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ABSTRACT 

The primary task of learning to program in introductory computer science courses (CS1) 
cognitively overloads novices and must be better supported. Several recent studies have 
attempted to address this problem by understanding the role of metacognitive awareness in 
novices learning programming. These studies have focused on teaching metacognitive awareness 
to students by helping them understand the six stages of learning so students can know where 
they are in the problem-solving process, but these approaches are not scalable. One way to 
address scalability is to implement features in an automated assessment tool (AAT) that build 
metacognitive awareness in novice programmers. Currently, AATs that provide feedback 
messages to students can be said to implement the fifth and sixth learning stages integral to 
metacognitive awareness: implement solution (compilation) and evaluate implemented solution 
(test cases). The computer science education (CSed) community is actively engaged in research 
on the efficacy of compile error messages (CEMs) and how best to enhance them to maximize 
student learning and it is currently heavily disputed whether or not enhanced compile error 
messages (ECEMs) in AATs actually improve student learning. The discussion on the 
effectiveness of ECEMs in AATs remains focused on only one learning stage critical to 
metacognitive awareness in novices: implement solution. This research carries out an 
ethnomethodologically-informed study of CS1 students via think-aloud studies and interviews in 
order to propose a framework for designing an AAT that builds metacognitive awareness by 
supporting novices through all six stages of learning. 
 The results of this study provide two important contributions. The first is the 
confirmation that ECEMs that are designed from a human-factors approach are more helpful for 
students than standard compiler error messages. The second important contribution is that the 
results from the observations and post-assessment interviews revealed the difficulties novice 
programmers often face to developing metacognitive awareness when using an AAT. 
Understanding these barriers revealed concrete ways to help novice programmers through all six 
stages of the problem-solving process. This was presented above as a framework of features, 
which when implemented properly, provides a scalable way to implicitly produce metacognitive 
awareness in novice programmers. 
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Chapter 1 

Introduction 

 

Background 

In a 2008 Australasian Computing Education conference (ACE) keynote paper, 

Lister grappled with the complete lack of a robust scholarship of teaching in computer 

science. Instead, he argued that most professors use “folk pedagogies” out of their own 

experiences as a student or their experiences as a professor of what has and has not 

worked in the classroom. In doing so, many professors who teach computer science and 

related subjects base their pedagogy on assumptions that have been shown to be false 

such as how novices read, interpret, and understand code. This is highly damaging to the 

students who fail, or worse, those who pass but do not form the correct cognitive models 

of programming as the base upon which to build further content. When programming is 

taught incorrectly, it leads to high failure rates and eventually a shifting of students away 

from the discipline, such as in the early 2000’s. Eventually, Lister argued, the 

undergraduate students majoring in computer science shrinks, leading to fewer graduate 

students, leading to fewer faculty positions. Lister tracked this boom-to-bust cycle and 

targets folk pedagogy as one contributing factor. To combat this, Lister suggested 

computer science teachers must understand how novices in this field learn and then build 

classroom instruction around that process. He suggested that not only will it lower the 

failure rate of introductory courses, but it could also save the discipline entirely from 

collapsing upon itself (Lister, 2008). A little dramatic, perhaps, but his points are well 

made. 
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So how can one follow Lister’s advice? He suggested turning to learning theory. 

Novices and experts alike only have a certain amount of “working memory,” also called 

short-term memory. Miller (1956) famously quantified human short-term memory 

capacity: seven, plus or minus two chunks. A chunk represents any bit of information, 

such as a digit of a telephone number or one step in a series of directions. However, the 

way in which these chunks are stored and retrieved is different in experts and novices 

who draw relationships between items differently. Experts organize their knowledge in 

much more complex ways than novices (Chi et al., 1988; Ericsson & Smith, 1991) which 

Lister described as relating directly to computer programming. Therefore, a chunk for a 

novice reading previously unseen code may be one single statement or line while a chunk 

for an expert might be a set of lines or an entire function (Lister, 2008). This relates 

directly to Cognitive Load Theory developed by Sweller (1999) which is a theory of 

human learning where each person has a certain cognitive processing limit and if 

overwhelmed the person will cease to learn or understand. This means not overburdening 

a novice’s cognitive load, which is probably somewhere around seven chunks, when 

learning new concepts. Mark Guzdial (2015a) wrote that the usual teaching method of 

introductory computer science courses – writing programs from scratch, also called the 

“constructivist” approach – was overwhelming the cognitive load of novices. In other 

words, asking students to learn by doing what experts do is ineffectual instruction. 

Furthermore, the kinds of feedback that novices receive when incorrect is often cryptic 

and built for experts and professionals in the field, which also or further overwhelms their 

cognitive load. 
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The constructivist approach to teaching novices programming is unhelpful at the 

very least, but there are even more barriers to teaching an excellent CS1 course. In the 

March 2015 issue of Communications of the ACM, Guzdial reflected on a blog post by 

Ko (2014) who argued that programming languages are the least usable interfaces ever 

created and therefore their learnability is incredibly low. Guzdial listed multiple barriers 

in the way of people learning to effectively use programming languages, such as esoteric 

features with a high cognitive load and a low expected payout. He ended with a call to 

educators: “We improve the usability and learnability of our programming languages by 

working with our users, figuring out what they want to do, and help them to do it” 

(Guzdial, 2015b, p.1). Computer science educators have attempted to lower cognitive 

load in several ways, such as using graduated exposure to programming concepts (Gray, 

2007), changing the modality in which students receive programming instruction 

(Morrison, 2016), and using exercises such as Parsons Problems (Karavirta, 2012; 

Morrison, et al., 2016).  Another approach to lowering cognitive load is to support users 

in creating a better cognitive model of programming languages as they learn. This is 

because learning how to code is more than just syntax and data structures, but also about 

assisting the novice in building a mental scaffold around which they can correctly place 

knowledge and develop metacognitive awareness (Eteläpelto, 1993; Roll et al., 2012; 

Mani & Mazumder, 2013).  

Metacognitive awareness is the ability to not only understand the problem but also 

understand where one is in the problem-solving process and the ability to reflect on that 

state. In his 1945 seminal book, Polya identified multiple stages that learners move 

through while solving a math problem, hoping to make learners more explicitly aware of 
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their movement through these stages (Polya, 2014). Dijkstra attempted to affect this 

process in his students, saying, "I want you to gain, for the rest of your lives, the insight 

that beautiful proofs are not 'found' by trial and error but are the result of a consciously 

applied design discipline." (Dijkstra, 1995, p.1). Most recently and most relevant to this 

research, Loksa et al. applied a similar framework of metacognitive awareness to novices 

learning programming. They identified six specific stages in learning to code of which 

students should be aware in order to understand where they are in the problem-solving 

process: (1) reinterpret the prompt, (2) search for analogous problems, (3) search for 

solutions, (4) evaluate a potential solution, (5) implement a solution, and (6) evaluate 

implemented solution (Loksa et al., 2016). See Table 1 for how Loksa's learning stages 

roughly correspond to Polya's. The approach of Loksa et al. was to coach students on 

these stages and help them identify which stage they were in when they became stuck, 

although this approach is difficult to scale, such as in a massively open online course, 

where individual interaction with a teacher is not possible for everyone to receive. 

 

Table 1. Learning stages by Polya and Loksa, roughly correlated. 

Polya’s Stages (Polya, 2014) Loksa’s Stages (Loksa et al., 2016) 

1. Understand the problem 1. Reinterpret the prompt 

2. Devise a plan 

2. Search for analogous problems 

3. Search for solutions 

4. Evaluate a potential solution 

3. Carry out the plan 5. Implement a solution 

4. Look back on your work 6. Evaluate implemented solution 
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One way to address the scalability issue found in the approach of Loksa et al. is to 

use an automated assessment tool (AAT), which grades student programming 

assignments, to implement features that help novices through all six stages of learning 

and therefore build metacognitive awareness into the process of using the tool itself. 

AATs have a long history of development starting in 1960 and continuing up to the 

present (Douce et al., 2005; Ihantola et al., 2010; Pettit et al., 2012; Pettit & Prather, 

2017). These tools currently only truly support the fifth and sixth stage discussed by 

Loksa et al. (2016). The fifth stage, implement solution, is supported via compile error 

message (CEM) feedback when a student submits their assignment and it contains 

compilation errors. The sixth stage, evaluate implemented solution, is sometimes 

supported as well via feedback messages when a student’s program fails a particular test 

case. Some have attempted to create enhanced compiler error messages (ECEMs) to be 

more helpful and decrease student error rate, but most of these have done so based on 

what Lister terms folk pedagogy instead of empirical data. The few who have offered 

empirical data have shown mixed results and it is currently disputed in the literature 

whether ECEMs are effectual or not. Some have argued that ECEMs have no effect on 

student learning (Denny et al., 2014; Pettit et al., 2017). However, one very thorough 

study counters these claims (Becker, 2016a) and has generated substantial discussion in 

the computer science education community (Becker, 2016b; Guzdial, 2014). Some have 

also attempted to understand these messages from the perspective of the users, as Guzdial 

suggested, performing human-factors studies on error messages and novice interaction 

with them (Nienaltowski et al., 2008; Hartmann et al., 2010; Marceau et al., 2011b). 
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Discussion in the literature of how to use an AAT to guide students through the other five 

learning stages is non-existent.  

 

Problem Statement 

 Learning to program is a hard task and novices are constantly cognitively 

overburdened (Lister, 2008; Guzdial, 2015a). This can be alleviated by supporting 

novices in building cognitive scaffolding and metacognitive awareness through six 

distinct learning stages (Loksa et al., 2016). A scalable implementation of the method of 

Loksa et al. would be to use AATs, which many universities are already using to help 

students learn programming and is therefore a somewhat ubiquitous place to start. Some 

AATs have been improved to support the fifth learning stage by providing usable 

feedback for student program submissions. A few studies have attempted to approach the 

design of these feedback messages from a usability or human-factors perspective 

(Nienaltowski et al., 2008; Hartmann et al., 2010; Marceau et al., 2011a). However, it is 

currently debated in the literature whether enhancing compiler error message feedback 

empirically improves student learning (Denny et al., 2014; Guzdial, 2014; Becker 2016a; 

Pettit et al., 2017). However, there is no discussion in the literature on implementing in 

AATs the means to help students through the other five learning stages. 

 

Dissertation Goal 

 The goal of this research is to propose a framework for improving metacognitive 

awareness through AATs. First, since compiler error feedback in AATs is the only 

learning stage currently discussed by the literature, the feedback messages in an AAT 
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were enhanced according to current best practices and iterative testing. Then the AAT 

with enhanced feedback messages was tested by novices in a CS1 course via an 

ethnomethodologically-informed study utilizing a usability test with a think-aloud 

protocol and post-testing interviews. Qualitative analysis revealed the difficulties that 

novice programmers faced in developing metacognitive awareness. Finally, these 

difficulties informed a proposal, based on the analysis of the quantitative and qualitative 

data collected during the study, for implementing in an AAT features that can positively 

impact metacognitive awareness. 

 

Research Questions  

By the time a novice programmer in CS1 submits their code to the AAT, they 

have already mentally crossed five hurdles and are ready to evaluate their potential 

solution. However, many students who get this far still fundamentally misunderstand the 

problem they’ve been asked to solve or have implemented an incorrect solution, 

something generic error messages cannot usually correct. Moreover, students often have 

no idea where in the problem-solving process they actually are (i.e. they lack 

metacognitive awareness) and therefore feel as if they are close to a solution when they 

might have diverged at the very first learning stage.  

Given these issues and the discussion in the literature surrounding feedback 

messages in AATs, this study asks the following research questions: 

RQ1. When students diverge on a specific learning stage, what factors caused them to 

do that? 

RQ2. Are ECEMs helping students evaluate their potential solution? 
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RQ2.a. Are students reading the enhanced messages? 

RQ2.b. If students are reading the enhanced messages, how do the enhanced 

messages help them better understand the error? 

RQ3. When students diverge on a specific learning stage, submit their program, and 

receive an ECEM, how do they interpret it? 

RQ4. How can AATs be augmented to support metacognition in novice programmers 

in CS1? 

 

Relevance and Significance 

 While there has been substantial discussion of the role of metacognition in 

learning to program (Eteläpelto, 1993; Roll et al., 2012; Mani & Mazumder, 2013; Loksa 

et al., 2016), and even suggestions as to how to apply them to intelligent tutoring systems 

for geometry (Roll et al., 2011), there has yet to be a framework for implementing them 

in AATs for introductory programming courses. The present research project proposes 

such a framework. As a starting place, this work picks up where the computer science 

education (CSed) community is currently discussing the only related piece of 

metacognition in AATs: enhanced compiler error messages. By beginning there, this 

study provides additional evidence as to the efficacy of ECEMs. Whether ECEMs 

provide no impact on student learning (Denny et al., 2014; Pettit et al., 2017) or do 

provide a positive impact (Becker, 2016), this additional evidence is an important step 

forward in understanding the role of ECEMs in metacognitive awareness in AATs. The 

current research project then expands to discuss the other five learning stages and how 

AATs can support students through each one. 
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Barriers and Issues 

 Since this study involves human participants, the main barrier is IRB compliance. 

This is overcome through a combination of IRB application for some portions of the 

study and classroom enhancement for other parts (see Appendix F). The primary issue for 

this study is in determining significance because only one AAT will be modified and 

tested. This is overcome through careful consideration of what was tested and how that 

may be compared to what was tested in other AATs. It is also overcome through the 

impact the present research study has already had on the literature through publication. A 

secondary issue is with sample size because this study will be carried out at one 

university where the introductory computer science course (CS1) is typically 30 to 40 

students. This is overcome by comparing data from the past several semesters of CS1 

courses at the same university where the exact same problem was used. 

 

Assumptions 

It is assumed that participants will provide honest feedback in ethnographic 

interviews. It is also assumed that participants will attempt to work hard at the provided 

task during the usability studies. Finally, it is assumed that observing participants in the 

lab can approximate their actual behavior wherever they usually work on their 

programming assignments. This last assumption is discussed in more detail in Chapter 2. 
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Limitations and Delimitations 

The first limitation that potentially impacts validity involves the fundamental 

choices in CS1 curriculum underlying this study. Since the author is a computer science 

professor at Abilene Christian University (ACU), there are several factors beyond the 

author’s control. The first is the programming language that is used, C++, was chosen by 

the department, not the professor. Much of the literature involving AATs uses Java and 

so there are some comparison issues. The second factor beyond control is the AAT that is 

used in CS1 at ACU, called Athene, is also selected by the department. Most of the 

literature discusses AATs that force students to compile inside of the AAT so that all 

behavior is captured. Athene is a service that only takes submissions which means that 

student behavior between submissions is not captured. This makes comparing results 

between Athene and many other tools a potential threat to validity. A related limitation is 

the way that data has been collected within the AAT. The AAT was created in-house 

eight years prior to commencing work on the present research project and the author had 

no control over what data was collected and how it was stored. 

The first delimitation of this study is that it takes place in a single university 

computer science program. This naturally limits the sample size, but constrains the issues 

at hand for the sake of simplicity and for appropriate comparison. Performing the study at 

multiple universities would require controlling for differences in curriculum, academic 

preparation of students which can vary from university to university, and teaching style 

of professors in different departments where culture and values may differ. 
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List of Acronyms 

 AAT: Automated Assessment Tool 

 ACU: Abilene Christian University 

 CEM/ECEM: Compiler Error Message / Enhanced Compiler Error Message 

 CS1: Computer Science 1, the first course in a computer science curriculum 

 CSed: Computer Science Education 

 HCI: Human-Computer Interaction 

 UI: User Interface 

 UX: User Experience 

 

Definition of Terms 

Definitions of important terms used in this research are given below:  

Athene – An automated assessment tool written by Dwayne Towell in 2009 that 

is currently in use at Abilene Christian University (Towell & Reeves, 2009). 

Automated assessment tool – A tool that allows users to submit programs a 

receive instant feedback on syntax and correctness (Ihantola et al., 2010). 

Cognitive overload/cognitive load theory – A theory of human learning where 

each person has a certain cognitive processing limit and if overwhelmed the person will 

cease to learn or understand (Sweller, 1999). 

Compiler Error Message – The standard error message that is provided by the 

compiler by default (Becker, 2015). 
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Constructivist approach – An approach to teaching computer science in which it 

is thought that the most effective way for students to learn is by constructing their own 

solutions, from scratch, to programming problems (Lister, 2008). 

Enhanced Compiler Error Message – A compiler error message that has been 

edited/updated to provide more information to the user, clarify difficult terminology, and 

provide feedback about how to fix the error (Becker, 2015). 

Ethnographic study – Taken from the social sciences, specifically anthropology, 

ethnography is a practice that attempts to observe and understand human behavior, 

beliefs, and institutions (Angrosino, 2007). 

Folk pedagogies – An approach to teaching that is “a mix of an oral tradition 

handed down by more experienced colleagues and [one]’s own intuitions about what 

would help the students, which [is] often a reflection of what had worked…when [one] 

was a student” (Lister, 2008, p. 5). 

Mental/conceptual model – A user’s perception of how the system works and 

why it works the way that it does (Norman, 2013). 

Mental scaffold/cognitive scaffold – Providing help, tools, and feedback to 

learners while they move from novice to expert user (Eteläpelto, 1993). 

Metacognitive awareness – The state of awareness of the problem, the problem-

solving process, and where one is currently in that process (Loksa et al., 2016). 

Post-testing interviews – After observing behavior during a usability test, 

researchers listen to users’ perceptions of the task(s) by asking a set of focused questions 

(Miller & Crabtree, 1999). 



 

 

13 

Think aloud protocol/think aloud study – A study where a participant is asked 

to perform a task and to vocalize their thoughts while doing it (Ericsson and Simon, 

1993). 

Usability study/tests – Typically performed in a laboratory setting, usability tests 

“are about watching one person at a time ty to use something (whether it’s a Web site, a 

prototype, or some sketches of a new design) to do typical tasks so you can detect and fix 

the things that confuse them or frustrate them” (Krug, 2014, p. 113). 

 

Summary 

  The primary task of learning to program in CS1 courses cognitively overloads 

novices and must be better supported. Rather than relying on folk pedagogies to improve 

student learning, this must involve verifiable data collected through quantitative or 

qualitative research. One way that researchers are already trying to alleviate cognitive 

overload in CS1 students is by improving cognitive scaffolding and metacognitive 

awareness via enhancing the compiler error message feedback they receive in AATs. 

However, this only supports one stage of the learning process. Therefore, a robust 

framework for implementing features in an AAT that will improve students’ 

metacognitive awareness through all learning stages is needed. By carrying out an 

ethnographic study of CS1 students via usability studies and post-testing interviews, this 

study provides such a framework. 
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Chapter 2 

Review of the Literature 

 

Introduction 

 This chapter first discusses the relevant literature surrounding automated 

assessment tools (AATs), specifically looking at feedback in AATs. This discussion is 

further narrowed to compiler error messages and the various attempts to enhance those 

messages for the sake of readability, understandability, and learnability for novice 

programmers. While many have written about the problem of enhancing compiler error 

messages, only a few researchers have approached the problem from a human-factors 

perspective. Similarly, only a small group of researchers have provided empirical data 

about the effectiveness of their attempts to enhance compiler error messages. The present 

research project intends to approach the problem from a human-factors standpoint and 

provide empirical data from the study. Therefore, it is necessary to examine this 

literature. 

