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DECOMPOSITION OF FINITE SCHMIDT RANK BOUNDED

OPERATORS ON THE TENSOR PRODUCT

OF SEPARABLE HILBERT SPACES

A. BOUROUIHIYA

Abstract. Inverse formulas for the tensor product are used to develop an algo-

rithm to compute Schmidt decompositions of Finite Schmidt Rank (FSR) bounded
operators on the tensor product of separable Hilbert spaces. The algorithm is then

applied to solve inverse problems related to the tensor product of bounded opera-
tors. In particular, we show how properties of a FSR bounded operator are reflected

by the operators involved in its Schmidt decomposition. These properties include

compactness of FSR bounded operators and convergence of sequences whose terms
are FSR bounded operators.

1. Introduction

For this paper, all Hilbert spaces are assumed to be separable and denoted by H
or K. The norm is the usual norm that is induced by the inner product of the
Hilbert space [5]. The space of bounded operators: H → K is denoted B(H,K).

Definition 1.1. We say that F ∈ B(H1⊗H2,K1⊗K2) is a finite Schmidt rank
(FSR) if it can be written in the form

(1.1) F =

r∑
k=1

F1,k ⊗ F2,k,

where {F1,k}rk=1 ⊂ B(H1,K1) and {F2,k}rk=1 ⊂ B(H2,K2). If r is the minimum
number such that F can be written in form (1.1), we say r is the Schmidt rank of
F , we denote rank⊗(F ) = r, and call equality (1.1) a Schmidt decomposition of F .

Singular value decomposition (SVD) is often used to compute Schmidt decom-
positions of matrices [10]. For the infinite dimensional case, the SVD of a bounded
operator exists if and only if the operator is compact [9]. However, to the best of
our knowledge, there is no published algorithm to compute a Schmidt decomposi-
tion in form (1.1) of a FSR bounded operator A in the infinite dimensional case,
even if A is assumed to be compact.

Received December 25, 2016.
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2 A. BOUROUIHIYA

Section 2 uses inverse formulas of the tensor product to develop a new algo-
rithm to compute Schmidt decompositions of FSR bounded operators on the tensor
product of separable Hilbert spaces with finite or infinite dimensions. The need for
infinite dimensional Schmidt decompositions is not only theoretical, but it is also
for applications. For example, there are states in quantum physics acting on infi-
nite dimensional Hilbert spaces. Meanwhile, Schmidt decomposition in the finite
case is a tool to study some physics phenomena such as quantum entanglement [4].
Other applications involve integral operators acting on infinite dimensional Hilbert
spaces. These operators are traditionally discretized before their decompositions.
The process of discretization eventually induces numerical imprecisions [3].

In [6], C. S. Kubrusly and P. Vieira, proved that the tensor product of two
uniformly (strongly) convergent sequences of bounded operators is a uniformly
(strongly) convergent sequence. They also proved that the converse holds in case
of convergence to zero under the semigroup assumption. The following theorem
that is proved in Section 3, states the converse in case of convergence to a nonzero
operator.

Theorem 1.2. Let {Fn} be a sequence of bounded operators that is uniformly
convergent to F ∈ B(H1 ⊗H2,K1 ⊗K2) r {0}.

(i) If rank⊗(Fn) ≤M for each n > 0, then rank⊗(F ) ≤M .
(ii) Assume that F has a Schmidt decomposition in form (1.1) and

(1.2) Fn =

M∑
m=1

Fn
1,m ⊗ Fn

2,m,

where the sequences {Fn
1,m}n>0 and {Fn

2,m}n>0 are bounded for each m =

1, . . . ,M . Then there are c1(i,k), . . . , c
M
(i,k) ∈ C such that the sequence

M∑
m=1

cm(i,k)F
n
i,m

has a subsequence that converges to Fi,k for each (i, k) ∈ {1, 2}×{1, . . . , r}.
(iii) Statements (i) and (ii) hold if uniform convergence is replaced with strong

convergence.

It is known that the tensor product of two compact operators is compact. J.
Zanni and C. S. Kubrusly [11] recently proved that the converse of this property
also holds. The main theorem of Section 4 proves that the Schmidt decomposition
of a FSR compact operator has each of its term as a tensor product of compact
operators. The same result is also shown for the class of Hilbert-Schmidt operators,
the class of nuclear operators, and all Schatten classes of operators.

