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SHORT-TERM TOXICITY OF 1-METHYLNAPHTHALENE TO AMERICAMYSIS BAHIA AND 5
DEEP-SEA CRUSTACEANS
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Abstract: There are few studies that have evaluated hydrocarbon toxicity to vertically migrating deep-sea micronekton. Crustaceans
were collected alive using a 9-m2 Tucker trawl with a thermally insulated cod end and returned to the laboratory in 10 8C seawater.
Toxicity of the polycyclic aromatic hydrocarbon 1-methylnaphthalene to Americamysis bahia, Janicella spinacauda, Systellaspis
debilis, Sergestes sp., Sergia sp., and a euphausiid species was assessed in a constant exposure toxicity test utilizing a novel passive
dosing toxicity testing protocol. The endpoint of the median lethal concentration tests was mortality, and the results revealed high
sensitivity of the deep-sea micronekton compared with other species for which these data are available. Threshold concentrations were
also used to calculate critical target lipid body burdens using the target lipid model. Environ Toxicol Chem 2017;36:3415–3423.# 2017
The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC

Keywords: Deep-sea crustacean Marine toxicity test Polycyclic aromatic hydrocarbon 1-Methylnaphthalene Passive
dosing

INTRODUCTION

Despite intense research effort into the ecological consequences
of the Deepwater Horizon spill, questions remain regarding the
currenthealthof theecosystemandwhat canbe learned to respond to
subsequent spills. One important component of the Gulf ecosystem
that has received relatively little attention is the deep-water column
(pelagic) micronekton (e.g., shrimp) and plankton (amphipods,
copepods) inhabiting depths from 200 to 1000m [1]. These
organisms are key trophic intermediates in deep-sea food webs and
represent a major trophic link between deep-water and shallow-
water ecosystems [2]. These animals are involved in one of the
largest animalmigrationsonearth, duringwhichhugepopulationsof
animalsmigrate from themesopelagic zone into the epipelagic zone
on a nightly basis, forming massive sonic scattering layers that can
bepickeduponshipboard sonars [3].Thesemigrators serveasmajor
sources of nutrition for cephalopods, commercially important
epipelagicfishes, andcetaceans [4–7].Althoughsomecommercially
important fish, such as the bigeye tuna, follow their prey up and
down in thewater column, adults and juvenilesofother species, such
as yellowfin tuna and blue marlin, spend up to 90% of their time in
the epipelagic zone [8]. Becausemicronektonic crustaceans, such as
euphausiids, appear to be an important component of the diet of
juvenile bluefin tuna [9], any disruption in the population density or
migratory behavior of this community could have profound impacts
on commercially important fisheries. In addition, because of their
migratory behavior, they could serve as vectors of deep-sea
contaminants into surface waters and the surface food web.

Previous studies on the micronekton and zooplankton
response to the Deepwater Horizon spill have focused on
process-level phenomena in surface-dwelling species, even
though thismassive spill occurred at 1500m depth. Field studies
have not documented large-scale changes in micronekton and
zooplankton diversity and abundance in surface dwellers,
although there is evidence of variable, yet distinct, petroleum/
dispersant incorporation into zooplankton through polycyclic
aromatic hydrocarbon (PAH) accumulation and isotopic carbon
depletion [10–12].

Although studies have investigated the lethal effects of oil
spills in terms of zooplankton decline in the euphotic zone [1],
lethal effects on deep-sea species are less well known. To fully
understand the magnitude and variability of these latter
processes, a much clearer mechanistic understanding of the
lethal effects of these compounds is needed at the level of the
organism, particularly those inhabiting deeper water. Given their
vertical range overlap with the subsurface hydrocarbon plumes
resulting from the depth of the Deepwater Horizon spill and the
deep-water application of dispersants [13–15] and their impor-
tance as a source of nutrition for shallow-water species, the deep-
sea micronekton and their zooplankton prey need to be included
in any studies on the ecosystem effects of deep-water oil spills.

Oil is a complex mixture of several thousand compounds,
with significant variation in chemical composition between
different oils and between different refined products. The
relative solubility and persistence of constituent aromatic
hydrocarbons result in crude oils with different impacts on
organisms [16,17]. A major issue in toxicity studies with oil and
oil dispersant is often the lack of quantitative chemical analysis,
with results frequently based on nominal concentrations of
hydrocarbons [18,19]. There are many physical and chemical
processes that play an important part in bioavailability and thus
toxicity [20].

