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Ensemble models have proved effective in a variety of classification tasks. These models 
combine the predictions of several base models to achieve higher out-of-sample classification 
accuracy than the base models. Base models are typically trained using different subsets of 
training examples and input features. Ensemble classifiers are particularly effective when their 
constituent base models are diverse in terms of their prediction accuracy in different regions 
of the feature space. This dissertation investigated methods for combining ensemble models, 
treating them as base models. The goal is to develop a strategy for combining ensemble 
classifiers that results in higher classification accuracy than the constituent ensemble models. 
Three of the best performing tree-based ensemble methods – random forest, extremely 
randomized tree, and eXtreme gradient boosting model – were used to generate a set of base 
models. Outputs from classifiers generated by these methods were then combined to create an 
ensemble classifier. This dissertation systematically investigated methods for (1) selecting a 
set of diverse base models, and (2) combining the selected base models. The methods were  
evaluated using public domain data sets which have been extensively used for benchmarking 
classification models. The research established that applying random forest as the final 
ensemble method to integrate selected base models and factor scores of multiple 
correspondence analysis turned out to be the best ensemble approach.   
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Chapter 1 
 

Introduction 

 

Background 

An ensemble approach integrates the output of a group of machine learning 

algorithms. The purpose of an ensemble approach is to achieve an improved 

classification accuracy that outperforms the individual learning algorithms which are 

often called base models. It has been shown that ensemble-based learning algorithms 

improve the predictive accuracy in many applications (Banfield, Hall, Bowyer, & 

Kegelmeyer, 2007; Leblanc & Tibshirani, 1996; Rodrigues, Kuncheva, & Alonso, 

2006). Combining multiple learning algorithms has been found to be effective for 

various problems (Breiman, 2001; Zhang et al., 2011; Zhu, Beling, & Overstreet, 

2002).  

The initial step in an ensemble approach is creating various base models 

(Dietterich, 2001). The individual base models should be diverse enough in the sense 

that they have minimum errors in common. Base models can be generated 1) by 

different learning methods, 2) by using sub-samples of training data set, or/and 3) by 

using subsets of attributes or input features. Base models are generated by applying 

those three methods individually or together. Researchers in statistics and machine 

learning focus on constructing ensembles in which multiple base classifiers are 
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generated by perturbing or splitting the training data set. The training subsets are 

random samples with replacement or without replacement from the original training 

data. Several well-known ensemble-based learning algorithms, such as bagging, 

boosting, and random forest, have been widely accepted and applied for prediction 

tasks (Breiman, 1996 & 2001; Freund & Shapire, 1996). They have been shown to have 

consistently better performance than non-ensemble-based models.  

The random forest (RF), extremely randomized trees (ERT), and extreme 

gradient boosting (XGB) models were applied in this dissertation to generate base 

models due to their high predictive accuracy (Brieman, 2001; Caruana & Niculescu, 

2006; Geurts, Ernst, & Wehenkel, 2006; Friedman, 2001). They are all tree-based and 

ensemble-based machine learning algorithms. The RF model creates a large number of 

trees as base models by randomly selecting a subset of attributes in each splitting on 

randomly selected subsets of the training data (Brieman, 2001). Extremely randomized 

trees is a model similar to random forest. However, extremely randomized trees builds 

base classifiers on the whole training data by applying random selection on not only 

attributes but also the cut-point choice when splitting a tree node (Geurts, Ernst, & 

Wehenkel, 2006). The gradient boosting algorithm is an ensemble method in which the 

final classifier is combined by weak classifiers step by step (Friedman, 2001). In 

gradient boosting, a differentiable loss function is used to calculate the adjustments to 

the consecutive success learner in an iterative learning sequence. It assigns higher 

weights to misclassified observations when creating the subsequent tree. XGB is a 

scalable implementation of gradient boosting which is a very time efficient algorithm 

(Friedman, 2001; Friedman, Hastie, & Tibshirani 2000). By considering both training 
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loss and regularization, XGB can quickly reach the optimal decision and control 

overfitting at the same time.  

Most commonly, all base models are ensembled together for the final output. 

However, researchers showed that combining a subset of base models with desirable 

characteristics worked better than combining all models (Ruta & Gabrys, 2005; Zhu, 

2010). Selecting only a subset of base models might also contribute to both the accuracy 

of the final decision and the computing efficiency (Tsoumakas, Partalas, & Vlahavas, 

2008). Jurek, Bi, Wu, and Nugent (2013) categorized base model selection techniques 

into static selection and dynamic selection. In static selection, the same subset of base 

models is used for both training and testing data sets (Zhu, 2010). While in dynamic 

selection, a subgroup of base models that locally perform better are chosen to make the 

decision (Cevikalp & Polikar, 2008). Base models can be selected based on either 

accuracy or diversity or both of these criteria (Jurek, Bi, Wu, & Nugent, 2003; Hu, 

2001). Since the ensemble-based models, RF, ERT, and XGBoost as base models 

usually achieve good classification accuracy, this research focuses on applying 

correlation analysis and backward selection on the output of base models to identify an 

optimal subset of diverse base models, and multiple correspondence analysis (MCA) 

to capture the features of outputs of base models, thus to achieve more accurate 

predictions (Abdelazeem, 2008; Ruta and Gabrys, 2005). 

After base models are selected, how to combine base models is the question to 

be addressed next. Researchers must consider and decide the kind of information to be 

integrated and the combining method to be applied. Generally, an ensemble approach 

integrates all or selected outputs of base models. The format of outputs from base 
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models varies, which can either be class label or probability. The combining technique 

can be majority voting, which is very effective when applying with a group of properly 

selected base models, such as decision trees in a random forest model (Breiman, 2001). 

It can also use various machine learning algorithms to integrate the outputs of base 

classifiers. For example, a logistic regression model is used to combine outputs of base 

models in stacking (Wolpert, 1992). Stacking, which is also called Stacked 

Generalization, has proven to be one of the most effective ensemble methods that 

improves the accuracy of the final decision of both classification and regression 

problems (Dzeroski & Zenko, 2004; Seewald, 2002; Jurek, Bi, Wu, & Nugent, 2001). 

In this research, we chose random forest, extremely randomized trees, and 

extreme gradient boosting to construct base classifiers, applied model selection 

techniques, and integrated classifiers using various machine learning algorithms 

(random forest, logistic regression, and extreme gradient boosting). We systematically 

investigated the decision accuracy of the base models RF, ERT and XGB; how model 

selection techniques impacted the final ensemble result; the relationship between model 

combination techniques and the final ensemble results; and whether there existed a 

better ensemble approach. 

Problem Statement 

Improving predictive accuracy of machine learning algorithms is an ongoing 

research challenge. Numerous studies have shown that ensemble techniques increase 

the predictive accuracy when compared with non-ensemble-based classifiers for both 

classification and regression problem (Breiman, 1996; Dietterich, 2000; Leblanc and 

Tibshirani, 1996; Zhu, 2010). The majority of the related studies focused on integrating 
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weak classifiers, such as decision trees that were generated by perturbing the training 

data set (Breiman, 2000; Zhu, 2010).  Researchers also demonstrated that picking 

several best models worked better than combining all models under some 

circumstances (Kotsiantis, 2011; Russell & Adam, 1987). The best models can be either 

those with various local predictive powers or those with the best predictive accuracy. 

Ensemble classifiers are particularly effective when the constituent base models are 

diverse in terms of their prediction accuracy in different regions of the feature space. 

The investigation of how to combine these ensemble-based models is a major research 

topic in the field of machine learning (Kotsiantis, 2011). In this dissertation, we studied 

methods for combining ensemble models by treating them as base models. Three tree-

based ensemble methods – random forest, extremely randomized trees, and extreme 

gradient boosting model – were used to generate a set of base models (Brieman, 2001; 

Geurts, Ernst, & Wehenkel, 2006; Friedman, 2001). Outputs from classifiers generated 

by these methods were then combined to create an ensemble classifier to provide the 

final prediction. We systematically investigated methods for (1) selecting a set of 

diverse base models, and (2) combining the selected base models. The selection and 

combination methods were evaluated using public domain data sets which have been 

extensively used for benchmarking classification models. 

Dissertation Goal 

The goal of this dissertation is to develop a strategy for combining ensemble 

classifiers that results in higher classification accuracy than the constituent ensemble 

models. We investigated ensemble approaches which used random forest, extremely 

randomized trees, and extreme gradient boosting algorithm to generate base models. 
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Performances of base models were evaluated and compared. Correlation of outputs of 

base models were examined using Cramer’s V correlation analysis. Various base model 

selection techniques based on correlation or accuracy of base models were applied and 

compared. Different model combination techniques, majority voting if applicable, 

logistic regression, extreme gradient boosting, and random forest, were applied to all 

or optimal subsets of base classifiers. The performance of final ensemble outputs was 

evaluated.  

Research Questions 

1. Will specific ensemble approaches of ensemble-based models increase the 

predictive accuracy compared with extant single ensemble models? 

2. Are random forest, extremely randomized trees, and extreme gradient boosting 

good candidates as base classifiers? 

3. Will various model selection techniques make a difference in the predictive 

accuracy of the overall ensemble approach? 

4. How will various model combination techniques affect the predictive accuracy 

of the ensemble approach? 
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Chapter 2 
 

Review of the Literature 

 

Overview 

An ensemble approach starts from creating various base classifiers, selecting 

base classifiers, and ends in combining base classifiers. Various investigations have 

demonstrated that ensemble approaches of different classifiers improve the accuracy of 

the final classifier (Parvin & Alizadeh, 2011). Researchers evaluate learning algorithms 

by investigating the variance and bias (Kohavi & Wolpert, 1996). Variance measures 

the difference of prediction of a learning algorithm on different data sets. Bias measures 

the average error of a classifier trained with different training data sets. A single 

classifier usually has large bias and little variance when compared with a group of 

integrated classifiers (Webb & Conilione, 2003). It has been demonstrated that 

ensemble approaches usually reduce either variance or bias or both (Bauer & Kohavi, 

1999).  

The decision tree learning algorithm is a flowchart-like model that is widely 

used by researchers in information systems and machine learning. A decision tree 

model usually shows high variance in both choosing attributes and splitting nodes 

(Breiman, Friedman, Olshen, & Stone, 1984). It has been experimentally shown that 

cut-point variance of a decision tree model is extremely high for both small and large 
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data sets (Wehenkel, 1997; Geurts, 2000). The cut-point variance rephrases part of the 

error rate of the learning process. Because of the high variance, the decision tree is 

considered an unstable classifier. However, it works very well as the base classifier in 

ensemble approaches (Brieman, 2002). Several well-known ensemble approaches, 

such as boosting, random forest, and extremely randomized trees which incorporate a 

decision tree algorithm as the base models, are very successful in generating higher 

predictive accuracy (Breiman, 2002; Freund & Shapire, 1996). The idea behind these 

ensemble approaches is to reduce the variance of the learning algorithm without 

increasing the bias too much. These ensemble algorithms bring randomization into 

generating the same type of base classifiers (decision trees) on randomized training 

data sets. They generally are very competitive in producing better predictive accuracy 

than other non-ensemble-based machine learning algorithms (Dietterich, 2000). 

It has been demonstrated that an ensemble model might avoid the mistake of 

choosing a wrong single model by statistically combining the output of base models, 

avoiding getting stuck in local optima computationally, and increasing the searching 

space for the true hypothesis (Dietterich, 2000). To avoid getting stuck in local optima 

and to increase the search space, diverse learning algorithms were often considered by 

researchers to include in the pool of base models (Kuncheva & Whitaker, 2003). 

Studies have demonstrated that the diversity of learning algorithms improves the 

accuracy of an ensemble approach (Dietterich, 2000). Diversity can be measured in 

various ways. A major measurement is to test the correlation of the decision output of 

each base model. The group of less correlated models tends to provide higher predictive 

accuracy (Hu, 2001). A different technique to evaluate the diversity of base models is 
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Q statistics test (Kuncheva & Whitaker, 2003). Clustering the outputs of base models 

and then adding clusters as additional attributes to the training dataset, and random 

selection of attributes or instances are proven techniques to increase the diversity of 

base models (Bryll, Gutierrez-Osuna, & Quek, 2003; Gan & Xiao, 2009). Among the 

stated methods, creating base models by randomly selecting either attributes or 

instances or both has been widely applied and has achieved tremendous success 

(Brieman, 2001).  

Ensemble Models 

Bagging 

Brieman first proposed the idea of bagging which trained diverse individual 

base models by randomly selecting instances with replacement as training subsets 

(Breiman, 1996). It incorporates the idea of random selection which works by randomly 

selecting subsets of the training data set, manipulating the distribution of training data, 

or randomly selecting attributes (Breiman, 1996 & 2001; Freund & Shapire, 1996). 

Bagging is designed to reduce the variance of misclassification probability. Since base 

models can be trained independently, bagging can be very time-efficient. However, 

because of its strategy to create training data sets, bagging tends to improve the 

predictive accuracy by utilizing unstable classifiers, such as decision trees or artificial 

neural networks (Dietterich, 2000; Maclin, 1997). It has been shown that bagging is 

not able to improve the performance when using stable base models, such as linear 

regression (Skurichina, & Duin, 1998). Breiman (1996) explained that unstable models 

could be very diverse because they were sensitive to small changes of training data. 
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The diversity of base models is the key advantage of the bagging method to 

increase the final performance. However, at the same time, diversity also implies the 

unstable prediction of the randomly created base models. In order to obtain the same 

accuracy as an original decision tree, Machova and Barcak (2006) reported that the 

minimum number of base models in bagging should be twenty. Studies also reveal that 

bagging works more efficiently for small data sets (Skurichina, Kuncheva, & Duin, 

2002).  

Random Forest 

Brieman (2001) proposed another ensemble approach, Random Forest, based 

on the idea of expanding diversity of base models by partitioning the attribute space. 

Random forest usually pools a lot of decision trees as base classifiers. It creates random 

training data sets for each individual decision tree by bootstrapping from the original 

training data set. It chooses the optimal attributes from a randomly selected subset of 

attributes at each split when growing a decision tree.  

Random forest is an expanded version of bagging. The random subsets of 

instances don’t have the same number of instances as the original training set. 

Generally, each subset has two thirds of the instances of the whole training data. At 

each split, an optimal attribute is chosen from around two thirds of the randomly 

selected attributes. Random forest not only adopts the advantages of bagging, such as 

more diversity of base classifiers and computational efficiency, but also overcomes 

some weaknesses of bagging, such as dealing with both small and large data very 

efficiently. Additionally, it is also designed to deal with the overfitting issue. Random 

forest is a very competitive and successful ensemble model and has been applied to 
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different research fields (Chi, Yeh, & Lai, 2011; Diaz-Uriarte & Alvarez de Andres, 

2006). 

Extremely Randomized Trees 

Extremely Randomized Trees is another ensemble-based model. It is also called 

Extra Trees. It takes randomization even further when compared with random forest 

(Geurts et al., 2006). It randomizes not only the selection of instances and attributes, 

but also the selection of the cut point of splitting when growing individual base trees. 

The structures of total random trees are independent of the output of learning data. It is 

also extremely computationally efficient due to the extreme randomization.  

The extremely randomized trees model works by decreasing variance while 

increasing bias at the same time. However, referenced to the standard decision tree 

model, if the randomization degree is optimal leveled, the variance can be extremely 

diminished and the bias increases only a little bit. The extremely randomized trees 

model has been demonstrated to be the top choice in many applications, such as high 

dimensional problems, mass-spectrometry datasets, and time series classification 

problems (Geurts & Wehenkel, 2005; Geurts, Fillet, De Seny, Meuwis, Mervilles, & 

Wehenkel, 2005b; Maree, Geurts, Piater, & Wehenkel, 2004). It has a very strong 

competitive predictive power, especially for classification problem, when compared 

with random forest and other ensemble approaches (Geurts et al., 2006).  

Boosting 

Another well-known ensemble technique, Boosting, was proposed by Freund 

and Schapire in 1996. It utilizes the random selection idea and manipulates the 
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distribution of training data by creating subsequent base models based on the predictive 

accuracy of previous base models. It is an iterative procedure that adds base classifiers 

one by one. Weights of one base model are calculated based on its predictive accuracy 

and are then applied when integrated with other base models. Weights of instance are 

also calculated by the current base model, and then are used to train the next base 

model. In this way, base models are regulated and the weighted predictions of the base 

models are combined to make the final decision. Boosting has been shown to reduce 

variance and bias (Rodriguez & Maudes, 2008). Good candidates for base models are 

decision trees or neural networks (Rodriguez & Maudes, 2008; Schwenk & Bengio, 

2000).  

Ada boosting is the benchmark model in boosting (Schapire, 1999). A number 

of studies have been explored to expand the techniques of Ada boosting to improve the 

accuracy and efficiency (Schapire, Freund, Bartlett, & LeeWS, 1998).  Gradient 

boosting is one of its expansion forms and has earned a good reputation for its excellent 

performance in both accuracy and efficiency when compared with Ada boosting 

(Friedman, 2001). It utilizes a loss function to manipulate the adjustment that is applied 

to the subsequent base model. The training loss function measures how the model fits 

on training data. The gradient boosting model not only measures the model fit but also 

regulates the model complexity using a regularization function. Optimizing loss 

function tends to cause over-fitting. On the contrary, optimizing regularization function 

produces smaller variance for prediction. Balancing loss and regularization functions 

properly can produce optimal predictive performance and control the over-fitting issue 

(Johnson & Zhang, 2014).  
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Extreme gradient boosting is an algorithm created under the framework of 

gradient boosting (Chen, 2015). It utilizes generalized linear model and gradient 

boosted decision trees. Randomly sub-setting the instances and attributes techniques 

are applied in the extreme gradient boosting algorithm. It is very efficient in handling 

sparse matrices and producing accurate predictions.  

Model Selection 

Most ensemble approaches integrate all base models to make the final 

prediction. However, it has been shown that effective selection of a group of optimal 

base models based on diversity and accuracy can improve the final ensemble 

performance (Zeng, Chao, & Wong, 2010).  

Abdelazeem (2008) proposed forward search or backward search methods to 

select an optimal set of base models based on majority voting error of the ensemble 

model. The forward search starts from the most accurate base model and adds other 

base models one by one until there is no improvement of predictive accuracy. The 

backward search starts from combining all of the base models, and then excludes base 

models one by one until the decrease of predictive accuracy is not acceptable.  

Genetic algorithm (GA) has been applied in searching the best subset of base 

models when considering the accuracy of both base and final ensemble models (Kittler 

& Roli, 2001).  Both diversity and accuracy are evaluated when applying the GA 

approach (Löfström, Johansson, & Bostrom, 2008). It is revealed that considering the 

accuracy of both the base and ensemble models is the most efficient approach for the 

GA approach of model selection.  
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Ruta and Gabrys (2005) selected the optimal subset of base models by 

evaluating various diversities of the models. In their approaches, diversities were 

presented by correlation coefficient, product moment correlation, Q statistics, 

disagreement measure, double-fault, entropy, and measure of difficulties. In addition 

to diversities, accuracies such as minimum individual error, mean error, and majority 

voting error were also considered. Various search methods, such as forward and 

backward search, random search, and GA search were explored. The experiment result 

showed that using majority voting error as the search criterion was the best way for 

model selection. 

Model Integration 

The last step in the ensemble approach is integrating the outputs of base models 

to make the final decision of regression or classification problems. The combination 

methods can be simple averaging, majority voting, or using functions or machine 

learning algorithms to combine base models (Brieman, 2001; Wolpert, 1992).  

Majority voting is a simple but effective method, in which the final decision of 

an instance is voted by all base models. The case receiving the most votes is the final 

decision. An expanded version of majority voting is adding weights to base models 

where the weights are scaled by the accuracy or entropy of the base models. This 

weighting method has been expanded further by applying genetic algorithms (GA) to 

optimize the final result (Dimililer, Varoglu, & Altincay, 2007).  

Stacked generalization is also an alternative way to combine multiple models 

(Wolpert, 1992). It works by reducing biases of learning algorithms with respect to a 

specific training data set. In stacked generalization, the outputs of base models for the 
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validating data set compose the training data for a meta-model. Then, a meta-learner is 

generated by a machine learning algorithm to combine the outputs of base models. 

Effective machine learning algorithm for the meta-learner can be multi-response linear 

regression and multi-response model tree (Dzeroski & Zenko, 2004; Seewald, 2002; 

Ting & Witten, 1999). Majority voting is not preferred in stacked generalization 

because it usually does not work on comparable or similar outputs of base models (Ting 

& Witten, 1999).  However, the multilayer perceptron has been demonstrated to be an 

effective algorithm to combine the outputs of base models (Zhu, 2010). Logistic 

regression has also proved to be successful in combining outputs of base models in 

stacking (Wolpert, 1992). 
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Chapter 3 

Methodology 

 

Overview of Research Methodology 

In this research, we explored an ensemble approach in which tree-based 

ensemble learning algorithms are used as base models. The primary goal is to study if 

an ensemble approach of ensemble-based models would further improve predictive 

accuracy. The secondary goal is investigating effective ways for selecting base models 

and various combination strategies.  The overall ensemble procedure includes four 

major steps: 

1. generating base models  

2. calculating factor scores of multiple correspondence analysis 

3. choosing optimal subsets of base models, and 

4. integrating base models 

Generating base models 

Ten random forest, eleven extremely randomized trees (extra trees), and ten 

extreme gradient boosting models were generated to work as base models to ensemble. 

All base models are tree-based ensemble models (Brieman, 2001; Geurts et al., 2006; 

Freund & Schapire, 1996). They have proved to be relatively better models which 
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provide higher predictive accuracy. They all apply a randomization scheme to expand 

the diversity of base models in order to achieve better ensemble result. 

Random Forests: The steps of building a random forest are listed as follows 

(Breiman, 2001).  

1. To create a forest with 	trees,  subsets of data are sampled with 	instances 

randomly with replacement. Each subset grows one individual tree. Usually, the 

size of a subset is about two thirds of the size of the training set.  

2. When building a single tree, at each splitting of node,  predictor variables are 

chosen randomly from all available variables. Each predictor is evaluated by a 

selected objective function. The one which provides the best splitting is used to do 

a binary split on that node. The same procedure is applied to all remaining nodes. 

The value of 	can range from 1 to the total number of predictor variables. Most 

researchers set  to be the square root of the total number of predictor variables 

(Brieman, 2001).  

3. 	trees are created by repeating step 1 & 2 to construct a forest. When a new set of 

instances is input into the forest, one by one, each instance goes through every tree 

in the forest. The predictive result is the majority voting of the 	 trees for a 

classification problem.  

4. Ten random forests were built on training data sets in this research. Seeds were 

randomly set up to ensure a repeatable predictive result for each forest. The number 

of individual trees in the forest ranged from 50 to 500. Because of the 

randomization strategy of sub-setting the instances and attributes and setting up 

different seeds and number of subtrees when building a random forest, these ten 
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forests had different structures and provided different predictions on the testing data 

set. Table 1 lists the number of trees of each base model. 

  
Table 1 

Number of Trees in Random Forest Base Model 

Radom Forest Number of Trees 

1 50 

2 100 

3 150 

4 200 

5 250 

6 300 

7 350 

8 400 

9 450 

10 500 
 

Extremely Randomized Trees: The procedure of building extremely 

randomized trees, also called extra trees, is listed as follows (Geurts et al., 2006). 

1.   decision trees are built without pruning from all training sample.   

2. At each random splitting of a node, 	predictor variables, , … , , among all 

non-constant candidate predictors are chosen without replacement and evaluated to 

split the node. 	splits, , … , , one split per predictor, are generated from  

predictors. A split ∗	is selected if its score of evaluation is the most preferred one 

among all of the 	splits. The same procedure is applied to each node. 

3. Numerical predictors and categorical predictors follow different rules of splitting. 

For a categorical predictor	 ,   is used to denote its domain or the set of all possible 

values. 	 is a subset of  in which every value a appears in the training set S. 
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Then, a proper nonempty subset of 	  and a subset 	of A\ 	 is randomly 

drawn. The split that meets [a ∈ ∪ 	] is returned to compare with other splits. 

For a numerical predictor a, its maximal and minimal value in S, 	 	 , 

are calculated. A cutout point  is uniformly drawn in [ , ]. The split that 

meets [ ] is returned.  

4. The 	trees created by repeating step 2 & 3 are used to construct an extra trees 

model. When a new set of instances is input into the forest, one by one, each 

instance goes through all of the trees in the extra trees model. The result is the 

majority voting of the 	trees for a classification problem.  

5. Eleven extra trees models were built in this research. Seeds were randomly set up 

to ensure repeatable predictive result for each extra tree model. The number of 

individual trees in an extra trees model ranged from 50 to 550. Because of the 

randomization of sub-setting the instances and attributes, and setting up different 

seeds and number of subtrees when building an extra tree, these eleven extra trees 

had different structures and provided different predictions on the testing data set. 

Table 2 lists the number of trees in each model. 

  
Table 2 

Number of Trees in Extremely Randomized Trees Base Model 

Extremely Randomized Trees Number of Trees 

1 50 

2 100 

3 150 

4 200 

5 250 

6 300 
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Extremely Randomized Trees Number of Trees 

7 350 

8 400 

9 450 

10 500 

11 550 
 

Extreme Gradient Boosting: Extreme gradient boosting model (XGB) is a tree-

based ensemble model created under the gradient boosting framework proposed by 

Friedman (2001). Efficient linear solver and tree learning algorithm are implemented 

in XGB (Chen & He, 2015). The approach of constructing an XGB model is listed as 

follows (Chen & He, 2015). 

1. XGB model is a summation of a collection of  weak trees. It is defined as  

∑ , where  is the prediction of a decision tree. 

2. Let  denote the feature vector for the i-th data point, the prediction with all the 

decision trees can be expressed as 	 ∑ . In each iteration step, one 

tree is added to the collection, at the t-th step, the prediction is defined as 

	∑ . 

3. When training the model, a loss function is chosen and optimized based on different 

types of task. For a binary classification problem, LogLoss is used as the loss 

function. 

L
1

log 1 log 1  

where  is the real value of prediction on feature vector ,  is the probability on 

feature vector , and  is the number of instances in the training data set. For a 
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multi-classification problem, mlogloss is used as the loss function which is defined 

as below, where  is the number of categories of target feature. 

L
1

, log	 ,  

4. When optimizing the loss function, XGB also implements a regularization term Ω 

to control the complexity in order to prevent overfitting.  

Ω Ƭ 	
1
2

 

	is the number of leaves. Instead of ,  which is the score on the j-th leaf that 

is used for better controlling the complexity. λ and  both tune the complexity. 

5. The objective function of XGB is defined as the combination of loss function and 

regularization. Loss function controls the predictive power and regularization 

controls the simplicity. 

Ω 

6. Gradient descent is applied to optimize the objective function	 , . It is an 

iterative technique that calculates 	 ,  at each iteration.  is improved 

along the direction of the gradient to minimize the objective. 

7. For an iterative algorithm, the objective function at each step can be rewritten as  

, Ω , Ω  

The first and second order gradient 	 	 	 	are calculated to 

improve the performance. The Taylor approximation of the objective function is 

derived as follows since there might be no derivative for every objective function. 



22 
 

 
 

≅ ,
1
2

Ω  

Where 	 L , 	and L ,  

Removing the constant terms since they don’t affect the optimization, the objective 

function at the t-th step is derived below. The goal is to find a  to optimize	 . 

1
2

Ω  

8. Finding a tree in each step to improve the prediction along the gradient is critical in 

XGB. For a decision tree, internal node defines the data point flowing direction. 

Each leaf is assigned a weight, which is the prediction. Mathematically, a tree can 

be defined as , where  is a directing function that assigns every 

data point to the -th leaf.  is the corresponding score on the -th leaf. 

An index set is also defined as | .  It contains the indices of data 

points that are assigned to the j-th leaf. Rewriting the objectives in terms of leaves, 

the objective function becomes  

1
2

	Ƭ 	
1
2

 

1
2

∈∈

 

The objective function in this form would be optimized by 	 	 . The best  

that optimizes the objective function is 
∑ ∈

∑ ∈
, and the corresponding 

objective function is  
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1
2

∑ ∈

∑ ∈
 

9. When building a tree, to find the best splitting point that can optimize the objective 

function, the best splitting point of each attribute is identified first, then the best 

attribute is picked out based on the objective function. Since 	is the set of indices 

of data points that assigned to a node,  and  are the sets of indices of data points 

that assigned to two new leaves. The gain of splitting is calculated based on optimal 

objective function. The split that achieves the most gain is the best one. 

1
2

∑ ∈

∑ ∈

∑ ∈

∑ ∈

∑ ∈

∑ ∈
 

 r is the complexity cost by introducing additional leaf. The tree is built to the 

maximum depth in this way, and is pruned by taking out the nodes with negative 

gains in a bottom-up order.  

10. When building an individual tree, a subset of instances 	is sampled. At each split, 

a subset of attributes 	is also randomly selected. A XGB model can be created by 

following steps in 1 through 9.  

11. We constructed ten XGB models as base models in this research. Setting up seed 

was tried randomly to ensure a repeatable predictive result for each XGBoost 

model. However, it didn’t work and couldn’t provide s repeatable prediction. 

Parameter “eta” in the R XGBoost package was adjusted from 0.1 to 1 to control 

the gradient speed. They are listed in table 3 for reference. Parameter “nround” was 

optimally chosen by a 10-fold cross validation method based on parameter “eta”. 

As a result, the number of individual trees in each XGB model was different, 
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therefore these ten XGB models had different structures and provided a different 

prediction on testing data set. 

