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FOCUS: THE ORBITRAP

Rephasing Ion Packets in the Orbitrap
Mass Analyzer to Improve Resolution
and Peak Shape*

Richard H. Perry,a Qizhi Hu,b Gary A. Salazar,a R. Graham Cooks,a

and Robert J. Nolla
a Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
b Amgen Inc., Thousand Oaks, California, USA

A method is described to improve resolution and peak shape in the Orbitrap under certain
experimental conditions. In these experiments, an asymmetric anharmonic axial potential was
first produced in the Orbitrap by detuning the voltage on the compensator electrode, which
results in broad and multiply split mass spectral peaks. An AC waveform applied to the outer
electrode, 180o out of phase with ion axial motion and resonant with the frequency of ion axial
motion, caused ions of a given m/z to be de-excited to the equator (z � 0) and then immediately
re-excited. This process, termed “rephasing,” leaves the ion packet with a narrower axial
spatial extent and frequency distribution. For example, when the Orbitrap axial potential is
thus anharmonically de-tuned, a resolution of 124,000 to 171,000 is obtained, a 2- to 3-fold
improvement over the resolution of 40,000 to 60,000 without rephasing, at 10 ng/�L reserpine
concentration. Such a rephasing capability may ultimately prove useful in implementing
tandem mass spectrometry (MS/MS) in the Orbitrap, bringing the Orbitrap’s high mass
accuracy and resolution to bear on both the precursor and product ions in the same MS/MS
scan and making available the collision energy regime of the Orbitrap, �1500 eV. (J Am Soc
Mass Spectrom 2009, 20, 1397–1404) © 2009 American Society for Mass Spectrometry

Since its introduction, the LTQ-Orbitrap (Thermo
Fisher Scientific, San Jose, CA) [1–4] has proven to
be a valuable analytical tool with a wide range of

applications. Its high resolving power (100,000 at m/z
400) and mass accuracy (2–5 ppm for internal and
external calibration, respectively; as low as 0.2 ppm
under favorable conditions) [5] significantly reduces
false positive peptide identifications in bottom-up [6–8]
protein analyses [9, 10] and also improves the accu-
racy of de novo interpretations [11, 12] of tandem
mass spectrometry (MS/MS) data [13, 14]. Up until
the introduction of the LTQ-Orbitrap, only Fourier
transform ion cyclotron (FT-ICR) mass analyzers had
sufficient resolving power and mass accuracy to
efficiently characterize intact proteins and their asso-
ciated fragments. Recent studies have demonstrated
that the LTQ-Orbitrap can resolve the isotopic distri-
bution of multiply-charged intact proteins and peptides
[15–17], making it an alternative to FT-ICR for top-down
[18–20] proteomics. The LTQ-Orbitrap has also found
applications in many other scientific research areas such

as metabolomics [21], lipidomics [22], and environmen-
tal chemistry [23].

The Orbitrap mass analyzer [4, 24–26] is composed
of a spindle-like central electrode and a barrel-like outer
electrode. A DC voltage is applied between these two
specially shaped electrodes, resulting in the following
potential distribution:

U(r, z) �
k

2�z2 �
r2

2��
k

2
(Rm)2 ln� r

Rm
�� C (1)

where r and z are cylindrical coordinates, Rm is the
characteristic radius, k is the proportionality constant
for the axial restoring force and C is a constant [26].
Stable ion trajectories involve both orbiting motion
(r, �-motion, where � is the angular coordinate) around
the central electrode when r � Rm and simultaneous
oscillations in the z-direction. The mass-to-charge ratio
(m/z) is derived from the natural frequency of oscilla-
tion along the z-axis (f), given by the well-known
harmonic oscillator relation,

� � (kq ⁄ m)1⁄2 (2)

where m and q are the mass and charge of the ion,
respectively, and � � 2�f is the angular frequency in
rad/s [26].

