this large net surveyed deeper depths 

at which these life stages do not often reside. The high-speed rope trawl also filtered a 

much larger volume than a MOCNESS net (2662579.74 m3 and 33053.00 m3, respectively 

on average) due to the differences in mouth size (165-m2 and 10-m2, respectively). On 

average, the high-speed rope trawl filtered approximately 80 times more water than the 

MOCNESS per net tow. In turn, the abundances of the high-speed rope trawl appeared 

lower, as the deeper strata were preferentially surveyed (at larger volumes per unit effort); 

tuna early life stages are not typical of these deep waters. Additionally, scombrids were 

collected at higher frequencies with the high-speed rope trawl (~50% Fo) compared to both 

MOCNESS surveys (15% and 5% Fo). This result may relate to the large mouth of the 

high-speed rope trawl, as it would ostensibly reduce avoidance by these highly mobile 

fishes. 

In this study, the MOCNESS predominately caught smaller scombrid specimens 

compared to the high-speed rope trawl, which caught juvenile scombrids more effectively. 

It is an advantage to use a multiple gear types in order to survey a wider size range of 

midwater fishes (Kashkin & Parin 1983, Millar 1992, Willis et al. 2000). In fact, gear 

selectivity is inherent in previous scombrid surveys. For example, bongo tows and neuston 

nets are often used to survey larvae, while mark-recapture, electronic tagging methods, and 

catch per unit effort from pelagic longlines are used to survey adults. A specific and/or 

typical gear type does not exist for these small juvenile sizes that the high-speed rope trawl 

collected, though pair-trawling (midwater net towed between two vessels) has promise.  

Gear selectivity relates directly to mesh size. As previously stated, the MOCNESS 

(3-mm mesh) primarily caught larvae and a few small juveniles, while the high-speed rope 
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trawl (graded mesh, 3.2 m to 19 mm) collected only juvenile scombrids. MacLennan 

(1992) found that smaller mesh sizes reduce the chance of smaller fishes escaping, and 

Kashkin and Parin (1983) found that larger nets effectively collect larger fishes. Thus, 

juvenile scombrids would have been underrepresented in this study if the high-speed rope 

trawl was not used. Conversely, larval scombrids would not have been collected if only the 

high-speed rope trawl was used. It is evident that different gear types collected different 

life stages and size classes of scombrids and that ideally both methods should be utilized 

in order to gain a more complete analysis of their ecology.  

Additionally, both gear types in this study used larger mesh sizes compared to other 

studies that capture small larvae. Typical mesh sizes for larval surveys (e.g., bongo and 

neuston nets) range from 335 to 1200 μm (Richards et al. 1984, Lindo-Atichati et al. 2012, 

Habtes et al. 2014, Cornic et al. 2018). While avoidance is a function of mouth size, 

extrusion is a function of mesh size. Thus, this study did not collect as many planktonic 

larvae compared to other ichthyoplankton surveys, as smaller individuals were able to 

extrude through the larger mesh sizes utilized in our surveys. As a result, smaller larvae 

were underrepresented in this thesis. 

Among the three cruise series, the same six species and/or taxa were collected, 

indicating that E. alletteratus, T. atlanticus, Auxis thazard, K. pelamis, Thunnus spp., and 

Auxis spp. were the dominant taxa in the GoM. Various larval surveys have also found 

these species and taxa at higher abundances (Lindo-Atichati et al. 2012, Habtes et al. 2014, 

Cornic et al. 2018). Due to the taxonomic issues with the juvenile life stage, individuals 

within the genera Thunnus and Auxis could not be differentiated. Differences among the 

ranks per cruise series was most likely caused by seasonal patterns in abundances driven 

by species-specific spawning preferences and the size class (larva vs. juvenile) that was 

being collected.  

Euthynnus alletteratus was the most-abundant taxon (identified to species-level) in 

all of the surveys. Euthynnus alletteratus is a neritic, epipelagic species that is a year-round 

resident in the GoM. The coastal E. alletteratus spawns from April to November, outside 

the continental shelf region in temperatures greater than 25 °C. It is a multiple spawner 

with asynchronous oocyte development that carries out several spawning events per 
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reproductive season (Chur 1973, Rudomiotkina 1986, ICCAT 2016a). The spawning 

preferences of this species coincide with the location and time period of all cruise series, 

explaining its high abundance. Moreover, E. alletteratus is a schooling species (Chur 

1973). This was observed in the MOCNESS 2015-2017 survey, as 47% of the entire 

scombrid catch was collected in one tow. Patchiness and schooling behaviors are typical 

of scombrids, as it was also observed with catches of Scomber colias, where 83% of 

specimens (88 ind.) were collected in one tow during the high-speed rope trawl 2010-2011 

survey. 

Thunnus atlanticus is an epipelagic, oceanic resident of the GoM that spawns 

offshore from June to September (Collette 2010). Similar to E. alletteratus, its ecology and 

spawning patterns relate to the time period and location of the surveys, leading to its 

dominance. It is also often found in large schools, typically with K. pelamis (Collette 2010). 

Katsuwonus pelamis is an epipelagic, oceanic species (Collette & Nauen 1983) that 

similarly exhibits strong schooling behaviors, often near drifting objects (Bard et al. 1991). 

Schooling often occurs based on size class and may occur with other species of the same 

size. Smaller fishes are known to school while feeding (Bayliff 1988, Hilborn 1991). 

Katsuwonus pelamis specimens were found in samples with numerous other species, which 

could possibly relate to its innate need to school in similar size class groups. Spawning 

occurs several times per seasons in surface temperatures greater than 24 °C (Cayré & 

Farrugio 1986, Vilela & Castello 1993). Spawning season becomes shorter further from 

the equator, but females spawn almost daily in tropical waters (Collette 2010).  

Auxis thazard is a strongly schooling, epipelagic scombrid that is considered both 

a neritic species as well as an oceanic occurring species in warmer waters (Collette 1995). 

Spawning is recorded at SSTs between 21.6 and 30.5 °C, typically from February to 

November in the North Atlantic, with mass spawning between 25 and 26 °C (Rudomiotkina 

1984, ICCAT 2016a). Larval A. thazard have the widest temperature tolerance among all 

tuna (ICCAT 2016a), and this species has a long spawning season, both of which can 

contribute to its high abundance. Adults are coastal or near-coastal, while juveniles have 

been reported to be more widely spread throughout the world’s oceans (Collette 1995). A 
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widespread, coastal habitat relates to the area surveyed across the northern GoM in this 

study. 