 
Table 3 

Parameter Eta in Extreme Gradient Boosting Base Model 

Extreme Gradient Boosting Eta 

1 0.1 

2 0.2 

3 0.3 

4 0.4 

5 0.5 

6 0.6 

7 0.7 

8 0.8 

9 0.9 

10 1.0 
 

Calculating factor scores of multiple correspondence analysis 

Multiple correspondence analysis (MCA) was applied to the outputs of the base 

models (Le Roux & Rouanet, 2004; Greenacre & Blasius, 2006). Factor scores of 

individual output instances were produced (Abdi & Valentin, 2007). They were added 

as new attributes to ensemble with the outputs of base models in the final ensemble 

step (Zhang & Zhang, 2009). MCA is a statistical procedure that applied to categorical 

variables, which represents data in a low-dimensional Euclidean space. In our study, 

conducting MCA converted the 	outputs of base models into a set of factor scores.  

Since the dissertation is focused on classification problems, we kept the 

	outputs of base models in categorical format. Each output must be reconstructed into 
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another set of binary variables with only 0 and 1 as their values. For example, for a 

binary output Salary with two categories “more than $50,000” and “not more than 

$50,000”, two new variables “more than $50,000” and “not more than $50,000” are 

created to replace the categorical output. For a person with salary more than $50,000, 

the corresponding value of the new variable “more than $50,000” is 1, and “not more 

than $50,000” is 0. In this way, each categorical output with   levels is replaced by  

new binary variables. With B outputs in total, 	new binary variables were created and 

set into the MCA approach.  For  observations, an indicator matrix  with  columns 

and  rows was formed.  

A correspondence analysis (CA) was then performed on the indicator matrix. 

Letting  denote the sum of elements of indicator matrix, the probability matrix  is 

	 . The vector of row sums of  is denoted as . The vector of column sums 

of  is denoted as . The following singular value decomposition is performed. 

∆  

where diag , diag , ∆ is the diagonal matrix of the singular values 

which is calculated from ∆ , the matrix of eigenvalues. Row and column factor 

scores, F and G, are calculated as follows: 

∆ 

∆ 

These factors scores are considered as inheriting the maximum possible variance from 

. Although MCA produces row and column factor scores, in our approach, only the 
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column factor scores were ensembled with the outputs of base models in the last 

ensemble step. 

Choosing optimal subsets of base models  

Choosing optimal subsets of base models is the third step in the whole 

procedure. Various model selection techniques could be applied to choose optimal 

subsets of base models to ensemble. The following two methods were used in this 

research for model selection. 

Cramér's V correlation analysis: Cramér's V correlation between outputs of 

base models on testing data is calculated. Then, a criterion or a cutout point of 

correlation coefficient is picked, and the most uncorrelated models are chosen as the 

group of optimal base models (Cramér, 1946). 

For  outputs of base models { , , … , }, Cramér's V correlation 

coefficient measures the pairwise association between them. The association is based 

on Pearson’s chi-square statistics.  ranges from 1 to 31 since thirty-one base models 

were generated in total. Cramér's V correlation coefficient is calculated based on the 

following formula. For two outputs of base model,  and , , ∀ 1, … , , and 

∀ 1,… , , a contingency table is created in table 4,  is the number of classes of the 

output variable.  
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Table 4 

Contingency Table of Cramér's V Correlation 

Category of Output   

1  ,   ,  

2  ,   ,  

.  .  . 

.  .  . 

.  .  . 

k  ,   ,  

 

, 	is the number of class  observed in the output .  , 	is the number of 

class  observed in the output . The chi-squared statistic is calculated as below 

, ,

,
 

Cramér's V correlation coefficient is  

⁄
1

φ
1

 

where  is the grand total of observations, φ is the phi coefficient. 

 Cramér's V correlation coefficient ranges from 0 to 1. A value close to 0 

indicates less correlation between two outputs. Since the base models are expected to 

be accurate, which leads their pairwise correlation coefficients closer to 1. The cutout 

point value of its absolute value varies based on different data sets. We chose base 

model pairs whose correlation coefficient was closer to 0 as members of the optimal 

subset.  

Backward selection: A backward selection of base models 	was applied in the 

research based on Akaike Information Criterion (AIC) value provided by the logistic 

regression ensemble models. AIC was originally introduced to measure the relative 
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quality of models on the same set of data set (Hocking, 1976; Bozdogan, 1987). It is 

defined as follows,  

2 2ln	 ) 

where  is the number of estimated parameters in a model,   is the maximum value of 

the likelihood function of logistic regression model. In this research, the data set 

contains the output of base models .  For  outputs of base models { , , … , }, 

this approach starts from ensemble all of the outputs of base models by logistic 

regression model below. 

1
 

Where 	 ⋯ , and 	 , , … ,  are the fitted coefficients 

of logistic regression.  

In this research, the backward selection method excluded one base model in 

each round to reach the goal of not significantly losing predictive power with the 

smallest number of base models. If	  denotes the number of base models, in each 

round, AICs of  number of logistic regressions were compared. Here, each logistic 

regression was created by combining 1 number of base models by omitting one 

base model. Each base model was excluded once in a logistic regression. Thus, the 

resulted AIC value of logistic regression presented the effect of each base model to the 

predictive power. One base model was chosen to exclude in the next round if omitting 

it resulted in the smallest AIC value. The backward selection stopped if excluding any 

one of the remaining base models would not make the AIC significantly lower than that 

in the previous round.  Here, the chi-square  statistic was applied to determine the 

significance of AIC decreasing at 0.05 level in the study. 
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Integrating base models 

In the last step of the ensemble approach, majority voting, random forest, 

extremely gradient boosting, and logistic regression models were applied to integrate 

the outputs of base models with 1) all base models, 2) all base models and factor scores 

of multiple correspondence analysis, 3) the optimal subsets of base models chosen by 

Cramér's V and backward model selection, or 4) factor scores and the optimal subsets 

of base model chosen by Cramér's V correlation and backward model selection. The 

misclassification rate was used to compare all of the ensemble results.  

Software and Code 

Experiments were conducted in RStudio of R version 3.3.1 (R Core Team, 

2016). RStudio is an integrated development environment (IDE) for R. Compared to 

R, RStudio is designed to be more user-friendly. Researchers can code, edit, and run R 

codes in RStudio. The open-sourced RStudio is available to download for free and is 

used in this research. The RStudio for windows desktop was chosen and downloaded 

from the following website, https://www.rstudio.com, by selecting platform x86_64-

w64-mingw32/x64 (64-bit).  A screen shot of RStudio interface can be found in 

Appendix A. 

Since many researchers contribute their research results to the R community for 

free, the R community is the first or best place for a researcher to find solutions to 

classification problems. Random forest, extremely randomized trees (extra trees), and 

extreme gradient boosting model are all available in the R community, so R becomes 

an accessible option to conduct experiments in this dissertation. In addition to the 



30 
 

 
 

models mentioned above, multiple correspondence analysis and other well-known 

statistical analyses are all available in the R community. Data manipulation and 

calculation are also convenient to conduct in R. Due to the easy access to the R 

community and documentation and tutorial of R programming, R code was used in 

RStudio for all the experiments in this research.  

In addition to basic R programming, research ideas are contributed to the R 

community and presented by researchers in R packages. The three types of models, 

random forest, extremely randomized trees, and extreme gradient boosting, are 

presented in three R packages, XGBoost, extraTrees, and randomForest. They have 

been widely used by many researchers in their research (Chen, 2014; Chen & He, 2015; 

Diaz-Uriarte, & Alvarez de Andres, 2006; Geurts et al., 2006). The manual of all R 

packages, related R code, and examples are saved in the Comprehensive R Archive 

Network (CRAN) and maintained regularly by the authors. CRAN can be accessed at 

https://cran.r-project.org/. Detailed information of R packages of random forest, 

extremely randomized trees, extreme gradient boosting, and logistic regression model 

are listed in table 5. The syntax of conducting models in R code can be found through 

the links provided in the reference list.  

Table 5 

R Packages of Models 

Model R Package Reference 

Extreme Gradient Boosting xgboost Chen , He , & Benesty, 2016 

Extremely Randomized Trees extraTrees 
Simm, & Magrans de Abril, 
2014 

Random Forest randomForest 
Breiman, Cutler, Liaw, & 
Wiener, 2015 

Logistic Regression glm Simon, 1992 
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In addition to R packages which generate the above base models or ensemble 

models, multiple correspondence analysis and Cramér's V correlation analysis were 

also applied in the experiments in RStudio. The related R packages, ca and vcd, are 

listed in table 6. 

Table 6 

R Packages of Analysis 

Analysis R Package Reference 

Multiple Correspondence ca 
Greenacre, Nenadic, & Friendly, 
2016 

Cramér's V correlation vcd 
David, Achim, Kurt, Florian, & 
Michael, 2016 

 

Several other R packages, which supported models and analysis in the research, 

are listed in table 7. They were used for data manipulation and calculation, such as 

installing R packages, binarizing predictors, supporting extra tree package, and 

calculating variable importance when building a model, selecting base models, and 

integrating base models. 

Table 7 

Supportive R Packages 

R Package Function Reference 

caret Data manipulation Kuhn et al., 2016 

DiagrammeR Plot variable importance Iannone, 2016 

Ckmeans.1d.dp Plot variable importance Song & Wang, 2016 

rJava Support Extra Tree package Urbanek, 2016 

drat Install R packages Eddelbuettel et al., 2016 

 

  



32 
 

 
 

Data Sets 

The research experiments were conducted on three UCI data sets that are public 

and free to download (Lichman, 2013; Blake & Merz, 1998). UCI is a repository of 

machine learning database. These data sets are real-world data and extensively used by 

researchers in many research studies (Ron, 1996; Yeh & Lien, 2009; Thuraisingham, 

Tran, Boord & Craig, 2007). These three data sets represent binary classification 

problems with different class ratios of the target attribute. They were used to test if the 

proposed ensemble approach achieved better classification accuracy on binary 

classification problems. The profiles of the three data sets are listed in table 8.  

Table 8 

Data Sets 

Data Set 
# of 

Attributes 
# of 

Instances 
Class of 
Target 

Class Ratio of 
Target Attribute 

Adult 14 48842 2 24% vs 76% 

Credit Card Clients 23 30000 2 22% vs 78% 

EEG Eye State 14 14980 2 45% vs 55% 
Note: # means count 

The Adult data set is provided by UCI as two separate sets: training and testing 

data sets. The Credit Card Clients and EEG Eye State data sets were partitioned into 

training and testing data sets in a 70% vs. 30% ratio. Base models were built on training 

data sets. Prediction was provided by base models on testing data sets. The number of 

instances in training and testing data sets are listed in table 9 as follows. 
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Table 9 

Training and Testing Data Sets 

Data Set 
Number of Instances in 

Training Set  
Number of Instances in 

Testing Set  
Adult 32561 16281 

Credit Card Clients 21000 9000 

EEG Eye State 10486 4494 
 

Experiment Design 

There are four experiment designs. They were designed to explore how model 

selection, MCA factor scores, and ensemble method affected the classification 

accuracy. They were also designed to identify ensemble strategies to improve the 

ensemble performance. Detailed designs and what research questions were answered 

are presented and explained below. 

1. Ensemble all base models   

2. Ensemble all base models and MCA factor scores 

3. Ensemble with backward or Cramér's V model selection 

4. Ensemble with MCA factor scores and backward or Cramér's V model 

selection 

Ensemble all Base Models 

This experiment was performed in the following steps. Ten base models of 

random forest (RF), eleven extremely randomized trees (ERT), and ten extreme 

gradient boosting (XGB) models were first generated. Then, majority voting, random 

forest, and extreme gradient boosting model were applied to ensemble all of those 
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thirty-one base models. The only reason for creating eleven extremely randomized trees 

is to avoid even voting of the binary classification of target in the majority voting 

ensemble. There is also no specific reason for choosing extremely randomized trees as 

the thirty-first base model.  

The average accuracy of ten random forest base models was considered as the 

benchmark in our research because of its well-known reputation of good performance. 

The accuracy of ensemble results was compared with that of each base model and the 

benchmark to find out whether the four ensemble methods helped to increase the 

accuracy. The accuracy of ensemble results was also compared with each other. The 

best ensemble method among random forest, extreme gradient boosting, logistic 

regression and majority voting was identified when integrating the thirty-one base 

models.  

 

 
 
Figure 1. Ensemble all Base Models                                                                                                        

EnsembleBase Model
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Extreme Gradient 
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The experiment answered the following research questions. 

1. Will the four ensemble approaches of ensemble-based models increase the 

predictive accuracy when compared with the benchmark or the individual 

ensemble models? 

2. As base classifiers, are random forest, extremely randomized trees, and extreme 

gradient boosting models good candidates to be ensembled? 

3. How will various model combinations (majority voting, random forest, extreme 

gradient boosting, and logistic regression) affect the predictive accuracy of the 

ensemble approach? 

Ensemble all Base Models and MCA Factor Scores 

In addition to the experiment that integrated all base models, the experiment in 

this section was performed by adding factor scores of multiple correspondence 

analysis. Multiple correspondence analysis was applied to the predictions of thirty-one 

base models to generate MCA factor scores. MCA factor scores were considered to 

represent the maximum variance of the thirty-one base models. Because of the different 

nature of individual data sets, a different number of sets of factor scores were generated 

for the three data sets used in the experiment. The number ranged from 4 to 6. Random 

forest, extreme gradient boosting, and logistic regression model were applied to 

ensemble all the base models and the factor scores of multiple correspondence analysis. 

In this experiment, the base models are the same as those in the first experiment design. 

Majority voting is not applicable in the experiment because MCA factor scores were 

numerical but not categorical attribute for ensemble. 
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The performance of ensemble results was compared with those of each base 

model and the benchmark to determine whether the four ensemble methods increased 

the predictive accuracy. Compared with the experiment that only integrated base 

models, the factor scores of multiple correspondence analysis were added as predictors 

in the final ensemble to identify whether adding MCA factor scores increased the 

predictive accuracy. 

  

Figure 2. Ensemble all Base Models and MCA Factor Scores 

The three ensemble results were compared with each other. The one with the 

best performance among random forest, extreme gradient boosting, and logistic 

regression was determined when combining the thirty-one base models and MCA 

factor scores.  

The experiment answered the following research questions. 
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1. Will the three ensemble approaches of ensemble-based models increase the 

predictive accuracy when compared with the benchmark or the individual 

ensemble models? 

2. As base classifiers, are random forest, extremely randomized trees, and extreme 

gradient boosting model good candidates to be ensembled with MCA factor 

scores? 

3. Will the multiple correspondence analysis make a difference on the predictive 

accuracy of the overall ensemble approach? 

4. How will  various model combinations (random forest, extreme gradient 

boosting, and logistic regression) affect the predictive accuracy of the ensemble 

approach? 

Ensemble with Cramér's V correlation or Backward Model Selection 

Compared with the second experiment design, the model selection procedure 

was added in, but factor scores of multiple correspondence analysis was excluded from 

the experiment presented in this section. Two methods, Cramér's V correlation or 

Backward Model Selection, were applied in the model selection step. The whole 

procedure includes three steps: base model generation, model selection, and ensemble. 

The base models generated in the first step are the same as those in the previous 

experiment designs. 

The first model selection method is derived from Cramér's V correlation 

analysis. In this method, Cramér's V correlation coefficient is calculated between each 

pair of base models. Paired base models with correlation coefficient lower than a 

threshold value are kept in the final ensemble step. In order to keep the diversity of 
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base models, base models which are less correlated with each other were kept. The final 

ensemble method was applied to the selected base models by majority voting, random 

forest, and extreme gradient boosting model. Since the threshold of Cramér's V 

correlation coefficient value was hard to determine, we didn’t use individual correlation 

coefficient as the cutout point to pick the least related base models. We evaluated the 

average value of Cramér’s V correlation coefficient between different types of base 

models to select two types of least correlated base models. The base models in those 

two types were selected and kept in the final ensemble procedure. The Cramér's V 

correlation coefficients of each paired base models on the three data sets are presented 

in Appendix C, D and E. It is shown that extreme gradient boosting and extremely 

randomized trees base models have the smallest average Cramér's V correlation 

coefficient for the three data sets. Therefore, all extreme gradient boosting and 

extremely randomized trees base models were selected as the optimal base models and 

combined in the final ensemble step. 

 

Figure 3. Ensemble with Model Selection  

EnsembleModel SelectionBase Model

10 Random 
Forests

11 Extremely 
Randomized Trees

10 Extreme 
Gradient Boosting

Cramér's V 
Correlation Random Forest

Extreme Gradient 
Boosting

Majority Voting

Backward Selection Logistic 
Regression



39 
 

 
 

Another model selection method is backward selection based on Akaike's 

information criterion (AIC) which is combined with logistic regression model. This 

model selection procedure starts from ensemble all base models. Then, base models are 

removed one by one in the ensemble step until the AIC value doesn’t decrease 

significantly at 0.05 level. In each round, the base model that contributed to the AIC 

the most is chosen and excluded in the next round.  

The accuracy of ensemble results was compared with those of each base model 

and the benchmark to determine whether the four ensemble methods with model 

selection was able to increase the predictive accuracy. The best candidate base models 

chosen by different model selection methods were selected. Compared with the 

experiment design which integrated all base models without model selection, we added 

the model selection procedure in the experiment presented in this section. By 

comparing the performance of those two experiments, we were able to find out whether 

the model selection procedure can help to increase the predictive accuracy. Lower 

predictive accuracy might be observed because a smaller number of base models, which 

meant less information, were used in the final ensemble. Whether model selection 

helped on combining tree-based ensemble models was also learned by comparing the 

ensemble performance in experiment two. 

The accuracy of ensemble results of the two model selection methods was 

compared to find out which one was the better model selection method. We also 

identified which combination of model selection method and final ensemble method 

worked the best together in increasing predictive accuracy. 

The experiment answered the following research questions. 
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1. Will the four ensemble approaches of ensemble-based models increase the 

predictive accuracy when compared with the benchmark or the individual 

ensemble models? 

2. Are random forest, extremely randomized trees, and extreme gradient boosting 

good candidates as base classifiers when applying model selection in ensemble? 

3. How will  various model combinations (random forest, extreme gradient 

boosting, and logistic regression) affect the predictive accuracy of the ensemble 

approach? 

4. Will the two types of model selections make a difference in the predictive 

accuracy of the overall ensemble approach? 

Ensemble with MCA Factor Scores and Model Selections 

In this experiment design, factor scores of multiple correspondence analysis 

were added into the experiment. The whole procedure involved three steps, base model 

and factor score creation, base model selection, and ensemble. In the first step, ten 

random forest, eleven extreme randomized trees, and ten extreme gradient boosting 

base models were created. They were the same base models as those in the previous 

three experiment designs. Then, multiple correspondence analysis was applied to the 

predictions of the base models to generate the factor scores of MCA. The factor scores 

of MCA were also the same as those in the second experiment design. MCA factor 

scores were then integrated together with the selected base models in the final model 

ensemble step by logistic regression, random forest, and extreme gradient boosting 

model. Since majority voting ensemble can only be applied to the outputs of base 
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models, but MCA factor scores were not outputs of base models, majority voting 

ensemble was not applicable in the experiment.  

The two model selection methods, backward AIC selection and Cramér’s V 

correlation selection, were used in this experiment. The backward selection method 

started from combining all base models and MCA factor scores. Model selection and 

ensemble worked together to evaluate base models and MCA factor scores one by one, 

and then determine which base model or factor scores contributed the most AIC that 

provided by logistic regression ensemble in each round. The identified base model or 

factor scores would be excluded in the next round of evaluation. Only one base model 

or one factor score was eliminated in each round. The AIC value of logistic regression 

model in each round was compared with that in the previous round. If the AIC value 

didn’t decrease significantly at 0.05 level, the backward selection stopped. The 

experiment showed that the same group of base models was selected as in experiment 

three. Figure 4 shows the experiment structure of logistic regression ensemble with 

backward selection. 

The accuracy of the ensemble result was compared with the accuracy of each 

base model and the benchmark. Whether integrating the backward model selection and 

factor scores increased the predictive accuracy was determined. Compared with the 

ensemble method without factor scores but with backward model selection, whether 

the method that integrated the factor scores with backward selection increased the 

predictive accuracy was learned.  

 



42 
 

 
 

 

Figure 4. Ensemble with Factor Scores and Model Selection 

The second model selection method is applying Cramér's V correlation analysis 

to select the least correlated base models. Cramér's V correlation coefficient is 

calculated between each base model. Ideally, paired base models with a correlation 

coefficient lower than a threshold value are kept to ensemble with factor scores in the 

final ensemble step. However, the correlations between base models on different data 

sets vary, thus the threshold is not easy to determine. We decided to evaluate the 

average correlation coefficients of different types of base models. Two types of base 

models that had the lowest average correlation were chosen. Then all base models in 

these two types were combined in the final ensemble. The selection procedure and the 

selected base models are the same as those in experiment three. It was shown that 

extreme gradient boosting and extremely randomized trees base models had the 
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smallest average Cramér's V correlation coefficient for the three UCI data sets. 

Therefore, all base models in these two types were selected in the final ensemble step. 

The final ensemble methods for the factor scores and the selected base models are 

random forest and extreme gradient boosting model.  

We compared the accuracy of ensemble results with the accuracy of individual 

base model and the benchmark. Whether the two ensemble methods with Cramér's V 

model selection and factor scores increased the predictive accuracy, and which 

ensemble method performed the best were determined. Compared with the ensemble 

method without factor scores but with Cramér's V model selection, whether integrating 

the factor scores with selected base models increased the predictive accuracy was also 

determined. From the experiment result, the best candidate of base models chosen by 

different model selection methods was learned. 

We also compared the accuracy of ensemble results of the two different types 

of model selection methods. The better model selection method among backward 

selection and Cramér's V selection was determined when integrating factor scores of 

multiple correspondence analysis in the final ensemble step. The combination of model 

selection and final ensemble method which helps increase predictive accuracy the most 

was also learned. 

The experiment answered the following research questions. 

1. Will the three ensemble approaches of ensemble-based models increase the 

predictive accuracy when compared with the benchmark or the individual 

ensemble models? 
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2. Are random forest, extremely randomized trees, and extreme gradient boosting 

good candidates as base classifiers when ensembling with factor scores of 

multiple correspondence analysis and applying model selection? 

3. Will the multiple correspondence analysis make a difference on the predictive 

accuracy of the overall ensemble approach when integrating two different types 

of model selection?  

4. How will various model combination methods affect the predictive accuracy of 

the ensemble approach? 

Summary 

To achieve the dissertation goal and answer the research questions, three data 

sets from an open source server, UCI, were used to test our research ideas. Various 

experiments were conducted using R code in RStudio. Through the experiments, 

whether integrating ensemble-based models increased predictive accuracy, how 

different ensemble-based models worked when they were further ensembled, and how 

multiple correspondence analysis performed in the ensemble was studied. Experiments 

with four different designs were conducted in the research. Experiment results between 

different designs were compared. How multiple correspondence analysis and base 

model selection affected the ensemble approach was studied.  

Thirty-one base models were generated: ten random forest models, ten extreme 

gradient boosting models, and eleven extremely randomized tree models. These base 

models were the same in all four designs. In the first experiment, all base models were 

integrated by majority voting, random forest, extreme gradient boosting, and logistic 

regression. In the second experiment, all base models were combined with factor scores 
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of multiple correspondence analysis by the same three ensemble methods in experiment 

one excluding majority voting. In the third experiment, factor scores were excluded but 

two base model selection methods were added. When applying Cramér's V model 

selection method, the ensemble methods were the same three ones used in experiment 

one excluding logistic regression. When applying backward model selection method, 

the ensemble model was logistic regression. The fourth experiment has the same 

ensemble structure as in the third experiment, however factor scores of multiple 

correspondence analysis was integrated in the ensemble approach. Part of the fourth 

experiment utilized backward model selection and logistic regression ensemble 

method. The rest of the fourth experiment adopted Cramér's V base model selection 

with two ensemble methods, random forest and extreme gradient boosting. Those four 

experiments were designed to answer our research questions in different situations step 

by step. Table 10 summarizes the structure of the four experiment designs.  Appendix 

B shows the R code for all the four experiment designs for data set EEG as an example.  

Table 10 

Structure of Experiment Designs 

Experiment 
Design 

Ensemble 
Variables 

Model Selection Ensemble Methods 

One all base models none 
Majority Voting, Extreme 

Gradient Boosting, Random 
Forest, Logistic Regression 

Two 
all base models 
+ MCA factor 

scores 
none 

Extreme Gradient Boosting, 
Random Forest, Logistic 

Regression 

Three 
selected base 

models 
Backward or 
Cramér’s V 

Majority Voting, Extreme 
Gradient Boosting, Random 
Forest, Logistic Regression 
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Experiment 
Design 

Ensemble 
Variables 

Model Selection Ensemble Methods 

Four 
selected base 

models + MCA 
factor scores 

Backward or 
Cramér’s V 

Extreme Gradient Boosting, 
Random Forest, Logistic 

Regression 
 

 

  



47 
 

 
 

 

 

Chapter 4 

Results 

 

Base Models 

The first step of all four experiments was generating ten extreme gradient 

boosting (XGB), eleven extremely randomized trees (ERT), and ten random forest (RF) 

models. The same thirty-one models were generated as base models in all the four 

experiments. Training data sets were used to generate base models, which then 

provided predictions for testing data sets. All the classification accuracies reported in 

this research are based on testing data sets. The classification accuracies of each base 

model on the three UCI data sets are summarized in table 11.   

Table 11 

Classification Accuracy of Base Models 

Data Set 
Base 

Model 

RF ERT XGB 

# of 
Trees 

Accuracy 
# of 

Trees 
Accuracy Eta Accuracy 

Adult 

1 50 0.8644 50 0.8450 0.1 0.8706 
2 100 0.8649 100 0.8433 0.2 0.8728 
3 150 0.8640 150 0.8446 0.3 0.8708 
4 200 0.8646 200 0.8452 0.4 0.8730 
5 250 0.8651 250 0.8452 0.5 0.8745 
6 300 0.8642 300 0.8445 0.6 0.8762 
7 350 0.8649 350 0.8455 0.7 0.8751 
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Data Set 
Base 

Model 

RF ERT XGB 

# of 
Trees 

Accuracy 
# of 

Trees 
Accuracy Eta Accuracy 

8 400 0.8649 400 0.8458 0.8 0.8770 
9 450 0.8642 450 0.8450 0.9 0.8767 
10 500 0.8651 500 0.8458 1.0 0.8755 
11 N/A  N/A   550 0.8456 N/A   N/A   

Average  N/A   0.8646  N/A  0.8450  N/A  0.8742 

Credit 
Card 

Clients 

1 50 0.8143 50 0.8121 0.1 0.8169 
2 100 0.8170 100 0.8143 0.2 0.8203 
3 150 0.8176 150 0.8134 0.3 0.8234 
4 200 0.8174 200 0.8130 0.4 0.8236 
5 250 0.8172 250 0.8130 0.5 0.8254 
6 300 0.8156 300 0.8130 0.6 0.8262 
7 350 0.8150 350 0.8130 0.7 0.8257 
8 400 0.8176 400 0.8148 0.8 0.8258 
9 450 0.8187 450 0.8148 0.9 0.8260 
10 500 0.8169 500 0.8148 1.0 0.8256 
11 N/A    N/A  550 0.8148 N/A   N/A   

Average N/A   0.8167  N/A  0.8137  N/A  0.8239 

EEG 
Eye 
State 

1 50 0.9243 50 0.9372 0.1 0.9009 

2 100 0.9268 100 0.9424 0.2 0.9059 
3 150 0.9237 150 0.9446 0.3 0.9003 
4 200 0.9295 200 0.9455 0.4 0.9119 
5 250 0.9292 250 0.9439 0.5 0.9105 
6 300 0.9308 300 0.9468 0.6 0.9089 
7 350 0.9288 350 0.9435 0.7 0.9061 
8 400 0.9306 400 0.9453 0.8 0.8988 
9 450 0.9299 450 0.9450 0.9 0.8925 
10 500 0.9288 500 0.9473 1.0 0.8636 
11 N/A   N/A   550 0.9473  N/A   N/A   

Average N/A   0.9282  N/A  0.9444  N/A  0.8999 
 

Extreme gradient boosting base models provided better average or individual 

classification accuracy than random forest and extremely randomized trees for the 

Adult and Credit Card Clients data sets. However, it provided lower average or 
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individual classification accuracy than the other two types of base models on the EEG 

State data set. Extremely randomized trees provided lower individual and average 

classification accuracy than the other two types of models on the Adult and Credit Card 

Clients data sets. However, it provided better individual and average classification 

accuracy on the EEG State data set than the other two types of base models. Random 

forest base models had predictive accuracy that ranged between those produced by the 

other two types of base models on all three data sets. The difference of classification 

accuracy between the best and worst base model on the three data sets ranged from 

1.7% to 9.7%, which is shown in table 12. The table also lists the base models that 

performed the best and the worst on different data sets. 

Table 12 

Best and Worst Classification Accuracy of Base Models 

Data Set 
Base Model Accuracy Difference 

(%) Best Accuracy Worst Accuracy
Adult XGB (0.8770) ERT (0.8433) 4.0% 

Credit Card Clients XGB (0.8262) ERT (0.8121) 1.7% 
EEG Eye State ERT (0.9473) XGB (0.8636) 9.7% 

 

Random forest base models were generated by setting up random seeds and 

different numbers of individual trees in each forest. The reported classification 

accuracy is replicable by using the same seed value and tree number. Figure 5 shows 

that there is no linear trend of classification accuracy associated with the number of 

trees in the random forest for the three data sets. A forest with more individual trees 

doesn’t guarantee a better classification accuracy.  
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Figure 5. Classification Accuracy of Random Forest Base Model 

Extremely randomized trees base models were also generated by setting up 

random seeds and different numbers of individual trees. The reported classification 

accuracies are also replicable when setting up the same seed and the same number of 
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individual trees. Figure 6 shows that the predictive accuracy is not linearly associated 

with the number of individual trees. Including a larger number of individual trees in a 

model does not provide a better classification accuracy.  