* Dedicated to Dr. Alexander Makarov, for the invention of the Orbitrap
and his achievements leading to the ASMS Distinguished Contribution to
Mass Spectrometry Award.
Address reprint requests to Dr. R. J. Noll, Department of Chemistry, Purdue
University, 560 Oval Drive, West Lafayette, IN 47907, USA. E-mail:
rnoll@purdue.edu

Published online February 12, 2009
© 2009 American Society for Mass Spectrometry. Published by Elsevier Inc. Received December 14, 2008
1044-0305/09/$32.00 Revised February 5, 2009
doi:10.1016/j.jasms.2009.02.011 Accepted February 6, 2009

mailto:rnoll@purdue.edu


The image current induced in the outer electrodes
(which is split at z � 0) by ion axial motion is acquired
as a time-domain transient and Fourier-transformed to
produce a frequency spectrum [27–30]. Frequencies are
converted to m/z by eq 2. The magnitude of the image
current produced by N ions with angular frequency �,
axial amplitude �z and average radius r is given by

I(t, r) � �qN�
�z

	(r)
sin(�t) (3)

The quantity 	(r) accounts for the geometry of the
Orbitrap electrodes and is a monotonically decreasing
function of r [26]. Although radial, angular, and axial
frequencies all depend on the m/z ratio, only the axial
frequency is used because only this frequency is inde-
pendent of the initial kinetic energy and spatial spread
of the ions. This independence is responsible for the
high-resolution and mass accuracy of the Orbitrap
[24–26].

Recently, Hu et al. developed a mass-selective
method to manipulate ion populations in the Orbitrap
by applying a resonant dipolar AC signal to the outer
electrodes to excite or de-excite axial motion [31–33].
Excitation to larger amplitude ion axial motion is ob-
served when the waveform is applied in phase with ion
motion, whereas de-excitation to small (or even no)
axial amplitude occurs if the resonant waveform is
applied 180o out of phase with ion motion. The extent of
ion axial excitation or de-excitation depends on the AC
amplitude and on the number of cycles applied. By
choosing the parameters appropriately, it is possible to
mass-selectively eject ions or de-excite ions such that
their signal cannot be observed above baseline noise.
Using a phase enhanced technique, Hu et al. demon-
strated high-resolution (28,000) mass selective ejection
of ions [31]. After de-excitation, the ions continue to
orbit the central electrode at the equator of the Orbitrap
(z � 0). They could then be coherently re-excited by
application of a second AC waveform, allowing their
signal to be observed again. Similar techniques have
been previously used to mass-selectively excite, de-
excite, and eject ions in FT-ICR MS [34, 35].

The ability to manipulate confined ion populations
provides the potential for performing ion activation and
MS/MS inside the Orbitrap as opposed to hybrid
instrument configurations that use external ion traps
(such as the linear ion trap, C-trap, and octapole colli-
sion cell) [1, 3] for CID. Advantages of such an ap-
proach include (1) the possibility of bringing the Orbi-
trap’s high mass accuracy and resolution to bear on
both the precursor and product ions in the same
MS/MS scan, and (2) making available the collision
energy regime of the Orbitrap, �1500 eV, not used in
current types of instruments. These ion motion control
techniques also allow for a wider range of experiments
such as interrogating the dynamics of confined ion
packets.

During the course of previous ion motion control
experiments in this laboratory [31–33], it was observed
that axial de-excitation of an ion population to the
center of the Orbitrap (z � 0), followed by immediate
re-excitation, produced mass spectral peaks that were
narrower, more symmetric, and of equal or greater
height than obtained from a regular mass spectrum
using otherwise identical conditions. To investigate
these effects, the injection optics were tuned to optimize
peak shape and signal magnitude for a given analyte
concentration. Then, by varying the compensator po-
tential, conditions were found that reproducibly pro-
duced broad and multiply split peaks in regular mass
spectra.

In this paper, we demonstrate that de-excitation
of the ion population followed by immediate re-
excitation—a process we term “rephasing”—can be
employed to improve the peak shape and resolution of
ion peaks in the Orbitrap mass analyzer. These perfor-
mance parameters can be improved under both opti-
mized and unoptimized ion injection and field compen-
sator conditions. Although the prototype instrument
[25] used for these experiments has different ion injec-
tion optics and a smaller Orbitrap than the commercial
LTQ-Orbitrap, we believe that these results are of
general interest, as they demonstrate that unoptimized
injection conditions and deleterious space-charge ef-
fects may be compensated by ion motion control re-
gimes in the Orbitrap analyzer [36].