2. Schmidt decompositions of FSR bounded operators

2.1. Preliminaries and notations

Most definitions and results in this subsection can be found in [5]. We denote by
H′ the dual of H. If x ∈ H, we denote by x∗ the linear form x∗(y) = 〈y, x〉 for all
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y ∈ H. The transpose of the linear mapping F : H → K is F t : K′ → H′, where
F t(y∗) = y∗ ◦ F for all y∗ ∈ K′.

The Hilbert space H1⊗H2 can be interpreted as the Hilbert space L2(H′1,H2),
the space of Hilbert-Schmidt operators. The tensor product of F1 ∈ B(H1,K1) and
F2 ∈ B(H2,K2) can be defined by F1⊗F2(H) = F2H F t

1 , for each H ∈ L2(H′1,H2).
For all h, k ∈ H, we define the one-rank operator E(h,k)(x) = 〈x, k〉h for all

x ∈ H.

2.2. An algorithm to compute Schmidt decompositions

The following Proposition collects results from [2].

Proposition 2.1. Let u = u1 ⊗ u2 ∈ H1 ⊗H2 and let v = v1 ⊗ v2 ∈ K1 ⊗K2.
We define the bilinear operator

Pu,v : B(H1 ⊗H2,K1 ⊗K2)2 −→ B(H1,K1)⊗ B(H2,K2)

(F,G) −→ V v2FUu2 ⊗ Vv1GUu1
,

where

Uu1
: H2 → H1 ⊗H2, given by Uu1

(x2) = u1 ⊗ x2,
Uu2 : H1 → H1 ⊗H2, given by Uu2(x1) = x1 ⊗ u2,
Vv1 : K1 ⊗K2 → K2, given by Vv1(H) = H(v∗1),

V v2 : K1 ⊗K2 → K1, given by V v2(H) = Ht(v∗2).

(i) The operators Vv1 , V v2 , Uu1
, Uu2 , Pu,v, are bounded and we have

‖Vv1‖ = ‖v1‖, ‖V v2‖ = ‖v2‖, ‖Pu,v‖ ≤ ‖u‖‖v‖.
(ii) The mapping Du,v(F ) = Pu,v(F, F ) is continuous and we have

‖Du,v(F )−Du,v(G)‖ ≤ ‖u‖‖v‖ (‖F‖+ ‖G‖) ‖F −G‖.
(iii) rank⊗(F ) = 1 if and only if Du,v(F ) = 〈F (u), v〉F .

Definition 2.2. We say that {F1,k⊗F2,k}mk=1 is a finite minimal system (FMS)
in B(H1⊗H2,K1⊗K2) if the system {Fi,k}mk=1 is independent for each i ∈ {1, 2}.

Theorem 2.3. Let F ∈ B(H1 ⊗ H2,K1 ⊗ K2). Equality (1.1) is a Schmidt
decomposition of F if and only if {F1,k ⊗ F2,k}rk=1 is a FMS.

Proof. If {F1,k⊗F2,k}rk=1 is not a FMS, it is easy to deduce that rank⊗(F ) < r.
For the converse, it suffices to prove by induction on n the following claim.

C(n): For each FMS {F1,k ⊗ F2,k}rk=1 for which r > n, we have

rank⊗(

r∑
k=1

F1,k ⊗ F2,k) > n.(2.1)

C(0) is obvious. Now, assume that C(n − 1) holds for some n > 0 and (2.1)
does not hold for some FMS {F1,k ⊗ F2,k}rk=1 for which r > n. Therefore,

(2.2)

n−1∑
k=1

G1,k ⊗G2,k =

r∑
k=1

F1,k ⊗ F2,k −G1,r ⊗G2,r,
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where {G1,k⊗G2,k}nk=1 is a FMS, and so {F1,1⊗F2,1, . . . , F1,r⊗F2,r, G1,r⊗G2,r}
is not a FMS by using C(n− 1). Consequently, we may assume WLG that G1,r ∈
span{F1,1, . . . , F1,r}, and so we can find c1, . . . , cr ∈ C to rewrite (2.2) as

(2.3)

n−1∑
k=1

G1,k ⊗G2,k =

r∑
k=1

F1,k ⊗ (F2,k − ckG2,r).

