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In this pilot study, we apply satellite image analysis to archaeological site prospection in Alaska's Brooks Range.

Our goal was to test whether satellite remote sensing, which has been successful in locating large archaeological

features associated with sedentary peoples, could be applied to arctic interior sites associated with mobile

hunter–gatherers. In particular, we strove to develop a relatively straightforward and inexpensive model using

existing data which could be used to help guide archaeology surveys. Using 1-m resolution IKONOS imagery of

Lake Matcharak along the upper Noatak River, we produced a Normalized Difference Vegetation Index (NDVI)

and tasseled cap transformation of the study area and stacked these five vegetation indices into one image.

We then applied unsupervised and supervised classifications to the image first, to test for the presence of a

site-specific spectral class and second, determine the nature of that class. Through a visual analysis of the

unsupervised classification, a spectral phenomenon was seen to co-occur with archaeological sites in the study

area. The supervised classification provided a high-resolution land cover map used to identify the signature as

the ecotone between un-vegetated sediments and dense willow (Salix sp.) stands. Dense willow stands along

the Lake Matcharak shore visually correlate with most of the known archaeological sites, possibly reflecting

landform and/or vegetation characteristics thatwould have appealed to past inhabitants. Themethods described

here could contribute to building better survey strategies and archaeological predictive models for elsewhere in

the Brooks Range and Alaska.

Published by Elsevier Ltd.

1. Introduction

In terms of logistics, effort, time, and money, archaeological surveys

are often costly (Giardino and Haley, 2006). Alaska is an expansive

region where research areas are often extremely difficult to access and

opportunities to collect data are limited. Land managers thus expend

precious and dwindling resources for costly surveys that result in very

little representative sampling. One avenue for addressing this issue is

to develop survey strategies to focus on archaeologically productive

areas, and satellite image analysis is a relatively low cost method with

great potential to contribute to these needs.

Archaeologists have been using satellite technology over at least

the last three decades to study past cultural landscapes. During this

time, spatial and spectral resolutions improved, imagery became

cheaper and more accessible, and analysis software packages

became more powerful and user-friendly. In turn, multispectral

variables that are undetectable by conventional field survey or aerial

photos became more readily available, allowing new possibilities for

site identification and predictive modeling (Lasaponara and Masini,

2011, 2012c; Parcak, 2009).

Very high (spatial) resolution (VHR) satellite imagery has been

used successfully within the last 10 years to detect and analyze large

anthropogenic landforms and structures. Beck et al. (2007) compared

the ability to detect archaeological features in the Homs Region of Syria

using Corona and IKONOS imagery. The authors relied on visual inter-

pretation and some digital enhancement to contrast between natural

and archaeological patterns. They found that an anthropogenic signature

depends on environmental contexts and seasons, and that the two im-

agery types were best used together. Lasaponara and Masini (2007)

and Masini and Lasaponara (2007) used Quickbird imagery to detect

the outlines of buried medieval structures in southern Italy. The authors

determined that feature detection depended on overlying soil and

vegetation conditions, and required different spectral analysis methods

to reveal features. De Laet et al. (2007) compared GIS, pixel-based, and

object-based methods applied to IKONOS imagery for identifying Late

Iron Age stronghold ruins in southwest Turkey. All methods successfully

detected features, but the authors were unable to identify a unique

shape or spectral class to characterize archaeological features. Visual in-

terpretation proved to be most useful for detecting sites, but a spectral
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analysis could have been better if the archaeological remains were com-

posed of materials different from the local landscape. Saturno et al.

(2007) used VHR imagery to identify contemporary vegetation signa-

tures linked to archaeological remains in Guatemala. Spectral signatures

indicated vegetative stress related to decomposing Mayan lime plaster.

Alexakis et al. (2009) applied several digital processing techniques to

IKONOS and other satellite data to detect Neolithic settlement mounds

in Greece. The authors found that the medium and high spatial and

spectral resolution sensors were reliable to visually or spectrally detect

these cultural features. Alexakis et al. (2011) expanded on this work by

incorporating vector-based variables with imagery data to predict

mound locations. Trier et al. (2009) experimented with methods for

identifying ring-like crop marks related to Norwegian burial mound

remains using Quickbird imagery. Oltean and Abell (2012) used a

vegetation index to detect large buried features in Romania with

multispectral Quickbird imagery. Recently, De Laet et al. (2015) apply

imagery enhancement techniques to Quickbird imagery to distinguish

road systems in Middle Egypt associated with limestone quarries by

their period of use.

In addition to expansive and durable features, satellite image analy-

ses have also been successfully applied toward small-size archaeological

sites and features. For example, Buck et al. (2003) evaluated the poten-

tial for satellite remote sensing to identify obsidian and pottery surface

artifact concentrations in arid areas of California and New Mexico. The

authors found that the thermal-infrared properties of concentrated

surface artifact scatters could be directly detected in contrast to local

ground cover. Grøn et al. (2011) investigated cooking pit, road, house,

and mound features in Norway using Quickbird imagery. The authors

determined that spectral analysis could distinguish geochemical anom-

alies in the vegetative canopy, proxy indicators for the underlying

archaeological features. After using Landsat imagery to identify gossans

(iron caps) associated with mining in Yemen, Deroin et al. (2011)

used Quickbird imagery to identify individual archaeological mining

features. Luo et al. (2014) incorporated Worldview-2, Google Earth,

and Ziyuan-3 imagery into a predictive model to identify high

probability areas to survey for lost courier stations along the Han

Great Wall in China.