 

Figure 6. Classification Accuracy of Extremely Randomized Trees Base Model 

The extreme gradient boosting base models were generated by adjusting the 

parameter “eta” in the xgboost R package, and then identifying the optimal number of 
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trees with a ten-fold cross validation method for the specific “eta” setting to achieve 

the best predictive accuracy. Eta is defined and used in the xgboost R package to adjust 

the gradient pace of boosting, thus generating different XGB models. In our 

experiment, we applied different value of “eta” to generate ten different XGB base 

models. Because of the randomization nature of the model, they are not replicable even 

with the same setting up of parameters or random seeds. Figure 7 shows that there is 

no consistent linear trend between classification accuracy and parameter “eta”. Smaller 

“eta” doesn’t guarantee better performance. 

 

Figure 7. Classification Accuracy of Extreme Gradient Boosting Base Model 
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As mentioned in the research methodology, the performance of the random 

forest base model was set up as benchmarks for the three data sets. Although random 

forest performed not the worst or best on providing classification accuracy on average 

when compared with the other two types of base models, the average classification 

accuracy of random forest base models was still set up as a benchmark value for each 

data set as proposed in our research. They were compared with the ensemble 

classification accuracy and helped to answer our research questions. The benchmark 

values for the three data sets are listed below in table 13. 

Table 13 

Benchmarks of Classification Accuracy 

Data Set Benchmark Classification Accuracy 

Adult 0.8646 

Credit Card Clients 0.8167 

EEG Eye State 0.9282 
 

Multiple Correspondence Analysis 

Multiple correspondence analysis (MCA) was applied to the predictions of 

thirty-one base models.  It was conducted to capture the maximum variance of base 

model predictions in a low-dimensional Euclidean space. In other words, it represents 

integrated features of base model outputs. Factor scores were generated as the results 

of multiple correspondence analysis. Although MCA produced row and column factor 

scores, in our experiment, only the column factor scores were chosen and combined 

with the outputs of base models in the last step. Since different data sets present 

different natures, the number of generated factor scores on different data sets varied 



54 
 

 
 

from 4 to 6 sets. Table 14 shows that based on the prediction of thirty-one base models, 

4 sets of factor scores were generated for the Adult and EEG Eye State data sets and 6 

sets of factor scores were generated for the Credit Card Client data set. They were 

combined with base models to produce the final prediction in the last ensemble step. 

Table 14 

Number of MCA Factor Scores 

Data Set Number of MCA Factor Scores 

Adult 4 

Credit Card Clients 6 

EEG Eye State 4 
 

Base Model Selection  

The literature shows that choosing a subset of optimal base models based on 

diversity and accuracy should improve the ensemble performance (Zeng, Chao, & 

Wong, 2010). To improve the predictive accuracy, we applied two model selection 

methods in this research. One method is Cramér’s V correlation analysis. The other 

method is backward selection based on AIC generated by logistic regression model.  

Cramér’s V Correlation Analysis 

 One model selection method is the Cramér’s V correlation analysis. Cramér’s 

V correlation coefficient was calculated for paired base models; then, paired base 

models with relative lower values of the correlation coefficient were selected and kept 

in the final ensemble step. Appendix C, D, and E list the correlation coefficients of each 

paired base models for the three data sets in detail. It shows that random forest base 
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models and extremely randomized trees base models have the most correlated 

prediction on both credit card clients and EEG eye state data sets, and the second 

correlated prediction on the adult data set. This is not surprising because these two 

types of models have very similar theories in producing predictions. Extreme gradient 

boosting model and extremely randomized trees generated the least correlated 

predictions on all three data sets. On the credit card client data set, extreme gradient 

boosting base models generated predictions which are less correlated with those 

generated by both random forest and extremely randomized trees base models.  

It was hard to select a threshold value of correlation coefficient and finalize the 

number of selected base models for each data set. However, considering the average 

correlation between different types of base models, it was found that XGB and ERT 

base models had the least correlated nature on average. Thus, ten XGB and eleven ERT 

base models were kept as the selected base models in experiment 3 and 4. The average 

Cramér's V correlation coefficients of two types of base models, which are summarized 

from Appendix C, D, and E, are listed in table 15. 

Table 15 

Average Cramér's V Correlation Coefficient of Two Type of Base Models 

Data Set XGB vs. ERT XGB vs. RF ERT vs. RF 

Adult 0.7220 0.8572 0.7829 

Credit Card Clients 0.0049 0.0059 0.8313 

EEG Eye State 0.8257 0.8271 0.9306 
Note: XGB = Extreme Gradient Boosting; ERT = Extremely Randomized Trees; RF = 
Random Forest 
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Backward Selection Method 

Another base model selection method in the research is backward selection 

based on AIC provided by logistic regression model. It first includes all base model 

outputs as variable inputs for a logistic regression ensemble. The AIC of each variable 

is evaluated one by one by excluding the variable in the logistic regression ensemble.  

The variable (base model output) that contributes the most ensemble AIC is excluded 

in the next round. The overall AIC of the new logistic regression ensemble was 

compared with that of previous logistic regression ensemble. If the decreasing of 

overall AIC wasn’t significant at 0.05 alpha level, the backward selection procedure 

stopped. Table 16 summarizes the number and type of selected base models, the initial 

AIC with all base models, and the final AIC with only selected base models.  

The backward selection procedure selected 10 base models on adult data set, 14 

base models on the credit card client data set, and 15 base models on the EEG eye state 

data set. Extreme gradient boosting base models were selected the most on adult and 

EEG eye state data sets. Random forest base models were selected the most on the 

credit card client data set, and the least or equal least on the other two data sets. 

Extremely randomized trees were selected equal least on Adult and Credit Card Clients 

data set. Compared to the overall thirty-one base models without selection, the number 

of optimal subset of base models is only 50% or less in count. Overall, XGB base 

models were more favorite to the backward AIC selection. It makes sense because XGB 

base models provide better predictions in accuracy than the other two types of base 

models. 
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Table 16 

Backward Selected Base Models with AIC Values 

Data Set Selected Base Models 
AIC without 

Selection 
AIC with 
Selection 

Adult 5 XGB, 2 ERT, 2RF 11307 10634 

Credit Card Clients 4 XGB, 4 ERT, 6RF 8261 8247 

EEG Eye State 7 XGB, 5 ERT, 3RF 1456 1432 

 

Experiment One: Ensemble all Base Models 

In this experiment, all thirty-one base models were ensembled by four different 

ensemble methods, majority voting (MV), extreme gradient boosting (XGB), random 

forest (RF), and logistic regression (LR). The ensemble performance was compared 

with the benchmark and those of individual base models on the three UCI data sets. 

The four types of ensembles were also compared with each other. 

Ensembles Compared with Benchmarks 

In Table 17, the classification accuracy of the ensemble models on the three 

UCI test data sets are listed. Overall, all the ensemble accuracies are better than the 

benchmarks on all the three data sets. Random Forest ensemble method performed the 

best on increasing the accuracy on all the data sets. Majority voting ensemble method 

increased the predictive accuracy the least on all three data sets. Extreme gradient 

boosting and logistic regression ensemble methods had comparable performance with 

random forest on the Adult data set. They achieved better classification performance 

than majority voting method and less classification performance than random forest 

method on Credit Card Clients and EEG Eye State data sets. Compared with 



58 
 

 
 

benchmarks, majority voting ensemble method increased the classification accuracy on 

the three data sets from 0.05% to 1.14%; logistic regression ensemble method increased 

the accuracy from 0.33% to 3.54%; extreme gradient boosting ensemble method 

increased the accuracy from 0.61% to 3.55%; random forest ensemble method 

increased the accuracy from 2.36% to 4.19%. 

 Table 17 

Ensemble Accuracy of all Base Models 

Data Set 
Benchmark  
Accuracy 

Ensemble Method 
Ensemble 
Accuracy 

Accuracy 
Increase 

Adult 0.8646 

Majority Voting 0.8688 0.49% 

Random Forest 0.8957 3.60% 

Extreme Gradient Boosting 0.8953 3.55% 

Logistic Regression 0.8952 3.54% 

Credit 
Card 

Clients 
0.8167 

Majority Voting 0.8171 0.05% 

Random Forest 0.8360 2.36% 

Extreme Gradient Boosting 0.8217 0.61% 

Logistic Regression 0.8194 0.33% 

EEG Eye 
State 

0.9282 

Majority Voting 0.9388 1.14% 

Random Forest 0.9671 4.19% 

Extreme Gradient Boosting 0.9539 2.77% 

Logistic Regression 0.9522 2.59% 

 

Ensembles Compared with Individual Base Models 

Compared with individual base models, the classification accuracy provided by 

the majority voting ensemble is higher than those of RF and ERT base models, but 

lower than those of XGB base models on Adult data sets. On EEG Eye State data set, 

it had better performance than individual RF and XGB base models, but worse 

performance than ERT base models. On the Credit Card Clients data set, it had better 
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performance than ERT base models and half of RF base models, but worse performance 

than XGB base models. In summary, the majority voting ensemble method achieved 

better performance than only around two third individual base models. It seemed that 

majority voting method was not an ideal ensemble method in this experiment because 

the base model performance of XGB or ERT or RF outperformed its performance on 

different data sets. Table 18 lists the comparison in detail. 

Table 18 

MV Ensemble in Experiment One Compared with Base Models 

Data 
Set 

Base 
Model 

MV Ensemble vs. 
RF Base Model 

MV Ensemble vs. 
ERT Base Model 

MV Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Adult 

1 0.8644 0.50% 0.8450 2.82% 0.8706 -0.21% 

2 0.8649 0.45% 0.8433 3.02% 0.8728 -0.46% 

3 0.8640 0.56% 0.8446 2.86% 0.8708 -0.23% 

4 0.8646 0.48% 0.8452 2.80% 0.8730 -0.48% 

5 0.8651 0.43% 0.8452 2.80% 0.8745 -0.65% 

6 0.8642 0.53% 0.8445 2.87% 0.8762 -0.84% 

7 0.8649 0.45% 0.8455 2.75% 0.8751 -0.72% 

8 0.8649 0.45% 0.8458 2.72% 0.8770 -0.93% 

9 0.8642 0.53% 0.8450 2.82% 0.8767 -0.90% 

10 0.8651 0.43% 0.8458 2.72% 0.8755 -0.77% 

11 N/A  N/A   0.8456 2.74% N/A   N/A   

Average 0.8646 0.48% 0.8450 2.81% 0.8742 -0.62% 

Credit 
Card 

Clients 

1 0.8143 0.34% 0.8121 0.62% 0.8169 0.02% 

2 0.8170 0.01% 0.8143 0.34% 0.8203 -0.39% 

3 0.8176 -0.06% 0.8134 0.45% 0.8234 -0.77% 

4 0.8174 -0.04% 0.8130 0.50% 0.8236 -0.79% 

5 0.8172 -0.01% 0.8130 0.50% 0.8254 -1.01% 

6 0.8156 0.18% 0.8130 0.50% 0.8262 -1.10% 

7 0.8150 0.26% 0.8130 0.50% 0.8257 -1.04% 

8 0.8176 -0.06% 0.8148 0.28% 0.8258 -1.05% 

9 0.8187 -0.20% 0.8148 0.28% 0.8260 -1.08% 
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Data 
Set 

Base 
Model 

MV Ensemble vs. 
RF Base Model 

MV Ensemble vs. 
ERT Base Model 

MV Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

10 0.8169 0.02% 0.8148 0.28% 0.8256 -1.03% 

11 N/A   N/A   0.8148 0.28% N/A    N/A  

Average 0.8167 0.05% 0.8137 0.41% 0.8239 -0.82% 

EEG 
Eye 
State 

1 0.9243 1.57% 0.9372 0.17% 0.9009 4.21% 

2 0.9268 1.29% 0.9424 -0.38% 0.9059 3.63% 

3 0.9237 1.63% 0.9446 -0.61% 0.9003 4.28% 

4 0.9295 1.00% 0.9455 -0.71% 0.9119 2.95% 

5 0.9292 1.03% 0.9439 -0.54% 0.9105 3.11% 

6 0.9308 0.86% 0.9468 -0.84% 0.9089 3.29% 

7 0.9288 1.08% 0.9435 -0.50% 0.9061 3.61% 

8 0.9306 0.88% 0.9453 -0.69% 0.8988 4.45% 

9 0.9299 0.96% 0.9450 -0.66% 0.8925 5.19% 

10 0.9288 1.08% 0.9473 -0.90% 0.8636 8.71% 

11 N/A   N/A   0.9473 -0.90% N/A   N/A   

Average 0.9282 1.14% 0.9444 -0.60% 0.8999 4.32% 
Note: N/A = there was no data available 

 

By comparing the ensemble performance, the extreme gradient boosting 

method outperformed all thirty-one base models on Adult and EEG Eye State data sets, 

and also outperformed majority base models excluding eight XGB base model on the 

Credit Card Clients data set. The XGB ensemble method increased the classification 

accuracy from 2.09% to 6.16% compared with the base models on the Adult data set. 

It also increased the classification accuracy from 0.70% to 10.46% on the EEG Eye 

State data set. This ensemble method increased the classification accuracy from 0.17% 

to 1.07% on the Credit Card Clients data set with the exception of eight XGB base 

models which had better performance than the ensemble method. Table 19 lists the 

comparison in detail. 
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Table 19 

XGB Ensemble in Experiment One Compared with Base Models  

Data 
Set 

Base 
Model 

XGB Ensemble vs. 
RF Base Model 

XGB Ensemble vs. 
ERT Base Model 

XGB Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Adult 

1 0.8644 3.57% 0.8450 5.96% 0.8706 2.83% 

2 0.8649 3.51% 0.8433 6.16% 0.8728 2.58% 

3 0.8640 3.63% 0.8446 6.00% 0.8708 2.82% 

4 0.8646 3.55% 0.8452 5.93% 0.8730 2.56% 

5 0.8651 3.49% 0.8452 5.93% 0.8745 2.38% 

6 0.8642 3.60% 0.8445 6.01% 0.8762 2.18% 

7 0.8649 3.51% 0.8455 5.89% 0.8751 2.31% 

8 0.8649 3.52% 0.8458 5.86% 0.8770 2.09% 

9 0.8642 3.60% 0.8450 5.96% 0.8767 2.12% 

10 0.8651 3.50% 0.8458 5.85% 0.8755 2.26% 

11 N/A   N/A   0.8456 5.87% N/A    N/A  

Average 0.8646 3.55% 0.8450 5.95% 0.8742 2.41% 

Credit 
Card 

Clients 

1 0.8143 0.91% 0.8121 1.18% 0.8169 0.59% 

2 0.8170 0.58% 0.8143 0.91% 0.8203 0.17% 

3 0.8176 0.50% 0.8134 1.02% 0.8234 -0.21% 

4 0.8174 0.53% 0.8130 1.07% 0.8236 -0.23% 

5 0.8172 0.55% 0.8130 1.07% 0.8254 -0.45% 

6 0.8156 0.75% 0.8130 1.07% 0.8262 -0.54% 

7 0.8150 0.82% 0.8130 1.07% 0.8257 -0.48% 

8 0.8176 0.50% 0.8148 0.85% 0.8258 -0.50% 

9 0.8187 0.37% 0.8148 0.85% 0.8260 -0.52% 

10 0.8169 0.59% 0.8148 0.85% 0.8256 -0.47% 

11 N/A   N/A   0.8148 0.85% N/A    N/A  

Average 0.8167 0.61% 0.8137 0.98% 0.8239 -0.27% 

EEG 
Eye 
State 

1 0.9243 3.20% 0.9372 1.78% 0.9009 5.88% 

2 0.9268 2.92% 0.9424 1.22% 0.9059 5.30% 

3 0.9237 3.27% 0.9446 0.98% 0.9003 5.95% 

4 0.9295 2.63% 0.9455 0.89% 0.9119 4.61% 

5 0.9292 2.66% 0.9439 1.06% 0.9105 4.77% 

6 0.9308 2.48% 0.9468 0.75% 0.9089 4.95% 

7 0.9288 2.70% 0.9435 1.10% 0.9061 5.28% 
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Data 
Set 

Base 
Model 

XGB Ensemble vs. 
RF Base Model 

XGB Ensemble vs. 
ERT Base Model 

XGB Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

8 0.9306 2.50% 0.9453 0.91% 0.8988 6.13% 

9 0.9299 2.58% 0.9450 0.94% 0.8925 6.88% 

10 0.9288 2.70% 0.9473 0.70% 0.8636 10.46% 

11 N/A   N/A   0.9473 0.70% N/A    N/A  

Average 0.9282 2.76% 0.9444 1.00% 0.8999 6.00% 
Note: N/A = there was no data available 

 

The ensemble performance of logistic regression method is better than all thirty-

one base models on the Adult and EEG Eye State data sets, and is also better than most 

base models excluding nine XGB base model on the Credit Card Clients data set. The 

LR ensemble method increased the classification accuracy from 2.08% to 6.15% when 

compared with the base models on the Adult data set. It also increased the classification 

accuracy from 0.52% to 10.26% on the EEG Eye State data set. This ensemble method 

improved the classification accuracy from 0.09% to 0.9% on the Credit Card Clients 

data set except that nine XGB base models had better performance than the LR 

ensemble. The comparison in detail can be found in table 20. 

Table 20 

LR Ensemble in Experiment One Compared with Base Models 

Data 
Set 

Base 
Model 

LR Ensemble vs. 
RF Base Model 

LR Ensemble vs. 
ERT Base Model 

LR Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Adult 

1 0.8644 3.56% 0.8450 5.94% 0.8706 2.82% 

2 0.8649 3.50% 0.8433 6.15% 0.8728 2.57% 

3 0.8640 3.62% 0.8446 5.99% 0.8708 2.81% 

4 0.8646 3.54% 0.8452 5.92% 0.8730 2.55% 

5 0.8651 3.48% 0.8452 5.92% 0.8745 2.37% 
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Data 
Set 

Base 
Model 

LR Ensemble vs. 
RF Base Model 

LR Ensemble vs. 
ERT Base Model 

LR Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

6 0.8642 3.59% 0.8445 6.00% 0.8762 2.17% 

7 0.8649 3.50% 0.8455 5.88% 0.8751 2.30% 

8 0.8649 3.51% 0.8458 5.84% 0.8770 2.08% 

9 0.8642 3.59% 0.8450 5.94% 0.8767 2.11% 

10 0.8651 3.48% 0.8458 5.84% 0.8755 2.25% 

11 N/A   N/A  0.8456 5.86% N/A   N/A   

Average 0.8646 3.54% 0.8450 5.94% 0.8742 2.40% 

Credit 
card 

clients 

1 0.8143 0.63% 0.8121 0.90% 0.8169 0.31% 

2 0.8170 0.29% 0.8143 0.63% 0.8203 -0.11% 

3 0.8176 0.22% 0.8134 0.74% 0.8234 -0.49% 

4 0.8174 0.24% 0.8130 0.79% 0.8236 -0.51% 

5 0.8172 0.27% 0.8130 0.79% 0.8254 -0.73% 

6 0.8156 0.47% 0.8130 0.79% 0.8262 -0.82% 

7 0.8150 0.54% 0.8130 0.79% 0.8257 -0.76% 

8 0.8176 0.22% 0.8148 0.56% 0.8258 -0.78% 

9 0.8187 0.09% 0.8148 0.56% 0.8260 -0.80% 

10 0.8169 0.31% 0.8148 0.56% 0.8256 -0.75% 

11 N/A   N/A   0.8148 0.56% N/A   N/A   

Average 0.8167 0.33% 0.8137 0.70% 0.8239 -0.54% 

EEG 
Eye 
State 

1 0.9243 3.02% 0.9372 1.60% 0.9009 5.69% 

2 0.9268 2.74% 0.9424 1.04% 0.9059 5.11% 

3 0.9237 3.09% 0.9446 0.80% 0.9003 5.76% 

4 0.9295 2.44% 0.9455 0.71% 0.9119 4.42% 

5 0.9292 2.48% 0.9439 0.88% 0.9105 4.58% 

6 0.9308 2.30% 0.9468 0.57% 0.9089 4.76% 

7 0.9288 2.52% 0.9435 0.92% 0.9061 5.09% 

8 0.9306 2.32% 0.9453 0.73% 0.8988 5.94% 

9 0.9299 2.40% 0.9450 0.76% 0.8925 6.69% 

10 0.9288 2.52% 0.9473 0.52% 0.8636 10.26% 

11 N/A   N/A   0.9473 0.52% N/A    N/A  

Average 0.9282 2.58% 0.9444 0.82% 0.8999 5.81% 
Note: N/A = there was no data available 
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The ensemble performance of random forest method is better than all thirty-one 

base models on all three data sets. The RF ensemble method increased the classification 

accuracy from 2.14% to 6.21% when compared with the base models on the Adult data 

set. It improved the classification accuracy from 2.09% to 11.98% on the EEG Eye 

State data. This ensemble method also increased the classification accuracy from 1.19% 

to 2.94% on the Credit Card Clients data. The accuracies increased by RF ensemble 

method outperformed all the other accuracies increased by MV, XGB, and LR 

ensemble method. The comparison in detail is in table 21. 

Table 21 

RF Ensemble in Experiment One Compared with Base Models 

Data 
Set 

Base 
Model 

RF Ensemble vs. 
RF Base Model 

RF Ensemble vs. 
ERT Base Model 

RF Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Adult 

1 0.8644 3.62% 0.8450 6.00% 0.8706 2.88% 

2 0.8649 3.56% 0.8433 6.21% 0.8728 2.62% 

3 0.8640 3.67% 0.8446 6.05% 0.8708 2.86% 

4 0.8646 3.59% 0.8452 5.98% 0.8730 2.60% 

5 0.8651 3.53% 0.8452 5.98% 0.8745 2.43% 

6 0.8642 3.65% 0.8445 6.06% 0.8762 2.23% 

7 0.8649 3.56% 0.8455 5.93% 0.8751 2.36% 

8 0.8649 3.56% 0.8458 5.90% 0.8770 2.14% 

9 0.8642 3.65% 0.8450 6.00% 0.8767 2.16% 

10 0.8651 3.54% 0.8458 5.90% 0.8755 2.31% 

11  N/A   N/A  0.8456 5.92% N/A    N/A  

Average 0.8646 3.59% 0.8450 5.99% 0.8742 2.46% 

Credit 
Card 

Clients 

1 0.8143 2.66% 0.8121 2.94% 0.8169 2.34% 

2 0.8170 2.33% 0.8143 2.66% 0.8203 1.91% 

3 0.8176 2.25% 0.8134 2.78% 0.8234 1.53% 

4 0.8174 2.28% 0.8130 2.83% 0.8236 1.51% 

5 0.8172 2.30% 0.8130 2.83% 0.8254 1.28% 

6 0.8156 2.50% 0.8130 2.83% 0.8262 1.19% 
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Data 
Set 

Base 
Model 

RF Ensemble vs. 
RF Base Model 

RF Ensemble vs. 
ERT Base Model 

RF Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

7 0.8150 2.58% 0.8130 2.83% 0.8257 1.25% 

8 0.8176 2.25% 0.8148 2.60% 0.8258 1.24% 

9 0.8187 2.11% 0.8148 2.60% 0.8260 1.21% 

10 0.8169 2.34% 0.8148 2.60% 0.8256 1.26% 

11  N/A  N/A  0.8148 2.60% N/A   N/A   

Average 0.8167 2.36% 0.8137 2.74% 0.8239 1.47% 

EEG 
Eye 
State 

1 0.9243 4.63% 0.9372 3.19% 0.9009 7.35% 

2 0.9268 4.35% 0.9424 2.62% 0.9059 6.76% 

3 0.9237 4.70% 0.9446 2.38% 0.9003 7.42% 

4 0.9295 4.05% 0.9455 2.28% 0.9119 6.05% 

5 0.9292 4.08% 0.9439 2.46% 0.9105 6.22% 

6 0.9308 3.90% 0.9468 2.14% 0.9089 6.40% 

7 0.9288 4.12% 0.9435 2.50% 0.9061 6.73% 

8 0.9306 3.92% 0.9453 2.31% 0.8988 7.60% 

9 0.9299 4.00% 0.9450 2.34% 0.8925 8.36% 

10 0.9288 4.12% 0.9473 2.09% 0.8636 11.98% 

11 N/A   N/A   0.9473 2.09% N/A   N/A   

Average 0.9282 4.19% 0.9444 2.40% 0.8999 7.46% 
Note: N/A = there was no data available 

 

Comparison of Ensemble Methods  

In this experiment, majority voting ensemble showed weak ensemble power 

when comparing its performance with benchmarks or individual base models as 

reported in table 18, 19, 20, and 21. However, random forest showed very positive 

ability in combining all base models. It outperformed all the benchmarks and base 

models on all three data sets. Extreme gradient boosting and logistic regression had a 

comparable performance in ensemble. They outperformed the benchmarks and 

majority of base models except for several XGB base models which had better 
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performance. They didn’t perform well when compared with RF ensemble, but did 

have better performance than MV ensemble. In table 22, RF, XGB, and LR ensemble 

are compared with MV ensemble. The increased accuracy in percentage is reported. 

MV ensemble was chosen to be compared since it had the least ensemble accuracy. We 

would like to see how much the other three ensembles are better than it.  It shows that 

RF ensemble has 3.10%, 2.31%, and 3.01% better performance than MV on the Adult, 

Credit Card Clients, and EEG Eye State data set. XGB ensemble has 3.05%, 0.56%, 

and 1.61% better performance than MV ensemble on those three data sets. LR ensemble 

has 3.04%, 0.28%, and 1.43% better performance than MV ensemble on those three 

data sets. In summary, random forest ensemble is the best method of combining all 

base models.  

Table 22 

Ensemble Comparison in Experiment One 

Data Set Ensemble Method 
Ensemble 
Accuracy 

Accuracy Comparison  
with MV Ensemble 

Adult 

Majority Voting 0.8688  N/A 

Random Forest 0.8957 3.10% 

Extreme Gradient Boosting 0.8953 3.05% 

Logistic Regression 0.8952 3.04% 

Credit 
Card 

Clients 

Majority Voting 0.8171  N/A 

Random Forest 0.8360 2.31% 

Extreme Gradient Boosting 0.8217 0.56% 

Logistic Regression 0.8194 0.28% 

EEG Eye 
State 

Majority Voting 0.9388  N/A 

Random Forest 0.9671 3.01% 

Extreme Gradient Boosting 0.9539 1.61% 

Logistic Regression 0.9522 1.43% 
Note: N/A = there was no data available 
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Experiment Two: Ensemble all Base Models and MCA Factor Scores 

In addition to combining all thirty-one base models as in experiment one, factor 

scores of multiple correspondence analysis were added and integrated with the thirty-

one base models by three different ensemble methods, extreme gradient boosting, 

random forest, and logistic regression. Majority voting ensemble is not applicable as 

an ensemble method here because factor scores are numerical variables and not 

presented as prediction of target variable. 

Ensembles Compared with Individual Base Model 

Comparing the ensemble performance of the logistic regression method with 

those of individual base models, it was noticed that the ensemble performance of 

logistic regression didn’t change whether the factors scores of multiple correspondence 

analysis were added or not. Its performance was the same as that in experiment design 

one reported in Table 20.  It outperformed all thirty-one base models on the Adult and 

EEG Eye State data sets, and also outperformed majority base models except for nine 

extreme gradient boosting base model on Credit Card Clients data set.  

The ensemble performance of extreme gradient boosting method is better than 

all thirty-one base models on the Adult and EEG Eye State data sets, and outperforms 

most base models except for eight XGB base models on the Credit Card Clients data 

set. The XGB ensemble increased classification accuracies from 2.09% to 6.16% when 

compared with the base models on the Adult data set. It improved the classification 

accuracy from 0.75% to 10.51% on the EEG Eye State data set. This ensemble method 

also increased the classification accuracy from 0.26% to 1.16% on the Credit Card 
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Clients data set except that eight extreme gradient boosting base models had better 

performance than the ensemble method. Table 23 lists the comparison in detail. 