An alternative to whole oils in toxicity studies is the use of
individual hydrocarbons [21,22]. Generally, the toxicity of
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specific oils results from the additive toxicity of constituent
hydrocarbons, especially aromatics [16,21,23]. The target lipid
model (TLM) provides a quantitative framework for describing
the toxicity of dissolved hydrocarbons based on the hypothesis
that toxicity results when organismal tissue lipid concentrations
of a specific hydrocarbon exceed the critical threshold for the
organism in question, leading to mortality [24]. The hydropho-
bicity of PAHs promotes partitioning across permeable
membranes into organismal tissue lipids until equilibrium is
reached. Uptake and persistence of hydrocarbons during and
after exposure may depend significantly on type and duration of
exposure, as well as specific characteristics of the exposed
species.

Modeling the toxicity of individual hydrocarbons based on
lethality and sublethal effects permits prediction of the toxicity of
any complex hydrocarbon mixture [16] while limiting experi-
mental and analytical challenges by having to measure and
interpret mixtures. Single hydrocarbons, such as 1-methylnaph-
thalene (1-MN) and phenanthrene, are often substantial contrib-
utors to the PAH content of water-accommodated fractions of
petroleum substances and are therefore commonly used in
toxicological studies [25,26]. Furthermore, alkylated PAHs are
usually more abundant than parent PAHs [25,27] and demon-
strate increased toxicity as a result of increased lipophilicity [28].
Consequently, alkylated derivatives may be more useful than the
parent PAH compound in toxicity studies. There are no such
studies reporting concentrations that elicitmortality in 50%of the
test animals (LC50) for deep-sea organisms. The present
laboratory experiments utilized a single compound, 1-MN, and
a passive dosing protocol [22] to establish toxic threshold
concentrations for use in the TLM.

METHODS

Deep-sea crustacean collection

Mechanistic studies on the effects of petroleum and
dispersants have not been conducted on deep-water organisms,
because of the difficulties in collecting live deep-sea animals
that will survive in the laboratory for any length of time. We
describe the use of unique equipment and expertise for
collecting live mesopelagic species in excellent condition to
conduct physiological experiments [29,30]. The mysid shrimp
Americamysis bahia was obtained commercially (MBL Aqua-
culture) and used to set up the experimental systems and
laboratory regime prior to collecting offshore organisms.

Deep-sea crustaceans were collected in the Straits of Florida,
from depths ranging from 600m (during the day) to 150 to
200m (at night). A 9-m2 Tucker Trawl with a thermally
insulated, light tight cod end was used for animal collections.
The primary net is 45 feet long and composed of one-fourth–
inch knotless nylon. The secondary net is 12 feet long and
composed of 303-mmNitex. The net is designed to gently funnel
the animals from a 9-m2 mouth opening to the 10-cm opening at
the end of the secondary net, which is attached to the cod end.
An opening/closing timer, coupled with real-time depth data
from a conductivity, temperature, and depth recorder mounted
on the net frame, ensures that collections occur at optimal
depths. With this proven system, the cod end can be closed at
depth, ensuring that the organisms are brought to the surface in
cold water and never exposed to damaging surface temper-
atures. For animals collected above 1000m, pressure changes
are not an issue for those without swim bladders (crustaceans do
not have a swim bladder), but temperature changes can be

lethal [31]. On net recovery, the closed cod end was detached
from the net, and animals were sorted into maintenance
chambers containing chilled seawater at their normal day depth
ambient temperature (10 8C). Once sorted, organisms were
returned to the laboratory in light, tight containers in Koolatrons
to maintain temperature at 10 8C. In the laboratory, organisms
were stored in subdivided acrylic containers (to prevent
cannibalism) within temperature-controlled refrigerators inside
of the dark room.

Experimental conditions

Determining threshold concentrations (i.e., LC50) for use in
the TLM must be completed using a constant concentration of
toxicant throughout the exposure to provide reliable data to
generate dose–response curves [16,17,32]. Most petroleum
PAHs are sparingly soluble, and obtaining constant exposure
concentrations can be challenging as a result of lossmechanisms
(sorption, volatilization, and degradation) [16,33]. As an
example, exposure vessels with 10% headspace resulted in a
35 to 55% evaporation of total PAH over 24 h [26], whereas
others saw a 64% decline in total PAHs over 84 h [34]. The
passive dosing technique was developed to combat the issue of
degradation whereby the chemical is partitioned from a solvent
solution into a biocompatible polymer, such as polydimethylsi-
loxane (PDMS) [16]. A key criterion for successful use of the
passive dosing system is to ensure excess mass of hydrocarbon
in both the loading solution and PDMS O-ring reservoirs to
prevent small amounts of depletion from affecting the target
concentrations [35]. The excessive amount of hydrocarbon
loaded into the PDMS O-rings has been proven to produce an
accurate and precise constant aqueous concentration for the
exposure duration, despite potential losses that occur in the test
system [16,22,33].