On the one hand, C(n − 1) implies {F1,k ⊗ (F2,k − ckG2,r)}rk=1 is not a FMS,
and so the system {H2,k = F2,k − ckG2,r}rk=1 is dependent. On the other hand,
the dimension of span{H2,k}rk=1 ≥ r − 1. Hence, we may assume WLG that

H2,r ∈ span{H2,k}r−1k=1 and {H2,k}r−1k=1 is an independent system. Using the last
fact and (2.3), we can find a1, . . . , ar−1 ∈ C such that

n−1∑
k=1

G1,k ⊗G2,k =

r−1∑
k=1

(F1,k + akF1,r)⊗H2,k.

The last equality contradicts C(n − 1) since {(F1,k + akF2,r) ⊗ H2,k}r−1k=1 is a
FMS. �

A finite dimensional version of Theorem 2.3 is proved in [7].

Theorem 2.4. Let F ∈ B(H1 ⊗ H2,K1 ⊗ K2) r {0} be a FSR. Let (u, v) =
(u1 ⊗ u2, v1 ⊗ v2) ∈ H1 ⊗H2 ×K1 ⊗K2. If 〈F (u), v〉 = 1, then

rank⊗ (F −Du,v(F )) = rank⊗(F )− 1.

Proof. Assume that F has a Schmidt decomposition in form (1.1). Using Propo-
sition 2.1, we have

(2.4) Du,v(F ) =

r∑
k,l=1

a1,ka2,lF1,k ⊗ F2,l,

where a1,k = 〈F1,k(u1), v1〉 and a2,k = 〈F2,k(u2), v2〉 for each k ∈ {1, . . . , r}. Thus,
(2.4) and the fact that 〈F (u), v〉 = 1 imply

(2.5)

r∑
l=1

a1,la2,l = 1,

and so

(2.6) F −Du,v(F ) =

r∑
l=2

∆1
1,l ⊗∆2

1,l +

r∑
k=2

r∑
l=k+1

∆1
k,l ⊗∆2

k,l,

where for each k ∈ {1, . . . , r} and for each l ∈ {k + 1, . . . , r},

∆1
k,l = a1,lF1,k − a1,kF1,l and ∆2

k,l = a2,lF2,k − a2,kF2,l.
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Owing (2.5), we may assume WLG that a1,1 6= 0. If l > k, we then have
a1,k∆1

1,l − a1,1∆1
k,l = a1,l∆

1
1,k, and so

(2.7)

F −Du,v(F ) =

r∑
k=3

∆1
1,k ⊗

(
∆2

1,k −
r∑

l=k+1

a1,l
a1,1

∆2
k,l +

k−1∑
l=2

a1,l
a1,1

∆2
l,k

)
+ ∆1

1,2 ⊗
(

∆2
1,2 −

r∑
l=3

a1,l
a1,1

∆2
2,l

)
.

Using Theorem 2.4, rank⊗(F −Du,v(F )) ≥ r− 1 while the Schmidt rank of the
right hand side of (2.7) is less or equal to r − 1 and this finishes the proof. �

Based on Theorem 2.4, one can develop an algorithm to compute the Schmidt
decomposition of any FSR F ∈ B(H1 ⊗H2,K1 ⊗K2) r {0}. The algorithm leads
to a decomposition of F after r steps if and only if rank⊗(F ) = r.

Example 2.5. Let the matrix

M =


−4 13 −2 24
−11 0 −13 −5

6 5 −12 11
6 −7 −21 8


be identified with an operator on the Hilbert space C2 ⊗ C2 endowed with the
basis (e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2), where e1 = (1, 0) and e2 = (0, 1).

We have 〈M(e1⊗e1), e1⊗e1〉 = −4. Therefore, a first term in the decomposition
of M is −1/4M1,1 ⊗M1,2, where

M1,1 = V e1MUe1 =

(
−4 −2

6 −12

)
, M1,2 = Ve1MUe1 =

(
−4 13
−11 0

)
.

