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Abstract 

 
Slip Estimation from Real-Time GPS in Cascadia 

by 
 
 

Jesse Senko 
 

April 2018 

Current systems for rapidly characterizing earthquakes are based on seismic, 

teleseismic, and Deep-ocean Assessment and Reporting of Tsunami (DART) buoy data.  

These systems have significant limitations that hinder them from making rapid and 

accurate assessments of large earthquakes used for local tsunami warnings where run-

up can occur minutes after the earthquake.  Seismic and teleseismic networks saturate 

around Mw 7.0.  Tsunami waves take tens of minutes to reach the buoys, so rapid 

assessment is impossible.  GPS overcomes these limitations for large earthquakes.  GPS 

does not saturate, and the offsets being detected occur very quickly after an 

earthquake.  This thesis develops the algorithms necessary for detecting and 

characterizing large earthquakes from GPS measurements. 

Point positioned GPS solutions are acquired from the CWU Geodesy Lab and filtered to 

detect offsets.  Any detected offsets are then inverted to determine slip along the 

relevant faults.  The moment and moment magnitude are calculated based on the 

estimated slip.  The final solutions, detected offsets, calculated offsets and other 

relevant data are continuously pushed out to a database even when no earthquake is 

detected.  The produced solutions can be used with existing methods to better inform 

tsunami estimates immediately following a large earthquake. 
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rows and columns, since every subfault those subfaults are adjacent to 
are also in the matrix, those rows and columns all add up to 0.  In the 
full matrix, all rows and columns will add to 0. 44 

Figure 12 - This figure demonstrates how the parallelization already implemented 
works.  Essentially, since each inversion is an independent separate 
process, they can run concurrently.  Inversion 1 is started and 
takes X seconds to complete.  Before inversion 1 finishes, 
inversion 2, 3, and so on can all be started and run at the 
same time.  Start time staggering, ideally ~1 second on a 
1 Hz network, is necessary to not overload the system. 
Each inversion takes almost 100% of a computational 
unit, so there needs to be more than X cores for the 
system to work. 46 
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I - Introduction 
 

Current earthquake rapid detection systems use seismic, teleseismic, and Deep-

ocean Assessment and Reporting of Tsunamis (DART) buoys.  These systems are 

currently not adequate to rapidly assess larger magnitude earthquakes (Ishii et al., 

2005).  Seismic networks tend to saturate around magnitude 7.0 (Melgar et al., 2013).  

Teleseismic networks require hours to produce estimates.  DART buoys are not 

widespread, so accurate assessment of earthquakes takes longer (tens of minutes).  GPS 

can augment both systems, providing faster estimates than buoy networks and more 

reliable estimates for large earthquakes than seismic networks. 

(Melgar, Bock, Cowell, & Haase, 2013) (Ishii, Shearer, Houston, & Vidale, 2005) 

Estimations of earthquake related hazards, especially tsunamis immediately 

after the earthquake, can also be improved using GPS.  GPS provides faster and more 

accurate estimates of slip and slip distributions and resulting seafloor deformations for 

large earthquakes.  These accurate estimates, in the minutes right after an earthquake, 

may be added to seismic and teleseismic networks to better inform tsunami 

estimations.  Furthermore, GPS networks are rapidly expanding for various purposes 

and existing infrastructure can be used at little cost. 

 

During the Tohoku-oki earthquake of 2011, GPS-based estimates were not in 

use.  The seismic and teleseismic did not produce a formal estimate close to the final 
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magnitude, Mw 9.0, until 3 hours after the event (Wright et al., 2012). For the first 75 

minutes, the estimate was from the saturated seismic network at Mw 8.1.  During this 

earthquake, the tsunami started making landfall about 30 minutes after the event.  The 

saturation led to severe underestimation of the tsunami hazard, particularly for coastal 

regions near the earthquake location.  GPS-based estimates, shown in Figure 1, can 

produce estimates of Mw 8.8 about two minutes after the earthquake.  This significantly 

more accurate and faster estimate of magnitude may be used to better inform tsunami 

hazard estimates in the minutes right after an earthquake, helping to reduce the 

underestimation of tsunami run-up and hazards. 

