
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2017

Strategies for Combining Tree-Based Ensemble
Models
Yi Zhang
Nova Southeastern University, yi_zhang408@hotmail.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Yi Zhang. 2017. Strategies for Combining Tree-Based Ensemble Models. Doctoral dissertation. Nova Southeastern University. Retrieved
from NSUWorks, College of Engineering and Computing. (1021)
https://nsuworks.nova.edu/gscis_etd/1021.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NSU Works

https://core.ac.uk/display/215343286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Strategies for Combining Tree-Based Ensemble Models

by

Yi Zhang

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
Information Systems

College of Engineering and Computing
Nova Southeastern University

2017

An Abstract of a Dissertation Submitted to Nova Southeastern University
In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Strategies for Combining Tree-Based Ensemble Models

by

Yi Zhang
October 2017

Ensemble models have proved effective in a variety of classification tasks. These models
combine the predictions of several base models to achieve higher out-of-sample classification
accuracy than the base models. Base models are typically trained using different subsets of
training examples and input features. Ensemble classifiers are particularly effective when their
constituent base models are diverse in terms of their prediction accuracy in different regions
of the feature space. This dissertation investigated methods for combining ensemble models,
treating them as base models. The goal is to develop a strategy for combining ensemble
classifiers that results in higher classification accuracy than the constituent ensemble models.
Three of the best performing tree-based ensemble methods – random forest, extremely
randomized tree, and eXtreme gradient boosting model – were used to generate a set of base
models. Outputs from classifiers generated by these methods were then combined to create an
ensemble classifier. This dissertation systematically investigated methods for (1) selecting a
set of diverse base models, and (2) combining the selected base models. The methods were
evaluated using public domain data sets which have been extensively used for benchmarking
classification models. The research established that applying random forest as the final
ensemble method to integrate selected base models and factor scores of multiple
correspondence analysis turned out to be the best ensemble approach.

Acknowledgment

I would like to thank my advisor, Professor Sumitra Mukherjee, for his excellent guidance and
support of the research. I also thank the committee members, Professor Michael J. Laszlo and
Professor Francisco J. Mitropoulos, without whose support I would not have been able to finish
the dissertation.

To my beloved family members, Peixiang Liu, Hugo Liu, and Rickey Liu: I would like to thank
you for your truly support and love. It was always helpful to share my happiness and relaxation
during breaks of my research. A particular note of thanks goes to my parents. Their wise
counsel and kind words motivated me as always.

v

Table of Contents

Abstract iii
List of Tables vii
List of Figures ix

Chapters

1. Introduction 1

Background 1
Problem Statement 4
Dissertation Goal 5
Research Questions 6

2. Review of the Literature 7
Overview 7
Ensemble Models 9
Model Selection 13
Model Integration 14

3. Methodology 16
Overview of Research Methodology 16
Software and Code 29
Data Sets 32
Experiment Design 33
Summary 44

4. Results 47
Base Models 47
Multiple Correspondence Analysis 53
Base Model Selection 54
Experiment One: Ensemble all Base Models 57
Experiment Two: Ensemble all Base Models and MCA Factor Scores 67
Experiment Three: Ensemble all Base Models with Model Selection 74
Experiment Four: Ensemble Selected Base Models and MCA Factor Scores 86

5. Conclusions and Summary 97

Appendices
A: RStudio Interface 106
B: R Code of Experiments on EEG Eye State Data Set 107
C: Cramér’s V Correlation Coefficient of Adult Data Set 138
D: Cramér’s V Correlation Coefficient of Credit Card Client Data Set 140
E: Cramér’s V Correlation Coefficient of EEG Eye State Data Set 142

vi

References 144

vii

List of Tables

Tables

1. Number of Trees in Random Forest Base Models 18

2. Number of Trees in Extremely Randomized Trees Base Models 19

3. Parameter Eta in Extreme Gradient Boosting Base Models 24

4. Contingency Table of Cramér's V Correlation 27

5. R Packages of Models 30

6. R Packages of Analysis 31

7. Supportive R Packages 31

8. Data Sets 32

9. Training and Testing Data Sets 33

10. Structure of Experiment Designs 45

11. Classification Accuracy of Base Models 47

12. Best and Worst Classification Accuracy of Base Models 49

13. Benchmarks of Classification Accuracy 53

14. Number of MCA Factor Scores 54

15. Average Cramér’s V Correlation Coefficient of Two Types of Base Models 55

16. Backward Selected Base Models with AIC Values 57

17. Ensemble Accuracy of all Base Models 58

18. MV Ensemble in Experiment One Compared with Base Models 59

19. XGB Ensemble in Experiment One Compared with Base Models 61

20. LR Ensemble in Experiment One Compared with Base Models 62

viii

21. RF Ensemble in Experiment One Compared with Base Models 64

22. Ensemble Comparison in Experiment One 66

23. XGB Ensemble in Experiment Two Compared with Base Models 68

24. RF Ensemble in Experiment Two Compared with Base Models 70

25. Experiment Two Compared to Benchmarks and Experiment One 72

26. Ensemble Comparison in Experiment Two 73

27. MV Ensemble in Experiment Three Compared with Base Models 75

28. XGB Ensemble in Experiment Three Compared with Base Models 77

29. RF Ensemble in Experiment Three Compared with Base Models 79

30. LR Ensemble in Experiment Three Compared with Base Models 81

31. Experiment Three Compared to Benchmarks, Experiment One and Two 84

32. Ensemble Comparison in Experiment Three 85

33. XGB Ensemble in Experiment Four Compared with Base Models 88

34. RF Ensemble in Experiment Four Compared with Base Models 90

35. Ensemble Comparison in Experiment Four 92

36. Ensemble Accuracy of Experiment One, Two, Three, and Four 93

37. Experiment Four Compared to Benchmarks, Experiment One, Two, Three 94

ix

List of Figures

Figures

1. Ensemble all Base Models 34

2. Ensemble all Base Models and MCA Factor Scores 36

3. Ensemble with Model Selection 38

4. Ensemble with Factor Scores and Model Selection 42

5. Classification Accuracy of Random Forest Base Model 50

6. Classification Accuracy of Extremely Randomized Trees Base Model 51

7. Classification Accuracy of Extreme Gradient Boosting Base Model 52

1

Chapter 1

Introduction

Background

An ensemble approach integrates the output of a group of machine learning

algorithms. The purpose of an ensemble approach is to achieve an improved

classification accuracy that outperforms the individual learning algorithms which are

often called base models. It has been shown that ensemble-based learning algorithms

improve the predictive accuracy in many applications (Banfield, Hall, Bowyer, &

Kegelmeyer, 2007; Leblanc & Tibshirani, 1996; Rodrigues, Kuncheva, & Alonso,

2006). Combining multiple learning algorithms has been found to be effective for

various problems (Breiman, 2001; Zhang et al., 2011; Zhu, Beling, & Overstreet,

2002).

The initial step in an ensemble approach is creating various base models

(Dietterich, 2001). The individual base models should be diverse enough in the sense

that they have minimum errors in common. Base models can be generated 1) by

different learning methods, 2) by using sub-samples of training data set, or/and 3) by

using subsets of attributes or input features. Base models are generated by applying

those three methods individually or together. Researchers in statistics and machine

learning focus on constructing ensembles in which multiple base classifiers are

2

generated by perturbing or splitting the training data set. The training subsets are

random samples with replacement or without replacement from the original training

data. Several well-known ensemble-based learning algorithms, such as bagging,

boosting, and random forest, have been widely accepted and applied for prediction

tasks (Breiman, 1996 & 2001; Freund & Shapire, 1996). They have been shown to have

consistently better performance than non-ensemble-based models.

The random forest (RF), extremely randomized trees (ERT), and extreme

gradient boosting (XGB) models were applied in this dissertation to generate base

models due to their high predictive accuracy (Brieman, 2001; Caruana & Niculescu,

2006; Geurts, Ernst, & Wehenkel, 2006; Friedman, 2001). They are all tree-based and

ensemble-based machine learning algorithms. The RF model creates a large number of

trees as base models by randomly selecting a subset of attributes in each splitting on

randomly selected subsets of the training data (Brieman, 2001). Extremely randomized

trees is a model similar to random forest. However, extremely randomized trees builds

base classifiers on the whole training data by applying random selection on not only

attributes but also the cut-point choice when splitting a tree node (Geurts, Ernst, &

Wehenkel, 2006). The gradient boosting algorithm is an ensemble method in which the

final classifier is combined by weak classifiers step by step (Friedman, 2001). In

gradient boosting, a differentiable loss function is used to calculate the adjustments to

the consecutive success learner in an iterative learning sequence. It assigns higher

weights to misclassified observations when creating the subsequent tree. XGB is a

scalable implementation of gradient boosting which is a very time efficient algorithm

(Friedman, 2001; Friedman, Hastie, & Tibshirani 2000). By considering both training

3

loss and regularization, XGB can quickly reach the optimal decision and control

overfitting at the same time.

Most commonly, all base models are ensembled together for the final output.

However, researchers showed that combining a subset of base models with desirable

characteristics worked better than combining all models (Ruta & Gabrys, 2005; Zhu,

2010). Selecting only a subset of base models might also contribute to both the accuracy

of the final decision and the computing efficiency (Tsoumakas, Partalas, & Vlahavas,

2008). Jurek, Bi, Wu, and Nugent (2013) categorized base model selection techniques

into static selection and dynamic selection. In static selection, the same subset of base

models is used for both training and testing data sets (Zhu, 2010). While in dynamic

selection, a subgroup of base models that locally perform better are chosen to make the

decision (Cevikalp & Polikar, 2008). Base models can be selected based on either

accuracy or diversity or both of these criteria (Jurek, Bi, Wu, & Nugent, 2003; Hu,

2001). Since the ensemble-based models, RF, ERT, and XGBoost as base models

usually achieve good classification accuracy, this research focuses on applying

correlation analysis and backward selection on the output of base models to identify an

optimal subset of diverse base models, and multiple correspondence analysis (MCA)

to capture the features of outputs of base models, thus to achieve more accurate

predictions (Abdelazeem, 2008; Ruta and Gabrys, 2005).

After base models are selected, how to combine base models is the question to

be addressed next. Researchers must consider and decide the kind of information to be

integrated and the combining method to be applied. Generally, an ensemble approach

integrates all or selected outputs of base models. The format of outputs from base

4

models varies, which can either be class label or probability. The combining technique

can be majority voting, which is very effective when applying with a group of properly

selected base models, such as decision trees in a random forest model (Breiman, 2001).

It can also use various machine learning algorithms to integrate the outputs of base

classifiers. For example, a logistic regression model is used to combine outputs of base

models in stacking (Wolpert, 1992). Stacking, which is also called Stacked

Generalization, has proven to be one of the most effective ensemble methods that

improves the accuracy of the final decision of both classification and regression

problems (Dzeroski & Zenko, 2004; Seewald, 2002; Jurek, Bi, Wu, & Nugent, 2001).

In this research, we chose random forest, extremely randomized trees, and

extreme gradient boosting to construct base classifiers, applied model selection

techniques, and integrated classifiers using various machine learning algorithms

(random forest, logistic regression, and extreme gradient boosting). We systematically

investigated the decision accuracy of the base models RF, ERT and XGB; how model

selection techniques impacted the final ensemble result; the relationship between model

combination techniques and the final ensemble results; and whether there existed a

better ensemble approach.

Problem Statement

Improving predictive accuracy of machine learning algorithms is an ongoing

research challenge. Numerous studies have shown that ensemble techniques increase

the predictive accuracy when compared with non-ensemble-based classifiers for both

classification and regression problem (Breiman, 1996; Dietterich, 2000; Leblanc and

Tibshirani, 1996; Zhu, 2010). The majority of the related studies focused on integrating

5

weak classifiers, such as decision trees that were generated by perturbing the training

data set (Breiman, 2000; Zhu, 2010). Researchers also demonstrated that picking

several best models worked better than combining all models under some

circumstances (Kotsiantis, 2011; Russell & Adam, 1987). The best models can be either

those with various local predictive powers or those with the best predictive accuracy.

Ensemble classifiers are particularly effective when the constituent base models are

diverse in terms of their prediction accuracy in different regions of the feature space.

The investigation of how to combine these ensemble-based models is a major research

topic in the field of machine learning (Kotsiantis, 2011). In this dissertation, we studied

methods for combining ensemble models by treating them as base models. Three tree-

based ensemble methods – random forest, extremely randomized trees, and extreme

gradient boosting model – were used to generate a set of base models (Brieman, 2001;

Geurts, Ernst, & Wehenkel, 2006; Friedman, 2001). Outputs from classifiers generated

by these methods were then combined to create an ensemble classifier to provide the

final prediction. We systematically investigated methods for (1) selecting a set of

diverse base models, and (2) combining the selected base models. The selection and

combination methods were evaluated using public domain data sets which have been

extensively used for benchmarking classification models.

Dissertation Goal

The goal of this dissertation is to develop a strategy for combining ensemble

classifiers that results in higher classification accuracy than the constituent ensemble

models. We investigated ensemble approaches which used random forest, extremely

randomized trees, and extreme gradient boosting algorithm to generate base models.

6

Performances of base models were evaluated and compared. Correlation of outputs of

base models were examined using Cramer’s V correlation analysis. Various base model

selection techniques based on correlation or accuracy of base models were applied and

compared. Different model combination techniques, majority voting if applicable,

logistic regression, extreme gradient boosting, and random forest, were applied to all

or optimal subsets of base classifiers. The performance of final ensemble outputs was

evaluated.

Research Questions

1. Will specific ensemble approaches of ensemble-based models increase the

predictive accuracy compared with extant single ensemble models?

2. Are random forest, extremely randomized trees, and extreme gradient boosting

good candidates as base classifiers?

3. Will various model selection techniques make a difference in the predictive

accuracy of the overall ensemble approach?

4. How will various model combination techniques affect the predictive accuracy

of the ensemble approach?

7

Chapter 2

Review of the Literature

Overview

An ensemble approach starts from creating various base classifiers, selecting

base classifiers, and ends in combining base classifiers. Various investigations have

demonstrated that ensemble approaches of different classifiers improve the accuracy of

the final classifier (Parvin & Alizadeh, 2011). Researchers evaluate learning algorithms

by investigating the variance and bias (Kohavi & Wolpert, 1996). Variance measures

the difference of prediction of a learning algorithm on different data sets. Bias measures

the average error of a classifier trained with different training data sets. A single

classifier usually has large bias and little variance when compared with a group of

integrated classifiers (Webb & Conilione, 2003). It has been demonstrated that

ensemble approaches usually reduce either variance or bias or both (Bauer & Kohavi,

1999).

The decision tree learning algorithm is a flowchart-like model that is widely

used by researchers in information systems and machine learning. A decision tree

model usually shows high variance in both choosing attributes and splitting nodes

(Breiman, Friedman, Olshen, & Stone, 1984). It has been experimentally shown that

cut-point variance of a decision tree model is extremely high for both small and large

8

data sets (Wehenkel, 1997; Geurts, 2000). The cut-point variance rephrases part of the

error rate of the learning process. Because of the high variance, the decision tree is

considered an unstable classifier. However, it works very well as the base classifier in

ensemble approaches (Brieman, 2002). Several well-known ensemble approaches,

such as boosting, random forest, and extremely randomized trees which incorporate a

decision tree algorithm as the base models, are very successful in generating higher

predictive accuracy (Breiman, 2002; Freund & Shapire, 1996). The idea behind these

ensemble approaches is to reduce the variance of the learning algorithm without

increasing the bias too much. These ensemble algorithms bring randomization into

generating the same type of base classifiers (decision trees) on randomized training

data sets. They generally are very competitive in producing better predictive accuracy

than other non-ensemble-based machine learning algorithms (Dietterich, 2000).

It has been demonstrated that an ensemble model might avoid the mistake of

choosing a wrong single model by statistically combining the output of base models,

avoiding getting stuck in local optima computationally, and increasing the searching

space for the true hypothesis (Dietterich, 2000). To avoid getting stuck in local optima

and to increase the search space, diverse learning algorithms were often considered by

researchers to include in the pool of base models (Kuncheva & Whitaker, 2003).

Studies have demonstrated that the diversity of learning algorithms improves the

accuracy of an ensemble approach (Dietterich, 2000). Diversity can be measured in

various ways. A major measurement is to test the correlation of the decision output of

each base model. The group of less correlated models tends to provide higher predictive

accuracy (Hu, 2001). A different technique to evaluate the diversity of base models is

9

Q statistics test (Kuncheva & Whitaker, 2003). Clustering the outputs of base models

and then adding clusters as additional attributes to the training dataset, and random

selection of attributes or instances are proven techniques to increase the diversity of

base models (Bryll, Gutierrez-Osuna, & Quek, 2003; Gan & Xiao, 2009). Among the

stated methods, creating base models by randomly selecting either attributes or

instances or both has been widely applied and has achieved tremendous success

(Brieman, 2001).

Ensemble Models

Bagging

Brieman first proposed the idea of bagging which trained diverse individual

base models by randomly selecting instances with replacement as training subsets

(Breiman, 1996). It incorporates the idea of random selection which works by randomly

selecting subsets of the training data set, manipulating the distribution of training data,

or randomly selecting attributes (Breiman, 1996 & 2001; Freund & Shapire, 1996).

Bagging is designed to reduce the variance of misclassification probability. Since base

models can be trained independently, bagging can be very time-efficient. However,

because of its strategy to create training data sets, bagging tends to improve the

predictive accuracy by utilizing unstable classifiers, such as decision trees or artificial

neural networks (Dietterich, 2000; Maclin, 1997). It has been shown that bagging is

not able to improve the performance when using stable base models, such as linear

regression (Skurichina, & Duin, 1998). Breiman (1996) explained that unstable models

could be very diverse because they were sensitive to small changes of training data.

10

The diversity of base models is the key advantage of the bagging method to

increase the final performance. However, at the same time, diversity also implies the

unstable prediction of the randomly created base models. In order to obtain the same

accuracy as an original decision tree, Machova and Barcak (2006) reported that the

minimum number of base models in bagging should be twenty. Studies also reveal that

bagging works more efficiently for small data sets (Skurichina, Kuncheva, & Duin,

2002).

Random Forest

Brieman (2001) proposed another ensemble approach, Random Forest, based

on the idea of expanding diversity of base models by partitioning the attribute space.

Random forest usually pools a lot of decision trees as base classifiers. It creates random

training data sets for each individual decision tree by bootstrapping from the original

training data set. It chooses the optimal attributes from a randomly selected subset of

attributes at each split when growing a decision tree.

Random forest is an expanded version of bagging. The random subsets of

instances don’t have the same number of instances as the original training set.

Generally, each subset has two thirds of the instances of the whole training data. At

each split, an optimal attribute is chosen from around two thirds of the randomly

selected attributes. Random forest not only adopts the advantages of bagging, such as

more diversity of base classifiers and computational efficiency, but also overcomes

some weaknesses of bagging, such as dealing with both small and large data very

efficiently. Additionally, it is also designed to deal with the overfitting issue. Random

forest is a very competitive and successful ensemble model and has been applied to

11

different research fields (Chi, Yeh, & Lai, 2011; Diaz-Uriarte & Alvarez de Andres,

2006).

Extremely Randomized Trees

Extremely Randomized Trees is another ensemble-based model. It is also called

Extra Trees. It takes randomization even further when compared with random forest

(Geurts et al., 2006). It randomizes not only the selection of instances and attributes,

but also the selection of the cut point of splitting when growing individual base trees.

The structures of total random trees are independent of the output of learning data. It is

also extremely computationally efficient due to the extreme randomization.

The extremely randomized trees model works by decreasing variance while

increasing bias at the same time. However, referenced to the standard decision tree

model, if the randomization degree is optimal leveled, the variance can be extremely

diminished and the bias increases only a little bit. The extremely randomized trees

model has been demonstrated to be the top choice in many applications, such as high

dimensional problems, mass-spectrometry datasets, and time series classification

problems (Geurts & Wehenkel, 2005; Geurts, Fillet, De Seny, Meuwis, Mervilles, &

Wehenkel, 2005b; Maree, Geurts, Piater, & Wehenkel, 2004). It has a very strong

competitive predictive power, especially for classification problem, when compared

with random forest and other ensemble approaches (Geurts et al., 2006).

Boosting

Another well-known ensemble technique, Boosting, was proposed by Freund

and Schapire in 1996. It utilizes the random selection idea and manipulates the

12

distribution of training data by creating subsequent base models based on the predictive

accuracy of previous base models. It is an iterative procedure that adds base classifiers

one by one. Weights of one base model are calculated based on its predictive accuracy

and are then applied when integrated with other base models. Weights of instance are

also calculated by the current base model, and then are used to train the next base

model. In this way, base models are regulated and the weighted predictions of the base

models are combined to make the final decision. Boosting has been shown to reduce

variance and bias (Rodriguez & Maudes, 2008). Good candidates for base models are

decision trees or neural networks (Rodriguez & Maudes, 2008; Schwenk & Bengio,

2000).

Ada boosting is the benchmark model in boosting (Schapire, 1999). A number

of studies have been explored to expand the techniques of Ada boosting to improve the

accuracy and efficiency (Schapire, Freund, Bartlett, & LeeWS, 1998). Gradient

boosting is one of its expansion forms and has earned a good reputation for its excellent

performance in both accuracy and efficiency when compared with Ada boosting

(Friedman, 2001). It utilizes a loss function to manipulate the adjustment that is applied

to the subsequent base model. The training loss function measures how the model fits

on training data. The gradient boosting model not only measures the model fit but also

regulates the model complexity using a regularization function. Optimizing loss

function tends to cause over-fitting. On the contrary, optimizing regularization function

produces smaller variance for prediction. Balancing loss and regularization functions

properly can produce optimal predictive performance and control the over-fitting issue

(Johnson & Zhang, 2014).

13

Extreme gradient boosting is an algorithm created under the framework of

gradient boosting (Chen, 2015). It utilizes generalized linear model and gradient

boosted decision trees. Randomly sub-setting the instances and attributes techniques

are applied in the extreme gradient boosting algorithm. It is very efficient in handling

sparse matrices and producing accurate predictions.

Model Selection

Most ensemble approaches integrate all base models to make the final

prediction. However, it has been shown that effective selection of a group of optimal

base models based on diversity and accuracy can improve the final ensemble

performance (Zeng, Chao, & Wong, 2010).

Abdelazeem (2008) proposed forward search or backward search methods to

select an optimal set of base models based on majority voting error of the ensemble

model. The forward search starts from the most accurate base model and adds other

base models one by one until there is no improvement of predictive accuracy. The

backward search starts from combining all of the base models, and then excludes base

models one by one until the decrease of predictive accuracy is not acceptable.

Genetic algorithm (GA) has been applied in searching the best subset of base

models when considering the accuracy of both base and final ensemble models (Kittler

& Roli, 2001). Both diversity and accuracy are evaluated when applying the GA

approach (Löfström, Johansson, & Bostrom, 2008). It is revealed that considering the

accuracy of both the base and ensemble models is the most efficient approach for the

GA approach of model selection.

14

Ruta and Gabrys (2005) selected the optimal subset of base models by

evaluating various diversities of the models. In their approaches, diversities were

presented by correlation coefficient, product moment correlation, Q statistics,

disagreement measure, double-fault, entropy, and measure of difficulties. In addition

to diversities, accuracies such as minimum individual error, mean error, and majority

voting error were also considered. Various search methods, such as forward and

backward search, random search, and GA search were explored. The experiment result

showed that using majority voting error as the search criterion was the best way for

model selection.

Model Integration

The last step in the ensemble approach is integrating the outputs of base models

to make the final decision of regression or classification problems. The combination

methods can be simple averaging, majority voting, or using functions or machine

learning algorithms to combine base models (Brieman, 2001; Wolpert, 1992).

Majority voting is a simple but effective method, in which the final decision of

an instance is voted by all base models. The case receiving the most votes is the final

decision. An expanded version of majority voting is adding weights to base models

where the weights are scaled by the accuracy or entropy of the base models. This

weighting method has been expanded further by applying genetic algorithms (GA) to

optimize the final result (Dimililer, Varoglu, & Altincay, 2007).

Stacked generalization is also an alternative way to combine multiple models

(Wolpert, 1992). It works by reducing biases of learning algorithms with respect to a

specific training data set. In stacked generalization, the outputs of base models for the

15

validating data set compose the training data for a meta-model. Then, a meta-learner is

generated by a machine learning algorithm to combine the outputs of base models.

Effective machine learning algorithm for the meta-learner can be multi-response linear

regression and multi-response model tree (Dzeroski & Zenko, 2004; Seewald, 2002;

Ting & Witten, 1999). Majority voting is not preferred in stacked generalization

because it usually does not work on comparable or similar outputs of base models (Ting

& Witten, 1999). However, the multilayer perceptron has been demonstrated to be an

effective algorithm to combine the outputs of base models (Zhu, 2010). Logistic

regression has also proved to be successful in combining outputs of base models in

stacking (Wolpert, 1992).

16

Chapter 3

Methodology

Overview of Research Methodology

In this research, we explored an ensemble approach in which tree-based

ensemble learning algorithms are used as base models. The primary goal is to study if

an ensemble approach of ensemble-based models would further improve predictive

accuracy. The secondary goal is investigating effective ways for selecting base models

and various combination strategies. The overall ensemble procedure includes four

major steps:

1. generating base models

2. calculating factor scores of multiple correspondence analysis

3. choosing optimal subsets of base models, and

4. integrating base models

Generating base models

Ten random forest, eleven extremely randomized trees (extra trees), and ten

extreme gradient boosting models were generated to work as base models to ensemble.

All base models are tree-based ensemble models (Brieman, 2001; Geurts et al., 2006;

Freund & Schapire, 1996). They have proved to be relatively better models which

17

provide higher predictive accuracy. They all apply a randomization scheme to expand

the diversity of base models in order to achieve better ensemble result.

Random Forests: The steps of building a random forest are listed as follows

(Breiman, 2001).

1. To create a forest with ܭ	trees, ܭ subsets of data are sampled with ܰ	instances

randomly with replacement. Each subset grows one individual tree. Usually, the

size of a subset is about two thirds of the size of the training set.

2. When building a single tree, at each splitting of node, ݉ predictor variables are

chosen randomly from all available variables. Each predictor is evaluated by a

selected objective function. The one which provides the best splitting is used to do

a binary split on that node. The same procedure is applied to all remaining nodes.

The value of ݉	can range from 1 to the total number of predictor variables. Most

researchers set ݉ to be the square root of the total number of predictor variables

(Brieman, 2001).

 trees are created by repeating step 1 & 2 to construct a forest. When a new set of	ܭ .3

instances is input into the forest, one by one, each instance goes through every tree

in the forest. The predictive result is the majority voting of the ܭ	 trees for a

classification problem.

4. Ten random forests were built on training data sets in this research. Seeds were

randomly set up to ensure a repeatable predictive result for each forest. The number

of individual trees in the forest ranged from 50 to 500. Because of the

randomization strategy of sub-setting the instances and attributes and setting up

different seeds and number of subtrees when building a random forest, these ten

18

forests had different structures and provided different predictions on the testing data

set. Table 1 lists the number of trees of each base model.

Table 1

Number of Trees in Random Forest Base Model

Radom Forest Number of Trees

1 50

2 100

3 150

4 200

5 250

6 300

7 350

8 400

9 450

10 500

Extremely Randomized Trees: The procedure of building extremely

randomized trees, also called extra trees, is listed as follows (Geurts et al., 2006).

 .decision trees are built without pruning from all training sample ܭ .1

2. At each random splitting of a node, ܯ	predictor variables, ሼܽଵ, … , ܽெሽ, among all

non-constant candidate predictors are chosen without replacement and evaluated to

split the node. ܯ	splits, ሼݏଵ, … , ܯ ெሽ, one split per predictor, are generated fromݏ

predictors. A split ݏ∗	is selected if its score of evaluation is the most preferred one

among all of the ܯ	splits. The same procedure is applied to each node.

3. Numerical predictors and categorical predictors follow different rules of splitting.

For a categorical predictor	ܽ, ܣ is used to denote its domain or the set of all possible

values. ܣௌ	 is a subset of ܣ in which every value a appears in the training set S.

19

Then, a proper nonempty subset ܣଵof ܣௌ	 and a subset ܣଶ	of A\ܣௌ	 is randomly

drawn. The split that meets [a ∈ ଵܣ ∪ .] is returned to compare with other splits	ଶܣ

For a numerical predictor a, its maximal and minimal value in S, ܽ௠௜௡
௦ 	ܽ݊݀	ܽ௠௔௫

௦ ,

are calculated. A cutout point ܽ௖ is uniformly drawn in [ܽ௠௜௡
௦ , ܽ௠௔௫

௦]. The split that

meets [ܽ ൏ ܽ௖] is returned.

4. The ܭ	trees created by repeating step 2 & 3 are used to construct an extra trees

model. When a new set of instances is input into the forest, one by one, each

instance goes through all of the trees in the extra trees model. The result is the

majority voting of the ܭ	trees for a classification problem.

5. Eleven extra trees models were built in this research. Seeds were randomly set up

to ensure repeatable predictive result for each extra tree model. The number of

individual trees in an extra trees model ranged from 50 to 550. Because of the

randomization of sub-setting the instances and attributes, and setting up different

seeds and number of subtrees when building an extra tree, these eleven extra trees

had different structures and provided different predictions on the testing data set.

Table 2 lists the number of trees in each model.

Table 2

Number of Trees in Extremely Randomized Trees Base Model

Extremely Randomized Trees Number of Trees

1 50

2 100

3 150

4 200

5 250

6 300

20

Extremely Randomized Trees Number of Trees

7 350

8 400

9 450

10 500

11 550

Extreme Gradient Boosting: Extreme gradient boosting model (XGB) is a tree-

based ensemble model created under the gradient boosting framework proposed by

Friedman (2001). Efficient linear solver and tree learning algorithm are implemented

in XGB (Chen & He, 2015). The approach of constructing an XGB model is listed as

follows (Chen & He, 2015).

1. XGB model is a summation of a collection of ܭ weak trees. It is defined as

∑ ௞݂
௄
௞ୀଵ , where ௞݂ is the prediction of a decision tree.

2. Let ݔ௜ denote the feature vector for the i-th data point, the prediction with all the

decision trees can be expressed as ݕො௜ ൌ 	∑ ௞݂
௄
௞ୀଵ ሺݔ௜ሻ. In each iteration step, one

tree is added to the collection, at the t-th step, the prediction is defined as ݕො௜
ሺ௧ሻ ൌ

	∑ ௞݂
௧
௞ୀଵ ሺݔ௜ሻ.

3. When training the model, a loss function is chosen and optimized based on different

types of task. For a binary classification problem, LogLoss is used as the loss

function.

L ൌ െ
1
ܰ
෍ሺݕ௜ logሺ݌௜ሻ ൅ ሺ1 െ ௜ሻݕ logሺ1 െ ௜ሻሻ݌
ே

௜ୀଵ

where ݕ௜ is the real value of prediction on feature vector ݔ௜, ݌௜ is the probability on

feature vector ݔ௜, and ܰ is the number of instances in the training data set. For a

21

multi-classification problem, mlogloss is used as the loss function which is defined

as below, where ܥ is the number of categories of target feature.