Table 23 

XGB Ensemble in Experiment Two Compared with Base Models  

Data 
Set 

Base 
Model 

XGB Ensemble vs. 
RF Base Model 

XGB Ensemble vs. 
ERT Base Model 

XGB Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Adult 

1 0.8644 3.57% 0.8450 5.96% 0.8706 2.83% 

2 0.8649 3.51% 0.8433 6.16% 0.8728 2.58% 

3 0.8640 3.63% 0.8446 6.00% 0.8708 2.82% 

4 0.8646 3.55% 0.8452 5.93% 0.8730 2.56% 

5 0.8651 3.49% 0.8452 5.93% 0.8745 2.38% 

6 0.8642 3.60% 0.8445 6.01% 0.8762 2.18% 

7 0.8649 3.51% 0.8455 5.89% 0.8751 2.31% 

8 0.8649 3.52% 0.8458 5.86% 0.8770 2.09% 

9 0.8642 3.60% 0.8450 5.96% 0.8767 2.12% 

10 0.8651 3.50% 0.8458 5.85% 0.8755 2.26% 

11 N/A   N/A   0.8456 5.87% N/A    N/A  

Average 0.8646 3.55% 0.8450 5.95% 0.8742 2.41% 

Credit 
Card 

Clients 

1 0.8143 0.99% 0.8121 1.27% 0.8169 0.67% 

2 0.8170 0.66% 0.8143 0.99% 0.8203 0.26% 

3 0.8176 0.59% 0.8134 1.11% 0.8234 -0.12% 

4 0.8174 0.61% 0.8130 1.16% 0.8236 -0.15% 

5 0.8172 0.64% 0.8130 1.16% 0.8254 -0.36% 

6 0.8156 0.83% 0.8130 1.16% 0.8262 -0.46% 

7 0.8150 0.91% 0.8130 1.16% 0.8257 -0.40% 

8 0.8176 0.59% 0.8148 0.93% 0.8258 -0.41% 

9 0.8187 0.45% 0.8148 0.93% 0.8260 -0.44% 

10 0.8169 0.67% 0.8148 0.93% 0.8256 -0.39% 

11 N/A   N/A   0.8148 0.93% N/A   N/A   

Average 0.8167 0.69% 0.8137 1.07% 0.8239 -0.18% 

EEG 
Eye 
State 

1 0.9243 3.26% 0.9372 1.84% 0.9009 5.94% 

2 0.9268 2.98% 0.9424 1.27% 0.9059 5.35% 

3 0.9237 3.32% 0.9446 1.04% 0.9003 6.01% 

4 0.9295 2.68% 0.9455 0.94% 0.9119 4.66% 
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Data 
Set 

Base 
Model 

XGB Ensemble vs. 
RF Base Model 

XGB Ensemble vs. 
ERT Base Model 

XGB Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

5 0.9292 2.71% 0.9439 1.11% 0.9105 4.82% 

6 0.9308 2.54% 0.9468 0.80% 0.9089 5.01% 

7 0.9288 2.76% 0.9435 1.16% 0.9061 5.33% 

8 0.9306 2.56% 0.9453 0.96% 0.8988 6.19% 

9 0.9299 2.63% 0.9450 0.99% 0.8925 6.94% 

10 0.9288 2.76% 0.9473 0.75% 0.8636 10.51% 

11  N/A  N/A   0.9473 0.75% N/A    N/A  

Average 0.9282 2.82% 0.9444 1.05% 0.8999 6.05% 
Note: N/A = there was no data available 

 

The ensemble performance by random forest method outperforms all thirty-one 

base models on all of the three data sets. After integrating factor scores of multiple 

correspondence analysis with base models, the performance of random forest ensemble 

method continued to be the one that provided the best classification accuracy. The RF 

ensemble method increased the classification accuracy from 2.58% to 6.67% when 

compared with base models on the Adult data set. It also increased the classification 

accuracy from 2.74% to 12.70% on the EEG Eye State data. This ensemble method 

increased the classification accuracy from 1.65% to 3.41% on the Credit Card Clients 

data. Table 24 summarizes the comparison in detail.  
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Table 24 

RF Ensemble in Experiment Two Compared with Base Models 

Data 
Set 

Base 
Model 

RF Ensemble vs. 
RF Base Model 

RF Ensemble vs. 
Extremely ERT 

Base Model 

RF Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Adult 

1 0.8644 4.07% 0.8450 6.46% 0.8706 3.33% 

2 0.8649 4.01% 0.8433 6.67% 0.8728 3.07% 

3 0.8640 4.13% 0.8446 6.51% 0.8708 3.31% 

4 0.8646 4.04% 0.8452 6.44% 0.8730 3.05% 

5 0.8651 3.99% 0.8452 6.44% 0.8745 2.88% 

6 0.8642 4.10% 0.8445 6.52% 0.8762 2.67% 

7 0.8649 4.01% 0.8455 6.40% 0.8751 2.80% 

8 0.8649 4.02% 0.8458 6.36% 0.8770 2.58% 

9 0.8642 4.10% 0.8450 6.46% 0.8767 2.61% 

10 0.8651 3.99% 0.8458 6.36% 0.8755 2.75% 

11  N/A   N/A  0.8456 6.38% N/A   N/A   

Average 0.8646 4.04% 0.8450 6.46% 0.8742 2.90% 

Credit 
card 

clients 

1 0.8143 3.13% 0.8121 3.41% 0.8169 2.80% 

2 0.8170 2.79% 0.8143 3.13% 0.8203 2.38% 

3 0.8176 2.72% 0.8134 3.25% 0.8234 1.99% 

4 0.8174 2.74% 0.8130 3.30% 0.8236 1.97% 

5 0.8172 2.77% 0.8130 3.30% 0.8254 1.74% 

6 0.8156 2.97% 0.8130 3.30% 0.8262 1.65% 

7 0.8150 3.04% 0.8130 3.30% 0.8257 1.71% 

8 0.8176 2.72% 0.8148 3.07% 0.8258 1.70% 

9 0.8187 2.58% 0.8148 3.07% 0.8260 1.67% 

10 0.8169 2.80% 0.8148 3.07% 0.8256 1.72% 

11  N/A  N/A   0.8148 3.07% N/A    N/A  

Average 0.8167 2.82% 0.8137 3.20% 0.8239 1.93% 

EEG 
Eye 
State 

1 0.9243 5.30% 0.9372 3.85% 0.9009 8.04% 

2 0.9268 5.02% 0.9424 3.28% 0.9059 7.44% 

3 0.9237 5.37% 0.9446 3.04% 0.9003 8.11% 

4 0.9295 4.71% 0.9455 2.94% 0.9119 6.73% 

5 0.9292 4.75% 0.9439 3.11% 0.9105 6.90% 

6 0.9308 4.57% 0.9468 2.80% 0.9089 7.09% 

7 0.9288 4.79% 0.9435 3.16% 0.9061 7.42% 
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Data 
Set 

Base 
Model 

RF Ensemble vs. 
RF Base Model 

RF Ensemble vs. 
Extremely ERT 

Base Model 

RF Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

8 0.9306 4.59% 0.9453 2.96% 0.8988 8.29% 

9 0.9299 4.67% 0.9450 2.99% 0.8925 9.05% 

10 0.9288 4.79% 0.9473 2.74% 0.8636 12.70% 

11 N/A   N/A   0.9473 2.74% N/A   N/A   

Average 0.9282 4.85% 0.9444 3.06% 0.8999 8.15% 
Note: N/A = there was no data available 

 

Ensembles Compared with Benchmarks and Experiment One 

In this experiment, MCA factors scores are involved in the ensemble 

approaches. Adding MCA factor scores to XGB ensemble increased the ensemble 

performance on the Credit Card Client and EEG Eye State data sets, and kept almost 

the same accuracy on the Adult data set; it did improve the RF ensemble performance; 

however, it didn’t impact the LR ensemble performance at all on any of the data sets.  

Table 25 summarizes the classification accuracy of the ensemble models and 

their comparison with those of benchmarks and experiment one on the three UCI test 

data sets. Overall, all the ensemble methods in experiment two outperform the 

benchmarks on all three data sets. They also outperform or have the same performance 

as the same ensemble methods in experiment one. Comparing with benchmarks, LR 

ensemble method increased the accuracy by 0.33%, 2.59% and 3.54% on the three data 

sets; XGB ensemble method increased the accuracy by 0.70%, 2.82% and 3.55%; RF 

ensemble method increased the accuracy by 2.83%, 4.05% and 4.86%.   

Comparing with the same ensemble methods in experiment one, LR ensemble 

method had the same classification accuracies on all the three data sets; XGB ensemble 
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method kept the same accuracy on the Adult data set, and increased the accuracy by 

0.05% and 0.09% on the other two data sets; RF ensemble method increased the 

accuracy by 0.44%, 0.45% and 0.64% on the three data sets. Here, we conclude that 

factor scores of MCA help increase classification accuracy of RF ensemble method; 

they might also help increase the performance of XGB ensemble method; however, 

they have no impact on the performance of LR ensemble method. 

 
Table 25 

Experiment Two Compared to Benchmarks and Experiment One 

Data 
Set 

Ensemble 
Method 

Ensemble Accuracy Accuracy Increase 

Exp 1 Exp2 
Exp 2 vs. 

Benchmark 
Exp2 vs. Exp1 

Adult 

RF 0.8957 0.8996 4.05% 0.44% 

XGB 0.8953 0.8953 3.55% 0.00% 

LR 0.8952 0.8952 3.54% 0.00% 

Credit 
Card 

Clients 

RF 0.8360 0.8398 2.83% 0.45% 

XGB 0.8217 0.8224 0.70% 0.09% 

LR 0.8194 0.8194 0.33% 0.00% 

EEG 
Eye 
State 

RF 0.9671 0.9733 4.86% 0.64% 

XGB 0.9539 0.9544 2.82%  0.05% 

LR 0.9522 0.9522 2.59% 0.00% 
Note: Exp 1 means experiment one; Exp 2 means experiment two. 

Comparison of Ensemble Methods 

Combining MCA factor scores with all base models, LR ensemble performed 

the same as in experiment one. Its performance is comparable to but a little bit worse 

than XGB ensemble and much worse than RF ensemble method when compared with 

benchmarks or experiment one. LR and XGB outperformed the benchmarks and 

majority of base models except that several XGB base models had better performance 
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than them. RF ensemble performed the best among the three ensembles. It continued 

to be the most powerful ensemble method in experiment two. The increased accuracies 

by RF ensemble method outperformed all the other increased accuracies by XGB and 

LR ensemble method on all three data sets as shown in table 23, 24, and 25. 

Table 26 

Ensemble Comparison in Experiment Two 

Data Set Ensemble Method 
Ensemble 
Accuracy 

Accuracy Increased  
from LR Ensemble 

Adult 

Logistic Regression 0.8952 N/A  

Random Forest 0.8996 0.49% 

Extreme Gradient Boosting 0.8953 0.01% 

Credit 
Card 

Clients 

Logistic Regression 0.8194 N/A  

Random Forest 0.8398 2.49% 

Extreme Gradient Boosting 0.8224 0.37% 

EEG 
Eye 
State 

Logistic Regression 0.9522 N/A  

Random Forest 0.9733 2.22% 

Extreme Gradient Boosting 0.9544 0.23% 
Note: N/A = there was no data available 

 
RF and XGB ensembles are compared with LR ensemble in table 26. The 

improved accuracy in percentage is reported. LR ensemble was chosen to be the 

baseline of the comparison since it held the least ensemble accuracy in this experiment. 

How much better the RF and XGB ensembles are than the LR ensemble is shown in 

table 26.  It shows that RF ensemble has 0.49%, 2.49%, and 2.22% better performance 

than LR on the Adult, Credit Card Clients, and EEG Eye State data set. XGB ensemble 

has 0.01%, 0.37%, and 0.23% better performance than LR ensemble on the three data 

sets. In summary, random forest ensemble is the best method of combining all base 

models and MCA factor scores.  
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Experiment Three: Ensemble all Base Models with Model Selections 

Without considering the effect of MCA factor scores, this experiment 

ensembled only optimal subset of base models selected by Cramér’s V correlation 

analysis and backward AIC selection. Majority voting, extreme gradient boosting, and 

random forest method worked as ensemble methods for twenty-one base models 

selected by Cramér’s V correlation analysis. These twenty-one selected base models 

are XGB and ERT base models. These two types of base models have relatively less 

correlation on average. Logistic regression works as an ensemble method for optimal 

selected base models which are chosen by backward selection method based on the 

AIC value of the logistic regression model. The backward selection procedure first 

combines all thirty-one base models, selects one base model that contributes the most 

AIC of logistic regression, and then removes it in the next round of selection. The 

backward selection stops when the overall AIC of logistic regression doesn’t 

significantly decrease at a 0.05 alpha level. The number and the types of selected base 

models of different data sets are not fixed but determined by the backward selection 

procedure and the nature of data sets. 

Ensembles Compared with Individual Base Models 

Compared with individual base models, the classification accuracy provided by 

the MV ensemble method is higher than those of ERT base models, but is lower than 

those of RF and XGB base models on the Adult data set. For the EEG Eye State data 

set, it has better performance than individual RF, XGB base models, and five ERT base 

models. On the Credit Card Clients data set, it has better performance than ERT base 
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models and one RF base models, but worse performance than XGB and nine RF base 

models. In summary, the MV ensemble method only achieved better performance than 

half of individual base models. Most RF and XGB base models have better 

performance than the MV ensemble. The performance decreasing ranges from 0.07% 

to 2.80%. It seems that majority voting with Cramér’s V model selection is not a good 

ensemble method in this experiment. Table 27 summarizes the comparison in detail. 

Table 27 

MV Ensemble in Experiment Three Compared with Base Models 

Data 
Set 

Base 
Model 

MV Ensemble vs. 
RF Base Model 

MV Ensemble vs. 
ERT Base Model 

MV Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Adult 

1 0.8644 -1.39% 0.8450 0.88% 0.8706 -2.10% 

2 0.8649 -1.45% 0.8433 1.08% 0.8728 -2.34% 

3 0.8640 -1.34% 0.8446 0.92% 0.8708 -2.11% 

4 0.8646 -1.41% 0.8452 0.86% 0.8730 -2.36% 

5 0.8651 -1.47% 0.8452 0.86% 0.8745 -2.52% 

6 0.8642 -1.37% 0.8445 0.93% 0.8762 -2.71% 

7 0.8649 -1.45% 0.8455 0.81% 0.8751 -2.59% 

8 0.8649 -1.44% 0.8458 0.78% 0.8770 -2.80% 

9 0.8642 -1.37% 0.8450 0.88% 0.8767 -2.77% 

10 0.8651 -1.46% 0.8458 0.78% 0.8755 -2.64% 

11  N/A  N/A  0.8456 0.80% N/A    N/A  

Average 0.8646 -1.41% 0.8450 0.87% 0.8742 -2.49% 

Credit 
Card 

Clients 

1 0.8143 0.09% 0.8121 0.36% 0.8169 -0.23% 

2 0.8170 -0.24% 0.8143 0.09% 0.8203 -0.65% 

3 0.8176 -0.32% 0.8134 0.20% 0.8234 -1.02% 

4 0.8174 -0.29% 0.8130 0.25% 0.8236 -1.04% 

5 0.8172 -0.27% 0.8130 0.25% 0.8254 -1.26% 

6 0.8156 -0.07% 0.8130 0.25% 0.8262 -1.36% 

7 0.8150 0.00% 0.8130 0.25% 0.8257 -1.30% 

8 0.8176 -0.32% 0.8148 0.02% 0.8258 -1.31% 

9 0.8187 -0.45% 0.8148 0.02% 0.8260 -1.33% 
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Data 
Set 

Base 
Model 

MV Ensemble vs. 
RF Base Model 

MV Ensemble vs. 
ERT Base Model 

MV Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

10 0.8169 -0.23% 0.8148 0.02% 0.8256 -1.28% 

11 N/A    N/A  0.8148 0.02% N/A   N/A   

Average 0.8167 -0.21% 0.8137 0.16% 0.8239 -1.08% 

EEG 
Eye 
State 

1 0.9243 2.20% 0.9372 0.79% 0.9009 4.85% 

2 0.9268 1.92% 0.9424 0.23% 0.9059 4.27% 

3 0.9237 2.26% 0.9446 0.00% 0.9003 4.92% 

4 0.9295 1.62% 0.9455 -0.10% 0.9119 3.59% 

5 0.9292 1.66% 0.9439 0.07% 0.9105 3.75% 

6 0.9308 1.48% 0.9468 -0.23% 0.9089 3.93% 

7 0.9288 1.70% 0.9435 0.12% 0.9061 4.25% 

8 0.9306 1.50% 0.9453 -0.07% 0.8988 5.10% 

9 0.9299 1.58% 0.9450 -0.04% 0.8925 5.84% 

10 0.9288 1.70% 0.9473 -0.29% 0.8636 9.38% 

11 N/A   N/A   0.9473 -0.29% N/A   N/A   

Average 0.9282 1.76% 0.9444 0.02% 0.8999 4.96% 
Note: N/A = there was no data available 

 

The ensemble performance of XGB method is better than all thirty-one base 

models on the EEG Eye State data set, twenty-nine base models on the Adult data set, 

and three base models on the Credit Card Clients data set. Table 28 shows that twenty 

base models in total on the three data sets provided higher classification accuracy than 

the ensemble method in this experiment. The XGB ensemble method increased the 

classification accuracy by 0.54% to 10.28% from base models on the EEG Eye State 

data set. It worked pretty well on this data set when combining only the selected twenty-

one base models. The XGB ensemble method has the increased classification 

accuracies by 0.07% to 3.89% on the Adult data set except for two XGB base models 

which have better performance than the ensemble method. However, on the Credit Card 
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Clients data set, seventeen RF or XGB base models have better performance than the 

ensemble method. It seems that XGB ensemble with Cramér’s V base model selection 

is not an ideal ensemble method because it might perform well on some types of data, 

but not on other types of data. Table 28 lists the comparison in detail. 

Table 28 

XGB Ensemble in Experiment Three Compared with Base Models 

Data 
Set 

Base 
Model 

XGB Ensemble vs. 
RF Base Model 

XGB Ensemble vs. 
ERT Base Model 

XGB Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Adult 

1 0.8644 1.35% 0.8450 3.68% 0.8706 0.63% 

2 0.8649 1.29% 0.8433 3.89% 0.8728 0.38% 

3 0.8640 1.41% 0.8446 3.73% 0.8708 0.61% 

4 0.8646 1.33% 0.8452 3.66% 0.8730 0.36% 

5 0.8651 1.27% 0.8452 3.66% 0.8745 0.19% 

6 0.8642 1.38% 0.8445 3.74% 0.8762 -0.01% 

7 0.8649 1.29% 0.8455 3.62% 0.8751 0.12% 

8 0.8649 1.30% 0.8458 3.59% 0.8770 -0.10% 

9 0.8642 1.38% 0.8450 3.68% 0.8767 -0.07% 

10 0.8651 1.28% 0.8458 3.58% 0.8755 0.07% 

11 N/A   N/A   0.8456 3.60% N/A    N/A  

Average 0.8646 1.33% 0.8450 3.67% 0.8742 0.22% 

Credit 
Card 

Clients 

1 0.8143 0.28% 0.8121 0.55% 0.8169 -0.04% 

2 0.8170 -0.05% 0.8143 0.28% 0.8203 -0.45% 

3 0.8176 -0.12% 0.8134 0.39% 0.8234 -0.83% 

4 0.8174 -0.10% 0.8130 0.44% 0.8236 -0.85% 

5 0.8172 -0.07% 0.8130 0.44% 0.8254 -1.07% 

6 0.8156 0.12% 0.8130 0.44% 0.8262 -1.16% 

7 0.8150 0.20% 0.8130 0.44% 0.8257 -1.10% 

8 0.8176 -0.12% 0.8148 0.22% 0.8258 -1.11% 

9 0.8187 -0.26% 0.8148 0.22% 0.8260 -1.14% 

10 0.8169 -0.04% 0.8148 0.22% 0.8256 -1.09% 

11  N/A  N/A   0.8148 0.22% N/A   N/A   

Average 0.8167 -0.02% 0.8137 0.35% 0.8239 -0.88% 
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Data 
Set 

Base 
Model 

XGB Ensemble vs. 
RF Base Model 

XGB Ensemble vs. 
ERT Base Model 

XGB Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

EEG 
Eye 
State 

1 0.9243 3.04% 0.9372 1.62% 0.9009 5.72% 

2 0.9268 2.76% 0.9424 1.06% 0.9059 5.13% 

3 0.9237 3.11% 0.9446 0.83% 0.9003 5.79% 

4 0.9295 2.46% 0.9455 0.73% 0.9119 4.44% 

5 0.9292 2.50% 0.9439 0.90% 0.9105 4.60% 

6 0.9308 2.32% 0.9468 0.59% 0.9089 4.79% 

7 0.9288 2.54% 0.9435 0.94% 0.9061 5.11% 

8 0.9306 2.34% 0.9453 0.75% 0.8988 5.96% 

9 0.9299 2.42% 0.9450 0.78% 0.8925 6.71% 

10 0.9288 2.54% 0.9473 0.54% 0.8636 10.28% 

11 N/A    N/A  0.9473 0.54% N/A    N/A  

Average 0.9282 2.60% 0.9444 0.84% 0.8999 5.83% 
Note: N/A = there was no data available 

 

The ensemble performance of random forest method outperforms all thirty-one 

base models on the Adult and EEG Eye State data sets. The RF ensemble method 

increased the classification accuracy from 1.29% to 5.33% when compared with the 

base models on the Adult data set. It also increased the classification accuracy from 

1.52% to 11.36% on the EEG Eye State data. The RF ensemble method increased the 

classification accuracy from 0.06% to 0.74% on the Credit Card Clients data set except 

for ten base models, nine XGBs and one RF. Table 29 lists the comparisons in detail. 

Note that, in experiment one and two, RF ensemble outperforms all base models on all 

three test data sets. Here, we can only conclude that Cramér’s V base model selection 

didn’t help in increasing ensemble accuracy of RF, XGB, and MV ensemble methods.   
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Table 29 

RF Ensemble in Experiment Three Compared with Base Models 

Data 
Set 

Base 
Model 

RF Ensemble vs. 
RF Base Model 

RF Ensemble vs. 
ERT Base Model 

RF Ensemble vs 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Adult 

1 0.8644 2.76% 0.8450 5.13% 0.8706 2.03% 

2 0.8649 2.70% 0.8433 5.33% 0.8728 1.78% 

3 0.8640 2.82% 0.8446 5.17% 0.8708 2.01% 

4 0.8646 2.74% 0.8452 5.10% 0.8730 1.75% 

5 0.8651 2.68% 0.8452 5.10% 0.8745 1.58% 

6 0.8642 2.79% 0.8445 5.18% 0.8762 1.38% 

7 0.8649 2.70% 0.8455 5.06% 0.8751 1.51% 

8 0.8649 2.71% 0.8458 5.03% 0.8770 1.29% 

9 0.8642 2.79% 0.8450 5.13% 0.8767 1.32% 

10 0.8651 2.69% 0.8458 5.02% 0.8755 1.46% 

11 N/A   N/A   0.8456 5.04%  N/A   N/A  

Average 0.8646 2.74% 0.8450 5.12% 0.8742 1.61% 

Credit 
Card 

Clients 

1 0.8143 0.47% 0.8121 0.74% 0.8169 0.15% 

2 0.8170 0.13% 0.8143 0.47% 0.8203 -0.27% 

3 0.8176 0.06% 0.8134 0.58% 0.8234 -0.64% 

4 0.8174 0.09% 0.8130 0.63% 0.8236 -0.67% 

5 0.8172 0.11% 0.8130 0.63% 0.8254 -0.88% 

6 0.8156 0.31% 0.8130 0.63% 0.8262 -0.98% 

7 0.8150 0.38% 0.8130 0.63% 0.8257 -0.92% 

8 0.8176 0.06% 0.8148 0.41% 0.8258 -0.93% 

9 0.8187 -0.07% 0.8148 0.41% 0.8260 -0.96% 

10 0.8169 0.15% 0.8148 0.41% 0.8256 -0.91% 

11 N/A    N/A  0.8148 0.41% N/A    N/A  

Average 0.8167 0.17% 0.8137 0.54% 0.8239 -0.70% 

EEG 
Eye 
State 

1 0.9243 4.05% 0.9372 2.61% 0.9009 6.75% 

2 0.9268 3.77% 0.9424 2.05% 0.9059 6.16% 

3 0.9237 4.11% 0.9446 1.81% 0.9003 6.82% 

4 0.9295 3.46% 0.9455 1.71% 0.9119 5.46% 

5 0.9292 3.50% 0.9439 1.89% 0.9105 5.62% 

6 0.9308 3.32% 0.9468 1.57% 0.9089 5.81% 

7 0.9288 3.54% 0.9435 1.93% 0.9061 6.14% 
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Data 
Set 

Base 
Model 

RF Ensemble vs. 
RF Base Model 

RF Ensemble vs. 
ERT Base Model 

RF Ensemble vs 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

8 0.9306 3.34% 0.9453 1.73% 0.8988 7.00% 

9 0.9299 3.42% 0.9450 1.77% 0.8925 7.75% 

10 0.9288 3.54% 0.9473 1.52% 0.8636 11.36% 

11 N/A    N/A  0.9473 1.52% N/A   N/A   

Average 0.9282 3.60% 0.9444 1.83% 0.8999 6.86% 
Note: N/A = there was no data available 

 

Logistic regression is the only ensemble method that integrated with backward 

selection in this experiment. Its performance is comparable to logistic regression that 

ensembles all base models in previous experiments. It outperforms all thirty-one base 

models on the Adult and EEG Eye State data sets, and outperforms majority base 

models except for nine extreme gradient boosting base models on the Credit Card 

Clients data set. The LR ensemble method increased the classification accuracy from 

2.08% to 6.15% when compared with the base models on the Adult data set. It also 

increased the classification accuracy from 0.56% to 10.31% on the EEG Eye State data 

set. The LR ensemble method increased the classification accuracy from 0.05% to 

0.86% on the Credit Card Clients data set except for nine XGB base models. It was 

noticed that the ensemble performance of logistic regression method kept the same 

level in increasing the classification accuracy from base models although it ensembled 

only the optimal subset of base model that had less than 50% of base models. Its 

performance is listed in Table 30 and turns out to be the best ensemble method in 

experiment three.  
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Table 30 

LR Ensemble in Experiment Three Compared with Base Models 

Data 
Set 

Base 
Model 

LR Ensemble vs. 
RF Base Model 

LR Ensemble vs. 
ERT Base Model 

LR Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Adult 

1 0.8644 3.56% 0.8450 5.94% 0.8706 2.82% 

2 0.8649 3.50% 0.8433 6.15% 0.8728 2.57% 

3 0.8640 3.62% 0.8446 5.99% 0.8708 2.81% 

4 0.8646 3.54% 0.8452 5.92% 0.8730 2.55% 

5 0.8651 3.48% 0.8452 5.92% 0.8745 2.37% 

6 0.8642 3.59% 0.8445 6.00% 0.8762 2.17% 

7 0.8649 3.50% 0.8455 5.88% 0.8751 2.30% 

8 0.8649 3.51% 0.8458 5.84% 0.8770 2.08% 

9 0.8642 3.59% 0.8450 5.94% 0.8767 2.11% 

10 0.8651 3.48% 0.8458 5.84% 0.8755 2.25% 

11 N/A    N/A  0.8456 5.86% N/A   N/A   

Average 0.8646 3.54% 0.8450 5.94% 0.8742 2.40% 

Credit 
Card 

Clients 

1 0.8143 0.59% 0.8121 0.86% 0.8169 0.27% 

2 0.8170 0.26% 0.8143 0.59% 0.8203 -0.15% 

3 0.8176 0.18% 0.8134 0.70% 0.8234 -0.52% 

4 0.8174 0.21% 0.8130 0.75% 0.8236 -0.55% 

5 0.8172 0.23% 0.8130 0.75% 0.8254 -0.76% 

6 0.8156 0.43% 0.8130 0.75% 0.8262 -0.86% 

7 0.8150 0.50% 0.8130 0.75% 0.8257 -0.80% 

8 0.8176 0.18% 0.8148 0.53% 0.8258 -0.81% 

9 0.8187 0.05% 0.8148 0.53% 0.8260 -0.84% 

10 0.8169 0.27% 0.8148 0.53% 0.8256 -0.79% 

11 N/A    N/A  0.8148 0.53% N/A   N/A   

Average 0.8167 0.29% 0.8137 0.66% 0.8239 -0.58% 

EEG 
Eye 
State 

1 0.9243 3.06% 0.9372 1.64% 0.9009 5.74% 

2 0.9268 2.78% 0.9424 1.08% 0.9059 5.16% 

3 0.9237 3.13% 0.9446 0.85% 0.9003 5.81% 

4 0.9295 2.49% 0.9455 0.75% 0.9119 4.46% 

5 0.9292 2.52% 0.9439 0.92% 0.9105 4.62% 

6 0.9308 2.34% 0.9468 0.61% 0.9089 4.81% 

7 0.9288 2.56% 0.9435 0.96% 0.9061 5.13% 
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Data 
Set 

Base 
Model 

LR Ensemble vs. 
RF Base Model 

LR Ensemble vs. 
ERT Base Model 

LR Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

8 0.9306 2.36% 0.9453 0.77% 0.8988 5.99% 

9 0.9299 2.44% 0.9450 0.80% 0.8925 6.73% 

10 0.9288 2.56% 0.9473 0.56% 0.8636 10.31% 

11 N/A    N/A  0.9473 0.56% N/A  N/A  

Average 0.9282 2.62% 0.9444 0.86% 0.8999 5.85% 
Note: N/A = there was no data available 

 

Ensembles Compared with Benchmarks, Experiment One and Two 

Table 31 lists the classification accuracy of the ensemble models and 

comparison with benchmarks, experiment one, and experiment two on the three UCI 

test data sets. Compared with the benchmarks, unlike experiment one and two, the 

ensemble methods in this experiment don’t outperform all of the benchmarks on the 

three data sets. MV ensemble only outperformed benchmark on the EEG Eye State data 

set and is worse on the other two data sets. XGB ensemble outperforms benchmarks on 

the Adult and EEG Eye State data sets but is worse on the third data set. RF and LR 

ensemble still outperforms benchmarks on all three data sets.  

Compared with the same ensemble methods in experiment one, LR ensemble 

method has the same or comparable accuracies on all three data sets. It achieved a 

0.04% increased accuracy on the EEG Eye State data set, and a 0.04% decreased 

accuracy on the Credit Card Client data set; it has the same accuracy as that in 

experiment one. XGB ensemble method has all decreased -2.14%, -0.62%, and -0.16% 

accuracy on the Adult, Credit Card Client and EEG Eye Status data sets respectively. 