 This chapter also examines relevant literature about the research methods used in 

the present research project, namely usability evaluations, think-aloud studies, and 

ethnography. Understanding how previous studies have used – and, in some cases, 

misused – these tools will provide insight for building the methodology of the present 

research project. 
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Automated Assessment Tools 

Introduction 

From very early in the discipline, computer scientists were attempting to find a 

way to write programs that could evaluate and grade other programs. In a much earlier 

volume of Communications of the ACM, Hollingsworth (1960) discussed his card-based 

FORTRAN homework grader. His assessment was that students learned more and 

learned faster with the help of his AAT. The grader was very rudimentary and 

technological limitations meant the computer would stop during run-time errors such as 

buffer overflows. Regardless of the problem in their code, it would always return one of 

three possibilities: nothing (stopped execution before reaching termination), “WRONG 

ANSWER,” or “PROBLEM COMPLETE.” One of the first modern AATs is described 

by Schorsch (1995), written to help students writing in Pascal at the United States Air 

Force Academy. Schorsch created the Code Analyzer for Pascal (CAP) which would find 

syntax, logic, and infinite loop errors and report them to students through a graphical user 

interface. At the end of the course, Schorsch provided the students with a questionnaire to 

attempt to find out if they felt using CAP helped them better learn how to program. Many 

students responded favorably, but Schorsch offers no metric or data to quantify the gains 

from using CAP. Contrary to student perception of CAP, Schorsch reported that he could 

tell that many students did not even read the feedback messages CAP provided, no matter 

how user-friendly they were made to be. Instead of learning how to program better, many 

students began using CAP as a crutch. 
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Figure 1. Feedback message from CAP (Schorsch 1995, p. 169). 

 

 Following in the footsteps of these early pioneers, Venables and Haywood (2003) 

identified the importance of feedback for the learnability of programming and created 

their own system for grading programs written in Java. Unfortunately, they provided no 

data to support the premise that students were learning from error messages. Rather, they 

focused on the results that faculty and staff had less work and therefore enjoyed using the 

AAT. Venables and Haywood found the same worrisome conclusion of Schorsch: 

students began to modify code to fit the expectations of the AAT, rather than do it right 

the first time. Many other studies, such as Joy and Luck (1998) and Foxley et al. (2001) 

have reported on similar attempts with mostly similar results. 

 Many have recognized the importance of proper feedback in any learning 

experience. Don Norman (2013) writes that feedback is an essential piece to bridging the 

“gulf of evaluation” where a user determines how to interpret the results of their actions. 

Feedback, then, is a fundamental piece in the learnability of any task, including 
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programming languages. If the research community is to answer Guzdial’s call to bridge 

this gulf, then it would seem feedback is the natural choice. However, as is evident from 

the brief discussion above, one consistent result looms over all research into the use of 

AATs in computer science education: automated feedback has not definitively been 

proven to help students learn. This would lead to two possible conclusions. The first is 

that feedback in AATs is genuinely not helpful. If so, how could such a fundamental part 

of learning be unnecessary? The second is that perhaps it has not been fully understood 

from the perspective of the discipline of Human-Computer Interaction. These two 

possibilities are explored below. 

 

Feedback in AATs 

Several modern articles on the status quaestionis of AATs have presented readers 

with excellent reviews of past tools and their capabilities. These studies identify the 

importance of feedback in learning and assume that instant feedback is implicitly helpful, 

yet most do not provide quantitative data on the efficacy of these feedback messages 

(Douce et al., 2005; Pears et al., 2007; Ihantola et al., 2010). Some do not agree that 

instant feedback is helpful for students (Butler et al., 2007). 

The first study to focus exclusively on utilizing feedback in an AAT as a primary 

means of enhancing student learnability is Flowers et al. (2004).  At the time of the study, 

the United States Military Academy at West Point required all freshmen to take an 

introductory programming course using Java.  Instructors found that most students 

repeated the same minor syntax errors throughout the entire semester and created 

Gauntlet, a useful, easy to use, and often humorous AAT. By replacing cryptic compiler 
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messages with more user-friendly feedback, they claim that student performance 

dramatically increased (Flowers et al., 2004).  Unfortunately, this claim is only 

substantiated anecdotally.  If the perception of improvement by the instructors was 

correct, then it could be attributed to two separate but related factors.  The first is that 

better error messages truly helped students learn from their mistakes and freed them from 

their syntax woes to focus on problem-solving skills.  The second is that an automated 

tool allowed otherwise less talented or less motivated students to succeed by consistently 

freeing them from the responsibility of catching – and learning to move past – novice 

errors. 

 

 
Figure 2. Two separate enhanced feedback messages from Gauntlet (Flowers 2004, p. 
12) 

 

The first study to provide quantitative data on student error before and after the 

introduction of an AAT was Jadud (2005).  Jadud introduced the tool BlueJ and recorded 

time between compilation and the number of errors at each compilation in order to 

explore what he calls “compilation behavior.” The results were encouraging: student 

error rates dropped considerably after the introduction of the tool.  Jadud felt that his data 

had gone a significant way toward describing the behavior of novice programmers and 

next wonders how educators might use this data to shape that behavior.  However, Jadud 

rightly described the issue with using his study to infer anything about the causes of the 
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recorded student behavior. He writes: “Even if changes such as those proposed appeared 

to ‘improve’ novice programmer behaviour in some way, we don't want to condition 

students the way Tom Schorsch (1995) and his colleagues did in 1995 at the United 

States Air Force Academy,” (Jadud, 2005, p. 37) indicating the consistent fear that the 

tool is not enhancing learning but rather impeding it. 

Many have reported similar results with an AAT.  For instance, Nordquist (2007) 

did not address how automated feedback impacted student learnability, other than to 

mention that in an anonymous survey the students felt it helped.  More likely, however, is 

the author’s instinct that students probably learned how to guess the test cases and play 

the system. In another case, Sherman et al. (2013) introduced an AAT into their 

introductory programming courses with one group using the vanilla version and another 

using a version with custom feedback messages.  They found an increase in student 

submissions in the test group that had access to the AAT running the feedback messages, 

writing that students were “leveraging feedback to improve their programs” (Sherman et 

al., 2013, p. 1).  While this sounds positive, it is once again possible that students were 

taught a reliance on a system and that their learning was not enhanced through feedback 

messages. 

Nienaltowski et al. (2008) was the first to provide quantitative data on whether 

feedback messages increased learnability of programming languages for novices. 

Relevant to this study are three of their surprising findings. The first is that students with 

less prior programming experience did not benefit more from the enhanced feedback 

messages than students with more experience. Second, more information provided to 

students did not result in more correct answers. Third, novice students responded much 
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better to both long- and short-form error messages, but responded poorly to more visual 

or picture-related formats. The result that longer and more detailed feedback did not 

correlate to significantly improved student learning is troubling. One possible explanation 

for these findings which was not discussed in their study is that students did not benefit 

from the feedback messages because they did not read them. This possibility is striking 

because students often report very positive perceptions of AATs (Holton & Wallace, 

2013; Rubio-Sánchez et al., 2014). 

 
Figure 3. Short form, visually inline form, and long form examples of enhanced compiler 
error message feedback from the AAT by Nienaltowski et al. (2008, p. 169).  
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Empirical Arguments: Conflicting Reports on the Helpfulness of Enhanced Feedback 

The first to attempt an empirical study on whether enhanced feedback messages 

increases learnability of programming languages in an introductory course was Denny et 

al. (2014) using their own AAT, CodeWright. The enhanced feedback consisted of the 

offending line of code, a description of the error, a code block that contained a similar 

error, the same code block with that error fixed, and a discussion of what was fixed and 

why. They quantitatively analyzed student submissions and discovered that there was no 

statistically significant difference between the experimental and control groups. 

Furthermore, they found that enhanced feedback did not affect the average number of 

compiles needed to overcome any common error. What could explain their results? Why 

would students not benefit from such a fundamental piece of learnability? They present 

several possibilities. The first is that the types of errors which novices typically commit 

may be simple enough that the generic compiler error message may already provide 

adequate information. The second possibility they propose, already noted by Schorsch 

(1995), is that students did not read the enhanced error messages because of their 

verbosity. This second possibility seems more likely. They close by calling for a rigorous 

human factors study on how students are using these enhanced feedback messages in 

order to determine why they are not helping. 
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Figure 4. Enhanced compiler feedback message from Denny et al. (2014, p. 277). 

 

Directly conflicting the findings of Denny et al. is the work of Becker (2016). 

Becker employed Decaf, a Java editor that presented students with enhanced compiler 

messages alongside the standard message. Two student groups, each with just over 100 

students, were tested over a period of four weeks. The two groups were from separate 

consecutive academic years. There were three important results from this study. The first 

is that the overall number of student errors was lower for the group with the enhanced 

messages. Second, the number of errors per student was not lower with the group that 

received the enhanced messages. However, when the data are constrained to the top 15 

errors, then the experimental group made less errors per student. Third, the number of 

consecutive error messages that students received was much lower in the group that 

received the enhanced messages. Becker’s study was thorough and he carefully 

statistically compared his work to those that have gone before, leaving little doubt in its 

validity. The study also generated considerable discussion in the CSed community. 

Guzdial wrote in a blog post, “Is it really the case that enhancing error messages doesn’t 

help students? Yes, if you do an ineffective job of enhancing the error messages” 

(Guzdial, 2014, p. 1). Guzdial wrote that Denny et al. did not first attempt to see if the 

enhanced messages in that study were more helpful and that it was disappointing they did 
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not consider the work of Marceau et al. (2011a) who provided a rubric for evaluating 

compiler feedback messages (see Appendix A). Becker commented on the discussion as 

well, digging deeper into the work of Denny et al., showing what was measured and how 

it could be compared. (Becker, 2016) 

 
Figure 5. User Interface from Decaf showing both the standard and enhanced error 
feedback messages (Becker 2016, p. 127). 

 

Agreeing with Denny et al. (2014), Pettit et al. (2017) performed an empirical 

study of enhanced feedback messages in Athene and found that it produced no significant 

change. They compared four consecutive semesters of CS1 classes without enhanced 

error messages to four consecutive semesters of CS1 classes with enhanced messages. 

They measured the likelihood of successive compilation errors, the occurrence of 

compiler errors within semesters, and student progress towards a successful completion 

of a programming assignment. Although there was no statistical evidence of increased 

learning in the experimental groups, students who saw the enhanced messages were 

overwhelmingly positive. Pettit et al. admitted multiple threats to validity, such as that 

students can compile offline and only use Athene for submissions, while CodeWright 

(Denny et al., 2014) and Decaf (Becker, 2016) are full code editors that capture all 
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student behavior. One issue that Pettit et al. did not address is whether or not the 

enhanced error messages themselves could be empirically shown to be more helpful; 

simply adding additional text does not necessarily make an error message more helpful 

(Nietawalski, 2008). Marceau et al. (2011a) provide a rubric for evaluating the 

effectiveness of error messages (see Appendix A), and like Denny et al., Pettit et al. did 

not consider it. 

Even still, the works of Denny et al., Becker, and Pettit et al. are indicative of an 

open question in CSed: do enhanced error messages increase student learning? With two 

empirical studies against it and one for it, a rigorous human factors evaluation is needed 

to answer this question. 

 

Human Factors Evaluations of AATs 

 If feedback messages are, as Denny et al. (2014) and Pettit et al. (2017) have said, 

ineffectual in increasing student learning, then what can be done to improve them so that 

they are helpful? Several studies have attempted to answer this question through a human 

factors approach. The literature discussed above often blames the confusing and terse 

compiler error messages as a source for student confusion and perhaps even why many 

students confess to not reading the enhanced feedback messages that AATs often 

provide. Hartmann et al. (2010) thought to solve this problem by creating their own AAT, 

HelpMeOut, which provides students with feedback similar to Denny et al. Instead of a 

traditional error message with a line number, an arrow to the offending character, or 

highlighting, HelpMeOut queries a database of similar errors and presents users with 

examples and how to fix them. Previous approaches, such as those discussed above, have 
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implemented enhanced feedback through a selection of top errors provided by instructors. 

These lists of potential errors are driven by experts and not user observation. A weakness 

to this approach is evidenced by one such implementation discussed above, Gauntlet, that 

was later found by Jackson et al. (2005) to not contain the most commonly encountered 

errors by novices. HelpMeOut overcomes this weakness through a dynamic list of real 

student bugs that can better reflect actual user experience. Furthermore, the suggestion 

that appears at the top of the list is accomplished through crowdsourced voting by 

students. In other words, the dominating metric of which examples of similar bugs that 

students will see is based heavily on user experience. While the solution is quite novel, 

Hartmann et al. do not attempt to measure whether their AAT helped novice 

programmers create a better mental model of the errors they received or whether it 

increased learnability for novice programmers. 

Marceau et al. (2011b) call out the computer science education research 

community for investigating whether or not feedback messages helped users learn 

without approaching it from the perspective of users. They provide both a quantitative 

and qualitative human factors approach via a statistical analysis of user errors after 

introducing enhanced feedback and ethnographic interviews with those same students. 

They discovered that students were grossly misinterpreting the feedback messages and 

were confused at the highly specialized vocabulary of their AAT, DrRacket. Guessing at 

why this is the case, they postulate that perhaps students do not take the time to read the 

messages, but rather use it only as an “oracle” that somehow knows how to fix their code 

or that students prefer to read only the code highlights that indicate the necessary change. 

In a follow-up paper, Marceau et al. (2011a) provide a rubric for evaluating the 
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effectiveness of error messages which will be used in the methodology of this study (see 

Appendix A). 

Based on their results, Marceau et al. recommend the following changes to error 

messages: simplify vocabulary, be more explicit in pointing to the problem, help students 

match terms in the error message to parts of their code (e.g. using color coded 

highlighting), design the programming course with error messages in mind (rather than 

an afterthought), and teach students how to read and understand error messages during 

class time. 

 Several other recent studies utilize aspects of a human factors approach to an 

AAT. Lee and Ko (2011) discuss personifying feedback in a game that teaches 

programming. Their tool, Gidget, personifies feedback by accepting blame when a 

program works incorrectly. Participants in the experimental group where personification 

was increased completed more levels of the game in a similar amount of time compared 

to the control group. Warren et al. (2014) discuss implementing their AAT within a 

Massive Open Online Course (MOOC) and the change in medium offers helpful insight 

into potential changes to feedback through enhancing user experience. Falkner et al. 

(2014) attempted to increase the granularity of feedback and observe its impact on 

students. Their results are promising, though they do not address student behavior in 

response to increased granularity of feedback – a goal also not addressed in many of the 

studies discussed above. Loksa et al. (2016) performed a study on a code camp where the 

control group was taught to program and the experimental group was additionally trained 

in the cognitive aspects of coding. They write, “programming is not merely about 

language syntax and semantics, but more fundamentally about the iterative process of 
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refining mental representations of computational problems and solutions and expressing 

those representations as code” (p. 1450). Broadly speaking, this ability is called 

“metacognitive awareness.” They report that students trained in metacognitive awareness 

were significantly better able to understand feedback than students who were not. The 

work of Loksa et al. suggests that the cognitive scaffolding gains from improving 

feedback in AATs can be extended to the entire process of solving a programming 

problem using an AAT, though they do not describe what that would look like. 

Finally, Singh et al. (2013) describe an AAT that automatically derives the 

solution of an error, creates a metric for measuring how wrong the student’s code is, and 

provides that number to the student along with the appropriate error message. The AAT 

was tested with thousands of MIT students and the authors found that it could propose 

correct solutions to 64% of student errors. This sort of artificial intelligence technique on 

automatic grading is still new but is promising. The most interesting piece of this study is 

that when the tool can find a correct solution to propose, it allows students to quickly 

create an effective mental model of how far off they are from the solution. With other 

AATs, students will struggle against an error, find the solution, triumphantly expect their 

next submission to be correct, and then sadly run into the next error. This is because 

novices have not yet built a comprehensive mental model of programming and they 

therefore have no way to know how far off their submissions are from the correct 

solution. The feedback students receive from the AAT created by Singh, et al., help them 

with their immediate error, but as successive attempts occur it also provides clues about 

the direction the student is going. (e.g. is the number getting lower or higher?) 
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Unfortunately, they do not evaluate whether this novel approach actually enhanced 

student learnability. 

 

Metacognitive Awareness in Novice Programmers 

Introductory courses in programming often focus solely on syntax and data 

structures, but there is a growing consensus among computer science education 

researchers that it should also focus on assisting the novice in building a mental scaffold 

around which they can correctly place knowledge and develop metacognitive awareness 

(Eteläpelto, 1993; Shaft, 1995; Roll et al., 2012; Mani & Mazumder, 2013; Loksa et al., 

2016). Metacognitive awareness is, simply put, knowing about knowing. Applied to 

programming, it is not just knowledge of the problem, but knowledge of where one is in 

the problem-solving process and self-reflection on that state (Metcalfe & Shimamura, 

1994). 

Incorporating metacognitive awareness into the instruction of novice 

programmers is rather scarce. In 2000, Vizcaíno et al. described HabiPro, an intelligent 

tutoring system (ITS) (Vizcaino et al., 2000). HabiPro included four exercises intended to 

help students develop good programming habits. In the first exercise, students were asked 

to find the mistake in a block of source code. The second exercise was, given a jumbled 

program with lines out of order, put the program in the correct order. The third exercise 

was to guess the result of executing some given source code without comments and with 

randomized variable names. The fourth exercise was, given source code with one line 

missing, write the one line to complete the program. The exercises in intelligent tutors 

can help build mental scaffolding in novices (Roll et al., 2012), although HabiPro was not 
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specifically designed to build metacognitive awareness. HabiPro is also not an automated 

assessment tool and that difference is an important distinction to make for the present 

research project. An ITS is designed to train novices in a particular skill, coding in this 

case, whereas an AAT is designed to assign and assess the correctness of student work.  

A more recent study by Cao et al. reports on Idea Garden, an IDE that helps 

novices by providing mental scaffolding through just-in-time contextual hints (Cao et al., 

2014). Their work focused on the development environment that coders use and how 

metacognition could be better engendered at that level. A follow-up by Jernigan et al. 

implemented these concepts into a larger prototype and reported that novices in the 

experimental group required substantially less help than the control group that did not use 

the prototype (Jernigan et al., 2015). Finally, Nelson et al. (2017) proposed a 

comprehension-first pedagogy paired with PLTutor, an ITS that would help novices 

better learn meta-programming skills such as code-tracing. 

The most relevant study on promoting metacognitive awareness in novice 

programmers is by Loksa et al. (Loksa et al., 2016). They identified six distinct problem 

solving stages that learners usually progress through sequentially. Each stage is 

somewhat broad. Finer granularity inside each stage might be counterproductive because 

it is difficult to make fine-grained observations of people learning. See Table 1 for how 

these stages roughly correlate to stages proposed by Polya. See Table 2 for examples of 

the difficulties a student might face as they progress through each of the six learning 

stages. Loksa et al. reported on an intervention at a code camp where the control group 

was taught how to code and the experimental group was additionally trained in these six 

problem solving stages and the use of an IDE with an Idea Garden. They report that 
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students with this training were significantly more productive and required less help. As 

the literature indicates, pedagogical approaches and helpful coding environments should 

be pursued. These approaches, however, are difficult to scale or hard to implement for 

online learning technologies, such as massively open online courses, which Loksa et al. 

acknowledged as a limitation of their work. The intention of the present research project 

is to adapt the spirit of these interventions to automated assessment tools that can span 

this gap. 

 

Table 2. Learning stages by Loksa paired with examples of difficulties that novices might 
encounter at each stage. 

Loksa’s Stages (Loksa et al., 2016) Example Difficulty Faced by Novices at 
Each Learning Stage 

1. Reinterpret the prompt Fundamentally misunderstands the 
programming problem or mistakes it for a 
different problem. 

2. Search for analogous problems Decides to use a problem previously 
encountered that is too different from the 
current problem. 