(Wright, Houlié, Hildyard, & Iwabuchi, 2012) 

 

Figure 1 - Estimated GPS-based magnitude estimates over time compared to seismic 
network estimates from the Tohoku-oki earthquake of 2011.  Taken from Wright et al., 
2012. 
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Also, numerous people through various methods of shown that theoretically this 

is possible and potentially beneficial.  Studies have shown that GPS-based offsets line up 

with similarly observed seismic records (Larson et al., 2003 ); GPS methods can provide 

faster magnitude estimates for large earthquakes (Wright et al., 2012); Filters can be 

designed that are capable of measuring offsets in data (Matthews & Segall, 1997).  

Finally, functional systems are being developed.  Two current real-time GPS-based offset 

detection systems are set up at Berkeley Seismological Laboratory (Grapenthing et al., 

2017) and in Japan (Kawamoto, et al., 2017).  One system, though, uses a triggering 

mechanism from seismic networks, so issues occur if seismic network goes down.  

Japan’s REGARD does not and is currently undergoing testing. 

(Larson, Bodin, & Gomberg, 2003) (Grapenthin, Johanson , & Allen, 2014) 

This project aims to take the current work already done and build a functional 

GPS-only real-time system.  The system will take point positioned GPS data, filter it to 

detect offsets, then run a slip inversion all in real-time. 

(Wright, Houlié, Hildyard, & Iwabuchi, 2012) 

To achieve this, a Kalman filter (Zarchan & Mussoff, 2005) built in python 

specifically to detect offsets is used.  Any detected offsets are inverted for a slip 

distribution and magnitude estimate.  Afterwards, solutions are passed out to a 

MongoDB database and are viewable in the GPS cockpit. 
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The slip distributions can then be acquired by the tsunami warning centers and 

added to existing assessment methods to produce better estimates.  Large events, 

which have the largest chance of producing damaging tsunamis, are difficult to 

accurately assess quickly using seismic and teleseismic networks.  Augmenting current 

systems with GPS can address this issue.  The drawback, though, is that GPS assessment 

systems are not as precise for small earthquakes or more prolonged, slower 

earthquakes. 

 

Current partners in this work include NASA, NOAA, the Scripps Institute of 

Oceanography (SIO), the Jet Propulsion Laboratory (JPL), and the Pacific and North 

American Tsunami Warning Centers (PTWC and NTWC).  Work is currently being done 

on the Real-time Earthquake Analysis and Disaster Mitigation (READI) system at SIO 

(Bock, 2013).  JPL is working on the GPS-Aided and DART-Ensured Real-Time (GADER) 

Tsunami Early Detection System (Song, 2014).  This thesis is part of the work being done 

at CWU. 

 

The final goal is for SIO, JPL, and CWU to each independently produce point 

positioned solutions for GPS sites.  The solutions will then be broadcast to the other 

groups, merged into a final solution and finally processed to detect offsets using a 

universal method.  This thesis fits into the final portion, filtering for offsets and 

performing slip inversions.  A visual representation of the overall system design can be 

found in Figure 2. 
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Figure 2 – Overall interagency system design and data sharing.  READIMERGE and the 
offset detection and slip inversion are universal pieces of code being run at each agency 
independently to mitigate if an agency goes offline for any reason. 
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II - System Implementation 
 

The current offset analysis system being discussed involves many GPS stations 

scattered throughout the Western US.  From the stations, some GPS data is collected 

directly by CWU using radio arrays.  Additional GPS data is collected at other centers and 

broadcast online, where CWU picks them up.  Then, the GPS data is passed into Fastlane 

software (Santillan) for error corrections and processing.  The resulting solutions are 

passed into an aggregator.  From the aggregator, a RabbitMQ passes the data through 

to the offset analysis system, an offset detection and inverter program.  The program 

carries out its processing and passes the results to another RabbitMQ.  From there, a 

listener takes all the data and passes it through to a MongoDB.  Then, the GPS cockpit, a 

viewer for GPS data developed at CWU, requests data from the MongoDB and displays 

the slip distribution and detected and calculated offsets in a window. 
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III - System Design Goals 
 

The focus of this system is to rapidly assess large magnitude earthquakes.  