L ൌ െ
1
ܰ
෍෍ݕ௜,௝log	ሺ݌௜,௝ሻ

஼

௝ୀଵ

ே

௜ୀଵ

4. When optimizing the loss function, XGB also implements a regularization term Ω

to control the complexity in order to prevent overfitting.

Ω ൌ Ƭ ൅	
1
2
௝ݓ෍ߣ

ଶ

்

௝ୀଵ

ܶ	is the number of leaves. Instead of ݓ௝, ݓ௝
ଶ which is the score on the j-th leaf that

is used for better controlling the complexity. λ and ݓ both tune the complexity.

5. The objective function of XGB is defined as the combination of loss function and

regularization. Loss function controls the predictive power and regularization

controls the simplicity.

ܱܾ݆ ൌ ܮ ൅ Ω

6. Gradient descent is applied to optimize the objective function	ܱܾ݆ሺݕ, ොሻ. It is anݕ

iterative technique that calculates 	߲௬ොܱܾ݆ሺݕ, ොሻݕ at each iteration. ݕො is improved

along the direction of the gradient to minimize the objective.

7. For an iterative algorithm, the objective function at each step can be rewritten as

ܱܾ݆ሺ௧ሻ ൌ෍ܮሺ

ே

௜ୀଵ

,௜ݕ ො௜ݕ
ሺ௧ሻሻ ൅෍Ωሺ ௜݂ሻ ൌ

௧

௜ୀଵ

෍ܮሺ

ே

௜ୀଵ

,௜ݕ ො௜ݕ
ሺ௧ିଵሻሻ ൅ ௧݂ሺݔ௜ሻ ൅෍Ωሺ ௜݂ሻ

௧

௜ୀଵ

The first and second order gradient 	߲
௬ො೔
ሺ೟ሻܱܾ݆ሺ௧ሻ	ܽ݊݀	߲

௬ො೔
ሺ೟ሻ
ଶ ܱܾ݆ሺ௧ሻ	are calculated to

improve the performance. The Taylor approximation of the objective function is

derived as follows since there might be no derivative for every objective function.

22

ܱܾ݆ሺ௧ሻ ≅෍ሾܮሺ

ே

௜ୀଵ

,௜ݕ ො௜ݕ
ሺ௧ିଵሻሻ ൅ ݃௜ ௧݂ሺݔ௜ሻ ൅

1
2
݄௜ ௧݂

ଶሺݔ௜ሻሿ ൅෍Ωሺ ௜݂ሻ
௧

௜ୀଵ

Where ݃௜ ൌ 	߲௬ො೔
ሺ೟షభሻLቀݕ௜, ො௜ݕ

ሺ௧ିଵሻቁ	and ݄௜ ൌ ߲
௬ො೔
ሺ೟షభሻ
ଶ Lቀݕ௜, ො௜ݕ

ሺ௧ିଵሻቁ

Removing the constant terms since they don’t affect the optimization, the objective

function at the t-th step is derived below. The goal is to find a ௧݂ to optimize	ܱܾ݆ሺ௧ሻ.

ܱܾ݆ሺ௧ሻ ൌ෍ሾ

ே

௜ୀଵ

݃௜ ௧݂ሺݔ௜ሻ ൅
1
2
݄௜ ௧݂

ଶሺݔ௜ሻሿ ൅ Ωሺ ௧݂ሻ

8. Finding a tree in each step to improve the prediction along the gradient is critical in

XGB. For a decision tree, internal node defines the data point flowing direction.

Each leaf is assigned a weight, which is the prediction. Mathematically, a tree can

be defined as ௧݂ሺݔሻ ൌ ሻ is a directing function that assigns everyݔሺݍ ௤ሺ௫ሻ, whereݓ

data point to the ݍሺݔሻ-th leaf. ݓ௤ሺ௫ሻ is the corresponding score on the ݍሺݔሻ-th leaf.

An index set is also defined as ܫ௝ ൌ ሼ݅|ݍሺݔ௜ሻ ൌ ݆ሽ. It contains the indices of data

points that are assigned to the j-th leaf. Rewriting the objectives in terms of leaves,

the objective function becomes

ܱܾ݆ሺ௧ሻ ൌ෍ሾ

ே

௜ୀଵ

݃௜ ௧݂ሺݔ௜ሻ ൅
1
2
݄௜ ௧݂

ଶሺݔ௜ሻሿ ൅ 	Ƭ ൅	
1
2
௝ݓ෍ߣ

ଶ

்

௝ୀଵ

ܱܾ݆ሺ௧ሻ ൌ෍ሾሺ෍ ௜݃ሻݓ௝ ൅
1
2
ሺ෍݄௜ ൅ ௝ݓሻߣ

ଶሿ ൅ ܶ
௜∈ூೕ௜∈ூೕ

்

௝ୀଵ

The objective function in this form would be optimized by ݓ௝	ܽ݊݀	ݓ௝
ଶ. The best ݓ௝

that optimizes the objective function is ݓ௝
௕௘௦௧ ൌ െ

∑ ௚೔೔∈಺ೕ

∑ ௛೔ାఒ೔∈಺ೕ
, and the corresponding

objective function is

23

ܱܾ݆ሺ௧ሻ ൌ െ
1
2
෍

ሺ∑ ݃௜ሻ௜∈ூೕ
ଶ

∑ ݄௜ ൅ ௜∈ூೕߣ
൅ ܶ

்

௝ୀଵ

9. When building a tree, to find the best splitting point that can optimize the objective

function, the best splitting point of each attribute is identified first, then the best

attribute is picked out based on the objective function. Since ܫ	is the set of indices

of data points that assigned to a node, ܫ௅ and ܫோ are the sets of indices of data points

that assigned to two new leaves. The gain of splitting is calculated based on optimal

objective function. The split that achieves the most gain is the best one.

݃ܽ݅݊ ൌ
1
2
ሾ
ሺ∑ ݃௜ሻ௜∈ூಽ

ଶ

∑ ݄௜ ൅ ௜∈ூಽߣ
൅
ሺ∑ ݃௜ሻ௜∈ூೃ

ଶ

∑ ݄௜ ൅ ௜∈ூೃߣ
െ
ሺ∑ ݃௜ሻ௜∈ூ

ଶ

∑ ݄௜ ൅ ௜∈ூߣ
ሿ െ ݎ

 r is the complexity cost by introducing additional leaf. The tree is built to the

maximum depth in this way, and is pruned by taking out the nodes with negative

gains in a bottom-up order.

10. When building an individual tree, a subset of instances ܰ	is sampled. At each split,

a subset of attributes ܯ	is also randomly selected. A XGB model can be created by

following steps in 1 through 9.

11. We constructed ten XGB models as base models in this research. Setting up seed

was tried randomly to ensure a repeatable predictive result for each XGBoost

model. However, it didn’t work and couldn’t provide s repeatable prediction.

Parameter “eta” in the R XGBoost package was adjusted from 0.1 to 1 to control

the gradient speed. They are listed in table 3 for reference. Parameter “nround” was

optimally chosen by a 10-fold cross validation method based on parameter “eta”.

As a result, the number of individual trees in each XGB model was different,

24

therefore these ten XGB models had different structures and provided a different

prediction on testing data set.

Table 3

Parameter Eta in Extreme Gradient Boosting Base Model

Extreme Gradient Boosting Eta

1 0.1

2 0.2

3 0.3

4 0.4

5 0.5

6 0.6

7 0.7

8 0.8

9 0.9

10 1.0

Calculating factor scores of multiple correspondence analysis

Multiple correspondence analysis (MCA) was applied to the outputs of the base

models (Le Roux & Rouanet, 2004; Greenacre & Blasius, 2006). Factor scores of

individual output instances were produced (Abdi & Valentin, 2007). They were added

as new attributes to ensemble with the outputs of base models in the final ensemble

step (Zhang & Zhang, 2009). MCA is a statistical procedure that applied to categorical

variables, which represents data in a low-dimensional Euclidean space. In our study,

conducting MCA converted the ܤ	outputs of base models into a set of factor scores.

Since the dissertation is focused on classification problems, we kept the

 outputs of base models in categorical format. Each output must be reconstructed into	ܤ

25

another set of binary variables with only 0 and 1 as their values. For example, for a

binary output Salary with two categories “more than $50,000” and “not more than

$50,000”, two new variables “more than $50,000” and “not more than $50,000” are

created to replace the categorical output. For a person with salary more than $50,000,

the corresponding value of the new variable “more than $50,000” is 1, and “not more

than $50,000” is 0. In this way, each categorical output with ܬ௞ levels is replaced by ܬ௞

new binary variables. With B outputs in total, ܬ	new binary variables were created and

set into the MCA approach. For ܫ observations, an indicator matrix ࢄ with ܬ columns

and ܫ rows was formed.

A correspondence analysis (CA) was then performed on the indicator matrix.

Letting ܰ denote the sum of elements of indicator matrix, the probability matrix ܈ is

܈ ൌ 	ܰିଵ܆. The vector of row sums of ܈ is denoted as ܚ. The vector of column sums

of ࢆ is denoted as ܋. The following singular value decomposition is performed.

ܚ۲
ି૚૛ሺ܈ െ ܋୘ሻ۲܋ܚ

ି૚૛ ൌ ୘ۿ∆۾

where ۲܋ ൌ diagሼ܋ሽ, ۲ܚ ൌ diagሼܚሽ, ∆ is the diagonal matrix of the singular values

which is calculated from ∆ଶ, the matrix of eigenvalues. Row and column factor

scores, F and G, are calculated as follows:

۴ ൌ ܚ۲
ି૚૛۾∆

۵ ൌ ܋۲
ି૚૛ۿ∆

These factors scores are considered as inheriting the maximum possible variance from

 Although MCA produces row and column factor scores, in our approach, only the .܆

26

column factor scores were ensembled with the outputs of base models in the last

ensemble step.

Choosing optimal subsets of base models

Choosing optimal subsets of base models is the third step in the whole

procedure. Various model selection techniques could be applied to choose optimal

subsets of base models to ensemble. The following two methods were used in this

research for model selection.

Cramér's V correlation analysis: Cramér's V correlation between outputs of

base models on testing data is calculated. Then, a criterion or a cutout point of

correlation coefficient is picked, and the most uncorrelated models are chosen as the

group of optimal base models (Cramér, 1946).

For ܤ outputs of base models { ,ොଵݕ ,ොଶݕ … , ො஻ݕ }, Cramér's V correlation

coefficient measures the pairwise association between them. The association is based

on Pearson’s chi-square statistics. ܤ ranges from 1 to 31 since thirty-one base models

were generated in total. Cramér's V correlation coefficient is calculated based on the

following formula. For two outputs of base model, ݕො௜ and ݕො௝, ݅ ് ݆, ∀݅ ൌ 1,… , and ,ܤ

∀݆ ൌ 1,… , a contingency table is created in table 4, ݇ is the number of classes of the ,ܤ

output variable.

27

Table 4

Contingency Table of Cramér's V Correlation

Category of Output ො௜ݕ ො௝ݕ
1 ݊ଵ,௜ ݊ଵ,௝
2 ݊ଶ,௜ ݊ଶ,௝
. . .

. . .

. . .

k ݊௞,௜ ݊௞,௝

݊௞,௜	is the number of class ݇ observed in the output ݕො௜. ݊௞,௝	is the number of

class ݇ observed in the output ݕො௝. The chi-squared statistic is calculated as below

߯ଶ ൌ෍
ሺ݊௞,௜ െ ݊௞,௝ሻଶ

݊௞,௝௞

Cramér's V correlation coefficient is

ܸ ൌ ඨ
߯ଶ ܰ⁄
݇ െ 1

ൌ ඨ
φଶ

݇ െ 1

where ܰ is the grand total of observations, φଶis the phi coefficient.

 Cramér's V correlation coefficient ranges from 0 to 1. A value close to 0

indicates less correlation between two outputs. Since the base models are expected to

be accurate, which leads their pairwise correlation coefficients closer to 1. The cutout

point value of its absolute value varies based on different data sets. We chose base

model pairs whose correlation coefficient was closer to 0 as members of the optimal

subset.

Backward selection: A backward selection of base models ෠ܻ 	was applied in the

research based on Akaike Information Criterion (AIC) value provided by the logistic

regression ensemble models. AIC was originally introduced to measure the relative

28

quality of models on the same set of data set (Hocking, 1976; Bozdogan, 1987). It is

defined as follows,

ܥܫܣ ൌ 2݇ െ 2ln	ሺܮ෠)

where ݇ is the number of estimated parameters in a model, ܮ෠ is the maximum value of

the likelihood function of logistic regression model. In this research, the data set

contains the output of base models ෠ܻ . For ܤ outputs of base models {ݕොଵ, ,ොଶݕ … , ,{ො஻ݕ

this approach starts from ensemble all of the outputs of base models by logistic

regression model below.

൫ߨ ෠ܻ൯ ൌ
݁௚ሺ௒෠ሻ

1 ൅ ݁௚ሺ௒෠ሻ

Where ݃൫ ෠ܻ൯ ൌ ଴ߚ	 ൅ ොଵݕଵߚ ൅ ⋯൅ ො஻ݕ஻ߚ , and 	ߚ଴, ,ଵߚ … , ஻ߚ are the fitted coefficients

of logistic regression.

In this research, the backward selection method excluded one base model in

each round to reach the goal of not significantly losing predictive power with the

smallest number of base models. If	ܤ denotes the number of base models, in each

round, AICs of ܤ number of logistic regressions were compared. Here, each logistic

regression was created by combining ܤ െ 1 number of base models by omitting one

base model. Each base model was excluded once in a logistic regression. Thus, the

resulted AIC value of logistic regression presented the effect of each base model to the

predictive power. One base model was chosen to exclude in the next round if omitting

it resulted in the smallest AIC value. The backward selection stopped if excluding any

one of the remaining base models would not make the AIC significantly lower than that

in the previous round. Here, the chi-square ߯ଶ statistic was applied to determine the

significance of AIC decreasing at 0.05 level in the study.

29

Integrating base models

In the last step of the ensemble approach, majority voting, random forest,

extremely gradient boosting, and logistic regression models were applied to integrate

the outputs of base models with 1) all base models, 2) all base models and factor scores

of multiple correspondence analysis, 3) the optimal subsets of base models chosen by

Cramér's V and backward model selection, or 4) factor scores and the optimal subsets

of base model chosen by Cramér's V correlation and backward model selection. The

misclassification rate was used to compare all of the ensemble results.

Software and Code

Experiments were conducted in RStudio of R version 3.3.1 (R Core Team,

2016). RStudio is an integrated development environment (IDE) for R. Compared to

R, RStudio is designed to be more user-friendly. Researchers can code, edit, and run R

codes in RStudio. The open-sourced RStudio is available to download for free and is

used in this research. The RStudio for windows desktop was chosen and downloaded

from the following website, https://www.rstudio.com, by selecting platform x86_64-

w64-mingw32/x64 (64-bit). A screen shot of RStudio interface can be found in

Appendix A.

Since many researchers contribute their research results to the R community for

free, the R community is the first or best place for a researcher to find solutions to

classification problems. Random forest, extremely randomized trees (extra trees), and

extreme gradient boosting model are all available in the R community, so R becomes

an accessible option to conduct experiments in this dissertation. In addition to the

30

models mentioned above, multiple correspondence analysis and other well-known

statistical analyses are all available in the R community. Data manipulation and

calculation are also convenient to conduct in R. Due to the easy access to the R

community and documentation and tutorial of R programming, R code was used in

RStudio for all the experiments in this research.

In addition to basic R programming, research ideas are contributed to the R

community and presented by researchers in R packages. The three types of models,

random forest, extremely randomized trees, and extreme gradient boosting, are

presented in three R packages, XGBoost, extraTrees, and randomForest. They have

been widely used by many researchers in their research (Chen, 2014; Chen & He, 2015;

Diaz-Uriarte, & Alvarez de Andres, 2006; Geurts et al., 2006). The manual of all R

packages, related R code, and examples are saved in the Comprehensive R Archive

Network (CRAN) and maintained regularly by the authors. CRAN can be accessed at

https://cran.r-project.org/. Detailed information of R packages of random forest,

extremely randomized trees, extreme gradient boosting, and logistic regression model

are listed in table 5. The syntax of conducting models in R code can be found through

the links provided in the reference list.

Table 5

R Packages of Models

Model R Package Reference

Extreme Gradient Boosting xgboost Chen , He , & Benesty, 2016

Extremely Randomized Trees extraTrees
Simm, & Magrans de Abril,
2014

Random Forest randomForest
Breiman, Cutler, Liaw, &
Wiener, 2015

Logistic Regression glm Simon, 1992

31

In addition to R packages which generate the above base models or ensemble

models, multiple correspondence analysis and Cramér's V correlation analysis were

also applied in the experiments in RStudio. The related R packages, ca and vcd, are

listed in table 6.

Table 6

R Packages of Analysis

Analysis R Package Reference

Multiple Correspondence ca
Greenacre, Nenadic, & Friendly,
2016

Cramér's V correlation vcd
David, Achim, Kurt, Florian, &
Michael, 2016

Several other R packages, which supported models and analysis in the research,

are listed in table 7. They were used for data manipulation and calculation, such as

installing R packages, binarizing predictors, supporting extra tree package, and

calculating variable importance when building a model, selecting base models, and

integrating base models.

Table 7

Supportive R Packages

R Package Function Reference

caret Data manipulation Kuhn et al., 2016

DiagrammeR Plot variable importance Iannone, 2016

Ckmeans.1d.dp Plot variable importance Song & Wang, 2016

rJava Support Extra Tree package Urbanek, 2016

drat Install R packages Eddelbuettel et al., 2016

32

Data Sets

The research experiments were conducted on three UCI data sets that are public

and free to download (Lichman, 2013; Blake & Merz, 1998). UCI is a repository of

machine learning database. These data sets are real-world data and extensively used by

researchers in many research studies (Ron, 1996; Yeh & Lien, 2009; Thuraisingham,

Tran, Boord & Craig, 2007). These three data sets represent binary classification

problems with different class ratios of the target attribute. They were used to test if the

proposed ensemble approach achieved better classification accuracy on binary

classification problems. The profiles of the three data sets are listed in table 8.

Table 8

Data Sets

Data Set
of

Attributes
of

Instances
Class of
Target

Class Ratio of
Target Attribute

Adult 14 48842 2 24% vs 76%

Credit Card Clients 23 30000 2 22% vs 78%

EEG Eye State 14 14980 2 45% vs 55%
Note: # means count

The Adult data set is provided by UCI as two separate sets: training and testing

data sets. The Credit Card Clients and EEG Eye State data sets were partitioned into

training and testing data sets in a 70% vs. 30% ratio. Base models were built on training

data sets. Prediction was provided by base models on testing data sets. The number of

instances in training and testing data sets are listed in table 9 as follows.

33

Table 9

Training and Testing Data Sets

Data Set
Number of Instances in

Training Set
Number of Instances in

Testing Set
Adult 32561 16281

Credit Card Clients 21000 9000

EEG Eye State 10486 4494

Experiment Design

There are four experiment designs. They were designed to explore how model

selection, MCA factor scores, and ensemble method affected the classification

accuracy. They were also designed to identify ensemble strategies to improve the

ensemble performance. Detailed designs and what research questions were answered

are presented and explained below.

1. Ensemble all base models

2. Ensemble all base models and MCA factor scores

3. Ensemble with backward or Cramér's V model selection

4. Ensemble with MCA factor scores and backward or Cramér's V model

selection

Ensemble all Base Models

This experiment was performed in the following steps. Ten base models of

random forest (RF), eleven extremely randomized trees (ERT), and ten extreme

gradient boosting (XGB) models were first generated. Then, majority voting, random

forest, and extreme gradient boosting model were applied to ensemble all of those

34

thirty-one base models. The only reason for creating eleven extremely randomized trees

is to avoid even voting of the binary classification of target in the majority voting

ensemble. There is also no specific reason for choosing extremely randomized trees as

the thirty-first base model.

The average accuracy of ten random forest base models was considered as the

benchmark in our research because of its well-known reputation of good performance.

The accuracy of ensemble results was compared with that of each base model and the

benchmark to find out whether the four ensemble methods helped to increase the

accuracy. The accuracy of ensemble results was also compared with each other. The

best ensemble method among random forest, extreme gradient boosting, logistic

regression and majority voting was identified when integrating the thirty-one base

models.

Figure 1. Ensemble all Base Models

EnsembleBase Model

10 Random Forests

11 Extremely
Randomized Trees

10 Extreme Gradient
Boosting

Majority Voting

Random Forest

Extreme Gradient
Boosting

Logistic Regression

35

The experiment answered the following research questions.

1. Will the four ensemble approaches of ensemble-based models increase the

predictive accuracy when compared with the benchmark or the individual

ensemble models?

2. As base classifiers, are random forest, extremely randomized trees, and extreme

gradient boosting models good candidates to be ensembled?

3. How will various model combinations (majority voting, random forest, extreme

gradient boosting, and logistic regression) affect the predictive accuracy of the

ensemble approach?

Ensemble all Base Models and MCA Factor Scores

In addition to the experiment that integrated all base models, the experiment in

this section was performed by adding factor scores of multiple correspondence

analysis. Multiple correspondence analysis was applied to the predictions of thirty-one

base models to generate MCA factor scores. MCA factor scores were considered to

represent the maximum variance of the thirty-one base models. Because of the different

nature of individual data sets, a different number of sets of factor scores were generated

for the three data sets used in the experiment. The number ranged from 4 to 6. Random

forest, extreme gradient boosting, and logistic regression model were applied to

ensemble all the base models and the factor scores of multiple correspondence analysis.

In this experiment, the base models are the same as those in the first experiment design.

Majority voting is not applicable in the experiment because MCA factor scores were

numerical but not categorical attribute for ensemble.

36

The performance of ensemble results was compared with those of each base

model and the benchmark to determine whether the four ensemble methods increased

the predictive accuracy. Compared with the experiment that only integrated base

models, the factor scores of multiple correspondence analysis were added as predictors

in the final ensemble to identify whether adding MCA factor scores increased the

predictive accuracy.

Figure 2. Ensemble all Base Models and MCA Factor Scores

The three ensemble results were compared with each other. The one with the

best performance among random forest, extreme gradient boosting, and logistic

regression was determined when combining the thirty-one base models and MCA

factor scores.

The experiment answered the following research questions.

EnsembleBase Model & Factor Scores

10 Random Forests

11 Extremely
Randomized Trees

10 Extreme Gradient
Boosting

+

Factor Scores of Multiple
Correspondence Analysis

Random Forest

Extreme Gradient Boosting

Logistic Regression

37

1. Will the three ensemble approaches of ensemble-based models increase the

predictive accuracy when compared with the benchmark or the individual

ensemble models?

2. As base classifiers, are random forest, extremely randomized trees, and extreme

gradient boosting model good candidates to be ensembled with MCA factor

scores?

3. Will the multiple correspondence analysis make a difference on the predictive

accuracy of the overall ensemble approach?

4. How will various model combinations (random forest, extreme gradient

boosting, and logistic regression) affect the predictive accuracy of the ensemble

approach?

Ensemble with Cramér's V correlation or Backward Model Selection

Compared with the second experiment design, the model selection procedure

was added in, but factor scores of multiple correspondence analysis was excluded from

the experiment presented in this section. Two methods, Cramér's V correlation or

Backward Model Selection, were applied in the model selection step. The whole

procedure includes three steps: base model generation, model selection, and ensemble.

The base models generated in the first step are the same as those in the previous

experiment designs.

The first model selection method is derived from Cramér's V correlation

analysis. In this method, Cramér's V correlation coefficient is calculated between each

pair of base models. Paired base models with correlation coefficient lower than a

threshold value are kept in the final ensemble step. In order to keep the diversity of

38

base models, base models which are less correlated with each other were kept. The final

ensemble method was applied to the selected base models by majority voting, random

forest, and extreme gradient boosting model. Since the threshold of Cramér's V

correlation coefficient value was hard to determine, we didn’t use individual correlation

coefficient as the cutout point to pick the least related base models. We evaluated the

average value of Cramér’s V correlation coefficient between different types of base

models to select two types of least correlated base models. The base models in those

two types were selected and kept in the final ensemble procedure. The Cramér's V

correlation coefficients of each paired base models on the three data sets are presented

in Appendix C, D and E. It is shown that extreme gradient boosting and extremely

randomized trees base models have the smallest average Cramér's V correlation

coefficient for the three data sets. Therefore, all extreme gradient boosting and

extremely randomized trees base models were selected as the optimal base models and

combined in the final ensemble step.

Figure 3. Ensemble with Model Selection

EnsembleModel SelectionBase Model

10 Random
Forests

11 Extremely
Randomized Trees

10 Extreme
Gradient Boosting

Cramér's V
Correlation Random Forest

Extreme Gradient
Boosting

Majority Voting

Backward Selection Logistic
Regression

39

Another model selection method is backward selection based on Akaike's

information criterion (AIC) which is combined with logistic regression model. This

model selection procedure starts from ensemble all base models. Then, base models are

removed one by one in the ensemble step until the AIC value doesn’t decrease

significantly at 0.05 level. In each round, the base model that contributed to the AIC

the most is chosen and excluded in the next round.

The accuracy of ensemble results was compared with those of each base model

and the benchmark to determine whether the four ensemble methods with model

selection was able to increase the predictive accuracy. The best candidate base models

chosen by different model selection methods were selected. Compared with the

experiment design which integrated all base models without model selection, we added

the model selection procedure in the experiment presented in this section. By

comparing the performance of those two experiments, we were able to find out whether

the model selection procedure can help to increase the predictive accuracy. Lower

predictive accuracy might be observed because a smaller number of base models, which

meant less information, were used in the final ensemble. Whether model selection

helped on combining tree-based ensemble models was also learned by comparing the

ensemble performance in experiment two.

The accuracy of ensemble results of the two model selection methods was

compared to find out which one was the better model selection method. We also

identified which combination of model selection method and final ensemble method

worked the best together in increasing predictive accuracy.

The experiment answered the following research questions.

40

1. Will the four ensemble approaches of ensemble-based models increase the

predictive accuracy when compared with the benchmark or the individual

ensemble models?

2. Are random forest, extremely randomized trees, and extreme gradient boosting

good candidates as base classifiers when applying model selection in ensemble?

3. How will various model combinations (random forest, extreme gradient

boosting, and logistic regression) affect the predictive accuracy of the ensemble

approach?

4. Will the two types of model selections make a difference in the predictive

accuracy of the overall ensemble approach?

Ensemble with MCA Factor Scores and Model Selections

In this experiment design, factor scores of multiple correspondence analysis

were added into the experiment. The whole procedure involved three steps, base model

and factor score creation, base model selection, and ensemble. In the first step, ten

random forest, eleven extreme randomized trees, and ten extreme gradient boosting

base models were created. They were the same base models as those in the previous

three experiment designs. Then, multiple correspondence analysis was applied to the

predictions of the base models to generate the factor scores of MCA. The factor scores

of MCA were also the same as those in the second experiment design. MCA factor

scores were then integrated together with the selected base models in the final model

ensemble step by logistic regression, random forest, and extreme gradient boosting

model. Since majority voting ensemble can only be applied to the outputs of base

41

models, but MCA factor scores were not outputs of base models, majority voting

ensemble was not applicable in the experiment.

The two model selection methods, backward AIC selection and Cramér’s V

correlation selection, were used in this experiment. The backward selection method

started from combining all base models and MCA factor scores. Model selection and

ensemble worked together to evaluate base models and MCA factor scores one by one,

and then determine which base model or factor scores contributed the most AIC that

provided by logistic regression ensemble in each round. The identified base model or

factor scores would be excluded in the next round of evaluation. Only one base model

or one factor score was eliminated in each round. The AIC value of logistic regression

model in each round was compared with that in the previous round. If the AIC value

didn’t decrease significantly at 0.05 level, the backward selection stopped. The

experiment showed that the same group of base models was selected as in experiment

three. Figure 4 shows the experiment structure of logistic regression ensemble with

backward selection.

The accuracy of the ensemble result was compared with the accuracy of each

base model and the benchmark. Whether integrating the backward model selection and

factor scores increased the predictive accuracy was determined. Compared with the

ensemble method without factor scores but with backward model selection, whether

the method that integrated the factor scores with backward selection increased the

predictive accuracy was learned.

42

Figure 4. Ensemble with Factor Scores and Model Selection

The second model selection method is applying Cramér's V correlation analysis

to select the least correlated base models. Cramér's V correlation coefficient is

calculated between each base model. Ideally, paired base models with a correlation

coefficient lower than a threshold value are kept to ensemble with factor scores in the

final ensemble step. However, the correlations between base models on different data

sets vary, thus the threshold is not easy to determine. We decided to evaluate the

average correlation coefficients of different types of base models. Two types of base

models that had the lowest average correlation were chosen. Then all base models in

these two types were combined in the final ensemble. The selection procedure and the

selected base models are the same as those in experiment three. It was shown that

extreme gradient boosting and extremely randomized trees base models had the

EnsembleModel SelectionBase Model &
Factor Scores

10 Random Forests

11 Extremely
Randomized Trees

10 Extreme Gradient
Boosting

Cramér's V
Correlation

Random Forest

Extreme Gradient
Boosting

Backward Selection Logistic Regression

Factor Scores of
Multiple
Correspondence
Analysis

43

smallest average Cramér's V correlation coefficient for the three UCI data sets.

Therefore, all base models in these two types were selected in the final ensemble step.

The final ensemble methods for the factor scores and the selected base models are

random forest and extreme gradient boosting model.

We compared the accuracy of ensemble results with the accuracy of individual

base model and the benchmark. Whether the two ensemble methods with Cramér's V

model selection and factor scores increased the predictive accuracy, and which

ensemble method performed the best were determined. Compared with the ensemble

method without factor scores but with Cramér's V model selection, whether integrating

the factor scores with selected base models increased the predictive accuracy was also

determined. From the experiment result, the best candidate of base models chosen by

different model selection methods was learned.

We also compared the accuracy of ensemble results of the two different types

of model selection methods. The better model selection method among backward

selection and Cramér's V selection was determined when integrating factor scores of

multiple correspondence analysis in the final ensemble step. The combination of model

selection and final ensemble method which helps increase predictive accuracy the most

was also learned.

The experiment answered the following research questions.

1. Will the three ensemble approaches of ensemble-based models increase the

predictive accuracy when compared with the benchmark or the individual

ensemble models?

44

2. Are random forest, extremely randomized trees, and extreme gradient boosting

good candidates as base classifiers when ensembling with factor scores of

multiple correspondence analysis and applying model selection?

3. Will the multiple correspondence analysis make a difference on the predictive

accuracy of the overall ensemble approach when integrating two different types

of model selection?

4. How will various model combination methods affect the predictive accuracy of

the ensemble approach?

Summary

To achieve the dissertation goal and answer the research questions, three data

sets from an open source server, UCI, were used to test our research ideas. Various

experiments were conducted using R code in RStudio. Through the experiments,

whether integrating ensemble-based models increased predictive accuracy, how

different ensemble-based models worked when they were further ensembled, and how

multiple correspondence analysis performed in the ensemble was studied. Experiments

with four different designs were conducted in the research. Experiment results between

different designs were compared. How multiple correspondence analysis and base

model selection affected the ensemble approach was studied.