Other species (Auxis rochei, Sarda sarda, Acanthocybium solandri, T. thynnus, 

Scomber colias, and T. albacares) were collected in these surveys at lower abundances. 

Some species, such as the non-resident T. thynnus, were rare in these collections most likely 

due to their restricted and shorter spawning seasons in the GoM compared to other resident 

spawners (ICCAT 2016a). Moreover, higher taxonomic resolution of larval and juvenile 

Thunnus spp. and juvenile Auxis spp. would result in increased detection of individual 

species in these genera (e.g., T. albacares and T. thynnus), in addition to possibly 

identifying new species that were not recorded in this study (e.g., T. obesus and T. 

alalunga).  

These large-scale surveys conducted over seasonal cycles remain extremely rare in 

oceanographic research. The advantage of continuously sampling a specific area allows for 

the collection of the varying species throughout the year. It is evident that different 

scombrids spawn at different times throughout the year and under different environmental 

conditions; thus, these surveys provided information on the variance in the ecology of 

specific species that inhabit the dynamic GoM oceanic ecosystem. Long-term surveys, such 

as in this study, identify commonalities among years and can highlight typical and rare 

species occurrences in a region. Overall, all cruise series in this study collected the 

dominant scombrids occurring in the GoM. 

4.3. Length-weight regressions of larval and juvenile scombrids in the northern Gulf 

of Mexico. 

Length and weights vary among species based on their body shape and within species 

based on the condition or robustness of an individual. Condition is variable and dynamic, 

as it is dependent on food availability and growth prior to capture. Individuals within a 

sample can drastically vary, and this variability can be seen within a populations based on 

season and year (Schneider et al. 2000).  

Collecting length-weight regression data is useful for calculating fish weights from 

length-frequency data, which eliminates the need for bulk weighing. These regressions can 
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also help determine changes in robustness and the health of a population related to past and 

future sampling in the similar locations and seasons. Length-weight regressions are helpful 

in determining the relative condition of small fish compared to large fish and comparing 

the condition of a localized population to a regional population. Thus, these data can be 

utilized for the comparison of populations, species, and life stages (Pauly 1993, Petrakis & 

Stergiou 1995, Schneider et al. 2000). 

In this study, the length-weight regressions created for each species and/or taxa 

exhibited power relationships. The value of 𝑏 of each species was relatively close to three, 

which represents isometric growth and is common for all fish species. If 𝑏 is less than three, 

a fish grows faster in length than in weight, but if 𝑏 is greater than three, a fish grows faster 

in weight than in length (Froese 2006). 

At the species-level, Acanthocybium solandri and T. atlanticus had a 𝑏 value less 

than three. However, a small range of lengths and weights were collected for 

Acanthocybium solandri, which explains why 𝑏 was lower than expected (𝑏 = 1.795). Auxis 

rochei, Auxis thazard, E. alletteratus, K. pelamis, and Scomber colias had 𝑏 values greater 

than three, indicating that these species grow faster in weight than in length as young 

scombrids. The majority of species collected an individual(s) that exceeded 100 mm SL, 

demonstrating a wide size range of larval and smaller juvenile specimens. 

The following summary of known length-weight regressions are based on the collated 

data presented in the ICCAT Manual (2016a), although the regressions were based on FL 

instead of SL.  The length-weight regressions for Auxis rochei were previously recorded 

from the Aegean Sea, eastern and western Mediterranean, and the Gibraltar Strait, with 

individuals ranging from 25.9 to 47.0 cm FL. Auxis thazard length-weight regressions were 

recorded from the Gibraltar Strait, South Africa, southwest Brazil, Mikomoto and 

Shionomisaki, Japan, and Sri Lanka. Euthynnus alletteratus length-weight regressions 

included specimens ranging from 20.0 to 101.0 cm FL from the Aegean Sea, Coasts of 

Senegal, and western and eastern Mediterranean Sea. Katsuwonus pelamis ranging from 

32.0 to 78.0 cm FL were recorded in the Atlantic with an equation of 

 𝑊 = 7.480 𝑥 10−6𝐹𝐿3.253, which is relatively similar to the curve in this study. Thunnus 

atlanticus length-weight regressions from specimens ranging from 18.5 to 87.0 cm FL were 
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recorded in Cuba, Brazil, and Martinique. All equations provided in the ICCAT Manual 

maintained a low 𝑎 value and a 𝑏 value close to three, which was similar to the results in 

this study. Acanthocybium solandri and Scomber colias were not included in the ICCAT 

Manual.  

All species length-weight regressions in the ICCAT Manual were not from the GoM. 

Additionally, all individuals in this study were smaller than the size range of the length-

weight regression data previously reported by ICCAT. Thus, this thesis adds length-weight 

regressions for seven species of smaller sizes in the GoM that were not previously reported.  

4.4. Variation in the morphometrics of juvenile Euthynnus alletteratus and Thunnus 

atlanticus. 

 Larval and juvenile scombrids in the Tribe Thunnini are known for having large 

heads, large jaws, and short bodies (Richards 2005). Both E. alletteratus and T. atlanticus 

possessed these features as larvae and juveniles. It was observed that smaller individuals 

of both species have larger heads compared to their body length. In addition, smaller 

individuals of both species also have larger jaws, larger snouts, and larger eyes compared 

to their HL. As these species grow, these ratios decrease. Large heads, eyes, snouts, and 

upper jaws of scombrid early life stages are presumably important attributes for feeding. 

Larval and juvenile scombrids have high energy demands to ensure fast growth and 

survival. Thus, scombrid early life stages are likely constantly searching for food. These 

four features are essential search-and-capture structures in early ontogeny (Catalán et al. 

2011).  

As smaller individuals exist in a high Reynold’s number environment, they are less 

able to move freely in the water in search of food, and therefore, their search volume is 

smaller relative to larger fishes. Smaller individuals need to maintain the ability to select 

high-energy prey in order to effectively support the energetic requirements for the 

development of advanced feeding structures. Larvae need to consume 70% of their body 

mass per day in order to maintain optimal growth (Reglero et al. 2009). As a result, 

scombrid early life stages have evolved large heads, jaws, snouts, and eyes that are used to 

optimize their feeding success by improving their ability to locate and capture prey, and in 
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turn increase survival (Llopiz et al. 2010). Catalán et al. (2011) observed an increase in 

prey size in relation to larval mouth or body size, indicating that large mouths allow for the 

consumption of larger, energy-rich, and nutritional prey. Gape size affects the food 

consumption by dictating the size range of prey that a predator can catch and the efficiency 

at which this food is collected; thus, a large gape enhances consumption success 

(Wainwright & Richard 1995). 