RF ensemble method decreased the accuracy by -0.83%, -2.14%, and -0.56% on the 
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three data sets. MV ensemble method achieved 0.62% increased accuracy on the EEG 

Eye Status data set and -1.89% and -0.26% decreased accuracy on the Adult and Credit 

Card Client data sets. Overall, compared with the same ensemble method in the first 

experiment in which all base models were ensembled, nine ensemble methods with 

model selection on the three data sets were defeated in accuracy. Only the MV 

ensemble with twenty-one selected base models and LR ensemble with fifteen selected 

base models on the the EEG Eye State data set outperformed the same ensemble 

method in the first experiment. 

Compared with the same ensemble methods in the second experiment, LR 

ensemble method has the same or comparable accuracies on all three data sets. It 

achieved a 0.04% increased accuracy on the EEG Eye State data set, and a 0.04% 

decreased accuracy on the Credit Card Client data set, so it has the same accuracy as 

that in the second experiment. The LR ensemble performed very stably. XGB ensemble 

method has all decreased -2.14%, -0.71%, and -0.21% accuracy on the Adult, Credit 

Card Client, and EEG Eye Status data sets. RF ensemble method decreased the 

accuracy by -1.26%, -2.58%, and -1.19% on the three data sets. In summary, compared 

with the same ensemble method in the second experiment in which all base models and 

MCA factor scores are ensembled, seven ensemble methods with model selection on 

the three data sets were defeated in accuracy. The LR ensemble with nine selected base 

models on the Adult data set achieved the same accuracy as the same method in 

experiment two. Also, the LR ensemble with fifteen selected base models on the EEG 

Eye State data set outperforms the same ensemble method in the second experiment. 
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It shows that ensemble methods in experiment two with all thirty-one base 

models and MCA factor scores combined have better classification accuracy than the 

ensemble methods in experiment one with only all the thirty-one base models combined 

and those in experiment three in which only selected base models are combined. 

Among the ensemble methods, RF ensemble models have better classification 

performance than majority voting, extreme gradient boosting, and logistic regression 

model in experiment one, two and three. LR ensemble produced very stable 

performance in experiment one, two, and three. Especially, LR ensemble with base 

model selection although integrated less than 50% of base models, but achieved about 

the same accuracy as it integrated all base models in experiment one and two. 

Table 31 

Experiment Three Compared to Benchmarks, Experiment One and Two 

Data 
Set 

Ensemble 
Method 

Ensemble Accuracy Accuracy Increase 

Exp 1 Exp2 Exp3 
Exp 3 vs. 

BMK 
Exp3 vs. 

Exp1 
Exp3 vs. 

Exp2 

Adult 

MV 0.8688 N/A 0.8524 -1.41% -1.89% N/A 

RF 0.8957 0.8996 0.8883 2.74% -0.83% -1.26% 

XGB 0.8953 0.8953 0.8761 1.33% -2.14% -2.14% 

LR 0.8952 0.8952 0.8952 3.54% 0.00% 0.00% 

Credit 
Card 

Clients 

MV 0.8171 N/A 0.8150 -0.21% -0.26% N/A 

RF 0.8360 0.8398 0.8181 0.17% -2.14% -2.58% 

XGB 0.8217 0.8224 0.8166 -0.01% -0.62% -0.71% 

LR 0.8194 0.8194 0.8191 0.29% -0.04% -0.04% 

EEG 
Eye 
State 

MV 0.9388 N/A 0.9446 1.77% 0.62% N/A 

RF 0.9671 0.9733 0.9617 3.61% -0.56% -1.19% 

XGB 0.9539 0.9544 0.9524 2.61% -0.16% -0.21% 

LR 0.9522 0.9522 0.9526 2.63% 0.04% 0.04% 
Note: BMK = Benchmark; Exp = Experiment Design; MV = Majority Voting; RF = Random 

Forest; XGB = Extreme Gradient Boosting; LR =Logistic Regression; N/A= there 
was no data available 
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Comparison of Ensemble Methods 

Combining only selected base models, RF ensemble method with Cramér’s V 

model selection didn’t perform the best on all the data sets like experiment one and 

two. It only provided the best accuracy on the EEG Eye State data set. It is 

outperformed by LR ensemble with backward selected base models on the Adult and 

Credit Card Client data sets. LR ensemble has the same predictive power as in 

experiment one and two, while RF ensemble has decreased predictive ability when 

compared with themselves in experiment one and two. MV ensemble performs the 

worst on all three data sets. XGB ensemble has worse classification performance than 

RF and LR method, but performs better than MV ensemble method.  

Table 32 

Ensemble Comparison in Experiment Three 

Data Set 
Ensemble 
Method 

Ensemble 
Accuracy 

Accuracy Increased  
from MV Ensemble 

Adult 

MV 0.8524 N/A 

RF 0.8883 4.21% 

XGB 0.8761 2.78% 

LR 0.8952 5.02% 

Credit Card Clients 

MV 0.8150 N/A 

RF 0.8181 0.38% 

XGB 0.8166 0.20% 

LR 0.8191 0.50% 

EEG Eye State 

MV 0.9446 N/A 

RF 0.9617 1.81% 

XGB 0.9524 0.83% 

LR 0.9526 0.85% 
Note: N/A = there was no data available 
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RF, LR and XGB ensembles are compared with MV ensemble in table 32. The 

accuracy difference between them is reported in percentage. MV ensemble was chosen 

as the base of comparison since it had the smallest ensemble accuracy in this 

experiment. The improvement of the RF, LR and XGB ensembles over MV ensemble 

is shown here.  It shows that RF ensemble has 4.21%, 0.38%, and 1.81% better 

performance than MV on the Adult, Credit Card Clients, and EEG Eye State data sets. 

XGB ensemble has 2.78%, 0.20%, and 0.83% better performance than MV ensemble 

on the three data sets. LR ensemble has 5.02%, 0.50%, and 0.85% better performance 

than MV ensemble on the three data sets. Based on values in table 32, LR ensemble is 

the best and most stable method of combining the selected base models.  

However, the other model selection method, Cramér’s V correlation analysis, 

decreased the classification accuracy of RF, XGB, and MV on all three data sets. There 

are two reasons that might cause the poor ensemble performance. One reason is that 

Cramér’s V correlation analysis doesn’t fit those three ensemble methods. Another 

reason might be that the selected base models present only two thirds of all base models. 

Less accuracy is the expected result since a smaller number of base models were 

ensembled. 

Experiment Four: Ensemble Selected Base Models and MCA Factor Scores 

In addition to combining selected base models as in experiment three, factor 

scores of multiple correspondence analysis were added and the selected base models 

were ensembled by three different ensemble methods, XGB, RF, and LR. LR ensemble 

method combined MCA factor scores with base models selected by backward AIC 

method. XGB and RF ensemble method combined base models selected by Cramér’s 
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V analysis with MCA factor scores. Base models selected by the Cramér’s V 

correlation analysis are still the same twenty-one ERT and XGB base models which 

are selected in experiment three. The backward selection method in experiment four 

initially combines not only all base models but also MCA factor scores. The selection 

procedure is almost the same as that in experiment three. The eliminated attribute in 

each backward step can be a base model or a MCA factor score. However, it turns out 

that the final selected base models are the same as those in experiment three. As a result, 

the classification accuracies of LR ensemble are the same as those in experiment three. 

Majority voting ensemble is not applicable in experiment four since non-categorical 

MCA factor scores are involved in the experiment. 

Ensembles Compared with Individual Base Model 

As in experiment three, logistic regression is the only ensemble method that 

integrated with backward selection in experiment four. Since it performs the same as 

experiment three that ensembles only the selected base model, the comparison between 

the ensemble models and individual base models is the same as in experiment three. 

Based on these observation, we can conclude that MCA factor scores doesn’t help LR 

ensemble at all on improving model performance when combined with the selected 

base models. The performance of LR ensemble and its comparison with base models 

can be found in table 30.  

The ensemble performance of XGB method is better than all the thirty-one base 

models on the Adult and EEG Eye State data sets, and twenty-two base models on the 

Credit Card Clients data set. The data in table 31 show that the XGB ensemble method 

increased the classification accuracy by 0.73% to 10.49% from base models on the 
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EEG Eye State data set. It has the increased classification accuracies by 0.12% to 4.11% 

on the Adult data set. On the Credit Card Clients data set, it has better performance 

from 0.17% to 0.99% than those of base models except that nine XGB base models 

have better performance than the ensemble method. XGB ensemble with Cramér’s V 

model selection and MCA factor scores is not an ideal ensemble method. Table 33 

summarizes the comparison in detail. 

Table 33 

XGB Ensemble in Experiment Four Compared with Base Models 

Data 
Set 

Base 
Model 

XGB Ensemble vs. 
RF Base Model 

XGB Ensemble vs. 
ERT Base Model 

XGB Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Adult 

1 0.8644 1.57% 0.8450 3.91% 0.8706 0.84% 

2 0.8649 1.51% 0.8433 4.11% 0.8728 0.60% 

3 0.8640 1.63% 0.8446 3.95% 0.8708 0.83% 

4 0.8646 1.55% 0.8452 3.89% 0.8730 0.57% 

5 0.8651 1.49% 0.8452 3.89% 0.8745 0.41% 

6 0.8642 1.60% 0.8445 3.96% 0.8762 0.21% 

7 0.8649 1.51% 0.8455 3.84% 0.8751 0.33% 

8 0.8649 1.52% 0.8458 3.81% 0.8770 0.12% 

9 0.8642 1.60% 0.8450 3.91% 0.8767 0.15% 

10 0.8651 1.50% 0.8458 3.80% 0.8755 0.29% 

11 N/A   N/A  0.8456 3.83% N/A   N/A   

Average 0.8646 1.55% 0.8450 3.90% 0.8742 0.43% 

Credit 
Card 

Clients 

1 0.8143 0.71% 0.8121 0.99% 0.8169 0.39% 

2 0.8170 0.38% 0.8143 0.71% 0.8203 -0.02% 

3 0.8176 0.31% 0.8134 0.82% 0.8234 -0.40% 

4 0.8174 0.33% 0.8130 0.87% 0.8236 -0.42% 

5 0.8172 0.35% 0.8130 0.87% 0.8254 -0.64% 

6 0.8156 0.55% 0.8130 0.87% 0.8262 -0.74% 

7 0.8150 0.63% 0.8130 0.87% 0.8257 -0.68% 

8 0.8176 0.31% 0.8148 0.65% 0.8258 -0.69% 

9 0.8187 0.17% 0.8148 0.65% 0.8260 -0.71% 

10 0.8169 0.39% 0.8148 0.65% 0.8256 -0.67% 
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Data 
Set 

Base 
Model 

XGB Ensemble vs. 
RF Base Model 

XGB Ensemble vs. 
ERT Base Model 

XGB Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

11  N/A   N/A  0.8148 0.65% N/A   N/A   

Average 0.8167 0.41% 0.8137 0.78% 0.8239 -0.46% 

EEG 
Eye 
State 

1 0.9243 3.23% 0.9372 1.81% 0.9009 5.92% 

2 0.9268 2.96% 0.9424 1.25% 0.9059 5.33% 

3 0.9237 3.30% 0.9446 1.02% 0.9003 5.99% 

4 0.9295 2.66% 0.9455 0.92% 0.9119 4.64% 

5 0.9292 2.69% 0.9439 1.09% 0.9105 4.80% 

6 0.9308 2.51% 0.9468 0.78% 0.9089 4.98% 

7 0.9288 2.73% 0.9435 1.13% 0.9061 5.31% 

8 0.9306 2.54% 0.9453 0.94% 0.8988 6.16% 

9 0.9299 2.61% 0.9450 0.97% 0.8925 6.91% 

10 0.9288 2.73% 0.9473 0.73% 0.8636 10.49% 

11 N/A    N/A  0.9473 0.73%  N/A  N/A   

Average 0.9282 2.80% 0.9444 1.03% 0.8999 6.03% 
Note: N/A = there was no data available 

 

The ensemble performance of RF method is better than the performances of all 

the thirty-one base models on all three data sets. The RF ensemble increased the 

classification accuracy from 2.72% to 6.82% when compared with the base models on 

the Adult data set. It increased the classification accuracy from 1.05% to 3.31% on the 

Credit Card Clients data set. It also improved the classification accuracy from 2.93% 

to 12.91% on the EEG Eye State data set. Overall, the increased classification 

accuracies in experiment four reached the highest record in our research. Table 34 lists 

the comparisons in detail. Here, we notice that the combination of Cramér’s V model 

selection and MCA factor scores helps to increase the classification accuracy of RF 

ensemble method.  
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Table 34 

RF Ensemble in Experiment Four Compared with Base Models 

Data 
Set 

Base 
Model 

RF Ensemble vs. 
RF Base Model 

RF Ensemble vs. 
ERT Base Model 

RF Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Adult 

1 0.8644 4.21% 0.8450 6.61% 0.8706 3.46% 

2 0.8649 4.15% 0.8433 6.82% 0.8728 3.21% 

3 0.8640 4.27% 0.8446 6.65% 0.8708 3.45% 

4 0.8646 4.18% 0.8452 6.58% 0.8730 3.19% 

5 0.8651 4.12% 0.8452 6.58% 0.8745 3.01% 

6 0.8642 4.24% 0.8445 6.66% 0.8762 2.81% 

7 0.8649 4.15% 0.8455 6.54% 0.8751 2.94% 

8 0.8649 4.15% 0.8458 6.51% 0.8770 2.72% 

9 0.8642 4.24% 0.8450 6.61% 0.8767 2.75% 

10 0.8651 4.13% 0.8458 6.50% 0.8755 2.89% 

11 N/A   N/A   0.8456 6.52% N/A    N/A  

Average 0.8646 4.18% 0.8450 6.60% 0.8742 3.04% 

Credit 
Card 

Clients 

1 0.8143 3.03% 0.8121 3.31% 0.8169 2.71% 

2 0.8170 2.69% 0.8143 3.03% 0.8203 2.28% 

3 0.8176 2.62% 0.8134 3.15% 0.8234 1.89% 

4 0.8174 2.64% 0.8130 3.20% 0.8236 1.87% 

5 0.8172 2.67% 0.8130 3.20% 0.8254 1.65% 

6 0.8156 2.87% 0.8130 3.20% 0.8262 1.55% 

7 0.8150 2.94% 0.8130 3.20% 0.8257 1.61% 

8 0.8176 2.62% 0.8148 2.97% 0.8258 1.60% 

9 0.8187 2.48% 0.8148 2.97% 0.8260 1.57% 

10 0.8169 2.71% 0.8148 2.97% 0.8256 1.62% 

11 N/A    N/A  0.8148 2.97% N/A   N/A   

Average 0.8167 2.73% 0.8137 3.11% 0.8239 1.83% 

EEG 
Eye 
State 

1 0.9243 5.50% 0.9372 4.04% 0.9009 8.24% 

2 0.9268 5.21% 0.9424 3.47% 0.9059 7.64% 

3 0.9237 5.56% 0.9446 3.23% 0.9003 8.31% 

4 0.9295 4.91% 0.9455 3.13% 0.9119 6.93% 

5 0.9292 4.94% 0.9439 3.31% 0.9105 7.10% 

6 0.9308 4.76% 0.9468 2.99% 0.9089 7.28% 

7 0.9288 4.98% 0.9435 3.35% 0.9061 7.62% 
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Data 
Set 

Base 
Model 

RF Ensemble vs. 
RF Base Model 

RF Ensemble vs. 
ERT Base Model 

RF Ensemble vs. 
XGB Base Model 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

Base 
Model 

Accuracy 
Increase 

8 0.9306 4.78% 0.9453 3.15% 0.8988 8.49% 

9 0.9299 4.86% 0.9450 3.19% 0.8925 9.25% 

10 0.9288 4.98% 0.9473 2.93% 0.8636 12.91% 

11  N/A  N/A   0.9473 2.93% N/A   N/A   

Average 0.9282 5.05% 0.9444 3.25% 0.8999 8.35% 
Note: N/A = there was no data available 

 

Comparison of Ensemble Methods in Experiment Four 

Combining selected base models and MCA factor scores, RF ensemble method 

with Cramér’s V selected base models perform extremely well on all the data sets. It 

provides the best accuracy on all three data sets. It outperforms LR ensemble with 

backward selected base models and XGB ensemble with Cramér’s V model selection.  

XGB ensemble has worse classification performance than LR ensemble on the Adult 

data set, but performs better than LR ensemble on the Credit Card Clients and EEG 

Eye State data sets.  

RF and XGB ensembles are compared with LR ensemble in table 35. The 

accuracy difference between them is reported in percentage. LR ensemble is chosen as 

the comparison base since it has the smallest ensemble accuracy on two data sets in this 

experiment, and its performance is stable in all four experiments. The accuracy 

difference in percentage between RF ensemble, XGB ensemble and LR ensemble is 

reported in table 35.  It shows that RF ensemble has 0.63%, 2.43%, and 2.36% better 

performance than LR on the Adult, Credit Card Clients, and EEG Eye State data sets 

respectively. XGB ensemble has 0.12% and 0.17% better performance than LR 
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ensemble on the Credit Card Clients and EEG Eye State data sets; but -1.92% worse 

performance on the Adult data set. In summary, RF ensemble method performs the best 

and provides the best classification accuracies on all data sets. XGB ensemble performs 

relatively better than LR ensemble.  

Table 35 

Ensemble Comparison in Experiment Four 

Data Set 
Ensemble 
Method 

Ensemble 
Accuracy 

Accuracy Increased  
from MV Ensemble 

Adult 

LR 0.8952 N/A  

RF 0.9008 0.63% 

XGB 0.8780 -1.92% 

Credit Card Clients 

LR 0.8191 N/A   

RF 0.8390 2.43% 

XGB 0.8201 0.12% 

EEG Eye State 

LR 0.9526 N/A   

RF 0.9751 2.36% 

XGB 0.9542 0.17% 
Note: N/A = there was no data available 

 

Ensembles Compared with Benchmarks, Experiment One, Two, and Three  

Table 36 summarizes the classification accuracy of benchmarks and ensemble 

models in experiment one, two, three, and four. Table 37 compares the ensemble 

methods in experiment four to benchmarks and the same type of ensemble methods in 

experiment one, two, and three. It shows that the performance of LR ensemble is very 

stable. It has the same predictive accuracy on Adult data set in all four experiments. On 

the Credit Card Clients and EEG Eye State data sets, LR has the same classification 

accuracies in experiment one and two, and has the same classification performance in 

experiment three and four. Its classification accuracies in experiment three and four are 
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a little bit higher than those in experiment one and two. XGB ensemble performs the 

best on all three data sets in experiment two that ensemble all base models and MCA 

factor scores. RF ensemble achieved the best performance on all three data sets in 

experiment four that combines only selected base models and MCA factor scores. The 

second best performance of RF ensemble happened in experiment two that integrates 

all base models and MCA factor scores. RF ensemble also achieved good performance 

in experiment one that combines all base models. 

Table 36 

Ensemble Accuracy of Experiment One, Two, Three, and Four 

Data Set 
BMK  

Accuracy 
Ensemble 
Method 

Ensemble Accuracy 

Exp 1 Exp2 Exp3 Exp4 

Adult 0.8646 

RF 0.8957 0.8996 0.8883 0.9008 

XGB 0.8953 0.8953 0.8761 0.8780 

LR 0.8952 0.8952 0.8952 0.8952 

Credit 
Card 

Clients 
0.8167 

RF 0.8360 0.8398 0.8181 0.8390 

XGB 0.8217 0.8224 0.8166 0.8201 

LR 0.8194 0.8194 0.8191 0.8191 

EEG 
Eye 
State 

0.9282 

RF 0.9671 0.9733 0.9617 0.9751 

XGB 0.9539 0.9544 0.9524 0.9542 

LR 0.9522 0.9522 0.9526 0.9526 
Note: BMK = Benchmark; Exp = Experiment Design; MV = Majority Voting; RF = Random 

Forest; XGB = Extreme Gradient Boosting; LR =Logistic Regression 

 
Compared with benchmarks, all the ensemble methods in experiment four 

outperform the benchmarks on all three data sets. RF ensemble method increased 

2.73%, 4.19%, and 5.05% accuracies from benchmarks. LR ensemble method 

increased the accuracy by 0.29%, 2.63% and 3.54% on all three data sets. XGB 

ensemble method increased the accuracy by 0.42%, 1.55% and 2.80% respectively. 

Table 37 shows the detail of comparison. 
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Table 37 

Experiment Four Compared to Benchmarks, Experiment One, Two, and Three  

Data Set 
Ensemble 
Method 

Accuracy Increase 
Exp 4 vs. 

BMK 
Exp4 vs. 

Exp1 
Exp4 vs. 

Exp2 
Exp4 vs. 

Exp3 

Adult 

RF 4.19% 0.57% 0.13% 1.41% 
XGB 1.55% -1.93% -1.93% 0.22% 
LR 3.54% 0.00% 0.00% 0.00% 

Credit 
Card 

Clients 

RF 2.73% 0.36% -0.10% 2.55% 
XGB 0.42% -0.19% -0.28% 0.43% 
LR 0.29% -0.04% -0.04% 0.00% 

EEG 
Eye 
State 

RF 5.05% 0.83% 0.18% 1.39% 
XGB 2.80% 0.03% -0.02% 0.19% 
LR 2.63% 0.04% 0.04% 0.00% 

Note: BMK = Benchmark; Exp = Experiment Design; MV = Majority Voting; RF = Random 
Forest; XGB = Extreme Gradient Boosting; LR =Logistic Regression 

 
Compared with the same ensemble methods in experiment one, LR ensemble 

method has the same or comparable accuracies on all three data sets. It achieved a 

0.04% increased accuracy on the EEG Eye State data set, and a 0.04% decreased 

accuracy on the Credit Card Client data set which is almost the same accuracy as that 

in experiment one. XGB ensemble method has -1.93% and -0.19% decreased accuracy 

on the Adult, Credit Card Client, and 0.03% increased accuracy on the EEG Eye Status 

data set. RF ensemble method increased the accuracy by 0.57%, 0.36%, and 0.83% on 

the three data sets respectively. Overall, compared with the same ensemble method in 

experiment one which ensembles all base models, three ensembles in experiment four 

that had model selection and MCA factor scores are defeated in accuracy. They are two 

XGB ensemble methods that combines twenty-one selected base models and MCA 

factor scores on the Adult and Credit Card Client data sets, and one LR ensemble with 

AIC backward selection and MCA factor scores on the Credit Card Client data set. 
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Compared with the same ensemble methods in experiment two, LR ensemble 

method has the same or comparable accuracies on all three data sets. It achieved a 

0.04% increased accuracy on EEG Eye State data set, and a -0.04% decreased accuracy 

on Credit Card Client data set; it has the same accuracy as that on the Adult data set in 

experiment two. XGB ensemble method has all decreased -1.93%, -0.28%, and -0.02% 

accuracy on the Adult, Credit Card Client, and EEG Eye Status data sets. RF ensemble 

method decreased the accuracy by 0.10% on the Credit Card Client data set, and 

increased the accuracy by 0.13% and 0.18% on the Adult and EEG Eye State data sets. 

In summary, compared with the same ensemble method in experiment two which 

ensembles all base models and MCA factor scores, five ensembles with model selection 

are defeated in accuracy. Only the RF ensembles with twenty-one selected base models 

and MCA factor scores on the Adult and EEG Eye State data sets achieved better 

accuracies than the same ensemble methods with all thirty-one base models and MCA 

factor scores in experiment two. It shows that the random forest ensemble works better 

on selected optimal subsets when MCA factor scores are used in the ensemble. 

Compared with the same ensemble methods in experiment three, LR ensemble 

has the same accuracies on all three data sets. XGB ensemble method has 0.22%, 

0.43%, and 0.19% increased accuracy on the Adult, Credit Card Client, and EEG Eye 

Status data sets. RF ensemble method increased the accuracy by 1.41%, 2.55%, and 

1.39% on the three data sets respectively. In summary, except for the LR ensemble 

method which has the same performance, XGB and RF ensemble methods with only 

selected models and MCA factor scores outperform the same ensemble methods with 
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selected base models only. Hence, we conclude that involving the MCA factor scores 

in ensembles improves the performance of classification. 

Experiment four shows that ensemble methods combining selected base model 

and MCA factor scores outperform the same ensemble methods in experiment three 

that combines only selected base models. They also outperform the same ensemble 

methods in experiment one that integrates all thirty-one base models except for the 

XGB ensembles on two data sets and one LR ensemble on one data set. However, they 

are defeated by the same ensemble methods in experiment two that ensemble all base 

model and MCA factor scores except for RF ensemble method on two data sets. Among 

all the ensemble methods in the four experiments, RF ensemble models almost always 

achieve the best classification accuracy in each experiment. They work exceptionally 

well when MCA factor scores are added and model selection is used. LR ensemble 

method has stable and acceptable classification accuracy in all the experiments. 

Combining base model selection procedure or adding MCA factors scores doesn’t 

affect the performance of LR ensemble at all or improves its performance very little. 

XGB ensemble performs the second best when compared with the other two ensemble 

methods. Adding MCA factor scores in ensemble improves its performance when 

combining either all base models or selected base models. However, base model 

selection decreases its performance a lot on all three test data sets. 
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Chapter 5 

Conclusions and Summary 

 

 

As a proven effective approach, ensemble models have been applied in 

numerous classification tasks (Zhang et al., 2011). In this research, the ensemble model 

was used to combine the predictions of three types of base models to achieve higher 

out-of-sample classification accuracy than the base models. Specifically, the base 

models themselves are ensemble-based models. They are random forest, extreme 

gradient boosting, and extremely randomized trees model that always provide the best 

performance in various situations. The literature shows that ensemble classifiers are 

particularly effective when their constituent base models are diverse in terms of their 

prediction accuracy in different regions of the feature space (Dietterich, 2001). 

Randomization of the three ensemble-based base classifiers provided enough diversity 

to ensure the success of further ensemble approach in this research. The research 

investigated methods of integrating ensemble models by treating them as base models 

in four designed experiments. Strategies for combining ensemble classifiers that 

resulted in higher classification accuracy than its constituent ensemble modes were 

identified. Various strategies were evaluated using three public domain data sets which 

have been extensively used for benchmarking classification models. 
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Random forest, extremely randomized trees, and extreme gradient boosting 

model were generated as base models due to their high predictive accuracy and high 

diversity resulting from randomization (Brieman, 2001; Geurts, Ernst, & Wehenkel, 

2006; Friedman, 2001). They are all tree-based and ensemble-based machine learning 

algorithms that utilize the subsample of training data set, subset of attributes, and/or 

random cut-point choice when growing tsrees to create enough diversity. Adjusting the 

parameter of extreme gradient boosting model, the number of trees of random forest 

and extremely randomized trees when using R packages to create base models also 

contributes diversity to the structure of base models. It was noticed that there is no 

linear relationship between the number of trees or parameter settings with the 

performance of base models.  It is hard to conclude which type of base models performs 

the best because they perform differently on different data sets. Extreme gradient 

boosting model outperforms the other two types of base models in producing average 

classification accuracy on two data sets, but has the smallest average classification 

accuracy on the third data set. Extremely randomized trees is outperformed by the other 

two types of base models in providing average classification accuracy on two data sets. 

However, it provides the best classification accuracy on the third data set. The 

performance of random forest base models on all three data sets is between those of 

extreme gradient boosting and extremely randomized trees base models.  

The literature shows that majority voting is mostly used as benchmarking 

ensemble method in many researches (Brieman, 2001). Logistic regression has also 

proven to be a good ensemble method in stacking (Wolpert, 1992). In addition to 

majority voting and logistic regression ensemble, we introduced random forest and 
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extreme gradient boosting model as additional ensemble methods to our research. In 

experiment one, all thirty-one base models are combined by these four different 

ensemble methods: majority voting, random forest, extreme gradient boosting, and 

logistic regression. Except for majority voting, all other three ensemble methods are 

machine learning algorithms or statistical models. The performance of ensemble 

methods was compared with that of base models. Majority voting ensemble achieved 

better performance than 72% of individual base models on the three data sets. It 

outperformed 83% of random forest base models, 67% extremely randomized trees 

base models, and 32% of extreme gradient boosting base models on the three test data 

sets. Extreme gradient boosting ensemble achieved better performance than 92% of 

base models. Only eight extreme gradient boosting base models defeated it. Logistic 

regression ensemble achieved better performance than 90% of base models. Only nine 

extreme gradient boosting base model had better performance than it. Random forest 

ensemble outperformed all of the base models. Compared with benchmarks, which are 

the average accuracy of random forest base models, all four ensembles achieved 

improved performance. Random forest ensemble achieved the best classification 

accuracy among the four ensemble methods. Logistic regression had a comparable 

classification accuracy as the extreme gradient boosting ensemble. Majority voting 

ensemble performed the worst among the four ensemble approaches. It is concluded 

that random forest ensemble is the best ensemble method when combining all three 

kinds of base models. Majority voting method is not an ideal ensemble method in this 

experiment.  



100 
 

 
 

It is very common that all base models are combined together for the final 

output in lots of research. However, researchers have also showed that combining base 

models with some desirable characteristics worked better than only combining all base 

models (Rodríguez, Kuncheva, & Alonso, 2006). So, factor scores of multiple 

correspondence analysis (MCA) were generated and combined with base models in our 

experiments. The MCA factor scores are designed to preserve the variability 

information in the data and capture the new features of base models. In experiment two, 

extreme gradient boosting, random forest, and logistic regression model were used to 

combine all base models and MCA factor scores. Compared with individual base 

models, logistic regression ensemble achieved better performance than 90% of base 

models. Only nine extreme gradient boosting base models had better performance than 

logistic regression ensemble. Extreme gradient boosting ensemble achieved better 

performance than 92% of base models. Only eight extreme gradient boosting base 

models outperformed it. Random forest ensemble outperformed all of the base models. 

Compared with benchmarks, all three ensembles achieved improved performance. 