O-ring loading

Polydimethylsiloxane O-rings (O-Rings West) were loaded
with 1-MN (Acros Organics; 97%) in amethanol solvent (Fisher
Scientific; HPLC grade), using partition coefficients, deter-
mined for the environmental conditions used in each experiment
(see Partition coefficients). The 1-MN concentrations utilized
for the mysid experiment were based on LC50 estimates made
using the TLM because data for mysid shrimp were available
from previous experiments. Results of the mysid shrimp assay
and critical target lipid body burdens (CBBs) available for the
most similar species were used to establish a range of
concentrations to use in the deep-sea crustacean assays.

Partition coefficients (KPDMS-Water)

The partition coefficient of 1-MN at ambient temperature for
each of the exposure conditions (mysids¼ 23.3 8C and deep-sea
crustaceans¼ 10 8C) was determined in the laboratory for use in
the described assays. Precise KPDMS-Water values were essential
to reach target dosing concentrations in dosing vessels. A
predetermined amount of 1-MN was dissolved in 500mL of
methanol (MeOH) and mixed for 24 h. A total of 80 precleaned
O-rings were then added to the 1-MN/MeOH solution in a 2-L
glass bottle. Amagnetic stir bar was added, and the solution was
stirred for 72 h to reach equilibrium. Thirty loaded O-rings were
added to each 2-L aspirator bottle, which was filled with
seawater at the appropriate salinity (mysid¼ 27 practical
salinity units [PSU] and deep-sea organisms¼ 35 PSU). O-
rings were stirred by a stir bar for another 72 h. A time-series of
water samples was then taken for measurement of 1-MN in
seawater. Water samples were extracted with dichloromethane
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(DCM; Sigma-Aldrich) before measurement with a Horiba
Aqualog Scanning Spectrofluorometer (excitation¼ 260 nm
and emission¼ 372 nm; model Aqualog-UV-800). For 1-MN
concentrations in loaded O-rings, one O-ring was extracted with
20mL DCM, and measurements were completed on the
Aqualog fluorometer with an appropriate dilution to keep the
measurement within the calibration curve. The partition
coefficient between PDMS and seawater (SW) was calculated
by Equation 1

KPDMS:SW ¼ CPDMS

CSW
ð1Þ

where KPDMS:SW is the partition coefficient between PDMS and
seawater, CPDMS is the concentration of 1-MN in the loaded O-
ring, and CSW is the concentration of 1-MN in the equilibrated
seawater.

Aqualog Horiba measurements

Concentrations of 1-MNwere calculated from total scanning
fluorescence, which was measured with an Aqualog Horiba
Fluorometer. First, the total scanning fluorescence was
measured for standard 1-MN, and the optimal wavelengths
for maximum intensity were established (in this case, excitation
¼ 260 nm and emission¼ 372 nm). A 5- to 7-point calibration
curve was made using diluted DCM to provide a 1-MN standard
with concentration ranges from 1 to 0.05mg/L. Then, a 10-mL
sample was extracted with DCM and measured for total
scanning fluorescence. Maximum intensity at the established
optimal wavelengths was used to calculate the concentration
using the equation of best fit from the calibration curve.

Gas chromatography-mass spectrometry

The concentrations of 1-MN measured with the fluorometer
were verified by gas chromatography-mass spectrometry (GC-
MS; Agilent 6890N GC/5975C inert MSD). At the end of
dosing experiments, 1-L water samples from each concentration
were extracted 3 times with 100, 50, and 50mL DCM. In the
laboratory, surrogate standards (e.g., d8-naphthalene, d10-
acenaphthene, d10-phenanthrene, d12-chrysene, and d12-
perylene) were added to the sample, and the final extract
volume was reduced to 1mL. Extracts were then spiked with
appropriate amounts of deuterated compounds as internal
standards (e.g., d10-fluorene and d12-benzo[a]pyrene). Sam-
ples were measured in selected ion monitoring mode using a
30m� 0.25mm i.d. (0.25mm film thickness) DB-5 fused silica
capillary column (J&W Scientific) fitted in an Agilent model
GC-MS. The oven temperature was programmed to an initial
temperature of 60 to 300 8C at 12 8C/min and held at this
temperature for 6min. Selected samples were measured in a full
scan to investigate any metabolized product from 1-MN by
these deep-sea organisms.