 Larval and juvenile scombrids are voracious, aggressive, and cannibalistic feeders. 

During the third week post-hatch, T. albacares larvae have these diagnostic features (e.g., 

large mouths, well-developed eyes and teeth) and begin the piscivorous stage. A 15-day 

post-hatch T. albacares larvae was recorded with another larvae in its gut (Benetti et al. 

2015), demonstrating their cannibalistic and opportunistic feeding behaviors. Their 

aggressive and voracious behaviors as young drive the need for these feeding features. 

As an individual scombrid grows in size, its search volume increases and feeding 

frequency increases. Increased swimming ability, reflected in the development of 

locomotive features and a decreased Reynold’s number environment, is likely related to 

the size of the upper jaw and snout compared to HL. Therefore, as an individual grows, its 

upper jaw size becomes smaller compared to HL and the ratio asymptotes. Moreover, as 

an individual grows, the body size increases drastically, resulting in smaller eye and HL 

ratios. 

Overall, E. alletteratus and T. atlanticus showed similar declining patterns for these 

critical feeding structures. However, there were two differences in these ratios for E. 

alletteratus and T. atlanticus: 1) E. alletteratus always maintained a larger snout compared 

to T. atlanticus, and 2) T. atlanticus had a larger eye compared to E. alletteratus. Larger 

eyes decrease the snout size, which correlates with both patterns in this study. However, 

these differences can also relate to the species-specific biological adaptions. 

Larger snouts relate to an individual’s ability to collect more prey. Developing the 

capacity to select larger prey occurs earlier for E. alletteratus than T. atlanticus. This early 

development was also noted by Morote et al. (2008) with larval Auxis rochei in the 

northwest Mediterranean Sea. High size selectivity and high competition for prey exists 
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among tuna species of the same larval size range (Catalán et al. 2011), indicating species-

specific trophic niches (Llopiz et al. 2010). Euthynnus alletteratus exhibit a high degree of 

feeding selectivity for appendicularians, which are generally abundant and available in 

oligotrophic environments. Contrastingly, Thunnus spp. do not exhibit preferences for 

appendicularians, but rather for cladocerans and copepods. These niches reduce inter-and 

intraspecific competition for prey resources. Larval E. alletteratus and T. atlanticus have 

adapted their morphology and trophic ecology based on resource availability in order 

maximize the feeding success and survival of their early life stages (Llopiz et al. 2010). 

Feeding behaviors and larval distributions are reflective of larval and juvenile tuna 

morphology. Varying morphometric ratios between species indicate species-specific 

adaptations to their environment and individual niches. Specific features may be shared 

between species; however, differences highlight ecological variation between their life 

histories. It is critical to identify these differences, not only for taxonomic purposes, but 

also for understanding the development of a species and its ecology.  

4.5. Spatiotemporal distributions of larval and juvenile scombrid fishes in the northern 

Gulf of Mexico. 

4.5.1. Variations in vertical distributions. 

Vertical distributions determined using MOCNESS derived data, as this gear 

allowed for discrete-depth sampling from the surface to 1500 m depth. On all MOCNESS 

cruises, scombrids were predominantly collected in the upper 200 m of the water column, 

confirming their epipelagic early life stages. This relates to their biology and ecology, in 

which tuna eggs are buoyant, larvae are pelagic, and both are typically found at the sea 

surface (Richards 2005). The occurrence of individuals at deeper depths (200 – 1500 m) in 

this study may be due to net contamination (i.e. some specimens were collected in deep 

nets that were not completely closed as the unit was lowered and retrieved through 

shallower strata). The lack of individuals collected at deeper depths from 2015-2017 further 

suggested that larvae are not residing at those depths and that this phenomenon was isolated 

to 2011. 
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Previous studies highlight the fine-scale differences among species’ depth 

distributions within the epipelagic zone. Habtes et al. (2014) found that the largest 

abundances of larval scombrids were found in the upper 30 m of the water column in the 

GoM. Abundances decreased successively for all species to 50 m depth, except for E. 

alletteratus, which exhibited its highest abundances from 30 to 40 m depth. Overall, 

highest abundances of T. thynnus, K. pelamis, and other Thunnus spp. were found at 

shallower depths compared to Auxis spp. and E. alletteratus. Katsuwonus pelamis and other 

Thunnus spp. larvae were found at all depths (0 - 50 m, Habtes et al. 2014). As 75% of 

zooplankton biomass resides in the top 200 m (Hopkins 1982), it is important for 

planktivores, such as scombrid larvae, to live in these highly productive surface waters. 

The sampling methods in this thesis did not allow for the investigation of high-resolution 

vertical distribution differences within the upper 200 m of the water column. However, it 

was evident that early life stages of scombrids reside in the epipelagic zone. 

4.5.2. Diel catch rates. 

It is important to understand diel differences in day/night catch rates if quantitative 

data are used in scombrid stock assessments. In all sampling reported here, scombrid early 

life stages were collected at higher abundances and higher frequencies at night than during 

the day. Further, during the MOCNESS 2015-2017 survey, all specimens were collected 

at night, except for one E. alletteratus specimen.  

The family Scombridae exhibited a significant difference in abundances by diel 

cycle (day vs. night catches), as higher abundances were caught at night than during the 

day. Auxis thazard and K. pelamis were caught at significantly higher abundances at night 

than during the day as well. However, E. alletteratus had no significant differences in the 

abundances caught based on diel cycle, and T. atlanticus exhibited marginal differences; 

although higher abundances were recorded at night for both species. Results from this study 

are similar to a study by Hare et al. (2001), which found that more K. pelamis larvae were 

collected at night, while larval T. atlanticus and E. alletteratus abundances were similar 

between day and night tows. Cornic and Rooker (2018) also noted an increase in 

abundances of T. atlanticus at crepuscular periods prior to sunset and after dawn. Previous 
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studies involving Auxis spp. also observed higher catches at night (Wade & Bravo 1951, 

Matsumoto 1959, Strasburg 1960, Klawe 1963).  