Again, random forest ensemble achieved the best performance among the three 

ensemble methods. Logistic regression had a comparable classification accuracy as the 

extreme gradient boosting ensemble. Compared with the same ensemble in experiment 

one, random forest ensemble improved the accuracy the most; extreme gradient 

boosting had a minor performance improvement or similar performance; logistic 

regression produced the same accuracy on all data sets. It is concluded that random 

forest ensemble is the best ensemble method when combining all of the three kinds of 
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base models with MCA factor scores. MCA factor scores help the random forest 

ensemble method in providing more accurate predictions. 

Selecting a subset of base models might improve the accuracy of the sfinal 

decision (Tsoumakas, Partalas, & Vlahavas, 2008). The criterion of selecting the base 

models can be based on accuracy and diversity (Hu, 2001). The three kinds of base 

models in the experiments in this research are already ensemble-based models and 

proven to be able to achieve high accuracy in most situations, hence the focus is on 

choosing base models with the most diversity in this research. Cramér’s V correlation 

analysis and backward selection were applied in experiment three and four to choose 

the optimal subset of diverse base models to ensemble (Abdelazeem, 2008). Backward 

selection associated with logistic regression ensemble method selected less than 50% 

of base models in the final ensemble. The selected base models are a mix of three kinds 

of base models. Two data sets favored larger numbers of extreme gradient boosting 

base models in the final ensemble; and one data set favored a larger number of random 

forest models in the final ensemble. After applying another model selection method, 

Cramér’s V correlation analysis, ten extreme gradient boosting and eleven extremely 

randomized trees base models were chosen by evaluating the average of correlation 

coefficients between them. These two types of models were selected because they had 

the smallest correlation on average. These twenty-one base models were combined with 

majority voting, random forest, and extreme gradient boosting in experiment three. 

In experiment three, only selected base models were ensembled. Compared 

with individual base models, majority voting ensemble achieved better performance 

than only 49% of base models. Extreme gradient boosting ensemble achieved better 
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performance than only 78% of base models; thirteen extreme gradient boosting and 

seven random forest base models outperformed extreme gradient boosting ensemble. 

Random forest ensemble did not outperform all the base models as in experiment two; 

nine extreme gradient boosting base models had better performance than random forest 

ensemble. Logistic regression outperformed 90% of base models; the same nine 

extreme gradient boosting base models had better performance than logistic regression 

ensemble. Among the ensemble methods in experiment three, random forest ensemble 

models had the best performance. Although logistic regression ensemble only 

integrated around 33% to 50% base models, it achieved about the same accuracy as the 

ensemble methods that integrated all base models. Compared with benchmarks, 

majority voting ensemble outperformed the benchmark only on one data set; extreme 

gradient boosting ensemble outperformed the benchmark on two data sets; random 

forest and logistic regression outperformed the benchmarks on all three data sets. 

Compared with the same ensemble methods in experiment two, logistic regression 

ensemble had the same or very close accuracy as that in experiment two. Extreme 

gradient boosting and random forest ensemble both had worse performance than they 

had in experiment two. According to the results in experiment one, two, and three, the 

three ensemble methods in experiment two which combined all base models and MCA 

factor scores achieved better classification accuracy than the same methods in 

experiment one which combined all base models and in experiment three which 

integrated only selected base models.  

Since the ensembles in experiment three had all decreased performance when 

compared with those ensembles in experiment one and two, MCA factor scores were 
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added to combine with the selected base models in experiment four. Whether the MCA 

factor scores could improve the ensemble performance was evaluated. Compared with 

base models, extreme gradient boosting ensemble achieved better performance than 

93% of base models with only nine extreme gradient boosting base models 

outperforming it. The random forest ensemble outperformed all the base models as in 

experiment two. Logistic regression ensemble had the same performance as in 

experiment three.  

Among the ensemble methods in experiment four, random forest ensemble 

outperformed a larger number of base models than extreme gradient boosting and 

logistic regression ensemble. Logistic regression ensemble achieved the same 

performance as it did in experiment three, which supports the conclusion that adding 

MCA factor scores doesn’t help to increase logistic regression ensemble at all. Logistic 

regression, extreme gradient boosting and random forest ensemble outperformed the 

benchmarks on three data sets. Compared with the same ensemble methods in 

experiment one, random forest ensemble had better performance in experiment four; 

extreme gradient boosting ensemble had worse performance on two data sets and a 

comparable performance on the third data set. When compared with the same ensemble 

methods in experiment two, five ensembles were defeated in experiment four. It 

seemed that ensembles in experiment two had better performance in overall. However, 

it was noticed that random forest in experiment four outperformed themselves in 

experiment two on two data sets. Compared with experiment three, it is not surprising 

that except for logistic regression that had stable performance in all the four 

experiments, ensembles in experiment four performed better than in experiment three. 
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MCA factor scores helped a little bit in the extreme gradient boosting ensemble but a 

lot in the random forest ensemble.  

As an ensemble method of three kinds of ensemble-based high performance 

base models, majority voting performed the worst in combining either all base models 

or selected base models. It is not an ideal method to do the final combination. Another 

ensemble method, logistic regression, achieved competitive but not the best 

performance when compared with other ensemble approaches. It is not sensitive to 

model selection or MCA factor scores since it produced very stable classification 

accuracies regardless of the model selection applied or MCA factor scores presented. 

The third ensemble method, extreme gradient boosting, did a better job when more 

variables, here more base models, were combined. In our experiment, since MCA 

factor scores were treated the same as base models in ensemble, extreme gradient 

boosting ensemble performed better when MCA factor scores were involved; however, 

it performed poorly when model selection was involved. Extreme gradient boosting 

ensemble is sensitive to the number of inputs, which include both base models and 

MCA factor scores, to the final ensemble approach. The more base models included as 

inputs, the better performance extreme gradient boosting ensemble can achieve. The 

fourth ensemble, random forest, is the most successful method of combining the three 

kinds of high performance tree-based ensemble models. It performed the best when 

combining all base models, all base models with MCA factor scores, or selected base 

models with MCA factor scores when compared with other types of ensemble methods. 

Especially, it achieved the highest classification accuracy on two data sets when 

combining only twenty-one selected base models and MCA factor scores. Adding 



105 
 

 
 

MCA factor scores definitely helped to improve random forest ensemble method. On 

the contrary, applying only model selection decreased its performance. However, 

applying both model selection and MCA factor scores worked extremely successfully 

in improving its ensemble performance. Overall, ensemble methods among random 

forest, extreme gradient boosting, and extremely randomized trees, the best approach 

to ensemble tree-based ensemble models is random forest ensemble method with or 

without model selection, and then combining MCA factor scores with those selected or 

all base models.  

The research is designed to investigate if there is an approach which can 

integrate ensemble-based models to achieve even better classification accuracy. The 

experiments are limited to binary classification problems. Future research can be 

extended to multiple classification problems, or even further to numerical predictions. 

It is expected that the findings of this research can be applied in the real world since all 

the testing data sets are real but not simulated data sets. The three data sets are collected 

from the field of finance, national survey, and physics respectively. Future research can 

be applied to other types of real world data.  
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Appendix A: RStudio Interface 
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Appendix B: R Code of Experiments on EEG Eye State Data Set 

# EGG data set 
# data set: "EEG-DATA.cvs" contains 14,980 rows 
 
############################## 
# Read EGG data                              # 
############################## 
whole = read.csv("C:/Users/yz22/Desktop/PHD R/EEG/EEG-DATA.csv", header = FALSE,   
                 col.names = c("AF3","F7", "F3", "FC5", "T7", "P7",  
                               "O1", "O2", "P8", "T8", "FC6", 
                               "F4", "F8", "AF4", "eyeDetection")) 
 
###Data partition into 70% and 30%###                  
data(whole) 
n = nrow(whole) 
trainIndex = sample(1:n, size = round(0.7*n), replace=FALSE) 
train = whole[trainIndex ,] 
test = whole[-trainIndex ,] 
 
# data frame for predicted results on test data  
 
results = data.frame(y = test$eyeDetection) 
 
############################### 
# End Read EGG data  # 
############################### 
 
########################################################## 
# eXtreme Gradient Boosting: install.packages("xgboost") # 
########################################################## 
install.packages("drat", repos="https://cran.rstudio.com") 
drat:::addRepo("dmlc") 
install.packages("xgboost", repos="http://dmlc.ml/drat/", type = "source") 
 
require(xgboost) 
set.seed(12345) 
 
trainX = train 
testX = test 
 
##rename the target variable into y## 
names(trainX)[15]<-"y" 
names(testX)[15]<-"y" 
 
#binarize all factors in train data set 
library(caret) 
dmy <- dummyVars(" ~ .", data=trainX) 
trainXdmy <- data.frame(predict(dmy, newdata=trainX)) 
dim(trainXdmy) 
names(trainXdmy) 
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#binarize all factors in test data set 
dmyTest <- dummyVars(" ~ .", data=testX) 
testXdmy <- data.frame(predict(dmyTest, newdata=testX)) 
dim(testXdmy) 
names(testXdmy) 
 
############################################## 
#prepared a varialbe of target, and a matrix for predictor# 
outcomeName <-c('y') 
 
predictors <- names(trainXdmy)[!names(trainXdmy)%in% outcomeName] 
predictorsTest <- names(trainXdmy)[!names(trainXdmy)%in% outcomeName] 
 
#train 
#nrounds parameter is adjustable 
 
library(xgboost) 
#For variable importance 
library(DiagrammeR) 
library(Ckmeans.1d.dp) 
set.seed(12345) 
 
#################### 
#xgboost 1st model## 
#################### 
 
#run 10 fold cross validation and choose the best round;round 80 to 120 all have the relative 
similar accuracy 
#set up parameters for Xgboost# 
param <- list("objective" = "binary:logistic", 
              "eval_metric" = "logloss", 
              "eta" = 0.1, "max.depth" = 2) 
 
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label = 
trainXdmy[,outcomeName], nfold=10, nround = 1500) 
plot(log(bst.cv$test.logloss.mean),type = "l") 
 
# round 45 have the highest accuracy# 
bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName], 
max.depth = 2, eta = 1, nround = 1068, 
               nthread = 2, objective ="binary:logistic") 
gc() 
#make prediction# 
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE) 
#outputmargin has to be FALSE to produce probability 
#predictions[1:10] 
print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y))) 
 
# Get the variable importance 
importance_matrix <- xgb.importance(predictors, model = bst) 
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xgb.plot.importance(importance_matrix[1:10]) 
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2) 
 
#convert to categorical target and caculate the accuracy 
yPredCat1 <- ifelse(predictions <= 0.5,0,1) 
yPredCat1[1:10] 
results$xgb1 = yPredCat1 
confusionXgb1=table(yPredCat1,testXdmy$y) 
accuracyXgb1 = sum(diag(confusionXgb1))/sum(confusionXgb1) 
cat("xgboost Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyXgb1)) 
confusionXgb1 
 
#################### 
#xgboost 2nd model## 
#################### 
 
param <- list("objective" = "binary:logistic", 
              "eval_metric" = "logloss", 
              "eta" = 0.9, "max.depth" = 2) 
#run 10 fold cross validation and choose the best round;round 80 to 120 all have the relative 
similar accuracy 
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label = 
trainXdmy[,outcomeName], nfold=10, nround = 1500) 
plot(log(bst.cv$test.logloss.mean),type = "l") 
 
bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName], 
max.depth = 2, eta = 0.9, nround = 850, 
               nthread = 2, objective ="binary:logistic") 
gc() 
#make prediction# 
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE) 
#outputmargin has to be FALSE to produce probability 
#predictions[1:10] 
print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y))) 
 
# Get the variable importance 
importance_matrix <- xgb.importance(predictors, model = bst) 
xgb.plot.importance(importance_matrix[1:10]) 
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2) 
 
#convert to categorical target and caculate the accuracy 
yPredCat2 <- ifelse(predictions <= 0.5,0,1) 
yPredCat2[1:10] 
results$xgb2 = yPredCat2 
confusionXgb2=table(yPredCat2,testXdmy$y) 
accuracyXgb2 = sum(diag(confusionXgb2))/sum(confusionXgb2) 
cat("xgboost Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyXgb2)) 
confusionXgb2 
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#################### 
#xgboost 3rd model## 
#################### 
set.seed(63521) 
param <- list("objective" = "binary:logistic", 
              "eval_metric" = "logloss", 
              "eta" = 0.8, "max.depth" = 2) 
#run 10 fold cross validation and choose the best round;round 80 to 120 all have the relative 
similar accuracy 
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label = 
trainXdmy[,outcomeName], nfold=10, nround = 1000) 
plot(log(bst.cv$test.logloss.mean),type = "l") 
 
bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName], 
max.depth = 2, eta = 0.8, nround = 920, 
               nthread = 2, objective ="binary:logistic") 
gc() 
#make prediction# 
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE) 
#outputmargin has to be FALSE to produce probability 
#predictions[1:10] 
print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y))) 
 
# Get the variable importance 
importance_matrix <- xgb.importance(predictors, model = bst) 
xgb.plot.importance(importance_matrix[1:10]) 
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2) 
 
#convert to categorical target and caculate the accuracy 
yPredCat3 <- ifelse(predictions <= 0.5,0,1) 
yPredCat3[1:10] 
results$xgb3 = yPredCat3 
confusionXgb3=table(yPredCat3,testXdmy$y) 
accuracyXgb3 = sum(diag(confusionXgb3))/sum(confusionXgb3) 
cat("xgboost Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyXgb3)) 
confusionXgb3 
 
#################### 
#xgboost 4th model## 
#################### 
param <- list("objective" = "binary:logistic", 
              "eval_metric" = "logloss", 
              "eta" = 0.7, "max.depth" = 2) 
#run 10 fold cross validation and choose the best round;round 80 to 120 all have the relative 
similar accuracy 
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label = 
trainXdmy[,outcomeName], nfold=10, nround = 1500) 
plot(log(bst.cv$test.logloss.mean),type = "l") 
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bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName], 
max.depth = 2, eta = 0.7, nround = 1427, 
               nthread = 2, objective ="binary:logistic") 
gc() 
#make prediction# 
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE) 
#outputmargin has to be FALSE to produce probability 
#predictions[1:10] 
print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y))) 
 
# Get the variable importance 
importance_matrix <- xgb.importance(predictors, model = bst) 
xgb.plot.importance(importance_matrix[1:10]) 
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2) 
 
#convert to categorical target and caculate the accuracy 
yPredCat4 <- ifelse(predictions <= 0.5,0,1) 
yPredCat4[1:10] 
results$xgb4 = yPredCat4 
confusionXgb4=table(yPredCat4,testXdmy$y) 
accuracyXgb4 = sum(diag(confusionXgb4))/sum(confusionXgb4) 
cat("xgboost Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyXgb4)) 
confusionXgb4 
 
#################### 
#xgboost 5th model## 
#################### 
param <- list("objective" = "binary:logistic", 
              "eval_metric" = "logloss", 
              "eta" = 0.6, "max.depth" = 2) 
#run 10 fold cross validation and choose the best round; 
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label = 
trainXdmy[,outcomeName], nfold=10, nround = 1500) 
plot(log(bst.cv$test.logloss.mean),type = "l") 
 
bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName], 
max.depth = 2, eta = 0.6, nround = 1440, 
               nthread = 2, objective ="binary:logistic") 
gc() 
#make prediction# 
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE) 
#outputmargin has to be FALSE to produce probability 
#predictions[1:10] 
print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y))) 
 
# Get the variable importance 
importance_matrix <- xgb.importance(predictors, model = bst) 
xgb.plot.importance(importance_matrix[1:10]) 
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2) 
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#convert to categorical target and caculate the accuracy 
yPredCat5 <- ifelse(predictions <= 0.5,0,1) 
yPredCat5[1:10] 
results$xgb5 = yPredCat5 
confusionXgb5=table(yPredCat5,testXdmy$y) 
accuracyXgb5 = sum(diag(confusionXgb5))/sum(confusionXgb5) 
cat("xgboost Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyXgb5)) 
confusionXgb5 
 
#################### 
#xgboost 6th model## 
#################### 
param <- list("objective" = "binary:logistic", 
              "eval_metric" = "logloss", 
              "eta" = 0.5, "max.depth" = 2) 
#run 10 fold cross validation and choose the best round; 
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label = 
trainXdmy[,outcomeName], nfold=10, nround = 1500) 
plot(log(bst.cv$test.logloss.mean),type = "l") 
 
bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName], 
max.depth = 2, eta = 0.5, nround = 1480, 
               nthread = 2, objective ="binary:logistic") 
gc() 
#make prediction# 
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE) 
#outputmargin has to be FALSE to produce probability 
#predictions[1:10] 
print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y))) 
 
# Get the variable importance 
importance_matrix <- xgb.importance(predictors, model = bst) 
xgb.plot.importance(importance_matrix[1:10]) 
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2) 
 
#convert to categorical target and caculate the accuracy 
yPredCat6 <- ifelse(predictions <= 0.5,0,1) 
yPredCat6[1:10] 
results$xgb6 = yPredCat6 
confusionXgb6=table(yPredCat6,testXdmy$y) 
accuracyXgb6 = sum(diag(confusionXgb6))/sum(confusionXgb6) 
cat("xgboost Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyXgb6)) 
confusionXgb6 
 
#################### 
#xgboost 7th model## 
#################### 
param <- list("objective" = "binary:logistic", 
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              "eval_metric" = "logloss", 
              "eta" = 0.4, "max.depth" = 2) 
#run 10 fold cross validation and choose the best round;1 
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label = 
trainXdmy[,outcomeName], nfold=10, nround = 1500) 
plot(log(bst.cv$test.logloss.mean),type = "l") 
 
bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName], 
max.depth = 2, eta = 0.4, nround = 1500, 
               nthread = 2, objective ="binary:logistic") 
gc() 
#make prediction# 
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE) 
#outputmargin has to be FALSE to produce probability 
#predictions[1:10] 
print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y))) 
 
# Get the variable importance 
importance_matrix <- xgb.importance(predictors, model = bst) 
xgb.plot.importance(importance_matrix[1:10]) 
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2) 
 
#convert to categorical target and caculate the accuracy 
yPredCat7 <- ifelse(predictions <= 0.5,0,1) 
yPredCat7[1:10] 
results$xgb7 = yPredCat7 
confusionXgb7=table(yPredCat7,testXdmy$y) 
accuracyXgb7 = sum(diag(confusionXgb7))/sum(confusionXgb7) 
cat("xgboost Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyXgb7)) 
confusionXgb7 
 
#################### 
#xgboost 8th model## 
#################### 
param <- list("objective" = "binary:logistic", 
              "eval_metric" = "logloss", 
              "eta" = 0.3, "max.depth" = 2) 
#run 10 fold cross validation and choose the best round; 
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label = 
trainXdmy[,outcomeName], nfold=10, nround = 1500) 
plot(log(bst.cv$test.logloss.mean),type = "l") 
 
bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName], 
max.depth = 2, eta = 0.3, nround = 1500, 
               nthread = 2, objective ="binary:logistic") 
gc() 
#make prediction# 
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE) 
#outputmargin has to be FALSE to produce probability 
#predictions[1:10] 
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print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y))) 
 
# Get the variable importance 
importance_matrix <- xgb.importance(predictors, model = bst) 
xgb.plot.importance(importance_matrix[1:10]) 
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2) 
 
#convert to categorical target and caculate the accuracy 
yPredCat8 <- ifelse(predictions <= 0.5,0,1) 
yPredCat8[1:10] 
results$xgb8 = yPredCat8 
confusionXgb8=table(yPredCat8,testXdmy$y) 
accuracyXgb8 = sum(diag(confusionXgb8))/sum(confusionXgb8) 
cat("xgboost Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyXgb8)) 
confusionXgb8 
 
#################### 
#xgboost 9th model## 
#################### 
param <- list("objective" = "binary:logistic", 
              "eval_metric" = "logloss", 
              "eta" = 0.2, "max.depth" = 2) 
#run 10 fold cross validation and choose the best round; 
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label = 
trainXdmy[,outcomeName], nfold=10, nround = 1500) 
plot(log(bst.cv$test.logloss.mean),type = "l") 
 
 
bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName], 
max.depth = 2, eta = 0.2, nround = 1500, 
               nthread = 2, objective ="binary:logistic") 
gc() 
#make prediction# 
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE) 
#outputmargin has to be FALSE to produce probability 
#predictions[1:10] 
print(-mean(log(predictions)*testXdmy$salary+log(1-predictions)*(1-testXdmy$salary))) 
 
# Get the variable importance 
importance_matrix <- xgb.importance(predictors, model = bst) 
xgb.plot.importance(importance_matrix[1:10]) 
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2) 
 
#convert to categorical target and caculate the accuracy 
yPredCat9 <- ifelse(predictions <= 0.5,0,1) 
yPredCat9[1:10] 
results$xgb9 = yPredCat9 
confusionXgb9=table(yPredCat9,testXdmy$y) 
accuracyXgb9 = sum(diag(confusionXgb9))/sum(confusionXgb9) 
cat("xgboost Results:\n") 
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cat(sprintf("Accuracy %3.4f\n", accuracyXgb9)) 
confusionXgb9 
 
#################### 
#xgboost 10th model## 
#################### 
param <- list("objective" = "binary:logistic", 
              "eval_metric" = "logloss", 
              "eta" = 0.1, "max.depth" = 2) 
#run 10 fold cross validation and choose the best round; 
bst.cv <- xgb.cv(param=param, data = as.matrix(trainXdmy[,predictors]), label = 
trainXdmy[,outcomeName], nfold=10, nround = 1500) 
plot(log(bst.cv$test.logloss.mean),type = "l") 
 
bst <- xgboost(data = as.matrix(trainXdmy[,predictors]), label = trainXdmy[,outcomeName], 
max.depth = 2, eta = 0.1, nround = 1500, 
               nthread = 2, objective ="binary:logistic") 
gc() 
#make prediction# 
predictions <- predict(bst, as.matrix(testXdmy[,predictorsTest]), outputmargin= FALSE) 
#outputmargin has to be FALSE to produce probability 
#predictions[1:10] 
print(-mean(log(predictions)*testXdmy$y+log(1-predictions)*(1-testXdmy$y))) 
 
# Get the variable importance 
importance_matrix <- xgb.importance(predictors, model = bst) 
xgb.plot.importance(importance_matrix[1:10]) 
xgb.plot.tree(feature_names =predictors, model = bst, n_first_tree = 2) 
 
#convert to categorical target and caculate the accuracy 
yPredCat10 <- ifelse(predictions <= 0.5,0,1) 
yPredCat10[1:10] 
results$xgb10 = yPredCat10 
confusionXgb10=table(yPredCat10,testXdmy$y) 
accuracyXgb10 = sum(diag(confusionXgb10))/sum(confusionXgb10) 
cat("xgboost Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyXgb10)) 
confusionXgb10 
############################### 
# End extreme random boosting # 
############################### 
 
######################### 
#######Extra Trees####### 
######################### 
#put 2g space for extra tree 
options( java.parameters = "-Xmx2g" ) 
 
#package "rJava" needed to be installed before using extra trees 
install.packages("rJava") 
Sys.setenv(JAVA_HOME='C:\\Program Files\\Java\\jre1.8.0_101') # for 64-bit version 
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library(rJava) 
 
install.packages("extraTrees") 
library(extraTrees) 
 
############################## 
trainET = trainX 
testET = testX 
 
trainET=list(x=trainXdmy[,predictors],y=trainXdmy[,15])  
testET=list(x=testXdmy[,predictors],y=testXdmy[,15]) 
 
################## 
##1st Extra Tree     ## 
################## 
set.seed(13524) 
et <- extraTrees(trainET$x, trainET$y, ntree=50) 
yhat  <- predict(et, testET$x) 
## accuracy 
mean(testET$y == yhat) 
## class probabilities 
#convert to categorical target and caculate the accuracy 
yPredET1 <- ifelse(yhat <= 0.5,0,1) 
yPredET1[1:10] 
results$ET1 = yPredET1 
confusionET1=table(yPredET1,testXdmy$y) 
accuracyET1 = sum(diag(confusionET1))/sum(confusionET1) 
cat("Extra Tree Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyET1)) 
confusionET1 
 
################## 
##2nd Extra Tree## 
################## 
set.seed(54321) 
et <- extraTrees(trainET$x, trainET$y, ntree=100) 
yhat  <- predict(et, testET$x) 
## accuracy 
mean(testET$y == yhat) 
## class probabilities 
#convert to categorical target and caculate the accuracy 
yPredET2 <- ifelse(yhat <= 0.5,0,1) 
yPredET2[1:10] 
results$ET2 = yPredET2 
confusionET2=table(yPredET2,testXdmy$y) 
accuracyET2 = sum(diag(confusionET2))/sum(confusionET2) 
cat("Extra Tree Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyET2)) 
confusionET2 
 
################## 
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##3rd Extra Tree## 
################## 
set.seed(12345) 
et <- extraTrees(trainET$x, trainET$y, ntree=150) 
yhat  <- predict(et, testET$x) 
## accuracy 
mean(testET$y == yhat) 
## class probabilities 
#convert to categorical target and caculate the accuracy 
yPredET3 <- ifelse(yhat <= 0.5,0,1) 
yPredET3[1:10] 
results$ET3 = yPredET3 
confusionET3=table(yPredET3,testXdmy$y) 
accuracyET3 = sum(diag(confusionET3))/sum(confusionET3) 
cat("Extra Tree Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyET3)) 
confusionET3 
 
################## 
##4th Extra Tree## 
################## 
set.seed(24635) 
et <- extraTrees(trainET$x, trainET$y, ntree=200) 
yhat  <- predict(et, testET$x) 
## accuracy 
mean(testET$y == yhat) 
## class probabilities 
#convert to categorical target and caculate the accuracy 
yPredET4 <- ifelse(yhat <= 0.5,0,1) 
yPredET4[1:10] 
results$ET4 = yPredET4 
confusionET4=table(yPredET4,testXdmy$y) 
accuracyET4 = sum(diag(confusionET4))/sum(confusionET4) 
cat("Extra Tree Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyET4)) 
confusionET4 
 
################## 
##5th Extra Tree## 
################## 
set.seed(98765) 
et <- extraTrees(trainET$x, trainET$y, ntree=250) 
yhat  <- predict(et, testET$x) 
## accuracy 
mean(testET$y == yhat) 
## class probabilities 
#convert to categorical target and caculate the accuracy 
yPredET5 <- ifelse(yhat <= 0.5,0,1) 
yPredET5[1:10] 
results$ET5 = yPredET5 
confusionET5=table(yPredET5,testXdmy$y) 
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accuracyET5 = sum(diag(confusionET5))/sum(confusionET5) 
cat("Extra Tree Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyET5)) 
confusionET5 
 
################## 
##6th Extra Tree## 
################## 
set.seed(40628) 
et <- extraTrees(trainET$x, trainET$y, ntree=300) 
yhat  <- predict(et, testET$x) 
## accuracy 
mean(testET$y == yhat) 
## class probabilities 
#convert to categorical target and caculate the accuracy 
yPredET6 <- ifelse(yhat <= 0.5,0,1) 
yPredET6[1:10] 
results$ET6 = yPredET6 
confusionET6=table(yPredET6,testXdmy$y) 
accuracyET6 = sum(diag(confusionET6))/sum(confusionET6) 
cat("Extra Tree Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyET6)) 
confusionET6 
 
################## 
##7th Extra Tree## 
################## 
set.seed(59764) 
et <- extraTrees(trainET$x, trainET$y, ntree=350) 
yhat  <- predict(et, testET$x) 
## accuracy 
mean(testET$y == yhat) 
## class probabilities 
#convert to categorical target and caculate the accuracy 
yPredET7 <- ifelse(yhat <= 0.5,0,1) 
yPredET7[1:10] 
results$ET7 = yPredET7 
confusionET7=table(yPredET7,testXdmy$y) 
accuracyET7 = sum(diag(confusionET7))/sum(confusionET7) 
cat("Extra Tree Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyET7)) 
confusionET7 
 
################## 
##8th Extra Tree## 
################## 
set.seed(82604) 
et <- extraTrees(trainET$x, trainET$y, ntree=400) 
yhat  <- predict(et, testET$x) 
## accuracy 
mean(testET$y == yhat) 
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## class probabilities 
#convert to categorical target and caculate the accuracy 
yPredET8 <- ifelse(yhat <= 0.5,0,1) 
yPredET8[1:10] 
results$ET8 = yPredET8 
confusionET8=table(yPredET8,testXdmy$y) 
accuracyET8 = sum(diag(confusionET8))/sum(confusionET8) 
cat("Extra Tree Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyET8)) 
confusionET8 
 
################## 
##9th Extra Tree## 
################## 
set.seed(37596) 
et <- extraTrees(trainET$x, trainET$y, ntree=450) 
yhat  <- predict(et, testET$x) 
## accuracy 
mean(testET$y == yhat) 
## class probabilities 
#convert to categorical target and caculate the accuracy 
yPredET9 <- ifelse(yhat <= 0.5,0,1) 
yPredET9[1:10] 
results$ET9 = yPredET9 
confusionET9=table(yPredET9,testXdmy$y) 
accuracyET9 = sum(diag(confusionET9))/sum(confusionET9) 
cat("Extra Tree Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyET9)) 
confusionET9 
 
################## 
##10th Extra Tree## 
################## 
set.seed(49562) 
et <- extraTrees(trainET$x, trainET$y, ntree=500) 
yhat  <- predict(et, testET$x) 
## accuracy 
mean(testET$y == yhat) 
## class probabilities 
#convert to categorical target and caculate the accuracy 
yPredET10 <- ifelse(yhat <= 0.5,0,1) 
yPredET10[1:10] 
results$ET10 = yPredET10 
confusionET10=table(yPredET10,testXdmy$y) 
accuracyET10 = sum(diag(confusionET10))/sum(confusionET10) 
cat("Extra Tree Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyET10)) 
confusionET10 
 