Standard seismologic networks can accurately and rapidly assess earthquakes with 

moment magnitude below 7.5.  For this system, the goal is to assess earthquakes 

greater than moment magnitude 7 accurately and rapidly. 

 

The system will be able to run many sites at the same time.  It will be designed to 

allow some flexibility in the number of subfaults in the inversion.  This allows the system 

to be adapted to what the computational system can handle.  Both will be achieved 

through various versions of parallelization. 

 

The system will be as accurate as reasonably possible.  Random offsets, early 

earthquake pulls, and other factors will mean that this system will not produce slip 

distributions, offsets, and magnitudes that are publishable, but are accurate enough to 

act on shortly after an earthquake occurs.   Data cleaning can be done afterwards to 

produce better results which may be used for future publications. 

 

Speed is a focus.  The system will produce results as quickly as possible, with the 

goal for a reasonable subfault model being about 30 seconds after first detection. 

 



 

8 
 

The system also needs to determine the offset and model it as a variable 

magnitude Heaviside step function.  This is done to reduce the computational needs of 

this system. 

 

Even with the parallelizations in place, the system should still be as lightweight 

overall as possible, both in terms of computation and memory usage by the whole 

system. 
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IV - Kalman Filtering (General) 
 

Kalman filtering is a lightweight method for recursively determining the least 

squares best fit for a set of data (Zarchan & Mussoff, 2005).  It uses a system based on 

the residuals between the measurement and the prediction of the measurement to 

determine Kalman filter gains.  It uses the gains to adjust the system to the current least 

squares solution for the whole data set. 

 

It achieves this by cycling through the three Riccati equations at each time-step 

to calculate the gains to adjust the data.  The Riccati equations are 

 Mk = Φk Pk-1 Φk
T + Qk 

 Kk = Mk HT ( H Mk HT + Rk )-1 

 Pk = ( I – Kk H ) Mk 

Where 

M = previous covariance matrix for the filter 

Φ = fundamental matrix describing how the system evolves 

P = current covariance matrix for the filter 

Q = process noise matrix 

K = Kalman filter gains 

H = measurement matrix 

R = measurement covariance matrix 

I = identity matrix   

k = current time of the system 
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The filter then takes the Kalman filter gains and uses them to adjust the current 

predicted state to predict what the next measurement will be, i.e. the state of the 

system.  To do this, it uses 

 Resk = Xk – H Φk Sk-1 

 Sk = Φk Sk-1 + Kk Resk 

Where Res is the residual matrix, X is the measurement, and S is the predicted state.  

This takes the error between the current state, Sk-1, and the measurement, Xk, and 

adjusts the next current state, Sk, based on how trustworthy the measurement is.  

 

By doing this, the system evolves as each new measurement comes in.  Ideally, 

with no process noise and a perfectly modeled system, the filter over time would 

become more and more accurate.  When you are only measuring a constant value with 

noise, the filter will become a recursive least squares algorithm.  But, Kalman filters can 

be used on more complex systems.  With the addition of the process noise matrix, Q, 

the system does not have to be perfectly modeled in the filter.  Kalman filters can 

reasonably track an object falling from a high altitude with wind resistance by only 

keeping track of position, velocity and acceleration by adding process noise to the filter 

to account for the wind resistance.  But, better results would be found if wind resistance 

was accounted for in the filter.  As the complexity of the model increases, the filter 

converges slower to the estimated states. 
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The filter covariance matrix, P, with no process noise, will converge towards 0 

indefinitely.  When process noise is added, P instead converges to a different value.  This 

lets the filter adjust to newer measurements more than it normally would.  If there are 

outside factors altering the value of the variables over time, the filter can account for 

them with process noise. 