Despite the reported success of satellite imagery to identify large

cultural features associated with complex societies, published accounts

of its application to small-size features, especially those associated with

mobile groups, are rare in the literature. Additionally, there are few

reports of satellite imagery analyses applied to American archaeology,

particularly in Alaska. This paper attempts to address these gaps by in-

vestigating satellite imagery's potential for locating prehistoric Alaskan

archaeological sites, specifically those associated with mobile hunter–

gatherers in the Brooks Range. As most sites in this region are limited

to small and often buried lithic scatters, we recognized the limitations

for satellite imagery to detect individual features and artifacts directly;

however, there was promise for identifying seasonal activity areas

based on site-specific conditions in the current landscape. Modern

land cover may provide proxy indicators for landscape conditions that

appealed to past human occupants (Warren, 1990; Whitley, 2006)

and/or soil chemistry that has been influenced by the underlying cultur-

al materials (Brophy and Cowley, 2005; Giardino and Haley, 2006;

Lasaponara and Masini, 2012a,c; Maxwell and St. Joseph, 1983; Parcak,

2009; Wilson, 1975).

We hypothesized that a spectral class would visually correlate with

known archaeological sites in the study area given high-enough resolu-

tion imagery. The National Park Service (NPS) Alaska Region possesses

large quantities of 1m,multispectral IKONOS data for parks throughout

Alaska, making it ideal for being not only free but also compatible with

methods applied elsewhere in Alaska.

We first generated and stacked five land cover indices used to

produce an unsupervised classification of the study area. From this,

we recognized a spectral class visually associated with known sites

situated near the lake shore. We then collected field data and generated

a high-spatial-resolution land cover map of the study area using a su-

pervised classification. The supervised classificationwas used to identify

the spectral phenomenon as a characteristic of willow (Salix sp.), most

notably in dense stands above the well-drained, south-facing lake ter-

races. This association with willow could be the result of the continued

presence of an important resource for fuel and raw materials or a

vegetation type favoring topographic characteristics that also appealed

to prehistoric inhabitants. The findings in this pilot study suggest that

unsupervised and supervised classification techniques, when applied

to VHR imagery, can be used to detect spectral characteristics ofmodern

land cover that relate to prehistoric hunter–gatherers. These methods

and findings can be useful for future predictive models and developing

survey strategies that target high-probability areas for unknown sites,

which is particularly useful for areas that are difficult and costly

to access.

2. Material and methods

2.1. Study area

Lake Matcharak is located 350 km north of the Arctic Circle within

Gates of the Arctic National Park in Alaska's Brooks Range (Fig. 1).

The Brooks Range is the northern extent of the Rocky Mountains

and forms a 180–200 km wide arc across northern Alaska from

Canada to the Chukchi Sea. Glacial erosion in the uplifted sedimentary

andmetamorphic landscape left valley floor elevations at approximate-

ly 500 m and peaks ranging from 800 to 2400 m. Climate in the Brooks

Range varies from arctic in the north to subarctic in the south and from

continental in the east and central areas to maritime in the west.

Anaktuvuk Pass, the nearest town with the most comparable setting

to Lake Matcharak, receives approximately 28 cm of precipitation and

160 cm of snowfall annually. Average Anaktuvuk Pass winter lows and

highs are −30 °C and −22 °C and summer lows and highs are 3 °C

and 16 °C, respectively. Vegetation cover in the Brooks Range is sparse

and limited to valleys and low hill slopes due to highly-erodible slopes,

shallow soils, high winds, and harsh climate. The northern and western

regions of the Brooks Range support a tundra biome with continuous

shallow permafrost, poor drainage, and sparse vegetation while

boreal forest populates valleys in the south-central and southeastern

regions. Dwarf scrub communities dominate drier tundra regions

with ericaceous species, mountain-avens, willow, and sometimes

herbaceous species and fruticose lichens. Wetter areas contain

mesic graminoid herbaceous communities but are dominated by

sedges, willows, and sometimes mosses (Gallant et al., 1995).

Situated along the east margin of the Noatak River in a glacially

carved valley, Lake Matcharak is approximately 200 km downstream

of the river's headwaters at 67°45′00″N, 156°12′50″W. The northwest–

southeast trending kettle lake is flanked by approximately 10 m-high

terraces along its east and west shorelines. Lake Matcharak is part of

a glaciolacustrine landscape where a larger moraine-dammed lake

formed during Late Pleistocene glacial retreat. After the Noatak River

breached the moraine dam, the basin drained, and subsequent fluvial

erosion resulted in the modern terraced landscape (Hamilton, 2009).