Let M1 = M + 1/4M1,1 ⊗ M1,2. We have 〈M1(e1 ⊗ e2), e1 ⊗ e2〉 = −21/2.
Therefore, a second term in the decomposition of M is −2/21M1,2 ⊗M2,2, where

M2,1 = V e2M1U
e1 =

(
0 −15/2

−21/2 12

)
,

M2,2 = Ve2M1Ue1 =

(
0 49/2

−21/2 −7

)
.

We have M1 + 2/21M12 ⊗M22 = 0. Consequently, rank⊗(M) = 2 and

M = −1

4
M1,1 ⊗M1,2 −

2

21
M2,1 ⊗M2,2.

3. Convergent sequences of FSR bounded operators

We write Fn u−→ F to mean the sequence {Fn}n>0 uniformly converges to F , i.e.,

‖Fn − F‖ converges to zero. We write Fn s−→ F to mean the sequence {Fn}n>0

strongly converges to F , i.e., ‖Fn(x)− F (x)‖ converges to zero for all x ∈ H.
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If two sequences converge uniformly (strongly), then the tensor product of two
sequences converges uniformly (strongly) [6]. The following theorem states the
converse under boundness conditions and the fact that the limit is nonzero.

Theorem 3.1. Let {Fn
1 ⊗ Fn

2 }n>0 be a sequence that is uniformly convergent
to F ∈ B(H1 ⊗H2,K1 ⊗K2) r {0}. Then the following statements hold:

(i) rank⊗(F ) = 1.
(ii) If {Fn

1 }n>0 and {Fn
2 }n>0 are bounded and F = F1 ⊗ F2, then there is a

constant c 6= 0 such that {Fn
1 }n>0 has a subsequence that uniformly converges

to F1/c and {Fn
2 }n>0 has a subsequence that uniformly converges to cF2.

(iii) Statements (i) and (ii) hold if uniform convergence is replaced with strong
convergence.

Proof. (i) Let u = u1 ⊗ u2 ∈ H1 ⊗H2 and v = v1 ⊗ v2 ∈ K1 ⊗K2 for which we
have 〈F (u), v〉 = 1. Let F1 ⊗ F2 = Du,v(F ). Using Proposition 2.1, we obtain

‖Fn
1 ⊗ Fn

2 − F1 ⊗ F2‖ ≤ ‖F − Fn
1 ⊗ Fn

2 ‖‖u‖‖v‖‖Fn
1 ⊗ Fn

2 ‖
+ ‖u‖‖v‖ (‖F‖+ ‖Fn

1 ⊗ Fn
2 ‖) ‖F − Fn

1 ⊗ Fn
2 ‖.

Consequently, Fn
1 ⊗ Fn

2
u−→ F1 ⊗ F2, and so F = F1 ⊗ F2.

(ii) Let u = u1 ⊗ u2 ∈ H1 ⊗H2 and v = v1 ⊗ v2 ∈ K1 ⊗ K2 for which we have
〈F1(u1), v1〉 = 〈F2(u2), v2〉 = 1. Since {Fn

2 }n>0 is bounded, then so is the sequence
{cn = 〈Fn

2 (u2), v2〉}n>0. Therefore, by Borel Theorem, there is a subsequence
{ci(n)}n>0 that converges to a constant c. Using Proposition 2.1, we have

(3.1)
‖cF i(n)

1 − F1‖ = ‖(c− ci(n))F
i(n)
1 + V v2 [F

i(n)
1 ⊗ F i(n)

2 − F1 ⊗ F2]Uu2‖

≤ |c− ci(n)|‖F
i(n)
1 ‖+ ‖u2‖‖v2‖‖F i(n)

1 ⊗ F i(n)
2 − F1 ⊗ F2‖.

The last inequality and the fact that the sequence {Fn
1 }n>0 is bounded imply

F
i(n)
1

u−→ F1/c. Similarly, there is a constant d 6= 0 such that {F i(n)
2 }n>0 has a

subsequent {F j(n)
2 }n>0 that uniformly converges to F2/d. Finally, the fact that

the sequence {F j(n)
1 ⊗F j(n)

2 }n>0 uniformly converges to F1⊗F2 leads to d = 1/c.