Experimental design

To determine lethal exposure thresholds in organisms
exposed to individual high purity aromatic hydrocarbons, in
this case 1-MN, 48-h constant exposure assays were carried out
using a continuous-flow exposure system as recommended by
the Chemical Response to Oil Spills Ecological Effects
Research Forum [20] working group. This fits studies where
organisms, such as corals, have been exposed to single
hydrocarbons [22]. The A. bahia test utilized 5 concentrations
(nominally, 200, 400, 800, 1600, 3200mg/L 1-MN) and a

seawater control, tested in replicates of 4, with 10 mysids, 4 to
5 d old, in each exposure chamber. This test was completed at
ambient laboratory temperature (25 8C) and 27 PSU to test the
functionality of the dosing system and verify the measured
partition coefficients. Deep-sea crustacean assays utilized 4
concentrations (nominally, 300, 600, 1200, 2400mg/L 1-MN)
and a seawater control, tested with as many replicates as
possible based on number of organisms obtained (Table 1). For
these experiments, the exposure system was constructed in
temperature-controlled refrigerators and maintained at
11.3� 0.18 8C for experiment 1 (Janicella and euphausiids)
and 12.0� 0.18 8C for experiment 2 (Systellaspis, Sergestes,
and Sergia); salinity-matched ambient seawater (35 PSU) for
both experiments. The entire systemwas built in a dark room, lit
by only red lights to avoid any additional stress on the
organisms.

Exposure system

A continuous-flow, recirculating exposure system (Figure 1)
was used for the constant exposure experiments. This system is
based on the novel passive dosing system designed to determine
toxicity of the individual components of oil on test species [16].
Individual exposure chambers (750-mL Pyrex bottles) were
connected to corresponding 2-L dosing vessels by Viton tubing
and a Cole-Parmer multihead peristaltic pump, with a flow rate
of 7.5mL/min. Each exposure chamber was supplied by an
individual dosing vessel, whereas the peristaltic pump intake
line for each chamber was placed in the dosing vessel
corresponding to the concentration being tested. Effluent lines
from each chamber were placed in the same vessel as the intake
line. All chambers and vessels were sealed by a cap with Teflon-
lined septa with connectors to attach Viton tubing. The entire
exposure system was built within temperature-controlled
refrigerators to maintain temperature within the test organism’s
range. An image of the exposure system is available in the
Supplemental Data (Figure S1).

The exposure system was filled with natural seawater
sourced from Nova Southeastern University’s coral nursery,
aerated, ultraviolet (UV)-sterilized, and filtered to 1mm
(Polymicro). Dosing vessels were aerated prior to addition of
O-rings to ensure that the seawater was 100% saturated with
oxygen; no aeration took place during the exposure, to prevent
volatile loss of 1-MN. Following loading, O-rings were rinsed
(3 times in seawater), added to the dosing vessel of the exposure
system, and equilibrated for 20 h. Water chemistry samples
were collected, organisms were added to exposure chambers,
and the test was initiated. Concentrations of 1-MN were
monitored by fluorescence at the initiation and completion of the
48-h exposure. Samples for water chemistry (20mL) were
collected from the exposure chamber effluent line in certified
volatile organic analyte vials (Thermo Scientific; with no
headspace). Fluorescence was measured on the Horiba Aqualog
scanning spectrophotometer calibrated with known compounds.
Mortality was recorded every hour for the first 8 h and every 12 h
thereafter to facilitate the calculation of 24- and 48-h LC50.

LC50 and CBB calculation

To determine the LC50, the geometric means of the 0- and
48-h concentrations of each chamber were utilized. Mortality in
each chamber at 24 h was used to calculate a 24-h LC50 for each
deep-water species, and 24- and 48-h mortality were used to
calculate LC50s at both times for mysid shrimp. In cases with no
partial mortality, the standard graphical method for
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determination of LC50 was used [36]. For organisms which
exhibited partial mortality in some chambers, logistic regression
was used. To calculate the LC50s for all organisms, individual
chamber concentrations and mortality were utilized. This
establishes a relationship between percentage of mortality and
chamber concentration, which can be used to solve for the
concentration causing 50% mortality in the test organism.

Following calculation of an LC50 for each species, CBBs
were calculated using the TLM. Equation 2 gives the TLM

logLC50 ¼ logCBB� 0:936� logKow þ Dc ð2Þ

where the LC50 (millimoles per liter) can be used to calculate a
CBB (micromoles of chemical per gram of lipid) using the
universal narcosis slope (–0.936), the chemical’s octanol–water
partition coefficient (logKOW, 3.781 for 1-MN), and a chemical
class correction factor (Dc, 0.352 for polyaromatics) [32].

Quality assurance and quality control

All data were tested for normality (Shapiro-Wilk) and
homoscedasticity (Bartlett/Levene) and transformed to meet
these assumptions where applicable, or nonparametric methods
were used. One-way analysis of variance (ANOVA, a¼ 0.05) or
a Kruskal-Wallis ANOVA (a¼ 0.05) on ranks of untransformed
data was used to compare water quality data between treatments.
All statistical analyses were completed using R (Ver 3.3.1).