Thirty-one base models were generated: ten random forest models, ten extreme

gradient boosting models, and eleven extremely randomized tree models. These base

models were the same in all four designs. In the first experiment, all base models were

integrated by majority voting, random forest, extreme gradient boosting, and logistic

regression. In the second experiment, all base models were combined with factor scores

45

of multiple correspondence analysis by the same three ensemble methods in experiment

one excluding majority voting. In the third experiment, factor scores were excluded but

two base model selection methods were added. When applying Cramér's V model

selection method, the ensemble methods were the same three ones used in experiment

one excluding logistic regression. When applying backward model selection method,

the ensemble model was logistic regression. The fourth experiment has the same

ensemble structure as in the third experiment, however factor scores of multiple

correspondence analysis was integrated in the ensemble approach. Part of the fourth

experiment utilized backward model selection and logistic regression ensemble

method. The rest of the fourth experiment adopted Cramér's V base model selection

with two ensemble methods, random forest and extreme gradient boosting. Those four

experiments were designed to answer our research questions in different situations step

by step. Table 10 summarizes the structure of the four experiment designs. Appendix

B shows the R code for all the four experiment designs for data set EEG as an example.

Table 10

Structure of Experiment Designs

Experiment
Design

Ensemble
Variables

Model Selection Ensemble Methods

One all base models none
Majority Voting, Extreme

Gradient Boosting, Random
Forest, Logistic Regression

Two
all base models
+ MCA factor

scores
none

Extreme Gradient Boosting,
Random Forest, Logistic

Regression

Three
selected base

models
Backward or
Cramér’s V

Majority Voting, Extreme
Gradient Boosting, Random
Forest, Logistic Regression

46

Experiment
Design

Ensemble
Variables

Model Selection Ensemble Methods

Four
selected base

models + MCA
factor scores

Backward or
Cramér’s V

Extreme Gradient Boosting,
Random Forest, Logistic

Regression

47

Chapter 4

Results

Base Models

The first step of all four experiments was generating ten extreme gradient

boosting (XGB), eleven extremely randomized trees (ERT), and ten random forest (RF)

models. The same thirty-one models were generated as base models in all the four

experiments. Training data sets were used to generate base models, which then

provided predictions for testing data sets. All the classification accuracies reported in

this research are based on testing data sets. The classification accuracies of each base

model on the three UCI data sets are summarized in table 11.

Table 11

Classification Accuracy of Base Models

Data Set
Base

Model

RF ERT XGB

of
Trees

Accuracy
of

Trees
Accuracy Eta Accuracy

Adult

1 50 0.8644 50 0.8450 0.1 0.8706
2 100 0.8649 100 0.8433 0.2 0.8728
3 150 0.8640 150 0.8446 0.3 0.8708
4 200 0.8646 200 0.8452 0.4 0.8730
5 250 0.8651 250 0.8452 0.5 0.8745
6 300 0.8642 300 0.8445 0.6 0.8762
7 350 0.8649 350 0.8455 0.7 0.8751

48

Data Set
Base

Model

RF ERT XGB

of
Trees

Accuracy
of

Trees
Accuracy Eta Accuracy

8 400 0.8649 400 0.8458 0.8 0.8770
9 450 0.8642 450 0.8450 0.9 0.8767
10 500 0.8651 500 0.8458 1.0 0.8755
11 N/A N/A 550 0.8456 N/A N/A

Average N/A 0.8646 N/A 0.8450 N/A 0.8742

Credit
Card

Clients

1 50 0.8143 50 0.8121 0.1 0.8169
2 100 0.8170 100 0.8143 0.2 0.8203
3 150 0.8176 150 0.8134 0.3 0.8234
4 200 0.8174 200 0.8130 0.4 0.8236
5 250 0.8172 250 0.8130 0.5 0.8254
6 300 0.8156 300 0.8130 0.6 0.8262
7 350 0.8150 350 0.8130 0.7 0.8257
8 400 0.8176 400 0.8148 0.8 0.8258
9 450 0.8187 450 0.8148 0.9 0.8260
10 500 0.8169 500 0.8148 1.0 0.8256
11 N/A N/A 550 0.8148 N/A N/A

Average N/A 0.8167 N/A 0.8137 N/A 0.8239

EEG
Eye
State

1 50 0.9243 50 0.9372 0.1 0.9009

2 100 0.9268 100 0.9424 0.2 0.9059
3 150 0.9237 150 0.9446 0.3 0.9003
4 200 0.9295 200 0.9455 0.4 0.9119
5 250 0.9292 250 0.9439 0.5 0.9105
6 300 0.9308 300 0.9468 0.6 0.9089
7 350 0.9288 350 0.9435 0.7 0.9061
8 400 0.9306 400 0.9453 0.8 0.8988
9 450 0.9299 450 0.9450 0.9 0.8925
10 500 0.9288 500 0.9473 1.0 0.8636
11 N/A N/A 550 0.9473 N/A N/A

Average N/A 0.9282 N/A 0.9444 N/A 0.8999

Extreme gradient boosting base models provided better average or individual

classification accuracy than random forest and extremely randomized trees for the

Adult and Credit Card Clients data sets. However, it provided lower average or

49

individual classification accuracy than the other two types of base models on the EEG

State data set. Extremely randomized trees provided lower individual and average

classification accuracy than the other two types of models on the Adult and Credit Card

Clients data sets. However, it provided better individual and average classification

accuracy on the EEG State data set than the other two types of base models. Random

forest base models had predictive accuracy that ranged between those produced by the

other two types of base models on all three data sets. The difference of classification

accuracy between the best and worst base model on the three data sets ranged from

1.7% to 9.7%, which is shown in table 12. The table also lists the base models that

performed the best and the worst on different data sets.

Table 12

Best and Worst Classification Accuracy of Base Models

Data Set
Base Model Accuracy Difference

(%) Best Accuracy Worst Accuracy
Adult XGB (0.8770) ERT (0.8433) 4.0%

Credit Card Clients XGB (0.8262) ERT (0.8121) 1.7%
EEG Eye State ERT (0.9473) XGB (0.8636) 9.7%

Random forest base models were generated by setting up random seeds and

different numbers of individual trees in each forest. The reported classification

accuracy is replicable by using the same seed value and tree number. Figure 5 shows

that there is no linear trend of classification accuracy associated with the number of

trees in the random forest for the three data sets. A forest with more individual trees

doesn’t guarantee a better classification accuracy.

50

Figure 5. Classification Accuracy of Random Forest Base Model

Extremely randomized trees base models were also generated by setting up

random seeds and different numbers of individual trees. The reported classification

accuracies are also replicable when setting up the same seed and the same number of

51

individual trees. Figure 6 shows that the predictive accuracy is not linearly associated

with the number of individual trees. Including a larger number of individual trees in a

model does not provide a better classification accuracy.

Figure 6. Classification Accuracy of Extremely Randomized Trees Base Model

The extreme gradient boosting base models were generated by adjusting the

parameter “eta” in the xgboost R package, and then identifying the optimal number of

52

trees with a ten-fold cross validation method for the specific “eta” setting to achieve

the best predictive accuracy. Eta is defined and used in the xgboost R package to adjust

the gradient pace of boosting, thus generating different XGB models. In our

experiment, we applied different value of “eta” to generate ten different XGB base

models. Because of the randomization nature of the model, they are not replicable even

with the same setting up of parameters or random seeds. Figure 7 shows that there is

no consistent linear trend between classification accuracy and parameter “eta”. Smaller

“eta” doesn’t guarantee better performance.

Figure 7. Classification Accuracy of Extreme Gradient Boosting Base Model

53

As mentioned in the research methodology, the performance of the random

forest base model was set up as benchmarks for the three data sets. Although random

forest performed not the worst or best on providing classification accuracy on average

when compared with the other two types of base models, the average classification

accuracy of random forest base models was still set up as a benchmark value for each

data set as proposed in our research. They were compared with the ensemble

classification accuracy and helped to answer our research questions. The benchmark

values for the three data sets are listed below in table 13.

Table 13

Benchmarks of Classification Accuracy

Data Set Benchmark Classification Accuracy

Adult 0.8646

Credit Card Clients 0.8167

EEG Eye State 0.9282

Multiple Correspondence Analysis

Multiple correspondence analysis (MCA) was applied to the predictions of

thirty-one base models. It was conducted to capture the maximum variance of base

model predictions in a low-dimensional Euclidean space. In other words, it represents

integrated features of base model outputs. Factor scores were generated as the results

of multiple correspondence analysis. Although MCA produced row and column factor

scores, in our experiment, only the column factor scores were chosen and combined

with the outputs of base models in the last step. Since different data sets present

different natures, the number of generated factor scores on different data sets varied

54

from 4 to 6 sets. Table 14 shows that based on the prediction of thirty-one base models,

4 sets of factor scores were generated for the Adult and EEG Eye State data sets and 6

sets of factor scores were generated for the Credit Card Client data set. They were

combined with base models to produce the final prediction in the last ensemble step.

Table 14

Number of MCA Factor Scores

Data Set Number of MCA Factor Scores

Adult 4

Credit Card Clients 6

EEG Eye State 4

Base Model Selection

The literature shows that choosing a subset of optimal base models based on

diversity and accuracy should improve the ensemble performance (Zeng, Chao, &

Wong, 2010). To improve the predictive accuracy, we applied two model selection

methods in this research. One method is Cramér’s V correlation analysis. The other

method is backward selection based on AIC generated by logistic regression model.

Cramér’s V Correlation Analysis

 One model selection method is the Cramér’s V correlation analysis. Cramér’s

V correlation coefficient was calculated for paired base models; then, paired base

models with relative lower values of the correlation coefficient were selected and kept

in the final ensemble step. Appendix C, D, and E list the correlation coefficients of each

paired base models for the three data sets in detail. It shows that random forest base

55

models and extremely randomized trees base models have the most correlated

prediction on both credit card clients and EEG eye state data sets, and the second

correlated prediction on the adult data set. This is not surprising because these two

types of models have very similar theories in producing predictions. Extreme gradient

boosting model and extremely randomized trees generated the least correlated

predictions on all three data sets. On the credit card client data set, extreme gradient

boosting base models generated predictions which are less correlated with those

generated by both random forest and extremely randomized trees base models.

It was hard to select a threshold value of correlation coefficient and finalize the

number of selected base models for each data set. However, considering the average

correlation between different types of base models, it was found that XGB and ERT

base models had the least correlated nature on average. Thus, ten XGB and eleven ERT

base models were kept as the selected base models in experiment 3 and 4. The average

Cramér's V correlation coefficients of two types of base models, which are summarized

from Appendix C, D, and E, are listed in table 15.

Table 15

Average Cramér's V Correlation Coefficient of Two Type of Base Models

Data Set XGB vs. ERT XGB vs. RF ERT vs. RF

Adult 0.7220 0.8572 0.7829

Credit Card Clients 0.0049 0.0059 0.8313

EEG Eye State 0.8257 0.8271 0.9306
Note: XGB = Extreme Gradient Boosting; ERT = Extremely Randomized Trees; RF =
Random Forest

56

Backward Selection Method

Another base model selection method in the research is backward selection

based on AIC provided by logistic regression model. It first includes all base model

outputs as variable inputs for a logistic regression ensemble. The AIC of each variable

is evaluated one by one by excluding the variable in the logistic regression ensemble.

The variable (base model output) that contributes the most ensemble AIC is excluded

in the next round. The overall AIC of the new logistic regression ensemble was

compared with that of previous logistic regression ensemble. If the decreasing of

overall AIC wasn’t significant at 0.05 alpha level, the backward selection procedure

stopped. Table 16 summarizes the number and type of selected base models, the initial

AIC with all base models, and the final AIC with only selected base models.

The backward selection procedure selected 10 base models on adult data set, 14

base models on the credit card client data set, and 15 base models on the EEG eye state

data set. Extreme gradient boosting base models were selected the most on adult and

EEG eye state data sets. Random forest base models were selected the most on the

credit card client data set, and the least or equal least on the other two data sets.

Extremely randomized trees were selected equal least on Adult and Credit Card Clients

data set. Compared to the overall thirty-one base models without selection, the number

of optimal subset of base models is only 50% or less in count. Overall, XGB base

models were more favorite to the backward AIC selection. It makes sense because XGB

base models provide better predictions in accuracy than the other two types of base

models.

57

Table 16

Backward Selected Base Models with AIC Values

Data Set Selected Base Models
AIC without

Selection
AIC with
Selection

Adult 5 XGB, 2 ERT, 2RF 11307 10634

Credit Card Clients 4 XGB, 4 ERT, 6RF 8261 8247

EEG Eye State 7 XGB, 5 ERT, 3RF 1456 1432

Experiment One: Ensemble all Base Models

In this experiment, all thirty-one base models were ensembled by four different

ensemble methods, majority voting (MV), extreme gradient boosting (XGB), random

forest (RF), and logistic regression (LR). The ensemble performance was compared

with the benchmark and those of individual base models on the three UCI data sets.

The four types of ensembles were also compared with each other.

Ensembles Compared with Benchmarks

In Table 17, the classification accuracy of the ensemble models on the three

UCI test data sets are listed. Overall, all the ensemble accuracies are better than the

benchmarks on all the three data sets. Random Forest ensemble method performed the

best on increasing the accuracy on all the data sets. Majority voting ensemble method

increased the predictive accuracy the least on all three data sets. Extreme gradient

boosting and logistic regression ensemble methods had comparable performance with

random forest on the Adult data set. They achieved better classification performance

than majority voting method and less classification performance than random forest

method on Credit Card Clients and EEG Eye State data sets. Compared with

58

benchmarks, majority voting ensemble method increased the classification accuracy on

the three data sets from 0.05% to 1.14%; logistic regression ensemble method increased

the accuracy from 0.33% to 3.54%; extreme gradient boosting ensemble method

increased the accuracy from 0.61% to 3.55%; random forest ensemble method

increased the accuracy from 2.36% to 4.19%.

 Table 17

Ensemble Accuracy of all Base Models

Data Set
Benchmark
Accuracy

Ensemble Method
Ensemble
Accuracy

Accuracy
Increase

Adult 0.8646

Majority Voting 0.8688 0.49%

Random Forest 0.8957 3.60%

Extreme Gradient Boosting 0.8953 3.55%

Logistic Regression 0.8952 3.54%

Credit
Card

Clients
0.8167

Majority Voting 0.8171 0.05%

Random Forest 0.8360 2.36%

Extreme Gradient Boosting 0.8217 0.61%

Logistic Regression 0.8194 0.33%

EEG Eye
State

0.9282

Majority Voting 0.9388 1.14%

Random Forest 0.9671 4.19%

Extreme Gradient Boosting 0.9539 2.77%

Logistic Regression 0.9522 2.59%

Ensembles Compared with Individual Base Models

Compared with individual base models, the classification accuracy provided by

the majority voting ensemble is higher than those of RF and ERT base models, but

lower than those of XGB base models on Adult data sets. On EEG Eye State data set,

it had better performance than individual RF and XGB base models, but worse

performance than ERT base models. On the Credit Card Clients data set, it had better

59

performance than ERT base models and half of RF base models, but worse performance

than XGB base models. In summary, the majority voting ensemble method achieved

better performance than only around two third individual base models. It seemed that

majority voting method was not an ideal ensemble method in this experiment because

the base model performance of XGB or ERT or RF outperformed its performance on

different data sets. Table 18 lists the comparison in detail.

Table 18

MV Ensemble in Experiment One Compared with Base Models

Data
Set

Base
Model

MV Ensemble vs.
RF Base Model

MV Ensemble vs.
ERT Base Model

MV Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Adult

1 0.8644 0.50% 0.8450 2.82% 0.8706 -0.21%

2 0.8649 0.45% 0.8433 3.02% 0.8728 -0.46%

3 0.8640 0.56% 0.8446 2.86% 0.8708 -0.23%

4 0.8646 0.48% 0.8452 2.80% 0.8730 -0.48%

5 0.8651 0.43% 0.8452 2.80% 0.8745 -0.65%

6 0.8642 0.53% 0.8445 2.87% 0.8762 -0.84%

7 0.8649 0.45% 0.8455 2.75% 0.8751 -0.72%

8 0.8649 0.45% 0.8458 2.72% 0.8770 -0.93%

9 0.8642 0.53% 0.8450 2.82% 0.8767 -0.90%

10 0.8651 0.43% 0.8458 2.72% 0.8755 -0.77%

11 N/A N/A 0.8456 2.74% N/A N/A

Average 0.8646 0.48% 0.8450 2.81% 0.8742 -0.62%

Credit
Card

Clients

1 0.8143 0.34% 0.8121 0.62% 0.8169 0.02%

2 0.8170 0.01% 0.8143 0.34% 0.8203 -0.39%

3 0.8176 -0.06% 0.8134 0.45% 0.8234 -0.77%

4 0.8174 -0.04% 0.8130 0.50% 0.8236 -0.79%

5 0.8172 -0.01% 0.8130 0.50% 0.8254 -1.01%

6 0.8156 0.18% 0.8130 0.50% 0.8262 -1.10%

7 0.8150 0.26% 0.8130 0.50% 0.8257 -1.04%

8 0.8176 -0.06% 0.8148 0.28% 0.8258 -1.05%

9 0.8187 -0.20% 0.8148 0.28% 0.8260 -1.08%

60

Data
Set

Base
Model

MV Ensemble vs.
RF Base Model

MV Ensemble vs.
ERT Base Model

MV Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

10 0.8169 0.02% 0.8148 0.28% 0.8256 -1.03%

11 N/A N/A 0.8148 0.28% N/A N/A

Average 0.8167 0.05% 0.8137 0.41% 0.8239 -0.82%

EEG
Eye
State

1 0.9243 1.57% 0.9372 0.17% 0.9009 4.21%

2 0.9268 1.29% 0.9424 -0.38% 0.9059 3.63%

3 0.9237 1.63% 0.9446 -0.61% 0.9003 4.28%

4 0.9295 1.00% 0.9455 -0.71% 0.9119 2.95%

5 0.9292 1.03% 0.9439 -0.54% 0.9105 3.11%

6 0.9308 0.86% 0.9468 -0.84% 0.9089 3.29%

7 0.9288 1.08% 0.9435 -0.50% 0.9061 3.61%

8 0.9306 0.88% 0.9453 -0.69% 0.8988 4.45%

9 0.9299 0.96% 0.9450 -0.66% 0.8925 5.19%

10 0.9288 1.08% 0.9473 -0.90% 0.8636 8.71%

11 N/A N/A 0.9473 -0.90% N/A N/A

Average 0.9282 1.14% 0.9444 -0.60% 0.8999 4.32%
Note: N/A = there was no data available

By comparing the ensemble performance, the extreme gradient boosting

method outperformed all thirty-one base models on Adult and EEG Eye State data sets,

and also outperformed majority base models excluding eight XGB base model on the

Credit Card Clients data set. The XGB ensemble method increased the classification

accuracy from 2.09% to 6.16% compared with the base models on the Adult data set.

It also increased the classification accuracy from 0.70% to 10.46% on the EEG Eye

State data set. This ensemble method increased the classification accuracy from 0.17%

to 1.07% on the Credit Card Clients data set with the exception of eight XGB base

models which had better performance than the ensemble method. Table 19 lists the

comparison in detail.

61

Table 19

XGB Ensemble in Experiment One Compared with Base Models

Data
Set

Base
Model

XGB Ensemble vs.
RF Base Model

XGB Ensemble vs.
ERT Base Model

XGB Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Adult

1 0.8644 3.57% 0.8450 5.96% 0.8706 2.83%

2 0.8649 3.51% 0.8433 6.16% 0.8728 2.58%

3 0.8640 3.63% 0.8446 6.00% 0.8708 2.82%

4 0.8646 3.55% 0.8452 5.93% 0.8730 2.56%

5 0.8651 3.49% 0.8452 5.93% 0.8745 2.38%

6 0.8642 3.60% 0.8445 6.01% 0.8762 2.18%

7 0.8649 3.51% 0.8455 5.89% 0.8751 2.31%

8 0.8649 3.52% 0.8458 5.86% 0.8770 2.09%

9 0.8642 3.60% 0.8450 5.96% 0.8767 2.12%

10 0.8651 3.50% 0.8458 5.85% 0.8755 2.26%

11 N/A N/A 0.8456 5.87% N/A N/A

Average 0.8646 3.55% 0.8450 5.95% 0.8742 2.41%

Credit
Card

Clients

1 0.8143 0.91% 0.8121 1.18% 0.8169 0.59%

2 0.8170 0.58% 0.8143 0.91% 0.8203 0.17%

3 0.8176 0.50% 0.8134 1.02% 0.8234 -0.21%

4 0.8174 0.53% 0.8130 1.07% 0.8236 -0.23%

5 0.8172 0.55% 0.8130 1.07% 0.8254 -0.45%

6 0.8156 0.75% 0.8130 1.07% 0.8262 -0.54%

7 0.8150 0.82% 0.8130 1.07% 0.8257 -0.48%

8 0.8176 0.50% 0.8148 0.85% 0.8258 -0.50%

9 0.8187 0.37% 0.8148 0.85% 0.8260 -0.52%

10 0.8169 0.59% 0.8148 0.85% 0.8256 -0.47%

11 N/A N/A 0.8148 0.85% N/A N/A

Average 0.8167 0.61% 0.8137 0.98% 0.8239 -0.27%

EEG
Eye
State

1 0.9243 3.20% 0.9372 1.78% 0.9009 5.88%

2 0.9268 2.92% 0.9424 1.22% 0.9059 5.30%

3 0.9237 3.27% 0.9446 0.98% 0.9003 5.95%

4 0.9295 2.63% 0.9455 0.89% 0.9119 4.61%

5 0.9292 2.66% 0.9439 1.06% 0.9105 4.77%

6 0.9308 2.48% 0.9468 0.75% 0.9089 4.95%

7 0.9288 2.70% 0.9435 1.10% 0.9061 5.28%

62

Data
Set

Base
Model

XGB Ensemble vs.
RF Base Model

XGB Ensemble vs.
ERT Base Model

XGB Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

8 0.9306 2.50% 0.9453 0.91% 0.8988 6.13%

9 0.9299 2.58% 0.9450 0.94% 0.8925 6.88%

10 0.9288 2.70% 0.9473 0.70% 0.8636 10.46%

11 N/A N/A 0.9473 0.70% N/A N/A

Average 0.9282 2.76% 0.9444 1.00% 0.8999 6.00%
Note: N/A = there was no data available

The ensemble performance of logistic regression method is better than all thirty-

one base models on the Adult and EEG Eye State data sets, and is also better than most

base models excluding nine XGB base model on the Credit Card Clients data set. The

LR ensemble method increased the classification accuracy from 2.08% to 6.15% when

compared with the base models on the Adult data set. It also increased the classification

accuracy from 0.52% to 10.26% on the EEG Eye State data set. This ensemble method

improved the classification accuracy from 0.09% to 0.9% on the Credit Card Clients

data set except that nine XGB base models had better performance than the LR

ensemble. The comparison in detail can be found in table 20.

Table 20

LR Ensemble in Experiment One Compared with Base Models

Data
Set

Base
Model

LR Ensemble vs.
RF Base Model

LR Ensemble vs.
ERT Base Model

LR Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Adult

1 0.8644 3.56% 0.8450 5.94% 0.8706 2.82%

2 0.8649 3.50% 0.8433 6.15% 0.8728 2.57%

3 0.8640 3.62% 0.8446 5.99% 0.8708 2.81%

4 0.8646 3.54% 0.8452 5.92% 0.8730 2.55%

5 0.8651 3.48% 0.8452 5.92% 0.8745 2.37%

63

Data
Set

Base
Model

LR Ensemble vs.
RF Base Model

LR Ensemble vs.
ERT Base Model

LR Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

6 0.8642 3.59% 0.8445 6.00% 0.8762 2.17%

7 0.8649 3.50% 0.8455 5.88% 0.8751 2.30%

8 0.8649 3.51% 0.8458 5.84% 0.8770 2.08%

9 0.8642 3.59% 0.8450 5.94% 0.8767 2.11%

10 0.8651 3.48% 0.8458 5.84% 0.8755 2.25%

11 N/A N/A 0.8456 5.86% N/A N/A

Average 0.8646 3.54% 0.8450 5.94% 0.8742 2.40%

Credit
card

clients

1 0.8143 0.63% 0.8121 0.90% 0.8169 0.31%

2 0.8170 0.29% 0.8143 0.63% 0.8203 -0.11%

3 0.8176 0.22% 0.8134 0.74% 0.8234 -0.49%

4 0.8174 0.24% 0.8130 0.79% 0.8236 -0.51%

5 0.8172 0.27% 0.8130 0.79% 0.8254 -0.73%

6 0.8156 0.47% 0.8130 0.79% 0.8262 -0.82%

7 0.8150 0.54% 0.8130 0.79% 0.8257 -0.76%

8 0.8176 0.22% 0.8148 0.56% 0.8258 -0.78%

9 0.8187 0.09% 0.8148 0.56% 0.8260 -0.80%

10 0.8169 0.31% 0.8148 0.56% 0.8256 -0.75%

11 N/A N/A 0.8148 0.56% N/A N/A

Average 0.8167 0.33% 0.8137 0.70% 0.8239 -0.54%

EEG
Eye
State

1 0.9243 3.02% 0.9372 1.60% 0.9009 5.69%

2 0.9268 2.74% 0.9424 1.04% 0.9059 5.11%

3 0.9237 3.09% 0.9446 0.80% 0.9003 5.76%

4 0.9295 2.44% 0.9455 0.71% 0.9119 4.42%

5 0.9292 2.48% 0.9439 0.88% 0.9105 4.58%

6 0.9308 2.30% 0.9468 0.57% 0.9089 4.76%

7 0.9288 2.52% 0.9435 0.92% 0.9061 5.09%

8 0.9306 2.32% 0.9453 0.73% 0.8988 5.94%

9 0.9299 2.40% 0.9450 0.76% 0.8925 6.69%

10 0.9288 2.52% 0.9473 0.52% 0.8636 10.26%

11 N/A N/A 0.9473 0.52% N/A N/A

Average 0.9282 2.58% 0.9444 0.82% 0.8999 5.81%
Note: N/A = there was no data available

64

The ensemble performance of random forest method is better than all thirty-one

base models on all three data sets. The RF ensemble method increased the classification

accuracy from 2.14% to 6.21% when compared with the base models on the Adult data

set. It improved the classification accuracy from 2.09% to 11.98% on the EEG Eye

State data. This ensemble method also increased the classification accuracy from 1.19%

to 2.94% on the Credit Card Clients data. The accuracies increased by RF ensemble

method outperformed all the other accuracies increased by MV, XGB, and LR

ensemble method. The comparison in detail is in table 21.

Table 21

RF Ensemble in Experiment One Compared with Base Models

Data
Set

Base
Model

RF Ensemble vs.
RF Base Model

RF Ensemble vs.
ERT Base Model

RF Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Adult

1 0.8644 3.62% 0.8450 6.00% 0.8706 2.88%

2 0.8649 3.56% 0.8433 6.21% 0.8728 2.62%

3 0.8640 3.67% 0.8446 6.05% 0.8708 2.86%

4 0.8646 3.59% 0.8452 5.98% 0.8730 2.60%

5 0.8651 3.53% 0.8452 5.98% 0.8745 2.43%

6 0.8642 3.65% 0.8445 6.06% 0.8762 2.23%

7 0.8649 3.56% 0.8455 5.93% 0.8751 2.36%

8 0.8649 3.56% 0.8458 5.90% 0.8770 2.14%

9 0.8642 3.65% 0.8450 6.00% 0.8767 2.16%

10 0.8651 3.54% 0.8458 5.90% 0.8755 2.31%

11 N/A N/A 0.8456 5.92% N/A N/A

Average 0.8646 3.59% 0.8450 5.99% 0.8742 2.46%

Credit
Card

Clients

1 0.8143 2.66% 0.8121 2.94% 0.8169 2.34%

2 0.8170 2.33% 0.8143 2.66% 0.8203 1.91%

3 0.8176 2.25% 0.8134 2.78% 0.8234 1.53%

4 0.8174 2.28% 0.8130 2.83% 0.8236 1.51%

5 0.8172 2.30% 0.8130 2.83% 0.8254 1.28%

6 0.8156 2.50% 0.8130 2.83% 0.8262 1.19%

65

Data
Set

Base
Model

RF Ensemble vs.
RF Base Model

RF Ensemble vs.
ERT Base Model

RF Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

7 0.8150 2.58% 0.8130 2.83% 0.8257 1.25%

8 0.8176 2.25% 0.8148 2.60% 0.8258 1.24%

9 0.8187 2.11% 0.8148 2.60% 0.8260 1.21%

10 0.8169 2.34% 0.8148 2.60% 0.8256 1.26%

11 N/A N/A 0.8148 2.60% N/A N/A

Average 0.8167 2.36% 0.8137 2.74% 0.8239 1.47%

EEG
Eye
State

1 0.9243 4.63% 0.9372 3.19% 0.9009 7.35%

2 0.9268 4.35% 0.9424 2.62% 0.9059 6.76%

3 0.9237 4.70% 0.9446 2.38% 0.9003 7.42%

4 0.9295 4.05% 0.9455 2.28% 0.9119 6.05%

5 0.9292 4.08% 0.9439 2.46% 0.9105 6.22%

6 0.9308 3.90% 0.9468 2.14% 0.9089 6.40%

7 0.9288 4.12% 0.9435 2.50% 0.9061 6.73%

8 0.9306 3.92% 0.9453 2.31% 0.8988 7.60%

9 0.9299 4.00% 0.9450 2.34% 0.8925 8.36%

10 0.9288 4.12% 0.9473 2.09% 0.8636 11.98%

11 N/A N/A 0.9473 2.09% N/A N/A

Average 0.9282 4.19% 0.9444 2.40% 0.8999 7.46%
Note: N/A = there was no data available

Comparison of Ensemble Methods

In this experiment, majority voting ensemble showed weak ensemble power

when comparing its performance with benchmarks or individual base models as

reported in table 18, 19, 20, and 21. However, random forest showed very positive

ability in combining all base models. It outperformed all the benchmarks and base

models on all three data sets. Extreme gradient boosting and logistic regression had a

comparable performance in ensemble. They outperformed the benchmarks and

majority of base models except for several XGB base models which had better

66

performance. They didn’t perform well when compared with RF ensemble, but did

have better performance than MV ensemble. In table 22, RF, XGB, and LR ensemble

are compared with MV ensemble. The increased accuracy in percentage is reported.

MV ensemble was chosen to be compared since it had the least ensemble accuracy. We

would like to see how much the other three ensembles are better than it. It shows that

RF ensemble has 3.10%, 2.31%, and 3.01% better performance than MV on the Adult,

Credit Card Clients, and EEG Eye State data set. XGB ensemble has 3.05%, 0.56%,

and 1.61% better performance than MV ensemble on those three data sets. LR ensemble

has 3.04%, 0.28%, and 1.43% better performance than MV ensemble on those three

data sets. In summary, random forest ensemble is the best method of combining all

base models.