 

A simplistic example of a Kalman filter can be found in Figure 3. An example of 

data that is trying to be modelled is in Figure 4. 
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Figure 3 – An example of a simple Kalman filter.  The x axis is the number of 
measurements.  This is a single constant state example.  The actual value is 20.  The 
measurements, in red, have a random variable introduced.  The predicted states of the 
system are the green x’s.  The covariance of the estimate is denoted by the green error 
bars on the predicted state. 
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Figure 4 – Example of GPS data that is being filtered. 
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V - Inversion (General) 
 

An inversion involves taking a known value multiplied by an unknown value with 

known outputs and solving for the unknown value.  For example 

 A * unk = B 

 unk = B / A 

or 

 unk = A-1 * B 

 

In general algebra, this is easy to do, but with matrices, issues arise.  There is no 

guarantee that B has an inverse if it is a matrix.  Secondly, if B is not a square matrix, 

inverting it becomes much more difficult.   
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VI - Kalman Filtering 
 

In this implementation, each Kalman filter is designed to process only one site.  

The north, east, and vertical are all processed in the same matrix with the offset 

detection being run on each site individually.  This setup solves many potential issues. 

 

This system assumes that the GPS stations stay in one place.  This is not true; 

there are annual, semi-annual, linear and logarithmic signals.  But, these signals occur 

over periods of months to years.  For the purposes of a 1 Hz system over minutes to 

hours, the system does not show any of these signals and they can be ignored.  Over the 

long term, the signals can be compensated for by introducing process noise into the 

filter. 

 

This filtering method divides the total state and measurement into two different 

states.  S1 is the offset state.  This state is the state that adjusts with every measurement 

as the filter runs.  S2 is a baseline state.  S2 represents the best known previous total 

state of the filter.  Finally, ST is the total state of the filter, S1 + S2.  The residual, the 

difference between the predicted and actual measurement is compared to the total 

state, but only the offset state is allowed to adjust.  This allows the earthquake to be 

modelled as a Heaviside step function 

 Event = a H(x0) 

Where a = S1. 
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Φ in this situation becomes a 6 by 6 identity matrices.  The other matrices 

become sparse matrices so the computation of the Kalman filter gains, K, is a little 

easier. 

 Mk = Pk-1 + Qk 

 Kk = Mk HT ( H Mk
 HT + Rk ) -1 

 Pk = ( I – Kk H ) Mk 

 

This implementation of the Kalman filter also changes the residual and state 

calculations. 

 Resk = Xk – H ST 

 ST(k) = ST(k-1) + Kk Resk 

And the system can stochastically reset. 

 ST(k) = Ψ ST(k) 

 Pk = Ξ 

Where Ψ is the state reset matrix and Ξ is the covariance reset matrix. 

 

This method of Kalman filtering, where each direction for a site is run 

simultaneously with the other two, makes it easier when a site detects an offset and 

must reset.  A single offset is not expected to be detected in all directions, but it is 

assumed that when one is detected in one direction, all directions will move somewhat.  

So resetting them all at the same time is necessary.  With all directions in the same 

process, they are easier to reset at the same time. 
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The Kalman filter also has an ongoing event mode.  During normal operation, the 

filter resets the state at each timestep, making S1 equal 0 and S2 equal ST.  When an 

offset is detected, the system enters into the ongoing event mode.  During this time, the 

filter does not reset the state.  In this case, S2 represents the best known previous state 

and S1 is the difference between the current state and S2.  Therefore, S1 being sent 

through to the inverter is not zero and inverted as if an event did occur.  During this 

mode, the system is not allowed to reenter the mode until exiting it.  This has two 

reasons; force the system to first identify where it is before trying to determine how 

much it has moved (when the filter is first turned on) and force the system to treat the 

offset as a single event, not multiple (when an event is detected).  The event, if an 

earthquake, is not going to be a perfect Heaviside function.  It is going to have an onset 

and duration during which the movement occurs.  Therefore, it is expected that the 

measurements coming in are going to be bouncing around quite a bit.  If left to its own 

desires, the filter will happily divide the offset into multiple smaller offsets.  Forcing the 

system to not reenter the mode until it has exited is necessary so that the system 

captures the entire event in one mode session.  The time spent is this mode can be 

adjusted to account for expected rupture duration and seismic wave travel time. 