Experimental

Materials

All chemicals were of the highest available purity and
were used without further processing. For the experi-
ments in which peak shapes and resolution were as-
sessed as a function of reserpine (Sigma-Aldrich, St.
Louis, MO) concentration, two sets of solutions were
tested: 0.01 ng/�L to 1000 ng/�L and 0.1 ng/�L to 1000
ng/�L (referred to henceforth as datasets 1 and 2,
respectively). All solutions were made by dissolution in
methanol:water (50:50 vol%:vol%) with 0.1% (vol%)
acetic acid and infused into the mass spectrometer at 5
�L/min using a syringe pump (Harvard Apparatus,
model 22; South Natick, MA).

Orbitrap Mass Spectrometer

In this study, a prototype Orbitrap instrument built by
Thermo Masslab Ltd. (Manchester, U.K.) was used and
is described in detail elsewhere [24, 25]. Briefly, ions
generated by an electrospray ionization (ESI) source
(spray voltage � 3 kV) are drawn into a double-
orthogonal inlet and transported through a radio fre-
quency (rf)-only guide quadrupole (2.5 MHz, 0.1–1
kVp-p, �10�5 mbar). The ions then progress into a
transport quadrupole (920 kHz, �300 Vp-p), which
brings the ions through several stages of pumping into

1398 PERRY ET AL. J Am Soc Mass Spectrom 2009, 20, 1397–1404



a linear quadrupole ion trap (3.45 MHz, 4100–4400 Vp-p)
or “storage quadrupole,” in which the N2 pressure is
�10�3 mbar. A ring electrode around the end of the
storage quadrupole closer to the Orbitrap was set to 750
V to create an axial potential well. Collisions with the
bath gas cause ions to lose kinetic energy and accumu-
late in the well.

Ions are accumulated for 400 ms and then are ener-
gized to 1330 eV by increasing the DC offset potential of
the storage quadrupole. The exit gate is then pulsed
open and the bunched ions are rapidly accelerated
towards the Orbitrap, where the outer electrodes are
maintained at virtual ground. A deflector/compensator
electrode (Figure 1) deflects the extracted ion packet
into the Orbitrap through a small opening in one of the
outer electrodes [24, 26]. The deflector potential is held
at 85 V during injection and is switched to 560 V during
signal detection to minimize electric field perturbations
inside the Orbitrap caused by the ion injection slot.
During ion injection, the potential on the central elec-
trode increases in magnitude, to ensure that the ions are
radially trapped. During mass analysis and ion manip-
ulation, the central electrode voltage is held constant at
approximately �3400 V. Under unoptimized condi-
tions, ions were energized to 1350 eV but, most impor-
tantly, the compensator potential was adjusted to 540 V
to increase the anharmonicity that the ions would
experience in the Orbitrap during mass analysis. All the
other settings were kept the same.

Although the injection optics of this prototype
differs from the commercial LTQ-Orbitrap and are
more susceptible to space-charge effects [1], both
systems produce ion packets with small temporal and
spatial widths (few millimeters), important for high-
performance analysis [26]. In addition, the Orbitrap
analyzer in this prototype is smaller in diameter than
the commercially available instrument, 8 mm inner
electrode and 20 mm outer electrode, versus 12 mm
and 30 mm, respectively [1, 26], although the instru-
ment has comparable performance.