Table 22

Ensemble Comparison in Experiment One

Data Set Ensemble Method
Ensemble
Accuracy

Accuracy Comparison
with MV Ensemble

Adult

Majority Voting 0.8688 N/A

Random Forest 0.8957 3.10%

Extreme Gradient Boosting 0.8953 3.05%

Logistic Regression 0.8952 3.04%

Credit
Card

Clients

Majority Voting 0.8171 N/A

Random Forest 0.8360 2.31%

Extreme Gradient Boosting 0.8217 0.56%

Logistic Regression 0.8194 0.28%

EEG Eye
State

Majority Voting 0.9388 N/A

Random Forest 0.9671 3.01%

Extreme Gradient Boosting 0.9539 1.61%

Logistic Regression 0.9522 1.43%
Note: N/A = there was no data available

67

Experiment Two: Ensemble all Base Models and MCA Factor Scores

In addition to combining all thirty-one base models as in experiment one, factor

scores of multiple correspondence analysis were added and integrated with the thirty-

one base models by three different ensemble methods, extreme gradient boosting,

random forest, and logistic regression. Majority voting ensemble is not applicable as

an ensemble method here because factor scores are numerical variables and not

presented as prediction of target variable.

Ensembles Compared with Individual Base Model

Comparing the ensemble performance of the logistic regression method with

those of individual base models, it was noticed that the ensemble performance of

logistic regression didn’t change whether the factors scores of multiple correspondence

analysis were added or not. Its performance was the same as that in experiment design

one reported in Table 20. It outperformed all thirty-one base models on the Adult and

EEG Eye State data sets, and also outperformed majority base models except for nine

extreme gradient boosting base model on Credit Card Clients data set.

The ensemble performance of extreme gradient boosting method is better than

all thirty-one base models on the Adult and EEG Eye State data sets, and outperforms

most base models except for eight XGB base models on the Credit Card Clients data

set. The XGB ensemble increased classification accuracies from 2.09% to 6.16% when

compared with the base models on the Adult data set. It improved the classification

accuracy from 0.75% to 10.51% on the EEG Eye State data set. This ensemble method

also increased the classification accuracy from 0.26% to 1.16% on the Credit Card

68

Clients data set except that eight extreme gradient boosting base models had better

performance than the ensemble method. Table 23 lists the comparison in detail.

Table 23

XGB Ensemble in Experiment Two Compared with Base Models

Data
Set

Base
Model

XGB Ensemble vs.
RF Base Model

XGB Ensemble vs.
ERT Base Model

XGB Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Adult

1 0.8644 3.57% 0.8450 5.96% 0.8706 2.83%

2 0.8649 3.51% 0.8433 6.16% 0.8728 2.58%

3 0.8640 3.63% 0.8446 6.00% 0.8708 2.82%

4 0.8646 3.55% 0.8452 5.93% 0.8730 2.56%

5 0.8651 3.49% 0.8452 5.93% 0.8745 2.38%

6 0.8642 3.60% 0.8445 6.01% 0.8762 2.18%

7 0.8649 3.51% 0.8455 5.89% 0.8751 2.31%

8 0.8649 3.52% 0.8458 5.86% 0.8770 2.09%

9 0.8642 3.60% 0.8450 5.96% 0.8767 2.12%

10 0.8651 3.50% 0.8458 5.85% 0.8755 2.26%

11 N/A N/A 0.8456 5.87% N/A N/A

Average 0.8646 3.55% 0.8450 5.95% 0.8742 2.41%

Credit
Card

Clients

1 0.8143 0.99% 0.8121 1.27% 0.8169 0.67%

2 0.8170 0.66% 0.8143 0.99% 0.8203 0.26%

3 0.8176 0.59% 0.8134 1.11% 0.8234 -0.12%

4 0.8174 0.61% 0.8130 1.16% 0.8236 -0.15%

5 0.8172 0.64% 0.8130 1.16% 0.8254 -0.36%

6 0.8156 0.83% 0.8130 1.16% 0.8262 -0.46%

7 0.8150 0.91% 0.8130 1.16% 0.8257 -0.40%

8 0.8176 0.59% 0.8148 0.93% 0.8258 -0.41%

9 0.8187 0.45% 0.8148 0.93% 0.8260 -0.44%

10 0.8169 0.67% 0.8148 0.93% 0.8256 -0.39%

11 N/A N/A 0.8148 0.93% N/A N/A

Average 0.8167 0.69% 0.8137 1.07% 0.8239 -0.18%

EEG
Eye
State

1 0.9243 3.26% 0.9372 1.84% 0.9009 5.94%

2 0.9268 2.98% 0.9424 1.27% 0.9059 5.35%

3 0.9237 3.32% 0.9446 1.04% 0.9003 6.01%

4 0.9295 2.68% 0.9455 0.94% 0.9119 4.66%

69

Data
Set

Base
Model

XGB Ensemble vs.
RF Base Model

XGB Ensemble vs.
ERT Base Model

XGB Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

5 0.9292 2.71% 0.9439 1.11% 0.9105 4.82%

6 0.9308 2.54% 0.9468 0.80% 0.9089 5.01%

7 0.9288 2.76% 0.9435 1.16% 0.9061 5.33%

8 0.9306 2.56% 0.9453 0.96% 0.8988 6.19%

9 0.9299 2.63% 0.9450 0.99% 0.8925 6.94%

10 0.9288 2.76% 0.9473 0.75% 0.8636 10.51%

11 N/A N/A 0.9473 0.75% N/A N/A

Average 0.9282 2.82% 0.9444 1.05% 0.8999 6.05%
Note: N/A = there was no data available

The ensemble performance by random forest method outperforms all thirty-one

base models on all of the three data sets. After integrating factor scores of multiple

correspondence analysis with base models, the performance of random forest ensemble

method continued to be the one that provided the best classification accuracy. The RF

ensemble method increased the classification accuracy from 2.58% to 6.67% when

compared with base models on the Adult data set. It also increased the classification

accuracy from 2.74% to 12.70% on the EEG Eye State data. This ensemble method

increased the classification accuracy from 1.65% to 3.41% on the Credit Card Clients

data. Table 24 summarizes the comparison in detail.

70

Table 24

RF Ensemble in Experiment Two Compared with Base Models

Data
Set

Base
Model

RF Ensemble vs.
RF Base Model

RF Ensemble vs.
Extremely ERT

Base Model

RF Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Adult

1 0.8644 4.07% 0.8450 6.46% 0.8706 3.33%

2 0.8649 4.01% 0.8433 6.67% 0.8728 3.07%

3 0.8640 4.13% 0.8446 6.51% 0.8708 3.31%

4 0.8646 4.04% 0.8452 6.44% 0.8730 3.05%

5 0.8651 3.99% 0.8452 6.44% 0.8745 2.88%

6 0.8642 4.10% 0.8445 6.52% 0.8762 2.67%

7 0.8649 4.01% 0.8455 6.40% 0.8751 2.80%

8 0.8649 4.02% 0.8458 6.36% 0.8770 2.58%

9 0.8642 4.10% 0.8450 6.46% 0.8767 2.61%

10 0.8651 3.99% 0.8458 6.36% 0.8755 2.75%

11 N/A N/A 0.8456 6.38% N/A N/A

Average 0.8646 4.04% 0.8450 6.46% 0.8742 2.90%

Credit
card

clients

1 0.8143 3.13% 0.8121 3.41% 0.8169 2.80%

2 0.8170 2.79% 0.8143 3.13% 0.8203 2.38%

3 0.8176 2.72% 0.8134 3.25% 0.8234 1.99%

4 0.8174 2.74% 0.8130 3.30% 0.8236 1.97%

5 0.8172 2.77% 0.8130 3.30% 0.8254 1.74%

6 0.8156 2.97% 0.8130 3.30% 0.8262 1.65%

7 0.8150 3.04% 0.8130 3.30% 0.8257 1.71%

8 0.8176 2.72% 0.8148 3.07% 0.8258 1.70%

9 0.8187 2.58% 0.8148 3.07% 0.8260 1.67%

10 0.8169 2.80% 0.8148 3.07% 0.8256 1.72%

11 N/A N/A 0.8148 3.07% N/A N/A

Average 0.8167 2.82% 0.8137 3.20% 0.8239 1.93%

EEG
Eye
State

1 0.9243 5.30% 0.9372 3.85% 0.9009 8.04%

2 0.9268 5.02% 0.9424 3.28% 0.9059 7.44%

3 0.9237 5.37% 0.9446 3.04% 0.9003 8.11%

4 0.9295 4.71% 0.9455 2.94% 0.9119 6.73%

5 0.9292 4.75% 0.9439 3.11% 0.9105 6.90%

6 0.9308 4.57% 0.9468 2.80% 0.9089 7.09%

7 0.9288 4.79% 0.9435 3.16% 0.9061 7.42%

71

Data
Set

Base
Model

RF Ensemble vs.
RF Base Model

RF Ensemble vs.
Extremely ERT

Base Model

RF Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

8 0.9306 4.59% 0.9453 2.96% 0.8988 8.29%

9 0.9299 4.67% 0.9450 2.99% 0.8925 9.05%

10 0.9288 4.79% 0.9473 2.74% 0.8636 12.70%

11 N/A N/A 0.9473 2.74% N/A N/A

Average 0.9282 4.85% 0.9444 3.06% 0.8999 8.15%
Note: N/A = there was no data available

Ensembles Compared with Benchmarks and Experiment One

In this experiment, MCA factors scores are involved in the ensemble

approaches. Adding MCA factor scores to XGB ensemble increased the ensemble

performance on the Credit Card Client and EEG Eye State data sets, and kept almost

the same accuracy on the Adult data set; it did improve the RF ensemble performance;

however, it didn’t impact the LR ensemble performance at all on any of the data sets.

Table 25 summarizes the classification accuracy of the ensemble models and

their comparison with those of benchmarks and experiment one on the three UCI test

data sets. Overall, all the ensemble methods in experiment two outperform the

benchmarks on all three data sets. They also outperform or have the same performance

as the same ensemble methods in experiment one. Comparing with benchmarks, LR

ensemble method increased the accuracy by 0.33%, 2.59% and 3.54% on the three data

sets; XGB ensemble method increased the accuracy by 0.70%, 2.82% and 3.55%; RF

ensemble method increased the accuracy by 2.83%, 4.05% and 4.86%.

Comparing with the same ensemble methods in experiment one, LR ensemble

method had the same classification accuracies on all the three data sets; XGB ensemble

72

method kept the same accuracy on the Adult data set, and increased the accuracy by

0.05% and 0.09% on the other two data sets; RF ensemble method increased the

accuracy by 0.44%, 0.45% and 0.64% on the three data sets. Here, we conclude that

factor scores of MCA help increase classification accuracy of RF ensemble method;

they might also help increase the performance of XGB ensemble method; however,

they have no impact on the performance of LR ensemble method.

Table 25

Experiment Two Compared to Benchmarks and Experiment One

Data
Set

Ensemble
Method

Ensemble Accuracy Accuracy Increase

Exp 1 Exp2
Exp 2 vs.

Benchmark
Exp2 vs. Exp1

Adult

RF 0.8957 0.8996 4.05% 0.44%

XGB 0.8953 0.8953 3.55% 0.00%

LR 0.8952 0.8952 3.54% 0.00%

Credit
Card

Clients

RF 0.8360 0.8398 2.83% 0.45%

XGB 0.8217 0.8224 0.70% 0.09%

LR 0.8194 0.8194 0.33% 0.00%

EEG
Eye
State

RF 0.9671 0.9733 4.86% 0.64%

XGB 0.9539 0.9544 2.82% 0.05%

LR 0.9522 0.9522 2.59% 0.00%
Note: Exp 1 means experiment one; Exp 2 means experiment two.

Comparison of Ensemble Methods

Combining MCA factor scores with all base models, LR ensemble performed

the same as in experiment one. Its performance is comparable to but a little bit worse

than XGB ensemble and much worse than RF ensemble method when compared with

benchmarks or experiment one. LR and XGB outperformed the benchmarks and

majority of base models except that several XGB base models had better performance

73

than them. RF ensemble performed the best among the three ensembles. It continued

to be the most powerful ensemble method in experiment two. The increased accuracies

by RF ensemble method outperformed all the other increased accuracies by XGB and

LR ensemble method on all three data sets as shown in table 23, 24, and 25.

Table 26

Ensemble Comparison in Experiment Two

Data Set Ensemble Method
Ensemble
Accuracy

Accuracy Increased
from LR Ensemble

Adult

Logistic Regression 0.8952 N/A

Random Forest 0.8996 0.49%

Extreme Gradient Boosting 0.8953 0.01%

Credit
Card

Clients

Logistic Regression 0.8194 N/A

Random Forest 0.8398 2.49%

Extreme Gradient Boosting 0.8224 0.37%

EEG
Eye
State

Logistic Regression 0.9522 N/A

Random Forest 0.9733 2.22%

Extreme Gradient Boosting 0.9544 0.23%
Note: N/A = there was no data available

RF and XGB ensembles are compared with LR ensemble in table 26. The

improved accuracy in percentage is reported. LR ensemble was chosen to be the

baseline of the comparison since it held the least ensemble accuracy in this experiment.

How much better the RF and XGB ensembles are than the LR ensemble is shown in

table 26. It shows that RF ensemble has 0.49%, 2.49%, and 2.22% better performance

than LR on the Adult, Credit Card Clients, and EEG Eye State data set. XGB ensemble

has 0.01%, 0.37%, and 0.23% better performance than LR ensemble on the three data

sets. In summary, random forest ensemble is the best method of combining all base

models and MCA factor scores.

74

Experiment Three: Ensemble all Base Models with Model Selections

Without considering the effect of MCA factor scores, this experiment

ensembled only optimal subset of base models selected by Cramér’s V correlation

analysis and backward AIC selection. Majority voting, extreme gradient boosting, and

random forest method worked as ensemble methods for twenty-one base models

selected by Cramér’s V correlation analysis. These twenty-one selected base models

are XGB and ERT base models. These two types of base models have relatively less

correlation on average. Logistic regression works as an ensemble method for optimal

selected base models which are chosen by backward selection method based on the

AIC value of the logistic regression model. The backward selection procedure first

combines all thirty-one base models, selects one base model that contributes the most

AIC of logistic regression, and then removes it in the next round of selection. The

backward selection stops when the overall AIC of logistic regression doesn’t

significantly decrease at a 0.05 alpha level. The number and the types of selected base

models of different data sets are not fixed but determined by the backward selection

procedure and the nature of data sets.

Ensembles Compared with Individual Base Models

Compared with individual base models, the classification accuracy provided by

the MV ensemble method is higher than those of ERT base models, but is lower than

those of RF and XGB base models on the Adult data set. For the EEG Eye State data

set, it has better performance than individual RF, XGB base models, and five ERT base

models. On the Credit Card Clients data set, it has better performance than ERT base

75

models and one RF base models, but worse performance than XGB and nine RF base

models. In summary, the MV ensemble method only achieved better performance than

half of individual base models. Most RF and XGB base models have better

performance than the MV ensemble. The performance decreasing ranges from 0.07%

to 2.80%. It seems that majority voting with Cramér’s V model selection is not a good

ensemble method in this experiment. Table 27 summarizes the comparison in detail.

Table 27

MV Ensemble in Experiment Three Compared with Base Models

Data
Set

Base
Model

MV Ensemble vs.
RF Base Model

MV Ensemble vs.
ERT Base Model

MV Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Adult

1 0.8644 -1.39% 0.8450 0.88% 0.8706 -2.10%

2 0.8649 -1.45% 0.8433 1.08% 0.8728 -2.34%

3 0.8640 -1.34% 0.8446 0.92% 0.8708 -2.11%

4 0.8646 -1.41% 0.8452 0.86% 0.8730 -2.36%

5 0.8651 -1.47% 0.8452 0.86% 0.8745 -2.52%

6 0.8642 -1.37% 0.8445 0.93% 0.8762 -2.71%

7 0.8649 -1.45% 0.8455 0.81% 0.8751 -2.59%

8 0.8649 -1.44% 0.8458 0.78% 0.8770 -2.80%

9 0.8642 -1.37% 0.8450 0.88% 0.8767 -2.77%

10 0.8651 -1.46% 0.8458 0.78% 0.8755 -2.64%

11 N/A N/A 0.8456 0.80% N/A N/A

Average 0.8646 -1.41% 0.8450 0.87% 0.8742 -2.49%

Credit
Card

Clients

1 0.8143 0.09% 0.8121 0.36% 0.8169 -0.23%

2 0.8170 -0.24% 0.8143 0.09% 0.8203 -0.65%

3 0.8176 -0.32% 0.8134 0.20% 0.8234 -1.02%

4 0.8174 -0.29% 0.8130 0.25% 0.8236 -1.04%

5 0.8172 -0.27% 0.8130 0.25% 0.8254 -1.26%

6 0.8156 -0.07% 0.8130 0.25% 0.8262 -1.36%

7 0.8150 0.00% 0.8130 0.25% 0.8257 -1.30%

8 0.8176 -0.32% 0.8148 0.02% 0.8258 -1.31%

9 0.8187 -0.45% 0.8148 0.02% 0.8260 -1.33%

76

Data
Set

Base
Model

MV Ensemble vs.
RF Base Model

MV Ensemble vs.
ERT Base Model

MV Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

10 0.8169 -0.23% 0.8148 0.02% 0.8256 -1.28%

11 N/A N/A 0.8148 0.02% N/A N/A

Average 0.8167 -0.21% 0.8137 0.16% 0.8239 -1.08%

EEG
Eye
State

1 0.9243 2.20% 0.9372 0.79% 0.9009 4.85%

2 0.9268 1.92% 0.9424 0.23% 0.9059 4.27%

3 0.9237 2.26% 0.9446 0.00% 0.9003 4.92%

4 0.9295 1.62% 0.9455 -0.10% 0.9119 3.59%

5 0.9292 1.66% 0.9439 0.07% 0.9105 3.75%

6 0.9308 1.48% 0.9468 -0.23% 0.9089 3.93%

7 0.9288 1.70% 0.9435 0.12% 0.9061 4.25%

8 0.9306 1.50% 0.9453 -0.07% 0.8988 5.10%

9 0.9299 1.58% 0.9450 -0.04% 0.8925 5.84%

10 0.9288 1.70% 0.9473 -0.29% 0.8636 9.38%

11 N/A N/A 0.9473 -0.29% N/A N/A

Average 0.9282 1.76% 0.9444 0.02% 0.8999 4.96%
Note: N/A = there was no data available

The ensemble performance of XGB method is better than all thirty-one base

models on the EEG Eye State data set, twenty-nine base models on the Adult data set,

and three base models on the Credit Card Clients data set. Table 28 shows that twenty

base models in total on the three data sets provided higher classification accuracy than

the ensemble method in this experiment. The XGB ensemble method increased the

classification accuracy by 0.54% to 10.28% from base models on the EEG Eye State

data set. It worked pretty well on this data set when combining only the selected twenty-

one base models. The XGB ensemble method has the increased classification

accuracies by 0.07% to 3.89% on the Adult data set except for two XGB base models

which have better performance than the ensemble method. However, on the Credit Card

77

Clients data set, seventeen RF or XGB base models have better performance than the

ensemble method. It seems that XGB ensemble with Cramér’s V base model selection

is not an ideal ensemble method because it might perform well on some types of data,

but not on other types of data. Table 28 lists the comparison in detail.

Table 28

XGB Ensemble in Experiment Three Compared with Base Models

Data
Set

Base
Model

XGB Ensemble vs.
RF Base Model

XGB Ensemble vs.
ERT Base Model

XGB Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Adult

1 0.8644 1.35% 0.8450 3.68% 0.8706 0.63%

2 0.8649 1.29% 0.8433 3.89% 0.8728 0.38%

3 0.8640 1.41% 0.8446 3.73% 0.8708 0.61%

4 0.8646 1.33% 0.8452 3.66% 0.8730 0.36%

5 0.8651 1.27% 0.8452 3.66% 0.8745 0.19%

6 0.8642 1.38% 0.8445 3.74% 0.8762 -0.01%

7 0.8649 1.29% 0.8455 3.62% 0.8751 0.12%

8 0.8649 1.30% 0.8458 3.59% 0.8770 -0.10%

9 0.8642 1.38% 0.8450 3.68% 0.8767 -0.07%

10 0.8651 1.28% 0.8458 3.58% 0.8755 0.07%

11 N/A N/A 0.8456 3.60% N/A N/A

Average 0.8646 1.33% 0.8450 3.67% 0.8742 0.22%

Credit
Card

Clients

1 0.8143 0.28% 0.8121 0.55% 0.8169 -0.04%

2 0.8170 -0.05% 0.8143 0.28% 0.8203 -0.45%

3 0.8176 -0.12% 0.8134 0.39% 0.8234 -0.83%

4 0.8174 -0.10% 0.8130 0.44% 0.8236 -0.85%

5 0.8172 -0.07% 0.8130 0.44% 0.8254 -1.07%

6 0.8156 0.12% 0.8130 0.44% 0.8262 -1.16%

7 0.8150 0.20% 0.8130 0.44% 0.8257 -1.10%

8 0.8176 -0.12% 0.8148 0.22% 0.8258 -1.11%

9 0.8187 -0.26% 0.8148 0.22% 0.8260 -1.14%

10 0.8169 -0.04% 0.8148 0.22% 0.8256 -1.09%

11 N/A N/A 0.8148 0.22% N/A N/A

Average 0.8167 -0.02% 0.8137 0.35% 0.8239 -0.88%

78

Data
Set

Base
Model

XGB Ensemble vs.
RF Base Model

XGB Ensemble vs.
ERT Base Model

XGB Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

EEG
Eye
State

1 0.9243 3.04% 0.9372 1.62% 0.9009 5.72%

2 0.9268 2.76% 0.9424 1.06% 0.9059 5.13%

3 0.9237 3.11% 0.9446 0.83% 0.9003 5.79%

4 0.9295 2.46% 0.9455 0.73% 0.9119 4.44%

5 0.9292 2.50% 0.9439 0.90% 0.9105 4.60%

6 0.9308 2.32% 0.9468 0.59% 0.9089 4.79%

7 0.9288 2.54% 0.9435 0.94% 0.9061 5.11%

8 0.9306 2.34% 0.9453 0.75% 0.8988 5.96%

9 0.9299 2.42% 0.9450 0.78% 0.8925 6.71%

10 0.9288 2.54% 0.9473 0.54% 0.8636 10.28%

11 N/A N/A 0.9473 0.54% N/A N/A

Average 0.9282 2.60% 0.9444 0.84% 0.8999 5.83%
Note: N/A = there was no data available

The ensemble performance of random forest method outperforms all thirty-one

base models on the Adult and EEG Eye State data sets. The RF ensemble method

increased the classification accuracy from 1.29% to 5.33% when compared with the

base models on the Adult data set. It also increased the classification accuracy from

1.52% to 11.36% on the EEG Eye State data. The RF ensemble method increased the

classification accuracy from 0.06% to 0.74% on the Credit Card Clients data set except

for ten base models, nine XGBs and one RF. Table 29 lists the comparisons in detail.

Note that, in experiment one and two, RF ensemble outperforms all base models on all

three test data sets. Here, we can only conclude that Cramér’s V base model selection

didn’t help in increasing ensemble accuracy of RF, XGB, and MV ensemble methods.

79

Table 29

RF Ensemble in Experiment Three Compared with Base Models

Data
Set

Base
Model

RF Ensemble vs.
RF Base Model

RF Ensemble vs.
ERT Base Model

RF Ensemble vs
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Adult

1 0.8644 2.76% 0.8450 5.13% 0.8706 2.03%

2 0.8649 2.70% 0.8433 5.33% 0.8728 1.78%

3 0.8640 2.82% 0.8446 5.17% 0.8708 2.01%

4 0.8646 2.74% 0.8452 5.10% 0.8730 1.75%

5 0.8651 2.68% 0.8452 5.10% 0.8745 1.58%

6 0.8642 2.79% 0.8445 5.18% 0.8762 1.38%

7 0.8649 2.70% 0.8455 5.06% 0.8751 1.51%

8 0.8649 2.71% 0.8458 5.03% 0.8770 1.29%

9 0.8642 2.79% 0.8450 5.13% 0.8767 1.32%

10 0.8651 2.69% 0.8458 5.02% 0.8755 1.46%

11 N/A N/A 0.8456 5.04% N/A N/A

Average 0.8646 2.74% 0.8450 5.12% 0.8742 1.61%

Credit
Card

Clients

1 0.8143 0.47% 0.8121 0.74% 0.8169 0.15%

2 0.8170 0.13% 0.8143 0.47% 0.8203 -0.27%

3 0.8176 0.06% 0.8134 0.58% 0.8234 -0.64%

4 0.8174 0.09% 0.8130 0.63% 0.8236 -0.67%

5 0.8172 0.11% 0.8130 0.63% 0.8254 -0.88%

6 0.8156 0.31% 0.8130 0.63% 0.8262 -0.98%

7 0.8150 0.38% 0.8130 0.63% 0.8257 -0.92%

8 0.8176 0.06% 0.8148 0.41% 0.8258 -0.93%

9 0.8187 -0.07% 0.8148 0.41% 0.8260 -0.96%

10 0.8169 0.15% 0.8148 0.41% 0.8256 -0.91%

11 N/A N/A 0.8148 0.41% N/A N/A

Average 0.8167 0.17% 0.8137 0.54% 0.8239 -0.70%

EEG
Eye
State

1 0.9243 4.05% 0.9372 2.61% 0.9009 6.75%

2 0.9268 3.77% 0.9424 2.05% 0.9059 6.16%

3 0.9237 4.11% 0.9446 1.81% 0.9003 6.82%

4 0.9295 3.46% 0.9455 1.71% 0.9119 5.46%

5 0.9292 3.50% 0.9439 1.89% 0.9105 5.62%

6 0.9308 3.32% 0.9468 1.57% 0.9089 5.81%

7 0.9288 3.54% 0.9435 1.93% 0.9061 6.14%

80

Data
Set

Base
Model

RF Ensemble vs.
RF Base Model

RF Ensemble vs.
ERT Base Model

RF Ensemble vs
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

8 0.9306 3.34% 0.9453 1.73% 0.8988 7.00%

9 0.9299 3.42% 0.9450 1.77% 0.8925 7.75%

10 0.9288 3.54% 0.9473 1.52% 0.8636 11.36%

11 N/A N/A 0.9473 1.52% N/A N/A

Average 0.9282 3.60% 0.9444 1.83% 0.8999 6.86%
Note: N/A = there was no data available

Logistic regression is the only ensemble method that integrated with backward

selection in this experiment. Its performance is comparable to logistic regression that

ensembles all base models in previous experiments. It outperforms all thirty-one base

models on the Adult and EEG Eye State data sets, and outperforms majority base

models except for nine extreme gradient boosting base models on the Credit Card

Clients data set. The LR ensemble method increased the classification accuracy from

2.08% to 6.15% when compared with the base models on the Adult data set. It also

increased the classification accuracy from 0.56% to 10.31% on the EEG Eye State data

set. The LR ensemble method increased the classification accuracy from 0.05% to

0.86% on the Credit Card Clients data set except for nine XGB base models. It was

noticed that the ensemble performance of logistic regression method kept the same

level in increasing the classification accuracy from base models although it ensembled

only the optimal subset of base model that had less than 50% of base models. Its

performance is listed in Table 30 and turns out to be the best ensemble method in

experiment three.

81

Table 30

LR Ensemble in Experiment Three Compared with Base Models

Data
Set

Base
Model

LR Ensemble vs.
RF Base Model

LR Ensemble vs.
ERT Base Model

LR Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Adult

1 0.8644 3.56% 0.8450 5.94% 0.8706 2.82%

2 0.8649 3.50% 0.8433 6.15% 0.8728 2.57%

3 0.8640 3.62% 0.8446 5.99% 0.8708 2.81%

4 0.8646 3.54% 0.8452 5.92% 0.8730 2.55%

5 0.8651 3.48% 0.8452 5.92% 0.8745 2.37%

6 0.8642 3.59% 0.8445 6.00% 0.8762 2.17%

7 0.8649 3.50% 0.8455 5.88% 0.8751 2.30%

8 0.8649 3.51% 0.8458 5.84% 0.8770 2.08%

9 0.8642 3.59% 0.8450 5.94% 0.8767 2.11%

10 0.8651 3.48% 0.8458 5.84% 0.8755 2.25%

11 N/A N/A 0.8456 5.86% N/A N/A

Average 0.8646 3.54% 0.8450 5.94% 0.8742 2.40%

Credit
Card

Clients

1 0.8143 0.59% 0.8121 0.86% 0.8169 0.27%

2 0.8170 0.26% 0.8143 0.59% 0.8203 -0.15%

3 0.8176 0.18% 0.8134 0.70% 0.8234 -0.52%

4 0.8174 0.21% 0.8130 0.75% 0.8236 -0.55%

5 0.8172 0.23% 0.8130 0.75% 0.8254 -0.76%

6 0.8156 0.43% 0.8130 0.75% 0.8262 -0.86%

7 0.8150 0.50% 0.8130 0.75% 0.8257 -0.80%

8 0.8176 0.18% 0.8148 0.53% 0.8258 -0.81%

9 0.8187 0.05% 0.8148 0.53% 0.8260 -0.84%

10 0.8169 0.27% 0.8148 0.53% 0.8256 -0.79%

11 N/A N/A 0.8148 0.53% N/A N/A

Average 0.8167 0.29% 0.8137 0.66% 0.8239 -0.58%

EEG
Eye
State

1 0.9243 3.06% 0.9372 1.64% 0.9009 5.74%

2 0.9268 2.78% 0.9424 1.08% 0.9059 5.16%

3 0.9237 3.13% 0.9446 0.85% 0.9003 5.81%

4 0.9295 2.49% 0.9455 0.75% 0.9119 4.46%

5 0.9292 2.52% 0.9439 0.92% 0.9105 4.62%

6 0.9308 2.34% 0.9468 0.61% 0.9089 4.81%

7 0.9288 2.56% 0.9435 0.96% 0.9061 5.13%

82

Data
Set

Base
Model

LR Ensemble vs.
RF Base Model

LR Ensemble vs.
ERT Base Model

LR Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

8 0.9306 2.36% 0.9453 0.77% 0.8988 5.99%

9 0.9299 2.44% 0.9450 0.80% 0.8925 6.73%

10 0.9288 2.56% 0.9473 0.56% 0.8636 10.31%

11 N/A N/A 0.9473 0.56% N/A N/A

Average 0.9282 2.62% 0.9444 0.86% 0.8999 5.85%
Note: N/A = there was no data available

Ensembles Compared with Benchmarks, Experiment One and Two

Table 31 lists the classification accuracy of the ensemble models and

comparison with benchmarks, experiment one, and experiment two on the three UCI

test data sets. Compared with the benchmarks, unlike experiment one and two, the

ensemble methods in this experiment don’t outperform all of the benchmarks on the

three data sets. MV ensemble only outperformed benchmark on the EEG Eye State data

set and is worse on the other two data sets. XGB ensemble outperforms benchmarks on

the Adult and EEG Eye State data sets but is worse on the third data set. RF and LR

ensemble still outperforms benchmarks on all three data sets.

Compared with the same ensemble methods in experiment one, LR ensemble

method has the same or comparable accuracies on all three data sets. It achieved a

0.04% increased accuracy on the EEG Eye State data set, and a 0.04% decreased

accuracy on the Credit Card Client data set; it has the same accuracy as that in

experiment one. XGB ensemble method has all decreased -2.14%, -0.62%, and -0.16%

accuracy on the Adult, Credit Card Client and EEG Eye Status data sets respectively.