################## 
##11th Extra Tree## 
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################## 
set.seed(84638) 
et <- extraTrees(trainET$x, trainET$y, ntree=550) 
yhat  <- predict(et, testET$x) 
## accuracy 
mean(testET$y == yhat) 
## class probabilities 
#convert to categorical target and caculate the accuracy 
yPredET11 <- ifelse(yhat <= 0.5,0,1) 
yPredET11[1:10] 
results$ET11 = yPredET11 
confusionET11=table(yPredET11,testXdmy$y) 
accuracyET11 = sum(diag(confusionET11))/sum(confusionET11) 
cat("Extra Tree Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracyET11)) 
confusionET11 
 
################################################## 
# randomForest: install.packages("randomForest") # 
################################################## 
 
library(randomForest) 
 
#create fisrt random forest# 
model1 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),  
                      xtest=testXdmy[,-15], ntree=50, set.seed(12345, kind=NULL, 
normal.kind=NULL)) 
predicted1 = model1$test$predicted 
results$FOREST1 = predicted1 
confusion1 = table(predicted1, testXdmy$y) 
accuracy1 = sum(diag(confusion1))/sum(confusion1) 
cat("FOREST Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracy1)) 
confusion1 
 
#create second random forest# 
model2 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),  
                      xtest=testXdmy[,-15], ntree=100, set.seed(54321, kind=NULL, 
normal.kind=NULL)) 
predicted2 = model2$test$predicted 
results$FOREST2 = predicted2 
confusion2 = table(predicted2, testXdmy$y) 
accuracy2 = sum(diag(confusion2))/sum(confusion2) 
cat("FOREST Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracy2)) 
confusion2 
 
#create 3rd random forest# 
model3 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),  
                      xtest=testXdmy[,-15], ntree=150, set.seed(13524, kind=NULL, 
normal.kind=NULL)) 
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predicted3 = model3$test$predicted 
results$FOREST3 = predicted3 
confusion3 = table(predicted3, testXdmy$y) 
accuracy3 = sum(diag(confusion3))/sum(confusion3) 
cat("FOREST Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracy3)) 
confusion3 
 
#create 4th random forest# 
model4 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),  
                      xtest=testXdmy[,-15], ntree=200, set.seed(24531, kind=NULL, 
normal.kind=NULL)) 
predicted4 = model4$test$predicted 
results$FOREST4 = predicted4 
confusion4 = table(predicted4, testXdmy$y) 
accuracy4 = sum(diag(confusion4))/sum(confusion4) 
cat("FOREST Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracy4)) 
confusion4 
 
#create 5th random forest# 
model5 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),  
                      xtest=testXdmy[,-15], ntree=250, set.seed(31452, kind=NULL, 
normal.kind=NULL)) 
predicted5 = model5$test$predicted 
results$FOREST5 = predicted5 
confusion5 = table(predicted5, testXdmy$y) 
accuracy5 = sum(diag(confusion5))/sum(confusion5) 
cat("FOREST Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracy5)) 
confusion5 
 
#create 6th random forest# 
model6 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),  
                      xtest=testXdmy[,-15], ntree=300, set.seed(43521, kind=NULL, 
normal.kind=NULL)) 
predicted6 = model6$test$predicted 
results$FOREST6 = predicted6 
confusion6 = table(predicted6, testXdmy$y) 
accuracy6 = sum(diag(confusion6))/sum(confusion6) 
cat("FOREST Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracy6)) 
confusion6 
 
#create 7th random forest# 
model7 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),  
                      xtest=testXdmy[,-15], ntree=350, set.seed(56789, kind=NULL, 
normal.kind=NULL)) 
predicted7 = model7$test$predicted 
results$FOREST7 = predicted7 
confusion7 = table(predicted7, testXdmy$y) 
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accuracy7 = sum(diag(confusion7))/sum(confusion7) 
cat("FOREST Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracy7)) 
confusion7 
 
#create 8th random forest# 
model8 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),  
                      xtest=testXdmy[,-15], ntree=400, set.seed(98765, kind=NULL, 
normal.kind=NULL)) 
predicted8 = model8$test$predicted 
results$FOREST8 = predicted8 
confusion8 = table(predicted8, testXdmy$y) 
accuracy8 = sum(diag(confusion8))/sum(confusion8) 
cat("FOREST Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracy8)) 
confusion8 
 
#create 9th random forest# 
model9 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),  
                      xtest=testXdmy[,-15], ntree=450, set.seed(52947, kind=NULL, 
normal.kind=NULL)) 
predicted9 = model9$test$predicted 
results$FOREST9 = predicted9 
confusion9 = table(predicted9, testXdmy$y) 
accuracy9 = sum(diag(confusion9))/sum(confusion9) 
cat("FOREST Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracy9)) 
confusion9 
 
#create 10th random forest# 
model10 = randomForest(trainXdmy[,-15], as.factor(trainXdmy[,15]),  
                       xtest=testXdmy[,-15], ntree=500, set.seed(69875, kind=NULL, 
normal.kind=NULL)) 
predicted10 = model10$test$predicted 
results$FOREST10 = predicted10 
confusion10 = table(predicted10, testXdmy$y) 
accuracy10 = sum(diag(confusion10))/sum(confusion10) 
cat("FOREST Results:\n") 
cat(sprintf("Accuracy %3.4f\n", accuracy10)) 
confusion10 
 
############################### 
# End randomForest        ############## 
############################### 
 
#Write predicted result in a file 
results$xgb1 = yPredCat1 
results$xgb2 = yPredCat2 
results$xgb3 = yPredCat3 
results$xgb4 = yPredCat4 
results$xgb5 = yPredCat5 



123 
 

 
 

results$xgb6 = yPredCat6 
results$xgb7 = yPredCat7 
results$xgb8 = yPredCat8 
results$xgb9 = yPredCat9 
results$xgb10 =yPredCat10 
results$ET1 = yPredET1 
results$ET2 = yPredET2 
results$ET3 = yPredET3 
results$ET4 = yPredET4 
results$ET5 = yPredET5 
results$ET6 = yPredET6 
results$ET7 = yPredET7 
results$ET8 = yPredET8 
results$ET9 = yPredET9 
results$ET10 = yPredET10 
results$ET11 = yPredET11 
results$FOREST1 = predicted1 
results$FOREST2 = predicted2 
results$FOREST3 = predicted3 
results$FOREST4 = predicted4 
results$FOREST5 = predicted5 
results$FOREST6 = predicted6 
results$FOREST7 = predicted7 
results$FOREST8 = predicted8 
results$FOREST9 = predicted9 
results$FOREST10 = predicted10 
 
write.csv(results, "C:/Users/yz22/Desktop/PHD R/EEG/modelresults.csv") 
 
write.csv(confusion1, "C:/Users/yz22/Desktop/PHD R/EEG/confusion1.csv") 
write.csv(confusion2, "C:/Users/yz22/Desktop/PHD R/EEG/confusion2.csv") 
write.csv(confusion3, "C:/Users/yz22/Desktop/PHD R/EEG/confusion3.csv") 
write.csv(confusion4, "C:/Users/yz22/Desktop/PHD R/EEG/confusion4.csv") 
write.csv(confusion5, "C:/Users/yz22/Desktop/PHD R/EEG/confusion5.csv") 
write.csv(confusion6, "C:/Users/yz22/Desktop/PHD R/EEG/confusion6.csv") 
write.csv(confusion7, "C:/Users/yz22/Desktop/PHD R/EEG/confusion7.csv") 
write.csv(confusion8, "C:/Users/yz22/Desktop/PHD R/EEG/confusion8.csv") 
write.csv(confusion9, "C:/Users/yz22/Desktop/PHD R/EEG/confusion9.csv") 
write.csv(confusion10, "C:/Users/yz22/Desktop/PHD R/EEG/confusion10.csv") 
 
write.csv(confusionET1, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET1.csv") 
write.csv(confusionET2, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET2.csv") 
write.csv(confusionET3, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET3.csv") 
write.csv(confusionET4, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET4.csv") 
write.csv(confusionET5, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET5.csv") 
write.csv(confusionET6, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET6.csv") 
write.csv(confusionET7, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET7.csv") 
write.csv(confusionET8, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET8.csv") 
write.csv(confusionET9, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET9.csv") 
write.csv(confusionET10, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET10.csv") 
write.csv(confusionET11, "C:/Users/yz22/Desktop/PHD R/EEG/confusionET11.csv") 
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write.csv(confusionXgb1, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb1.csv") 
write.csv(confusionXgb2, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb2.csv") 
write.csv(confusionXgb3, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb3.csv") 
write.csv(confusionXgb4, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb4.csv") 
write.csv(confusionXgb5, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb5.csv") 
write.csv(confusionXgb6, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb6.csv") 
write.csv(confusionXgb7, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb7.csv") 
write.csv(confusionXgb8, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb8.csv") 
write.csv(confusionXgb9, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb9.csv") 
write.csv(confusionXgb10, "C:/Users/yz22/Desktop/PHD R/EEG/confusionXgb10.csv") 
 
#################################### 
##Multiple Correspondence Analysis## 
#################################### 
library(ca) 
mca <- mjca(results[,2:32]) 
summary(mca, lambda = "Burt") 
print(mca) 
 
#standard coordinates of rows, row factor scores 
mca$rowcoord[1:10,] 
#Principla coordinates of rows, row factor scores, defined in the dissertation 
mca$rowpcoord[1:10,] 
 
plot.mjca(mca) 
# add principle factor scores to the model results, create table resultMca, these data has two 
factors 
resultMca <- results 
resultMca$PFS1 = mca$rowpcoord[,1] 
resultMca$PFS2 = mca$rowpcoord[,2] 
 
resultMca$FS1 = mca$rowcoord[,1] 
resultMca$FS2 = mca$rowcoord[,2] 
 
 
########################################################## 
## CramÃ©r's V correlation coefficient of 30 base models## 
########################################################## 
library(vcd) 
 
cramerx <- results[,c(-1)] 
 
catcor <- function(x, type=c("cramer")) { 
  require(vcd) 
  nc <- ncol(x) 
  v <- expand.grid(1:nc, 1:nc) 
  type <- match.arg(type) 
  res <- matrix(mapply(function(i1, i2) assocstats(table(x[,i1], 
                                                         x[,i2]))[[type]], v[,1], v[,2]), nc, nc) 
  rownames(res) <- colnames(res) <- colnames(x) 
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  res 
} 
 
cramerxresult <- catcor(cramerx, type="cramer") 
 
write.csv(cramerxresult, "C:/Users/yz22/Desktop/PHD R/EEG/cramerxresult.csv") 
 
 
#######Second Stage: Experiment Design ########### 
 
        ########################################## 
        ## Experiment Design one ################# 
        ########################################## 
        ## use xgboost to combine the base model## 
        ########################################## 
        ########################################################## 
        install.packages("drat", repos="https://cran.rstudio.com") 
        drat:::addRepo("dmlc") 
        install.packages("xgboost", repos="http://dmlc.ml/drat/", type = "source") 
         
        require(xgboost) 
        set.seed(92754) 
         
        #format data to fit Xgboost# 
        #Xgboost requires all inputs are numberic 
         
        resultsXgb=results 
         
        #binarize all factors in the data set 
        library(caret) 
        dmy <- dummyVars(" ~ .", data=resultsXgb) 
        resultsXgbdmy <- data.frame(predict(dmy, newdata=resultsXgb)) 
         
        dim(resultsXgbdmy) 
        names(resultsXgbdmy) 
         
        ##################################################################### 
         
        #prepared a varialbe of target, and a matrix for predictor# 
        outcomeName <-c('y') 
         
        predictorsXgb <- names(resultsXgbdmy)[!names(resultsXgbdmy)%in% outcomeName] 
         
        #set up parameters for Xgboost# 
        param <- list("objective" = "binary:logistic", 
                      "eval_metric" = "logloss", 
                      "eta" =0.005, "max.depth" = 2) 
         
        library(xgboost) 
         
        #For variable importance 
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        library(DiagrammeR) 
        library(Ckmeans.1d.dp) 
         
        #run 10 fold cross validation and choose the best round 
        bst.cv <- xgb.cv(param=param, data = as.matrix(resultsXgbdmy[,predictorsXgb]),  
                         label = resultsXgbdmy[,outcomeName], nfold=10, nround = 2000) 
        plot(log(bst.cv$test.logloss.mean),type ="l") 
         
        ############################### 
        #Xgboost Final Combined Model## 
        ############################### 
         
        bstComb <- xgboost(data = as.matrix(resultsXgbdmy[,predictorsXgb]),  
                           label = resultsXgbdmy[,outcomeName], max.depth = 2, eta = 0.005, nround 
= 1540, 
                           nthread = 2, objective ="binary:logistic") 
        gc() 
 
        #make prediction# 
        predictionsXgb <- predict(bstComb, as.matrix(resultsXgbdmy[,predictorsXgb]), 
outputmargin= FALSE) #outputmargin has to be FALSE to produce probability 
        #predictions[1:10] 
        print(-mean(log(predictionsXgb)*resultsXgbdmy$y+log(1-predictionsXgb)*(1-
resultsXgbdmy$y))) 
         
        # Get the variable importance 
        importance_matrix <- xgb.importance(predictorsXgb, model = bstComb) 
        xgb.plot.importance(importance_matrix[1:10]) 
         
         
        #convert to categorical target and caculate the accuracy 
        yPredCatXgb <- ifelse(predictionsXgb <= 0.5,0,1) 
        yPredCatXgb[1:10] 
         
        confusionED1Xgb=table(yPredCatXgb,resultsXgbdmy$y) 
        accuracyXgb = sum(diag(confusionED1Xgb))/sum(confusionED1Xgb) 
        cat("xgboost Combine Base Model Results:\n") 
        cat(sprintf("Accuracy %3.4f\n", accuracyXgb)) 
        confusionED1Xgb 
        write.csv(confusionED1Xgb, "C:/Users/yz22/Desktop/PHD 
R/EEG/confusionED1Xgb.csv") 
         
        #Create a new table to save the ensemble result 
        resultsFinal = data.frame(y = testX$y) 
        #save the ensemble result to table 
        resultsFinal$xgb.allBase = yPredCatXgb 
         
         
        ################################ 
        ##Random Forest Combined Model## 
        ################################ 
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        library(randomForest) 
         
        #create fisrt random forest# 
        modelRF = randomForest(resultsXgbdmy[,-1], as.factor(resultsXgbdmy[,1]),  
                               xtest=resultsXgbdmy[,-1], ntree=50, set.seed(56382, kind=NULL, 
normal.kind=NULL)) 
        predictedRF = modelRF$test$predicted 
        resultsFinal$RF.allBase = predictedRF 
        confusionED1RF = table(predictedRF, resultsXgbdmy$y) 
        accuracyRF = sum(diag(confusionED1RF))/sum(confusionED1RF) 
        cat("FOREST Results:\n") 
        cat(sprintf("Accuracy %3.4f\n", accuracyRF)) 
        confusionED1RF   
        write.csv(confusionED1RF, "C:/Users/yz22/Desktop/PHD 
R/EEG/confusionED1RF.csv") 
         
         
        ################################ 
        ## Majority Voting ## 
        ################################ 
        require(functional) 
        confusionED1MV <- apply(results[,-1,drop=FALSE], 1, Compose(table, 
                                                                    function(i) i==max(i), 
                                                                    which, 
                                                                    names, 
                                                                    function(i) paste0(i, collapse='/') 
        ) 
        ) 
         
        resultsFinal$MV.allBase = confusionED1MV 
         
        confusionED1MV = table(confusionED1MV, resultsXgbdmy$y) 
        accuracyMV = sum(diag(confusionED1MV))/sum(confusionED1MV) 
        cat("Majority Voting Results:\n") 
        cat(sprintf("Accuracy %3.4f\n", accuracyMV)) 
        confusionED1MV   
        write.csv(confusionED1MV, "C:/Users/yz22/Desktop/PHD 
R/EEG/confusionED1MV.csv") 
         
                 
        ################################# 
        ## full logistic Regression ## 
        #################################    
        BLR <- 
glm(y~as.factor(xgb1)+as.factor(xgb2)+as.factor(xgb3)+as.factor(xgb4)+as.factor(xgb5) 
                   
+as.factor(xgb6)+as.factor(xgb7)+as.factor(xgb8)+as.factor(xgb9)+as.factor(xgb10) 
                   
+as.factor(FOREST1)+as.factor(FOREST2)+as.factor(FOREST3)+as.factor(FOREST4)+as.f
actor(FOREST5) 
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+as.factor(FOREST6)+as.factor(FOREST7)+as.factor(FOREST8)+as.factor(FOREST9)+as.f
actor(FOREST10) 
                   +as.factor(ET1)+as.factor(ET2)+as.factor(ET3)+as.factor(ET4)+as.factor(ET5) 
                   
+as.factor(ET6)+as.factor(ET7)+as.factor(ET8)+as.factor(ET9)+as.factor(ET10)+as.factor(E
T11), 
                   family="binomial", data=resultsXgb) 
         
        ##make prediction## 
        Predictglm<-predict(BLR,resultsXgb[,-1],type="response") 
         
        Predictglmcat <- ifelse(Predictglm <= 0.5,0,1) 
        Predictglmcat[1:10] 
         
        ####write to the final result table#### 
        resultsFinal$FullLR.allBase = Predictglmcat 
         
        confusionED1LR=table(Predictglmcat,resultsXgb$y) 
        accuracyLR = sum(diag(confusionED1LR))/sum(confusionED1LR) 
        cat("Backward Logistic Regression Combine Base Model Results:\n") 
        cat(sprintf("Accuracy %3.4f\n", accuracyLR)) 
        confusionED1LR 
        write.csv(confusionED1LR, "C:/Users/yz22/Desktop/PHD 
R/EEG/confusionED1LR.csv") 
         
         
        ########################################## 
        ## Experiment Design Two ################# 
        ########################################################## 
        ## use xgboost to combine the base model and MCA factors## 
        ########################################################## 
        ########################################################## 
        install.packages("drat", repos="https://cran.rstudio.com") 
        drat:::addRepo("dmlc") 
        install.packages("xgboost", repos="http://dmlc.ml/drat/", type = "source") 
         
        require(xgboost) 
        set.seed(73529) 
         
        #format data to fit Xgboost# 
        #Xgboost requires all inputs are numberic 
         
        resultsMcaXgb=resultMca 
         
        #binarize all factors in the data set 
        library(caret) 
        dmy <- dummyVars(" ~ .", data=resultsMcaXgb) 
        resultsMcaXgbdmy <- data.frame(predict(dmy, newdata=resultsMcaXgb)) 
         
        dim(resultsMcaXgbdmy) 
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        names(resultsMcaXgbdmy) 
         
        ##################################################################### 
        #prepared a varialbe of target, and a matrix for predictor# 
        outcomeName <-c('y') 
         
        predictorsMcaXgb <- names(resultsMcaXgbdmy)[!names(resultsMcaXgbdmy)%in% 
outcomeName] 
         
        #set up parameters for Xgboost# 
        param <- list("objective" = "binary:logistic", 
                      "eval_metric" = "logloss", 
                      "eta" =0.005, "max.depth" = 2) 
         
        library(xgboost) 
         
        #For variable importance 
        library(DiagrammeR) 
        library(Ckmeans.1d.dp) 
         
        #run 10 fold cross validation and choose the best round 
        bst.cv <- xgb.cv(param=param, data = 
as.matrix(resultsMcaXgbdmy[,predictorsMcaXgb]),  
                         label = resultsMcaXgbdmy[,outcomeName], nfold=10, nround = 2000) 
        plot(log(bst.cv$test.logloss.mean),type ="l") 
         
        ############################### 
        #Xgboost Final Combined Model## 
        ############################### 
         
        bstComb <- xgboost(data = as.matrix(resultsMcaXgbdmy[,predictorsMcaXgb]),  
                           label = resultsMcaXgbdmy[,outcomeName], max.depth = 2, eta = 0.005, 
nround = 2200, 
                           nthread = 2, objective ="binary:logistic") 
        gc() 
        #make prediction# 
        predictionsMcaXgb <- predict(bstComb, 
as.matrix(resultsMcaXgbdmy[,predictorsMcaXgb]), outputmargin= FALSE) #outputmargin 
has to be FALSE to produce probability 
        #predictions[1:10] 
        print(-mean(log(predictionsMcaXgb)*resultsMcaXgbdmy$y+log(1-
predictionsMcaXgb)*(1-resultsMcaXgbdmy$y))) 
         
        # Get the variable importance 
        importance_matrix <- xgb.importance(predictorsMcaXgb, model = bstComb) 
        xgb.plot.importance(importance_matrix[1:10]) 
         
        #convert to categorical target and caculate the accuracy 
        yPredCatMcaXgb <- ifelse(predictionsMcaXgb <= 0.5,0,1) 
        yPredCatMcaXgb[1:10] 
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        confusionED2Xgb=table(yPredCatMcaXgb,resultsMcaXgbdmy$y) 
        accuracyMcaXgb = sum(diag(confusionED2Xgb))/sum(confusionED2Xgb) 
        cat("xgboost Combine Base Model Results:\n") 
        cat(sprintf("Accuracy %3.4f\n", accuracyMcaXgb)) 
        confusionED2Xgb 
        write.csv(confusionED2Xgb, "C:/Users/yz22/Desktop/PHD 
R/EEG/confusionED2Xgb.csv") 
         
        #save the ensemble result to table, accuracy is 0.9544 
        resultsFinal$xgb.allBaseMCA = yPredCatMcaXgb 
         
        ################################ 
        ##Random Forest Combined Model## 
        ################################ 
        library(randomForest) 
         
        #create fisrt random forest# 
        modelRF = randomForest(resultsMcaXgbdmy[,-1], as.factor(resultsMcaXgbdmy[,1]),  
                               xtest=resultsMcaXgbdmy[,-1], ntree=50, set.seed(56382, kind=NULL, 
normal.kind=NULL)) 
        predictedRF = modelRF$test$predicted 
        resultsFinal$RF.allBaseMca = predictedRF 
        confusionED2RF = table(predictedRF, resultsXgbdmy$y) 
        accuracyRF = sum(diag(confusionED2RF))/sum(confusionED2RF) 
        cat("FOREST Results:\n") 
        cat(sprintf("Accuracy %3.4f\n", accuracyRF)) 
        confusionED2RF   
        write.csv(confusionED2RF, "C:/Users/yz22/Desktop/PHD 
R/EEG/confusionED2RF.csv") 
         
        ################################# 
        ## full logistic Regression ## 
        #################################    
        BLRMca <- 
glm(y~as.factor(xgb1)+as.factor(xgb2)+as.factor(xgb3)+as.factor(xgb4)+as.factor(xgb5) 
                      
+as.factor(xgb6)+as.factor(xgb7)+as.factor(xgb8)+as.factor(xgb9)+as.factor(xgb10) 
                      
+as.factor(FOREST1)+as.factor(FOREST2)+as.factor(FOREST3)+as.factor(FOREST4)+as.f
actor(FOREST5) 
                      
+as.factor(FOREST6)+as.factor(FOREST7)+as.factor(FOREST8)+as.factor(FOREST9)+as.f
actor(FOREST10) 
                      +as.factor(ET1)+as.factor(ET2)+as.factor(ET3)+as.factor(ET4)+as.factor(ET5) 
                      
+as.factor(ET6)+as.factor(ET7)+as.factor(ET8)+as.factor(ET9)+as.factor(ET10)+as.factor(E
T11) 
                      +PFS1+PFS2+FS1+FS2, 
                      family="binomial", data=resultsMcaXgb) 
         
        ##make prediction## 
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        Predictglm<-predict(BLRMca,resultsMcaXgb[,-1],type="response") 
         
        Predictglmcat <- ifelse(Predictglm <= 0.5,0,1) 
        Predictglmcat[1:10] 
         
        ####write to the final result table#### 
        resultsFinal$FullLR.allBase.Mca = Predictglmcat 
         
        confusionED2LR=table(Predictglmcat,resultsXgb$y) 
        accuracyLR = sum(diag(confusionED2LR))/sum(confusionED2LR) 
        cat("Backward Logistic Regression Combine Base Model Results:\n") 
        cat(sprintf("Accuracy %3.4f\n", accuracyLR)) 
        confusionED2LR 
        write.csv(confusionED2LR, "C:/Users/yz22/Desktop/PHD 
R/EEG/confusionED2LR.csv") 
         
         
        ########################################## 
        ## Experiment Design Three ################# 
        ########################################## 
        ## use xgboost to combine the ET and Xgb base model## 
        ########################################## 
        ########################################################## 
        install.packages("drat", repos="https://cran.rstudio.com") 
        drat:::addRepo("dmlc") 
        install.packages("xgboost", repos="http://dmlc.ml/drat/", type = "source") 
         
        require(xgboost) 
        set.seed(84620) 
         
        #format data to fit Xgboost# 
        #Xgboost requires all inputs are numberic 
         
        resultsXgbEX=results[-c(23:32)] ### only keep Xgb abd ET base model### 
         
        #binarize all factors in the data set 
        library(caret) 
        dmy <- dummyVars(" ~ .", data=resultsXgbEX) 
        resultsXgbEXdmy <- data.frame(predict(dmy, newdata=resultsXgbEX)) 
         
        dim(resultsXgbdmy) 
        names(resultsXgbdmy) 
         
        ##################################################################### 
        #prepared a varialbe of target, and a matrix for predictor# 
         
outcomeName <-c('y') 
         
        predictorsXgb <- names(resultsXgbEXdmy)[!names(resultsXgbEXdmy)%in% 
outcomeName] 
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        #set up parameters for Xgboost# 
        param <- list("objective" = "binary:logistic", 
                      "eval_metric" = "logloss", 
                      "eta" =0.005, "max.depth" = 2) 
         
        library(xgboost) 
         
        #For variable importance 
        library(DiagrammeR) 
        library(Ckmeans.1d.dp) 
         
        #run 10 fold cross validation and choose the best round 
        bst.cv <- xgb.cv(param=param, data = as.matrix(resultsXgbEXdmy[,predictorsXgb]),  
                         label = resultsXgbEXdmy[,outcomeName], nfold=10, nround = 2500) 
        plot(log(bst.cv$test.logloss.mean),type ="l") 
         
        ############################### 
        #Xgboost Final Combined Model## 
        ############################### 
         
        bstComb <- xgboost(data = as.matrix(resultsXgbEXdmy[,predictorsXgb]),  
                           label = resultsXgbdmy[,outcomeName], max.depth = 2, eta = 0.005, nround 
= 2005, 
                           nthread = 2, objective ="binary:logistic") 
        gc() 
        #make prediction# 
        predictionsXgb <- predict(bstComb, as.matrix(resultsXgbEXdmy[,predictorsXgb]), 
outputmargin= FALSE) #outputmargin has to be FALSE to produce probability 
        #predictions[1:10] 
        print(-mean(log(predictionsXgb)*resultsXgbEXdmy$y+log(1-predictionsXgb)*(1-
resultsXgbEXdmy$y))) 
         
        # Get the variable importance 
        importance_matrix <- xgb.importance(predictorsXgb, model = bstComb) 
        xgb.plot.importance(importance_matrix[1:10]) 
                 
        #convert to categorical target and caculate the accuracy 
        yPredCatXgb <- ifelse(predictionsXgb <= 0.5,0,1) 
        yPredCatXgb[1:10] 
         
        confusionED3Xgb=table(yPredCatXgb,resultsXgbEXdmy$y) 
        accuracyXgb = sum(diag(confusionED3Xgb))/sum(confusionED3Xgb) 
        cat("xgboost Combine Base Model Results:\n") 
        cat(sprintf("Accuracy %3.4f\n", accuracyXgb)) 
        confusionED3Xgb 
        write.csv(confusionED3Xgb, "C:/Users/yz22/Desktop/PHD 
R/EEG/confusionED3Xgb.csv") 
         
        #save the ensemble result to table 
         
        resultsFinal$xgb.ETXgbBase = yPredCatXgb 
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        ################################ 
        ##Random Forest Combined Model## 
        ################################ 
        library(randomForest) 
         
        #create fisrt random forest# 
        modelRF = randomForest(resultsXgbEXdmy[,-1], as.factor(resultsXgbEXdmy[,1]),  
                               xtest=resultsXgbEXdmy[,-1], ntree=50, set.seed(17395, kind=NULL, 
normal.kind=NULL)) 
        predictedRF = modelRF$test$predicted 
        resultsFinal$RF.ETXgbBase = predictedRF 
        confusionED3RF = table(predictedRF, resultsXgbEXdmy$y) 
        accuracyRF = sum(diag(confusionED3RF))/sum(confusionED3RF) 
        cat("FOREST Results:\n") 
        cat(sprintf("Accuracy %3.4f\n", accuracyRF)) 
        confusionED3RF   
        write.csv(confusionED3RF, "C:/Users/yz22/Desktop/PHD 
R/EEG/confusionED3RF.csv") 
         
        ################################ 
        ## Majority Voting ## 
        ################################ 
         
        require(functional) 
        confusionED3MV <- apply(resultsXgbEXdmy[,-1,drop=FALSE], 1, Compose(table, 
                                                                            function(i) i==max(i), 
                                                                            which, 
                                                                            names, 
                                                                            function(i) paste0(i, collapse='/') 
        ) 
        ) 
         
        resultsFinal$MV.ETXgbBase = confusionED3MV 
         
        confusionED3MV = table(confusionED3MV, resultsXgbEXdmy$y) 
        accuracyMV = sum(diag(confusionED3MV))/sum(confusionED3MV) 
        cat("Majority Voting Results:\n") 
        cat(sprintf("Accuracy %3.4f\n", accuracyMV)) 
        confusionED3MV   
        write.csv(confusionED3MV, "C:/Users/yz22/Desktop/PHD 
R/EEG/confusionED3MV.csv") 
         