(iii) Assume Fn
1 ⊗ Fn

2
s−→ F . Therefore, for all x = x1 ⊗ x2 ∈ H1 ⊗ H2,

FnEx,x
u−→ FEx,x, and so using (i), rank⊗(FEx,x) = 1. Hence, rank⊗(F ) = 1.

Following the same steps to prove (ii) and replacing (3.1) with the inequality

(3.2)

‖cF i(n)
1 (x1)− F1(x1)‖ ≤ |〈F i(n)

2 (u2), v2〉|‖F i(n)
1 (x1)− F1(x1)‖

+ |c− ci(n)|‖F
i(n)
1 (x1)‖

+ |〈F i(n)
2 (u2)− F2(u2), v2〉|‖F1(x1)‖,

where x1 ∈ H1, we can obtain the desired result. �

Remark 3.2.
1. For every type of convergence, each one of the sequences {1/nF1 ⊗ nF2}n>0

and {(−1)nF1 ⊗ (−1)nF2}n>0 is obviously convergent to F1 ⊗ F2. Therefore, in
general, one cannot state stronger than the last two statements of Theorem 3.1.
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2. It is not clear to us how to prove the equivalent to Statement (i) in the case of
weak convergence. However, in that case, Inequality 3.2 can be used to prove the
equivalent to Statement (ii) provided the equivalent to Statement (i) is assumed.

Lemma 3.3. Let {A,B} be an independent set in ∈ B(H,K). There is u ∈ H
and v ∈ K for which we have 〈A(u), v〉 = 0 and 〈B(u), v〉 6= 0.

Proof. Let {en}n>0 be an ONB of K and assume the following.

If u, v ∈ H and 〈A(u), v〉 = 0, then 〈B(u), v〉 = 0.

(i) If A(u) = 0, then for all n > 0, 〈A(u), en〉 = 0, and so 〈B(u), en〉 = 0. Hence,
B(u) = 0.

(ii) Now assume that A(u) 6= 0. For each n > 0, let fn = 〈A(u), en〉 and
let gn = 〈B(u), en〉. WLG, we can assume that f1 6= 0. For all n > 0, we
have 〈A(u), f1en − fne1〉 = 0, and so 〈B(u), f1en − fne1〉 = 0, i.e., f1gn = fng1.
Therefore, ∑

n>0

gnen = λ(u)
∑
n>0

fnen,

where λ(u) = g1/f1. This with (i) imply that B(u) = λ(u)A(u) for all u ∈ H.
(iii) Let’s fix u ∈ H for which we have B(u) 6= 0 and let λ = λ(u). Let v ∈ H

for which we have B(v) 6= 0 and let w ∈ H for which we have 〈B(u), w〉 6= 0 and
〈B(v), w〉 6= 0. We then have λ(v) = λ since

λ〈B(u), w〉〈B(v), w〉 = λ(v)〈B(u), w〉〈B(v), w〉.
iv) Let v ∈ H for which we have B(v) = 0 and A(v) 6= 0. Therefore, we have

B(u+ v) 6= 0, and so by (iii), we have λ(u+ v) = λ. The equalities

B(u+ v) = λ(u+ v)A(u+ v) = λA(u) + λA(v),

B(u+ v) = B(u) +B(v) = λA(u) + λ(v)A(v).

then imply that λ(v) = λ, and so B = λA, which is a contradiction. �

Now, we are ready to prove Theorem 1.2 stated at the introduction.

Proof. Theorem 3.1 states (i) for M = 1.

Assume that (i) holds for M − 1 ≥ 1. Let Fn u−→ F and for each n > 0,
that rank⊗(Fn) ≤ M . Let u = u1 ⊗ u2 ∈ H1 ⊗ H2 and v = v1 ⊗ v2 ∈ K1 ⊗ K2,
for which we have 〈F (u), v〉 = 1. Let Gn = 〈Fn(u), v〉Fn − Du,v(Fn) and let
G = F −Du,v(F ).