RF ensemble method decreased the accuracy by -0.83%, -2.14%, and -0.56% on the

83

three data sets. MV ensemble method achieved 0.62% increased accuracy on the EEG

Eye Status data set and -1.89% and -0.26% decreased accuracy on the Adult and Credit

Card Client data sets. Overall, compared with the same ensemble method in the first

experiment in which all base models were ensembled, nine ensemble methods with

model selection on the three data sets were defeated in accuracy. Only the MV

ensemble with twenty-one selected base models and LR ensemble with fifteen selected

base models on the the EEG Eye State data set outperformed the same ensemble

method in the first experiment.

Compared with the same ensemble methods in the second experiment, LR

ensemble method has the same or comparable accuracies on all three data sets. It

achieved a 0.04% increased accuracy on the EEG Eye State data set, and a 0.04%

decreased accuracy on the Credit Card Client data set, so it has the same accuracy as

that in the second experiment. The LR ensemble performed very stably. XGB ensemble

method has all decreased -2.14%, -0.71%, and -0.21% accuracy on the Adult, Credit

Card Client, and EEG Eye Status data sets. RF ensemble method decreased the

accuracy by -1.26%, -2.58%, and -1.19% on the three data sets. In summary, compared

with the same ensemble method in the second experiment in which all base models and

MCA factor scores are ensembled, seven ensemble methods with model selection on

the three data sets were defeated in accuracy. The LR ensemble with nine selected base

models on the Adult data set achieved the same accuracy as the same method in

experiment two. Also, the LR ensemble with fifteen selected base models on the EEG

Eye State data set outperforms the same ensemble method in the second experiment.

84

It shows that ensemble methods in experiment two with all thirty-one base

models and MCA factor scores combined have better classification accuracy than the

ensemble methods in experiment one with only all the thirty-one base models combined

and those in experiment three in which only selected base models are combined.

Among the ensemble methods, RF ensemble models have better classification

performance than majority voting, extreme gradient boosting, and logistic regression

model in experiment one, two and three. LR ensemble produced very stable

performance in experiment one, two, and three. Especially, LR ensemble with base

model selection although integrated less than 50% of base models, but achieved about

the same accuracy as it integrated all base models in experiment one and two.

Table 31

Experiment Three Compared to Benchmarks, Experiment One and Two

Data
Set

Ensemble
Method

Ensemble Accuracy Accuracy Increase

Exp 1 Exp2 Exp3
Exp 3 vs.

BMK
Exp3 vs.

Exp1
Exp3 vs.

Exp2

Adult

MV 0.8688 N/A 0.8524 -1.41% -1.89% N/A

RF 0.8957 0.8996 0.8883 2.74% -0.83% -1.26%

XGB 0.8953 0.8953 0.8761 1.33% -2.14% -2.14%

LR 0.8952 0.8952 0.8952 3.54% 0.00% 0.00%

Credit
Card

Clients

MV 0.8171 N/A 0.8150 -0.21% -0.26% N/A

RF 0.8360 0.8398 0.8181 0.17% -2.14% -2.58%

XGB 0.8217 0.8224 0.8166 -0.01% -0.62% -0.71%

LR 0.8194 0.8194 0.8191 0.29% -0.04% -0.04%

EEG
Eye
State

MV 0.9388 N/A 0.9446 1.77% 0.62% N/A

RF 0.9671 0.9733 0.9617 3.61% -0.56% -1.19%

XGB 0.9539 0.9544 0.9524 2.61% -0.16% -0.21%

LR 0.9522 0.9522 0.9526 2.63% 0.04% 0.04%
Note: BMK = Benchmark; Exp = Experiment Design; MV = Majority Voting; RF = Random

Forest; XGB = Extreme Gradient Boosting; LR =Logistic Regression; N/A= there
was no data available

85

Comparison of Ensemble Methods

Combining only selected base models, RF ensemble method with Cramér’s V

model selection didn’t perform the best on all the data sets like experiment one and

two. It only provided the best accuracy on the EEG Eye State data set. It is

outperformed by LR ensemble with backward selected base models on the Adult and

Credit Card Client data sets. LR ensemble has the same predictive power as in

experiment one and two, while RF ensemble has decreased predictive ability when

compared with themselves in experiment one and two. MV ensemble performs the

worst on all three data sets. XGB ensemble has worse classification performance than

RF and LR method, but performs better than MV ensemble method.

Table 32

Ensemble Comparison in Experiment Three

Data Set
Ensemble
Method

Ensemble
Accuracy

Accuracy Increased
from MV Ensemble

Adult

MV 0.8524 N/A

RF 0.8883 4.21%

XGB 0.8761 2.78%

LR 0.8952 5.02%

Credit Card Clients

MV 0.8150 N/A

RF 0.8181 0.38%

XGB 0.8166 0.20%

LR 0.8191 0.50%

EEG Eye State

MV 0.9446 N/A

RF 0.9617 1.81%

XGB 0.9524 0.83%

LR 0.9526 0.85%
Note: N/A = there was no data available

86

RF, LR and XGB ensembles are compared with MV ensemble in table 32. The

accuracy difference between them is reported in percentage. MV ensemble was chosen

as the base of comparison since it had the smallest ensemble accuracy in this

experiment. The improvement of the RF, LR and XGB ensembles over MV ensemble

is shown here. It shows that RF ensemble has 4.21%, 0.38%, and 1.81% better

performance than MV on the Adult, Credit Card Clients, and EEG Eye State data sets.

XGB ensemble has 2.78%, 0.20%, and 0.83% better performance than MV ensemble

on the three data sets. LR ensemble has 5.02%, 0.50%, and 0.85% better performance

than MV ensemble on the three data sets. Based on values in table 32, LR ensemble is

the best and most stable method of combining the selected base models.

However, the other model selection method, Cramér’s V correlation analysis,

decreased the classification accuracy of RF, XGB, and MV on all three data sets. There

are two reasons that might cause the poor ensemble performance. One reason is that

Cramér’s V correlation analysis doesn’t fit those three ensemble methods. Another

reason might be that the selected base models present only two thirds of all base models.

Less accuracy is the expected result since a smaller number of base models were

ensembled.

Experiment Four: Ensemble Selected Base Models and MCA Factor Scores

In addition to combining selected base models as in experiment three, factor

scores of multiple correspondence analysis were added and the selected base models

were ensembled by three different ensemble methods, XGB, RF, and LR. LR ensemble

method combined MCA factor scores with base models selected by backward AIC

method. XGB and RF ensemble method combined base models selected by Cramér’s

87

V analysis with MCA factor scores. Base models selected by the Cramér’s V

correlation analysis are still the same twenty-one ERT and XGB base models which

are selected in experiment three. The backward selection method in experiment four

initially combines not only all base models but also MCA factor scores. The selection

procedure is almost the same as that in experiment three. The eliminated attribute in

each backward step can be a base model or a MCA factor score. However, it turns out

that the final selected base models are the same as those in experiment three. As a result,

the classification accuracies of LR ensemble are the same as those in experiment three.

Majority voting ensemble is not applicable in experiment four since non-categorical

MCA factor scores are involved in the experiment.

Ensembles Compared with Individual Base Model

As in experiment three, logistic regression is the only ensemble method that

integrated with backward selection in experiment four. Since it performs the same as

experiment three that ensembles only the selected base model, the comparison between

the ensemble models and individual base models is the same as in experiment three.

Based on these observation, we can conclude that MCA factor scores doesn’t help LR

ensemble at all on improving model performance when combined with the selected

base models. The performance of LR ensemble and its comparison with base models

can be found in table 30.

The ensemble performance of XGB method is better than all the thirty-one base

models on the Adult and EEG Eye State data sets, and twenty-two base models on the

Credit Card Clients data set. The data in table 31 show that the XGB ensemble method

increased the classification accuracy by 0.73% to 10.49% from base models on the

88

EEG Eye State data set. It has the increased classification accuracies by 0.12% to 4.11%

on the Adult data set. On the Credit Card Clients data set, it has better performance

from 0.17% to 0.99% than those of base models except that nine XGB base models

have better performance than the ensemble method. XGB ensemble with Cramér’s V

model selection and MCA factor scores is not an ideal ensemble method. Table 33

summarizes the comparison in detail.

Table 33

XGB Ensemble in Experiment Four Compared with Base Models

Data
Set

Base
Model

XGB Ensemble vs.
RF Base Model

XGB Ensemble vs.
ERT Base Model

XGB Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Adult

1 0.8644 1.57% 0.8450 3.91% 0.8706 0.84%

2 0.8649 1.51% 0.8433 4.11% 0.8728 0.60%

3 0.8640 1.63% 0.8446 3.95% 0.8708 0.83%

4 0.8646 1.55% 0.8452 3.89% 0.8730 0.57%

5 0.8651 1.49% 0.8452 3.89% 0.8745 0.41%

6 0.8642 1.60% 0.8445 3.96% 0.8762 0.21%

7 0.8649 1.51% 0.8455 3.84% 0.8751 0.33%

8 0.8649 1.52% 0.8458 3.81% 0.8770 0.12%

9 0.8642 1.60% 0.8450 3.91% 0.8767 0.15%

10 0.8651 1.50% 0.8458 3.80% 0.8755 0.29%

11 N/A N/A 0.8456 3.83% N/A N/A

Average 0.8646 1.55% 0.8450 3.90% 0.8742 0.43%

Credit
Card

Clients

1 0.8143 0.71% 0.8121 0.99% 0.8169 0.39%

2 0.8170 0.38% 0.8143 0.71% 0.8203 -0.02%

3 0.8176 0.31% 0.8134 0.82% 0.8234 -0.40%

4 0.8174 0.33% 0.8130 0.87% 0.8236 -0.42%

5 0.8172 0.35% 0.8130 0.87% 0.8254 -0.64%

6 0.8156 0.55% 0.8130 0.87% 0.8262 -0.74%

7 0.8150 0.63% 0.8130 0.87% 0.8257 -0.68%

8 0.8176 0.31% 0.8148 0.65% 0.8258 -0.69%

9 0.8187 0.17% 0.8148 0.65% 0.8260 -0.71%

10 0.8169 0.39% 0.8148 0.65% 0.8256 -0.67%

89

Data
Set

Base
Model

XGB Ensemble vs.
RF Base Model

XGB Ensemble vs.
ERT Base Model

XGB Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

11 N/A N/A 0.8148 0.65% N/A N/A

Average 0.8167 0.41% 0.8137 0.78% 0.8239 -0.46%

EEG
Eye
State

1 0.9243 3.23% 0.9372 1.81% 0.9009 5.92%

2 0.9268 2.96% 0.9424 1.25% 0.9059 5.33%

3 0.9237 3.30% 0.9446 1.02% 0.9003 5.99%

4 0.9295 2.66% 0.9455 0.92% 0.9119 4.64%

5 0.9292 2.69% 0.9439 1.09% 0.9105 4.80%

6 0.9308 2.51% 0.9468 0.78% 0.9089 4.98%

7 0.9288 2.73% 0.9435 1.13% 0.9061 5.31%

8 0.9306 2.54% 0.9453 0.94% 0.8988 6.16%

9 0.9299 2.61% 0.9450 0.97% 0.8925 6.91%

10 0.9288 2.73% 0.9473 0.73% 0.8636 10.49%

11 N/A N/A 0.9473 0.73% N/A N/A

Average 0.9282 2.80% 0.9444 1.03% 0.8999 6.03%
Note: N/A = there was no data available

The ensemble performance of RF method is better than the performances of all

the thirty-one base models on all three data sets. The RF ensemble increased the

classification accuracy from 2.72% to 6.82% when compared with the base models on

the Adult data set. It increased the classification accuracy from 1.05% to 3.31% on the

Credit Card Clients data set. It also improved the classification accuracy from 2.93%

to 12.91% on the EEG Eye State data set. Overall, the increased classification

accuracies in experiment four reached the highest record in our research. Table 34 lists

the comparisons in detail. Here, we notice that the combination of Cramér’s V model

selection and MCA factor scores helps to increase the classification accuracy of RF

ensemble method.

90

Table 34

RF Ensemble in Experiment Four Compared with Base Models

Data
Set

Base
Model

RF Ensemble vs.
RF Base Model

RF Ensemble vs.
ERT Base Model

RF Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Adult

1 0.8644 4.21% 0.8450 6.61% 0.8706 3.46%

2 0.8649 4.15% 0.8433 6.82% 0.8728 3.21%

3 0.8640 4.27% 0.8446 6.65% 0.8708 3.45%

4 0.8646 4.18% 0.8452 6.58% 0.8730 3.19%

5 0.8651 4.12% 0.8452 6.58% 0.8745 3.01%

6 0.8642 4.24% 0.8445 6.66% 0.8762 2.81%

7 0.8649 4.15% 0.8455 6.54% 0.8751 2.94%

8 0.8649 4.15% 0.8458 6.51% 0.8770 2.72%

9 0.8642 4.24% 0.8450 6.61% 0.8767 2.75%

10 0.8651 4.13% 0.8458 6.50% 0.8755 2.89%

11 N/A N/A 0.8456 6.52% N/A N/A

Average 0.8646 4.18% 0.8450 6.60% 0.8742 3.04%

Credit
Card

Clients

1 0.8143 3.03% 0.8121 3.31% 0.8169 2.71%

2 0.8170 2.69% 0.8143 3.03% 0.8203 2.28%

3 0.8176 2.62% 0.8134 3.15% 0.8234 1.89%

4 0.8174 2.64% 0.8130 3.20% 0.8236 1.87%

5 0.8172 2.67% 0.8130 3.20% 0.8254 1.65%

6 0.8156 2.87% 0.8130 3.20% 0.8262 1.55%

7 0.8150 2.94% 0.8130 3.20% 0.8257 1.61%

8 0.8176 2.62% 0.8148 2.97% 0.8258 1.60%

9 0.8187 2.48% 0.8148 2.97% 0.8260 1.57%

10 0.8169 2.71% 0.8148 2.97% 0.8256 1.62%

11 N/A N/A 0.8148 2.97% N/A N/A

Average 0.8167 2.73% 0.8137 3.11% 0.8239 1.83%

EEG
Eye
State

1 0.9243 5.50% 0.9372 4.04% 0.9009 8.24%

2 0.9268 5.21% 0.9424 3.47% 0.9059 7.64%

3 0.9237 5.56% 0.9446 3.23% 0.9003 8.31%

4 0.9295 4.91% 0.9455 3.13% 0.9119 6.93%

5 0.9292 4.94% 0.9439 3.31% 0.9105 7.10%

6 0.9308 4.76% 0.9468 2.99% 0.9089 7.28%

7 0.9288 4.98% 0.9435 3.35% 0.9061 7.62%

91

Data
Set

Base
Model

RF Ensemble vs.
RF Base Model

RF Ensemble vs.
ERT Base Model

RF Ensemble vs.
XGB Base Model

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

Base
Model

Accuracy
Increase

8 0.9306 4.78% 0.9453 3.15% 0.8988 8.49%

9 0.9299 4.86% 0.9450 3.19% 0.8925 9.25%

10 0.9288 4.98% 0.9473 2.93% 0.8636 12.91%

11 N/A N/A 0.9473 2.93% N/A N/A

Average 0.9282 5.05% 0.9444 3.25% 0.8999 8.35%
Note: N/A = there was no data available

Comparison of Ensemble Methods in Experiment Four

Combining selected base models and MCA factor scores, RF ensemble method

with Cramér’s V selected base models perform extremely well on all the data sets. It

provides the best accuracy on all three data sets. It outperforms LR ensemble with

backward selected base models and XGB ensemble with Cramér’s V model selection.

XGB ensemble has worse classification performance than LR ensemble on the Adult

data set, but performs better than LR ensemble on the Credit Card Clients and EEG

Eye State data sets.

RF and XGB ensembles are compared with LR ensemble in table 35. The

accuracy difference between them is reported in percentage. LR ensemble is chosen as

the comparison base since it has the smallest ensemble accuracy on two data sets in this

experiment, and its performance is stable in all four experiments. The accuracy

difference in percentage between RF ensemble, XGB ensemble and LR ensemble is

reported in table 35. It shows that RF ensemble has 0.63%, 2.43%, and 2.36% better

performance than LR on the Adult, Credit Card Clients, and EEG Eye State data sets

respectively. XGB ensemble has 0.12% and 0.17% better performance than LR

92

ensemble on the Credit Card Clients and EEG Eye State data sets; but -1.92% worse

performance on the Adult data set. In summary, RF ensemble method performs the best

and provides the best classification accuracies on all data sets. XGB ensemble performs

relatively better than LR ensemble.

Table 35

Ensemble Comparison in Experiment Four

Data Set
Ensemble
Method

Ensemble
Accuracy

Accuracy Increased
from MV Ensemble

Adult

LR 0.8952 N/A

RF 0.9008 0.63%

XGB 0.8780 -1.92%

Credit Card Clients

LR 0.8191 N/A

RF 0.8390 2.43%

XGB 0.8201 0.12%

EEG Eye State

LR 0.9526 N/A

RF 0.9751 2.36%

XGB 0.9542 0.17%
Note: N/A = there was no data available

Ensembles Compared with Benchmarks, Experiment One, Two, and Three

Table 36 summarizes the classification accuracy of benchmarks and ensemble

models in experiment one, two, three, and four. Table 37 compares the ensemble

methods in experiment four to benchmarks and the same type of ensemble methods in

experiment one, two, and three. It shows that the performance of LR ensemble is very

stable. It has the same predictive accuracy on Adult data set in all four experiments. On

the Credit Card Clients and EEG Eye State data sets, LR has the same classification

accuracies in experiment one and two, and has the same classification performance in

experiment three and four. Its classification accuracies in experiment three and four are

93

a little bit higher than those in experiment one and two. XGB ensemble performs the

best on all three data sets in experiment two that ensemble all base models and MCA

factor scores. RF ensemble achieved the best performance on all three data sets in

experiment four that combines only selected base models and MCA factor scores. The

second best performance of RF ensemble happened in experiment two that integrates

all base models and MCA factor scores. RF ensemble also achieved good performance

in experiment one that combines all base models.

Table 36

Ensemble Accuracy of Experiment One, Two, Three, and Four

Data Set
BMK

Accuracy
Ensemble
Method

Ensemble Accuracy

Exp 1 Exp2 Exp3 Exp4

Adult 0.8646

RF 0.8957 0.8996 0.8883 0.9008

XGB 0.8953 0.8953 0.8761 0.8780

LR 0.8952 0.8952 0.8952 0.8952

Credit
Card

Clients
0.8167

RF 0.8360 0.8398 0.8181 0.8390

XGB 0.8217 0.8224 0.8166 0.8201

LR 0.8194 0.8194 0.8191 0.8191

EEG
Eye
State

0.9282

RF 0.9671 0.9733 0.9617 0.9751

XGB 0.9539 0.9544 0.9524 0.9542

LR 0.9522 0.9522 0.9526 0.9526
Note: BMK = Benchmark; Exp = Experiment Design; MV = Majority Voting; RF = Random

Forest; XGB = Extreme Gradient Boosting; LR =Logistic Regression

Compared with benchmarks, all the ensemble methods in experiment four

outperform the benchmarks on all three data sets. RF ensemble method increased

2.73%, 4.19%, and 5.05% accuracies from benchmarks. LR ensemble method

increased the accuracy by 0.29%, 2.63% and 3.54% on all three data sets. XGB

ensemble method increased the accuracy by 0.42%, 1.55% and 2.80% respectively.

Table 37 shows the detail of comparison.

94

Table 37

Experiment Four Compared to Benchmarks, Experiment One, Two, and Three

Data Set
Ensemble
Method

Accuracy Increase
Exp 4 vs.

BMK
Exp4 vs.

Exp1
Exp4 vs.

Exp2
Exp4 vs.

Exp3

Adult

RF 4.19% 0.57% 0.13% 1.41%
XGB 1.55% -1.93% -1.93% 0.22%
LR 3.54% 0.00% 0.00% 0.00%

Credit
Card

Clients

RF 2.73% 0.36% -0.10% 2.55%
XGB 0.42% -0.19% -0.28% 0.43%
LR 0.29% -0.04% -0.04% 0.00%

EEG
Eye
State

RF 5.05% 0.83% 0.18% 1.39%
XGB 2.80% 0.03% -0.02% 0.19%
LR 2.63% 0.04% 0.04% 0.00%

Note: BMK = Benchmark; Exp = Experiment Design; MV = Majority Voting; RF = Random
Forest; XGB = Extreme Gradient Boosting; LR =Logistic Regression

Compared with the same ensemble methods in experiment one, LR ensemble

method has the same or comparable accuracies on all three data sets. It achieved a

0.04% increased accuracy on the EEG Eye State data set, and a 0.04% decreased

accuracy on the Credit Card Client data set which is almost the same accuracy as that

in experiment one. XGB ensemble method has -1.93% and -0.19% decreased accuracy

on the Adult, Credit Card Client, and 0.03% increased accuracy on the EEG Eye Status

data set. RF ensemble method increased the accuracy by 0.57%, 0.36%, and 0.83% on

the three data sets respectively. Overall, compared with the same ensemble method in

experiment one which ensembles all base models, three ensembles in experiment four

that had model selection and MCA factor scores are defeated in accuracy. They are two

XGB ensemble methods that combines twenty-one selected base models and MCA

factor scores on the Adult and Credit Card Client data sets, and one LR ensemble with

AIC backward selection and MCA factor scores on the Credit Card Client data set.

95

Compared with the same ensemble methods in experiment two, LR ensemble

method has the same or comparable accuracies on all three data sets. It achieved a

0.04% increased accuracy on EEG Eye State data set, and a -0.04% decreased accuracy

on Credit Card Client data set; it has the same accuracy as that on the Adult data set in

experiment two. XGB ensemble method has all decreased -1.93%, -0.28%, and -0.02%

accuracy on the Adult, Credit Card Client, and EEG Eye Status data sets. RF ensemble

method decreased the accuracy by 0.10% on the Credit Card Client data set, and

increased the accuracy by 0.13% and 0.18% on the Adult and EEG Eye State data sets.

In summary, compared with the same ensemble method in experiment two which

ensembles all base models and MCA factor scores, five ensembles with model selection

are defeated in accuracy. Only the RF ensembles with twenty-one selected base models

and MCA factor scores on the Adult and EEG Eye State data sets achieved better

accuracies than the same ensemble methods with all thirty-one base models and MCA

factor scores in experiment two. It shows that the random forest ensemble works better

on selected optimal subsets when MCA factor scores are used in the ensemble.

Compared with the same ensemble methods in experiment three, LR ensemble

has the same accuracies on all three data sets. XGB ensemble method has 0.22%,

0.43%, and 0.19% increased accuracy on the Adult, Credit Card Client, and EEG Eye

Status data sets. RF ensemble method increased the accuracy by 1.41%, 2.55%, and

1.39% on the three data sets respectively. In summary, except for the LR ensemble

method which has the same performance, XGB and RF ensemble methods with only

selected models and MCA factor scores outperform the same ensemble methods with

96

selected base models only. Hence, we conclude that involving the MCA factor scores

in ensembles improves the performance of classification.

Experiment four shows that ensemble methods combining selected base model

and MCA factor scores outperform the same ensemble methods in experiment three

that combines only selected base models. They also outperform the same ensemble

methods in experiment one that integrates all thirty-one base models except for the

XGB ensembles on two data sets and one LR ensemble on one data set. However, they

are defeated by the same ensemble methods in experiment two that ensemble all base

model and MCA factor scores except for RF ensemble method on two data sets. Among

all the ensemble methods in the four experiments, RF ensemble models almost always

achieve the best classification accuracy in each experiment. They work exceptionally

well when MCA factor scores are added and model selection is used. LR ensemble

method has stable and acceptable classification accuracy in all the experiments.

Combining base model selection procedure or adding MCA factors scores doesn’t

affect the performance of LR ensemble at all or improves its performance very little.

XGB ensemble performs the second best when compared with the other two ensemble

methods. Adding MCA factor scores in ensemble improves its performance when

combining either all base models or selected base models. However, base model

selection decreases its performance a lot on all three test data sets.

97

Chapter 5

Conclusions and Summary

As a proven effective approach, ensemble models have been applied in

numerous classification tasks (Zhang et al., 2011). In this research, the ensemble model

was used to combine the predictions of three types of base models to achieve higher

out-of-sample classification accuracy than the base models. Specifically, the base

models themselves are ensemble-based models. They are random forest, extreme

gradient boosting, and extremely randomized trees model that always provide the best

performance in various situations. The literature shows that ensemble classifiers are

particularly effective when their constituent base models are diverse in terms of their

prediction accuracy in different regions of the feature space (Dietterich, 2001).

Randomization of the three ensemble-based base classifiers provided enough diversity

to ensure the success of further ensemble approach in this research. The research

investigated methods of integrating ensemble models by treating them as base models

in four designed experiments. Strategies for combining ensemble classifiers that

resulted in higher classification accuracy than its constituent ensemble modes were

identified. Various strategies were evaluated using three public domain data sets which

have been extensively used for benchmarking classification models.

98

Random forest, extremely randomized trees, and extreme gradient boosting

model were generated as base models due to their high predictive accuracy and high

diversity resulting from randomization (Brieman, 2001; Geurts, Ernst, & Wehenkel,

2006; Friedman, 2001). They are all tree-based and ensemble-based machine learning

algorithms that utilize the subsample of training data set, subset of attributes, and/or

random cut-point choice when growing tsrees to create enough diversity. Adjusting the

parameter of extreme gradient boosting model, the number of trees of random forest

and extremely randomized trees when using R packages to create base models also

contributes diversity to the structure of base models. It was noticed that there is no

linear relationship between the number of trees or parameter settings with the

performance of base models. It is hard to conclude which type of base models performs

the best because they perform differently on different data sets. Extreme gradient

boosting model outperforms the other two types of base models in producing average

classification accuracy on two data sets, but has the smallest average classification

accuracy on the third data set. Extremely randomized trees is outperformed by the other

two types of base models in providing average classification accuracy on two data sets.

However, it provides the best classification accuracy on the third data set. The

performance of random forest base models on all three data sets is between those of

extreme gradient boosting and extremely randomized trees base models.

The literature shows that majority voting is mostly used as benchmarking

ensemble method in many researches (Brieman, 2001). Logistic regression has also

proven to be a good ensemble method in stacking (Wolpert, 1992). In addition to

majority voting and logistic regression ensemble, we introduced random forest and

99

extreme gradient boosting model as additional ensemble methods to our research. In

experiment one, all thirty-one base models are combined by these four different

ensemble methods: majority voting, random forest, extreme gradient boosting, and

logistic regression. Except for majority voting, all other three ensemble methods are

machine learning algorithms or statistical models. The performance of ensemble

methods was compared with that of base models. Majority voting ensemble achieved

better performance than 72% of individual base models on the three data sets. It

outperformed 83% of random forest base models, 67% extremely randomized trees

base models, and 32% of extreme gradient boosting base models on the three test data

sets. Extreme gradient boosting ensemble achieved better performance than 92% of

base models. Only eight extreme gradient boosting base models defeated it. Logistic

regression ensemble achieved better performance than 90% of base models. Only nine

extreme gradient boosting base model had better performance than it. Random forest

ensemble outperformed all of the base models. Compared with benchmarks, which are

the average accuracy of random forest base models, all four ensembles achieved

improved performance. Random forest ensemble achieved the best classification

accuracy among the four ensemble methods. Logistic regression had a comparable

classification accuracy as the extreme gradient boosting ensemble. Majority voting

ensemble performed the worst among the four ensemble approaches. It is concluded

that random forest ensemble is the best ensemble method when combining all three

kinds of base models. Majority voting method is not an ideal ensemble method in this

experiment.

100

It is very common that all base models are combined together for the final

output in lots of research. However, researchers have also showed that combining base

models with some desirable characteristics worked better than only combining all base

models (Rodríguez, Kuncheva, & Alonso, 2006). So, factor scores of multiple

correspondence analysis (MCA) were generated and combined with base models in our

experiments. The MCA factor scores are designed to preserve the variability

information in the data and capture the new features of base models. In experiment two,

extreme gradient boosting, random forest, and logistic regression model were used to

combine all base models and MCA factor scores. Compared with individual base

models, logistic regression ensemble achieved better performance than 90% of base

models. Only nine extreme gradient boosting base models had better performance than

logistic regression ensemble. Extreme gradient boosting ensemble achieved better

performance than 92% of base models. Only eight extreme gradient boosting base

models outperformed it. Random forest ensemble outperformed all of the base models.

Compared with benchmarks, all three ensembles achieved improved performance.

Again, random forest ensemble achieved the best performance among the three

ensemble methods. Logistic regression had a comparable classification accuracy as the

extreme gradient boosting ensemble. Compared with the same ensemble in experiment

one, random forest ensemble improved the accuracy the most; extreme gradient

boosting had a minor performance improvement or similar performance; logistic

regression produced the same accuracy on all data sets. It is concluded that random

forest ensemble is the best ensemble method when combining all of the three kinds of

101

base models with MCA factor scores. MCA factor scores help the random forest

ensemble method in providing more accurate predictions.

Selecting a subset of base models might improve the accuracy of the sfinal

decision (Tsoumakas, Partalas, & Vlahavas, 2008). The criterion of selecting the base

models can be based on accuracy and diversity (Hu, 2001). The three kinds of base

models in the experiments in this research are already ensemble-based models and

proven to be able to achieve high accuracy in most situations, hence the focus is on

choosing base models with the most diversity in this research. Cramér’s V correlation

analysis and backward selection were applied in experiment three and four to choose

the optimal subset of diverse base models to ensemble (Abdelazeem, 2008). Backward

selection associated with logistic regression ensemble method selected less than 50%

of base models in the final ensemble. The selected base models are a mix of three kinds

of base models. Two data sets favored larger numbers of extreme gradient boosting

base models in the final ensemble; and one data set favored a larger number of random

forest models in the final ensemble. After applying another model selection method,

Cramér’s V correlation analysis, ten extreme gradient boosting and eleven extremely

randomized trees base models were chosen by evaluating the average of correlation

coefficients between them. These two types of models were selected because they had

the smallest correlation on average. These twenty-one base models were combined with

majority voting, random forest, and extreme gradient boosting in experiment three.

In experiment three, only selected base models were ensembled. Compared

with individual base models, majority voting ensemble achieved better performance

than only 49% of base models. Extreme gradient boosting ensemble achieved better

102

performance than only 78% of base models; thirteen extreme gradient boosting and

seven random forest base models outperformed extreme gradient boosting ensemble.

Random forest ensemble did not outperform all the base models as in experiment two;

nine extreme gradient boosting base models had better performance than random forest

ensemble. Logistic regression outperformed 90% of base models; the same nine

extreme gradient boosting base models had better performance than logistic regression

ensemble. Among the ensemble methods in experiment three, random forest ensemble

models had the best performance. Although logistic regression ensemble only

integrated around 33% to 50% base models, it achieved about the same accuracy as the

ensemble methods that integrated all base models. Compared with benchmarks,

majority voting ensemble outperformed the benchmark only on one data set; extreme

gradient boosting ensemble outperformed the benchmark on two data sets; random

forest and logistic regression outperformed the benchmarks on all three data sets.