Increased catches at night are most likely a result of net detection and avoidance 

during the daytime (Davis et al. 1990). Diel differences in feeding activity also influence 

catch rates. Most larval and juvenile scombrids feed during the day (Young & Davis 1990, 

Tanabe 2001, Morote et al. 2008), when they are more active. Sensing and swimming away 

from the net during the day is expected with increased daytime activity. Thus, high catches 

at night can be related to low activity levels and a decrease in swimming activity (Takashi 

et al. 2006).  

This study showed that there are higher catch rates of scombrids at night than during 

the day in upper 200 m of the water column. Recognizing catch differences between day 

and night sampling is critical for fisheries management. Results from this study indicate 

that it is more appropriate to sample the epipelagic zone at night in order to collect 

quantitative abundance data that more accurately reflect the true abundance of scombrids 

in an area.  

4.5.3. Seasonal and horizontal distributions of larval and juvenile scombrids in the 

northern Gulf of Mexico. 

4.5.3.1. Scombridae larval and juvenile distributions. 

GAMs and presence-absence models from the MOCNESS 2011 survey showed 

that Julian date, water body, and distance to the nearest 200-m isobath were related to 

scombrid abundances in the GoM.  

Julian date was an important determinant, as abundances slightly increased in May 

and continued into a larger peak in August. These patterns were most likely caused by 

species-specific spawning preferences. For example, an increase in abundance around day 

115 (April) was dominated by Auxis thazard specimens. Auxis thazard spawn at SSTs of 

21.6  to 30.5 °C, with mass spawning between 25.0 and 26.0 °C (Rudomiotkina 1984, 

ICCAT 2016a). SSTs in April reached the massive spawning temperature range, which 

explains the high abundance of Auxis thazard. The second peak in August was driven by 
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the two most-abundant species, E. alletteratus and T. atlanticus, whose spawning 

preferences will be discussed in depth below. 

Water body was also an important determinant, with more specimens collected in 

Common Water. Several studies have found similar results in which scombrid species 

prefer GoM Common Water (Lindo-Atichati et al. 2012, Domingues et al. 2016). Distance 

to the nearest 200-m isobath appeared to be an important variable with respect to scombrids 

abundance.  

4.5.3.2. Euthynnus alletteratus larval and juvenile distributions. 

 During the MOCNESS 2011 survey, larvae and small juveniles were collected from 

March to September, with a peak in August. The MOCNESS 2015-2017 survey only 

collected larvae in August 2015 and 2016, with high schooling behavior and patchiness in 

the 2016 samples. Thus, it appeared that patchiness is more important than season in the 

MOCNESS 2015-2017 survey, but patches were more frequently observed in the fall. The 

high-speed rope trawl 2011 survey collected juveniles in June, July and September, with 

the highest peak in June. Juvenile abundances appeared to lag behind the larval abundances 

in 2011. Euthynnus alletteratus produces several spawning batches per reproductive season 

(Chur 1973, Rudomiotkina 1986, ICCAT 2016a), which explains the numerous peaks in 

abundances throughout the year. Abundances increased from June to September in 2011, 

with no sampling in August using the high-speed rope trawl. If sampling continued after 

September, it is predicted that more juveniles would be collected as their abundances lag 

behind the larvae. 

All E. alletteratus specimens were collected in Common Water in the MOCNESS 

2011 survey, and the distribution plots further identified higher abundances in Common 

Waters in addition to along frontal boundaries. Previous studies showed high abundances 

of E. alletteratus eggs outside cyclonic eddies in open waters near southern Brazil 

(Matsuura & Sato 1981) and in the eastern Pacific (Klawe 1963). Lindo-Atichati et al. 

(2012) found that larval E. alletteratus had similar abundances between Common Water 

and Loop Current Origin Water in the GoM. However, in this study, individuals were only 

collected in Common Water and only a few were sampled in Loop Current Origin Water; 

thus, these comparisons could not be investigated. Larval scombrids are typical along 
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frontal boundaries (Richards et al. 1993), as frontal boundaries concentrate scombrid larvae 

and other ichthyoplankton in addition to nutrients and food particles that are critical for 

survival. It has been reported that T. thynnus and Auxis spp. (Muhling et al. 2010, Habtes 

et al. 2014) reside along these boundaries as well. High abundances along the frontal 

boundaries in this study could also relate to the Mississippi River Plume that was being 

drawn offshore into the GoM into the in summer of 2011. Moreover, it is thought that 

variability in the abundances in Common Water can also relate to smaller-scale 

oceanographic features that were not considered in this analysis (e.g., cyclonic eddies) in 

addition to changes in environmental variables (e.g., temperature and salinity). 

The results from the GAMs for the MOCNESS 2011 survey indicated that Julian 

date, minimum salinity and distance to the nearest 200-m isobath were important 

determinants of E. alletteratus abundances throughout the GoM. These results also related 

to larval abundances and distributions observed in the MOCNESS 2015-2017 survey. 

Julian date was an important determinant, with more individuals caught later in the 

season, with a peak in August. As previously stated, spawning occurs when waters are the 

warmest in the GoM (preferably greater than 25 °C), from April to November. Surface 

temperatures reached about 25 °C in April, when spawning begins to occur for this species 

(Chur 1973, Rudomiotkina 1986, ICCAT 2016a). Thus, the temporal changes observed 

through this 9-month survey influenced the abundances of E. alletteratus in the GoM. 

Higher abundances of E. alletteratus were also correlated with lower levels of 

minimum salinity. Catches occurred in salinities ranging from 29.47 to 36.19 (psu). A few 

specimens were collected at higher levels, but the majority were collected in salinities less 

than 34. The MOCNESS 2015-2017 survey also collected larvae at salinities ranging from 

32.39 to 35.72, indicating that E. alletteratus can tolerate a wider range of salinities, but 

has a preference for lower levels (below 34). The distributions plots highlighted the 

association of abundances with lower salinity levels. Distributional plots from 2011 also 

showed that E. alletteratus was collected near areas of higher chlorophyll a concentrations 

along the Mississippi River Plume that protruded into the GoM in August 2011. However, 

some E. alletteratus specimens were also collected in lower chlorophyll a concentrated 

areas, likely due to the transient nature of surface chlorophyll plumes.  
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Being a coastal species, E. alletteratus appears to prefer lower salinity water 

masses, which are associated with nearshore environments and areas with high runoff. In 

the spring, freshwater discharges into the GoM from the Mississippi River. This plume is 

characterized by lower salinities and higher chlorophyll a concentrations. This suggests 

that areas with high freshwater inflow are suitable habitats for their larvae and small 

juveniles. As nutrients increase from runoff, primary and secondary production increase, 

and in turn provide food for larvae along the continental shelf regions (Le Fevre 1986, 

Grimes & Kingsford 1996). Thus, riverine discharge likely maximizes growth and survival 

of E. alletteratus early life stages. 