Rephasing

Injecting ions into the Orbitrap at a position offset from
z � 0 gives the ions axial potential energy and ions of
each m/z will begin coherent axial oscillation [26]. In all
the experiments reported here, the monoisotopic peak
of protonated reserpine (m/z 609) was used to assess the
peak shape and resolution before and after rephasing.
To rephase the ions, a resonant dipolar AC signal (447.2
kHz, 3.8 Vp-p,) was applied to the split outer electrode
using an arbitrary waveform generator (model AWG
420; Sony Tektronix, Richardson, TX). The number of
cycles applied was adjusted to obtain the best improve-
ment in performance and found to be in the range of
400–470 cycles. A digital delay generator (model
DG535; Stanford Research Systems, Sunnyvale, CA)
controlled timing and sequence of events in the exper-
iment. The AC signal was applied 80 ms after opening
the exit gate of the storage quadrupole. This delay is to
allow complete radial and angular dephasing of the ion
packet; acquisition of the transient started 40 ms later.
The phase relationship of the AC relative to ion axial
motion was set by adjusting the exact starting time of
the AC waveform, precise to 100 ns, with the digital
delay generator.

Fourier Transform

A sampling frequency of 5000 kHz was used. Transients
of 222 data points were acquired for all experiments.
Transients were fast Fourier transformed using the
MIDAS data analysis program [30] into a mass (or
frequency) spectrum with no apodization and 2 zero
fills. As a check, regular (“passive”) and rephased mass
spectra (1 ng/�L sample, from dataset 1) were pro-
cessed using 1, 2, or 3 zero fills. No significant differ-
ences in peak shape, resolution (Rrephased/Rpassive � 3.4,
3.2, 3.1, respectively), peak area (Arephased/Apassive � 1.3,
1.4, 1.4, respectively), and peak magnitude (Prephased/
Ppassive � 2.7 for all cases) were observed, indicating that
improvements in performance are due to rephasing.
Data files for mass spectra (frequency, m/z and abun-
dance values) were exported from MIDAS into Mi-
crosoft Excel, which was then used to calculate (1) peak
areas by numerical integration, and (2) m/z resolving
power (R) at full width at half maximum (FWHM)
using the relation R � 0.5(f/�f) � m/�m, where �f and
�m represent peak widths (FWHM) in the frequency
and m/z domains, respectively. From this point forward
the term “resolution” refers to the m/z domain.

Results

When the compensator voltage is detuned, the Orbitrap
potential is anharmonic, resulting in broad mass spec-
tral peaks. Traces representing five spectra, each ac-
quired as a single transient, are shown in Figure 2 for 1
ng/�L and 10 ng/�L reserpine solutions. The passive
spectra for the 1 ng/�L sample contain broad, multiply-

Figure 1. Schematic depiction showing the injection optics and
deflector/compensator electrode of the prototype Orbitrap instru-
ment. The dotted trace shows the ion path.
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split peaks, indicating that the ion packet had a large
frequency distribution (�20 Hz at FWHM). This results
in a lowered resolution of Rp � 22,000 (“p”, i.e., no
application of AC waveform). All data in this paper are
averages of at least three experimental determinations.
Confidence limits (95%) are reported in the tables and
also in the text where the authors wish to provide
special emphasis. It is important to note that for all
experiments, passive and rephased spectra were ac-
quired sequentially, and therefore represent two differ-
ent ion populations. After rephasing, Rr � 61,000 (“r”
subscript denotes rephased mass spectrum), a 2.7-fold
increase in resolution. The resolution and the height of

the rephased peaks, Rr, and Pr, are significantly greater
than the corresponding values of Rp, Pp obtained in the
passive spectra. However, peak area, Ap and Ar, ap-
pears roughly conserved under our conditions. Table 1
gathers the numerical results using unoptimized injec-
tion/compensator conditions for reserpine concentra-
tions of 1 ng/�L and 10 ng/�L.

For the 10 ng/�L sample, the peaks are split into
three distinct lobes (Figure 2). Comparing the passive
and rephased spectra for the 10 ng/�L sample in Figure
2, the peak shapes are significantly improved upon
rephasing, with the side lobes disappearing and the ion
distribution becoming more symmetrical about the cen-

Table 1. Peak height, peak area, and resolution for unoptimized ion injection conditionsa