The study area encompasses the land surfacewithin 1000mof the lake's

shoreline (Fig. 2); it is dominated by sedge-dryas meadows and low

willow, birch (Betula sp.), heather, and tussock shrub lands (AK I&M

Inventory Program, 2009). Caribou have been periodically sighted

around the lake in the summer and are known to pass through the

Brooks Range in greater numbers during the spring migrations north

and again in the fall as theymove south.Migratory water fowl including

swans, loons, and ducks have also been sighted in and around Lake

Matcharak in the summer. Pike and lake trout have been sighted

swimming along the shallows of the lake, and grayling and burbot

have been identified in a local archaeological context (Tremayne,

2011). Located 275 km west of the nearest road system and within

national parkland, access to Lake Matcharak is limited to float plane,
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non-motorized water craft, dogsled, and foot, making travel difficult

and very expensive. Although federal lands, especially national

wilderness areas, have more restrictive vehicle policies, most of Alaska

is similarly difficult to access.

2.2. Previous archaeological research in the area

We selected Lake Matcharak for this study due to its well-

documented archaeological sites and the opportunity to collect field

data for this project in the summer of 2011 (additional work during

a planned excavation). Seventeen known archaeological sites are

located near the shoreline (Fig. 2), primarily along terraces dominated

by dense shrub willow. Subsurface tests uncovered flaked stone arti-

facts and well-preserved faunal remains. Currently, 38 radiocarbon

dates from 8 sites reflect human occupations at Lake Matcharak as

far back as ~7000 calibrated years ago. Due to the nearly continuous

vegetation surrounding the lake, all sites were discovered through

subsurface testing or terrace erosion. Cultural materials have been

found approximately 15–100 cmbelow the ground surface,most frozen

in permafrost.

Subsurface testing at two sites has expanded into block excavations

with a wealth of information on past human land use in the area. The

Matcharak Lake site (AMR-186) is located on a terrace in the northwest

corner of the lake. Excavations in 2008 and 2009 revealed an abundance

of well-preserved faunal remains, stone tools, and debitage along with

several worked bone and antler artifacts and a potential tent ring

distributed over at least 450 m2. The stone tools and radiocarbon

dates span from 4010 ± 40 to 3430 ± 40 14C BP and are indicative

of the Denbigh Flint Complex of the Arctic Small Tool tradition

(Giddings, 1951, 1964; Irving, 1964; Slaughter, 2005; Tremayne, 2011,

2015). The faunal assemblage at the Matcharak Lake site is dominated

by caribou but also includes a range of large and small mammals, fish,

and birds. Seasonal availability of some of these species and the absence

of semi-subterranean (winter) dwellings suggest a spring through the

fall occupation (Tremayne, 2011). The stone tool assemblage suggests

Fig. 1. Location of Lake Matcharak in Alaska's Central Brooks Range.

Fig. 2. Color infrared IKONOS image of Lake Matcharak. The line represents the 1000 m

buffer that defined the study area. The yellow dots represent known site locations,

most notably AMR-186 and AMR-196 which are discussed below. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version

of this article.)
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a tool kit designed to maximize utility and transportability while

minimizing production time, features suggestive of high-residentially-

mobile people (Tremayne, 2015).

The Matcharak Peninsula site (AMR-196) is located above an

eroding terrace on the peninsula in the lake's southeast corner.

Excavations in 2010, 2011, 2013, and 2014 uncovered well-preserved

and abundant faunal remains and lithics distributed over at least

1000 m2. A detailed analysis of both fauna and lithics from the

Matcharak Peninsula site is currently in progress, but preliminary

findings suggest that the faunal assemblage is dominated by caribou

and/or Dall's sheep but also contains small mammals, fish, and birds.

Although dates from two charcoal and one bone sample suggest a

late prehistoric component at the Matcharak Peninsula site, the

majority of dates from 16 bone specimens span from 6190 ± 35 to

3800 ± 30 14C BP. These earlier dates, along with the presence of

side-notched point bases and microblade technology, are characteristic

of the Northern Archaic tradition (Anderson, 1988; Clark, 1992; Esdale,

2008; Workman, 1978).

2.3. Data

The project goal was to test if we could identify small-sized,

short-term hunter–gatherer sites that are typically found in the

Brooks Range based on modern land cover. This required multispectral

imagery with spatial resolution that could adequately distinguish fine-

grained variations in land cover; IKONOS imagerymet this requirement.

While other VHR imagery might offer better spectral or spatial resolu-

tion, Alaska's National Park Service (NPS) regional office possesses

large quantities (on the magnitude of tens of millions of acres) of

IKONOS imagery for many of the Alaska national parks. In addition to

being free of cost to us, if results were useful, the methods used in this

pilot study could also be expanded to the larger geographic extent of

imagery possessed by the NPS.

Geoeye's IKONOS-2 imagery records data in four multispectral

bands: blue, green, red, and near-infrared. A panchromatic band was

used to “pan sharpen” the 4 m resolution multispectral bands, resulting

in a four-bandmultispectral imagewith a 1m spatial resolution (Jensen,

2005, 2007; Lillesand et al., 2008). The IKONOS satellite acquired the

cloud-free image on September 6, 2008 andwas received by the authors

pan sharpened and georeferenced to an accuracy of ±10 m (Digital

Globe, 2015).