The distance to the nearest 200-m isobath was also related to E. alletteratus 

horizontal distributions. More individuals were collected near the shelf break and along the 

continental slope, at distances ranging from 19.79 to 227. 31 km from the 200-m isobath, 

through the majority of specimens were within 175 km. Results from the MOCNESS 2015-

2017 survey indicated a similar pattern of distribution with individuals between 69.5 and 

243.8 km from the shelf edge.  

Juvenile abundances and distributions, derived from the high-speed rope trawl 

2010-2011 survey mirrored those of the larvae. Juvenile abundances across the grid varied 

seasonally, inhabiting the northern stations in June, eastern stations in July, and both the 

northern and eastern stations in September. Similar to the larvae, juveniles were found in 

Common Waters with moderate chlorophyll a concentrations and moderate salinities. 

Specimens were also caught above the same depths, ranging from 200- to 2700-m isobaths. 

It appeared that juveniles may reside in a slightly wider range of salinity and chlorophyll a 

concentrations. This could be due to juveniles developing advanced locomotive capacity 

that allows for greater search and capture abilities. In all, adult spawning preferences guide 

larval E. alletteratus distributions. Juvenile E. alletteratus remain in these areas, but also 

can move to areas not typical of their larval stage (moderate levels of salinity and 

chlorophyll a concentrations) most likely due to the development of their swimming and 

feeding structures. 
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4.5.3.3. Thunnus atlanticus larval and Thunnus spp. juvenile distributions. 

During the MOCNESS 2011 survey, larvae and small juveniles were collected in 

March and from May to September. Abundances remained high from May to September, 

with a peak occurring in June and the highest catches in August. The MOCNESS 2015-

2017 survey only collected larvae in August 2016. The high-speed rope trawl 2011 survey 

collected juvenile Thunnus spp. in June, July and September, with the highest peak in June. 

High abundances in June and July were similar to those of their larvae, however, species-

level identifications would identify whether a lag exists between the assemblages of these 

two life stages. For example, T. thynnus spawns from April to June in the GoM; thus, their 

juvenile abundances would not be expected to increase until later in the season (e.g., June), 

which was observed in the Thunnus spp. data. Moreover, juvenile abundances were still 

high in September, indicating a lag and the potential of T. atlanticus specimens dominating 

the generic assemblage.  

Thunnus atlanticus spawns from June to September in the GoM (Collette 2010), 

indicating that juvenile abundances would persist after September. Cornic and Rooker 

(2018) found that spawning during both late spring and summer in the northern GoM, 

explaining the high abundances of larvae in this study and the increase in juveniles later in 

the season. High abundances of Thunnus juveniles can also be related to T. thynnus, T. 

albacares, T. obesus, and T. alalunga contributions. For example, T. thynnus spawns from 

April to June in the GoM (Richards 1975), which would indicate that juvenile abundances 

would be increasing during our sampling time period and potentially appear in the catch 

records (June to September).  

Thunnus atlanticus larvae were collected in Common Water and Loop Current 

Origin Water during the MOCNESS 2011 survey. The distribution plots further identified 

higher abundances in Common Waters as well as along frontal boundaries with higher 

SSHAs than the surrounding areas. Previous studies showed that Thunnus spp. and T. 

thynnus larvae were higher in the boundaries of anticyclonic features in the GoM (Lindo-

Atichati et al. 2012). Cornic and Rooker (2018) found that T. atlanticus larvae strongly 

associated with convergent zones near the Loop Current and anticyclonic eddies. 

Moreover, Thunnus spp. (presumably T. atlanticus and T. albacares) were found at higher 
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abundances in the boundaries of anticyclonic features and inhabit broader distributions and 

SSHA ranges than T. thynnus. It has been proposed that year-round inhabitant species have 

broader habitat preferences in the GoM than T. thynnus and are better able to tolerate warm 

features, such as the Loop Current and warm eddies (Muhling et al. 2010, Teo & Block 

2010, Lindo-Atichati et al. 2012). 

The results from the GAMs for the MOCNESS 2011 survey indicated that Julian 

date, minimum salinity and diel cycle were important variables relating to E. alletteratus 

abundances throughout the GoM. These results also related to larval abundances from the 

MOCNESS 2015-2017 survey. 

Julian date was an important correlate of T. atlanticus larval abundances in the 

GoM. Abundances increased throughout the year from June to September. Thunnus 

atlanticus typically spawn in the GoM between June and September (Collette 2010), 

particularly when the SSTs reach 27 °C (Juarez & Frías 1986). In this study, individuals 

were caught in late May, with a strong increase in June when water temperatures reached 

27 °C, aligning with previously reported spawning preferences. Abundances increased 

until August and a few specimens were collected throughout September, as temperatures 

began to drop. These patterns relate to the high abundances noted in the ichthyoplankton 

surveys conducted by Cornic and Rooker (2018) from June to July in 2011.  

Higher abundances of T. atlanticus were also correlated with higher levels of 

minimum salinity, with catches in salinities ranging from 33.82 to 36.13. The majority of 

specimens caught between 35 and 36, suggesting a preference for oceanic waters. The 

MOCNESS 2015-2017 survey also collected larvae at salinities ranging from 34.04 to 

34.97. The distribution plots also identified the correlation of higher T. atlanticus 

abundances with higher salinity levels and lower chlorophyll a concentrations.  

This oceanic species spawns in offshore waters, which typically exhibit higher 

salinity and low to moderate chlorophyll a concentrations. Cornic and Rooker (2018) also 

found that T. atlanticus larvae preferred intermediate to high salinities, ranging from 31 to 

36. Spawning in these open-ocean environments can facilitate the survival of their larvae 
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owing to the reduction in ichthyoplankton predators compared to the coastal waters, thus 

reducing predation on eggs and larvae.  