Compared with the same ensemble methods in experiment two, logistic regression

ensemble had the same or very close accuracy as that in experiment two. Extreme

gradient boosting and random forest ensemble both had worse performance than they

had in experiment two. According to the results in experiment one, two, and three, the

three ensemble methods in experiment two which combined all base models and MCA

factor scores achieved better classification accuracy than the same methods in

experiment one which combined all base models and in experiment three which

integrated only selected base models.

Since the ensembles in experiment three had all decreased performance when

compared with those ensembles in experiment one and two, MCA factor scores were

103

added to combine with the selected base models in experiment four. Whether the MCA

factor scores could improve the ensemble performance was evaluated. Compared with

base models, extreme gradient boosting ensemble achieved better performance than

93% of base models with only nine extreme gradient boosting base models

outperforming it. The random forest ensemble outperformed all the base models as in

experiment two. Logistic regression ensemble had the same performance as in

experiment three.

Among the ensemble methods in experiment four, random forest ensemble

outperformed a larger number of base models than extreme gradient boosting and

logistic regression ensemble. Logistic regression ensemble achieved the same

performance as it did in experiment three, which supports the conclusion that adding

MCA factor scores doesn’t help to increase logistic regression ensemble at all. Logistic

regression, extreme gradient boosting and random forest ensemble outperformed the

benchmarks on three data sets. Compared with the same ensemble methods in

experiment one, random forest ensemble had better performance in experiment four;

extreme gradient boosting ensemble had worse performance on two data sets and a

comparable performance on the third data set. When compared with the same ensemble

methods in experiment two, five ensembles were defeated in experiment four. It

seemed that ensembles in experiment two had better performance in overall. However,

it was noticed that random forest in experiment four outperformed themselves in

experiment two on two data sets. Compared with experiment three, it is not surprising

that except for logistic regression that had stable performance in all the four

experiments, ensembles in experiment four performed better than in experiment three.

104

MCA factor scores helped a little bit in the extreme gradient boosting ensemble but a

lot in the random forest ensemble.

As an ensemble method of three kinds of ensemble-based high performance

base models, majority voting performed the worst in combining either all base models

or selected base models. It is not an ideal method to do the final combination. Another

ensemble method, logistic regression, achieved competitive but not the best

performance when compared with other ensemble approaches. It is not sensitive to

model selection or MCA factor scores since it produced very stable classification

accuracies regardless of the model selection applied or MCA factor scores presented.

The third ensemble method, extreme gradient boosting, did a better job when more

variables, here more base models, were combined. In our experiment, since MCA

factor scores were treated the same as base models in ensemble, extreme gradient

boosting ensemble performed better when MCA factor scores were involved; however,

it performed poorly when model selection was involved. Extreme gradient boosting

ensemble is sensitive to the number of inputs, which include both base models and

MCA factor scores, to the final ensemble approach. The more base models included as

inputs, the better performance extreme gradient boosting ensemble can achieve. The

fourth ensemble, random forest, is the most successful method of combining the three

kinds of high performance tree-based ensemble models. It performed the best when

combining all base models, all base models with MCA factor scores, or selected base

models with MCA factor scores when compared with other types of ensemble methods.

Especially, it achieved the highest classification accuracy on two data sets when

combining only twenty-one selected base models and MCA factor scores. Adding

105

MCA factor scores definitely helped to improve random forest ensemble method. On

the contrary, applying only model selection decreased its performance. However,

applying both model selection and MCA factor scores worked extremely successfully

in improving its ensemble performance. Overall, ensemble methods among random

forest, extreme gradient boosting, and extremely randomized trees, the best approach

to ensemble tree-based ensemble models is random forest ensemble method with or

without model selection, and then combining MCA factor scores with those selected or

all base models.

The research is designed to investigate if there is an approach which can

integrate ensemble-based models to achieve even better classification accuracy. The

experiments are limited to binary classification problems. Future research can be

extended to multiple classification problems, or even further to numerical predictions.

It is expected that the findings of this research can be applied in the real world since all

the testing data sets are real but not simulated data sets. The three data sets are collected

from the field of finance, national survey, and physics respectively. Future research can

be applied to other types of real world data.

106

Appendix A: RStudio Interface

107

Appendix B: R Code of Experiments on EEG Eye State Data Set

EGG data set
data set: "EEG-DATA.cvs" contains 14,980 rows

##############################
Read EGG data #
##############################
whole = read.csv("C:/Users/yz22/Desktop/PHD R/EEG/EEG-DATA.csv", header = FALSE,
 col.names = c("AF3","F7", "F3", "FC5", "T7", "P7",
 "O1", "O2", "P8", "T8", "FC6",
 "F4", "F8", "AF4", "eyeDetection"))

###Data partition into 70% and 30%###
data(whole)
n = nrow(whole)
trainIndex = sample(1:n, size = round(0.7*n), replace=FALSE)
train = whole[trainIndex ,]
test = whole[-trainIndex ,]

data frame for predicted results on test data

results = data.frame(y = test$eyeDetection)

###############################
End Read EGG data #
###############################

eXtreme Gradient Boosting: install.packages("xgboost") #

install.packages("drat", repos="https://cran.rstudio.com")
drat:::addRepo("dmlc")
install.packages("xgboost", repos="http://dmlc.ml/drat/", type = "source")

require(xgboost)
set.seed(12345)

trainX = train
testX = test

##rename the target variable into y##
names(trainX)[15]<-"y"
names(testX)[15]<-"y"

#binarize all factors in train data set
library(caret)
dmy <- dummyVars(" ~ .", data=trainX)
trainXdmy <- data.frame(predict(dmy, newdata=trainX))
dim(trainXdmy)
names(trainXdmy)

108

#binarize all factors in test data set
dmyTest <- dummyVars(" ~ .", data=testX)
testXdmy <- data.frame(predict(dmyTest, newdata=testX))
dim(testXdmy)
names(testXdmy)

#prepared a varialbe of target, and a matrix for predictor#
outcomeName <-c('y')

predictors <- names(trainXdmy)[!names(trainXdmy)%in% outcomeName]
predictorsTest <- names(trainXdmy)[!names(trainXdmy)%in% outcomeName]

#train
#nrounds parameter is adjustable

library(xgboost)
#For variable importance
library(DiagrammeR)
library(Ckmeans.1d.dp)
set.seed(12345)

####################
#xgboost 1st model##
####################

#run 10 fold cross validation and choose the best round;round 80 to 120 all have the relative
similar accuracy
#set up parameters for Xgboost#
param <- list("objective" = "binary:logistic",
 "eval_metric" = "logloss",
 "eta" = 0.1, "max.depth" = 2)

bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label =
trainXdmy[,outcomeName], nfold=10, nround = 1500)
plot(log(bst.cv$test.logloss.mean),type = "l")

round 45 have the highest accuracy#
bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName],
max.depth = 2, eta = 1, nround = 1068,
 nthread = 2, objective ="binary:logistic")
gc()
#make prediction#
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE)
#outputmargin has to be FALSE to produce probability
#predictions[1:10]
print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y)))

Get the variable importance
importance_matrix <- xgb.importance(predictors, model = bst)

109

xgb.plot.importance(importance_matrix[1:10])
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2)

#convert to categorical target and caculate the accuracy
yPredCat1 <- ifelse(predictions <= 0.5,0,1)
yPredCat1[1:10]
results$xgb1 = yPredCat1
confusionXgb1=table(yPredCat1,testXdmy$y)
accuracyXgb1 = sum(diag(confusionXgb1))/sum(confusionXgb1)
cat("xgboost Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyXgb1))
confusionXgb1

####################
#xgboost 2nd model##
####################

param <- list("objective" = "binary:logistic",
 "eval_metric" = "logloss",
 "eta" = 0.9, "max.depth" = 2)
#run 10 fold cross validation and choose the best round;round 80 to 120 all have the relative
similar accuracy
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label =
trainXdmy[,outcomeName], nfold=10, nround = 1500)
plot(log(bst.cv$test.logloss.mean),type = "l")

bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName],
max.depth = 2, eta = 0.9, nround = 850,
 nthread = 2, objective ="binary:logistic")
gc()
#make prediction#
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE)
#outputmargin has to be FALSE to produce probability
#predictions[1:10]
print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y)))

Get the variable importance
importance_matrix <- xgb.importance(predictors, model = bst)
xgb.plot.importance(importance_matrix[1:10])
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2)

#convert to categorical target and caculate the accuracy
yPredCat2 <- ifelse(predictions <= 0.5,0,1)
yPredCat2[1:10]
results$xgb2 = yPredCat2
confusionXgb2=table(yPredCat2,testXdmy$y)
accuracyXgb2 = sum(diag(confusionXgb2))/sum(confusionXgb2)
cat("xgboost Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyXgb2))
confusionXgb2

110

####################
#xgboost 3rd model##
####################
set.seed(63521)
param <- list("objective" = "binary:logistic",
 "eval_metric" = "logloss",
 "eta" = 0.8, "max.depth" = 2)
#run 10 fold cross validation and choose the best round;round 80 to 120 all have the relative
similar accuracy
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label =
trainXdmy[,outcomeName], nfold=10, nround = 1000)
plot(log(bst.cv$test.logloss.mean),type = "l")

bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName],
max.depth = 2, eta = 0.8, nround = 920,
 nthread = 2, objective ="binary:logistic")
gc()
#make prediction#
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE)
#outputmargin has to be FALSE to produce probability
#predictions[1:10]
print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y)))

Get the variable importance
importance_matrix <- xgb.importance(predictors, model = bst)
xgb.plot.importance(importance_matrix[1:10])
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2)

#convert to categorical target and caculate the accuracy
yPredCat3 <- ifelse(predictions <= 0.5,0,1)
yPredCat3[1:10]
results$xgb3 = yPredCat3
confusionXgb3=table(yPredCat3,testXdmy$y)
accuracyXgb3 = sum(diag(confusionXgb3))/sum(confusionXgb3)
cat("xgboost Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyXgb3))
confusionXgb3

####################
#xgboost 4th model##
####################
param <- list("objective" = "binary:logistic",
 "eval_metric" = "logloss",
 "eta" = 0.7, "max.depth" = 2)
#run 10 fold cross validation and choose the best round;round 80 to 120 all have the relative
similar accuracy
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label =
trainXdmy[,outcomeName], nfold=10, nround = 1500)
plot(log(bst.cv$test.logloss.mean),type = "l")

111

bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName],
max.depth = 2, eta = 0.7, nround = 1427,
 nthread = 2, objective ="binary:logistic")
gc()
#make prediction#
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE)
#outputmargin has to be FALSE to produce probability
#predictions[1:10]
print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y)))

Get the variable importance
importance_matrix <- xgb.importance(predictors, model = bst)
xgb.plot.importance(importance_matrix[1:10])
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2)

#convert to categorical target and caculate the accuracy
yPredCat4 <- ifelse(predictions <= 0.5,0,1)
yPredCat4[1:10]
results$xgb4 = yPredCat4
confusionXgb4=table(yPredCat4,testXdmy$y)
accuracyXgb4 = sum(diag(confusionXgb4))/sum(confusionXgb4)
cat("xgboost Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyXgb4))
confusionXgb4

####################
#xgboost 5th model##
####################
param <- list("objective" = "binary:logistic",
 "eval_metric" = "logloss",
 "eta" = 0.6, "max.depth" = 2)
#run 10 fold cross validation and choose the best round;
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label =
trainXdmy[,outcomeName], nfold=10, nround = 1500)
plot(log(bst.cv$test.logloss.mean),type = "l")

bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName],
max.depth = 2, eta = 0.6, nround = 1440,
 nthread = 2, objective ="binary:logistic")
gc()
#make prediction#
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE)
#outputmargin has to be FALSE to produce probability
#predictions[1:10]
print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y)))

Get the variable importance
importance_matrix <- xgb.importance(predictors, model = bst)
xgb.plot.importance(importance_matrix[1:10])
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2)

112

#convert to categorical target and caculate the accuracy
yPredCat5 <- ifelse(predictions <= 0.5,0,1)
yPredCat5[1:10]
results$xgb5 = yPredCat5
confusionXgb5=table(yPredCat5,testXdmy$y)
accuracyXgb5 = sum(diag(confusionXgb5))/sum(confusionXgb5)
cat("xgboost Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyXgb5))
confusionXgb5

####################
#xgboost 6th model##
####################
param <- list("objective" = "binary:logistic",
 "eval_metric" = "logloss",
 "eta" = 0.5, "max.depth" = 2)
#run 10 fold cross validation and choose the best round;
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label =
trainXdmy[,outcomeName], nfold=10, nround = 1500)
plot(log(bst.cv$test.logloss.mean),type = "l")

bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName],
max.depth = 2, eta = 0.5, nround = 1480,
 nthread = 2, objective ="binary:logistic")
gc()
#make prediction#
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE)
#outputmargin has to be FALSE to produce probability
#predictions[1:10]
print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y)))

Get the variable importance
importance_matrix <- xgb.importance(predictors, model = bst)
xgb.plot.importance(importance_matrix[1:10])
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2)

#convert to categorical target and caculate the accuracy
yPredCat6 <- ifelse(predictions <= 0.5,0,1)
yPredCat6[1:10]
results$xgb6 = yPredCat6
confusionXgb6=table(yPredCat6,testXdmy$y)
accuracyXgb6 = sum(diag(confusionXgb6))/sum(confusionXgb6)
cat("xgboost Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyXgb6))
confusionXgb6

####################
#xgboost 7th model##
####################
param <- list("objective" = "binary:logistic",

113

 "eval_metric" = "logloss",
 "eta" = 0.4, "max.depth" = 2)
#run 10 fold cross validation and choose the best round;1
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label =
trainXdmy[,outcomeName], nfold=10, nround = 1500)
plot(log(bst.cv$test.logloss.mean),type = "l")

bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName],
max.depth = 2, eta = 0.4, nround = 1500,
 nthread = 2, objective ="binary:logistic")
gc()
#make prediction#
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE)
#outputmargin has to be FALSE to produce probability
#predictions[1:10]
print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y)))

Get the variable importance
importance_matrix <- xgb.importance(predictors, model = bst)
xgb.plot.importance(importance_matrix[1:10])
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2)

#convert to categorical target and caculate the accuracy
yPredCat7 <- ifelse(predictions <= 0.5,0,1)
yPredCat7[1:10]
results$xgb7 = yPredCat7
confusionXgb7=table(yPredCat7,testXdmy$y)
accuracyXgb7 = sum(diag(confusionXgb7))/sum(confusionXgb7)
cat("xgboost Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyXgb7))
confusionXgb7

####################
#xgboost 8th model##
####################
param <- list("objective" = "binary:logistic",
 "eval_metric" = "logloss",
 "eta" = 0.3, "max.depth" = 2)
#run 10 fold cross validation and choose the best round;
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label =
trainXdmy[,outcomeName], nfold=10, nround = 1500)
plot(log(bst.cv$test.logloss.mean),type = "l")

bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName],
max.depth = 2, eta = 0.3, nround = 1500,
 nthread = 2, objective ="binary:logistic")
gc()
#make prediction#
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE)
#outputmargin has to be FALSE to produce probability
#predictions[1:10]

114

print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y)))

Get the variable importance
importance_matrix <- xgb.importance(predictors, model = bst)
xgb.plot.importance(importance_matrix[1:10])
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2)

#convert to categorical target and caculate the accuracy
yPredCat8 <- ifelse(predictions <= 0.5,0,1)
yPredCat8[1:10]
results$xgb8 = yPredCat8
confusionXgb8=table(yPredCat8,testXdmy$y)
accuracyXgb8 = sum(diag(confusionXgb8))/sum(confusionXgb8)
cat("xgboost Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyXgb8))
confusionXgb8

####################
#xgboost 9th model##
####################
param <- list("objective" = "binary:logistic",
 "eval_metric" = "logloss",
 "eta" = 0.2, "max.depth" = 2)
#run 10 fold cross validation and choose the best round;
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label =
trainXdmy[,outcomeName], nfold=10, nround = 1500)
plot(log(bst.cv$test.logloss.mean),type = "l")

bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName],
max.depth = 2, eta = 0.2, nround = 1500,
 nthread = 2, objective ="binary:logistic")
gc()
#make prediction#
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE)
#outputmargin has to be FALSE to produce probability
#predictions[1:10]
print(-mean(log(predictions)*testXdmy$salary+log(1-predictions)*(1-testXdmy$salary)))

Get the variable importance
importance_matrix <- xgb.importance(predictors, model = bst)
xgb.plot.importance(importance_matrix[1:10])
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2)

#convert to categorical target and caculate the accuracy
yPredCat9 <- ifelse(predictions <= 0.5,0,1)
yPredCat9[1:10]
results$xgb9 = yPredCat9
confusionXgb9=table(yPredCat9,testXdmy$y)
accuracyXgb9 = sum(diag(confusionXgb9))/sum(confusionXgb9)
cat("xgboost Results:\n")

115

cat(sprintf("Accuracy %3.4f\n", accuracyXgb9))
confusionXgb9

####################
#xgboost 10th model##
####################
param <- list("objective" = "binary:logistic",
 "eval_metric" = "logloss",
 "eta" = 0.1, "max.depth" = 2)
#run 10 fold cross validation and choose the best round;
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label =
trainXdmy[,outcomeName], nfold=10, nround = 1500)
plot(log(bst.cv$test.logloss.mean),type = "l")

bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName],
max.depth = 2, eta = 0.1, nround = 1500,
 nthread = 2, objective ="binary:logistic")
gc()
#make prediction#
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE)
#outputmargin has to be FALSE to produce probability
#predictions[1:10]
print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y)))

Get the variable importance
importance_matrix <- xgb.importance(predictors, model = bst)
xgb.plot.importance(importance_matrix[1:10])
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2)

#convert to categorical target and caculate the accuracy
yPredCat10 <- ifelse(predictions <= 0.5,0,1)
yPredCat10[1:10]
results$xgb10 = yPredCat10
confusionXgb10=table(yPredCat10,testXdmy$y)
accuracyXgb10 = sum(diag(confusionXgb10))/sum(confusionXgb10)
cat("xgboost Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyXgb10))
confusionXgb10
###############################
End extreme random boosting #
###############################

#########################
#######Extra Trees#######
#########################
#put 2g space for extra tree
options(java.parameters = "-Xmx2g")

#package "rJava" needed to be installed before using extra trees
install.packages("rJava")
Sys.setenv(JAVA_HOME='C:\\Program Files\\Java\\jre1.8.0_101') # for 64-bit version

116

library(rJava)

install.packages("extraTrees")
library(extraTrees)

##############################
trainET = trainX
testET = testX

trainET=list(x=trainXdmy[,predictors],y=trainXdmy[,15])
testET=list(x=testXdmy[,predictors],y=testXdmy[,15])

##################
##1st Extra Tree ##
##################
set.seed(13524)
et <- extraTrees(trainET$x, trainET$y, ntree=50)
yhat <- predict(et, testET$x)
accuracy
mean(testET$y == yhat)
class probabilities
#convert to categorical target and caculate the accuracy
yPredET1 <- ifelse(yhat <= 0.5,0,1)
yPredET1[1:10]
results$ET1 = yPredET1
confusionET1=table(yPredET1,testXdmy$y)
accuracyET1 = sum(diag(confusionET1))/sum(confusionET1)
cat("Extra Tree Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyET1))
confusionET1

##################
##2nd Extra Tree##
##################
set.seed(54321)
et <- extraTrees(trainET$x, trainET$y, ntree=100)
yhat <- predict(et, testET$x)
accuracy
mean(testET$y == yhat)
class probabilities
#convert to categorical target and caculate the accuracy
yPredET2 <- ifelse(yhat <= 0.5,0,1)
yPredET2[1:10]
results$ET2 = yPredET2
confusionET2=table(yPredET2,testXdmy$y)
accuracyET2 = sum(diag(confusionET2))/sum(confusionET2)
cat("Extra Tree Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyET2))
confusionET2

##################

117

##3rd Extra Tree##
##################
set.seed(12345)
et <- extraTrees(trainET$x, trainET$y, ntree=150)
yhat <- predict(et, testET$x)
accuracy
mean(testET$y == yhat)
class probabilities
#convert to categorical target and caculate the accuracy
yPredET3 <- ifelse(yhat <= 0.5,0,1)
yPredET3[1:10]
results$ET3 = yPredET3
confusionET3=table(yPredET3,testXdmy$y)
accuracyET3 = sum(diag(confusionET3))/sum(confusionET3)
cat("Extra Tree Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyET3))
confusionET3

##################
##4th Extra Tree##
##################
set.seed(24635)
et <- extraTrees(trainET$x, trainET$y, ntree=200)
yhat <- predict(et, testET$x)
accuracy
mean(testET$y == yhat)
class probabilities
#convert to categorical target and caculate the accuracy
yPredET4 <- ifelse(yhat <= 0.5,0,1)
yPredET4[1:10]
results$ET4 = yPredET4
confusionET4=table(yPredET4,testXdmy$y)
accuracyET4 = sum(diag(confusionET4))/sum(confusionET4)
cat("Extra Tree Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyET4))
confusionET4

##################
##5th Extra Tree##
##################
set.seed(98765)
et <- extraTrees(trainET$x, trainET$y, ntree=250)
yhat <- predict(et, testET$x)
accuracy
mean(testET$y == yhat)
class probabilities
#convert to categorical target and caculate the accuracy
yPredET5 <- ifelse(yhat <= 0.5,0,1)
yPredET5[1:10]
results$ET5 = yPredET5
confusionET5=table(yPredET5,testXdmy$y)

118

accuracyET5 = sum(diag(confusionET5))/sum(confusionET5)
cat("Extra Tree Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyET5))
confusionET5

##################
##6th Extra Tree##
##################
set.seed(40628)
et <- extraTrees(trainET$x, trainET$y, ntree=300)
yhat <- predict(et, testET$x)
accuracy
mean(testET$y == yhat)
class probabilities
#convert to categorical target and caculate the accuracy
yPredET6 <- ifelse(yhat <= 0.5,0,1)
yPredET6[1:10]
results$ET6 = yPredET6
confusionET6=table(yPredET6,testXdmy$y)
accuracyET6 = sum(diag(confusionET6))/sum(confusionET6)
cat("Extra Tree Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyET6))
confusionET6

##################
##7th Extra Tree##
##################
set.seed(59764)
et <- extraTrees(trainET$x, trainET$y, ntree=350)
yhat <- predict(et, testET$x)
accuracy
mean(testET$y == yhat)
class probabilities
#convert to categorical target and caculate the accuracy
yPredET7 <- ifelse(yhat <= 0.5,0,1)
yPredET7[1:10]
results$ET7 = yPredET7
confusionET7=table(yPredET7,testXdmy$y)
accuracyET7 = sum(diag(confusionET7))/sum(confusionET7)
cat("Extra Tree Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyET7))
confusionET7

##################
##8th Extra Tree##
##################
set.seed(82604)
et <- extraTrees(trainET$x, trainET$y, ntree=400)
yhat <- predict(et, testET$x)
accuracy
mean(testET$y == yhat)

119

class probabilities
#convert to categorical target and caculate the accuracy
yPredET8 <- ifelse(yhat <= 0.5,0,1)
yPredET8[1:10]
results$ET8 = yPredET8
confusionET8=table(yPredET8,testXdmy$y)
accuracyET8 = sum(diag(confusionET8))/sum(confusionET8)
cat("Extra Tree Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyET8))
confusionET8

##################
##9th Extra Tree##
##################
set.seed(37596)
et <- extraTrees(trainET$x, trainET$y, ntree=450)
yhat <- predict(et, testET$x)
accuracy
mean(testET$y == yhat)
class probabilities
#convert to categorical target and caculate the accuracy
yPredET9 <- ifelse(yhat <= 0.5,0,1)
yPredET9[1:10]
results$ET9 = yPredET9
confusionET9=table(yPredET9,testXdmy$y)
accuracyET9 = sum(diag(confusionET9))/sum(confusionET9)
cat("Extra Tree Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyET9))
confusionET9

##################
##10th Extra Tree##
##################
set.seed(49562)
et <- extraTrees(trainET$x, trainET$y, ntree=500)
yhat <- predict(et, testET$x)
accuracy
mean(testET$y == yhat)
class probabilities
#convert to categorical target and caculate the accuracy
yPredET10 <- ifelse(yhat <= 0.5,0,1)
yPredET10[1:10]
results$ET10 = yPredET10
confusionET10=table(yPredET10,testXdmy$y)
accuracyET10 = sum(diag(confusionET10))/sum(confusionET10)
cat("Extra Tree Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyET10))
confusionET10

##################
##11th Extra Tree##

120

##################
set.seed(84638)
et <- extraTrees(trainET$x, trainET$y, ntree=550)
yhat <- predict(et, testET$x)
accuracy
mean(testET$y == yhat)
class probabilities
#convert to categorical target and caculate the accuracy
yPredET11 <- ifelse(yhat <= 0.5,0,1)
yPredET11[1:10]
results$ET11 = yPredET11
confusionET11=table(yPredET11,testXdmy$y)
accuracyET11 = sum(diag(confusionET11))/sum(confusionET11)
cat("Extra Tree Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracyET11))
confusionET11

randomForest: install.packages("randomForest") #

library(randomForest)

#create fisrt random forest#
model1 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),
 xtest=testXdmy[,-15], ntree=50, set.seed(12345, kind=NULL,
normal.kind=NULL))
predicted1 = model1$test$predicted
results$FOREST1 = predicted1
confusion1 = table(predicted1, testXdmy$y)
accuracy1 = sum(diag(confusion1))/sum(confusion1)
cat("FOREST Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracy1))
confusion1

#create second random forest#
model2 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),
 xtest=testXdmy[,-15], ntree=100, set.seed(54321, kind=NULL,
normal.kind=NULL))
predicted2 = model2$test$predicted
results$FOREST2 = predicted2
confusion2 = table(predicted2, testXdmy$y)
accuracy2 = sum(diag(confusion2))/sum(confusion2)
cat("FOREST Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracy2))
confusion2

#create 3rd random forest#
model3 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),
 xtest=testXdmy[,-15], ntree=150, set.seed(13524, kind=NULL,
normal.kind=NULL))

121

predicted3 = model3$test$predicted
results$FOREST3 = predicted3
confusion3 = table(predicted3, testXdmy$y)
accuracy3 = sum(diag(confusion3))/sum(confusion3)
cat("FOREST Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracy3))
confusion3

#create 4th random forest#
model4 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),
 xtest=testXdmy[,-15], ntree=200, set.seed(24531, kind=NULL,
normal.kind=NULL))
predicted4 = model4$test$predicted
results$FOREST4 = predicted4
confusion4 = table(predicted4, testXdmy$y)
accuracy4 = sum(diag(confusion4))/sum(confusion4)
cat("FOREST Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracy4))
confusion4

#create 5th random forest#
model5 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),
 xtest=testXdmy[,-15], ntree=250, set.seed(31452, kind=NULL,
normal.kind=NULL))
predicted5 = model5$test$predicted
results$FOREST5 = predicted5
confusion5 = table(predicted5, testXdmy$y)
accuracy5 = sum(diag(confusion5))/sum(confusion5)
cat("FOREST Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracy5))
confusion5

#create 6th random forest#
model6 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),
 xtest=testXdmy[,-15], ntree=300, set.seed(43521, kind=NULL,
normal.kind=NULL))
predicted6 = model6$test$predicted
results$FOREST6 = predicted6
confusion6 = table(predicted6, testXdmy$y)
accuracy6 = sum(diag(confusion6))/sum(confusion6)
cat("FOREST Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracy6))
confusion6

#create 7th random forest#
model7 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),
 xtest=testXdmy[,-15], ntree=350, set.seed(56789, kind=NULL,
normal.kind=NULL))
predicted7 = model7$test$predicted
results$FOREST7 = predicted7
confusion7 = table(predicted7, testXdmy$y)

122

accuracy7 = sum(diag(confusion7))/sum(confusion7)
cat("FOREST Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracy7))
confusion7

#create 8th random forest#
model8 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),
 xtest=testXdmy[,-15], ntree=400, set.seed(98765, kind=NULL,
normal.kind=NULL))
predicted8 = model8$test$predicted
results$FOREST8 = predicted8
confusion8 = table(predicted8, testXdmy$y)
accuracy8 = sum(diag(confusion8))/sum(confusion8)
cat("FOREST Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracy8))
confusion8

#create 9th random forest#
model9 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),
 xtest=testXdmy[,-15], ntree=450, set.seed(52947, kind=NULL,
normal.kind=NULL))
predicted9 = model9$test$predicted
results$FOREST9 = predicted9
confusion9 = table(predicted9, testXdmy$y)
accuracy9 = sum(diag(confusion9))/sum(confusion9)
cat("FOREST Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracy9))
confusion9

#create 10th random forest#
model10 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),
 xtest=testXdmy[,-15], ntree=500, set.seed(69875, kind=NULL,
normal.kind=NULL))
predicted10 = model10$test$predicted
results$FOREST10 = predicted10
confusion10 = table(predicted10, testXdmy$y)
accuracy10 = sum(diag(confusion10))/sum(confusion10)
cat("FOREST Results:\n")
cat(sprintf("Accuracy %3.4f\n", accuracy10))
confusion10

###############################
End randomForest ##############
###############################

#Write predicted result in a file
results$xgb1 = yPredCat1
results$xgb2 = yPredCat2
results$xgb3 = yPredCat3
results$xgb4 = yPredCat4
results$xgb5 = yPredCat5

123

results$xgb6 = yPredCat6
results$xgb7 = yPredCat7
results$xgb8 = yPredCat8
results$xgb9 = yPredCat9
results$xgb10 =yPredCat10
results$ET1 = yPredET1
results$ET2 = yPredET2
results$ET3 = yPredET3
results$ET4 = yPredET4
results$ET5 = yPredET5
results$ET6 = yPredET6
results$ET7 = yPredET7
results$ET8 = yPredET8
results$ET9 = yPredET9
results$ET10 = yPredET10
results$ET11 = yPredET11
results$FOREST1 = predicted1
results$FOREST2 = predicted2
results$FOREST3 = predicted3
results$FOREST4 = predicted4
results$FOREST5 = predicted5
results$FOREST6 = predicted6
results$FOREST7 = predicted7
results$FOREST8 = predicted8
results$FOREST9 = predicted9
results$FOREST10 = predicted10

write.csv(results, "C:/Users/yz22/Desktop/PHD R/EEG/modelresults.csv")

write.csv(confusion1, "C:/Users/yz22/Desktop/PHD R/EEG/confusion1.csv")
write.csv(confusion2, "C:/Users/yz22/Desktop/PHD R/EEG/confusion2.csv")
write.csv(confusion3, "C:/Users/yz22/Desktop/PHD R/EEG/confusion3.csv")
write.csv(confusion4, "C:/Users/yz22/Desktop/PHD R/EEG/confusion4.csv")
write.csv(confusion5, "C:/Users/yz22/Desktop/PHD R/EEG/confusion5.csv")
write.csv(confusion6, "C:/Users/yz22/Desktop/PHD R/EEG/confusion6.csv")
write.csv(confusion7, "C:/Users/yz22/Desktop/PHD R/EEG/confusion7.csv")
write.csv(confusion8, "C:/Users/yz22/Desktop/PHD R/EEG/confusion8.csv")
write.csv(confusion9, "C:/Users/yz22/Desktop/PHD R/EEG/confusion9.csv")
write.csv(confusion10, "C:/Users/yz22/Desktop/PHD R/EEG/confusion10.csv")

write.csv(confusionET1, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET1.csv")
write.csv(confusionET2, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET2.csv")
write.csv(confusionET3, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET3.csv")
write.csv(confusionET4, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET4.csv")
write.csv(confusionET5, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET5.csv")
write.csv(confusionET6, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET6.csv")
write.csv(confusionET7, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET7.csv")
write.csv(confusionET8, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET8.csv")
write.csv(confusionET9, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET9.csv")
write.csv(confusionET10, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET10.csv")
write.csv(confusionET11, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET11.csv")