Unlike many state offices of historic preservation, the Alaska Office

of History and Archaeology defines a site as any number of artifacts

separated by less than 50 m. Therefore, the discovery of a single lithic

flake constitutes a site and dispersion of more than 50 m delineates

individual sites. The NPS administrative office in Fairbanks, AK provided

a GIS file of all the known sites within the study area, which was

generated from GPS waypoints (accurate to ±10 m) collected during

NPS surveys between 2007 and 2011. Each point reflects the location

of either a site datum or a single positive shovel test.

Following the unsupervised classification, we collected ground-

reference data to classify the study area land cover in July 2011.

Due to the limited time allotted for this project during regular NPS

fieldwork, we decided that GPS waypoints and photographs would

be the most efficient way to quickly collect land cover data. We

collected photos and waypoints from 61 locations using a 12.1

megapixel camera and a Garmin GPS (accurate to ±10 m). The

camera provided adequate resolution to identify general vegetation

communities out to approximately 50 m. We sampled by roughly

circling the lake, recording a GPS waypoint at approximately every

250 m, photographing the immediate location and outwards in at

least the four cardinal directions; we also logged each exposure's

location and direction. We later converted the waypoints to a

shapefile used to spatially reference homogenous vegetation

communities in the photos to the IKONOS image.

2.4. Analysis

Our primary goal was to test whether or not a method for extracting

spectral signatures generated from multispectral imagery would

visually correlate with known archaeological sites in the study area.

If successful, this method could be incorporated into future models

to predict high-probability locations for unknown sites.

Working under the hypothesis that archaeological sites would be

associated with land cover characteristics that are spectrally distinct

from adjacent areas, we derived the spectral-based variables from the

Normalized Difference Vegetation Index (NDVI) and tasseled cap trans-

formation from the original imagery. These data allowed us to look for

variability in the vegetation cover patterns related to spectral character-

istics that otherwisemight not be visible in the original 4 IKONOSbands.

The NDVI output indicates the vigor of vegetation biomass by compar-

ing the reflection of red (absorbed by chlorophyll) and near infrared

(reflected from leaf cell structure) energy while helping to compensate

for changes in illumination, surface slope, and aspect (Jensen, 2005,

2007; Lasaponara and Masini, 2012a; Lillesand et al., 2008). Variations

in vegetation can reflect archaeological features affecting the overlying

vegetation (Lasaponara and Masini, 2012a; Parcak, 2009). The

tasseled cap transformation calculates the four geosynchronous

pixel values resulting in four new bands typically denoting brightness

(often variation in soil reflectance), greenness (amount of green

vegetation), wetness (moisture), and an unspecified other band for

which meaning varies depending on the actual land cover (Horne,

2003; Jensen, 2005, 2007; Lasaponara and Masini, 2012a; Lillesand

et al., 2008).

We first extracted the study area from the original image using a

1000-m buffer around the lakeshore and then calculated the NDVI and

tasseled cap transformation using ERDAS Imagine 2011 software. We

stretched all outputs to an unsigned 8-bit format, a scale that would

allow the pixel values to be statistically comparable over a uniform

range of 256 possible values. The resulting layers were stacked (Fig. 3)

to form a single five-band image composed of the NDVI and the

four tasseled caps bands. The stacked image represented five

variables associated with each pixel to identify spectral anomalies

better (Jensen, 2007).

2.4.1. Unsupervised classification

Before collecting field data, we first attempted to identify a spectral

class associated with archaeological sites in the study area and, second,

determine the nature of such a signature. We therefore began with an

unsupervised classification of the stacked dataset. An unsupervised

classification groups statistically similar spectral signatures in a stacked

image without a priori knowledge of the ground cover (Jensen, 2005;

Lasaponara and Masini, 2012b; Lillesand et al., 2008; Parcak, 2009).

Using ERDAS Imagine, we applied the Iterative Self-Organizing

Data Analysis Technique (ISODATA) which groups pixels into a

user-specified number of clusters (classes) based on the statistical

similarities throughout the stacked image's multidimensional space

(Jensen, 2005; Lasaponara and Masini, 2012b; Lillesand et al.,

2008). ISODATA requires a user-defined convergence threshold and

number of iterations, which were left at the software defaults of

0.95 and 10, respectively.

The purpose of the unsupervised classification was to assess

whether a spectral signature visibly co-occurred within the known

archaeological contexts, but this qualitative approach required

some decision rules. First, we recognized that the known sites almost

certainly do not represent the entire archaeological record in the

study area given limited subsurface sampling. We therefore had to

assume that an archaeologically-exclusive signature would likely

occur beyond the known site areas and within the contexts of

unknown sites. We addressed this by looking for a pattern hypothe-

sizing that a cultural class will occur (1) repeatedly with the known

sites and neither (2) in an obviously improbable location for locating
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sites (e.g. under water or in the high-energy context of gravel bars)

nor (3) evenly distributed across the landscape.