3. Search for solutions Finds a solution that does not 
satisfactorily solve all possible test cases 
or solves the wrong problem. 

4. Evaluate a potential solution Fails to properly account for edge cases 
when mentally running through a selected 
algorithm. 

5. Implement a solution Incorrectly use of syntax. 

6. Evaluate implemented solution Incorrectly addresses failed test case by a 
making an ineffectual change in their 
code. 
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Human-Factors Tools: Ethnography, Usability Evaluation, and Think-Aloud 

Studies 

Usability Evaluation 

The design of a usability study has been discussed heavily in the literature since 

the late 1970’s, but crystalized with the publication by Gould and Lewis (1985). They 

recommended the now standard early focus on users and their needs/desires, empirical 

measurements, and iterative design. Since Gould and Lewis’ landmark paper, usability 

evaluations have become very important in the field of HCI because they test the systems 

through actual use to make sure that the user experience is what the researcher or 

designer imagined it to be when designing it (Dix, 2009; Shneiderman, Plaisant, Cohen, 

Jacobs, Elmqvist, 2017, p. 147). 

Barkhuus and Rode (2007) examined 24 years of usability evaluations published 

at the ACM SIGCHI conference. They found that multiple kinds of usability evaluations, 

from qualitative think-aloud studies to quantitative lab studies to analytical studies 

utilizing measurements such as GOMS. However, the overwhelming majority of studies 

presented at SIGCHI used empirical quantitative methods. Their conclusions raise an 

important set of questions. First, is the research community biasing itself towards 

problems easily solved by empirical quantitative study? Second, is this biasing causing 

the research community to lose groundbreaking research that does not fit well into 

empirical quantitative testing? These two questions were answered the following year by 

Greenberg and Buxton (2008) who noted that usability evaluation had actually become 

“harmful” some of the time. They found that SIGCHI was indeed biased towards 

empirical quantitative analysis and this biasing had produced “weak science,” i.e. 
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research questions were formulated for the method, rather than choosing a research 

method to answer the question. In light of the questions raised by Barkhaus and Rode and 

Greenberg and Buxton, in this study careful consideration is given to selection of 

methods, specifically the use of mixed methods. Greenberg and Buxton also highlight the 

need for replication of past studies, despite the less prestigious nature of the work. The 

discussion above highlights some of the pitfalls in usability testing that the present 

research project seeks to avoid. Of course, much more has been written on usability 

testing and how to perform it (Dumas & Loring, 2008; Tullis et al., 2008; Rubin & 

Chisnell, 2008; Krug, 2014). A related idea to usability evaluations is heuristic evaluation 

which is often done as part of a usability study.  

Nielsen and Molich (1990) offer now-classic advice on using heuristic evaluation 

of user interfaces, namely that when it is done by a panel of experts, rather than one, it is 

highly reliable. This study will follow that advice when evaluating results of the usability 

study. 

 

Think-Aloud Studies 

 One research tool often employed in evaluating changes made to CS1 classes is 

the think-aloud study. A few recent and relevant examples are considered. Yuen (2007) 

performed a think-aloud study on his CS1 class to understand the differences in how 

novices construct knowledge compared to experts. He collected data from four sources: 

an initial survey, participants’ work on paper, transcripts of the interviews, and the 

researcher’s field notes. Their results show three kinds of student behavior in response to 

various levels of knowledge construction. The first, “need to code,” is the least desirable 
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response which is when the novice does not first understand and determine a solution, but 

instead turns directly to the code. A better response is the second, “generalizing the 

problem,” where the novice is able to take what they have previously learned and try to 

generalize it to the present scenario. Sometimes this leads to a valid solution. The third 

and most desirable behavior, “designing effective solutions,” is when the student is able 

to properly take their knowledge construction and apply it to create a working solution. 

These three categories will be useful in this study’s data analysis. 

 Teague et al. (2013) perform a think-aloud study watching novices trace code and 

then determine in a single sentence what it does. They follow the classic think-aloud 

protocols by Ericsson and Simon (1993). Their results suggest that students who cannot 

trace code cannot build appropriate abstractions to understand complex programming 

tasks. One important contribution they make is in noting that think-aloud studies are 

difficult for novices. The task of programming is already cognitively overloading novices 

and therefore asking them to also think aloud during a study could threaten the ability to 

replicate the same silent attempt. To offset this, they began their study with a short think-

aloud practice session so the participant could become familiar with the think-aloud 

protocol and the interviewer. The present research project follows Ericsson and Simon 

(1993) for think-aloud protocol and follows Teague et al. (2013) in adding a short 

practice session at the beginning to hopefully offset cognitive load on novices. 

 Whalley and Kasto (2014) perform a think-aloud study watching novices solve 

three programming challenges. Researchers narrated the problem-solving process and 

showed how some students who might otherwise get stuck were able to solve the 

challenges with some redirection and scaffolding. They also note that think-aloud studies 
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are difficult with novice programmers because the cognitive load is already very high and 

so they have a difficult time concentrating on solving the problem and can't continually 

verbalize their thoughts. In order to offset this, they also used a short practice session so 

participants could get used to the think-aloud protocol. 

 

Ethnography 

 Taken from the social sciences, specifically anthropology, ethnography is a 

practice that attempts to observe and understand human behavior, beliefs, and institutions 

(Angrosino, 2007). Ethnography has been widely adopted outside of social sciences as a 

tool to understand business culture (Brannen & Salk, 2000; Cunliffe, 2009), theology 

(Wyche et al., 2007; Moschella, 2008), and is widely used in HCI (Button, 2000; Bell, 

2001; Bell et al., 2003; Bell et al., 2005; Lazar et al., 2017). The goal of ethnographic 

study in HCI is to understand the user, from the user’s perspective, situated in the user’s 

context (Blomberg & Karasti, 2012). Perhaps the earliest and most cited example of 

ethnography in HCI is Suchman (1987) who showed that users do not form goals and 

then follow plans to reach those goals like machines, but rather use those plans as 

resources for “situated action” as it unfolds (Blomberg & Karasti, 2013). Suchman 

developed this theoretical model by observing office workers using a copy machine and 

was then able to redesign its interface to better support human needs. A recent example of 

ethnographic study in HCI observed those with cognitive disabilities in order to derive 

better means of supporting their daily tasks (Carmien & Fischer, 2008). The only 

ethnographic study that takes place in the computer science classroom is Garvin-Doxas 
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and Barker (2004) who observed students and professors in CS1 classrooms to determine 

what makes the atmosphere defensive or supportive. 

 However, when poorly applied, ethnography can be harmful for research. 

Crabtree et al. (2009) review ethnographic studies at SIGCHI and found that many poorly 

apply the tool to emerging areas of technology. They argue that ethnographic methods do 

not need to be changed for these new contexts and highlight the harm to the research that 

is often the result. Bell et al. (2003) called for new understandings of the new domains of 

technology as it rapidly progressed from the office to the home and beyond. Crabtree et 

al. (2009) write that, “it is important to recognize that new contexts of design do not 

necessarily demand the development of new approaches to develop new understandings” 

(p. 880). They caution against new methods that do not seek to understand the “lived 

work” of the user, transform ethnography into a literary critique through defamiliarization 

which does not constructively inform design, surface-level descriptions of contexts which 

they call “exotic tales from home and abroad” or “design tourism,” and critical reflection 

on “new values.” Crabtree argues that these new techniques are often used to support the 

researcher’s concerns rather than the concerns of those being observed. It is for these 

reasons that the present research project will use traditional ethnomethodologically-

informed practices, which are practices that seek to observe action and interaction 

wherever and whenever it occurs. In this case, it is the CS1 student working on his or her 

homework, which due to the mobility of modern computing, can take place anywhere: 

the dorm, the student center, the classroom, in a car, etc. This means that observing 

students working on their homework in a lab setting is not too different from any other 

particular setting on campus where they might work. 
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Summary 

The environment in which many students learn to program is now almost fully 

automated. The feedback that students receive from these AATs now directly contributes 

to the learnability of programming and programming languages. And yet, even with 

AATs providing instant feedback, as Guzdial (2015) points out it remains a 

disproportionately difficult task to learn to code. Most who have implemented these 

AATs report increased student performance, but this hypothesis is currently disputed 

when quantitatively tested. It seems as though enhancing feedback can – but does not 

necessarily – enhance the learnability of programming for novices. The solution to 

finding out why is to understand the problem from the perspective of the users. What 

makes “enhanced feedback” more usable for students? Too often it is considered better 

simply because there is more information, but arbitrarily increasing the cognitive load on 

students does not usually lead to increased learnability. Meanwhile, very few have taken 

the advice of Marceau et al. (2011a) in using their rubric (see Appendix A) to verify that 

the enhanced messages are, in fact, more usable. Furthermore, enhanced feedback is just 

one piece of the metacognitive puzzle. The substantial research into enhanced feedback 

discussed above will allow this study to correctly implement enhanced feedback and then 

proceed to propose suggestions for implementing other features that more fully support 

metacognition in novice programmers. 

This study will be carried out using standard research tools. Multiple research 

tools were discussed above and are employed in this study: usability studies, think-aloud 

protocol, and ethnography. This study refers to those mentioned above to help design the 
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methodology used. The pitfalls and incorrect applications of these methods are also 

considered and avoided. 
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Chapter 3 

Methodology 

 

Approach 

 The ethnomethodologically-informed study outlined in this chapter was carried 

out to address the research questions presented in Chapter 1. Learning to program in CS1 

courses cognitively overloads novices, but helping novices become aware of their 

cognitive processes (metacognition) improves their performance (Loksa et al., 2016). 

One method for addressing this issue is to enhance the compiler error message feedback 

students receive in AATs, though this only effectively tackles one of six learning stages 

of which students should be made aware. Chapter 2 addressed the history of AATs 

(Douce et al., 2005; Pears et al., 2007), including student and professor opinions and 

quantifiable data regarding its efficacy at enhancing learning (Ihantola et al., 2010). 

However, it is currently heavily disputed whether or not ECEMs improve student 

learning (Denny et al., 2014; Pettit et al., 2017). The researcher carried out an 

ethnographic study of CS1 students via usability studies and interviews in order to arrive 

at verifiably helpful ECEMs and from there to understand students’ metacognitive hang-

ups in the other five learning stages. The reviewed literature on usability studies, think-

aloud protocol, and ethnography informed the design of the present study. 

This chapter first describes two pilot studies and their preliminary results in 

iterative stages. It next describes the design of the full study and how it was informed by 

the literature and the results of the pilot studies. Next, the procedure for this study is 

discussed along with the participant pool, recruitment, and data collection methods. This 
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chapter also revisits research questions from Chapter 1 to provide methods by which they 

may be answered through the evaluation of the full study’s results. Finally, the methods 

by which the data will be analyzed are discussed. As listed above, the primary research 

questions for this study are:  

RQ1. When students diverge on a specific learning stage, what factors caused them to 

do that? 

RQ2. Are ECEMs helping students evaluate their potential solution? 

RQ2.a. Are students reading the enhanced messages? 

RQ2.b. If students are reading the enhanced messages, how do the enhanced 

messages help them better understand the error? 

RQ3. When students diverge on a specific learning stage, submit their program, and 

receive an ECEM, how do they interpret it? 

RQ4. How can AATs be augmented to support metacognition in novice programmers 

in CS1? 

 

Pilot Studies 

Two pilot studies were performed in the Fall of 2016 with 6 students in the first 

and 6 students in the second. These pilot studies helped determine necessary 

modifications to the ECEMs to improve its usability for the full study.  

 

Participants and Recruitment 

 All participants in both pilot studies consisted of students from Abilene Christian 

University (ACU), a small private liberal arts university located in Abilene, Texas. 
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Students participated in the study in a lab on the third floor of the Mabee Business 

Building at ACU. All students were enrolled in computing, math, or related majors. The 

participant pool consisted of 12 students, 10 males and two females. The pilot studies 

were conducted under NSU IRB# 2016-399 and with coordinate and in conjunction with 

ACU’s IRB (see Appendix F). All appropriate steps regarding recruitment and consent 

were followed as outlined in the IRB application. 

The first pilot study was conducted early in the Fall semester and so using 

participants from CS1 would have been impossible or the task would have been too 

simple. Therefore, participants from CS2 were used instead. These participants had 

completed CS1, but were not very far along in CS2 to be significantly different from CS1 

students and therefore still considered to be novice programmers. 

The second pilot study was conducted near the end of the Fall semester. 

Therefore, it was possible to use the ideal target of CS1 students. 

 

Procedure 

Participants were presented with a programming assignment within the Athene, 

provided a file of buggy code, and asked to submit it until accepted as correct. The 

programming assignment chosen for this evaluation was a Fibonacci problem to be 

completed using a simple loop. The Fibonacci sequence is a mathematical series of 

numbers where every number after the first two, which are 0 and 1, respectively, is the 

sum of the previous two numbers. Each participant had completed the assignment in their 

CS1 class several weeks before the usability study. This problem was picked because its 

complexity was low enough to allow quick problem solving, but high enough to warrant 



 

 

41 

interesting feedback messages. Participants were provided with a code file that had been 

created specifically for this evaluation. The code had five specific errors that, as 

participants fixed each one, would lead them through six feedback messages (five 

enhanced messages and one message indication problem completion). These errors were 

chosen to represent a broad spectrum of programming errors and feedback messages. 

Both pilot studies used Krug’s (2014) format, including following his pre-testing 

checklists, format for testing, testing logic and prompting, and data collection methods. 

This report follows Rubin and Chisnell’s (2008) suggested arrangement and all 

participants were anonymized as suggested by Dumas and Loring (2008). Participants 

were allowed into the testing room one at a time. Once the participant was called into the 

room, the evaluator read a script to the student and then guided them through the tasks. 

Participants were asked to submit the provided code file to Athene, fix any errors, and 

iteratively correct and resubmit until the program passed all test cases. During this time 

the evaluator used the think-aloud protocol (Teague et al., 2013; Whalley and Kasto, 

2014) to help individual participants vocalize their thought process while completing the 

tasks. Each evaluation lasted for a maximum of ten minutes. If the participant did not 

pass all test cases by the end of the ten minute time window, the evaluation was stopped. 

In either case, the participant was thanked for their time and then exited the room. 

A feedback message was determined to be useful to the participant if they 

corrected the error after reading it. The usefulness of each message did not change 

subsequent messages or change how these messages appeared. Rather, which feedback 

messages the participants found useful and which parts of the messages they utilized 
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were noted by the observer and that data was subsequently used to refine the messages 

for the next pilot study or the full usability study. 

 
Figure 6. The Fibonacci problem in Athene that participants used. 
 

Pre-Study Enhanced Messages 

 Error feedback messages in Athene were originally enhanced in the Fall of 2015 

with results of that work published by Pettit et al. (2017). Prior to their work, compiler 

error feedback simply consisted of the standard compiler error message. Their study 

found that the enhanced messages had no effect on student learning. The motivation of 
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the original enhancement was simply to provide more information to students using the 

AAT and provide possible reasons for avenues of approach in their subsequent attempts. 

The design of these messages did not take into account any of the existing literature 

discussed in Chapter 2. For these reasons, these pre-study enhanced compiler error 

feedback messages will be referred to as “naïve enhanced messages.” 

 
Figure 7. Example of standard compiler error feedback message with naïve enhanced 
message below it in Athene. 
 

Pilot Study #1 

The first pilot study tested the naïve enhanced messages through a usability test as 

discussed above. Six students participated. The five error messages are included below. 

The sixth feedback message simply stated that the problem was finished. 
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Figure 8. First feedback message that the participant encountered. The standard compiler 
message is in the top section. The enhanced compiler message is in the bottom section. 
 

 
Figure 9. Second feedback message that the participant encountered after correcting the 
first error. 
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Figure 10. Third feedback message that the participant encountered after correcting the 
second error. 
 

 
Figure 11. Fourth feedback message that the participant encountered after correcting the 
third error. 
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Figure 12. Fifth feedback message that the participant encountered after correcting the 
fourth error. 
 

All six students successfully submitted the program and began receiving feedback 

for each error, one at a time. Each one moved through the errors at a different pace with 

only one correcting all five errors. Although each participant had already written and 

completed this program during CS1, only one participant completed the task of fixing all 

five errors because of a ten minute time constraint. A time constraint of ten minutes was 

intended to simulate actual student activity of submitting at the last possible moment. 

Below is a discussion of some of the more salient results from each participant. 

Participant #1: Read the standard compiler messages first, then went back to his 

code to look, and made several attempted fixes before finally correcting the error. He 

repeated this for the second error message. He did not read the enhanced error messages 

until seeing an error he had never seen before (Figure 10), and only then remarked 

regarding the enhanced messages, “I guess I should read this now.” He glanced through it 

quickly and looked back to his code, saying, “That’s really helpful.” Even though he 
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thought the example code was his code, he quickly determined the source of the error and 

fixed it. 

 Participant #2: After reading the standard compiler message for the first error, he 

went back to the code, made an incorrect change, resubmitted, and got the same error 

again. Frustrated, he read the enhanced message and then was able to fix the bug that 

produced the error. For each successive error, participant skipped the standard compiler 

message and went right to the enhanced message. He expressed some frustration with one 

of the enhanced messages (Figure 10) that contained some vocabulary or syntax he had 

not yet learned in class and at first thought it was displaying his code. 

 Participant #3: Participant ignored the enhanced messages and only read the 

standard compiler messages. This was sufficient for fixing the first three errors. Upon 

seeing the third error (Figure 10), he remarked, “Whoa! That’s a lot of text,” and then 

ignored it. After becoming stuck on the fourth error, he finally read the enhanced 

message. He then went straight to the enhanced message for the fifth error (Figure 12), 

remarking, “Actually, that is really helpful.” When asked what about it was helpful, he 

replied, “Because it tells me exactly what to do.” This participant fixed the final bug with 

about ten seconds remaining. 

 Participant #4: Participant glanced through the first error message (Figure 8), both 

standard and enhanced, and was still confused. After multiple incorrect attempts, he went 

back and carefully read the enhanced message, but was still confused. After muddling 

through for a while longer, he found and corrected the first bug. He read the full second 

error message at length and again seemed puzzled, but eventually corrected it after 
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multiple attempts. Upon seeing the third error message (Figure 10) the evaluator asked 

what he was thinking and he remarked that he was, “a little overwhelmed.” 

 Participant #5: Participant read the full error message at length and made multiple 

ineffectual changes. After half the test time had elapsed and he began changing more and 

more of the code, the evaluator had to undo these changes and move the participant on to 

the second error message. Normally the evaluator would not intervene in the evaluation, 

but the participant’s changes were so substantial that he would have never fixed the bug 

or seen the additional error messages. He read the second message at length, but it did not 

seem to help him. He was very confused and did not correct any errors. 

 Participant #6: For the first error, participant read the standard compiler message, 

looked at the code, and after being unable to find the problem went back to the enhanced 

message. For the next two error messages, she consulted the enhanced message first. 

Upon seeing the third error message (Figure 10), the longest message, she said, “This is 

comforting to see an example with code because it’s familiar. This is really helpful!” She 

was then able to follow the advice and correct the error. For the fourth error message she 

skipped the standard compiler message and immediately read the enhanced message.  

There are three main observations from the results of the first pilot study. The first 

is that most participants did not read the entire error message before attempting to fix 

their code. Four of the participants did not bother with the enhanced messages until 

hitting a wall and only then did they read it, preferring instead a trial-and-error approach 

with minimal help. After reading the enhanced messages, each expressed delight – or 

even surprise – at how helpful they were. Two participants read the entire enhanced 

message each time, but it did not seem to be very helpful to them. These two participants 
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progressed the least in amount of errors corrected. From the above data, an interesting 

trend emerges. It appears that participants more comfortable with the material preferred 

to skip the enhanced messages until absolutely necessary while students with less grasp 

of the material preferred to start with the enhanced message but found it unhelpful. 