124

write.csv(confusionXgb1, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb1.csv")
write.csv(confusionXgb2, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb2.csv")
write.csv(confusionXgb3, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb3.csv")
write.csv(confusionXgb4, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb4.csv")
write.csv(confusionXgb5, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb5.csv")
write.csv(confusionXgb6, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb6.csv")
write.csv(confusionXgb7, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb7.csv")
write.csv(confusionXgb8, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb8.csv")
write.csv(confusionXgb9, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb9.csv")
write.csv(confusionXgb10, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb10.csv")

####################################
##Multiple Correspondence Analysis##
####################################
library(ca)
mca <- mjca(results[,2:32])
summary(mca, lambda = "Burt")
print(mca)

#standard coordinates of rows, row factor scores
mca$rowcoord[1:10,]
#Principla coordinates of rows, row factor scores, defined in the dissertation
mca$rowpcoord[1:10,]

plot.mjca(mca)
add principle factor scores to the model results, create table resultMca, these data has two
factors
resultMca <- results
resultMca$PFS1 = mca$rowpcoord[,1]
resultMca$PFS2 = mca$rowpcoord[,2]

resultMca$FS1 = mca$rowcoord[,1]
resultMca$FS2 = mca$rowcoord[,2]

CramÃ©r's V correlation coefficient of 30 base models##

library(vcd)

cramerx <- results[,c(-1)]

catcor <- function(x, type=c("cramer")) {
 require(vcd)
 nc <- ncol(x)
 v <- expand.grid(1:nc, 1:nc)
 type <- match.arg(type)
 res <- matrix(mapply(function(i1, i2) assocstats(table(x[,i1],
 x[,i2]))[[type]], v[,1], v[,2]), nc, nc)
 rownames(res) <- colnames(res) <- colnames(x)

125

 res
}

cramerxresult <- catcor(cramerx, type="cramer")

write.csv(cramerxresult, "C:/Users/yz22/Desktop/PHD R/EEG/cramerxresult.csv")

#######Second Stage: Experiment Design ###########

 ##
 ## Experiment Design one #################
 ##
 ## use xgboost to combine the base model##
 ##
 ##
 install.packages("drat", repos="https://cran.rstudio.com")
 drat:::addRepo("dmlc")
 install.packages("xgboost", repos="http://dmlc.ml/drat/", type = "source")

 require(xgboost)
 set.seed(92754)

 #format data to fit Xgboost#
 #Xgboost requires all inputs are numberic

 resultsXgb=results

 #binarize all factors in the data set
 library(caret)
 dmy <- dummyVars(" ~ .", data=resultsXgb)
 resultsXgbdmy <- data.frame(predict(dmy, newdata=resultsXgb))

 dim(resultsXgbdmy)
 names(resultsXgbdmy)

 ###

 #prepared a varialbe of target, and a matrix for predictor#
 outcomeName <-c('y')

 predictorsXgb <- names(resultsXgbdmy)[!names(resultsXgbdmy)%in% outcomeName]

 #set up parameters for Xgboost#
 param <- list("objective" = "binary:logistic",
 "eval_metric" = "logloss",
 "eta" =0.005, "max.depth" = 2)

 library(xgboost)

 #For variable importance

126

 library(DiagrammeR)
 library(Ckmeans.1d.dp)

 #run 10 fold cross validation and choose the best round
 bst.cv <- xgb.cv(param=param, data = as.matrix(resultsXgbdmy[,predictorsXgb]),
 label = resultsXgbdmy[,outcomeName], nfold=10, nround = 2000)
 plot(log(bst.cv$test.logloss.mean),type ="l")

 ###############################
 #Xgboost Final Combined Model##
 ###############################

 bstComb <- xgboost(data = as.matrix(resultsXgbdmy[,predictorsXgb]),
 label = resultsXgbdmy[,outcomeName], max.depth = 2, eta = 0.005, nround
= 1540,
 nthread = 2, objective ="binary:logistic")
 gc()

 #make prediction#
 predictionsXgb <- predict(bstComb, as.matrix(resultsXgbdmy[,predictorsXgb]),
outputmargin= FALSE) #outputmargin has to be FALSE to produce probability
 #predictions[1:10]
 print(-mean(log(predictionsXgb)*resultsXgbdmy$y+log(1-predictionsXgb)*(1-
resultsXgbdmy$y)))

 # Get the variable importance
 importance_matrix <- xgb.importance(predictorsXgb, model = bstComb)
 xgb.plot.importance(importance_matrix[1:10])

 #convert to categorical target and caculate the accuracy
 yPredCatXgb <- ifelse(predictionsXgb <= 0.5,0,1)
 yPredCatXgb[1:10]

 confusionED1Xgb=table(yPredCatXgb,resultsXgbdmy$y)
 accuracyXgb = sum(diag(confusionED1Xgb))/sum(confusionED1Xgb)
 cat("xgboost Combine Base Model Results:\n")
 cat(sprintf("Accuracy %3.4f\n", accuracyXgb))
 confusionED1Xgb
 write.csv(confusionED1Xgb, "C:/Users/yz22/Desktop/PHD
R/EEG/confusionED1Xgb.csv")

 #Create a new table to save the ensemble result
 resultsFinal = data.frame(y = testX$y)
 #save the ensemble result to table
 resultsFinal$xgb.allBase = yPredCatXgb

 ################################
 ##Random Forest Combined Model##
 ################################

127

 library(randomForest)

 #create fisrt random forest#
 modelRF = randomForest(resultsXgbdmy[,-1], as.factor(resultsXgbdmy[,1]),
 xtest=resultsXgbdmy[,-1], ntree=50, set.seed(56382, kind=NULL,
normal.kind=NULL))
 predictedRF = modelRF$test$predicted
 resultsFinal$RF.allBase = predictedRF
 confusionED1RF = table(predictedRF, resultsXgbdmy$y)
 accuracyRF = sum(diag(confusionED1RF))/sum(confusionED1RF)
 cat("FOREST Results:\n")
 cat(sprintf("Accuracy %3.4f\n", accuracyRF))
 confusionED1RF
 write.csv(confusionED1RF, "C:/Users/yz22/Desktop/PHD
R/EEG/confusionED1RF.csv")

 ################################
 ## Majority Voting ##
 ################################
 require(functional)
 confusionED1MV <- apply(results[,-1,drop=FALSE], 1, Compose(table,
 function(i) i==max(i),
 which,
 names,
 function(i) paste0(i, collapse='/')
)
)

 resultsFinal$MV.allBase = confusionED1MV

 confusionED1MV = table(confusionED1MV, resultsXgbdmy$y)
 accuracyMV = sum(diag(confusionED1MV))/sum(confusionED1MV)
 cat("Majority Voting Results:\n")
 cat(sprintf("Accuracy %3.4f\n", accuracyMV))
 confusionED1MV
 write.csv(confusionED1MV, "C:/Users/yz22/Desktop/PHD
R/EEG/confusionED1MV.csv")

 #################################
 ## full logistic Regression ##
 #################################
 BLR <-
glm(y~as.factor(xgb1)+as.factor(xgb2)+as.factor(xgb3)+as.factor(xgb4)+as.factor(xgb5)

+as.factor(xgb6)+as.factor(xgb7)+as.factor(xgb8)+as.factor(xgb9)+as.factor(xgb10)

+as.factor(FOREST1)+as.factor(FOREST2)+as.factor(FOREST3)+as.factor(FOREST4)+as.f
actor(FOREST5)

128

+as.factor(FOREST6)+as.factor(FOREST7)+as.factor(FOREST8)+as.factor(FOREST9)+as.f
actor(FOREST10)
 +as.factor(ET1)+as.factor(ET2)+as.factor(ET3)+as.factor(ET4)+as.factor(ET5)

+as.factor(ET6)+as.factor(ET7)+as.factor(ET8)+as.factor(ET9)+as.factor(ET10)+as.factor(E
T11),
 family="binomial", data=resultsXgb)

 ##make prediction##
 Predictglm<-predict(BLR,resultsXgb[,-1],type="response")

 Predictglmcat <- ifelse(Predictglm <= 0.5,0,1)
 Predictglmcat[1:10]

 ####write to the final result table####
 resultsFinal$FullLR.allBase = Predictglmcat

 confusionED1LR=table(Predictglmcat,resultsXgb$y)
 accuracyLR = sum(diag(confusionED1LR))/sum(confusionED1LR)
 cat("Backward Logistic Regression Combine Base Model Results:\n")
 cat(sprintf("Accuracy %3.4f\n", accuracyLR))
 confusionED1LR
 write.csv(confusionED1LR, "C:/Users/yz22/Desktop/PHD
R/EEG/confusionED1LR.csv")

 ##
 ## Experiment Design Two #################
 ##
 ## use xgboost to combine the base model and MCA factors##
 ##
 ##
 install.packages("drat", repos="https://cran.rstudio.com")
 drat:::addRepo("dmlc")
 install.packages("xgboost", repos="http://dmlc.ml/drat/", type = "source")

 require(xgboost)
 set.seed(73529)

 #format data to fit Xgboost#
 #Xgboost requires all inputs are numberic

 resultsMcaXgb=resultMca

 #binarize all factors in the data set
 library(caret)
 dmy <- dummyVars(" ~ .", data=resultsMcaXgb)
 resultsMcaXgbdmy <- data.frame(predict(dmy, newdata=resultsMcaXgb))

 dim(resultsMcaXgbdmy)

129

 names(resultsMcaXgbdmy)

 ###
 #prepared a varialbe of target, and a matrix for predictor#
 outcomeName <-c('y')

 predictorsMcaXgb <- names(resultsMcaXgbdmy)[!names(resultsMcaXgbdmy)%in%
outcomeName]

 #set up parameters for Xgboost#
 param <- list("objective" = "binary:logistic",
 "eval_metric" = "logloss",
 "eta" =0.005, "max.depth" = 2)

 library(xgboost)

 #For variable importance
 library(DiagrammeR)
 library(Ckmeans.1d.dp)

 #run 10 fold cross validation and choose the best round
 bst.cv <- xgb.cv(param=param, data =
as.matrix(resultsMcaXgbdmy[,predictorsMcaXgb]),
 label = resultsMcaXgbdmy[,outcomeName], nfold=10, nround = 2000)
 plot(log(bst.cv$test.logloss.mean),type ="l")

 ###############################
 #Xgboost Final Combined Model##
 ###############################

 bstComb <- xgboost(data = as.matrix(resultsMcaXgbdmy[,predictorsMcaXgb]),
 label = resultsMcaXgbdmy[,outcomeName], max.depth = 2, eta = 0.005,
nround = 2200,
 nthread = 2, objective ="binary:logistic")
 gc()
 #make prediction#
 predictionsMcaXgb <- predict(bstComb,
as.matrix(resultsMcaXgbdmy[,predictorsMcaXgb]), outputmargin= FALSE) #outputmargin
has to be FALSE to produce probability
 #predictions[1:10]
 print(-mean(log(predictionsMcaXgb)*resultsMcaXgbdmy$y+log(1-
predictionsMcaXgb)*(1-resultsMcaXgbdmy$y)))

 # Get the variable importance
 importance_matrix <- xgb.importance(predictorsMcaXgb, model = bstComb)
 xgb.plot.importance(importance_matrix[1:10])

 #convert to categorical target and caculate the accuracy
 yPredCatMcaXgb <- ifelse(predictionsMcaXgb <= 0.5,0,1)
 yPredCatMcaXgb[1:10]

130

 confusionED2Xgb=table(yPredCatMcaXgb,resultsMcaXgbdmy$y)
 accuracyMcaXgb = sum(diag(confusionED2Xgb))/sum(confusionED2Xgb)
 cat("xgboost Combine Base Model Results:\n")
 cat(sprintf("Accuracy %3.4f\n", accuracyMcaXgb))
 confusionED2Xgb
 write.csv(confusionED2Xgb, "C:/Users/yz22/Desktop/PHD
R/EEG/confusionED2Xgb.csv")

 #save the ensemble result to table, accuracy is 0.9544
 resultsFinal$xgb.allBaseMCA = yPredCatMcaXgb

 ################################
 ##Random Forest Combined Model##
 ################################
 library(randomForest)

 #create fisrt random forest#
 modelRF = randomForest(resultsMcaXgbdmy[,-1], as.factor(resultsMcaXgbdmy[,1]),
 xtest=resultsMcaXgbdmy[,-1], ntree=50, set.seed(56382, kind=NULL,
normal.kind=NULL))
 predictedRF = modelRF$test$predicted
 resultsFinal$RF.allBaseMca = predictedRF
 confusionED2RF = table(predictedRF, resultsXgbdmy$y)
 accuracyRF = sum(diag(confusionED2RF))/sum(confusionED2RF)
 cat("FOREST Results:\n")
 cat(sprintf("Accuracy %3.4f\n", accuracyRF))
 confusionED2RF
 write.csv(confusionED2RF, "C:/Users/yz22/Desktop/PHD
R/EEG/confusionED2RF.csv")

 #################################
 ## full logistic Regression ##
 #################################
 BLRMca <-
glm(y~as.factor(xgb1)+as.factor(xgb2)+as.factor(xgb3)+as.factor(xgb4)+as.factor(xgb5)

+as.factor(xgb6)+as.factor(xgb7)+as.factor(xgb8)+as.factor(xgb9)+as.factor(xgb10)

+as.factor(FOREST1)+as.factor(FOREST2)+as.factor(FOREST3)+as.factor(FOREST4)+as.f
actor(FOREST5)

+as.factor(FOREST6)+as.factor(FOREST7)+as.factor(FOREST8)+as.factor(FOREST9)+as.f
actor(FOREST10)
 +as.factor(ET1)+as.factor(ET2)+as.factor(ET3)+as.factor(ET4)+as.factor(ET5)

+as.factor(ET6)+as.factor(ET7)+as.factor(ET8)+as.factor(ET9)+as.factor(ET10)+as.factor(E
T11)
 +PFS1+PFS2+FS1+FS2,
 family="binomial", data=resultsMcaXgb)

 ##make prediction##

131

 Predictglm<-predict(BLRMca,resultsMcaXgb[,-1],type="response")

 Predictglmcat <- ifelse(Predictglm <= 0.5,0,1)
 Predictglmcat[1:10]

 ####write to the final result table####
 resultsFinal$FullLR.allBase.Mca = Predictglmcat

 confusionED2LR=table(Predictglmcat,resultsXgb$y)
 accuracyLR = sum(diag(confusionED2LR))/sum(confusionED2LR)
 cat("Backward Logistic Regression Combine Base Model Results:\n")
 cat(sprintf("Accuracy %3.4f\n", accuracyLR))
 confusionED2LR
 write.csv(confusionED2LR, "C:/Users/yz22/Desktop/PHD
R/EEG/confusionED2LR.csv")

 ##
 ## Experiment Design Three #################
 ##
 ## use xgboost to combine the ET and Xgb base model##
 ##
 ##
 install.packages("drat", repos="https://cran.rstudio.com")
 drat:::addRepo("dmlc")
 install.packages("xgboost", repos="http://dmlc.ml/drat/", type = "source")

 require(xgboost)
 set.seed(84620)

 #format data to fit Xgboost#
 #Xgboost requires all inputs are numberic

 resultsXgbEX=results[-c(23:32)] ### only keep Xgb abd ET base model###

 #binarize all factors in the data set
 library(caret)
 dmy <- dummyVars(" ~ .", data=resultsXgbEX)
 resultsXgbEXdmy <- data.frame(predict(dmy, newdata=resultsXgbEX))

 dim(resultsXgbdmy)
 names(resultsXgbdmy)

 ###
 #prepared a varialbe of target, and a matrix for predictor#

outcomeName <-c('y')

 predictorsXgb <- names(resultsXgbEXdmy)[!names(resultsXgbEXdmy)%in%
outcomeName]

132

 #set up parameters for Xgboost#
 param <- list("objective" = "binary:logistic",
 "eval_metric" = "logloss",
 "eta" =0.005, "max.depth" = 2)

 library(xgboost)

 #For variable importance
 library(DiagrammeR)
 library(Ckmeans.1d.dp)

 #run 10 fold cross validation and choose the best round
 bst.cv <- xgb.cv(param=param, data = as.matrix(resultsXgbEXdmy[,predictorsXgb]),
 label = resultsXgbEXdmy[,outcomeName], nfold=10, nround = 2500)
 plot(log(bst.cv$test.logloss.mean),type ="l")

 ###############################
 #Xgboost Final Combined Model##
 ###############################

 bstComb <- xgboost(data = as.matrix(resultsXgbEXdmy[,predictorsXgb]),
 label = resultsXgbdmy[,outcomeName], max.depth = 2, eta = 0.005, nround
= 2005,
 nthread = 2, objective ="binary:logistic")
 gc()
 #make prediction#
 predictionsXgb <- predict(bstComb, as.matrix(resultsXgbEXdmy[,predictorsXgb]),
outputmargin= FALSE) #outputmargin has to be FALSE to produce probability
 #predictions[1:10]
 print(-mean(log(predictionsXgb)*resultsXgbEXdmy$y+log(1-predictionsXgb)*(1-
resultsXgbEXdmy$y)))

 # Get the variable importance
 importance_matrix <- xgb.importance(predictorsXgb, model = bstComb)
 xgb.plot.importance(importance_matrix[1:10])

 #convert to categorical target and caculate the accuracy
 yPredCatXgb <- ifelse(predictionsXgb <= 0.5,0,1)
 yPredCatXgb[1:10]

 confusionED3Xgb=table(yPredCatXgb,resultsXgbEXdmy$y)
 accuracyXgb = sum(diag(confusionED3Xgb))/sum(confusionED3Xgb)
 cat("xgboost Combine Base Model Results:\n")
 cat(sprintf("Accuracy %3.4f\n", accuracyXgb))
 confusionED3Xgb
 write.csv(confusionED3Xgb, "C:/Users/yz22/Desktop/PHD
R/EEG/confusionED3Xgb.csv")

 #save the ensemble result to table

 resultsFinal$xgb.ETXgbBase = yPredCatXgb

133

 ################################
 ##Random Forest Combined Model##
 ################################
 library(randomForest)

 #create fisrt random forest#
 modelRF = randomForest(resultsXgbEXdmy[,-1], as.factor(resultsXgbEXdmy[,1]),
 xtest=resultsXgbEXdmy[,-1], ntree=50, set.seed(17395, kind=NULL,
normal.kind=NULL))
 predictedRF = modelRF$test$predicted
 resultsFinal$RF.ETXgbBase = predictedRF
 confusionED3RF = table(predictedRF, resultsXgbEXdmy$y)
 accuracyRF = sum(diag(confusionED3RF))/sum(confusionED3RF)
 cat("FOREST Results:\n")
 cat(sprintf("Accuracy %3.4f\n", accuracyRF))
 confusionED3RF
 write.csv(confusionED3RF, "C:/Users/yz22/Desktop/PHD
R/EEG/confusionED3RF.csv")

 ################################
 ## Majority Voting ##
 ################################

 require(functional)
 confusionED3MV <- apply(resultsXgbEXdmy[,-1,drop=FALSE], 1, Compose(table,
 function(i) i==max(i),
 which,
 names,
 function(i) paste0(i, collapse='/')
)
)

 resultsFinal$MV.ETXgbBase = confusionED3MV

 confusionED3MV = table(confusionED3MV, resultsXgbEXdmy$y)
 accuracyMV = sum(diag(confusionED3MV))/sum(confusionED3MV)
 cat("Majority Voting Results:\n")
 cat(sprintf("Accuracy %3.4f\n", accuracyMV))
 confusionED3MV
 write.csv(confusionED3MV, "C:/Users/yz22/Desktop/PHD
R/EEG/confusionED3MV.csv")

 #################################
 ## Backward logistic Regression ##
 #################################
 BLR <-
glm(y~as.factor(xgb1)+as.factor(xgb2)+as.factor(xgb3)+as.factor(xgb4)+as.factor(xgb5)

+as.factor(xgb6)+as.factor(xgb7)+as.factor(xgb8)+as.factor(xgb9)+as.factor(xgb10)

134

+as.factor(FOREST1)+as.factor(FOREST2)+as.factor(FOREST3)+as.factor(FOREST4)+as.f
actor(FOREST5)

+as.factor(FOREST6)+as.factor(FOREST7)+as.factor(FOREST8)+as.factor(FOREST9)+as.f
actor(FOREST10)
 +as.factor(ET1)+as.factor(ET2)+as.factor(ET3)+as.factor(ET4)+as.factor(ET5)

+as.factor(ET6)+as.factor(ET7)+as.factor(ET8)+as.factor(ET9)+as.factor(ET10)+as.factor(E
T11),
 family="binomial", data=resultsXgb)
 ##backward selection##
 BLRBack<-step(BLR,direction="backward")

 summary(BLRBack)

 ##make prediction##
 Predictglm<-predict(BLRBack,resultsXgb[,-1],type="response")

 Predictglmcat <- ifelse(Predictglm <= 0.5,0,1)
 Predictglmcat[1:10]

 ####write to the final result table####
 resultsFinal$LR.allBase = Predictglmcat

 confusionED3LR=table(Predictglmcat,resultsXgbEXdmy$y)
 accuracyLR = sum(diag(confusionED3LR))/sum(confusionED3LR)
 cat("Backward Logistic Regression Combine Base Model Results:\n")
 cat(sprintf("Accuracy %3.4f\n", accuracyLR))
 confusionED3LR
 write.csv(confusionED3LR, "C:/Users/yz22/Desktop/PHD
R/EEG/confusionED3LR.csv")

 ##
 ## Experiment Design Four and Five#################
 ###
 ## use xgboost to combine the ET and Xgb base model and MCA##
 ###

 install.packages("drat", repos="https://cran.rstudio.com")
 drat:::addRepo("dmlc")
 install.packages("xgboost", repos="http://dmlc.ml/drat/", type = "source")

 require(xgboost)
 set.seed(93746)

 #format data to fit Xgboost#
 #Xgboost requires all inputs are numberic

 resultsXgbEXMca=resultMca[-c(23:32)] ### only keep Xgb abd ET base model###

135

 #binarize all factors in the data set
 library(caret)
 dmy <- dummyVars(" ~ .", data=resultsXgbEXMca)
 resultsXgbEXMcadmy <- data.frame(predict(dmy, newdata=resultsXgbEXMca))

 dim(resultsXgbEXMcadmy)
 names(resultsXgbEXMcadmy)

 ###
 #prepared a varialbe of target, and a matrix for predictor#
 outcomeName <-c('y')

 predictorsXgb <- names(resultsXgbEXMcadmy)[!names(resultsXgbEXMcadmy)%in%
outcomeName]

 #set up parameters for Xgboost#
 param <- list("objective" = "binary:logistic",
 "eval_metric" = "logloss",
 "eta" =0.005, "max.depth" = 2)

 library(xgboost)

 #For variable importance
 library(DiagrammeR)
 library(Ckmeans.1d.dp)

 #run 10 fold cross validation and choose the best round;round 80 to 120 all have the
relative similar accuracy
 bst.cv <- xgb.cv(param=param, data =
as.matrix(resultsXgbEXMcadmy[,predictorsXgb]),
 label = resultsXgbEXMcadmy[,outcomeName], nfold=10, nround = 2500)
 plot(log(bst.cv$test.logloss.mean),type ="l")

 ###############################
 #Xgboost Final Combined Model##
 ###############################

 bstComb <- xgboost(data = as.matrix(resultsXgbEXMcadmy[,predictorsXgb]),
 label = resultsXgbEXMcadmy[,outcomeName], max.depth = 2, eta = 0.005,
nround = 2500,
 nthread = 2, objective ="binary:logistic")
 gc()
 #make prediction#
 predictionsXgb <- predict(bstComb, as.matrix(resultsXgbEXMcadmy[,predictorsXgb]),
outputmargin= FALSE) #outputmargin has to be FALSE to produce probability
 #predictions[1:10]
 print(-mean(log(predictionsXgb)*resultsXgbEXMcadmy$y+log(1-predictionsXgb)*(1-
resultsXgbEXMcadmy$y)))

 # Get the variable importance

136

 importance_matrix <- xgb.importance(predictorsXgb, model = bstComb)
 xgb.plot.importance(importance_matrix[1:10])

 #convert to categorical target and caculate the accuracy
 yPredCatXgb <- ifelse(predictionsXgb <= 0.5,0,1)
 yPredCatXgb[1:10]

 confusionED4Xgb=table(yPredCatXgb,resultsXgbEXMcadmy$y)
 accuracyXgb = sum(diag(confusionED4Xgb))/sum(confusionED4Xgb)
 cat("xgboost Combine Base Model Results:\n")
 cat(sprintf("Accuracy %3.4f\n", accuracyXgb))
 confusionED4Xgb
 write.csv(confusionED4Xgb, "C:/Users/yz22/Desktop/PHD
R/EEG/confusionED4Xgb.csv")

 #save the ensemble result to table
 resultsFinal$xgb.ETXgbBase.Mca = yPredCatXgb

 ################################
 ##Random Forest Combined Model##
 ################################
 library(randomForest)

 #create fisrt random forest#
 modelRF = randomForest(resultsXgbEXMcadmy[,-1],
as.factor(resultsXgbEXMcadmy[,1]),
 xtest=resultsXgbEXMcadmy[,-1], ntree=50, set.seed(86527, kind=NULL,
normal.kind=NULL))
 predictedRF = modelRF$test$predicted
 resultsFinal$RF.ETXgbBase.Mca = predictedRF
 confusionED4RF = table(predictedRF, resultsXgbEXMcadmy$y)
 accuracyRF = sum(diag(confusionED4RF))/sum(confusionED4RF)
 cat("FOREST Results:\n")
 cat(sprintf("Accuracy %3.4f\n", accuracyRF))
 confusionED4RF
 write.csv(confusionED4RF, "C:/Users/yz22/Desktop/PHD
R/EEG/confusionED4RF.csv")

 #################################
 ## Backward logistic Regression ##
 #################################
 BLRMca <-
glm(y~as.factor(xgb1)+as.factor(xgb2)+as.factor(xgb3)+as.factor(xgb4)+as.factor(xgb5)

+as.factor(xgb6)+as.factor(xgb7)+as.factor(xgb8)+as.factor(xgb9)+as.factor(xgb10)

+as.factor(FOREST1)+as.factor(FOREST2)+as.factor(FOREST3)+as.factor(FOREST4)+as.f
actor(FOREST5)

137

+as.factor(FOREST6)+as.factor(FOREST7)+as.factor(FOREST8)+as.factor(FOREST9)+as.f
actor(FOREST10)
 +as.factor(ET1)+as.factor(ET2)+as.factor(ET3)+as.factor(ET4)+as.factor(ET5)

+as.factor(ET6)+as.factor(ET7)+as.factor(ET8)+as.factor(ET9)+as.factor(ET10)+as.factor(E
T11)
 +PFS1+PFS2+FS1+FS2,
 family="binomial", data=resultsMcaXgb)
 ##backward selection##
 BLRBackMca<-step(BLRMca,direction="backward")

 summary(BLRBackMca)

 ##make prediction##
 Predictglm<-predict(BLRBackMca,resultsXgb[,-1],type="response")

 Predictglmcat <- ifelse(Predictglm <= 0.5,0,1)
 Predictglmcat[1:10]

 ####write to the final result table####
 resultsFinal$LR.allBaseMca = Predictglmcat

 confusionED4LR=table(Predictglmcat,resultsMcaXgb$y)
 accuracyLR = sum(diag(confusionED4LR))/sum(confusionED4LR)
 cat("Backward Logistic Regression Combine Base Model Results:\n")
 cat(sprintf("Accuracy %3.4f\n", accuracyLR))
 confusionED4LR
 write.csv(confusionED4LR, "C:/Users/yz22/Desktop/PHD
R/EEG/confusionED4LR.csv")