Second, while large, buried features (e.g. stone walls and structures,

agricultural fields, road systems, etc.) can significantly alter soil

chemistry and the resulting land cover in a patterned, identifiable

way (Brophy and Cowley, 2005; Giardino and Haley, 2006;

Lasaponara and Masini, 2012c; Maxwell and St. Joseph, 1983;

Parcak, 2009; Wilson, 1975), such features would not be expected

among mobile Brooks Range hunter–gatherers. However, we expected

that a cultural signature could result from two, not-necessarilymutually

exclusive, reasons: anthropogenic alteration of the pedology through

site activities (e.g. fire, compaction) or local landscape-related condi-

tions that would have appealed to past occupants. If cultural activities

such as long-term or reused inhabitation or intensive or repeatedly-

used animal processing altered the soil chemistry significantly, we hy-

pothesized that a signature of varying size and shape should fall within

the immediate site areas. If local landscape characteristics such as land-

form, past vegetation, slope, aspect, prevailing winds, soil drainage, etc.

influenced human use of the sites, we hypothesized that these would

affect modern vegetation patterns associated with the site landforms,

although not necessarily in the immediate area in which cultural

materials were found.

To identify a cultural signature, we produced a series of unsuper-

vised classifications with an increasing number of statistically-derived

classes, and visually interpreted each class in each image using the

decisions rules described above. We generated 10-, 20-, 30-, and

40-class images and found that one spectral class appeared to meet

the expectations for cultural association. The signature was most

prominent in the 20-class image (Fig. 4) where it generally follows

the south-sloping lake shorelines where all the known sites have been

discovered and the vegetation/gravel bar ecotones along the Noatak

River. No class appeared to correspond directly with the immediate

site areas, suggesting that the spectral signature reflects characteristics

of the landscape that would have influenced human use rather than

anthropogenic variations in pedology.

2.4.2. Supervised classification

Having identified an apparent site-related signature, the next

stepwas to identify the nature of that signature and determinewhether

it represented a particular vegetation pattern indicative of Lake

Matcharak's archaeological sites. We field sampled land cover data

using the field methods described above. During this process, we

also dug 30 cm shovel tests in several areas with the spectral signature,

one of which (AMR-214) tested positive with a chert flake and bone

(Figs. 4 and 5a). We used the land cover data to generate a supervised

classification to characterize the study area land cover, including

individual flora species where possible. Unlike an unsupervised clas-

sification that generates statistically-based classes, a supervised

classification employs user-defined, representative training areas

from knowledge of homogenous land cover. The image analysis

software extracts the spectral statistics for each training site, searches

for statistical similarities across the image, and then classifies unknown

areas according to the statistically closest training site data (Jensen,

2005; Lasaponara and Masini, 2012b; Lillesand et al., 2008; Parcak,

2009). The supervised classification also allowed us to estimate

classification accuracy quantitatively, which is not possible with an

unsupervised classification.

We used the USGS land use/land cover classification system

(Anderson et al., 1976) as a classification template, as it provides

level II, general land cover categories for tundra environments - namely

shrub, herbaceous, bare, wet, and mixed tundra. We modified the

scheme according to uniform vegetation areas that could be identified

in the field photos, from which seven classes could be gleaned: birch,

Fig. 3.Model of stacked index layers used in the study.

Fig. 4. Unsupervised cultural class (highlighted in red) overlaying the supervised

classification (dark blue: deepwater; light blue: shallowwater; tan: exposed sediments;

yellow: willow; dark green: birch; light green: herbaceous tundra). Black crosshairs

represent known archaeological sites and black Xs represent all negative shovel tests at

the lake. Insets are detailed in Fig. 5. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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willow, herbaceous tundra, bare ground, deep water, shallow water,

and shadow. Due to insufficient samples of areas dominated by individ-

ual grass, forb, sedge, moss, or lichen species, these had to be grouped

into the collective herbaceous tundra class as defined by Anderson

et al. (1976). Low angle, southerly sunlight cast dark shadows on

north-facing slopes in the image and prevented the vegetation canopy

in these areas from being identified; a shadow class represented those

unidentifiable areas.

When developing the training dataset, shallow and deep water,

shadow, and bare ground were easily identified from the IKONOS

image. We identified areas of uniform ground cover from field photos,

classing them as birch, willow, or herbaceous tundra. We digitized a

minimum of 10 training sites for each of the seven classes over the

IKONOS image using the field photos and respective GPS points. We

extracted spectral data histograms through ERDAS for all five bands

from each class to determine the normality of the training data.

Distributions tended to be fairly normal, but some bands inconsistently

exhibited bimodality. As the maximum likelihood classifier requires

normally-distributed data to place each pixel into an available class

according to probability, we instead ran the supervised classification

tool using the parallelpiped classifier as the primary classification rule.

The parallelpiped algorithm uses n-bands (in this case five) to produce

an n-dimensional mean vector from the training data. Each pixel is

categorized by the distribution range of each class, and pixels falling

outside of all distributions orwithin overlapping distributions are either

classified using another decision rule or left unclassified (Jensen, 2005;

Lillesand et al., 2008).We felt it appropriate to use themaximum likeli-

hood classifier as the secondary decision rule given the near-normality

of the data.

We then produced a confusion matrix to assess accuracy and errors

in the supervised classification quantitatively. We used the same

methods for developing the training data to digitize 50 control points

for each class in homogenous land cover areas that were not used

for the classification. The accuracy assessment results are shown in

Table 1, where the columns represent the ground reference point data

and the rows represent the classification results from the supervised

classification (Congalton and Green, 2009). The bold and regular values

in Table 1 indicate correctly and incorrectly classed points, respectively.