The A. bahia assay only showed a significant difference in
dissolved oxygen between treatments (p¼ 0.031) because of
elevated levels in the 200mg/L treatment compared to the
3200mg/L treatment (p¼ 0.030). However, dissolved oxygen in
either of these treatments was not significantly different from
control levels. Ammonia (NH3), nitrite (NO2), nitrate (NO3),
and phosphate (PO4) concentrations were not statistically
different between treatments (p> 0.5).

No significant differences (p> 0.05) in dissolved oxygen,
NH3, NO2, NO3, PO4, or temperature were found between

treatments for any of the deep-sea crustacean assays. Sergestes
sp. and Sergia sp. assays did not have multiple replicates per
treatment, preventing statistical comparisons. However, the
water quality parameters did not show a pattern with 1-MN
concentration, and the lack of significant differences in any of
the species tested suggested that these water quality parameters
were not different between treatments.

All experiments conducted in the present study included
negative controls, where O-rings containing no 1-MN were
added to the dosing vessel. These replicates provide a baseline
level of mortality in the absence of a contaminant. However,
controls of the mysid shrimp test resulted in measurable amounts
of 1-MN, althoughO-ringswere never loaded. This is assumed to
be the result of contamination during sampling or analysis.

RESULTS AND DISCUSSION

Organism collection

The mesopelagic taxa collected make up a critical compo-
nent of the Gulf ecosystem, most notably in their role of
connecting biological processes occurring at depth with those in
the surface waters because of their diel vertical migrations. The
oplophorid Janicella spinacauda dominated the trawl collec-
tions and is one of the most abundant caridean species in the
vicinity of the Deepwater Horizon oil spill [37]. Janicella
spinacauda is the smallest species tested that fit into the
laboratory dosing chambers and is a robust species that can
survive for up to 3wk under laboratory conditions (T. Frank,
Nova Southeastern University, Dania, FL, USA, personal
observation). It is also a strong vertical migrator, with daytime
depths of 400 to 600m and nighttime depths of 0 to
200m [14,37]. The original target was 25 organisms, but this
was exceeded with 160—most of these were collected in the
night trawls. Acanthephyra purpurea and Systellaspis debilis,
also oplophorids, are themost abundant and thirdmost abundant
oplophorid near the Deepwater Horizon oil spill site [37] and are
also strong vertical migrators, with daytime depths between 600
and 1000m and nighttime depths between 0 and 200m [14,37].
Acanthephyra were not collected, but 24 Systellaspis were
returned to the laboratory alive.

Euphausiids are part of the midwater ecosystem in virtually
all oceanic ecosystems and are often major components of the
zooplankton biomass in the pelagic zone [38,39]. The
euphausiids collected in the present study were all vertical
migrators, with daytime depths between 300 and 500m and
nighttime depths between 0 and 150m [40]. Thirty euphausiids
were collected and returned to the laboratory alive. Sergestes sp.
are relatively fragile species, and very few survived long enough
to test after experiments with J. spinacauda and euphausiids
were completed. These were caught on the first day of the cruise,
with no further opportunity for capture.

Partition coefficient of 1-MN

Successful assessment of specific chemicals through passive
dosing mainly depends on the precise measurement of the
chemical’s partition coefficient between the polymer and water
(KPolymer-water; in this case KPDMS-water). In general, researchers
use KPolymer-water measured at room temperature and for fresh/
distilled water for toxicity testing [41–44]. The aqueous
solubility of hydrophobic organic compounds (HOCs) de-
creases with a decrease in temperature and an increase in
salinity [45]. Thus, the partitioning of HOCs between the
polymer (e.g., PDMS) and water (KPolymer-water) will vary with

Table 1. Number of organisms in each replicate and treatment

Organism
Organisms per

replicate
Total number per

treatmenta

Americamysis bahia 10 40
Janicella spinacauda 8 24
Euphausiidae 1 (controls¼ 2) 3 (controls¼ 6)
Systellaspis debilis 1 3 (2400mg/L¼ 2)
Sergestes sp. 1 1 (no 2400mg/L)
Sergia sp. 1 1

a
“Treatment” refers to nominal target concentration groups.

Figure 1. Schematic of the recirculating-flow exposure system. The 750-
mL glass chamber is connected to a multichannel peristaltic pump with
Viton tubing at a flow rate of 7.5mL/min. Each chamber is supplied by a
separate 2-L dosing vessel containing 30 O-rings.
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temperature and salinity; specifically, KPolymer-water increases
with a decrease in temperature and an increase in salin-
ity [46,47]. Muijs and Jonker [47] determined KPolymer-water

values for 9 PAHs (phenanthrene, anthracene, fluoranthene,
pyrene, benzo[a]anthracene, chrysene, benzo[e]pyrene, benzo-
[b]fluoroanthene, and benzo[k]-fluoranthene) at the 5 to 30 8C
temperature range and found that they varywidely (42–65%) for
these HOCs. Thus, it was crucial for the present study to
determine the KPDMS-water values at ambient conditions used in
each toxicity test. For preliminary work with mysids, KPDMS-

water values at room temperature (23.3 8C) and 26.8 PSU salinity
were measured; and for deep-sea crustaceans, they were
measured at 7 8C and 35 PSU (Supplemental Data, Table S1).
These data can be found in the Gulf of Mexico Research
Initiative Information & Data Cooperative (GRIIDC) data
repository (DOI: 10.7266/N7PR7TB8).