 

When initially started, the filter will enter a convergence period mode.  This is 

the same as the ongoing event mode, except the system continues to reset the state so 
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that the detected offset, S1, is 0.  This is to allow the system to determine where it is 

before allowing it to ‘detect’ an offset. 

 

One big issue that this Kalman filter design solves is time.  Running all the sites in 

a single large matrix would require that all possible data be obtained before the Kalman 

filter moves forward a time-step.  By running each site individually, it allows for 

asynchronous processing (i.e. site 1 could be at time-step X, site 2 at X+2, site 3 at X-2, 

etc.).  This means that the most current data is being processed and if data is too old to 

be processed in the inversion, it can still be processed in the filter.  This increases the 

accuracy of the filters overall by allowing as much data to be processed as possible.  As 

an example, assuming the delay in DataWriter is 15 time-steps, a site could consistently 

be receiving data 90 seconds behind real-time.  If the filters were running in one large 

matrix, then all that data would be ignored by the filter because it is too old.  By running 

the filters individually and asynchronously, the data can still be processed into the filter, 

but it would be ignored in the inversion.  This allows the filter to have a reasonably good 

idea of where that site is and, if the measurements start coming in closer to real-time, 

to more quickly converge onto the actual position of the site.  This makes the overall 

system more robust because all the sites are positioned as best as they can be without 

any significant external time constraints. 

 

One other big issue solved by this Kalman filter design is computational 

requirements.  This method involves a bit more overhead since each process has 
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variables associated with it.  But, these processes are very small and fast, and each filter 

requires the same amount of memory and computation requirements as all other filters.  

So, the filters will never bottleneck the system.  By running all the sites in one large 

matrix, all possible variables would have to be stored in that one process.  This includes 

all matrices, offset detection variables, gains, states, residuals, etc.  Certain variables 

could be used universally, such as MesWait, but a large majority of the memory 

requirements would stay, just added together.  Also, since all the sites need the offset 

detection to be run individually, as the number of sites increases the computational 

requirements would increase.  Adding and deleting sites also becomes a bit more 

difficult since a correlation matrix would be needed to keep sites associated with their 

data, states, residuals, etc.  So, while there would be some space and computational 

savings by running the filters in one large matrix, the linear stacking of the 

computational requirements from checks and individual site processing could 

potentially cause a bottleneck and drop the system out of real-time on networks with 

many sites.  By running each site individually, there is no possible bottleneck in the 

filtering without choosing ridiculous settings for the filters.  The computations can be 

vertically stacked across multiple cores and run at the same time to prevent 

interference with each other. 
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VII - Offset Detection 
 

The offset detection is inside the Kalman filter itself.  When a measurement 

comes in, the measurement is first checked to see if it makes sense.  The measurement, 

X, is compared to the state, ST.  If the difference between the two exceeds a specified 

value, MaxOffset in the Config file chosen to be slightly unrealistic (i.e. 40m of 

movement in 1 measurement), then the measurement is ignored.  Once this test has 

been passed the measurement begins processing. 

 

The residual, Res, is calculated as the difference between the current 

measurement, X, and the predicted state, ST.  A threshold value, thres, is calculated by 

multiplying the standard deviation of the measurement, sqrt(R), times a constant, 

EQThres.  The residual, Res, and threshold, EQThres*sqrt(R), values are then compared 

and the result of this is factored into the current mode of the filter to determine how 

the measurement is processed.  If the residual is less than the threshold value, then the 

system proceeds as normal.  If the residual is greater than the threshold value, then the 

measurement is considered anomalous. 

 

There are 4 modes in the filter.  The first is the detection enabled mode.  This 

mode occurs when the residual is less than the threshold, Res<thres.  During this mode, 

the incoming measurement is processed as normal, and the system progresses up to the 

current measurement. 
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The second mode is the possible event mode.  This occurs when an anomalous 

measurement, Res>thres, has been detected.  When this occurs, the measurement is 

stored while further measurements arrive.  From this mode, the system will enter one of 

the last two modes once a determination has been made.  The determination is made 

based on whether the number of consecutive anomalous measurements is greater than 

or less than a measurement wait value defined in the Config file, MesWait. 