From these datawewere able to calculate the producer's (columns) and

user's (rows) accuracies and Kappa statistics shown on the table. The

producer's accuracy reflects how accurately the reference areas were

classified, whereas the user's accuracy reflects how accurately the

classes represent the reference areas (Congalton and Green, 2009;

Lillesand et al., 2008). The Kappa statistics measure the accuracy

between the classification map and reference data by comparing the

difference between the actual and chance agreements between the

reference data and the classifier (Jensen, 2005; Lillesand et al., 2008).

The results in Table 1 show some minor issues when classifying

willow and herbaceous tundra. The willow user's accuracy suggests an

87% probability that these pixels actually represent willow (3 bare and

2 birch training areas were classified as willow), but the producer's

accuracy suggests a 66% probability of pixels being correctly classified

by the reference data. Of the 50 willow reference points, 13 associated

pixels were classified as herbaceous tundra, resulting in the lowest

(79%) user's probability that pixels classified as herbaceous tundra

actually represent this vegetation type. The lower accuracy may reflect

errors in defining the willow training sites, either by including some

herbaceous tundra in the training sites or lumping different species of

Salix (with different spectral characteristics) into one training class.

Despite these errors, the classifications are generally accurate with

an overall accuracy of 93.1% (Kappa = 92.0%), reflecting a high-

resolution vegetation map that can be compared to the known sites

and address the nature of the unsupervised cultural class.

3. Results

We overlaid the known sites, 20-class unsupervised classification,

and supervised classification to compare the cultural signature and

known sites with the supervised classes visually. Rather than changes

in soil chemistry related to human use of the sites, the unsupervised

classification suggested that modern land cover reflects a landscape

characteristic that would have appealed to past inhabitants. In order

to determine what this class represented, we compared the supervised

classification to the unsupervised spectral class (Figs. 4 and 5). The class

occurs predominately in three different environments: along the south-

sloping Lake Matcharak shorelines (Fig. 5a), along the Noatak River

gravel bars (Fig. 5b), and in the area of the small pond 250m southeast

of the lake's southeast corner (Fig. 5c). Upon closer inspection, the lake

shore portion of the class falls along the ecotone between dense willow

stands and the un-vegetated shoreline. Willow also defines the border

between the un-vegetated Noatak River bank and contiguous vegetated

land cover in the supervised image. As is the case with the lake shore

portion of the class, the Noatak portion also falls along this ecotone.

A willow and bare ground ecotone can be seen again at the small dry

pond to the lake's southeast corner. Again, the unsupervised spectral

class falls along this border. The visual analysis between the unsuper-

vised and supervised images therefore suggests that the unsupervised

spectral class reflects where willow transitions to exposed sediments.

This corresponds to field knowledge of the area.

The known archaeological sites in the study area are primarily con-

centrated along terraces in the northwest (Fig. 6a) and southeast

(Fig. 6b) regions of the lake. According to the supervised classification,

the sites also coincide with some of the densest concentrations of

willow in the study area, and especially within 250 m of the lake

shore. Ethnographically, willow was a critical resource in the Brooks

Range (Gubser, 1965; Ingstad, 1954) which could have made these

areas particularly attractive to prehistoric people if the vegetation

Fig. 5. Representative detail images of the unsupervised class along the willow/exposed

sediment ecotone: lake shoreline (a), river bank (b), and the small pond (c). See Fig. 4

for reference, scale, and key.
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communities were similar. These areas also provide excellent views

overlooking the lake and Noatak River valley and are well-drained

unlike the water-logged lake outlet to the north and inlet to the south.

The south-facing aspects also receive more direct sunlight than

north-facing slopes. While factors such as soil drainage or aspect could

have influenced past occupants' decisions for selecting these locations

over others, these factors also affectwhere plant species are established.

If vegetation in the study area differed significantly in the mid-

Holocene, willow might act as a proxy for desirable site conditions.

This would also explain the cultural significance of the unsupervised

class that reflects a willow/un-vegetated ecotone. We would not

expect this characteristic alone to appeal to past occupants, and

instead it likely reflects characteristics of the vegetation and/or

landforms that were more desirable.

Dense willow stands are found elsewhere in the supervised image,

most notably along the outlet stream flowing north from the lake,

surrounding the dry pond to the southeast, along the Noatak River,

and above other south-facing hills and terraces, but one would not

expect to find sites in all of these locations. The lake outlet is a marshy,

waterlogged setting that would make prolonged occupation inhospita-

ble and subsurface testing extremely difficult and costly. Subsurface

tests around the small pond failed to recover any cultural material.

This is not surprising however, as either of the larger nearby lakes

would offer better access to fish and fresh water. Located on flat, dry

ground and along a major travel corridor with several important

resources readily available, the willow-lined gravel bars along the

Noatak River banks would make ideal camp locations; however, these

high-energy settings tend to be archaeologically unproductive due to

seasonal flow increases and erosion. While these might not be ideal

places to locate evidence of past occupation, further testing could be

more productive along thewillow dominated terraces to the southwest

and south-facing hills in the northeast corners of the lake.