Spectrum

1 ng/�L 10 ng/�L

Passive Rephased Passive Rephased

Pp
b Ap

c Rp
d Pr

b Ar
c Rr

d Pp
b Ap

c Rp
d,e Pr

b Ar
c Rr

d

1 1.21 10.14 22,700 2.35 11.04 64,100 6.96 22.27 62,100 11.16 17.45 169,200
2 1.15 11.24 21,000 1.92 10.83 55,400 5.58 23.84 55,900 10.44 22.30 145,000
3 1.36 11.91 21,000 1.66 10.54 62,800 5.85 23.91 55,900 9.96 18.64 141,700
4 1.01 10.74 24,400 1.93 11.20 67,700 5.06 25.44 40,600 9.48 20.47 164,700
5 1.15 10.94 21,400 1.85 11.80 53,000 5.49 23.20 49,700 9.29 23.97 135,400

Average 1.2 11.0 22,000 1.9 11.1 61,000 5.8 23.7 53,000 10.1 20.6 151,000
95% CIf 0.1 0.7 1,000 0.3 0.5 6,000 0.7 1.2 8,100 0.8 2.6 15,000

Rr/Rp 2.7 � 0.3 2.9 � 0.5
Pr/Pp 1.6 � 0.3 1.7 � 0.3
Ar/Ap 1.01 � 0.07 0.87 � 0.12

aSubscript p denotes passive mass spectrum; subscript r denotes rephased mass spectrum.
bPeak height.
cPeak area.
dMass resolution.
eResolution obtained from fitted Lorentzian taking account of side lobes; see text.
fCI: confidence interval.

Figure 2. Passive (normal, left hand plots) and rephased (de-excited and immediately re-excited,
right hand plots) mass spectra obtained for unoptimized injection and compensator settings for
reserpine concentrations at 1 ng/�L (top plots) and 10 ng/�L (bottom plots). Each trace is a Fourier
transform of a transient obtained from a single scan.
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tral m/z value. For the passive spectra, the width of the
central lobe, considered alone, would yield Rp � 89,000.
However, this would not account for the prominent
side lobes. Therefore, to obtain an accurate estimate for
Rr/Rp for the 10 ng/�L samples, the passive mass
spectral peaks were fitted to a Lorentzian of form
�-f[a(f-fo)

2�(�-f/2)2]�1, where fo is the central frequency,
�f is the FWHM and a is a constant [37]. The fit was
adjusted to match the experimentally measured area for
all three lobes while keeping the magnitude at fo con-
stant. The resulting fit was thus a compromise: wider
than the central lobe but not completely encompassing
the side lobes. Using this method, a value of Rp � 53,000
is measured and Rr/Rp is calculated to be 2.9, consis-
tent with the improvement in resolution obtained for
the 1 ng/�L sample (Table 1).

For the 1 and 10 ng/�L samples, peak area appears
conserved upon rephasing (Ar/Ap � 1.01 and 0.87,
respectively), but peak height (P) shows a small in-
crease of 1.6 and 1.7, (Table 1). Thus, rephasing appears
to produce an ion packet with a narrower frequency
distribution and, presumably, narrower axial distribu-
tion (i.e., higher resolution and magnitude) that is more
symmetric about a central frequency. Additionally, as
peak area is proportional to the number of ions in the
packet as well as their axial amplitude (eq 3), two cases
are possible during rephasing: either (1) few ions are
lost and that their rephased z-amplitudes are roughly
equal to their original z-amplitudes, or (2) ions are lost
but that the rephased z-amplitudes of the remaining
ions are greater than their original z-amplitudes. Previ-
ous ion motion control experiments (albeit under ideal
conditions) [32] and simulations (which did not take
ion-ion interactions into account) [33] suggest that de-
excitation and re-excitation each take the same number
of cycles of AC, indicating that case (1) is more likely.