The second observation concerns the design of the feedback messages 

themselves. As noted above, several participants thought that the example code was their 

code, even though it did not look anything like the code in the file that they were 

provided. This could be due to a lack of familiarity with the code because it was provided 

for them, rather than their usual experience with Athene (i.e. writing it themselves). 

However, an even more simple explanation is that the naïve feedback messages did not 

clearly label the sample code as a sample. This was especially confusing for the third 

feedback message (Figure 10). 

The third observation from this study is that several participants mentioned how 

enhanced feedback messages had too much text. Participants seemed intimidated by 

longer blocks of text and code and were less likely to wade through it until absolutely 

necessary. In the only screenshot given in the paper by Becker (Figure 5), the enhanced 

error message is indeed brief, and part of that message can simply be copied and pasted 

directly into the students’ code to correct it. In the example (Figure 4) shown in the paper 

by Denny et al. (2014), the enhanced message requires more reading and understanding. 

Students want to get to an answer quickly, so perhaps the enhanced feedback messages 

are sometimes simply too much on their cognitive load and so they prefer not to engage 

the feedback.  



 

 

50 

A related finding to the two above was a level of frustration that the study brought 

out in nearly every participant. Some mentioned that they did not enjoy being led through 

failure after failure. However, the difference in the number of errors used in this study 

and the number found in actual student submissions were not statistically significant. It is 

therefore possible that students already had a negative emotional association with Athene, 

having experienced this kind of frustration on dozens of assignments already at that point 

in the semester. Nothing could control for that variable because this study required novice 

students who knew enough about programming to correct some errors.  

 

Pilot Study #2 

The feedback messages were significantly updated with the findings of the first 

pilot study in mind, along with the suggestions from Marceau et al. (2011b) and 

Hartmann et al. (2010). The following changes were made: 

• Drop down. To address the cognitive overload issues, the enhanced error 

messages were put into a collapsed drop-down with the text “Need more 

help?” 

• Sample code. To clear up confusion about the sample code, all code in the 

enhanced message was clearly labeled as a sample. 

• Similar errors. As suggested by Hartmann et al. (2010), each enhanced 

error message showed an example with a similar error alongside an 

example of the same code with the error corrected. These code snippets 

were pulled from Athene. 
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• Code highlighting. As suggested by Marceau et al. (2011b), the exact line 

where the error occurs and is fixed in the sample code snippets was 

highlighted to draw attention to it. 

• Was this helpful? As suggested by Hartmann et al. (2010), the bottom of 

each enhanced error message included a way for students to rate the 

helpfulness of the error messages, potentially allowing a voting system 

where the most helpful example code snippets rise to the top. This rating 

was implemented by including the question “Was this helpful?” with 

simple “Yes” and “No” form boxes. 

• Vocabulary. Marceau et al. (2011b) suggests paying careful attention to 

vocabulary and to make sure that students learn important words that they 

might encounter in the AAT early on in the class. To implement this, a 

blue circle with a question mark in it was placed next to any word in the 

enhanced error message feedback that might potentially confuse students. 

On mouseover, a bubble appears to explain the particular vocabulary 

word. 

The following are examples of the same error messages as the naïve ones above 

(Figures 13 – 19), but redesigned given the above criteria. For the sake of succinctness, 

only the first message is shown with both the dropdown collapsed (default state) and 

expanded. Also included only once is an example of the vocabulary help that shows up 

on mouseover of the blue circles with question marks. 
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Figure 13. The first enhanced compiler error message from the second pilot study with 
the enhanced portion of the message collapsed. 
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Figure 14. The first enhanced compiler error message from the second pilot study with 
the enhanced portion of the message expanded. 
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Figure 15. A portion of the first enhanced compiler error message from the second pilot 
study showing the vocabulary help bubbles appear on mouseover of the blue circle 
question mark. 
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Figure 16. The second enhanced compiler error message from the second pilot study with 
the enhanced portion of the message expanded. 
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Figure 17. The third enhanced compiler error message from the second pilot study with 
the enhanced portion of the message expanded. Rating box could not be fit into this 
screenshot. 



 

 

57 

 
Figure 18. The fourth enhanced compiler error message from the second pilot study with 
the enhanced portion of the message expanded. 
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Figure 19. The fifth enhanced compiler error message from the second pilot study with 
the enhanced portion of the message expanded. Rating box could not be fit into this 
screenshot. 
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All six students during the second pilot study successfully submitted the program 

and began receiving feedback for each error, one at a time. Each one moved through the 

errors at a different pace with two correcting all five errors. Although each participant 

had already written and completed this program just a few weeks prior during CS1, only 

two participants completed the task of fixing all five errors because of a ten-minute time 

constraint. Below is a discussion of some of the more salient results from each participant 

during the second pilot study. Since the enhanced message is collapsed by default, it was 

easier than in the first pilot test to determine when the participant viewed it and this will 

be noted. 

Participant #1: After reading the standard message, participant followed it too 

literally and solved the first error, but created more bugs in the process. After fixing 

those, he moved on and solved the second error immediately. For the third error, he found 

the line with the bug by reading the standard message, looked at the code, and said, “I 

don’t understand.” After stalling for several minutes, the evaluator asked if he had seen 

the “Need More Help?” button and the participant said he hadn’t even seen it. After 

expanding the enhanced message, participant read it and immediately understood and 

fixed the error. For the fourth error, participant read the standard message first, looked at 

the code, and said, “I don’t know what that means, so…” and clicked the help button. 

Unfortunately, he once again followed its advice too literally and got a totally different 

error message that was not enhanced for this study. After this, his time was up. 

Participant #2: Participant was very comfortable with the standard messages and 

solved each error quickly. After the final submission and completion of the problem, 

evaluator asked participant if she had seen the “Need More Help?” button. She replied 
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that she saw it, but wanted to try it on her own first. She also noted that during the session 

she wasn’t sure what it did and that it looked like it took her to another web page away 

from Athene. After expanding the enhanced feedback message, she said, “It’s very nice. 

It explains everything clearly. I like how the color draws your eye to the code examples.” 

Participant #3: For the first error, participant rearranged function order, rather 

than uncomment the prototype at the top. This caused him to encounter the errors out of 

order. The next error encountered, the fifth in order (Figure 19), stumped him. He said, 

“The error message tells me where it is, but not what to do.” After a few minutes of 

tinkering, participant was directed to the “Need More Help?” button. After expanding the 

enhanced message and reading it, he exclaimed, “Oh! That’s really helpful.” When asked 

why he had not yet used it, he said, “Because it looked like it took me to a different 

page,” so he was suspicious of it and wanted to stay on task. Participant next encountered 

the fourth error (Figure 18) and immediately clicked to expand the enhanced message. At 

this point, his time was up. 

Participant #4: Participant struggled with the first error for several minutes and 

was eventually directed to the “Need More Help?” button. After reading the message, he 

fixed the error. Participant immediately used the enhanced feedback for the next two 

errors and then his time ran out. After the session was over, participant was asked what 

he thought about the enhanced messages. He said, “They’re helpful and straightforward.” 

Participant #5: Participant immediately solved the first error. On the second error 

he moused-over the help button initially but did not click it; instead, he found the error 

and fixed it. He also only used the standard message for errors three, four, and five, 

completing the task before the time limit. The evaluator asked if he had noticed the 
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“Need More Help?” button and participant replied that he had seen it, but didn’t need it. 

Upon expanding the enhanced message, participant noted that the sample code 

comparison and blue question marks for vocabulary were helpful. 

Participant #6: Solved the first error quickly. On the second error, participant said 

about the standard message, “I’m not sure what exactly this means.” After tinkering for a 

few minutes, participant was directed to the “Need More Help?” button. In response he 

said, “Oh. I haven’t seen that.” After clicking on the button and reading the enhanced 

message, it became clear he thought the example code was his actual code. He said, “I’m 

going to search for this and replace it with that.” He looked for the sample code from the 

enhanced message in the provided code file, but when he could not find it, he asked, “Am 

I supposed to delete my code and replace it with the sample?” After a few more minutes 

of tinkering he fixed the error. For the third error, participant paused to read the standard 

message before expanding the enhanced message. After reading the enhanced message, 

mousing-over the blue question marks and reading vocabulary help, he was still stumped. 

Then the time limit expired. 

There are five important observations from the second pilot study. First, several 

students failed to even notice the large blue “Need More Help?” button that expanded the 

enhanced error messages. This was striking because it was assumed that the color and 

size of the button would be enough to draw their attention toward it. Clearly, more must 

be done or students should be told about it during class time as Marceau et al. (2011b) 

suggests. Related to this is the observation that the students who did notice its presence 

on the page thought that it took them to another page, away from the context of Athene. 

Here it seems that the button’s design lacked clear signifiers to communicate its 
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affordance. Students understood it as a link and therefore thought that it afforded HTTP 

transport, potentially undoing their progress in the task, rather than expanding a drop-

down. 

Second, the observational data once again confirmed an observation from the first 

pilot study: students who were more comfortable with the material did not need the 

enhanced messages, while students who were very uncomfortable with the material did 

not benefit from the enhanced messages when read. One possible explanation for this 

result is that the students who did not benefit diverged at an earlier learning stage and 

were not metacognitively aware of their divergence. Therefore the feedback they receive 

would be confusing because they might be trying to solve a different problem or mapped 

the problem to the wrong domain. Therefore, as of the second pilot study, it seems that 

the enhanced messages only truly benefit the group of students that fall in the middle. 

This observation underlies the next one. 

Third, despite clearly labeling the “example code,” at least two students were 

confused enough by it to confirm it verbally. It’s possible that other students might have 

been as well. Only the students most comfortable with the material (participants #2 and 

#5) thought the example and highlighting were useful. The rest either did not mention it 

or found it distracting or, even worse, misleading. Once again, it seems that a plausible 

reason for this frustration was that students may not have been cognitively ready to see 

example code and were still one or more stages back in the problem-solving process. 

Fourth, no students used the ranking feature. It is unclear whether they noticed it 

at all or saw it and decided not to use it. This is despite many exclaiming how incredibly 

helpful they found the enhanced messages. 
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Finally, and most surprisingly, most students indicated that they did not want 

more help – even the ones that struggled. The design of the button used the words “Need 

More Help?” and most students balked at that phrasing as a threat to their ego. Follow-up 

questions about why they felt this way revealed they thought that looking at something 

titled “Need More Help?” was almost like cheating or like giving up and they wanted to 

do it themselves without looking at the answer. The phrasing was picked to be a neutral 

and clear label about the button’s function, but it clearly was not perceived this way by 

participants. This is related to anecdotal evidence regarding conversations that the 

researcher has had with students and other CS professors which indicated that computer 

science majors have fragile egos when it comes to solving their programming homework 

and do not want to ask for help until absolutely necessary. This point alone makes it clear 

that help must be built into the AAT such that novices are guided through the problem-

solving stages one at a time until their solution is correct. 

The lessons learned from the second pilot study resulted in several tweaks to the 

user interface: 

• Drop-down signifiers. Placed a triangle pointing toward the text and left-

aligned the text. When the enhanced error message is expanded, the 

triangle points down. This follows general web conventions about 

collapsible drop-downs by providing a signifier that clearly communicates 

the drop-down’s affordance (i.e. it drops down). 

• Color. The button to click to expand the enhanced error message was blue 

in the second pilot study. Since blues lie on the frequency that humans 

have the most difficulty perceiving (Ware, 2012), it may have led to poor 
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discoverability. Therefore its color was modified to be the same gray was 

that behind the standard message. The idea is that it would look as one 

would expect more of the same type of information to look. 

• Neutral text. The label “Need More Help?” was too threatening to the ego 

of novice programmers. Even though the researcher thought that the text 

was neutral, it was not. It was therefore changed to “More information.” 

• Removed example code with comparison fix. The students who really 

needed it did not benefit from it and were generally worse off for it. 

Furthermore, it substantially increased the size of the enhanced messages. 

Results from the first pilot study indicated that students had difficulty with 

the enhanced messages because it substantially increased their cognitive 

load. Without a clear benefit to students and the possibility of increased 

cognitive load on the students struggling the most, the example code with 

a similar error and how that error was fixed was removed. However, some 

error messages may still have example code snippets. Great care was taken 

to make sure that the example was stripped-down enough to not be 

mistaken for the student’s own code, yet substantial enough to be helpful. 

• Removed ranking. Students did not use it and with the removal of the 

sample code it became obsolete. 

• Background. The entire enhanced feedback message was put into an 

HTML element with the same gray background color as the one behind 

the standard message. This was done to further solidify in students’ minds 

what was part of the enhanced message and what was not. In the second 
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pilot study, only the blue button separated the standard from the enhanced 

feedback and there was no clear functional grouping. 

 

Standard and Enhanced Error Message Quizzes 

After using the results of the pilot studies to update the user interface of the 

ECEMs, participants enrolled in CS1 for Spring 2017 at ACU were given ten quizzes in 

class to determine if the enhanced error messages were more helpful than the standard 

compiler messages. This helps to answer RQ2b: if students are reading the enhanced 

messages, how do the enhanced messages help them better understand the error? In order 

to provide a control group and an experimental group, the class of 31 was divided into 

two roughly equal groups: A and B. Each quiz contained a code snippet with a bug that 

would lead to a specific compile error, a feedback message from the AAT when that code 

is submitted, and a short-answer question asking students to determine where the error is, 

what the error is, and how they would fix it. In odd-numbered quizzes, the students in 

group A saw only the standard compiler error message as feedback from the AAT, while 

the students in group B saw the standard compiler error message as well as the enhanced 

error message from the AAT. For the even-numbered quizzes, group A saw the standard 

and enhanced messages while group B saw only the standard messages. This was 

repeated for all ten quizzes. Thus, each student saw a standard message for five quizzes 

and the enhanced message for five quizzes. Each quiz contained a different code snippet 

with a different compile error and thus a different feedback message from the AAT.  

The compile errors were chosen to be the ten most-encountered errors from this 

problem from the previous five years. These quizzes were given in order to determine if 
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the enhanced messages were actually more helpful than the standard messages alone, 

helping to answer RQ2b. This data was gathered as a classroom enhancement quiz and all 

results will be published in aggregate and anonymously. At the time of writing, only five 

quizzes have been given with the other five to be taken throughout the rest of the 

semester. The results of these quizzes are discussed in Chapter 4. Below is a sample of 

the one of the quizzes containing both the standard and enhanced messages: 

 
Figure 20. The Code Block segment from quiz “Athene Error Messages 4A.” 
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Figure 21. The Error Message segment from quiz “Athene Error Messages 4A.” 
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Figure 22. The open-ended short-answer segment from quiz “Athene Error Messages 
4A.” 
 

Full Usability Study 

Introduction 

The English department at ACU usually has a week during the semester where the 

freshmen writing courses do not hold class and instead each student meets one-on-one 

with the professor to discuss their writing and receive personal feedback. As a classroom 

enhancement, the same was done in CS1 during week 6 of classes for Spring 2017. The 

participants were therefore all 31 students from that particular CS1 class. Each student 

met one-on-one with the professor or the professor’s TA’s where the student was 

observed completing a “practical quiz” and received feedback on their process. A 

practical quiz is similar to a homework assignment – students receive an Athene problem 

and must solve it in 35 minutes. Each one-on-one meeting lasted 60 minutes. Students 

were asked to think aloud while they solved the problem, especially when they see the 

enhanced feedback messages.  
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Procedure 

The general format of the usability test follows Rubin and Chisnell (2008) and 

Krug (2014), including pre- and post-testing checklists and scripts. At the beginning of 

each session, the evaluator read from a script outlining the reason for the session, the goal 

of the session, and what was expected of the student. Students were then given a very 

simple task and asked to think aloud so they can get used to verbalizing their thoughts, 

the observer, and the process as suggested by Teague et al. (2013) and Whalley and 

Kasto (2014). This simple task was to write a program that would output “Hello, world.” 

This particular task was chosen because it was cognitively the easiest code to write for 

any level of student at that point in the semester, so practicing the think-aloud protocol 

would be easier during this time.  

Students were then asked to complete a practical quiz, similar to a simple 

homework assignment, in 35 minutes. This particular problem was chosen because it has 

been used as an in-class assessment in previous semesters and a majority of students from 

those previous semesters completed the problem within the same 35 minute time limit. 

See screenshot in Figure 23 showing this problem in Athene: 
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Figure 23. Screenshot of the quiz in Athene. The remaining text that is cut off could not 
be fit into the screenshot, but is not relevant to the problem itself, but rather pertains to 
grading. 

 

While solving the problem, the observer took extensive notes on what the student 

did and what they said they were thinking. Ericsson and Simon (1993) recommended the 

following important methodological guidelines, which were all followed closely: 

1. This is not a social encounter. Make that clear by sitting behind the participant. 

The focus is on the participant completing the task, not the interaction between 

observer and participant. 

2. Give a short practice session so the participant can become familiar with the 

“think-aloud” protocol. 

3. Social interaction is minimized. For instance, if the participant stops talking, 

saying, “keep talking” instead of “tell me what you are thinking,” the latter of 

which might be understood by the participant as an invitation to be social with the 

observer. 
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4. Participants always told to focus on completing the task. The only way to obtain 

the same result using a think-aloud protocol as compared to when the participant 

is silently thinking is by keeping them singularly focused on completing the task.  

 

After the students completed the problem or the time limit expired, students were 

asked up to five questions and their responses were recorded. Some questions may not 

have pertained to that particular student, depending on their experience solving the quiz. 

These questions were (as exactly reproduced from the observation sheet): 

1. When you encountered the enhanced feedback messages (with the “More 

information” drop-down), were they helpful? 

2. When you see a feedback message from Athene, how does it make you feel? 

3. Would you rather read the enhanced message under “More information” first, or 

would you rather wait until you can’t figure it out yourself? (probe: why?) 

4. (If they saw an enhanced message and did not click it) When you saw the 

enhanced message, why did you choose not to click on it? 

5. In this class, how soon before the deadline do you usually make your first attempt 

(uploading your program to Athene) on your homework? 

 

Finally, the student received feedback and encouragement on their programming 

and problem-solving process for approximately 20 minutes. This has important benefits 

for the students. First, because an expert watched them do a homework problem, they can 

help pinpoint places in the process where the student is weakest (e.g. problem-solving, 

syntax, tracing, test cases, etc.). Second, if the student tinkered with the code until a 
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solution came about, or tried to throw syntax at the wall until something stuck, the expert 

can discuss this approach and help clarify or demystify certain elements. Finally, if the 

student did not read the enhanced messages (or perhaps read them sparingly) and could 

have gained obvious benefit from doing so, this resource can be discussed with the 

student so they might use it more effectively in the future. In this way, the exercise was 

designed with the hope of catching bad habits, poor mental models, and bad practice 

early in the semester and to correct it. 

Because this was run as a classroom enhancement, it was not run under IRB. 

However, because data was still collected from the process, IRB representatives at both 

NSU and ACU were consulted and strict precautions were taken to protect student rights: 

1. Students were given consent forms where they could opt-in for their data to be 

used for publication. It was assumed that students were opted-out by default and 

therefore must opt-in in order for their data to be used. Since the researcher is also 

the professor for CS1 in Spring 2017, a different professor within the department 

handed out a form to each student and explained what they meant while the 

researcher was not present. This different professor then collected and kept the 

forms in his office until after grades were submitted at the end of the semester. In 

this way, if a student chooses not to opt-in, the researcher has no way of knowing 

and therefore no way of potentially influencing the student’s grade or biasing the 

researcher’s actions towards said student. 