 

The third mode is the false event mode.  This occurs when an anomalous 

measurement has been detected, but a normal measurement is detected before the 

measurement wait value has been reached.  In this mode, all stored measurements are 

processed in order as if the state has stayed the same.  This mode is to protect the 

system from declaring an offset every time one anomalous measurement has been 

detected.  This mode only lasts until the stored measurements and current 

measurements are processed, then the mode switches back to the detection enabled 

mode. 

 

The final mode is the ongoing event mode mode.  This mode occurs when the 

number of consecutive anomalous measurements is equal to or greater than the 

measurement wait value.  When this occurs, the system performs a reset.  Then, the 

system processes all stored measurements as if there is a new state.  The system is 

forced to stay in this mode for a defined duration as described in the Kalman Filtering 

section. 
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The logic behind how the modes switch between themselves can be found in 

Figure 5.  An example of how the offset detection mode works can be found in Figure 6. 
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Figure 5 - Offset logic between the various modes based on when a measurement comes in. 
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Figure 6 – Image shows how the state switching will behave with data. 

 

 

One specific benefit resulting from the Kalman filtering method is that, since 

each site is run independently, each site does not need to know where it is in terms of 

latitude and longitude.  As such, this data is ignored in the filter. 
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VIII - Site Selection 
 

Site selection for this system is automated within the system.  When the main 

inversion process receives a new site request, the sub-input matrix for the site is 

computed using the direction of convergence.  The sub-input matrix is calculated using 

Okada (1992). 

 

Then, the program looks at the resulting sub-input matrix to determine if the site 

is relevant to the current fault.  The relevance is determined by looking at how many 

subfaults would cause an offset above a minimum offset, MinOffset, as defined in the 

Config file.  If the ratio of irrelevant to total subfaults is below a value specified, 

RangeThres, in the Config file, then the site is added to the inversion and the relevance 

is relayed to the control program.  Otherwise, the control program is told to ignore that 

site in the future.  This is so that, for example, when looking at Cascadia, information 

coming from Japan is not included since any offset there from a Cascadia rupture would 

be undetectable by the system. 

 

This method of site selection creates a more flexible system overall because data 

streams do not have to be sorted beforehand and a full system site list can be used, no 

need to cut out all irrelevant sites.  To switch from one fault system to the next, replace 

the subfault file and everything else is handled, though adjustments to the Config file 

may be required for optimal performance on the new fault system. 

 



 

26 
 

When a new site is added to the network, all that needs to be done is to add the 

latitude and longitude to the full site list.  Then, allow the data from that site to go 

through the system and any running systems will adjust and include the site if it is 

relevant. 
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IX - Inversion 
 

The inversion requires some precalculated matrices, lists, and variables; the 

smoothing matrix, SM, to smooth the subfault solutions; the sub-input matrix, SIM, that 

describes how each station should move based on each subfault; and a correlation list, 

CL, that matches each station to the correct sub-input matrix lines. Also, it needs the 

output pipe, the lock for the pipe, the smoothing value, the subfault, and the station 

information.  It also needs the data for the time-step that it is inverting for. 

 

The calculation being represented in the smoothing matrix is described below 

alpha ( Σadjsubfaultslip + Y subfaultslip ) = 0 

where alpha is the smoothing constant, adjsubfaultslip is the slip on subfaults 

surrounding the subfault in question, Y is the number of adjacent subfaults, and 

subfaultslip is the slip occurring on the subfault in question.  This equation smooths out 

the slip and keeps it from being unrealistic, i.e. one subfault having 60 meters of slip 

while the ones surrounding it have no slip. 

 

The sub-input matrix is calculated based on the subfault strike and the direction 

of convergence based on the footwall of the fault.  This restricts the fault movement to 

what has been historically observed.  For example, the Cascadia subduction zone is not 

going to move in a strike-slip or normal faulting motion.  The direction of convergence 

has been constant for millions of years and is not expected to change.  Combined with 
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the use of a non-negative least squares (NNLS) inversion in the offset inversions, this 

restricts the movement to be in line with past observations (Lawson & Hanson, 1987). 