The partitioning experiments were completed in duplicate
(sets A and B), and the log K values agree within 5% of each
other. As expected, log KPDMS-water changes 0.11 units (from
3.09 to 3.20) when salinity changes from 0 to 26.8 PSU (both at
23.3 8C). However, it changed 0.30 units (from 3.09 to 3.39)
when temperature changed from 23.3 to 7 8C and salinity from 0
to 35 PSU. From these data, it is apparent that both temperature
and salinity affect partitioning of HOCs between the polymer
and water phases. Jonker et al. [46] also determined that there
were significant effects of both temperature and salinity in the
partitioning of HOCs, and these effects were determined to be
independent of each other.

Dosing concentrations

The target dosing concentrations were calculated based on
the measured partition coefficients. To verify whether dosing
chambers had reached target concentrations, aqueous concen-
trations were measured at 0 and 48 h. At the end of the
experiments, water samples were also taken for GC-MS
analysis to verify the fluorometric data from the Aqualog
Horiba. Figure 2 shows a satisfactory agreement (R2¼ 0.93)
between the data from Aqualog Horiba and the GC-MS.

Mean measured concentrations for each treatment during the
A. bahia assay can be found in Table 2. Concentrations agreed
well with predicted values and were on average 14.1% lower
than target concentrations. The difference between the
temperature during partition coefficient determination and the
temperature during the exposure could be the reason for the

difference in concentrations between target and measured
values. Throughout the 48-h exposure, there was an average
fluctuation of 9.7% for all chambers, with most of the variation
attributable to fluctuations in the low concentration and control.
The 1-MN concentration in half of the chambers decreased over
48 h, whereas the other half increased. The controls averaged
99.7� 9.2mg/L 1-MN in all replicates. This could be
attributable to contamination of samples during collection;
therefore, the measured concentrations of 1-MN in controls
were included in calculation of threshold concentrations.
Individual chamber concentrations can be found in the GRIIDC
data repository (DOI: 10.7266/N7WS8RN2).

The mean measured concentration for the deep-sea organism
assays can be found in Table 3. Overall, 1-MN concentrations
deviated from target concentrations by an average of 13.2%.
The percentage of change over time for these assays was high
(mean¼ 46.9%), as a result of increases in concentration of 1-
MN in all chambers except 3, which showed slight decreases
over 48 h. The passive dosing system relies on kinetics
associated with the partitioning of hydrocarbon from the
polymer to the aqueous phase until equilibrium is reached, and it
is possible that the equilibration time in these assays was
inadequate at the low temperature and that more time was
required to reach target levels. The fluctuation over time was not
attributable to volatile loss or degradation of the toxicant as
observed in previous studies using petroleum hydrocarbons.
The standard deviations for each treatment were also high;
therefore, the individual chambers were treated as separate
treatment concentrations and plotted against percentage of
mortality. Individual chamber concentrations at each time point
are available in the GRIIDC data repository (DOI: 10.7266/
N7S46QBC).

LC50 and CBB

For each assay, the proportion of dead organisms was plotted
against the concentration of 1-MN for each chamber individu-
ally to determine the LC50 for that organism. Americamysis
bahia exhibited partial mortality at both 24 and 48 h of
exposure, promoting determination of LC50 using a 3-
parameter logistic regression. Figure 3 shows a satisfactory fit
between the logistic models and observed mortality, with R2

values of 0.947 and 0.930 at 24 and 48 h, respectively. In
addition, p values of the 3 predicted model parameters were
significant (p< 0.001) for both 24- and 48-h mortality data.
Therefore, the logistic models from each time point were used to
predict a 24-h LC50 of 441.02mg L�1 (95% CI 384.90–
474.77mgL�1) and a 48-h LC50 of 355.19mg L�1 (95% CI
287.51–379.69mg L�1) following exposure to 1-MN. Type 1
narcotic compounds, such as 1-MN, exhibit nonpolar narcosis

Figure 2. 1-Methylnaphthalene concentration using Horiba Aqualog and
gas chromatography-mass spectrometry. Dotted line indicates a 1:1
relationship; solid line indicates the data trendline. GC-MS¼ gas
chromatography-mass spectrometry.