2. Students were also given FERPA release forms at the same time as the general 

research opt-in. The FERPA release form was provided to allow students to opt-in 
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to let the researcher use their grades anonymously, in aggregate, in published 

research. 

3. All data from the classroom enhancement that is published (including in the 

present research project) will be done so in aggregate and/or anonymously. 

 

Instrumentation and Data Collection 

Athene 

 Athene is the AAT developed and used extensively at ACU (Towell & Reeves, 

2009). It is also used at Lipscomb University in Nashville, TN. Students view the 

problem specifications and then are allowed to submit their code. After submission, 

students receive detailed feedback regarding their code’s failure to compile, failure to 

pass a particular cases, or successful completion of all test cases. Originally, Athene 

allowed as many submissions as students wanted. However, it was shown empirically 

that adding throttling to assignments, e.g. no more than 3 submissions in 15 minutes, 

improved student learning outcomes (Pettit, et al., 2015). Every submission is stored in a 

database with the oldest entries being from 2009. 
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Figure 24. The design of the Athene system. This is the latest version of the system, 
updated by a senior Computer Science major, Roger Gee, in 2016. 

 

 

 Therefore, all submissions from the two pilot studies and the full study are stored 

in the Athene database which can then be pulled down and analyzed. Important data from 

the database for this research are: user, problem id, problem name, submission time, 

submitted source code, feedback response to submitted source code, and score. 

 

Canvas 

 ACU uses Canvas, a learning management system (LMS) created by Instructure 

(https://www.instructure.com/). This tool facilitates the error message quizzes. For each 

quiz, the important data from Canvas for this research are: student, response to short-

answer question. 
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Google Drive 

 The researcher has a Google Drive folder where all data is securely stored. This 

includes the observation sheets that were used during the full usability study, tabulated 

results from quizzes, and both raw and filtered Athene database data. Google Drive keeps 

track of when each edit is made, making it possible to create a timeline of participant 

movement through the six learning stages (see Appendix D). 

 

ATLAS.ti 

 The qualitative observations of student behavior and verbalizations during the full 

usability study and ethnographic interview questions afterward were put into ATLAS.ti 

for coding and tagging. 

 

Analysis 

 A common analysis rubric used in ethnographic and ethnomethodologically-

informed studies is triangulation, which attempts to explain "the richness and complexity 

of human behavior by studying it from more than one standpoint…by making use of both 

quantitative and qualitative data” (Cohen et al., 2011, p. 195.). Therefore, the approach 

the discussed above uses mixed-methods triangulation: pilot studies to refine the ECEM 

UI, error message quizzes to determine if those changes were successful, and a think-

aloud study to observe novices work through the six problem-solving stages while using 

an AAT. 
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Quantitative 

 The data collected from the error message quizzes and full usability study was 

quantitatively analyzed in the following ways. 

Quizzes were graded on a pass/fail or, rather, understand/does not understand 

basis. This grading was done liberally such that any student who seems to understand the 

error was given credit for it as if they did, which follows the approach to grading taken by 

Marceau et al. (2011a). In order to answer RQ2b, the number of students who do not 

understand the error in the control group was be compared to the students who do not 

understand the error in the experimental group. The researcher predicted a statistically 

significant difference between the two groups with the experimental group having fewer 

incorrect responses overall. 

The data from the full usability study was also quantitatively analyzed. Here, the 

full usability study is considered to be the experimental group whereas the control group 

is the previous three semesters (Fall 2015, Spring 2016, Fall 2016), which used the naïve 

enhanced feedback messages. Enhancements made for the pilot studies in the Fall of 

2016 were kept to a private sandbox and so students in CS1 during that semester did not 

see anything other than the naïve enhanced messages. Even though Athene has data from 

2009, the feedback messages from Spring 2015 and before were not enhanced at all. 

Therefore, the data from Fall 2009 – Spring 2015 is not the same as from Fall 2015 – Fall 

2016. The practical quiz “More Positive or Negative?” (Figure 23) for these two groups 

was compared in the following ways: 

1. Average completion time. The average time it took students in CS1 for each 

semester to complete the practical quiz. 
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2. Average number of completions. The average number of students in CS1 for each 

semester that completed the practical quiz. 

3. Average score. The average number of students in CS1 for each semester that 

completed the practical quiz. 

4. Repeated compile errors after enhanced message. The number of students in CS1 

per semester who repeated the same compile error after seeing an enhanced 

message while taking the practical quiz. 

 

Qualitative 

 The observational and ethnographic data taken from the full usability study was 

analyzed using ATLAS.ti. The researcher used the software to discover the “big picture” 

that organically arises from the data, which helped identify concrete features that can be 

implemented in the AAT to improve novice metacognitive awareness. This is process of 

letting the big picture arise organically from the data is known as “grounded theory” 

(Glaser & Strauss, 2009). Before performing this analysis, it was impossible to know 

what that big picture would be. According to Lazar et al. (2017), grounded theory 

requires coding, grouping of concepts, grouping of concepts into categories, and finally 

formation of a theory. The tagging stage consisted of identifying any interesting 

phenomena that appears in the raw data. This included: student confusion, encountering a 

specific enhanced error message, clicking to expand the enhanced error message, read 

enhanced error message and was helpful, read enhanced error message but was not 

helpful, student response to error message per the rubric of Marceau et al. (2011a), and 

student movement through the six problem-solving stages. Using the rubric of Marceau et 
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al. (see Appendix A) is included in the tagging for the sake of external validity. Some of 

these tags regard whether or not students read the messages and this data answers RQ2a. 

The rest of the tags help to build a picture of student metacognitive awareness that 

contributes toward answering RQ1, RQ3, and RQ4. The full list of tags is provided 

below, listed in related groups: 

• Learning stages: stage one, stage two, stage three, stage four, stage five, stage six 

• Metacognition: successfully created conceptual model, had difficulty with 

conceptual model, struggles to select correct algorithm, mentally tests selected 

algorithm, does not mentally test selected algorithm, struggles with syntax errors, 

struggles with test cases 

• Marceau: DEL, DIFF, FIX, PART, UNR 

• Completion time: <10 min, <=15 min, <=20 min, <=25 min, <=30 min, <=35 

min, did not finish 

• Enhanced messages: did not need enhanced, did not notice enhanced, opened 

enhanced, does not click enhanced, enhanced helpful, enhanced not helpful 

• Emotion: indifferent toward error messages, like toward error messages, dislike 

toward error messages, blames self, disparages self 

• Error messages: # of passed test cases, error message 1, error message 2, error 

message 3, error message 4, error message 5, error message 6, error message 7, 

error message 8, error message 9, error message 10, error message ?, error 

message ? without enhanced 
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• Overall: overall click on enhanced first, overall enhanced messages helpful, 

overall enhanced messages not helpful, overall wait to click enhanced, overall 

displays metacognition, overall does not display metacognition 

 

Once the data was tagged and coded, the general concepts that emerged were grouped 

into categories. These categories help to determine the overall effectiveness of the 

enhanced error messages, identify difficulties students had in the problem-solving 

process, and help identify where students diverge in that process while solving a 

programming problem using an AAT. 

 

Contributions of this Study 

Effectiveness of ECEMs in AATs 

 The first contribution of this study is confirmatory evidence that ECEMs in AATs 

either enhance learning or do not enhance learning for novice students in CS1. As 

discussed above, this is currently hotly debated in the CSed community. This evidence is 

presented in graphs, charts, and statistical analysis of the results of the full usability study 

discussed above, supported by the error message quizzes. This contribution answers RQ2. 

See Chapter 4 for this data. 

 

Proposing a Metacognitive Framework 

 The second artifact produced by this study is a framework for improving 

metacognitive awareness through AATs. This framework is a set of design guidelines for 

implementing features in an AAT that guide students through the six learning stages and 
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help make students more aware of where they are in that process. Each of the six learning 

stages has specific design guidelines that come from the quantitative and qualitative data 

gathered by this study. This contributes toward answering RQ1, RQ3, and RQ4. See 

Chapter 5 for the framework. 

 

Summary 

 The standard compiler error message feedback in Athene was enhanced in Fall 

2015. This naïve enhanced message was tested and not found to significantly positively 

increase student learning (Pettit et al., 2017). However, human factors analysis was not 

considered in the previous study. To begin addressing this gap, two pilot studies were 

carried out in Fall 2016, each with six participants. The first pilot study tested the existing 

naïve enhanced message through a usability test. After the test, the user interface was 

significantly updated to include lessons learned from the usability test and suggestions 

from Marceau et al. (2011b) and Hartmann et al. (2010). The second pilot study tested the 

updated user interface of the enhanced error messages. Lessons learned from the second 

pilot study resulted in a slimmed-down and streamlined version in order to significantly 

lower cognitive load.  

In order to determine if the new UI was more helpful than standard compiler error 

messages, ten quizzes were given to the CS1 class at ACU in Spring 2017. These ten 

quizzes represented the ten most encountered errors for the practical quiz that would be 

used in the full usability study. Each student saw five quizzes with only the standard 

compiler error message (control) and five quizzes with the standard message plus the 

newly updated enhanced error message (experimental). The quizzes were graded and 
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analyzed to determine if more students understood the error in the experimental group 

than in the control group. This helps to determine if students find the enhanced error 

messages more helpful (RQ2b). 

 A full usability study was conducted with a total of 31 participants. Each session 

lasted for an hour. The session consisted of observing a student complete a preliminary 

task to become familiar with the think-aloud protocol, working on a practical quiz for at 

most 35 minutes, post-quiz interview questions, and then around 20 minutes of personal 

feedback to encourage the student and correct any bad habits or misconceptions. The 

results of the full study (experimental) were compared quantitatively to the previous three 

semesters (control). The observational and interview data was qualitatively analyzed 

through application of grounded theory: coding, developing concepts, grouping, and 

formation of theory. The tags discussed helped to identify phenomena that helped to 

answer RQ1, RQ3, and RQ4. The data was also tagged using the rubric of Marceau et al. 

(2011a) to provide external validity (see Appendix A). 
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Chapter 4 

Results 

 

Introduction 

 The results of the study described in Chapter 3 are presented here. The present 

research project investigates the experiences of novices using an AAT to navigate the six 

stages of learning to write code and the metacognitive awareness that they display while 

doing so.1 Since current research on AATs has only focused on what amounts to stages 

five and six of the learning stages proposed by Loksa et al. (2016), this chapter will begin 

by discussing the results of participant engagement and reaction to the newly refined 

ECEMs (see Chapter 3 for information on the pilot studies and iterative refining of the 

ECEMs), answering RQ2. This will be internally verified by the results of the error 

message quizzes (quantitative), analysis of the submission data pulled from Athene from 

the full usability study (quantitative), the results of observed participant usage of the 

ECEMs during the full usability study (qualitative), and interviews from after the 

practical quiz portion of the full usability study (qualitative). It will also be externally 

verified through the application of the rubric of Marceau et al. (2011a) on observed 

participant interaction with the ECEMs (qualitative). 

                                                        
1 Some material in this chapter was published at ICER 2017: Prather, J., Pettit, R., 
McMurry, K. H., Peters, A., Homer, J., Simone, N., & Cohen, M. (2017, August). On 
Novices' Interaction with Compiler Error Messages: A Human Factors Approach. 
In Proceedings of the 2017 ACM Conference on International Computing Education 
Research (pp. 74-82). ACM. 
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 Building from the current starting point in the research literature surrounding 

stages five and six, this chapter will next discuss the qualitative results of the full 

usability study regarding metacognitive awareness displayed by participants. This data 

was tagged, coded, and put into ATLAS.ti. The observational data was tagged in 433 

places and from that ATLAS.ti identified 39 unique first order concepts that emerged 

directly from the observations. ATLAS.ti helped group these first order concepts which 

allowed the researcher to move toward five distinct second order concepts, which informs 

the discussion below. 

 

Error Message Quizzes 

The error message quizzes were given to students outside of the context of an 

assessment in Athene to determine if the redesigned ECEMs, on their own, were more 

helpful than the standard CEMs. Twenty-seven students from the Spring 2017 CS1 class 

were present for all six quizzes. The results of these quizzes (see Figure 25) show that the 

experimental case (ECEMs) was more helpful than the control (standard CEMs). The 

mean percent of incorrect answers among participants in the control group was 17.28% 

while the mean percent of incorrect answers in the experimental condition was 6.17%. 

Therefore, the experimental condition displayed a statistically significant improvement 

over the control (p < 0.035, n = 27, paired two sample for means). 
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Figure 25. The number of incorrect responses for each quiz in both control (blue) and 
experimental (green) conditions. 
 

Out of the 27 participants present for all six quizzes, 13 students gave an incorrect 

answer on at least one quiz. As shown in Figure 26 (rows three, five and six), nine of the 

13 students were helped more by the ECEMs. One particularly interesting case is the 

student who incorrectly answered all three control quizzes, but correctly answered all 

three in the experimental condition (Figure 26, row six). Another outlier in the opposite 

direction was the student who incorrectly answered two experimental quizzes, but 

correctly answered all in the control condition (Figure 26, row two). 



 

 

85 

 
Figure 26. Incorrect understanding of CEM vs ECEM. 
 

Full Usability Study: Program Logs Data from Athene 

Data that can be pulled from Athene's database on assessment submissions has 

been previously reported by Pettit et al. (2015, 2017). However, in previous studies, 

students were allowed to compile offline and only submitted their code to Athene when 

making an attempt at correctness. While other tools discussed above capture all student 

compilations, the automated assessment tool used in the present study, Athene, has 

previously not been able to report that data. The full usability study allowed this data to 

be gathered using Athene for the first time. It is expected that student behavior will 

change when the compiling constraints change, such as an increase in the number of 

submissions and therefore the number of errors encountered.  

For those students in the experimental section that completed the assessment 

during the 35-minute time limit, the average time to completion was 15:46 with a 

standard deviation of 7:03. In the control, the previous three semesters when this 

assessment was given the average completion times were: 16:44, 17:50, and 13:05 

(Figure 27). This data indicate that the experiment did not adversely affect student 

outcomes. 
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Figure 27. Average time to complete the problem by semester. 

 
The average score for all students in the experimental section was 67%. The 

average score for the previous three control semesters was 90%, 88.2%, and 84.2%. This 

seems to indicate that students in the experimental section may have been adversely 

affected. However, this may have been an artifact of the way the procedure was 

performed. As mentioned above, students have previously been able to compile offline 

and many students will use previous programs they have written as a bootstrap for any 

new program they attempt. In the case of the experimental group, ten students did not 

complete the quiz at all, six of which suffered from problems with the basic structure of 

their code. All of these six students could not remember basic “#include” statements and 

how to write their main function. If this assessment had been carried out in a previous 

semester, these students would have had access to previous programs and may have 

solved the problem. Instead, they could not move past the structural compiler errors. 

Furthermore, none of the structural compiler errors had been enhanced because the 

choices about which messages to enhance were based on the frequency with which a 

CEM was encountered in previous semesters. Since students in previous semesters had 
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access to their prior programs before starting the quiz, none of these errors had been 

encountered in any of the control semesters. Therefore, it is interesting to note that 

removing these six students from the group brings the average score up to 84.8%, which 

is in range of the control semesters. 

 

  
Figure 28. Average score by semester, raw. 
 

The error message quiz results above indicate that the ECEMs are more helpful 

than standard CEMs. However, the quantitative data from the program logs seems to 

contract this conclusion, or is inconclusive at best. This is where the qualitative data from 

the full usability study illuminates a possible explanation. 
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Figure 29. Average score by semester, adjusted by removing the six students who could 
not remember the most basic parts of their program, which contributed heavily to their 
failure to complete the assignment within the time limit. 

 

Full Usability Study: Observation and Interview Data 

With regard to the errors that participants received, observational data - both 

spoken thought and behavior - allowed for the evaluator to be certain when ECEMs were 

expanded and read. An ECEM was marked as "helpful" in the observational data if the 

student solved that specific error or made steps towards solving it after reading the 

ECEM. Conversely, an ECEM was marked as "unhelpful" if the student made changes 

after viewing the ECEM that were not on the path to solving the error or the student read 

the message and didn't know how to proceed. Post-assessment ethnographic interviews 

and reflection revealed participants' feelings towards the ECEMs in greater depth, from 

gratefulness to frustration. 
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Observational 

Although there were 21 students who completed the quiz and ten students who 

did not complete the quiz, the total number of errors received was roughly equal at 56 for 

those who completed the quiz and 60 errors for those who did not, making 116 total 

errors tagged by evaluators. The group of participants that did not complete the quiz had 

a higher number of errors without enhanced messages (31) and a lower number of 

enhanced error messages (29), though this was dominated by a single participant who 

encountered the most (15). The incomplete quiz participants had under half of the number 

of read enhanced messages (9) when compared to the participants that completed the quiz 

(23). From this data it seems that encountering these messages really did prove helpful 

for the completion of the quiz. 

The incomplete quiz participants also had over double the amount of unread 

enhanced messages (20) when compared to the completed quiz participants (8). For the 

participants that completed the quiz, there were 19 instances where the "more 

information" section of the ECEM proved helpful. This is over six times the amount of 

instances for those who did not complete the quiz (3). The incomplete quiz participants 

also contained more instances of unhelpful enhanced messages (6) when compared to the 

completed quiz participants (4).  

The data presented in Figure 30 summarizes these observations and appears to 

indicate that the ECEMs helped students better understand the errors they were 

encountering, fix those errors, and ultimately complete the quiz. 
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Figure 30. Student Perception of ECEMs in Complete vs. Incomplete Quizzes 
 

Interviews: Perception of overall helpfulness comparing complete and incomplete 

Of the ten students that did not solve the assessment in the 35 minute time limit, 

only two read the ECEMs and believed they were unhelpful. Another two students that 

did not complete the quiz read the ECEMs and believed them to helpful. The other six 

students did not receive an enhanced error message and were therefore unable to confirm 

whether or not the enhanced messages were helpful. See Figure 31. 

 
Figure 31. Student Perception of ECEMs in Complete vs. Incomplete Quizzes 
 

Interviews: Perception of helpfulness of students with repeated error messages 

There were four participants that received a repeated ECEM at least once and did 

not finish the quiz. One of them received three repeated ECEMs and thought that they 

were unhelpful. However, another one received the same ECEM ten times in succession, 

neglected to read the first nine, finally read it the tenth time, and subsequently corrected 

the error. Even though this participant did not finish the quiz, he still believed the ECEMs 

to be helpful. The other two participants that received repeated error messages and did 
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not finish the quiz only received one repeated message and they both found the enhanced 

messages helpful. 

 

Discussion 

The results of the error message quizzes compared with the quantitative program 

log results from the full usability study seem contradictory. The observational and 

interview data presented above tell a different story. The students who struggled, but 

ultimately succeeded in completing the problem, brought down the average score and 

increased the average time to completion. However, these same students were helped the 

most by the ECEMs and expounded on this in great detail during the post-assessment 

interview. Although they struggled with the assessment, observational and interview data 

shows that it was ultimately the ECEMs that helped them across the finish line. This is 

precisely what is wanted. Furthermore, a very small group of students who did not 

complete the quiz, and therefore brought down the average score, were not helped by the 

ECEMs and were frustrated by them in the post-assessment interviews. These two 

students were so unfamiliar with the material and so fundamentally lost that the 

additional information provided by the ECEMs only added insult to injury. It is possible 

that the increased cognitive load of the assessment may have tipped the scales from 

helpful ECEMs to unhelpful. 