Adult T. thynnus also spawn in waters with lower surface chlorophyll a 

concentrations (0.10 - 0.16 mg m-3) and higher salinities (35.5 - 37.0, Teo et al. 2007). This 

pattern of environmental preference has been observed in other pelagic fishes that utilize 

warm, oligotrophic waters for spawning (e.g., swordfish, Xiphias gladius;(Teo et al. 2007). 

Several tuna species have larvae adapted to living in these nutrient-poor environments, 

utilizing appendicularians for food beginning piscivory at an early stage (Llopiz et al. 

2010).  

 Due to the lack of diagnostic features for discriminating juvenile Thunnus spp., the 

genus was treated as a single taxonomic unit in the analysis of the high-speed rope trawl 

data. Juvenile Thunnus spp. assemblages were wide spread across the northern GoM, 

covering the entire sampling grid. They were collected in waters with bottom depths 

between 1200 and 2700 m. Larval T. atlanticus were collected over a wider range, in water 

depths between 700 and greater than 3300 m. Cornic and Rooker (2018) found that smaller 

larvae were found in the GoM from the outer continental shelf region into oceanic waters 

(areas seaward of  the 100-m isobath). Based on larval T. atlanticus distributions, it 

appeared that juvenile Thunnus spp. move and concentrate in waters further offshore 

compared to their early life stages. Additionally, Thunnus spp. juveniles were found in 

areas of higher salinities and lower chlorophyll a concentrations, which correlates with 

larval distributions and adult spawning preferences. 

4.5.3.4. Auxis thazard larval and juvenile distributions. 

During the MOCNESS 2011 survey, larvae and small juveniles were collected 

relatively consistently from February to September, with a large peak occurring in April. 

The MOCNESS 2015-2017 survey only collected larvae in August in 2016. Due to low 

taxonomic resolution of the genus Auxis, juvenile seasonality and horizontal distributions 

were not examined. Auxis thazard spawns at surface water temperatures between 20 and 

32 °C, which is the broadest larvae temperature range tolerance of all GoM scombrids 

(Muhling et al. 2017) and has mass spawning between 25 and 26 °C (Rudomiotkina 1984, 

ICCAT 2016a). Surface waters in April reached the massive spawning temperature range, 
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which explains the high abundance of A. thazard larvae. Auxis thazard has an extended 

spawning season in the North Atlantic, from February to November (Rudomiotkina 1984, 

ICCAT 2016a). It is evident that spawning occurs throughout the majority of the year in 

the GoM. 

Auxis thazard larvae were only collected in Common Water during the MOCNESS 

2011 and 2015-2017 surveys. The distribution plots further identified higher abundances 

in Common Water in addition to along frontal boundaries with higher SSHAs than the 

surrounding areas. Lindo-Atichati et al. (2012) found larval Auxis spp. along the boundaries 

of anticyclonic features and within GoM Common Water as well. Probabilities of 

occurrence of Auxis spp. in Common Water was higher than in anticyclonic regions, 

cyclonic boundaries, or cyclonic regions and also higher in anticyclonic boundaries than 

anticyclonic regions (Lindo-Atichati et al. 2012). 

 The distributional plots from the MOCNESS 2011 survey data highlighted other 

environmental drivers of A. thazard larval distributions. Individuals were collected along 

the shelf break and slope and in the southern portion of the grid. Auxis thazard also were 

caught in areas of moderate chlorophyll a concentrations (along the edges of the plume), 

moderate salinity levels, and low SSHA (Common Water and also frontal boundaries). The 

MOCNESS 2015-2017 survey collected individuals in moderate salinities (34.04 to 34.97) 

and moderate chlorophyll a concentrations (0.54 to 1.14 mg m-3). In the southern GoM, 

Espinosa-Fuentes and Flores-Coto (2004) categorized larval Auxis thazard as an outer 

neritic species (species occupying the outer shelf and potentially mid-shelf areas) that 

preferred intermediate temperatures (24.36 to 28.95 °C) and salinity values (35.82 to 

36.43). In Hawaii, Auxis spp. larvae were found in salinities ranging from 34.69 to 35.32 

(Boehlert & Mundy 1994), which is relatively close to the levels and preferences in the 

GoM. These larval preferences of moderate levels of environmental variables may relate 

to their widespread prevalence in the GoM and their adult spawning habits. 

4.5.3.5. Katsuwonus pelamis larval and juvenile distributions. 

During the MOCNESS 2011 survey, larvae and small juveniles were collected from 

May – September, with fluctuating abundances throughout the year. Lower abundances 

occurred in May, July, and September, while higher abundances occurred in June and July. 
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The highest abundances were recorded in June. The MOCNESS 2015-2017 survey 

collected larvae in May and August of 2016 and May 2017. The high-speed rope trawl 

2011 survey collected juveniles in June, July and September, with the highest peak in July 

and a few individuals collected in June and September. Juvenile abundances appear to lag 

behind the larval abundances in the spring and summer 2011. For example, larval 

abundances were low in May, and juveniles started to be collected in low abundances in 

June. Also, larval abundances were high in June and juveniles were high in July. 

Katsuwonus pelamis spawns several times a season when SSTs are between 24 and 29 °C 

in the Caribbean Sea and equatorial waters (Erdman 1977, Collette 2010). In the tropics, 

spawning occurs almost daily (Collette 2010). Katsuwonus pelamis are opportunistic 

breeders throughout the year in the Atlantic (ICCAT 2016a). This explains the numerous 

peaks in abundances throughout the year. If sampling continued past September, it is 

predicted that more juveniles would be collected, as their abundances lagged behind the 

larvae. 

 Katsuwonus pelamis larvae were collected in Common Water and one specimen 

was collected in Mixed Water in the MOCNESS 2011 survey. Specimens were caught in 

only Common Water during the MOCNESS 2015-2017 survey. Katsuwonus pelamis 

inhabits open waters in aggregations associated with convergences, boundaries between 

water masses, outcrops and hydrographic discontinuities (Collette & Nauen 1983). This 

pattern is reflected in their larval distributions, which favor Common Water or water in 

between boundaries of mesoscale features. Larvae were also collected in waters with 

moderate to higher salinities (33.90 – 36.08) and lower chlorophyll a concentrations (0.07 

– 0.50 mg m-3) during the MOCNESS 2011 survey. Similarly, K. pelamis larvae were 

collected in waters with moderate to high salinities (34.04 - 36.16) and lower chlorophyll 

a concentrations (0.11 – 0.54 mg m-3) during the MOCNESS 2015-2017 survey. Boehlert 

and Mundy (1994) found larval K. pelamis in deeper waters compared to other scombrids. 