Using Theorem 2.4, rank⊗(Gn) ≤M − 1, and using Proposition 2.1, we obtain

‖Gn −G‖ ≤ ‖Fn − F‖‖u‖‖v‖‖Fn‖+ ‖Fn − F‖
+ ‖u‖‖v‖ (‖Fn‖+ ‖F‖) ‖F − Fn‖.

Therefore, Gn u−→ G and by induction, rank⊗(G) ≤M−1, and so rank⊗(F ) ≤M .
We will prove Statement (ii) by induction on r. Assume that r = 1, i.e.,

F = F1 ⊗ F2. Let u = u1 ⊗ u2 ∈ H1 ⊗H2 and v = v1 ⊗ v2 ∈ K1 ⊗ K2 for which
we have 〈F1(u1), v1〉 = 〈F2(u2), v2〉 = 1. The sequence

{(〈Fn
2,1(u2), v2〉, . . . , 〈Fn

2,M (u2), v2〉, 〈Fn
1,1(u1), v1〉, . . . , 〈Fn

1,M (u1), v1〉)}n>0
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is bounded in CM × CM , and so by Borel Theorem, it has a subsequence

{(〈F i(n)
2,1 (u2), v2〉, . . . , 〈F i(n)

2,M (u2), v2〉, 〈F i(n)
1,1 (u1), v1〉, . . . , 〈F i(n)

1,M (u1), v1〉)}n>0

that converges to (c11, . . . , c
M
1 , c

1
2, . . . , c

M
2 ) ∈ CM × CM . Therefore,∥∥∥ M∑

m=1

cm1 F
i(n)
1,m − F1

∥∥∥ ≤ ∥∥∥ M∑
m=1

(cm1 − 〈F
i(n)
2,m (u2), v2〉)F i(n)

1,m + V v2(F i(n) − F )Uu2

∥∥∥
≤

M∑
m=1

|cm1 − 〈F
i(n)
2,m (u2), v2〉|‖F i(n)

1,m ‖+ ‖F i(n)−F )‖‖u2‖‖v2‖.

This with the fact that {F i(n)
1,m }n>0 is bounded imply

M∑
m=1

cm1 F
i(n)
1,m

u−→ F1.

Similarly, we can prove that

M∑
m=1

cm2 F
j(n)
2,m

u−→ F2,

where j(n) is a subsequence of i(n). WLG, we can assume that i(n) = j(n).
Now, assume that (ii) holds for r − 1 > 0 and F has a Schmidt decomposition

in form (1.1). Let u = u1 ⊗ u2 ∈ H1 ⊗H2 and v = v1 ⊗ v2 ∈ K1 ⊗ K2. For each
k ∈ {1, . . . , r}, we set a1,k = 〈F1,k(u1), v1〉 and a2,k = 〈F2,k(u2), v2〉.

Using Lemma 3.3, we can choose u1, v1, u2, and v2 so that

a1,1 = 〈F1,1(u1), v1〉 = 1, a1,2 = 〈F1,2(u1), v1〉 = 0,

a2,1 = 〈F2,1(u2), v2〉 = 1,
〈 r∑

k=2

a1,kF2,k(u2), v2

〉
= 0.

Therefore, 〈F (u), v〉 = 1, and so we can apply Theorem 2.4 from which we borrow
the notations. Since ∆1

1,2 = −F1,2, (2.7) then implies the equality

(3.3)

F −Du,v(F ) =

r∑
k=3

∆1
1,k ⊗

(
∆2

1,k −
r∑

l=k+1

a1,l
a1,1

∆2
k,l +

k−1∑
l=2

a1,l
a1,1

∆2
l,k

)
− F1,2 ⊗

(
∆2

1,2 −
r∑

l=3

a1,l
a1,1

∆2
2,l

)
.