4. Discussion

4.1. Willows and past occupation

The findings suggest that dense willow stands could be a useful

proxy for discovering buried hunter–gatherer sites in the Brooks

Range. It is important to recognize that this relationship should

relate to site function and therefore be indicative of certain site

types rather than archaeology in general. Deliberate decisions about

landform drainage, slope, local resources, and exposure to direct

sunlight or prevailing winds would be important in selecting long-

term or regularly re-used contexts such as camps or faunal process-

ing areas. Faunal analysis from the Lake Matcharak Site assemblage

indicates a long-term presence during the spring, summer, and fall,

possibly exploiting the seasonal migrations of caribou andwaterfowl

(Tremayne, 2011). Artifacts recovered from theMatcharak Peninsula

Site are currently awaiting analysis, yet the presence of multiple taxa

from several individuals alongside preliminary evidence of retooling

and marrow and bone grease extraction suggest more than an

ephemeral, chance occupation of the site. This site represents a

place where several distinct and labor-intensive practices co-occurred,

possibly within a camp.

If the regional vegetation patterns have remained constant since the

mid-Holocene (Anderson and Brubaker, 1994; Anderson et al., 1994;

Brubaker et al., 1983; Edwards and Barker, 1994), modern willow-

dominated areas would have been ideal camp locations in the past.

Table 1

Accuracy assessment results. SH = shadow, BA = bare ground, BI = birch shrub, WI = willow shrub, HE = herbaceous tundra, DW = deep water, SW = shallow water. Correctly

classified control points are in bold. Overall Accuracy = 93.1% (Kappa = 92.0%).

Reference data Row total User's accuracy

SH BA BI WI HE DW SW

Classified data SH 50 0 0 0 0 0 0 50 100%

BA 0 47 0 0 0 0 0 47 100%

BI 0 0 48 4 0 0 0 52 92%

WI 0 3 2 33 0 0 0 38 87%

HE 0 0 0 13 50 0 0 63 79%

DW 0 0 0 0 0 50 2 52 96%

SW 0 0 0 0 0 0 48 48 100%

Column total 50 50 50 50 50 50 50 350

Producer's accuracy 100% 94% 96% 66% 100% 100% 96%

Kappa statistics 100% 100% 91% 85% 76% 96% 100%

Fig. 6. Detail images of known archaeological sites (black crosshairs) and dense willow

stands at Lake Matcharak. Willow has been highlighted red with deep water as dark

blue, shallow water as light blue, exposed sediments as tan, birch as dark green,

and herbaceous tundra as light green. Black Xs represent negative shovel tests.

(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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Willow was used by Athabascan and Inupiaq people in the region

for many purposes including fuel, smoking meat and fish, and the

construction of tents, tools, weapons, watercraft, containers, cordage,

and other everyday objects (Gubser, 1965; Ingstad, 1954; McKennan,

1965; Nelson, 1986; Vanstone, 1974; West, 1963). However, local

vegetation communities around Lake Matcharak may have changed

since the mid Holocene as suggested in other tundra ecosystems

(Myers-Smith et al., 2011; Sturm et al., 2001; Tape et al., 2006). In this

case, modern willow growth might be attributed to other factors

that made these places attractive to prehistoric human inhabitants

(Warren, 1990; Whitley, 2006). Willows are generally associated with

moist habitats in northern latitudes (Brayshaw, 2006). There are many

species of Salix in northern Alaska, and these occur in many different

ecosystems including marshes, floodplains, sand dunes, talus slopes,

tundra, and alpine settings. However, a common attribute of willow is

that it rapidly colonizes and thrives in unstable environments, including

those disturbed by rivers, fire, frost, and humans (Argus, 1973). Further

investigations should address the reasons for the connection between

prehistoric sites and modern willow-dominated areas.

4.2. Implications for future surveys

These implications aremost relevant for situationswhen site discov-

ery, rather than a more complete areal sampling, is of the essence. It is

expensive, arduous, and time consuming to develop cultural resource

inventories for vast and remote Arctic areas. In light of shrinking

budgets, archaeologists are limited in the ground that they can thor-

oughly cover in the limited timeframes allotted toward summer survey

projects. Such limitations present problems for systematic and random

sampling strategies, which are concerned with determining not only

where artifacts are, but also where they are not.

In the case of Lake Matcharak, nearly all the known sites are

buried and obscured by vegetation, and very little was found through

standard reconnaissance techniques. Only through repeated visits to

Lake Matcharak did time permit more intensive subsurface testing

that revealed the majority of sites known today. The significant finds

at Lake Matcharak were largely a matter of luck, but the methods

outlined in this paper have potential for contributing to a more efficient

means for discovering sites in the future. The remote sensing techniques

outlined here would be most useful in settings where surface evidence

of buried archaeological sites is lacking. In the cases of the Matcharak

Lake and Matcharak Peninsula sites, these sites with scant surface

evidence were later found to contain thousands of well-preserved

faunal and lithic artifacts and features; therefore, what is found on the

ground and inminuscule shovel tests poorly indicate the archaeological

record concealed below. These remote sensing techniques contribute

tools that can be built upon to overcome this problem by revealing

phenomena in the landscape that cannot be perceived with the naked

eye and yet may be archaeologically relevant. In turn, archaeologists

can then focus on higher-probability areas and allocate more time to

subsurface testing.