Table 2. Mean measured concentrations of 1-methylnaphthalene in each
nominal target concentration group of the Americamysis bahia exposure

Target (mg/L)
Mean concentration�SD

(mg/L)
48-h change
(% of initial)a

Control (0) 99.7� 9.2 16.9
200 287.6� 4.2 14.8
400 440.8� 23.9 6.6
800 811.1� 28.7 6.2
1600 1551.5� 109.8 6.4
3200 3448.3� 312.6 7.2

aAbsolute value of the percentage change.
SD¼ standard deviation.
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as their toxic mode of action. These compounds partition into
tissue lipids, specifically cell membrane lipids, and disrupt
normal function [48]. For smaller organisms, equilibrium should
be reached in the tissue lipid after roughly 24 h [24],which iswhy
the 24- and 48-h LC50s for 1-MN are similar. The chemical had
reached the organism’s toxic threshold after 24 h, and mortality
increased in only a few of the lower concentrations after an
additional 24 h, causing a slight decrease in LC50.

Because of the elevated mortality in most chambers,
including controls, of the deep-sea organism assays, only
24-h LC50 calculations were reliable for all organisms. The
deep-sea organism exposures did not result in partial mortality
in any species except for J. spinacauda. Therefore, mortality for
J. spinacauda was plotted against the concentration of 1-MN,

and the 3-parameter logistic model was used (Figure 4). The R2

for this relationship was 0.908, and all 3 parameters of the
logistic model were significant (p< 0.001). The 24-h LC50 for
J. spinacauda following exposure to 1-MN was calculated at
889.75mg/L�1 (95% CI 694.02–979.36mgL�1).

The 24-h LC50s for the remaining 4 species were estimated
using the graphical method, which is the standard method for
LC50 determination when mortality is either 0 or 100%. This
process uses the highest concentration eliciting no mortality and
the lowest concentration causing 100% mortality and prevents
any calculation of confidence intervals because only those 2
points are used to create a line. The 24-h LC50s for all remaining
organisms can be found in Table 4, along with those already
discussed. The 48-h LC50 of the copepodOithona davisaewhen

Figure 3. Proportion of Americamysis bahia dead at 24 h (A) and 48 h (B) following exposure to 1-methylnaphthalene. Fitted line represents the 3-parameter
logistic regression based on the data. n¼ 10 for each point.

Table 3. Measured mean concentration of 1-methylnaphthalene for each nominal target treatment group for the deep-sea crustacean exposures

Species Treatment (n) Mean concentration�SD (mg/L) 48-h change (% initial)a

Janicella spinacauda Control (3) 0b NA
J. spinacauda 300 (3) 305.2� 149.6 33.2
J. spinacauda 600 (3) 564.1� 65.0 74.0
J. spinacauda 1200 (3) 1295.6� 7.1 19.3
J. spinacauda 2400 (3) 2802.2� 96.8 17.5

Euphausiidae Control (3) 0 NA
Euphausiidae 300 (2) 325.4� 9.4 15.1
Euphausiidae 600 (3) 497.1� 105.7 27.8
Euphausiidae 1200 (2) 1274.4� 23.8 32.3
Euphausiidae 2400 (3) 2680.9� 185.4 41.7

Systellaspis debilis Control (3) 0 NA
S. debilis 300 (3) 341.5� 91.3 88.3
S. debilis 600 (3) 549.0� 23.7 79.7
S. debilis 1200 (3) 1144.4� 138.5 58.2
S. debilis 2400 (2) 2297.4� 390.1 36.3

Sergestes sp. Control (1) 0 NA
Sergestes sp. 300 (1) 343.0 60.8
Sergestes sp. 600 (1) 519.5 56.2
Sergestes sp. 1200 (1) 1064.6 92.9

Sergia sp. Control (1) 0 NA
Sergia sp. 300 (1) 247.8 11.4
Sergia sp. 600 (1) 598.8 63.2
Sergia sp. 1200 (1) 1122.3 54.9
Sergia sp. 2400 (1) 2364.3 27.7

aAbsolute value of the percent change.
bNo standard deviation calculated for controls.
n¼ number of replicates for that group; NA¼ not applicable; SD¼ standard deviation.
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exposed to 1-MN was calculated at 2652mg/L [49]. This is over
2-fold higher than the highest value calculated in the present
study, indicating increased sensitivity for the deep-sea crusta-
ceans tested. Another study on the effects of a very similar
compound, 2-methylnaphthalene, on arctic species resulted in a
range of 350 and 5420mg/L for 96-h LC50s [50]. The range of
LC50s calculated in the present study is 171.53 to 889.75mg/L.
The deep-sea crustaceans were slightly more sensitive compared
with the arctic species tested, even at the shorter duration used in
the present study.A possible source of this difference is the use of
nominal concentrations by Olsen et al. [50], which would have
resulted in an overestimation of LC50 because of a lack of
measured concentrations for this volatile compound.