 

Results of Tagging on the Rubric of Marceau et al. (2011) 

 The observational data from the full usability study were tagged according to the 

rubric of Marceau et al. (2011a) as a means to test for external validity (see Appendix A). 
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A successful set of ECEMs will allow students to understand the error and point them to 

the correction that must be made in the code. Therefore, the more times a student action 

in response to an ECEM can be tagged with either the PART or FIX tags, the better. As 

summarized in Table 3, the enhanced messages in Athene were overwhelmingly helpful 

to students who encountered them. Note that the numbers in Table 3 reflect only the 

instances where students read the enhanced message, a smaller number than the total 

number of enhanced messages encountered by students. This affirms the results above 

that the redesigned ECEMs were indeed more helpful for novices involved in the study. 

 

Table 3. Results of ECEMs tagged on the Rubric of Marceau et al. (2011a) 

Tag Meaning Result 

DEL Deletes problematic code 0 

UNR Change unrelated to current error 1 

DIFF Fixes a different error 0 

PART Attempts to take the correct action 8 

FIX Fixes the error 22 

 

Full Usability Study: Observations of Metacognitive Awareness 

This section describes from observation during the think-aloud study how 

students working in Athene moved through the six learning stages outlined by Loksa et 

al. (2016). This qualitative data from the full usability study will highlight the relevant 

ways in which automated assessment tools, like Athene, fail to help students implicitly 

build the cognitive scaffolding necessary for metacognitive awareness. Using these 

ethnographic stories, the framework for implementing features in an automated 
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assessment tool to increase metacognitive awareness among novice programmers will be 

proposed. First, the metacognitive awareness of students who successfully completed the 

quiz will be examined in order to look for the ways in which they cognitively augmented 

the shortcomings of Athene. After this group, the metacognitive awareness of students 

that did not complete the quiz will be examined in order to better understand how the lack 

of cognitive scaffolding in Athene negatively impacted their performance. Finally, the 

two groups will be contrasted. Student names in this section were changed for the sake of 

anonymity. 

 

Students that Completed the Quiz 

Several students in the group that completed the quiz finished it in under 10 

minutes and surprisingly displayed a similar set of traits. The first was a consistent 

approach to starting the problem. Observation notes report that at the outset these 

students, "interpreted the instructions for the problem," and "immediately verbalized a 

clear conceptual model for the problem." This is followed by a similar pattern of thinking 

through the problem, thinking about how to solve it, choosing a solution (in this case, 

using a while loop), implementing a solution, and tracing their code with specific test 

cases in mind. Several students in this group were observed taking a few pauses to think 

about their chosen solution and their process to solve the problem. One student in this 

group received one ECEM; the others received none. The student who received this 

message, Bill, did not read the enhanced portion at first, but read the standard portion, 

successfully edited his code (tagged as a [FIX] using Marceau's rubric), and then double-

checked his edit by opening the enhanced portion, reading it, and agreeing that his fix 
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was correct. Bill's experience is ideal. By the time these students were receiving feedback 

regarding test cases, they had successfully moved through the first five stages of problem 

solving and therefore any failed test cases were quickly interpreted, and the offending 

code was fixed. 

Jane, who took 14 minutes to finish the quiz, thought through the problem, 

immediately decided on a solution, and proceeded to go through her code and place 

comments about what she planned to do and then went back and filled it out. This student 

received one ECEM, did not read the enhanced portion, and immediately successfully 

edited the code (a [FIX]). The next submission compiled, passed two of the test cases, 

and failed on the third. She made an edit to her code and resubmitted, receiving the same 

failed test case message, and then repeated this once more. Finally, after receiving the 

same test case failure three times, she stopped and carefully walked through her code 

with specific test cases in mind, found the issue, fixed the code, and finished. 

Another student, Patricia, who finished in 18 minutes, read the problem prompt 

too quickly and immediately began solving it as if it was a problem students in CS1 had 

previously encountered that semester, "Even or Odd?": given n numbers, compute 

whether there were more even or odd integer numbers provided as input. It seems as 

though she initially failed to correctly move through problem solving stage one, 

reinterpret problem prompt, which led to moving on to stage two, search for analogous 

problems, correctly choosing of the "Even or Odd?" problem, and finally moving onto 

stage three, search for solutions, but choosing to use the solution for the "Even or Odd?" 

itself instead of using it as the basis from which to form a new solution to a different 

problem. However, as Patricia began to write her solution, this approach made less and 
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less sense, and she quickly realized something was off. She checked the instructions 

again, but still didn't understand what was wrong - a fascinating case of how forming the 

wrong conceptual model early on can make it difficult to fundamentally change how one 

views the programming problem at hand. Finally, after being stuck for a few more 

minutes, she re-read the instructions a third time and understood. After this, Patricia 

solved the problem very quickly. 

Another interesting group of students that completed the quiz were those that took 

30-35 minutes, coming right up against the time limit. Adam, completing the quiz in 30 

minutes, read the prompt and immediately showed a clear conceptual model of what the 

problem required and how to solve it. However, Adam ran into extensive issues with 

syntax and therefore became stuck on stage five, implement a solution. He recognized his 

deficiency in the particulars of syntax correctness and utilized the enhanced portion of the 

ECEMs to his advantage, finally solving it on the seventh submission.  

Finally, Wayne, who completed the problem in 33 minutes, ran into the same 

issue as Patricia, confusing the problem for "Even or Odd?" However, Wayne did not 

realize his mistake early on. At multiple points in the session he carefully talked through 

his algorithm, revealing his incorrect conceptual model. After writing his solution, built 

for the "Even or Odd?" problem, he encountered one compile error, fixed it, and moved 

on to the final stage, evaluate implemented solution, where he failed the first test case. 

Wayne looked at the expected output compared to the actual output of his program, made 

an edit, and then passed the next test case. He continued failing test cases, adding to his 

code to create the right output, and failing the next test case. His code grew longer until 

he had passed 10 test cases, a process that took just over 30 minutes in which he became 
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increasingly frustrated. Finally, at 31 minutes he re-read the problem prompt and 

exclaimed, "Oh! Wait! This just hit me that it's doing positive and negative rather than 

evens and odds. I don't know why that happened," and very quickly solved the problem. 

In this case, failing to correctly navigate the first few stages of problem solving led to an 

incorrect feeling of accomplishment and an incorrect conception of location in the 

problem-solving process. By solving compilation problems and working through multiple 

test cases, Wayne felt as if he was very close to solving the problem when he was 

actually very far away. In this case, his lack of metacognitive awareness almost cost him 

the quiz. 

 

Students that Did Not Complete the Quiz 

The 11 students who did not complete the quiz all failed to successfully move 

through at least one of the problem-solving stages. If the way to a correct solution can be 

thought of like a path from stage to stage, these students often diverged very early, 

backtracked frequently, and never returned to the crucial juncture to take the correct path. 

The most frequent issue these students encountered was a failure to build a correct 

conceptual model of the problem. Unable or unwilling to spend the time to successfully 

navigate stage one, reinterpret problem prompt, many of these students searched for 

analogous problems and solutions to the wrong problem. And, unlike Wayne above, these 

students did not stumble into the realization they had the wrong conceptual model. The 

automated assessment tool, Athene, did not alert these students to this failure of 

metacognitive awareness, allowing them to meander down the wrong path, totally lost 

until the quiz time had expired. 
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The most obvious example of a failure to create a correct conceptual model can be 

seen in the experience of Theo. Theo spent nearly a third of his quiz time reading and re-

reading the quiz prompt. At one point, halfway into the quiz time, the researcher noted 

that he, "just keeps repeating the same phrase from the instructions, 'if the number of 

positive is greater than the number of negative,' over and over again." Eventually, Theo 

wrote some code and submitted it, and received a standard CEM. He spent the rest of his 

time trying to understand this message. Since it was his only syntax error, if he had 

corrected and submitted it again, Athene would have begun running his code against the 

set of test cases. This was not the feedback that Theo needed in order to succeed. His 

time expired while he was re-reading the prompt for the eighth time. 

One student, Neil, is a good example of what happens when one fails to navigate 

each of the stages. After skimming the problem prompt, Neil immediately began coding 

without stopping to think through stage two, search for analogous problems, stage three, 

search for solutions, or stage four, evaluate a potential solution, jumping right to stage 

five, implement a solution. This was evidenced by his statement out loud after a few 

minutes, "What I'm wondering is if I need the prompt for input to be in the loop or not," 

followed quickly by removing the prompt entirely. A minute later he created two 

variables and said, "Somehow I'm going to let those represent positive and negative 

values. I think I'll have to do that in my while loop." At that point in the quiz, his code 

was structured to accept two integer values and report if they were positive or negative, 

which is not the correct problem. Minutes later he said, "I'm going to mentally run 

through it now," but did so without any specific test cases. All of this shows a confusion 

about what problem he was trying to solve, how to solve the problem he thought it was, 
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and an inability to evaluate his own solution. Finally, he submitted his code to Athene 

and spent the rest of his quiz time working through compiler errors. Slowly working 

through seven CEMs/ECEMs seems to have provided a false sense of progress to Neil 

because his program, even without syntax errors, was very far away from a correct 

solution. 

Thomas successfully navigated stages one and two, failed to solve stage three, and 

was subsequently totally unprepared to move into stages four through six. Early on 

Thomas said things like, "I'm trying to figure out how to...that's not going to work," and, 

"I'm trying to figure out how to make it count the positive ones. I don't know how 

to...that's going to be my issue." He continued tinkering with his code and said, "I just 

don't know how to see if there's more positive or negative." Thomas' comments reveal 

that he understood what he needed to do, but had great difficulty successfully getting 

through stage three, search for solutions. Frustrated and eager for some feedback, 

Thomas submitted his code, saying, "I guess I'll run it just to see what it will say." His 

code was syntactically valid and so Athene began running test cases. Once in stage six, 

evaluate implemented solution, Thomas struggled with the first test case for the 

remainder of the time, unsure as to how to convert the specified input into the correct 

output. Near the end of his quiz time, Thomas said, "I feel like I'm close, but I just don't 

know how to count up positive and negatives. Why is this not working?" The feedback 

from Athene had given Thomas a false sense of progression through the problem. He felt 

very close, but without finding a solution in stage three from which to build his own 

solution, he was actually quite far from completion. Thomas' experience was almost 
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exactly repeated in the experience of two other students, with one saying, "really close to 

finishing this, I think," when he was quite far away. 

Several other observations are worth mentioning as well. A few students said that 

they usually solve the problem through trial and error. This behavior shows that 

automated assessment tools, such as Athene, allow for submission of code immediately 

without any assurances that the student understands the problem - they are focused solely 

on correctness via syntax and test cases. Another issue researchers noticed is that several 

students became very frustrated with Athene and the quiz, with one student even calling 

herself and her code "stupid." This highlights that without appropriate feedback from 

Athene, students can feel hopelessly lost, become frustrated, and form a very negative 

opinion of the discipline. Finally, one positive behavior in this group was displayed by 

Jenny who successfully navigated stages one through three, stalled in stage four, evaluate 

a potential solution, and finally got out a piece of scratch paper and sketched the flow of 

the program. This helped her immensely and she was able to immediately move on to 

stage five, implement a solution. Unfortunately, by the time Jenny successfully moved 

into stage five, her quiz time was nearly over. 

 

Comparing Complete vs. Incomplete Students 

The most glaring inconsistency between those who completed the quiz and those 

who did not is in the initial formation of a correct conceptual model for the problem, 

which corresponds to stage one, reinterpret problem prompt. This is perhaps the single 

greatest weakness in modern automated assessment tools: the tool merely presents the 

problem and trusts that the successful student will eventually conceptualize the problem 
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correctly. Furthermore, there are no measures between viewing the problem and 

submitting source code to ensure that the student understands what they're being asked to 

do. As it is, tools like Athene treat every student submission the same: as if they are just a 

few syntax errors and edge case fixes away from a correct submission. The experiences 

of Wayne and Patricia, who both realized their incorrect conceptual model, were also 

seen in multiple students who did not complete the quiz, only these others were not 

fortunate enough to realize their error. It's very possible that these students would have 

completed the quiz if Athene had offered to help them form the correct conceptual model 

at the outset. This does not only benefit the poorer performing students; Wayne 

completed the quiz, but just barely. It's likely that Wayne would not have taken 33 

minutes to solve the problem had he been operating under the correct conceptual model 

the entire time. Both Patricia and Wayne also illustrate that re-reading the problem 

prompt may not help a student that has formed an incorrect conceptual model due to the 

difficulty in dislodging it once formed. 

After forming a correct conceptual model, Jane and several other students who 

completed the quiz took the time at the outset to build out some scaffolding inside their 

code by placing comments about how they intended to solve the problem. These students 

used this technique to navigate stage two, search for analogous problems, by thinking 

back to similar problems they have encountered, and stage three, search for solutions, by 

thinking through how those previous problems were solved, and finally stage four, 

evaluate a potential solution, by sketching the solution in comments before actually 

implementing it. This strategy proved to be a helpful way of thinking through an 

approach before committing to any code. Jenny, who did not complete the quiz, also 



 

 

101 

employed this strategy, but did so far too late into the quiz time to be of any benefit. 

Meanwhile, many of the students who did not complete the quiz read the prompt (often 

briefly) and jumped directly to coding, skipping stages two through four entirely. This 

proved disastrous for them as they wandered aimlessly, hoping to eventually stumble on a 

solution. 

Another important distinction can be drawn in stage five, implement a solution, 

and the number of enhanced messages read by students. The incomplete quiz participants 

read 9 enhanced messages, while the participants that completed the quiz read 23 

enhanced messages. Even though the complete and incomplete group received roughly 

the same number of ECEMs, the complete group read them far more often. From the quiz 

data, reading the enhanced messages seems to have been a defining factor to complete the 

quiz for several students who might not otherwise have done so. Students such as Adam, 

who correctly navigated stages one through four, but became stuck on stage five with 

syntax errors, heavily relied upon and successfully utilized the enhanced messages to 

reach a correct solution. As discussed above when tagging the enhanced messages against 

the rubric by Marceau et al. (2011a), the success of Athene's enhanced messages proved 

to be very helpful for many of the students who completed the quiz. Most perplexing is 

the general behavior of the students who didn't utilize the enhanced messages. One 

student in particular saw the same ECEM 15 times, but never once clicked on the 

enhanced message to expand it and read it. 

Also in stage five, implement a solution, some in the incomplete group attempted 

to work through the received CEMs/ECEMs, but had no idea they had incorrectly 

navigated all previous stages. Having used Athene for the assigned homework problems 
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in weeks one through five of CS1 thus far, these students associated receiving 

CEMs/ECEMs with being mostly complete, which many admitted during the think-aloud 

session or in the post-session interviews. This poor sense of location in the problem-

solving process ultimately distracted them from the real issue at hand: even if they could 

get their code to be syntactically correct, it was not going to solve the problem. 

Finally, the experiences of Neil and Thomas can be juxtaposed with the 

experience of Jane to offer a window into stage six, evaluate implemented solution. When 

Jane began receiving test case feedback from Athene, she had already successfully 

navigated stages one through five and was therefore ready to incorporate the feedback 

accordingly. Because she was solving the right problem, had chosen an approach that 

could solve the problem, and had correctly implemented the code for her solution, the 

feedback about failed test cases that she received enabled her to tweak her code and 

quickly arrive at a correct solution. Neil and Thomas, on the other hand, both also 

reached stage six, but because they had incorrectly navigated stages one through five, the 

feedback they received was misleading, at best. Because Athene told them which test 

cases they had failed, Neil and Thomas assumed that they should evaluate these feedback 

messages and that doing so would lead them to a correct solution. Unfortunately, because 

some test cases in Athene are randomly generated, no amount of failed test case feedback 

would have helped them correct their fundamental misunderstanding of the problem. 

The above discussion reveals the most common difficulties faced by the students 

in the study and are summarized in Table 4. These are the second order concepts 

mentioned above. 
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Table 4. Observed difficulties to metacognitive awareness by novices using AATs  

Metacognitive Difficulty Explanation 

Forming Forming the wrong conceptual model 
about the right problem 
 

Dislodging Dislodging an incorrect conceptual model 
of the problem may not be solved by re-
reading the prompt  

Assumption Forming the correct conceptual model for 
the wrong problem  

Location Moving too quickly through one or more 
stages incorrectly leads to a false sense of 
accomplishment and poor conception of 
location in the problem-solving process  

Achievement Unwillingness to abandon a wrong 
solution due to a false sense of being 
nearly done  

 

Summary 

Beginning where the current literature ends, the present research study first sought 

to take a human-factors approach to enhancing CEMs in an AAT, Athene. Through user 

testing and the small number of research papers on the subject, the ECEMs in Athene 

were iteratively refined. Following this, a larger ethnomethodologically-informed 

usability study using a think-aloud protocol was conducted among novice programmers 

in the Spring of 2017 at Abilene Christian University with 31 participants. This was 

augmented by a series of error message quizzes given to the students. The quantitative 

data, such as student performance on error message quizzes and submission data in 

Athene’s database, were combined with qualitative data from observations and interviews 

in order to answer RQ2: Are ECEMs helping students evaluate their potential solution? 
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Specifically, this question was broken down into two sub-questions, RQ2a: Are students 

reading the enhanced messages? and RQ2b: If students are reading the enhanced 

messages, how do the enhanced messages help them better understand the error? The 

results above show that, yes, students do read the ECEMs more often than not and that 

the ECEMs are helping them to better understand the error. 

Qualitative data from the full usability study were analyzed to answer RQ1: When 

students diverge on a specific learning stage, what factors caused them to do that? and 

RQ3: When students diverge on a specific learning stage, submit their program, and 

receive an ECEM, how do they interpret it? The ethnographic stories presented above 

provide an in-depth look at student problem-solving ability and their metacognitive 

awareness while doing so throughout all six stages. These stories highlight how some 

students who already have some amount of metacognitive awareness were able to 

mentally augment Athene as they solved the problem. The stories also highlight how 

many students who have never developed the skill of metacognitive awareness diverged 

on specific learning stages, which may have been prevented given some kind of cognitive 

scaffolding in Athene. Finally, the stories also highlighted how some students struggled 

to complete the assignment, but due to the successful use of ECEMs, they were able to do 

so. 

With all of the data presented above in mind, the present research project now 

turns to RQ4: How can AATs be augmented to support metacognition in novice 

programmers in CS1? As mentioned above, the answer to this question will take the 

shape of a framework of features that can be implemented in any AAT that will implicitly 
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reinforce metacognitive awareness in novice programmers. This is presented in Chapter 

5, Conclusions. 
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

 

Conclusions 

Learning to program is a hard task and novices are constantly cognitively 

overburdened (Lister, 2008; Guzdial, 2015a). This can be alleviated by supporting 

novices in building cognitive scaffolding and metacognitive awareness through six 

distinct learning stages (Loksa et al., 2016). A scalable implementation of the method of 

Loksa et al. would be to use AATs, which many universities are already using to help 

students learn programming and is therefore a somewhat ubiquitous place to start. Some 

AATs have been improved to support the fifth learning stage by providing usable 

feedback for student program submissions. A few studies have attempted to approach the 

design of these feedback messages from a usability or human-factors perspective 

(Nienaltowski et al., 2008; Hartmann et al., 2010; Marceau et al., 2011a). However, it is 

currently debated in the literature whether enhancing compiler error message feedback 

empirically improves student learning (Denny et al., 2014; Guzdial, 2014; Becker 2016a; 

Pettit et al., 2017). However, there is no discussion in the literature on implementing in 

AATs the means to help students through the other five learning stages. 