 

The inversion takes these and constructs the appropriate sub-input (SIM) and 

detected offsets matrices (DOM) and the correlation list (CL), then passes it through to a 

sub-inversion.  The sub-inversion iterates through CL and if it cannot find data for that 

specific site, it removes the site from CL along with the corresponding offsets in the SIM 

and the DOM.  If it does find the site, it checks a tag in the data to determine if the filter 

is in an offset detected state.  If the filter is not in an offset detected state, it sets the 

detected offsets to 0 and moves on. 

 

Setting the value to 0 is necessary for the system to work properly.  The system 

is not focused on inverting all the data; it is designed to only invert offsets.  This helps to 

reduce the colored noise that would otherwise accumulate between events and skew 

the system.  Also, during an event, if a site does not detect any offset from the event, it 

should be outputting 0’s as necessary.  An example of this is events such as aftershocks.  

Figure 7 shows an aftershock of the Tohoku-oki earthquake of 2011.  If, in the inversion, 

the values had not been set to 0, then the lingering offsets from the main earthquake 

would overwhelm the inversion.  This would work to mask the offsets from the 

aftershock and make the aftershock impossible to characterize.  As such, setting the 

values to 0 unless an offset is detected is necessary for the functioning of this system. 
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Figure 7 - This is an example of why the system has to output 0’s.  This image shows an 
aftershock from the Tohoku-oki earthquake of March 11, 2011.  If the system was still 
outputting the detected offsets from the initial earthquake, the aftershock would be 
completely overshadowed by the initial event and assessment of the aftershock would 
be impossible. 

 

 

After getting the DOM, the inversion adds the smoothing matrix multiplied by 

the smoothing constant alpha to the bottom of the sub-input matrix.  It also adds a 
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matrix of 0’s whose dimensions are the number of subfaults by 1 to the bottom of the 

offset matrix.  It then uses the NNLS method to invert the matrix. 

 

The equations below describe the inversion going on and how they relate to the 

various matrices. 

SIM * Solution(SLIP) = DOM 

SLIP = NNLS( SIM vstack SM, DOM ) 

 

The result of the inversion, SLIP, is then multiplied by the sub-input matrix, SIM, 

to get the calculated offsets, COM.   

COM = SLIP · Subinput 

Afterwards, the inversion uses the slip distribution to determine the moment and 

moment magnitude.  The detected offsets, calculated offsets, slip distribution, moment, 

moment magnitude, and time are packed up and sent to SlipWriter. 

 

Since each filter determines the offset independently, this system is essentially a 

bottom-up design in terms of its detection of earthquakes. It does not force the entire 

system into an earthquake-detected mode, a top-down method.  It instead lets each 

offset be determined independently but processed as if true.  The resulting inversion in 

false offset situations will be robust enough to not be completely fooled.  And it also 

leaves the rest of the system ready to detect an actual earthquake with minimal error 

and no issues resulting from a forced mode.  This method assumes that when an actual 
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earthquake occurs, multiple filters will detect offsets independently and the offsets will 

be consistent with a single event.  Therefore, the resulting inversion will make sense.  

So, the slip distribution is the result of independent offsets and works in a bottom-up 

method. 
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X - System Design 
 

Figure 8 shows the overall system and the communication network for data flow 

throughout.  Figure 9 shows the communication network for controlling the system. 
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Figure 8 -  This is a diagram of the data communication system in the program.  The dashed boxes are instances of the same 
process function.  The blue line denotes that the inversions are functions spawned out of TVLiveSlip.  The black lines represent 
pipes.  The green lines are queues.  The red lines indicate that the inversions are simply spawned off and there is no 
communication back to TVLiveSlip once they start.  RMQtoMDB is not a core process; only 1 instance of it needs to be running 
regardless of how many instances of the main program are running. 
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Figure 9 - This figure shows the control communication system in the program. When changes occur to the Config file, the changes 
are first interpreted by TULiveFilter and sent on to the appropriate processes.  In this way, TULiveFilter has some knowledge of the 
state of the system.
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X1 - TULiveFilter 
 

This program is the entry point for the user.  It starts up all other processes in 

the system except RMQtoMDB.  Upon startup, it starts SlipWriter, TVLiveSlip, 

DataWriter, and DataRouter in that order.  The reason for this startup order is so that 

the system is completely booted up before data starts being processed. 