For the purpose of inventorying cultural resources in areas such as

state and federal public lands, archaeologists are adopting hybrid

methods to maximize areas that can be covered and target areas in

which sites will more likely be located. Although such methods almost

certainly cannot produce complete or accurate representations of

cultural activities in the area under investigation, predictive methods

may help archaeologists devote field time to finding sites and assessing

threats that may disturb or destroy the archaeological contexts. For

example, recent climate change has impacted polar regions particularly

(ACIA, 2005; Anisimov et al., 2007), and, in turn, permafrost degrada-

tion and increased erosion threaten archaeological preservation in

high latitudes. As time is of the essence, predictive methods such as

those outlined in this paper have the potential for supplementing future

field surveys to locate and record more archaeological data before they

are gone forever.

4.3. Errors and limitations

It is also important to recognize the limitations to the findings of this

analysis. First, more subsurface sampling is needed. The known sites

only represent those that have been identified so far, with an emphasis

in areas close to the excavations at the Matcharak Lake and Peninsula

sites. As past surveys have focused more on locating sites rather than

on unbiased sampling designed to create statistically-valid models of

archaeological site distribution, more intensive subsurface testing at

Lake Matcharak could evidence past human activities beneath other

land cover types around the lake. Second, it is possible that dense

willow growth is attributable to a form of disturbance in these areas,

such as terrace erosion. As several sites were identified from artifacts

exposed by terrace erosion, willow may only be an indicator of how

sites were found, but not why they were located there. Third, one

must bear in mind that season and local conditions affect vegetation

color patterns, even among similar species. These factors must be

taken into consideration when applying these methods to other

datasets. When one classification is applied to multiple datasets, the

imagery should have been acquired in the same time of the year, if

not the same date, and classifications should be limited at least to sim-

ilar ecoregions. Although beyond the scope of this project, comparing

imagery from different seasons (e.g. Beck et al., 2007) and vegetation

indices (e.g. Bennett et al., 2012) could address differences in seasonal

reflectance patterns. This can be difficult in the Arctic, however, due

to the limited opportunities for cloud-free days during the brief

window between late-spring thaw and early fall snowfall (Hope and

Stow, 1995).

The methods outlined here could also use some revision. First, the

training data sampling strategy could have been improved. In hindsight,

it would have been better to use the unsupervised classification also to

identify homogenous land cover sampling locations.While the accuracy

assessment suggests that the methods we used were adequate for

producing accurate training data, an unsupervised classification might

have allowed us to travel straight to homogenous land cover classes,

identify and record them in the field, and avoid time analyzing photos

later. This could have also helped narrow down more species-level

training classes and produce a supervised classification that better

reflects vegetation diversity in the study area. Second, the use of

more accurate GPS units would have provided better site and ground

reference data.

4.4. Avenues for further research

More subsurface sampling is needed at Lake Matcharak. If more

systematic testing at LakeMatcharak reveals that sites are concentrated

in areas presently dominated by willow, the next question that must be

pursued is why? Sampling for phytoliths and plant macrofossils within

the sites and their surrounding areas might help explain if willow has

remained constant at those locations or if it has come to replace another

dominant vegetation type. Also, continued testing at the sites and

analysis of the artifacts retrieved from AMR-196 could help explain

when and why people chose to locate at Lake Matcharak and at those

sites specifically. Landform shape might have also influenced past

decisions, so VHRdigital elevationmodels and LIDARmight aid in future

analyses as they become available. As the orientations of terraces on

which sites are located appear to be consistent across Lake Matcharak,

aspect is a variable that could be incorporated into future applications

of these methods. The methods outlined in this paper could also be

applied to imagery of other lake sites in the Brooks Range to test if

willow-dominated sites, or some other vegetation community, are

common or unique to Lake Matcharak. Some prime candidates would

be Desperation, Burial, Kaiyak, and Feniak Lakes with their large, well-

documented village sites. It could also be advantageous to apply

these methods to spectrally-richer and higher-resolution imagery

such as Quickbird, Geoeye, and Worldview. Finally, this study
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focused on identifying a spectral phenomenon associated with

archaeological sites, but how to operationalize these findings toward

site prospecting falls beyond the scope of this paper. A next step is

to find a repeatable method for incorporating these findings and

methods into predictive models.

5. Conclusions

The results of this pilot study suggest that prehistoric, seasonal camp

sites at Lake Matcharak appear associated with modern stands of

dense willow growth. Pixel-based analysis methods can locate these

areas using 1 m resolution IKONOS imagery. While the unsupervised

classification reflected a unique spectral anomaly reflecting the ecotone

betweenwillow and bare, un-vegetated ground, the supervised classifi-

cation suggested an associationwithwillow. A confusionmatrixwith an

overall accuracy of 93% confirms the land cover distribution, which has

also been consistent with field observations. The willow-archaeology

association may represent prehistoric human habitation near a vital

resource, orwillowmay act as a proxy for other landform characteristics

that would have attracted past occupants. These methods would

be most useful when incorporated into predictive models used to

supplement field survey planning for locating archaeological sites

more efficiently. We hope that this study will stimulate future applica-

tions of satellite data to North American archaeology and hunter–gath-

erer landscapes. There is great potential for VHR data to tell us about not

only where sites can be found but also the lives of the past occupants.
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