To address this problem and answer the research questions posed above, the 

present research project presented an ethnomethodologically-informed usability study 

with a think-aloud protocol where CS1 students were observed solving a programming 

problem with an AAT, Athene. The results detailed above show how some students 

effectively used the enhancements made to support stage five (ECEMs), how some 
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students mentally augmented the tool when it did not implicitly support their 

metacognitive awareness, and how some stumbled due in part to the tool’s lack of such 

support. This chapter will revisit each research question discuss them more fully in light 

of the results presented above. 

RQ1. When students diverge on a specific learning stage, what factors caused 

them to do that? 

From the ethnographic stories presented above, no definitive answer can be 

ascertained. However, there are also clearly likely contributing factors that were observed 

in the participants. The largest contributing factor is a lack of cognitive scaffolding in 

Athene to guide students through the six learning stages and, after using it to write a 

semester’s worth of programs, implicitly build their metacognitive awareness. This can 

be seen clearly in the prevalent tendency among students who did not complete the quiz 

to skim the assignment instructions (stage one) and jump straight into coding (stage five), 

fitting into Yuen’s (2007) need to code category. This need to code tendency could be 

mitigated by placing a few distinct hurdles in front of the student before they can begin 

coding.  

The lack of cognitive scaffolding as a contributing factor to divergence at a 

specific learning stage can also be seen in the students who failed to correctly navigate 

stage four, evaluate a potential solution, and therefore the code they wrote had no chance 

of success. The observations above discuss how these students submitted their code, 

received compiler errors, fixed those errors, and then began receiving test case error 

feedback. Students in this situation often misinterpreted this feedback from Athene, that 

the submission now compiled and was being verified by test cases, as evidence that they 
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were on the right path and close to a correct solution. The students who shared this 

experience unanimously remarked that they felt they were very close when they were all 

very far from a correct solution. From this example, it is clear that students are already 

interpreting the two stages of responses that Athene currently offers, compilation 

feedback followed by testing feedback, but that they are doing so in a way that reflects a 

poor mental model of how Athene works. A stronger cognitive scaffold to guide students 

through the entire problem-solving process would mitigate at least some, if not most, of 

the student frustration with Athene’s, and many other AATs for that matter, somewhat 

misleading feedback. 

 There are other contributing factors to divergence in specific learning stages that 

can be found in the results above, such as an overall lack of preparedness and a reliance 

on previous work without committing necessary minutiae to memory. These factors are 

outside of the scope of this research project and any programming course. If students are 

unwilling to do their work or take it seriously, not much can be done about that. 

However, improving the cognitive scaffolding in current AATs would be beneficial and 

easily incorporated into existing curriculum. 

RQ2. Are ECEMs helping students evaluate their potential solution? 

To better answer RQ2, this question was broken down into two sub-questions, 

RQ2a and RQ2b. 

RQ2.a. Are students reading the enhanced messages? 

Observational and ethnographic data above seem to indicate that novices in CS1 

do, in fact, read ECEMs. Students also generally find the ECEMs more helpful than the 

standard CEMs. Barik et al. (2017) performed an eye tracking study with intermediate 
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students to determine if they read CEMs from standard compilers. They found that 

overwhelmingly, more experienced students do read the messages. While their study 

centered entirely around intermediate students and could quantitatively answer the 

question due to the use of eye-tracking equipment, their findings lend more weight to the 

findings of the present research project. 

RQ2.b. If students are reading enhanced messages, how do the enhanced 

messages help them better understand the error? 

Since the answer to RQ2a was “yes,” this allows RQ2b to now be answered. 

Although the students who completed the quiz received about the same number of errors 

as the students who did not complete the quiz, the incomplete quiz participants had under 

half of the number of read enhanced messages (9) when compared to the participants that 

completed the quiz (23). The incomplete quiz participants also had over double the 

amount of unread enhanced messages (20) when compared to the completed quiz 

participants (8). For the participants that completed the quiz, there were 19 instances 

where the "more information" section of the ECEM proved helpful. This is over six times 

the number of instances for those who did not complete the quiz (3). From this data, it 

seems that reading the ECEMs proved helpful for the completion of the quiz. Another 

explanation is that the students who completed the quiz simply had a lower intrinsic 

cognitive load than those who did not complete the quiz. Since error rates have been used 

as an indirect measure of cognitive load (Ayres & Sweller, 1990; Ayers, 2001) and two-

thirds of the students who completed the quiz received roughly as many errors as those 

who did not complete the quiz (see Figure 30), this seems possible. If so, it could mean 

that the enhanced messages had nothing to do with whether or not they were helpful. A 
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related explanation is known as the “conscientious student effect” (Salleh et al., 2010), 

which is that conscientious students naturally perform better on these types of 

assessments. This explanation would also mean that reading the ECEMs has nothing to 

do with the design of the ECEMs, but instead is dependent on the individual student. The 

present research study attempted to control for these other explanations through the error 

message quizzes, which were tested via a between-subjects test (Lazar et al., 2017), and 

independently verified that the ECEMs were more helpful. 

Results from the interviews also helped to elucidate the answer to this question.  

The small group of students arrived at a correct solution with little to no compilation 

errors mentioned in the post-assessment interview that they did not use the ECEMs, even 

though they saw them, because they didn’t need them. On the opposite end of the 

spectrum is the small group of students who struggled to complete the quiz due to 

compilation errors. These students mentioned how much the enhanced portion of the 

CEM helped them across the finish line. This is precisely the kind of student experience 

at which enhancing stage five is targeted; these are students who need more cognitive 

scaffolding. 

RQ3. When students diverge on a specific learning stage, submit their program, 

and receive an ECEM, how do they interpret it? 

The ethnographic stories above show that students were overwhelmingly helped 

by the feedback they received. This is ideal because regardless of what problem a student 

thinks they’re solving (stage one) or the way they have chosen to solve the problem 

(stage three), the ECEMs should help students better understand and therefore more 

easily fix compiler errors. However, as discussed in this chapter under the conclusions for 
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RQ1, this success led to the discovery of another issue: students who might not have been 

able to work through a series of compiler errors without the availability of the ECEMs 

may have been led to a false sense of being on the right path. This issue could be 

mitigated by providing stronger cognitive scaffolding, which the ECEMs provide for 

stage five, for the other stages. 

RQ4. How can AATs be augmented to support metacognition in novice 

programmers in CS1? 

Using the usability study with think-aloud protocol, the present research project 

was able to see how successful students mentally augmented Athene and how 

unsuccessful students suffered from Athene's lack of cognitive scaffolding that could 

produce metacognitive awareness. Unfortunately, this lack of cognitive scaffolding in 

each of the problem-solving stages is common in most automated assessment tools. The 

only exception is in stage five, where some tools are moving to enhance the default 

CEMs, and even those that have done so are still often lacking in effective design. 

Therefore, the empirically-based framework for features to be implemented in an 

automated assessment tool that can help build metacognitive awareness in novices by 

assisting them through all six stages of the problem-solving process as described by 

Loksa et al. (2016) can now be described: 

• Stage 1: Reinterpret problem prompt. The number one issue 

experienced by students in our study was a failure to form the correct 

conceptual model. Some caught their error in time while most never 

recovered. Some could not understand what the problem was asking them 

to do while others mistook the problem for a different, but very similar, 
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problem they had already encountered. Automated assessment tools, like 

Athene, allow students to submit code immediately, with no safeguards in 

place to be certain that the student is at least on the right track. In order to 

prevent a student with an incorrect conceptual model of the problem from 

submitting code, problem prompts in automated assessment tools should 

require students to correctly answer some simple, randomly generated, test 

cases. After successfully providing the output to the randomly generated 

input, the ability to submit is then unlocked. The idea that students should 

begin with test cases is not new. Since at least the 1950's, researchers have 

been discussing test-driven development (TDD), which is where a student 

is required to submit test cases along with their code (Edwards, 2003a). 

TDD is largely focused on helping students reflect on which test cases 

could break the code they have already written and encourages them to 

write their test cases as they write their code. The feature suggestion 

proposed here, which is to put a randomly generated test case at the front 

of the process and not allow students to proceed without first proving that 

they understand what the problem is asking them to do, is therefore 

different from TDD. However, if the research on TDD (Edwards, 2003b; 

Buffardi & Edwards, 2014; Buffardi & Edwards, 2015) can be 

incorporated into the very beginning of the process, it could massively 

improve metacognitive awareness. Students who misunderstood the 

problem would be immediately made aware of it and forced to re-evaluate 

their mistake. 



 

 

113 

• Stage 2: Search for analogous problems. Several students in the study 

skipped stage two (as well as stages three and four) and moved directly to 

coding in stage five. This proved disastrous for them because they focused 

on the compiler error message feedback or test case feedback that they 

received, rather than re-evaluating the problem they chose to build their 

solution upon. The students who solved the quiz probably thought through 

problems they had previously encountered without realizing it. This is 

called "learning by analogy" and occurs when one can successfully reflect 

on previous problems and understand which portions are relevant to be 

applied to the current situation (Hoc & Nguyen-Xuan, 1990). In order to 

facilitate this in an automated assessment tool, students could be required 

to look at a short list of previous problems and select the ones most 

relevant to the current problem. This list must be curated because each of 

the correct selections should help the student realize that some part of that 

program is relevant to finding a solution. This task must only be made 

available after the student has successfully answered the test case question 

from stage one. 

• Stage 3: Search for solutions. After thinking through previous relevant 

problems, the student must decide on an approach. The experience of Jane 

in stage three was vastly different than those of Neil and Thomas. Jane 

went through the empty code file and placed comments throughout, which 

indicated her intentions. After she was done, she merely needed to fill it 

out. Neil was confused about how to construct a basic input loop and spent 
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too much time pondering a basic element of the solution. Thomas 

understood the problem, but could not conceptualize how to determine if 

there were more positive or negative numbers. With invalid assumptions 

about the problem, this led to insurmountable barriers. Thomas and Neil 

suffered from what Ko et al. (2004) described as a selection problem: 

students know what to do, but not how to do it. It is therefore 

recommended that the automated assessment tool help students lay out 

their solution, similarly to Jane's approach. This can be accomplished via 

Parsons Problems where the different programming elements necessary to 

solve the problem (e.g. input, while loop, condition, output) exist in a list 

on the left and students are required to drag and drop them into the list on 

the right in the correct order (Denny et al., 2008; Karavirta et al., 2012). 

Distractors should not be used in the list as this decreases learning in 

novice programmers (Harms et al., 2016). 

• Stage 4: Evaluate a potential solution. The above observations show 

multiple students attempting to think through their chosen solution with 

varying degrees of success. Two of the students who did not complete the 

problem were observed doing so without any particular test cases in mind. 

In addition, several students were observed skipping this stage and 

jumping directly to stage five. But mentally running through a chosen 

algorithm to test its viability is a crucial step that determines if one can 

continue onward to stage five or, if the chosen solution fails a quick check, 

one must return to stage three to search for another. This can easily be 
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facilitated by following from the feature recommendation in stage three 

above. After the student has solved the Parsons Problem by arranging the 

different elementary programming elements in the correct order, this can 

be used to generate a series of comments in a code file similar to what 

Jane did on her own. This could be taken a step further by generating a 

basic code skeleton from the arrangement of the pieces of the Parsons 

Problem. One might worry that this could provide too much help to the 

student, or perhaps become a crutch. However, the student has solved the 

Parsons Problem and therefore generating a skeleton of comments or code 

from their solution is not providing to them anything they did not already 

have. Furthermore, doing so affords the student the chance to see their 

solution in a code file and reflect on it before they begin filling it out. 

• Stage 5: Implement a solution. During this phase, students are writing 

their code and working to get it to compile. The greatest challenge 

observed in the present research project is in overcoming issues of esoteric 

syntax, though students can also run into other types of barriers (Ko et al., 

2004). As discussed above, multiple students who completed the problem 

were helped over the finish line by the ECEMs provided by Athene. Even 

though this has been discussed by researchers for the past decade, many 

modern automated assessment tools still do not make any attempt to make 

the compiler error message feedback any more understandable to novices 

(Pettit et al., 2017). It is therefore recommended that compiler error 

messages be enhanced to increase novice comprehension and accessibility. 
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In order to do this, the following design recommendations, generated by 

the pilot studies discussed above, should be followed: reduce cognitive 

load by keeping messages as short as possible, explain esoteric 

terminology, use clear signifiers, place enhanced message below the 

standard message, and default the enhanced message to collapsed such 

that novices will see the standard message first (Hartmann et al., 2010; 

Marceau et al., 2011a). These are the basic suggestions, though other 

optional design recommendations depend on context, language choice, and 

IDE, such as showing example code with suggested fix, code highlighting, 

and crowd-sourcing suggestions. These should be used sparingly because, 

although seemingly helpful, often only serve to increase cognitive load, as 

discussed in the results of the pilot studies above. 

• Stage 6: Evaluate implemented solution. Students at this stage tend to 

tinker until correct, often dreadfully unaware of why their code is failing 

edge cases. In addition to this, those who did not complete the quiz who 

also made it to this stage were often extremely confused because they had 

fundamentally misunderstood the problem. If the suggestions from the 

previous five stages are followed, this will be eliminated because these 

students will not be allowed to progress to this stage with an incorrect 

conceptual model. However, this does not solve the issue of tinkering 

through the test cases. The feature proposed for stage one was to have the 

AAT generate a random test case and the student provide the correct 

output. For the sixth stage, a return to test cases is necessary. However, in 



 

 

117 

this final stage, it is the student who should be generating test cases, as in 

test-driven development (TDD) (Edwards, 2003). TDD can be 

implemented into automated assessment tools to prevent student reliance 

on instructor-provided test cases and instead encourage robust reflection 

on the student's solution code and its test case coverage (Buffardi & 

Edwards, 2015). This should take the form of adaptive feedback to 

reinforce incremental testing behavior, rather than allowing students the 

ability to write all their test cases at the end of their development process 

(Buffardi & Edwards, 2014). 

The addition of all of these hoops for students to jump through could become 

confusing or frustrating. Therefore, there should be some unifying conceptual model to 

hold it all together. This could take the form of a progress bar, if one was seeking 

gamification, or a checklist. Regardless of the skeuomorphism chosen, it should be 

constantly visible and easily indicate at a glance the student's current location in the 

problem-solving process. Each of the above feature suggestions is designed to cause 

students to reflect on the problem and their current state in the problem-solving process. 

The unifying conceptual model, such as a progress bar, reinforces metacognition by tying 

the six stages together, allowing the student to explicitly know where they are in the 

overall problem-solving process, and provides a sense of progress and accomplishment as 

they move on to each stage. 
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Table 5. Summary of AAT features to implicitly produce metacognitive awareness 

Learning Stage Behavior Observed Proposed Feature 

1. Reinterpret problem 
prompt 

Skimming the prompt or 
misunderstanding it. 

Solve randomly generated test 
case before proceeding. 
 

2. Search for analogous 
problems 

Skipping this stage entirely. Select similar problems from 
a list of previous problems 
that will inform the solution 
approach. 
 

3. Search for solutions Landing on a solution that is 
too close, or exactly like, a 
previous problem. 

Solve a Parsons Problem to 
create a code-block outline of 
solution. 
 

4. Evaluate a potential 
solution 

Mentally running through an 
idea for a solution without a 
specific test case in mind or 
skipping this step entirely. 

AAT generates a series of 
comments or basic code 
skeleton from student’s 
Parsons Problem solution. 
 

5. Implement a solution Being intimidated by the 
esoteric nature of compiler 
error messages. 

Enhance the standard 
compiler error messages 
according to a human-factors 
approach. 
 

6. Evaluate 
implemented solution 

Tinkering with the 
implemented solution as it is 
tested against various test 
cases. 

Write and submit test cases 
alongside of the implemented 
solution code. 

 

The framework above answers RQ4 and, if properly implemented, should 

increase metacognitive awareness in novice programmers. Even though this was a 

generative study that has proposed a framework from empirical observations, the present 

research project has not endeavored to build a prototype to test this framework, which is 

the most obvious threat to validity to this answer to RQ4. In order to do this well, it 

would take many years. First, each suggested feature would need to be independently 

tested. Then the features for all six stages would need to be combined and thoroughly 
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tested. Finally, the fully implemented framework would need to be tested at multiple 

institutions. This is obviously beyond the scope of this dissertation. 

 

Implications 

Some of the implications of this research have already been made apparent 

through engagement in the research literature, while other implications are still waiting to 

be carried forward. The first implication of the present research project is in its 

contribution to the ongoing discussion about ECEMs in AATs. Some of these results 

have already been published (Prather et al., 2017) and these results have already been 

favorably engaged in the ongoing discussions about ECEMs (Becker, Goslin, & 

Glanville, 2018; Becker et al., 2018). The experiment conducted by Becker, Goslin, and 

Glanville (2018) confirms the findings of the present research project. Their study wades 

into the current discussion by asking whether researchers are measuring the same things 

and whether they are measuring the right things. Becker, Goslin, and Glanville found that 

the effects of ECEMs are so difficult to quantitatively measure that there may be too 

much noise in the data. Their experiment, designed to address this issue, confirmed 

Denny et al. (2015), Becker et al. (2016), Pettit et al. (2017), and Prather et al. (2017) by 

discovering that ECEMs do matter, but one must measure the correct variables to notice 

the difference. Becker, Goslin, and Glanville (2018) write, “We also observe effects that 

may corroborate observations made by Prather et al…[but] we do not observe statistically 

significant effects of ECEMs on the number of compiling submissions, supporting the 

results of Denny et al. and Pettit et al.” (p. 645). The present research project has also 
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been cited as supporting evidence of the different kinds of common logic errors made by 

novice programmers (Ettles et al., 2018). 

The second implication of the present research project in its potential impact on 

computer science curricula. The method of Loksa et al. (2016) was to provide students 

with a chart of the six learning stages and explicitly coach the students to use the stages 

as a way to cope with bugs while learning to code. However, this relies on instruction 

from an expert and continued reinforcement through interaction with students when 

stuck. As discussed above, this is not easily scalable to an intro class of several hundred, 

and impossible to do in a MOOC. Therefore, AATs are an effective place to focus 

because hundreds of universities already utilize AATs, there is a wealth of published 

literature about these tools, and most AATs support stage five and some support stage 

six, making modification to support the first four stages seems reasonable and beneficial 

and easily incorporated into existing curriculum. This is perhaps the greatest implication 

of the present research project: that the findings presented here can be easily adapted into 

existing tools and curricula and yet stand to make a large impact on the discipline on the 

order of magnitude called for by Lister (2008). Lister suggested that computer science 

teachers must understand how novices learn and teach their courses accordingly. The 

framework proposed above, when implemented in an AAT, allows professors to 

incorporate Lister’s ideas into their curriculum without becoming experts on novice 

learning. As opposed to the proposal by Loksa et al. (2016), which would require a 

computer science teacher to understand the stages of learning and how to coach students 

through them, the framework proposed above implicitly reinforces metacognitive 

awareness in novice learners. Over the course of a semester, completing program and 
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program, most of these novices would eventually think in terms of the six stages, even 

after their course has ended. 

Limitations 

There are several limitations to these findings. First, the control groups for the 

think-aloud study took place over multiple semesters and had two different professors. 

The researcher attempted to minimize this threat by keeping the curriculum (assignments, 

schedule, the use of Athene, etc.) roughly the same from semester to semester. This was 

also hopefully mitigated by including as many semesters of data as possible from 

Athene’s database. However, it is possible that some of these differences affected the 

data and harm its generalizability. 