The ion injection optics can affect the ion packets’
widths and exact locations in the Orbitrap upon injec-

tion and thus can conceivably affect resolution, mass
accuracy and sensitivity. Therefore, analogous experi-
ments were conducted for optimized ion injection/
compensator parameters; the data in Table 2 thus
constitute “comparison” data, acquired at the same
time as those in Table 1. For 1 ng/�L, the resolution in
passive spectra (Rp) was 82,000, whereas Rr was im-
proved to 126,000. The 10 ng/�L sample showed a
similar increase in resolution from 83,000 to 141,000.
Table 2 shows that peak area is approximately con-
served, Ar/Ap � 0.92 for both 1 and 10 ng/�L samples.
Meanwhile, there was a small increase in peak height,
Pr/Pp � 1.2 � 0.2 and 1.4 � 0.2, respectively, for 1 and
10 ng/�L. These results suggest that even with opti-
mized injection parameters, rephasing increases perfor-
mance without any significant loss in ion signal.

Additionally, exact values for tuning of injection lens
potentials also depend upon ion densities in the injected
ion beam. Therefore, additional experiments were car-
ried out to determine the effectiveness of rephasing as a
function of analyte concentration under injection con-
ditions optimized at an intermediate concentration.
Two additional separate datasets, with concentration
ranges of 0.01–1000 ng/�L and 0.1–1000 ng/�L, were
acquired on different days. On each day, injection
parameters were initially (and separately) optimized for
the 10 ng/�L samples. Then, passive and rephased
spectra were recorded for each sample in increasing
order of concentration. Whereas the commercial LTQ-
Orbitrap instrument uses the automatic gain control
(AGC) [38] feature of the first stage linear ion trap mass
analyzer to regulate the number of ions injected into the
Orbitrap, thereby minimizing the dependence of Orbi-
trap performance on ion concentration, the prototype
Orbitrap instrument used here does not have this
capability.

The ratio Rr/Rp, indicating improvement upon
rephasing, rapidly decreases to unity at 10 ng/�L for

Table 2. Peak height, peak area, and resolution for optimized ion injection conditionsa

Spectrum

1 ng/�L 10 ng/�L

Passive Rephased Passive Rephased

Pp
b Ap

c Rp
d Pr

b Ar
c Rr

d Pp
b Ap

c Rp
d Pr

b Ar
c Rr

d

1 5.85 31.13 83,000 6.13 18.91 143,700 15.41 67.44 82,300 22.37 68.32 134,800
2 4.88 23.51 78,700 5.81 24.76 121,800 18.19 88.66 80,700 22.28 61.78 171,100
3 4.19 24.42 75,200 6.44 24.22 138,500 16.26 72.07 87,000 25.11 67.56 123,800
4 5.66 27.57 93,700 6.86 34.44 99,900 16.39 82.14 81,200 25.11 65.56 133,000
5 5.84 29.18 79,100 5.33 23.23 124,300 20.78 66.16 82,700 28.81 84.04 140,400

Average 5.3 27.2 82,000a 6.1 25.1 126,000a 17.4 75.3 83,000a 24.7 69.5 141,000a

95% CIe 0.7 3.2 7,000a 0.6 5.7 17,000a 2.1 9.8 2,000a 2.7 8.5 18,000a

Rr/Rp 1.5 � 0.2 1.7 � 0.2
Pr/Pp 1.2 � 0.2 1.4 � 0.2
Ar/Ap 0.92 � 0.24 0.92 � 0.16

aSubscript p denotes passive mass spectrum; subscript r denotes rephased mass spectrum.
bPeak height.
cPeak area.
dMass resolution.
eCI: confidence interval.
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dataset 1 and 0.05 ng/�L for dataset 2 (Figure 3). For
concentrations at which Rr/Rp � 1, the average Rp is
121,000 � 12,000 (10 ng/�L to 1000 ng/�L) for dataset 1
and 138,000 � 8000 (0.05 ng/�L to 1000 ng/�L) for
dataset 2. The average for Rr is 148,000 � 2000 and
152,000 � 3000, respectively. The greatest improvement
in resolution was observed in dataset 1 for the 0.1
ng/�L and 1 ng/�L samples, increasing from 32,300 �

1000 to 99,000 � 14,000 (Rr/Rp � 3.1 � 0.5) and 48,000 �
3000 to 142,000 � 12,000 (Rr/Rp � 3.0 � 0.3). Rr/Rp for
the 0.01 ng/�L sample (dataset 2) is 2.4 � 0.4, increasing
from 39,000 � 6000 to 92,000 � 1000. For higher
concentrations in dataset 2, the improvement in resolu-
tion was small but possibly significant, with an average
Rr/Rp of 1.23 � 0.10 over this range. In dataset 2, Rr/Rp

has the largest value (2.38 � 0.15) at 0.01 ng/�L (Figure
3). For all other points, the average improvement in
resolution was 1.10 � 0.05. These observations indicate
that the optimized injection parameters used to acquire
dataset 2 (ring and injection lens potentials, optimized
daily) produced ion packets in the Orbitrap that had
narrower frequency and axial distributions over a
wider range of concentrations, compared with the set-
tings used for dataset 1.

The 2- to 3-fold increase in resolution upon rephas-
ing observed for low analyte concentrations suggests
that the ion injection conditions are better for larger
numbers of ions. There is an increase in both peak area
and height for datasets 1 and 2 after rephasing at low
concentration (0.01 and 0.05 ng/�L). The increase in
peak area suggests that ions of a given m/z may have
been excited to larger axial amplitudes.

Rephasing can be understood by invoking simple
arguments regarding the nature of the one-dimensional
axial potential, taking into account anharmonic terms as
well as ion–ion interactions. A nonoptimal compensator
voltage and truncation of the electrodes will introduce
third and fourth order anharmonic terms into the axial
potential. Upon differentiation, these appear as square
and cubic terms in the equation of motion:

z̈ � �2z � 
z2 � �z3 � 0 (4)

Using the method of successive approximations, the
axial frequency of the ion is given by

� � �0 �� 3�

8�0

�
5
2

12�0
3�(�z)2 (5)

where �o � (kq/m)1/2 is the natural (harmonic) fre-
quency of the ion and �z is the axial amplitude of the
ion [39]. Similar relationships have been described for
Paul [40] and FT-ICR [41] traps.

Equation 5 illustrates that in an anharmonic poten-
tial, the frequency of an ion depends on its amplitude
(�z, which is determined by the initial position upon
injection) and the magnitude of anharmonicity (
 and
�). So, when the compensator electrode value is not
optimal, the greater anharmonicity produces spectra
with a broader frequency distribution, �f � 20 Hz
(FWHM), yielding Rp of 22,000 (Table 1 and Figure 2),
compared with spectra acquired under optimum con-
ditions, �f � 3 Hz (FWHM), Rp of 82,000 (Table 2) when
the magnitude of 
 is small.

When an AC de-excitation waveform is applied to
the outer electrodes, the axial amplitude and axial
kinetic energy of the ions are decreased until the ion

Figure 3. Plots showing changes in resolution (Rr/Rp), peak area
(Ar/Ap), and peak magnitude (Pr/Pp) upon rephasing as a function
of solution concentration for datasets 1 and 2. Experimental
conditions optimized at 10 ng/�L
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packet’s axial motion is stopped (or nearly so) and the
ions confined to the equatorial plane (z � 0) of the
Orbitrap. Since the bandwidth of the AC is large (�2000
Hz) compared to the frequency distribution of the ions,
all ions in the packet suffer de-excitation. After de-
excitation to z � 0, further application of the AC
coherently re-excites the ions to a new amplitude. In
our experiment, the end effect is to produce a re-
excited ion packet that has a smaller axial width and
narrower frequency distribution (i.e., higher packet
coherency) compared with the packet’s initial distri-
bution that was formed during injection. During the
time that the ions are compressed into a smaller axial
extent, increased space charge interactions cause their
velocities (and hence axial frequencies and kinetic
energies) to average or “thermalize,” thereby reduc-
ing the width of the frequency distribution. This
phenomenon is well-known; similar space charge-
induced frequency shifts and indeed, coalescence of
closely neighboring peaks, have been observed in FT-
ICR [42, 43] and QIT [44, 45] MS.

Rephasing may also be of considerable utility, as it
offers the possibility that Orbitrap performance need
not depend as strongly or as critically upon the exact
details of ion injection into the Orbitrap. Future work
will include ion optical modeling to gain additional
insight into details of the rephasing mechanism.
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