Katsuwonus pelamis had low abundances nearshore that increased offshore, and it was only 

abundant when temperatures were relatively warm, ranging from 22 to 27.2 °C. Boehlert 

and Mundy (1994) also found that K. pelamis larvae prefer salinities between 34.74 and 

35.31. Higher recruitment was reported during El Niño years, when the surface waters were 
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warm and less productive, providing an increase in spawning habitat and improving 

conditions for larval survival and growth for this species (Lehodey et al. 2011).  

Juveniles were collected in offshore waters with bottom depths between of 2200 

and 2700 m, demonstrating that this oceanic species resides in offshore waters as juveniles. 

Similar to the larval distributions, juvenile K. pelamis preferred Common Water with 

moderate salinity and moderate chlorophyll a concentrations. In Oahu, juveniles were 11-

fold more abundant at 56 km offshore compared to 7 km offshore (Higgins 1970), relating 

to the ecology of this oceanic species. It is evident that larval and juvenile distributions are 

similar in the GoM and are related to adult preferences. 

4.6. Caveats and suggestions for future research.  

 In this study, the sampling methods were not equal among surveys in terms of gear 

and temporal scales, which complicated the comparisons among cruise series. 

Additionally, sampling methods in this study were not designed specifically to catch 

scombrid early life stages. A MOCNESS with a smaller mesh size may be more appropriate 

for sampling larval scombrids. Additionally, sampling the upper 200 m in discrete depths 

with the MOCNESS would be ideal for understanding the vertical distributions of larvae 

in the GoM.  

The high-speed rope trawl caught juvenile scombrids that have not been assessed 

in the GoM; however, trawling a large, midwater trawl behind the boat at deeper depths 

(maximum 1500 m) is not an ideal method for sampling juvenile tuna that most likely do 

not reside that deep in the water column.  In order to properly collect these smaller juvenile 

specimens, it may be more useful to use pair-trawling at night, as we saw more individuals 

are collected during nighttime sampling. Pair-trawling samples the water column with two 

vessels, with one towing each warp. The mouth is opened by a lateral pull from both vessels 

and doors are not necessary. Using two vessels allows for a larger net to be towed behind 

the boat at faster speeds to target fast-swimming pelagic species. This method is often used 

to sample cod off the New England coast. Creating a specific sampling method for juvenile 

scombrids will increase our knowledge regarding the faunal composition, distributions, and 
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ecology of early life stages in the GoM, which is necessary for population dynamic studies 

and fisheries management and conservation efforts. 

Lastly, juvenile specimens need to be preserved for genetic analyses in order to be 

able to use them as guides or as “voucher” specimens for identifying key morphological 

features that can distinguish different species. In this study, the range of individuals 

preserved for genetic analysis was skewed, with E. alletteratus as the most-sampled species 

and several species only having one to four representatives (e.g., K. pelamis and T. 

thynnus). Increasing the sample size in addition to the number of individuals per size class 

will provide a greater opportunity to find the features that vary among species. Identifying 

the size at which gill raker counts and liver morphology (i.e. Thunnus spp.) become useful 

is critical, as these features assist in adult identifications. Investigating the ratios that were 

identified in this study with a larger sample size will help determine which ratios are most 

informative.  
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5. CONCLUSION 

The taxonomy of larval scombrids is fairly well-described, owing to species-

specific pigmentation patterns. Genetic analyses can aid larval identifications when there 

is low taxonomic resolution due to the lack of pigmentation. However, juvenile scombrid 

taxonomy is unresolved and still needs work. The juvenile body ratios analyzed in this 

study indicate that body ratios vary substantially as juvenile fish grow in length. Since the 

ratios change ontogenetically, the best method for identifying morphological differences 

between juvenile scombrids is comparing fishes of similar sizes. This finding also pertains 

to gill raker counts, since scombrids develop more gill rakers as they grow until they obtain 

adult counts. Meristics provide a constant character trait to compare among certain 

scombrid species, but not all (e.g., Thunnus spp.). Therefore, a combination of diagnostic 

features by life stage and size class is needed in order to properly identify juvenile tunas. 

Genetic analyses, larger sample size per species, and more individuals per size class are 

needed to further develop diagnostic keys for these intermediate fauna. 

Using multiple gears to sample different temporal and spatial scales is highly 

desirable for faunal surveys. For example, bongo nets have proven effective at catching 

smaller larvae, neuston nets effectively catch larger larvae, and hook-and-line sampling 

catches adults. However, an effective sampling method does not currently exist for 

sampling small juveniles. In this study, larvae were only caught with the MOCNESS, while 

the high-speed rope trawl only collected juveniles. If these nets were not used together, the 

scombrid early life stages in the GoM would have been undersampled. Thus, using multiple 

gear types is critical for sampling varying life stages and size classes and identifying 

changes in spatiotemporal distributions. 

Scombrids have a wide variety of life history strategies and spatiotemporal 

distributions that are often dictated by adult spawning and migratory behaviors. Through 

spawning, adults establish the initial broad distribution of eggs and small larvae, and the 

larger larvae and small juveniles modify these distributions through their own behavior. 

Different vertical, seasonal, and horizontal distributional patterns existed among the 

species examined over the three cruise series. Horizontal distributions are closely linked 

with physical characteristics of the water column and mesoscale oceanographic features. 
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Oceanic species (Thunnus atlanticus and Katsuwonus pelamis) preferred more oligotrophic 

spawning habitats (moderate to high salinity, low chlorophyll a concentrations, further 

distance from shelf break), while coastal species (Euthynnus alletteratus and Auxis 

thazard) spawned in more productive continental shelf and slope environments (low to 

moderate salinity, moderate to high chlorophyll a concentrations, nearer to shelf break). It 

is evident that the time and place of spawning provides optimal conditions for the growth 

and survival of larvae and juveniles. 