A second limitation was that control groups for the think-aloud study took the 

practical quiz in class, were not asked to think-aloud, and had access to previous code 

files to bootstrap their code. By contrast, students in the think-aloud study were in a one-

on-one setting, were asked to think-aloud, and did not have access to previous code. It is 

possible that all of these factors increased student cognitive load in the think-aloud study 

and therefore skewed the results. The researcher attempted to offset this by adding in the 

warm-up exercise as suggested by Teague et al. (2013). In order to investigate this 

further, a second practical quiz was carried out on April 19, 2017. This was conducted in 

a classroom setting and students were not allowed to use previous code or an offline 

compiler. However, students were not asked to think aloud during the quiz and were not 

in a one-on-one setting. They were also told to use Athene as their compiler exclusively, 

as they had done in the first practical quiz. Out of 21 students present in class on the day 

of the quiz, 10 were able to complete the problem in the 35-minute time window. The 



 

 

122 

problem was also used in Fall 2015, which can serve as control data for the comparison. 

In the control semester, 23 out of 35 completed the quiz within the 35-minute time 

window. Average scores for the control and experimental groups were 65.7% and 47.6%, 

respectively. This represents a 38% drop in scores from the control semester to the 

experimental semester. These numbers approximately line up with those from the first 

practical quiz taken during the full usability study, which saw a 31% drop from the three 

control semesters to the experimental semester. Additionally, there were 257 submissions 

in the 2015 control group, compared to 306 submissions for the 2017 experimental group. 

While it makes sense that there would be an increase in submissions when not allowed to 

compile offline. However, it seems reasonable to expect a larger increase in submissions 

than 18%. The reasons for this and its implications cannot be determined here as it is 

outside of the scope of the present research project. However, the above data from the 

second practical quiz does confirm that the think-aloud protocol and laboratory 

observation of users was likely not the factor that caused the significant drop in student 

scores during the full usability study. While it’s possible that it could be due to only 

allowing students to compile through Athene, this seems unlikely given the somewhat 

small increase in submissions from control to experimental groups. Most likely it can be 

explained by the lack of student access to previous work. This explanation, when used 

above in considering the scores of the full usability study, corrected the experimental 

average scores to be much closer to the expected scores of the control groups. Therefore, 

the above data from the second practical quiz strengthens that explanation and severely 

constrains the methodology as a limitation. 
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Finally, the low number of student participants in the full usability study (n=31) is 

another possible limitation. Though it is helpful in quantitative studies to increase the 

number of participants, this is not necessarily as helpful in qualitative work. Qualitative 

work focuses on the depth, not breadth, of the interactions and records. However, this 

small sample size at just one university does limit the generalizability of this study. 

 

Recommendations 

The participant pool was rather limited by the university’s small number of 

students taking CS1. A study performed at a university with a larger – and more diverse – 

CS1 pool would be beneficial for verifying the results of the present research project. 

Furthermore, a multi-university study would also help with generalizability concerns. 

Obviously, the most important recommendation of this study is that the framework 

presented above be implemented. Each feature should be independently tested with a 

control and experimental group in the same semester. Only after each of the six features 

have been independently tested could they be combined and then tested again. The 

experiment on the entire implemented framework would probably need to take place 

longitudinally over the course of an entire semester, rather than one quiz during the sixth 

week. All of this will take at least six years to carry out and verify. Finally, future 

research should also continue to explore the relationship between the presence and design 

of ECEMs in AATs and student usage of them correlated with their success. 
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Summary 

 The extremely high failure rates in introductory programming courses (CS1) can 

be traced to several factors, one of which being a lack of pedagogical rigor by those who 

teach it (Lister, 2008). Lister writes that this crisis could eventually collapse the entire 

discipline if left unchecked. The way forward for many researchers in the computer 

science education (CSed) community is to better understand learning theory (Sweller, 

1999) and apply that to novice programming (Guzdial 2015a; Ko, 2014). Understanding 

how novices learn is more than just language choice, syntax, data structures, and 

algorithms, but also how they learn these concepts, internalize them, and become aware 

of that process, called metacognition (Metcalfe & Shimamura, 1994). One recent study 

attempted to understand the six problem-solving stages of writing code and explicitly 

teach those to novices, including some tools in an IDE to help them reflect on those steps, 

so that instructors could more reliably refer to those stages when helping students debug 

(Loksa et al., 2016). The present research project attempted to adapt the spirit of their 

experiment to an online learning setting, specifically using automated assessment tools 

(AATs). AATs offer a somewhat ubiquitous place to start since many hundreds of 

universities already utilize them (Pettit & Prather, 2017) and, therefore, any new features 

proposed by the present research project could be easily implemented into existing 

curriculum. 

 A survey of existing literature on AATs revealed that only stages five and six are 

discussed at all, though they are not addressed in those terms. For stage five, the CSed 

research community has attempted to create enhanced compiler error messages (ECEMs) 

in an attempt to help students better understand the esoteric error messages that they 



 

 

125 

receive and to reflect on why they received it (Becker, 2015). However, the helpfulness 

of ECEMs in novice learning is disputed (Denny et al., 2015; Becker, 2016a; Pettit et al., 

2017). The discussion in the literature that could pertain to stage six revolves around test-

driven development (TDD), which attempts to have novices write test cases while writing 

their code (Edwards, 2003a). However, the discussion in the literature on ECEMs or 

TDD has never been done so in terms of the benefits these could have on novice 

development of metacognitive awareness of the process of programming. Furthermore, 

there is nothing in the literature about using AATs to help novices develop metacognitive 

awareness of the first four stages. 

 To address this problem, the present research study proposed and carried out a 

series of experiments designed to start where the current literature ends at ECEMs. The 

first was a set of pilot studies that iteratively developed the ECEMs in a specific AAT, 

Athene. These user testing sessions helped determine what students were using and how 

they were using the additional information. Additional refinements were made based on 

the scant research literature on human factors studies of error messages (Nienaltowski et 

al., 2008; Hartmann et al., 2010; Marceau et al., 2011b). The second was a series of error 

message quizzes given to students in CS1 in the Spring of 2017. These were designed to 

see if the error messages were genuinely helpful, outside of the context of a homework or 

quiz problem and the stress, and therefore cognitive load, associated with them. These 

first two parts were designed to get as much right about stage five of the problem-solving 

process as possible, so as to make the observations regarding the other five stages more 

salient. Finally, a larger ethnomethodologically-informed usability study was conducted 

in the same CS1 class using a think-aloud protocol. This study was designed to observe 
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students moving through all six of the problem-solving stages as presented by Loksa et 

al. (2016).  

The results of the present research project provide two important contributions. 

The first is the confirmation that ECEMs that are designed from a human-factors 

approach are more helpful for students than standard compiler error messages. The 

iterative improvement of the ECEMs and the results of the full usability study also 

provide a window into how understanding user behavior can make ECEMs more helpful 

than ECEMs which are not built from a human-centered design approach. These results 

were published (Prather et al., 2017) and have already been engaged with and confirmed 

in the research literature (Becker, Goslin, & Glanville, 2018; Becker et al., 2018; Ettles et 

al., 2018). The second important contribution is that the results from the observations and 

post-assessment interviews of the full usability study revealed ways in which students 

could be helped through the entire problem-solving process. This was presented above as 

a framework of features, which when implemented properly, could implicitly produce 

metacognitive awareness in novice programmers (see Table 4 for a summary). This 

generative proposal should be taken up, implemented, and thoroughly tested over the next 

few years as it stands to make a substantial impact on the ability of novice programmers 

to create better conceptual models of how to code, which could improve on the abysmal 

failure rates seen throughout the discipline. 
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Appendix A: Rubric for Tagging ECEMs 

 
Marceau et al. (2011a) asked the following question regarding the effectiveness of 

ECEMs: “does the student make a reasonable edit, as judged by an experienced 

instructor, in response to the error message?” (p. 500). To answer this question, they 

developed the following rubric to tag and code student responses to their ECEMs. 

 

In the study, when a student encountered an error message, their response was recorded 

and later tagged with one of the five tags above. This tagging was done through the a 

three-step conceptual model of encountering and fixing errors. They write, “Our design 

starts from a conceptual model of how error messages intend to help students: if an error 

message is effective, it is because a student reads it, can understand its meaning, and can 

then use the information to formulate a useful course of action” (p. 500). 
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Appendix B: Data Collection 

Table B1. Data collection summary 

Study Sample Size Date Performed Contribution to Dissertation 
Pilot Study 1 6 Sept 15, 2016 Testing current ECEMs in Athene. 

 
Pilot Study 2 6 Nov 16, 2016 Testing revised ECEMs in Athene. 

 
Error Message 
Quizzes 

27 Jan 17, 2017 – 
May 5, 2017 

Determine if newly enhanced ECEMs 
(after the two pilot studies) were more 
helpful to students than standard 
CEMs. 
 

Full Usability Study 31 Feb 20-24, 2017 Observe student behavior in problem-
solving process in order to make 
recommendations for improving 
metacognitive awareness. 
 

Practical Quiz #2 21 Apr 19, 2017 This second “practical quiz” was done 
as a follow-up to the full usability 
study in order to control for having 
students think-aloud. In practical quiz 
#2, students were not asked to think 
aloud, but like the full usability study, 
were required to only compile online 
using Athene and could not use their 
own previous material. 
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Appendix C: Publication Timeline of Dissertation Data 

Table C1. How conference articles contribute to the primary dissertation artifact 

Conference Article Primary Dissertation Artifact:  
A framework for implementing features in an AAT 
that implicitly improves metacognitive awareness 
in novice programmers. 
 

The first four learning stages are not currently 
represented in any existing AAT.  
 
ITiCSE Article: (Submitted: 1/15/18) 
After showing successful implementation of 
features to improve stage five (as discussed in 
the ICER article, already published), this study 
presents the observational data from the full 
usability study to make suggestions for features 
to implement that would improve metacognitive 
stages 1-4 and 6. Stage 6 is covered in more 
detail in the SIGCSE article (see below) 
 

1. A suggestion for learning stage 1: reinterpret 
prompt. 
 
2. A suggestion for learning stage 2: search for 
analogous problems. 
 
3. A suggestion for learning stage 3: search for 
solutions. 
 
4. A suggestion for learning stage 4: evaluate a 
potential solution. 
 

In an AAT, “implementing a solution” occurs 
while students are writing code and fixing any 
syntax errors. If their code has syntax errors, 
they see an error message. Stage five is the only 
one of the six learning stages that is discussed in 
the literature for AATs. 
 
ICER Article: (Published: 8/20/17) 
Were the redesigned ECEMs effective at helping 
students arrive at a syntactically correct 
solution? This article examines previous 
semester control data, the iterative design work 
of the two pilot studies, the full usability study, 
and the error message quizzes. It concludes that 
the redesigned ECEMs were helpful. 
 

5. A suggestion for learning stage 5: implement a 
solution. This will be design guidelines for ECEMs. 

In an AAT, “evaluating an implemented solution” 
happens after the submission is syntactically 
correct and is then run against multiple test 
cases to demonstrate correctness. 
 
SIGCSE Article: (Deadline: 8/25/18) 
How does student behavior change when they 
can only compile online compared to when 
students can compile offline before submitting? 
How does this change interaction with failed test 
cases? This article examines previous semester 
control data, the full usability study, and practical 
quiz #2. 

6. A suggestion for learning stage 6: evaluate 
implemented solution. 
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Appendix D: Participant Movement Through Problem-Solving Stages 

Over Time in Think-Aloud Study 

Table D1. Participant movement through problem-solving stages over time in think-aloud 
study 

Participant Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Total 

P1 

1 min       
 <1 min      
  <1 min     
   <1 min    
    3 min   
     <1 min  
      5 min 

 

P2 
“Bill” 

3 min       
 <1 min      
  1 min     
   1 min    
    1 min   
     <1 min  
      7 min 

 

P3 

2 min       
 <1 min      
  <1 min     
   <1 min    
    1 min   
   <1 min    
    1 min   
   <1 min    
    1 min   
     1 min  
      8 min 

 

P4 

1 min       
 <1 min      
  <1 min     
   1 min    
    <1 min   
<1 min       
    <1 min   
<1 min       
    1 min   
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   <1 min    
    <1 min   
   <1 min    
    <1 min   
     1 min  
   <1 min    
    1 min   
     1 min  
      9 min 

 

P5 

2 min       
 <1 min      
  1 min     
   <1 min    
    1 min   
   1 min    
    2 min   
   1 min    
    1 min   
     <1 min  
      10 min 

 

P6 

2 min       
 <1 min      
  <1 min     
   <1 min    
    6 min   
     1 min  
    1 min   
     1 min  
      12 min 

 

P7 

<1 min       
 <1 min      
  <1 min     
   1 min    
    5 min   
   <1 min    
    1 min   
     5 min  
      13 min 

 

P8 
<1 min       
 <1 min      
  <1 min     
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   <1 min    
    7 min   
   1 min    
    1 min   
     4 min  
      13 min 

 

P9 

       
       
       
       
       
       
      14 min 

 

P10 

2 min       
 <1 min      
  <1 min     
   <1 min    
    3 min   
   1 min    
    3 min   
   2 min    
    2 min   
     <1 min  
      14 min 

 

P10 

2 min       
 <1 min      
  <1 min     
   <1 min    
    3 min   
   2 min    
    6 min   
     <1 min  
      14 min 

 

P11 
“Jane” 

2 min       
 <1 min      
  1 min     
   1 min    
    4 min   
     3 min  
   1 min    
     1 min  
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      14 min 
 

P12 

3 min       
 <1 min      
  1 min     
   <1 min    
    11 min   
     <1 min  
      15 min 

 

P13 

1 min       
 <1 min      
  <1 min     
   <1 min    
    4 min   
1 min       
   1 min    
    9 min   
      16 min 

 

P14 

2 min       
 <1 min      
  3 min     
   3 min    
    1 min   
   <1 min    
    4 min   
   <1 min    
    2 min   
     <1 min  
      16 min 

 

P15 
“Patricia” 

1 min       
 <1 min      
  <1 min     
   <1 min    
    1 min   
<1 min       
   <1 min    
    1 min   
<1 min       
    14 min   
     <1 min  
      18 min 
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P16 

5 min       
 <1 min      
  <1 min     
   <1 min    
    8 min   
   <1 min    
    5min   
   <1 min    
    1 min   
      19 min 

 

P17 

<1 min       
 <1 min      
  1 min     
   1 min    
    8 min   
   1 min    
    5 min   
     2 min  
1 min       
  <1 min     
   <1 min    
     1 min  
       
      20 min 

 

P18 

2 min       
 <1 min      
  1 min     
   1 min    
    4 min   
   <1 min    
    5 min   
   <1 min    
1 min       
   3 min    
    3 min   
     <1 min  
      22 min 

 

P19 

3 min       
 <1 min      
  <1 min     
   <1 min    
    19 min   
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     <1 min  
      23 min 

 

P20 
“Adam” 

3 min       
 <1 min      
  2 min     
   1 min    
    5 min   
   2 min    
    4 min   
   5 min    
    1 min   
     6 min  
      30 min 

 

P21 
“Wayne” 

<1 min       
 <1 min      
  <1 min     
   3 min    
  1 min     
   5 min    
  5 min     
   2 min    
    7 min   
   2 min    
    6 min   
1 min       
  <1 min     
   1 min    
    <1 min   
      33 min 

 

P22 
“Neil” 

1 min       
 <1 min      
  <1 min     
   <1 min    
    2 min   
<1 min       
   1 min    
    2 min   
   2 min   35 min 
    2 min   
   1 min    
    5 min   
   1 min    
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    7 min   
     3 min  
  <1 min     
   <1 min    
    1 min   
     3 min  
   <1 min    
    1 min   
   1 min    
  1 min     
      35 min 

 

P23 

2 min       
 <1 min      
  <1 min     
   <1 min    
    2 min   
  1 min     
    2 min   
1 min       
    2 min   
1 min       
   <1 min    
    4 min   
   <1 min    
    1 min   
   2 min    
    8 min   
  1 min     
    7 min   
      35 min 

 

P24 

3 min       
 <1 min      
  <1 min     
   <1 min    
    6 min   
1 min       
    24 min   
      35 min 

 

P25 
“Theo” 

2 min       
 <1 min      
  <1 min     
   <1 min    
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    3 min   
   1 min    
2 min       
   1 min    
    2 min   
4 min       
    3 min   
2 min       
    9 min   
<1 min       
  1 min     
<1 min       
  1 min     
<1 min       
  1 min     
1 min       
      35 min 

 

P26 

2 min       
 <1 min      
  1 min     
   <1 min    
    12 min   
 <1 min      
  1 min     
    16 min   
   <1 min    
    <1 min   
     2 min  
      35 min 

 

P27 
“Thomas” 

1 min       
 <1 min      
  1 min     
   <1 min    
    1 min   
  <1 min     
    2 min   
  2 min     
   4 min    
    6 min   
   1 min    
    2 min   
     1 min  
    3 min   
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     2 min  
    7 min   
      35 min 

 

P28 

3 min       
  <1 min     
    3 min   
   <1 min    
    2 min   
   1 min    
    8 min   
   1 min    
    10 min   
   3 min    
    4 min   
      35 min 

 

P29 
“Jenny” 

2 min       
 <1 min      
  <1 min     
    14 min   
   6 min    
    7 min   
   2 min    
    4 min   
      35 min 

 

P30 

2 min       
    19 min   
     <1 min  
    4 min   
     <1 min  
   2 min    
    1 min   
     1 min  
    5 min   
      35 min 

 

P31 

5 min       
    29 min   
     1 min  
      35 min 
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Appendix E: Error Message Quiz Data 

Table E1. Participant data for each of the six error message quizzes 

 Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6 
 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 
P1 yes  yes  yes  yes  yes  yes  
P2  yes  yes  yes  yes  yes  yes 
P3 yes  no  yes  yes  yes  yes  
P4  yes  yes  yes  yes  yes  yes 
P5  yes  yes  yes  yes  np  yes 
P6  yes  no  yes  yes  yes  yes 
P7  yes  yes  yes  yes  yes  yes 
P8  yes  yes  yes  no  no  yes 
P9 yes  yes  no  yes  no  yes  
P10  yes  yes  yes  yes  yes  yes 
P11 yes  yes  yes  yes  yes  yes  
P12 yes  yes  yes  yes  yes  yes  
P13  yes  yes  yes  no  yes  yes 
P14 yes  yes  yes  yes  yes  yes  
P15 yes  yes  yes  yes  yes  yes  
P16 yes  yes  yes  yes  yes  yes  
P17 yes  yes  np  no  yes  yes  
P18  yes  no  yes  yes  yes  yes 
P19  yes  yes  yes  yes  yes  yes 
P20 yes  yes  yes  yes  yes  yes  
P21 yes  yes  no  yes  yes  yes  
P22 

 
yes 

 
yes 

 
yes 

 
no 

 
yes 

 
yes 

P24 
 

yes 
 

yes 
 

yes 
 

yes 
 

yes 
 

yes 
P26 

 
yes 

 
yes 

 
no 

 
no 

 
yes 

 
yes 

P27 no 
 

yes 
 

no 
 

yes 
 

no 
 

yes 
 

P28 yes 
 

yes 
 

yes 
 

yes 
 

no 
 

yes 
 

P29 yes 
 

yes 
 

yes 
 

yes 
 

no 
 

yes 
 

P30 yes 
 

yes 
 

yes 
 

yes 
 

yes 
 

yes 
 

P31 
 

yes 
 

yes 
 

no 
 

yes 
 

no 
 

yes 

Total Incorrect 1 0 1 2 3 2 1 4 4 2 0 0 
 

Note that for the error message quizzes, two participants, P23 and P25, did not 

participate and are therefore not listed in the table. A “yes” means the error message was 



 

 

140 

correctly interpreted, “no” means that it was incorrectly interpreted, and “np” means the 

student was not present that day. There are two students who were not present for all six 

quizzes and their data was not considered in the analysis provided in Chapter 4. 
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Appendix F: IRB Authorization Agreement Between NSU and ACU 
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