         
        ################################# 
        ## Backward logistic Regression ## 
        #################################    
        BLR <- 
glm(y~as.factor(xgb1)+as.factor(xgb2)+as.factor(xgb3)+as.factor(xgb4)+as.factor(xgb5) 
                   
+as.factor(xgb6)+as.factor(xgb7)+as.factor(xgb8)+as.factor(xgb9)+as.factor(xgb10) 
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+as.factor(FOREST1)+as.factor(FOREST2)+as.factor(FOREST3)+as.factor(FOREST4)+as.f
actor(FOREST5) 
                   
+as.factor(FOREST6)+as.factor(FOREST7)+as.factor(FOREST8)+as.factor(FOREST9)+as.f
actor(FOREST10) 
                   +as.factor(ET1)+as.factor(ET2)+as.factor(ET3)+as.factor(ET4)+as.factor(ET5) 
                   
+as.factor(ET6)+as.factor(ET7)+as.factor(ET8)+as.factor(ET9)+as.factor(ET10)+as.factor(E
T11), 
                   family="binomial", data=resultsXgb) 
        ##backward selection## 
        BLRBack<-step(BLR,direction="backward") 
         
        summary(BLRBack) 
         
        ##make prediction## 
        Predictglm<-predict(BLRBack,resultsXgb[,-1],type="response") 
         
        Predictglmcat <- ifelse(Predictglm <= 0.5,0,1) 
        Predictglmcat[1:10] 
         
        ####write to the final result table#### 
        resultsFinal$LR.allBase = Predictglmcat 
         
        confusionED3LR=table(Predictglmcat,resultsXgbEXdmy$y) 
        accuracyLR = sum(diag(confusionED3LR))/sum(confusionED3LR) 
        cat("Backward Logistic Regression Combine Base Model Results:\n") 
        cat(sprintf("Accuracy %3.4f\n", accuracyLR)) 
        confusionED3LR 
        write.csv(confusionED3LR, "C:/Users/yz22/Desktop/PHD 
R/EEG/confusionED3LR.csv") 
         
         
        ########################################## 
        ## Experiment Design Four and Five################# 
        ####################################################### 
        ## use xgboost to combine the ET and Xgb base model and MCA## 
        ####################################################### 
         
        install.packages("drat", repos="https://cran.rstudio.com") 
        drat:::addRepo("dmlc") 
        install.packages("xgboost", repos="http://dmlc.ml/drat/", type = "source") 
         
        require(xgboost) 
        set.seed(93746) 
         
        #format data to fit Xgboost# 
        #Xgboost requires all inputs are numberic 
         
        resultsXgbEXMca=resultMca[-c(23:32)] ### only keep Xgb abd ET base model### 
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        #binarize all factors in the data set 
        library(caret) 
        dmy <- dummyVars(" ~ .", data=resultsXgbEXMca) 
        resultsXgbEXMcadmy <- data.frame(predict(dmy, newdata=resultsXgbEXMca)) 
         
        dim(resultsXgbEXMcadmy) 
        names(resultsXgbEXMcadmy) 
         
        ##################################################################### 
        #prepared a varialbe of target, and a matrix for predictor# 
        outcomeName <-c('y') 
         
        predictorsXgb <- names(resultsXgbEXMcadmy)[!names(resultsXgbEXMcadmy)%in% 
outcomeName] 
         
        #set up parameters for Xgboost# 
        param <- list("objective" = "binary:logistic", 
                      "eval_metric" = "logloss", 
                      "eta" =0.005, "max.depth" = 2) 
         
        library(xgboost) 
         
        #For variable importance 
        library(DiagrammeR) 
        library(Ckmeans.1d.dp) 
         
        #run 10 fold cross validation and choose the best round;round 80 to 120 all have the 
relative similar accuracy 
        bst.cv <- xgb.cv(param=param, data = 
as.matrix(resultsXgbEXMcadmy[,predictorsXgb]),  
                         label = resultsXgbEXMcadmy[,outcomeName], nfold=10, nround = 2500) 
        plot(log(bst.cv$test.logloss.mean),type ="l") 
         
        ############################### 
        #Xgboost Final Combined Model## 
        ############################### 
         
        bstComb <- xgboost(data = as.matrix(resultsXgbEXMcadmy[,predictorsXgb]),  
                           label = resultsXgbEXMcadmy[,outcomeName], max.depth = 2, eta = 0.005, 
nround = 2500, 
                           nthread = 2, objective ="binary:logistic") 
        gc() 
        #make prediction# 
        predictionsXgb <- predict(bstComb, as.matrix(resultsXgbEXMcadmy[,predictorsXgb]), 
outputmargin= FALSE) #outputmargin has to be FALSE to produce probability 
        #predictions[1:10] 
        print(-mean(log(predictionsXgb)*resultsXgbEXMcadmy$y+log(1-predictionsXgb)*(1-
resultsXgbEXMcadmy$y))) 
         
        # Get the variable importance 
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        importance_matrix <- xgb.importance(predictorsXgb, model = bstComb) 
        xgb.plot.importance(importance_matrix[1:10]) 
         
         
        #convert to categorical target and caculate the accuracy 
        yPredCatXgb <- ifelse(predictionsXgb <= 0.5,0,1) 
        yPredCatXgb[1:10] 
         
        confusionED4Xgb=table(yPredCatXgb,resultsXgbEXMcadmy$y) 
        accuracyXgb = sum(diag(confusionED4Xgb))/sum(confusionED4Xgb) 
        cat("xgboost Combine Base Model Results:\n") 
        cat(sprintf("Accuracy %3.4f\n", accuracyXgb)) 
        confusionED4Xgb 
        write.csv(confusionED4Xgb, "C:/Users/yz22/Desktop/PHD 
R/EEG/confusionED4Xgb.csv") 
         
        #save the ensemble result to table 
        resultsFinal$xgb.ETXgbBase.Mca = yPredCatXgb 
         
         
        ################################ 
        ##Random Forest Combined Model## 
        ################################ 
        library(randomForest) 
         
        #create fisrt random forest# 
        modelRF = randomForest(resultsXgbEXMcadmy[,-1], 
as.factor(resultsXgbEXMcadmy[,1]),  
                               xtest=resultsXgbEXMcadmy[,-1], ntree=50, set.seed(86527, kind=NULL, 
normal.kind=NULL)) 
        predictedRF = modelRF$test$predicted 
        resultsFinal$RF.ETXgbBase.Mca = predictedRF 
        confusionED4RF = table(predictedRF, resultsXgbEXMcadmy$y) 
        accuracyRF = sum(diag(confusionED4RF))/sum(confusionED4RF) 
        cat("FOREST Results:\n") 
        cat(sprintf("Accuracy %3.4f\n", accuracyRF)) 
        confusionED4RF   
        write.csv(confusionED4RF, "C:/Users/yz22/Desktop/PHD 
R/EEG/confusionED4RF.csv") 
         
              
        ################################# 
        ## Backward logistic Regression ## 
        #################################    
        BLRMca <- 
glm(y~as.factor(xgb1)+as.factor(xgb2)+as.factor(xgb3)+as.factor(xgb4)+as.factor(xgb5) 
                      
+as.factor(xgb6)+as.factor(xgb7)+as.factor(xgb8)+as.factor(xgb9)+as.factor(xgb10) 
                      
+as.factor(FOREST1)+as.factor(FOREST2)+as.factor(FOREST3)+as.factor(FOREST4)+as.f
actor(FOREST5) 
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+as.factor(FOREST6)+as.factor(FOREST7)+as.factor(FOREST8)+as.factor(FOREST9)+as.f
actor(FOREST10) 
                      +as.factor(ET1)+as.factor(ET2)+as.factor(ET3)+as.factor(ET4)+as.factor(ET5) 
                      
+as.factor(ET6)+as.factor(ET7)+as.factor(ET8)+as.factor(ET9)+as.factor(ET10)+as.factor(E
T11) 
                      +PFS1+PFS2+FS1+FS2, 
                      family="binomial", data=resultsMcaXgb) 
        ##backward selection## 
        BLRBackMca<-step(BLRMca,direction="backward") 
         
        summary(BLRBackMca) 
         
        ##make prediction## 
        Predictglm<-predict(BLRBackMca,resultsXgb[,-1],type="response") 
         
        Predictglmcat <- ifelse(Predictglm <= 0.5,0,1) 
        Predictglmcat[1:10] 
         
        ####write to the final result table#### 
        resultsFinal$LR.allBaseMca = Predictglmcat 
         
        confusionED4LR=table(Predictglmcat,resultsMcaXgb$y) 
        accuracyLR = sum(diag(confusionED4LR))/sum(confusionED4LR) 
        cat("Backward Logistic Regression Combine Base Model Results:\n") 
        cat(sprintf("Accuracy %3.4f\n", accuracyLR)) 
        confusionED4LR 
        write.csv(confusionED4LR, "C:/Users/yz22/Desktop/PHD 
R/EEG/confusionED4LR.csv") 
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Appendix C: Cramér’s V Correlation Coefficient of Adult Data Set 

 xgb1 xgb2 xgb3 xgb4 xgb5 xgb6 xgb7 xgb8 xgb9 xgb10 

xgb1 1          

xgb2 0.9128 1         

xgb3 0.8912 0.8989 1        

xgb4 0.9022 0.9103 0.9107 1       

xgb5 0.9130 0.9181 0.9131 0.9219 1      

xgb6 0.9071 0.9183 0.9133 0.9190 0.9341 1     

xgb7 0.9159 0.9203 0.9138 0.9233 0.9411 0.9509 1    

xgb8 0.9126 0.9162 0.9073 0.9142 0.9367 0.9546 0.9551 1   

xgb9 0.8979 0.9091 0.8921 0.9029 0.9273 0.9410 0.9380 0.9586 1  

xgb10 0.8813 0.8930 0.8762 0.8836 0.9065 0.9252 0.9203 0.9385 0.9626 1 

ET1 0.7099 0.7152 0.7070 0.7097 0.7218 0.7201 0.7177 0.7227 0.7285 0.7241 

ET2 0.7119 0.7134 0.7108 0.7101 0.7223 0.7221 0.7231 0.7273 0.7305 0.7271 

ET3 0.7110 0.7166 0.7099 0.7115 0.7240 0.7215 0.7226 0.7264 0.7314 0.7289 

ET4 0.7109 0.7166 0.7117 0.7133 0.7262 0.7271 0.7236 0.7293 0.7321 0.7296 

ET5 0.7116 0.7169 0.7117 0.7121 0.7250 0.7240 0.7236 0.7278 0.7332 0.7299 

ET6 0.7146 0.7196 0.7129 0.7137 0.7266 0.7260 0.7251 0.7293 0.7348 0.7307 

ET7 0.7129 0.7197 0.7148 0.7126 0.7263 0.7249 0.7234 0.7287 0.7337 0.7304 

ET8 0.7135 0.7191 0.7139 0.7140 0.7276 0.7259 0.7258 0.7300 0.7343 0.7307 

ET9 0.7134 0.7194 0.7120 0.7131 0.7253 0.7243 0.7239 0.7284 0.7339 0.7298 

ET10 0.7140 0.7196 0.7129 0.7137 0.7278 0.7257 0.7256 0.7313 0.7360 0.7323 

ET11 0.7133 0.7190 0.7153 0.7157 0.7286 0.7273 0.7276 0.7314 0.7365 0.7324 

RF1 0.8852 0.8953 0.8905 0.8952 0.9057 0.9185 0.9144 0.9255 0.9241 0.9135 

RF2 0.8281 0.8397 0.8271 0.8318 0.8529 0.8587 0.8558 0.8652 0.8781 0.8857 

RF3 0.8265 0.8393 0.8262 0.8309 0.8537 0.8555 0.8554 0.8640 0.8741 0.8813 

RF4 0.8293 0.8409 0.8287 0.8284 0.8541 0.8564 0.8558 0.8645 0.8797 0.8854 

RF5 0.8254 0.8378 0.8255 0.8283 0.8522 0.8551 0.8546 0.8636 0.8738 0.8809 

RF6 0.8295 0.8404 0.8297 0.8332 0.8563 0.8593 0.8580 0.8678 0.8779 0.8844 

RF7 0.8267 0.8375 0.8265 0.8288 0.8535 0.8569 0.8544 0.8642 0.8747 0.8815 

RF8 0.8288 0.8419 0.8293 0.8309 0.8552 0.8593 0.8572 0.8671 0.8799 0.8860 

RF9 0.8254 0.8370 0.8232 0.8264 0.8526 0.8532 0.8523 0.8617 0.8749 0.8822 

RF10 0.8282 0.8410 0.8287 0.8315 0.8546 0.8584 0.8579 0.8681 0.8786 0.8854 
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 ET1 ET2 ET3 ET4 ET5 ET6 ET7 ET8 ET9 ET10 ET11 

ET1 1           

ET2 0.9324 1          

ET3 0.9389 0.9511 1         

ET4 0.9339 0.9576 0.9622 1        

ET5 0.9394 0.9557 0.9611 0.9627 1       

ET6 0.9387 0.9579 0.9629 0.9631 0.9723 1      

ET7 0.9434 0.9579 0.9673 0.9668 0.9701 0.9712 1     

ET8 0.9442 0.9598 0.9666 0.9686 0.9675 0.9723 0.9734 1    

ET9 0.9429 0.9596 0.9661 0.9677 0.9718 0.9714 0.9769 0.9766 1   

ET10 0.9411 0.9596 0.9646 0.9670 0.9695 0.9732 0.9762 0.9780 0.9790 1  

ET11 0.9446 0.9612 0.9644 0.9697 0.9716 0.9723 0.9741 0.9767 0.9751 0.9769 1 

RF1 0.7244 0.7252 0.7274 0.7315 0.7321 0.7296 0.7327 0.7318 0.7302 0.7323 0.7327 

RF2 0.7777 0.7801 0.7826 0.7856 0.7848 0.7852 0.7865 0.7859 0.7851 0.7872 0.7869 

RF3 0.7810 0.7834 0.7863 0.7874 0.7896 0.7889 0.7890 0.7869 0.7895 0.7902 0.7914 

RF4 0.7834 0.7874 0.7887 0.7914 0.7913 0.7921 0.7923 0.7917 0.7924 0.7937 0.7942 

RF5 0.7776 0.7835 0.7848 0.7886 0.7882 0.7875 0.7895 0.7878 0.7877 0.7891 0.7899 

RF6 0.7821 0.7876 0.7904 0.7923 0.7922 0.7927 0.7932 0.7915 0.7937 0.7943 0.7959 

RF7 0.7835 0.7868 0.7884 0.7903 0.7922 0.7922 0.7920 0.7906 0.7921 0.7942 0.7939 

RF8 0.7791 0.7839 0.7856 0.7878 0.7889 0.7874 0.7891 0.7870 0.7892 0.7890 0.7910 

RF9 0.7830 0.7878 0.7894 0.7909 0.7916 0.7921 0.7933 0.7905 0.7923 0.7925 0.7942 

RF10 0.7812 0.7874 0.7880 0.7910 0.7906 0.7906 0.7919 0.7898 0.7916 0.7919 0.7931 

 

 RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8 RF9 RF10 

RF1 1          

RF2 0.8535 1         

RF3 0.8514 0.9547 1        

RF4 0.8536 0.9575 0.9633 1       

RF5 0.8546 0.9629 0.9659 0.9655 1      

RF6 0.8513 0.9619 0.9689 0.9665 0.9730 1     

RF7 0.8536 0.9659 0.9682 0.9720 0.9731 0.9733 1    

RF8 0.8550 0.9630 0.9691 0.9683 0.9749 0.9747 0.9767 1   

RF9 0.8519 0.9612 0.9697 0.9712 0.9727 0.9737 0.9757 0.9798 1  

RF10 0.8543 0.9626 0.9700 0.9704 0.9746 0.9752 0.9749 0.9758 0.9799 1 
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Appendix D: Cramér’s V Correlation Coefficient of Credit Card Client Data Set 

 xgb1 xgb2 xgb3 xgb4 xgb5 xgb6 xgb7 xgb8 xgb9 xgb10 

xgb1 1          

xgb2 0.8214 1         

xgb3 0.7944 0.8906 1        

xgb4 0.7923 0.899 0.9349 1       

xgb5 0.8027 0.8912 0.9184 0.9324 1      

xgb6 0.7987 0.8914 0.9063 0.9316 0.93 1     

xgb7 0.7983 0.8909 0.9121 0.9343 0.9337 0.9522 1    

xgb8 0.8064 0.8994 0.9112 0.9345 0.9348 0.9342 0.9518 1   

xgb9 0.7932 0.8917 0.9045 0.933 0.9271 0.9466 0.9599 0.9514 1  

xgb10 0.7984 0.8927 0.9129 0.9394 0.9323 0.9498 0.9642 0.9546 0.9766 1 

ET1 0.0021 0.0076 0.0013 0.0032 0.0043 0.0021 0.005 0.0007 0.0035 0.0025 

ET2 0.004 0.0076 0.0013 0.0033 0.0053 0.0032 0.0061 0.0014 0.0046 0.0036 

ET3 0.0024 0.0049 0.0041 0.0004 0.0025 0.0003 0.0042 0.0015 0.0027 0.0017 

ET4 0.0046 0.0091 0.0008 0.0057 0.0077 0.0046 0.0085 0.0038 0.007 0.006 

ET5 0.0046 0.0091 0.0008 0.0057 0.0077 0.0046 0.0085 0.0038 0.007 0.006 

ET6 0.0046 0.0091 0.0008 0.0057 0.0077 0.0046 0.0085 0.0038 0.007 0.006 

ET7 0.0046 0.0091 0.0008 0.0057 0.0077 0.0046 0.0085 0.0038 0.007 0.006 

ET8 0.0034 0.0079 0.0021 0.0035 0.0045 0.0024 0.0063 0.0016 0.0048 0.0038 

ET9 0.0034 0.0079 0.0021 0.0035 0.0045 0.0024 0.0063 0.0016 0.0048 0.0038 

ET10 0.0034 0.0079 0.0021 0.0035 0.0045 0.0024 0.0063 0.0016 0.0048 0.0038 

ET11 0.0034 0.0079 0.0021 0.0035 0.0045 0.0024 0.0063 0.0016 0.0048 0.0038 

RF1 0.0084 0.0023 0.0116 0.0074 0.006 0.0087 0.0016 0.0092 0.0051 0.0061 

RF2 0.0104 0.0023 0.0107 0.0055 0.0051 0.0058 0.0007 0.0063 0.0022 0.0032 

RF3 0.0103 0.0032 0.0138 0.0098 0.0082 0.0101 0.0061 0.0095 0.0064 0.0075 

RF4 0.0074 0.0013 0.0128 0.0087 0.0072 0.0059 0.0008 0.0084 0.0043 0.0053 

RF5 0.0051 0.0031 0.0075 0.0044 0.0029 0.0036 0.0015 0.0041 0.002 0.0031 

RF6 0.0095 0.0024 0.014 0.0089 0.0074 0.0071 0.0031 0.0086 0.0055 0.0066 

RF7 0.0071 0 0.0116 0.0065 0.0049 0.0057 0.0017 0.0061 0.0041 0.0052 

RF8 0.0062 0.0019 0.0107 0.0067 0.0051 0.0049 0.0002 0.0063 0.0022 0.0033 

RF9 0.0077 0.0017 0.0112 0.0061 0.0056 0.0064 0.0023 0.0058 0.0038 0.0048 

RF10 0.0058 0.0004 0.0121 0.007 0.0055 0.0062 0.0022 0.0067 0.0036 0.0047 
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 ET1 ET2 ET3 ET4 ET5 ET6 ET7 ET8 ET9 ET10 ET11 

ET1 1           

ET2 0.8837 1          

ET3 0.8992 0.9175 1         

ET4 0.8965 0.9252 0.9362 1        

ET5 0.8965 0.9252 0.9362 1 1       

ET6 0.8965 0.9252 0.9362 1 1 1      

ET7 0.8965 0.9252 0.9362 1 1 1 1     

ET8 0.9042 0.9262 0.9419 0.9525 0.9525 0.9525 0.9525 1    

ET9 0.9042 0.9262 0.9419 0.9525 0.9525 0.9525 0.9525 1 1   

ET10 0.9042 0.9262 0.9419 0.9525 0.9525 0.9525 0.9525 1 1 1  

ET11 0.9042 0.9262 0.9419 0.9525 0.9525 0.9525 0.9525 1 1 1 1 

RF1 0.8035 0.81 0.8154 0.8226 0.8226 0.8226 0.8226 0.8209 0.8209 0.8209 0.8209 

RF2 0.8022 0.8137 0.8161 0.8303 0.8303 0.8303 0.8303 0.8197 0.8197 0.8197 0.8197 

RF3 0.8143 0.8219 0.8292 0.8357 0.8357 0.8357 0.8357 0.8349 0.8349 0.8349 0.8349 

RF4 0.8097 0.8182 0.8226 0.8358 0.8358 0.8358 0.8358 0.8291 0.8291 0.8291 0.8291 

RF5 0.8082 0.8217 0.8261 0.8384 0.8384 0.8384 0.8384 0.8297 0.8297 0.8297 0.8297 

RF6 0.8137 0.8223 0.8267 0.837 0.837 0.837 0.837 0.8343 0.8343 0.8343 0.8343 

RF7 0.8161 0.8325 0.834 0.8463 0.8463 0.8463 0.8463 0.8396 0.8396 0.8396 0.8396 

RF8 0.8123 0.8229 0.8282 0.8396 0.8396 0.8396 0.8396 0.8359 0.8359 0.8359 0.8359 

RF9 0.8164 0.8309 0.8314 0.8467 0.8467 0.8467 0.8467 0.8419 0.8419 0.8419 0.8419 

RF10 0.8191 0.8345 0.837 0.8482 0.8482 0.8482 0.8482 0.8425 0.8425 0.8425 0.8425 

 

 RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8 RF9 RF10 

RF1 1          

RF2 0.8839 1         

RF3 0.8805 0.9078 1        

RF4 0.8846 0.9118 0.9228 1       

RF5 0.8903 0.9197 0.9286 0.9357 1      

RF6 0.8839 0.9121 0.9251 0.9394 0.9391 1     

RF7 0.8883 0.9156 0.9337 0.9367 0.9426 0.9493 1    

RF8 0.8866 0.9149 0.9248 0.933 0.943 0.9467 0.9502 1   

RF9 0.8897 0.9191 0.9404 0.9392 0.9462 0.9406 0.9574 0.9465 1  

RF10 0.8942 0.9246 0.9408 0.9396 0.9516 0.9522 0.9577 0.952 0.9521 1 
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Appendix E: Cramér’s V Correlation Coefficient of EEG Eye State Data Set 

 xgb1 xgb2 xgb3 xgb4 xgb5 xgb6 xgb7 xgb8 xgb9 xgb10 

xgb1 1          

xgb2 0.8755 1         

xgb3 0.8760 0.8886 1        

xgb4 0.8959 0.8968 0.8891 1       

xgb5 0.8877 0.9075 0.8980 0.9234 1      

xgb6 0.8909 0.8999 0.9066 0.9238 0.9274 1     

xgb7 0.8905 0.9031 0.8981 0.9144 0.9261 0.9328 1    

xgb8 0.8755 0.8908 0.8885 0.9058 0.9120 0.9251 0.9274 1   

xgb9 0.8565 0.8673 0.8686 0.8814 0.8785 0.8971 0.9076 0.9286 1  

xgb10 0.7905 0.8021 0.7980 0.8128 0.8088 0.8230 0.8337 0.8506 0.8841 1 

ET1 0.8072 0.8180 0.8103 0.8268 0.8247 0.8234 0.8286 0.8211 0.8156 0.7795 

ET2 0.8032 0.8167 0.8099 0.8326 0.8261 0.8302 0.8290 0.8227 0.8181 0.7851 

ET3 0.8158 0.8302 0.8243 0.8417 0.8378 0.8428 0.8462 0.8380 0.8307 0.7894 

ET4 0.8140 0.8338 0.8216 0.8426 0.8405 0.8420 0.8435 0.8390 0.8299 0.7887 

ET5 0.8090 0.8252 0.8112 0.8394 0.8319 0.8361 0.8394 0.8321 0.8257 0.7880 

ET6 0.8149 0.8284 0.8198 0.8444 0.8396 0.8429 0.8444 0.8371 0.8307 0.7895 

ET7 0.8099 0.8261 0.8184 0.8403 0.8346 0.8379 0.8394 0.8312 0.8275 0.7879 

ET8 0.8144 0.8270 0.8229 0.8439 0.8364 0.8406 0.8439 0.8357 0.8312 0.7890 

ET9 0.8122 0.8293 0.8216 0.8435 0.8369 0.8428 0.8462 0.8380 0.8334 0.7940 

ET10 0.8122 0.8275 0.8189 0.8407 0.8360 0.8392 0.8426 0.8353 0.8307 0.7886 

ET11 0.8122 0.8275 0.8189 0.8407 0.8360 0.8392 0.8426 0.8353 0.8307 0.7886 

RF1 0.8036 0.8089 0.8030 0.8204 0.8201 0.8270 0.8250 0.8212 0.8256 0.7959 

RF2 0.8122 0.8284 0.8179 0.8390 0.8369 0.8383 0.8399 0.8388 0.8388 0.8064 

RF3 0.8059 0.8230 0.8134 0.8336 0.8333 0.8384 0.8373 0.8334 0.8351 0.8008 

RF4 0.8131 0.8248 0.8207 0.8408 0.8351 0.8402 0.8409 0.8343 0.8387 0.8017 

RF5 0.8117 0.8252 0.8202 0.8358 0.8373 0.8397 0.8422 0.8366 0.8383 0.8024 

RF6 0.8149 0.8284 0.8207 0.8381 0.8369 0.8438 0.8408 0.8352 0.8370 0.8001 

RF7 0.8135 0.8270 0.8184 0.8367 0.8400 0.8424 0.8449 0.8366 0.8392 0.8050 

RF8 0.8135 0.8279 0.8202 0.8394 0.8373 0.8415 0.8395 0.8366 0.8383 0.7996 

RF9 0.8122 0.8184 0.8143 0.8335 0.8314 0.8383 0.8363 0.8334 0.8379 0.8010 

RF10 0.8144 0.8234 0.8175 0.8331 0.8355 0.8388 0.8386 0.8348 0.8392 0.8024 
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 ET1 ET2 ET3 ET4 ET5 ET6 ET7 ET8 ET9 ET10 ET11 

ET1 1           

ET2 0.9352 1          

ET3 0.9361 0.9547 1         

ET4 0.9425 0.9529 0.9611 1        

ET5 0.9447 0.9561 0.9606 0.9624 1       

ET6 0.9434 0.9565 0.9583 0.9629 0.9669 1      

ET7 0.9401 0.9570 0.9678 0.9615 0.9719 0.9633 1     

ET8 0.9438 0.9597 0.9669 0.9606 0.9710 0.9715 0.9665 1    

ET9 0.9442 0.9574 0.9683 0.9665 0.9724 0.9656 0.9714 0.9724 1   

ET10 0.9461 0.9565 0.9665 0.9692 0.9696 0.9665 0.9696 0.9715 0.9710 1  

ET11 0.9461 0.9565 0.9665 0.9692 0.9696 0.9665 0.9696 0.9715 0.9710 1 1 

RF1 0.9082 0.9053 0.9070 0.9108 0.9174 0.9062 0.9110 0.9066 0.9134 0.9125 0.9125 

RF2 0.9124 0.9212 0.9247 0.9293 0.9270 0.9248 0.9233 0.9252 0.9284 0.9302 0.9302 

RF3 0.9177 0.9221 0.9211 0.9276 0.9306 0.9257 0.9242 0.9279 0.9311 0.9284 0.9284 

RF4 0.9250 0.9266 0.9265 0.9366 0.9379 0.9338 0.9360 0.9352 0.9420 0.9366 0.9366 

RF5 0.9237 0.9244 0.9333 0.9407 0.9356 0.9334 0.9347 0.9365 0.9406 0.9352 0.9352 

RF6 0.9260 0.9312 0.9320 0.9393 0.9433 0.9329 0.9369 0.9370 0.9438 0.9429 0.9429 

RF7 0.9228 0.9298 0.9324 0.9361 0.9356 0.9361 0.9337 0.9347 0.9379 0.9379 0.9379 

RF8 0.9273 0.9289 0.9324 0.9407 0.9438 0.9334 0.9365 0.9374 0.9415 0.9397 0.9397 

RF9 0.9242 0.9312 0.9302 0.9375 0.9388 0.9338 0.9333 0.9397 0.9411 0.9438 0.9438 

RF10 0.9192 0.9307 0.9306 0.9389 0.9383 0.9316 0.9319 0.9347 0.9388 0.9370 0.9370 

 
 RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8 RF9 RF10 

RF1 1          

RF2 0.9187 1         

RF3 0.9277 0.9446 1        

RF4 0.9305 0.9446 0.9509 1       

RF5 0.9283 0.9469 0.9514 0.9605 1      

RF6 0.9369 0.9492 0.9564 0.9619 0.9560 1     

RF7 0.9328 0.9523 0.9532 0.9614 0.9600 0.9632 1    

RF8 0.9373 0.9542 0.9569 0.9632 0.9628 0.9660 0.9646 1   

RF9 0.9351 0.9519 0.9528 0.9619 0.9641 0.9673 0.9650 0.9714 1  

RF10 0.9355 0.9569 0.9578 0.9623 0.9655 0.9669 0.9700 0.9737 0.9750 1 
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