The 24-h LC50s for each organism tested in the present study
were utilized to calculate a CBB using the TLM. The CBB is a
comparable, interspecific measure of the toxic threshold for
organisms exposed to narcotic chemicals that act via nonpolar
narcosis. The range of CBBs previously calculated [32] is from
24.1 to 500mmol/g lipid and represents a variety of species,
including both freshwater and saltwater species that inhabit the
water column and benthic zones. These values are also
representative of a variety of monocyclic, polycyclic, and
chlorinated aromatic hydrocarbons. The CBBs calculated in the
present study were compared with those compiled previously
(Figure 5). Although CBBs for most crustaceans are lower than
those for other organisms, measured CBBs of all species tested

in the present studywere<70% (4 of the 6 species<90%) of the
species for which these data are available, indicating higher
sensitivity. Furthermore, the CBBs calculated for the deep-sea
crustaceans tested also indicate higher sensitivity to narcotic
chemical exposure when compared with other crustaceans with
previously calculated CBBs.

In contrast to larger animals, micronekton and macro-
zooplankton present physiological and behavioral vulnerabil-
ities that will influence the magnitude and duration of their
exposure to petroleum/dispersant-derived substances localized
in deep-water plumes. Most notably, their small size confers a
large surface area relative to their volume, which, coupled with
high permeability of the body surface and at the gills, results in
increased exchange between the environment and the animal’s
extracellular fluid [51]. For some species, the size of prey will
also overlap with oil droplets, whichmay be consumed [52]. For
many species of micronekton and zooplankton in a spill zone,
their vertical migration behavior would result in their residing in
depths of relatively high hydrocarbon and dispersant concen-
tration (e.g., deep-water plumes [15,53]) during the day and
migrating into shallower waters at night. If petroleum/
dispersant exposure inhibits neural function and/or motor
activity in these organisms to such an extent that their migratory
abilities are impaired, this would have a substantial impact on
higher–trophic level predators in shallower waters, such as
larval and juvenile bluefin tuna, which rely on these vertical
migrators for a significant portion of their diets [9].

CONCLUSIONS

The purpose of the present experiment was to determine the
partition coefficients of 1-MN at various environmental
conditions and to utilize those values to reach target concen-
trations during passively dosed toxicity tests with a common
laboratory organism and 5 deep-sea micronekton organisms.
The partition coefficient work showed effects from both
temperature and salinity, which aided in achieving only a 13
to 14% deviation from target concentrations during all assays.
The concentrations obtained during the A. bahia exposures
resulted in an average change of <10% over 48 h. Deep-sea
organism exposure concentrations varied much more over the
48-h exposure, likely attributable to inadequate equilibration
time at the lower temperatures utilized for these species, as
concentrations in each chamber increased over time.

Mortality following a 24-h exposure to 1-MN was used to
measure LC50s as inputs to the TLM to calculate CBBs for each
species. The CBBs measured for A. bahia and each deep-sea

Figure 4. Proportion of Janicella spinacauda dead at 24 h following
exposure to 1-methylnaphthalene. Fitted line represents the 3-parameter
logistic regression based on the data. n¼ 10 for each point.

Table 4. Measured 24-h median lethal concentrations and associated
critical target lipid body burdens for all organisms following exposure to

1-methylnaphthalene

Organism 24-h LC50 (mg/L; 95% CI)a CBB (mmol/g lipid)

Sergestes sp. 171.53 9.39
Euphausiidae 325.38 17.80
Americamysis bahia 441.02 (384.90–474.77) 24.13
Systellaspis debilis 560.83 30.69
Sergia sp. 860.53 47.09
Janicella spinacauda 889.75 (694.02–979.36) 48.68

a95% CI included when applicable.
CBB¼ critical target lipid body burden; CI¼ confidence interval; LC50¼
median lethal concentration.

Figure 5. Percentile of previous and measured critical target lipid body
burdens. Error bars indicate� standard error. CBB¼ critical target lipid
body burden.
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crustacean indicated high sensitivity to the narcotic chemical, 1-
MN. The deep-sea micronekton utilized in this exposure are
vertical migrators and a key trophic linkage between the
mesopelagic and surface waters. If plumes of oil or dispersed oil
remain within the boundaries of these vertical migrations, they
will be traversed multiple times a day and toxicity at low levels
may be the result. The measured sensitivity of these organisms
could lead to disruption of this connectivity following exposure
to petroleum hydrocarbons and eventually to effects on
commercially important fish which rely on these animals for
food.

Supplemental Data—The Supplemental Data are available on the Wiley
Online Library at DOI: 10.1002/etc.3926.
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