138

Appendix C: Cramér’s V Correlation Coefficient of Adult Data Set

 xgb1 xgb2 xgb3 xgb4 xgb5 xgb6 xgb7 xgb8 xgb9 xgb10

xgb1 1

xgb2 0.9128 1

xgb3 0.8912 0.8989 1

xgb4 0.9022 0.9103 0.9107 1

xgb5 0.9130 0.9181 0.9131 0.9219 1

xgb6 0.9071 0.9183 0.9133 0.9190 0.9341 1

xgb7 0.9159 0.9203 0.9138 0.9233 0.9411 0.9509 1

xgb8 0.9126 0.9162 0.9073 0.9142 0.9367 0.9546 0.9551 1

xgb9 0.8979 0.9091 0.8921 0.9029 0.9273 0.9410 0.9380 0.9586 1

xgb10 0.8813 0.8930 0.8762 0.8836 0.9065 0.9252 0.9203 0.9385 0.9626 1

ET1 0.7099 0.7152 0.7070 0.7097 0.7218 0.7201 0.7177 0.7227 0.7285 0.7241

ET2 0.7119 0.7134 0.7108 0.7101 0.7223 0.7221 0.7231 0.7273 0.7305 0.7271

ET3 0.7110 0.7166 0.7099 0.7115 0.7240 0.7215 0.7226 0.7264 0.7314 0.7289

ET4 0.7109 0.7166 0.7117 0.7133 0.7262 0.7271 0.7236 0.7293 0.7321 0.7296

ET5 0.7116 0.7169 0.7117 0.7121 0.7250 0.7240 0.7236 0.7278 0.7332 0.7299

ET6 0.7146 0.7196 0.7129 0.7137 0.7266 0.7260 0.7251 0.7293 0.7348 0.7307

ET7 0.7129 0.7197 0.7148 0.7126 0.7263 0.7249 0.7234 0.7287 0.7337 0.7304

ET8 0.7135 0.7191 0.7139 0.7140 0.7276 0.7259 0.7258 0.7300 0.7343 0.7307

ET9 0.7134 0.7194 0.7120 0.7131 0.7253 0.7243 0.7239 0.7284 0.7339 0.7298

ET10 0.7140 0.7196 0.7129 0.7137 0.7278 0.7257 0.7256 0.7313 0.7360 0.7323

ET11 0.7133 0.7190 0.7153 0.7157 0.7286 0.7273 0.7276 0.7314 0.7365 0.7324

RF1 0.8852 0.8953 0.8905 0.8952 0.9057 0.9185 0.9144 0.9255 0.9241 0.9135

RF2 0.8281 0.8397 0.8271 0.8318 0.8529 0.8587 0.8558 0.8652 0.8781 0.8857

RF3 0.8265 0.8393 0.8262 0.8309 0.8537 0.8555 0.8554 0.8640 0.8741 0.8813

RF4 0.8293 0.8409 0.8287 0.8284 0.8541 0.8564 0.8558 0.8645 0.8797 0.8854

RF5 0.8254 0.8378 0.8255 0.8283 0.8522 0.8551 0.8546 0.8636 0.8738 0.8809

RF6 0.8295 0.8404 0.8297 0.8332 0.8563 0.8593 0.8580 0.8678 0.8779 0.8844

RF7 0.8267 0.8375 0.8265 0.8288 0.8535 0.8569 0.8544 0.8642 0.8747 0.8815

RF8 0.8288 0.8419 0.8293 0.8309 0.8552 0.8593 0.8572 0.8671 0.8799 0.8860

RF9 0.8254 0.8370 0.8232 0.8264 0.8526 0.8532 0.8523 0.8617 0.8749 0.8822

RF10 0.8282 0.8410 0.8287 0.8315 0.8546 0.8584 0.8579 0.8681 0.8786 0.8854

139

 ET1 ET2 ET3 ET4 ET5 ET6 ET7 ET8 ET9 ET10 ET11

ET1 1

ET2 0.9324 1

ET3 0.9389 0.9511 1

ET4 0.9339 0.9576 0.9622 1

ET5 0.9394 0.9557 0.9611 0.9627 1

ET6 0.9387 0.9579 0.9629 0.9631 0.9723 1

ET7 0.9434 0.9579 0.9673 0.9668 0.9701 0.9712 1

ET8 0.9442 0.9598 0.9666 0.9686 0.9675 0.9723 0.9734 1

ET9 0.9429 0.9596 0.9661 0.9677 0.9718 0.9714 0.9769 0.9766 1

ET10 0.9411 0.9596 0.9646 0.9670 0.9695 0.9732 0.9762 0.9780 0.9790 1

ET11 0.9446 0.9612 0.9644 0.9697 0.9716 0.9723 0.9741 0.9767 0.9751 0.9769 1

RF1 0.7244 0.7252 0.7274 0.7315 0.7321 0.7296 0.7327 0.7318 0.7302 0.7323 0.7327

RF2 0.7777 0.7801 0.7826 0.7856 0.7848 0.7852 0.7865 0.7859 0.7851 0.7872 0.7869

RF3 0.7810 0.7834 0.7863 0.7874 0.7896 0.7889 0.7890 0.7869 0.7895 0.7902 0.7914

RF4 0.7834 0.7874 0.7887 0.7914 0.7913 0.7921 0.7923 0.7917 0.7924 0.7937 0.7942

RF5 0.7776 0.7835 0.7848 0.7886 0.7882 0.7875 0.7895 0.7878 0.7877 0.7891 0.7899

RF6 0.7821 0.7876 0.7904 0.7923 0.7922 0.7927 0.7932 0.7915 0.7937 0.7943 0.7959

RF7 0.7835 0.7868 0.7884 0.7903 0.7922 0.7922 0.7920 0.7906 0.7921 0.7942 0.7939

RF8 0.7791 0.7839 0.7856 0.7878 0.7889 0.7874 0.7891 0.7870 0.7892 0.7890 0.7910

RF9 0.7830 0.7878 0.7894 0.7909 0.7916 0.7921 0.7933 0.7905 0.7923 0.7925 0.7942

RF10 0.7812 0.7874 0.7880 0.7910 0.7906 0.7906 0.7919 0.7898 0.7916 0.7919 0.7931

 RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8 RF9 RF10

RF1 1

RF2 0.8535 1

RF3 0.8514 0.9547 1

RF4 0.8536 0.9575 0.9633 1

RF5 0.8546 0.9629 0.9659 0.9655 1

RF6 0.8513 0.9619 0.9689 0.9665 0.9730 1

RF7 0.8536 0.9659 0.9682 0.9720 0.9731 0.9733 1

RF8 0.8550 0.9630 0.9691 0.9683 0.9749 0.9747 0.9767 1

RF9 0.8519 0.9612 0.9697 0.9712 0.9727 0.9737 0.9757 0.9798 1

RF10 0.8543 0.9626 0.9700 0.9704 0.9746 0.9752 0.9749 0.9758 0.9799 1

140

Appendix D: Cramér’s V Correlation Coefficient of Credit Card Client Data Set

 xgb1 xgb2 xgb3 xgb4 xgb5 xgb6 xgb7 xgb8 xgb9 xgb10

xgb1 1

xgb2 0.8214 1

xgb3 0.7944 0.8906 1

xgb4 0.7923 0.899 0.9349 1

xgb5 0.8027 0.8912 0.9184 0.9324 1

xgb6 0.7987 0.8914 0.9063 0.9316 0.93 1

xgb7 0.7983 0.8909 0.9121 0.9343 0.9337 0.9522 1

xgb8 0.8064 0.8994 0.9112 0.9345 0.9348 0.9342 0.9518 1

xgb9 0.7932 0.8917 0.9045 0.933 0.9271 0.9466 0.9599 0.9514 1

xgb10 0.7984 0.8927 0.9129 0.9394 0.9323 0.9498 0.9642 0.9546 0.9766 1

ET1 0.0021 0.0076 0.0013 0.0032 0.0043 0.0021 0.005 0.0007 0.0035 0.0025

ET2 0.004 0.0076 0.0013 0.0033 0.0053 0.0032 0.0061 0.0014 0.0046 0.0036

ET3 0.0024 0.0049 0.0041 0.0004 0.0025 0.0003 0.0042 0.0015 0.0027 0.0017

ET4 0.0046 0.0091 0.0008 0.0057 0.0077 0.0046 0.0085 0.0038 0.007 0.006

ET5 0.0046 0.0091 0.0008 0.0057 0.0077 0.0046 0.0085 0.0038 0.007 0.006

ET6 0.0046 0.0091 0.0008 0.0057 0.0077 0.0046 0.0085 0.0038 0.007 0.006

ET7 0.0046 0.0091 0.0008 0.0057 0.0077 0.0046 0.0085 0.0038 0.007 0.006

ET8 0.0034 0.0079 0.0021 0.0035 0.0045 0.0024 0.0063 0.0016 0.0048 0.0038

ET9 0.0034 0.0079 0.0021 0.0035 0.0045 0.0024 0.0063 0.0016 0.0048 0.0038

ET10 0.0034 0.0079 0.0021 0.0035 0.0045 0.0024 0.0063 0.0016 0.0048 0.0038

ET11 0.0034 0.0079 0.0021 0.0035 0.0045 0.0024 0.0063 0.0016 0.0048 0.0038

RF1 0.0084 0.0023 0.0116 0.0074 0.006 0.0087 0.0016 0.0092 0.0051 0.0061

RF2 0.0104 0.0023 0.0107 0.0055 0.0051 0.0058 0.0007 0.0063 0.0022 0.0032

RF3 0.0103 0.0032 0.0138 0.0098 0.0082 0.0101 0.0061 0.0095 0.0064 0.0075

RF4 0.0074 0.0013 0.0128 0.0087 0.0072 0.0059 0.0008 0.0084 0.0043 0.0053

RF5 0.0051 0.0031 0.0075 0.0044 0.0029 0.0036 0.0015 0.0041 0.002 0.0031

RF6 0.0095 0.0024 0.014 0.0089 0.0074 0.0071 0.0031 0.0086 0.0055 0.0066

RF7 0.0071 0 0.0116 0.0065 0.0049 0.0057 0.0017 0.0061 0.0041 0.0052

RF8 0.0062 0.0019 0.0107 0.0067 0.0051 0.0049 0.0002 0.0063 0.0022 0.0033

RF9 0.0077 0.0017 0.0112 0.0061 0.0056 0.0064 0.0023 0.0058 0.0038 0.0048

RF10 0.0058 0.0004 0.0121 0.007 0.0055 0.0062 0.0022 0.0067 0.0036 0.0047

141

 ET1 ET2 ET3 ET4 ET5 ET6 ET7 ET8 ET9 ET10 ET11

ET1 1

ET2 0.8837 1

ET3 0.8992 0.9175 1

ET4 0.8965 0.9252 0.9362 1

ET5 0.8965 0.9252 0.9362 1 1

ET6 0.8965 0.9252 0.9362 1 1 1

ET7 0.8965 0.9252 0.9362 1 1 1 1

ET8 0.9042 0.9262 0.9419 0.9525 0.9525 0.9525 0.9525 1

ET9 0.9042 0.9262 0.9419 0.9525 0.9525 0.9525 0.9525 1 1

ET10 0.9042 0.9262 0.9419 0.9525 0.9525 0.9525 0.9525 1 1 1

ET11 0.9042 0.9262 0.9419 0.9525 0.9525 0.9525 0.9525 1 1 1 1

RF1 0.8035 0.81 0.8154 0.8226 0.8226 0.8226 0.8226 0.8209 0.8209 0.8209 0.8209

RF2 0.8022 0.8137 0.8161 0.8303 0.8303 0.8303 0.8303 0.8197 0.8197 0.8197 0.8197

RF3 0.8143 0.8219 0.8292 0.8357 0.8357 0.8357 0.8357 0.8349 0.8349 0.8349 0.8349

RF4 0.8097 0.8182 0.8226 0.8358 0.8358 0.8358 0.8358 0.8291 0.8291 0.8291 0.8291

RF5 0.8082 0.8217 0.8261 0.8384 0.8384 0.8384 0.8384 0.8297 0.8297 0.8297 0.8297

RF6 0.8137 0.8223 0.8267 0.837 0.837 0.837 0.837 0.8343 0.8343 0.8343 0.8343

RF7 0.8161 0.8325 0.834 0.8463 0.8463 0.8463 0.8463 0.8396 0.8396 0.8396 0.8396

RF8 0.8123 0.8229 0.8282 0.8396 0.8396 0.8396 0.8396 0.8359 0.8359 0.8359 0.8359

RF9 0.8164 0.8309 0.8314 0.8467 0.8467 0.8467 0.8467 0.8419 0.8419 0.8419 0.8419

RF10 0.8191 0.8345 0.837 0.8482 0.8482 0.8482 0.8482 0.8425 0.8425 0.8425 0.8425

 RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8 RF9 RF10

RF1 1

RF2 0.8839 1

RF3 0.8805 0.9078 1

RF4 0.8846 0.9118 0.9228 1

RF5 0.8903 0.9197 0.9286 0.9357 1

RF6 0.8839 0.9121 0.9251 0.9394 0.9391 1

RF7 0.8883 0.9156 0.9337 0.9367 0.9426 0.9493 1

RF8 0.8866 0.9149 0.9248 0.933 0.943 0.9467 0.9502 1

RF9 0.8897 0.9191 0.9404 0.9392 0.9462 0.9406 0.9574 0.9465 1

RF10 0.8942 0.9246 0.9408 0.9396 0.9516 0.9522 0.9577 0.952 0.9521 1

142

Appendix E: Cramér’s V Correlation Coefficient of EEG Eye State Data Set

 xgb1 xgb2 xgb3 xgb4 xgb5 xgb6 xgb7 xgb8 xgb9 xgb10

xgb1 1

xgb2 0.8755 1

xgb3 0.8760 0.8886 1

xgb4 0.8959 0.8968 0.8891 1

xgb5 0.8877 0.9075 0.8980 0.9234 1

xgb6 0.8909 0.8999 0.9066 0.9238 0.9274 1

xgb7 0.8905 0.9031 0.8981 0.9144 0.9261 0.9328 1

xgb8 0.8755 0.8908 0.8885 0.9058 0.9120 0.9251 0.9274 1

xgb9 0.8565 0.8673 0.8686 0.8814 0.8785 0.8971 0.9076 0.9286 1

xgb10 0.7905 0.8021 0.7980 0.8128 0.8088 0.8230 0.8337 0.8506 0.8841 1

ET1 0.8072 0.8180 0.8103 0.8268 0.8247 0.8234 0.8286 0.8211 0.8156 0.7795

ET2 0.8032 0.8167 0.8099 0.8326 0.8261 0.8302 0.8290 0.8227 0.8181 0.7851

ET3 0.8158 0.8302 0.8243 0.8417 0.8378 0.8428 0.8462 0.8380 0.8307 0.7894

ET4 0.8140 0.8338 0.8216 0.8426 0.8405 0.8420 0.8435 0.8390 0.8299 0.7887

ET5 0.8090 0.8252 0.8112 0.8394 0.8319 0.8361 0.8394 0.8321 0.8257 0.7880

ET6 0.8149 0.8284 0.8198 0.8444 0.8396 0.8429 0.8444 0.8371 0.8307 0.7895

ET7 0.8099 0.8261 0.8184 0.8403 0.8346 0.8379 0.8394 0.8312 0.8275 0.7879

ET8 0.8144 0.8270 0.8229 0.8439 0.8364 0.8406 0.8439 0.8357 0.8312 0.7890

ET9 0.8122 0.8293 0.8216 0.8435 0.8369 0.8428 0.8462 0.8380 0.8334 0.7940

ET10 0.8122 0.8275 0.8189 0.8407 0.8360 0.8392 0.8426 0.8353 0.8307 0.7886

ET11 0.8122 0.8275 0.8189 0.8407 0.8360 0.8392 0.8426 0.8353 0.8307 0.7886

RF1 0.8036 0.8089 0.8030 0.8204 0.8201 0.8270 0.8250 0.8212 0.8256 0.7959

RF2 0.8122 0.8284 0.8179 0.8390 0.8369 0.8383 0.8399 0.8388 0.8388 0.8064

RF3 0.8059 0.8230 0.8134 0.8336 0.8333 0.8384 0.8373 0.8334 0.8351 0.8008

RF4 0.8131 0.8248 0.8207 0.8408 0.8351 0.8402 0.8409 0.8343 0.8387 0.8017

RF5 0.8117 0.8252 0.8202 0.8358 0.8373 0.8397 0.8422 0.8366 0.8383 0.8024

RF6 0.8149 0.8284 0.8207 0.8381 0.8369 0.8438 0.8408 0.8352 0.8370 0.8001

RF7 0.8135 0.8270 0.8184 0.8367 0.8400 0.8424 0.8449 0.8366 0.8392 0.8050

RF8 0.8135 0.8279 0.8202 0.8394 0.8373 0.8415 0.8395 0.8366 0.8383 0.7996

RF9 0.8122 0.8184 0.8143 0.8335 0.8314 0.8383 0.8363 0.8334 0.8379 0.8010

RF10 0.8144 0.8234 0.8175 0.8331 0.8355 0.8388 0.8386 0.8348 0.8392 0.8024

143

 ET1 ET2 ET3 ET4 ET5 ET6 ET7 ET8 ET9 ET10 ET11

ET1 1

ET2 0.9352 1

ET3 0.9361 0.9547 1

ET4 0.9425 0.9529 0.9611 1

ET5 0.9447 0.9561 0.9606 0.9624 1

ET6 0.9434 0.9565 0.9583 0.9629 0.9669 1

ET7 0.9401 0.9570 0.9678 0.9615 0.9719 0.9633 1

ET8 0.9438 0.9597 0.9669 0.9606 0.9710 0.9715 0.9665 1

ET9 0.9442 0.9574 0.9683 0.9665 0.9724 0.9656 0.9714 0.9724 1

ET10 0.9461 0.9565 0.9665 0.9692 0.9696 0.9665 0.9696 0.9715 0.9710 1

ET11 0.9461 0.9565 0.9665 0.9692 0.9696 0.9665 0.9696 0.9715 0.9710 1 1

RF1 0.9082 0.9053 0.9070 0.9108 0.9174 0.9062 0.9110 0.9066 0.9134 0.9125 0.9125

RF2 0.9124 0.9212 0.9247 0.9293 0.9270 0.9248 0.9233 0.9252 0.9284 0.9302 0.9302

RF3 0.9177 0.9221 0.9211 0.9276 0.9306 0.9257 0.9242 0.9279 0.9311 0.9284 0.9284

RF4 0.9250 0.9266 0.9265 0.9366 0.9379 0.9338 0.9360 0.9352 0.9420 0.9366 0.9366

RF5 0.9237 0.9244 0.9333 0.9407 0.9356 0.9334 0.9347 0.9365 0.9406 0.9352 0.9352

RF6 0.9260 0.9312 0.9320 0.9393 0.9433 0.9329 0.9369 0.9370 0.9438 0.9429 0.9429

RF7 0.9228 0.9298 0.9324 0.9361 0.9356 0.9361 0.9337 0.9347 0.9379 0.9379 0.9379

RF8 0.9273 0.9289 0.9324 0.9407 0.9438 0.9334 0.9365 0.9374 0.9415 0.9397 0.9397

RF9 0.9242 0.9312 0.9302 0.9375 0.9388 0.9338 0.9333 0.9397 0.9411 0.9438 0.9438

RF10 0.9192 0.9307 0.9306 0.9389 0.9383 0.9316 0.9319 0.9347 0.9388 0.9370 0.9370

 RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8 RF9 RF10

RF1 1

RF2 0.9187 1

RF3 0.9277 0.9446 1

RF4 0.9305 0.9446 0.9509 1

RF5 0.9283 0.9469 0.9514 0.9605 1

RF6 0.9369 0.9492 0.9564 0.9619 0.9560 1

RF7 0.9328 0.9523 0.9532 0.9614 0.9600 0.9632 1

RF8 0.9373 0.9542 0.9569 0.9632 0.9628 0.9660 0.9646 1

RF9 0.9351 0.9519 0.9528 0.9619 0.9641 0.9673 0.9650 0.9714 1

RF10 0.9355 0.9569 0.9578 0.9623 0.9655 0.9669 0.9700 0.9737 0.9750 1

144

References

Abdelazeem, S. (2008). A greedy approach for building classification cascades. In
Proceedings of the Seventh International Conference on Machine Learning
and Applications, San Diego, CA, USA, 115–120.

Abdi, H., & Valentin, D. (2007). In N. Salkind (Ed.), Multiple Correspondence
Analysis. Encyclopedia of Measurement and Statistics. Thousand Oaks (CA):
Sage.

Banfield, R. E., Hall, L. O., Bowyer, K. W., & Kegelmeyer, W. P. (2007). A
comparison of decision tree ensemble creation techniques. IEEE Trans.
Pattern Anal. Mach. Intell, 29(1), 173–180.

Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification
algorithms: bagging, boosting and variants. Machine Learning 36(1–2), 105–
139.

Blake, C., & Merz, C. (1998). UCI repository of machine learning database.
Technical report, Department of Information and Computer Science,
University of California, Irvine, CA.

Bozdogan, H. (1987). Model Selection and Akaike’s Information Criterion (AIC):
The General Theory and Its Analytical Extensions. Psychometrika, 52, 345–
370.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and
regression trees. Monterey, CA: Wadsworth & Brooks / Cole Advanced
Books & Software.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

Breiman, L. (1996). Stacked regressions. Machine Learning, 24(1), 49–64.

Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26(3), 801–849.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

Breiman, L., Cutler, A, Liaw, A., & Wiener, M. (2015). Package ‘randomForest’.
Retrieved from https://cran.r-
project.org/web/packages/randomForest/randomForest.pdf

Bryll, R., Gutierrez-Osuna, R., & Quek, F. K. (2003). Attribute bagging: improving
accuracy of classiffer ensembles. Pattern Recognition 36(6), 1291–1302.

Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised
learning algorithms. In Proc. of the 23rd International Conference on
Machine Learning, 161–168.

145

Cevikalp, H., & Polikar, R. (2008). Local Classifier Weighting by Quadratic
Programming. IEEE Transactions on Neural Networks, 19(10), 1832–1838.

Chen, T. (2014). Introduction to Boosted Trees. Retrieved from
https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

Chen, T., He, T., & Benesty, M. (2016). Package ‘xgboost’. Retrieved from
https://cran.r-project.org/web/packages/xgboost/xgboost.pdf

Chi, D., Yeh, C., & Lai, M. (2011). A Hybrid Approach of DEA, Rough Set Theory
and Random Forests for Credits. International Journal of Innovative
Computing, Information and Control, 7(8), 4885-4897.

Cramér, H. (1946). Mathematical Methods of Statistics. Princeton: Princeton
University Press.

David, D., Achim, Z., Kurt, H., Florian, G., & Michael, F. (2016) Package ‘vcd’.
Retrieved from https://cran.r-project.org/web/packages/vcd/vcd.pdf

Diaz-Uriarte, R., & Alvarez de Andres, S. (2006). Gene selection and classification of
microarray data using random forest. BMC Bioinformatics, 7(3).

Dietterich, T. G. (2000). An experimental comparison of three methods for
constructing ensembles of decision trees: bagging, boosting, and
randomization. Machine Learning, 40(2), 139–157.

Dimililer, N., Varoglu, E., & Altincay, H. (2007). Vote-based classifier selection for
biomedical NER using genetic algorithm. In Proceedings of the 3rd Iberian
Conference on Pattern Recognition and Image Analysis, Girona, Spain, 202–
209.

Dzeroski, S. & Zenko, B. (2004). Is combining classifiers with stacking better than
selecting the best one? Machine Learning 54(3), 255–273.

Eddelbuettel, D., Boettiger, C., Gibb, S., Gillespie, C., Górecki, J., Jones, M., Leeper,
T, Pav, S., & Schulz, J. (2016). Package ‘drat’. Retrieved from
https://cran.rstudio.com/web/packages/drat/drat.pdf

Freund, Y., & Shapire, R. E. (1996). Experiments with a new boosting algorithm.
Proceedings of the Thirteenth National Conference on Machine Learning,
148–156.

Freund, Y, & Schapire R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. J Comput Syst Sci, 55(1), 119–139.(

Freund, Y., & Schapire, R. E. (1999). A short introduction to boosting. Japanese
Society for Artificial Intelligence, 14(5), 771–780.

146

Friedman, J. (2001). Greedy function approximation: a gradient boosting machine.
Annals of Statistics, 1189-1232.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors).
The annals of statistics, 28(2), 337–407.

Gan, Z. G., & Xiao, N. F. (2009). A new ensemble learning algorithm based on
improved K-Means. International Symposium on Intelligent Information
Technology and Security Informatics, Moscow, Russia, 8–11.

Geurts, P., Fillet, M., de Seny, D., Meuwis, M. A., Merville, M. P., & Wehenkel, L.
(2005). Proteomic mass spectra classification using decision tree based
ensemble methods. Bioinformatics, 21(14), 3138–3145.

Geurts, P., & Wehenkel, L. (2000). Investigation and reduction of discretization
variance in decision tree induction. Proceedings of the 11th European
Conference on Machine Learning, 162–170.

Geurts, P., & Wehenkel, L. (2005). Segment and combine approach for non-
parametric time-series classification. Proceedings of the 9th European
Conference on Principles and Practice of Knowledge Discovery in Databases,
478–485.

Greenacre, M., & Blasius, J. (2006). Multiple Correspondence Analysis and Related
Methods. London: Chapman & Hall/CRC.

Greenacre, M., Nenadic, O., & Friendly, M. (2016). Package ‘ca’. Retrieved from
https://cran.r-project.org/web/packages/ca/ca.pdf

Hu, X. (2001). Using rough sets theory and database operations to construct a good
ensemble of classifiers for data mining applications. In Proceedings of the 1st
IEEE International Conference on Data Mining, San Jose, CA, USA, 233–
240.

Hocking, R. (1976) The Analysis and Selection of Variables in Linear
Regression. Biometrics, 32(1), 1-49.

Iannone, R. (2016). Package ‘DiagrammeR’. Retrieved from https://cran.r-
project.org/web/packages/DiagrammeR/DiagrammeR.pdf

Jurek, A., Bi, Y., Wu, S., & Nugent, C. (2011). Classification by clusters analysis-an
ensemble technique in a semi-supervised classification. In 23rd IEEE
International Conference on Tools with Artificial Intelligence, Boca Raton,
FL, USA, 876–878.

Jurek, A., Bi, Y., Wu, S., & Nugent, C. (2013). A survey of commonly used
ensemble-based classification techniques. The Knowledge Engineering

147

Review, 29(5), 551-581.

Johnson, R., & Zhang, T. (2014). Learning Nonlinear Functions Using Regularized
Greedy Forest. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(5), 942–954.

Kittler, J., & Roli, F. (2001). Genetic algorithms for multi-classifier system
configuration: a case study in character recognition. In Proceedings of the 2nd
International Workshop on Multiple Classifier System, Cambridge, UK, 99–
108.

Kohavi, R., & Wolpert, D. (1996). Bias plus variance decomposition for zero-one loss
functions. In Proceedings of the 13th International Conference on Machine
Learning (pp. 275–283). San Francisco, USA: Morgan Kaufmann.

Kotsiantis, S. (2011). Combining bagging, boosting, rotation forest and random
subspace methods. Artificial Intelligence Review, 35, 223-240.

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T.,
Mayer, Z., Kenkel, B., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L.,
Tang, Y., Candan, C., & Hunt, T. (2016). Package ‘caret’. Retrieved from
ftp://cran.r-project.org/pub/R/web/packages/caret/caret.pdf

Kuncheva, L. I., & Whitaker, C. J. (2003). Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy. Machine
Learning 51(2), 181–207.

Leblanc, M., & Tibshirani, R. (1996). Combining estimates in regression and
classification. J. Am. Stat. Assoc. 91(436), 1641–1650.

Le Roux, B. and Rouanet, H. (2004). Geometric Data Analysis, From
Correspondence Analysis to Structured Data Analysis. Dordrecht. Kluwer.

Lichman, M. (2013). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of
Information and Computer Science.

Löfström, T., Johansson, U. & Bostrom, H. (2008). On the use of accuracy and
diversity measures for evaluating and selecting ensembles of classifiers. In
Proceedings of the 7th International Conference on Machine Learning and
Applications, San Diego, CA, USA, 127–132.

Machova, K., & Barcak, F. (2006). A bagging method using decision trees in the role
of base classifiers. Acta Polytechnica Hungarica, 3(2), 121–132.

Maclin, R. (1997). An empirical evaluation of bagging and boosting. In Proceedings
of the 14th National Conference on Artificial Intelligence, Providence, Rhode
Island, 546–551.

148

Marée, R., Geurts, P., Piater, J., & Wehenkel, L. (2004). A generic approach for
image classification based on decision tree ensembles and local sub-windows.
Proceedings of the 6th Asian Conference on Computer Vision, 2, 860–865.

Parvin, H., & Alizadeh, H. (2011). Classifier ensemble based class weighting.
American Journal of Scientific Research, 19, 84–90.

Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of Points in
Space. Philosophical Magazine, 2 (11), 559–572.

R Core Team. (2016). R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-
project.org/.

Rodríguez, J.J., Kuncheva, L.I., & Alonso, C.J. (2006). Rotation forest: a new
classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10),
1619–1630.

Rodríguez, J. J., & Maudes, J. (2008). Boosting recombined weak classifiers. Pattern
Recognition Letters, 29(8), 1049–1059.

Ron, K. (1996). Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree
Hybrid. Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining.

Ruta, D., & Gabrys, B. (2005). Classifier selection for majority voting. Information
Fusion 6(1), 63–81.

Seewald, A. K. (2002). How to make stacking better and faster while also taking care
of an unknown weakness. In Proceedings of the 19th International
Conference on Machine Learning, Sydney, Australia, 554–561.

Simm, J., & Magrans de Abril, I. (2015). Package ‘extraTrees’. Retrieved from
https://cran.r-project.org/web/packages/extraTrees/extraTrees.pdf

Simon, D., (1992) Package ‘glm’. Retrieved from https://stat.ethz.ch/R-manual/R-
devel/library/stats/html/glm.html

Schapire, R.E., Freund, Y., & Bartlett, P., & Lee, W. S. (1998). Boosting the margin:
a new explanation for the effectiveness of voting methods. The Annuals of
Statistics, 26, 1651–1686.

Schapire, R.E., & Singer, Y. (1999). Improved boosting algorithms using confidence-
rated predictions. Machine Learning, 37, 297–336

Skurichina, M., & Duin, R. P. (1998). Bagging for linear classifiers. Pattern
Recognition 31(7), 909–930.

149

Skurichina, M., Kuncheva, L. I., & Duin, R. P. (2002). Bagging and boosting for the
nearest mean classifier: effects of sample size on diversity and accuracy. In
Proceedings of the Third International Workshop on Multiple Classifier
Systems, Cagliari, Italy, 62–71.

Song, J., Wang, H. (2016). Package ‘Ckmeans.1d.dp’. Retrieved from https://cran.r-
project.org/web/packages/Ckmeans.1d.dp/Ckmeans.1d.dp.pdf

Thuraisingham, R., Tran, Y., Boord, P., and Craig, A. (2007). Analysis of Eyes Open,
Eye Closed EEG Signals Using Second-Order Difference Plot. Medical and
Biological Engineering and Computing, 45(12).

Ting, K., & Witten, I. (1999). Issues in stacked generalization. Artificial Intelligence
Research, 10, 271–289.

Tsoumakas, G., Partalas, I., & Vlahavas, I. (2008). A taxonomy and short review of
ensemble selection. ECAI: Workshop on Supervised and Unsupervised
Ensemble Methods and their Applications (SUEMA-2008), 41-46.

Urbanek, S. (2016). Package ‘rJava’. Retrieved from https://cran.r-
project.org/web/packages/rJava/rJava.pdf

Valentini, G. (2004). Random aggregated and bagged ensembles of SVMs: an
empirical bias-variance analysis. International Workshop Multiple Classifier
Systems, Lecture Notes in Computer Science 3077, 263–272.

Webb, G., & Conilione, P. (2003). Estimating bias and variance from data. Technical
report, School of Computer Science and Software Engineering, Monash
University.

Wehenkel, L. (1997). Discretization of continuous attributes for supervised learning:
variance evaluation and variance reduction. Proceedings of the International
Fuzzy Systems Association World Congress, 381–388.

Wolpert, D. (1992). Stacked Generalization. Neural Networks, 5(2), 241-259.

Yeh, C., & Lien, H. (2009). The comparisons of data mining techniques for the
predictive accuracy of probability of default of credit card clients. Expert
Systems with Applications, 36(2), 2473-2480.

Zeng, X., Chao, S., & Wong, F. (2010). Optimization of bagging classifiers based on
SBCB algorithm. In Proceedings of the International Conference on Machine
Learning and Cybernetics, Qingdao, China, 262–267.

Zhang, P., Zhu, X., Shi, Y., Guo, L., & Wu, X. (2011). Robust ensemble learning for
mining noisy data streams. Decision Support Systems, 50(2), 469-479.

Zhang, C., & Zhang, J. (2009). A novel method for constructing ensemble classifiers.

150

Statistics and Computing, 19 (3), 317-327.

Zheng Z., and Padmanabhan B. (2007). Constructing Ensembles from Data
Envelopment Analysis. INFORMS Journal on Computing, 19(4), 486–496.

Zhu, H., Beling, P., & Overstreet, G. (2002). A Bayesian framework for the
combination of classifier outputs. The Journal of the Operational Research
Society, 53(7), 719–727.

Zhu, D. (2010). A hybrid approach for efficient ensembles. Decision Support
Systems, 48(3), 480-487.

	Nova Southeastern University
	NSUWorks
	2017

	Strategies for Combining Tree-Based Ensemble Models
	Yi Zhang
	Share Feedback About This Item
	NSUWorks Citation

	Yi_Dissertation_Dec7_2017_Final - Part1
	N01101816 Zhang, Yi- Part2
	Yi_Dissertation_Dec7_2017_Final - Part3