Assume that Fn has the form (1.2). Therefore,

Fn −Du,v(Fn) =

M∑
m=1

Fn
1,m ⊗ [Fn

2,m − bn2,m
M∑
j=1

bn1,jF
n
2,j ],

where, bn1,m = 〈Fn
1,k(u1), v1〉 and bn2,m = 〈Fn

2,m(u2), v2〉 for all m ∈ {1, . . . ,M}.
The continuity of Du,v implies (Fn − Du,v(Fn))

u−→ (F − Du,v(F )); by The-
orem 2.4, we have rank⊗(F − Du,v(F )) = r − 1; and the second hand of (3.3)
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shows F1,2. By induction, there are then c11,2, . . . , c
M
1,2 ∈ C for which there is a

subsequence of
M∑
k=1

cm1,2F
n
1,m

that uniformly converges to F1,2. Similarly, we can obtain the desired conclusion
for each Fi,k, where (i, k) ∈ {1, 2} × {1, . . . ,M}.

(iii) As we did in the proof of Theorem 3.1, we use (i) to prove rank⊗(F ) ≤M .
Following similar steps as in the proof of (ii), we use the following inequality

‖Du,v(Fn)(x1 ⊗ x2)−Du,v(F )(x1 ⊗ x2)‖
≤ ‖v‖‖Fn(x1 ⊗ u2)‖‖Fn(u1 ⊗ x2)− F (u1 ⊗ x2)‖

+ ‖v‖‖Fn(x1 ⊗ u2)− F (x1 ⊗ u2)‖‖F (u1 ⊗ x2)‖ for all x1 ⊗ x2∈H1⊗H2,

to obtain Du,v(Fn)(x)→ Du,v(F )(x) for each x, in a dense subspace of H1 ⊗H2.
The uniform boundedness principle implies that the sequence {Fn} is bounded,

which implies (Fn − Du,v(Fn))
s−→ (F − Du,v(F )) and allows us to finish the

proof. �

4. Schmidt decomposition of bounded operators
with ideal properties

We say that C is an ideal class of bounded operators if for all F,G ∈ B(H,K),
we have FG,GF ∈ C whenever F ∈ C. Ideal classes that are closed under the
tensor product include the class of compact operators, the class of Hilbert-Schmidt
operators, the class of nuclear operators, and all Schatten classes of operators [8].

Theorem 4.1. Let C be an ideal class of bounded operators that is closed under
the tensor product. Let H1, . . . ,Hm be m Hilbert spaces. Let

(4.1) F =

N∑
k=1

F1,k ⊗ F2,k ⊗ · · · ⊗ Fm,k,

where for each i ∈ {1, . . . ,m}, {Fi,k}Nk=1 is independent in B(Hi). The operator
F ∈ C if and only if the operators F1,k, . . . , Fm,k ∈ C for each k ∈ {1, . . . , N}.

Proof. By Theorem 2.3, every FMS is independent. Using this fact and the
associativity of the tensor product, it suffices to prove Theorem 4.1 for m = 2.
The necessary condition is obvious. We will prove the sufficient by induction on N .

If N = 1, then F = F1,1 ⊗ F2,1. Let u = u1 ⊗ u2, v = v1 ⊗ v2 ∈ H1 ⊗ H2 for
which we have 〈F1,1(u1), v1〉 = 〈F2,1(u2), v2〉 = 1. Using Proposition 2.1, we have

F1,1 = V v2FUu2 and F2,1 = Vv1FUu1 .

The fact that C is an ideal class implies F1,1, F2,1 ∈ C.
Now, assume that the induction hypothesis holds for N − 1 ≥ 0 and let F be in

the form (4.1) for m = 2. Following the same steps to prove Theorem 1.2(ii), we
can obtain equality (3.1) for which the right hand side shows F1,2. By Theorem
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2.4, we have rank⊗(F − Du,v(F )) = N − 1, and so by induction, the operator
F1,2 ∈ C. Similarly, we can prove that F1,k, F2,k ∈ C for each k ∈ {1, . . . , N}. �

The case N = 1 for compact operators was recently obtained by J. Zanni and
C. S. Kubrusly using different techniques [11].

Theorem 2.4, our main theorem, leads to an algorithm to compute Schmidt
decompositions of bounded operators on the tensor product of separable Hilbert
spaces. This paper includes some applications in operator theory of that algorithm.
Other applications include a compression method published in [1].

Acknowledgment. The author wants to thank the anonymous referee for
his/her authoritative and thorough review. The author also wants to acknowledge
that because of comments by the referee, results about convergence in the strong
topology of operators were added to Theorem 1.2 and Theorem 3.1.
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