Overall, this study quantified the habitat preferences of larval and juvenile 

scombrids in the northern GoM. Results from this study can help develop a more detailed 

model of habitat use of larval and juvenile scombrids, and in turn assist in managing and 

conserving adult populations, specifically for small tuna species that do not have any 

current stock assessments or management plans (e.g., E. alletteratus and T. atlanticus). By 

understanding habitat preferences of tuna early life stages, we can protect critical spawning 

grounds and nursery habitats and aim to improve management and conservation efforts 

regarding scombrid populations in the GoM. 

 



 

125 

APPENDIX 

Appendix Table 1. Stations sampled per cruise series. An “X” indicates that quantitative sample(s) were taken at that 

specific station. 

Station 
MOCNESS  

2011 

MOCNESS  

2015-2017 

High-speed rope trawl  

2010-2011 

B001 X X 
 

B003 X X 
 

B016 X 
  

B061 X 
  

B064 X X X 

B065 X X 
 

B078 X 
  

B079 X X 
 

B080 X 
  

B081 X X X 

B082 X X X 

B083 X 
 

X 

B162 X 
  

B163 X 
  

B175 X X 
 

B184 X 
 

X 

B185 X 
  

B245 X 
  

B246 X 
  

B247 X 
  

B248 X 
 

X 

B249 X 
 

X 

B250 X 
  

B251 X 
 

X 

B252 X X X 

B254 X 
  

B255 X X 
 

B286 X X 
 

B287 X X X 

SE-1 X X 
 

SE-2 X X 
 

SE-3 X X 
 

SE-4 X X 
 

SE-5 X X 
 

SE-6 X 
  

SW-1 X 
  

SW-2 X 
  

SW-3 X X 
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SW-4 X X 
 

SW-5 X X X 

SW-6 X X X 

SW-7 X 
 

X 

SW-8 X 
 

X 

SW-9 X 
  

SW-10 X 
  

SW-11 X 
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Appendix Table 2. Meristics for the 16 scombrid species found in the Western Central North Atlantic, with tribes separated by heavy black lines (Richards 2005) 

Taxa 

First 

Dorsal 

Fin 

Second 

Dorsal 

Fin 

Dorsal 

Finlets 
Anal Fin 

Ventral 

Finlets 

Pectoral 

Fin 

Pelvic 

Fin 

Caudal 

Fin 

Auxis rochei 10-12 10-12 7-9 11-14 7 23-25 I, 5 48 

Auxis thazard 10-12 10-12 7-9 11-14 7 23-25 I, 5 48 

Euthynnus alletteratus 13-17 11-13 8-9 11-15 7-8 25-29 I, 5 47-49 

Katsuwonus pelamis 14-16 14-16 7-8 14-16 6-8 26-28 I, 5 50-51 

Thunnus alalunga 
14  

(11-14) 

15  

(12-16) 

8  

(7-10) 

14  

(11-16) 

7  

(7-10) 
30-36 I, 5 47-51 

Thunnus albacares 
14  

(11-14) 

15  

(12-16) 

8  

(7-10) 

14  

(11-16) 

7  

(7-10) 
30-36 I, 5 47-51 

Thunnus atlanticus 
14  

(11-14) 

15  

(12-16) 

8  

(7-10) 

14  

(11-16) 

7  

(7-10) 
30-36 I, 5 47-51 

Thunnus obesus 
14  

(11-14) 

15  

(12-16) 

8  

(7-10) 

14  

(11-16) 

7  

(7-10) 
30-36 I, 5 47-51 

Thunnus thynnus 
14  

(11-14) 

15  

(12-16) 

8  

(7-10) 

14  

(11-16) 

7  

(7-10) 
30-36 I, 5 47-51 

Sarda sarda 
21  

(20-23) 

15-16  

(13-18) 
7-9 14-16 6-8 23-26 I, 5 - 

Scomber colias 9-13 11-12 4-5 I, 11-14 5 19-22 I, 5 37-39 

Acanthocybium solandri 23-27 
13  

(11-16) 
7-10 11-14 7-10 22-26 I, 5 - 

Scomberomorus brasiliensis 17-19 
17-18  

(15-19) 
8-10 16-20 7-10 21-24 I, 5 39-43 

Scomberomorus cavalla 
15  

(12-18) 
15-18 7-10 16-20 7-10 21-23 I, 5 39-43 

Scomberomorus maculatus 17-19 17-20 7-9 17-20 7-10 20-23 I, 5 39-43 

Scomberomorus regalis 16-18 16-19 7-9 
18-19  

(15-20) 
7-10 20-24 I, 5 39-43 1

2
7
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Appendix Figure 1. Chlorophyll a concentrations across the GoM from January to September 2011. Red represents high concentrations, and blue represents low concentrations. 

Stations are designated with white dots. 1
2
8
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Appendix Figure 2. SSHA across the GoM from January to September 2011. Red represnets positive values, and blue represents negative values. Stations are designated with 

white dots. 1
2
9
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Appendix Figure 3. Minimum salinity of the epipelagic zone across the GoM from January to September 2011. High values (37) are represented by red, and low values (24) are 

represented by blue. White are missing data1
3
0
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.Appendix Table 3. Morphometric ratios vs. the comparable variable (HL/SL) used for the genetically identified 

scombrid species. Each ratio was ranked on how informative it was and commenets were included  

Ratio 

HL 

and/or 

SL 

Informative 

character? 
Comments 

HL : SL SL Not informative - 

Pectoral fin length : SL SL Not informative 

Pectoral fins often 

damaged due to 

preservation 

First dorsal fin length : SL SL Not informative - 

Second dorsal fin length : SL SL Not informative - 

Interdorsal length: SL SL Informative Auxis spp. 

Interdorsal length : HL HL Slightly informative Auxis spp. 

Anal fin length : SL SL Not informative 
Anal fins often damaged 

due to preservation 

Pelvic fin length: SL SL Not informative - 

Interdorsal length :  

eye diameter 
SL Not informative - 

Interdorsal length :  

first dorsal fin length 
SL Slightly informative Auxis spp. 

Eye diameter :  

snout length 
SL Informative 

Euthynnus alletteratus 

Thunnus spp. 

Acanthocybium solandri 

Eye diameter : HL HL Informative 
Euthynnus alletteratus 

Thunnus spp. 

Snout length : HL HL Informative Acanthocybium solandri 

Upper jaw length : HL HL Slightly informative Auxis spp. 
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