 

This process also starts up the Kalman filters as necessary.  First, when data for a 

new site arrives at DataRouter, a request is sent to TULiveFilter.  From there, a check 

request is sent to TVLiveSlip.  The sub-input matrix, SIM, specific to that site is then 

computed for that site, and if that site meets the specified detection and relevancy 

requirements, the site is added into the sub-input matrix, other matrices are adjusted 

(DOM, COM and CL) and a response indicating to start the filter is sent back.  From 

there, TULiveFilter starts a new Kalman filter with the necessary pipes.  If the filter is 

restarting, TULiveFilter also sends the previous known state and variables.  TULiveFilter 

then responds to DataRouter with the corresponding pipe.  Then, DataRouter starts 

sending data for that site through that pipe. 

 

If the SIM, does not meet the specified detection requirements, then TVLiveSlip 

responds indicating that the site should be ignored.  Then, TULiveFilter sends a response 

to DataRouter indicating to ignore the site and any data for that site that is received is 

ignored. 
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TULiveFilter also controls when the Kalman filters are killed off.  When a filter 

has not received any data for a specified time, the filter sends a request to kill itself off.  

Since TULiveFilter only checks that pipe occasionally, it sends a check back to the filter 

to make sure it still has not received any data.  If it has received data, then the filter says 

to ignore the kill request.  If it has not received new data, then the filter responds with 

its current state and shuts down.  The current state is saved in TULiveFilter and then 

TULiveFilter sends a remove request to DataRouter, which removes the filter from the 

running list and responds.  Then, TULiveFilter sends a request to TVLiveSlip to remove 

the site from the sub-input matrix.  Finally, the site is then removed from the running 

list in TULiveFilter itself. 

 

TULiveFilter also checks the Config file.  First, it checks the last time the Config 

file has been changed relative to the last time it knows it has been changed.  If they do 

not match up, then the current Config file is differenced against the previous Config file 

at .Config.  Any differences are sent to the appropriate processes.  Then, the Config file 

is copied to .Config and the last known modification time is updated. 
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X2 - DataRouter 
 

The primary function of DataRouter is to route the data coming in on a single 

stream to the appropriate filter.  Upon startup, DataRouter starts up two processes that 

watch the communication pipes to TULiveFilter.  One watches for changes to the Config 

file.  The other watches for when to remove a filter from the running list. 

 

DataRouter then connects to the RabbitMQ and begins processing data.  

Normally, this involves decoding the data from json, checking if the site is in the pipe 

list, and sending it to the appropriate filter as necessary. 

 

When data for a new unknown site is detected, a request is sent to TULiveFilter.  

While waiting for a response, any data for that site is stored.  If the response is to ignore 

the site, the site is added to an ignore list and the stored data is deleted.  If the response 

is to process the data, then the sent pipe is added to the pipe list dictionary and any 

stored data is sent to the filter. 

 

If incoming data is for a site on the ignore list, then the data is ignored.  
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X3 - Kalman 
 

The Kalman filter receives the decoded data from the DataRouter.  If this is the 

very first measurement, it sets the baseline state, S2, to the current measurement.  

Otherwise, it sets up the measurement covariance (R), measurement (X), and residual 

(Res) matrices.  Then, the residuals are compared to the maximum offset allowed, 

MaxOffset in the Config file, and if larger, the measurement is ignored.  If that is not 

met, then the measurement and other matrices are passed through and processed in 

the filter.  Then, R is compared to the minimum covariance value allowed, MinR in the 

Config file, and if the covariances are smaller, they are set to the minimum value.  This is 

because the second Riccati equation will cause the filter to break if the covariances in R 

are zero. 

 

The filter then does a quick check to see what mode it is in.  If it is in a possible 

event mode, the filter skips updating the process noise matrix, Q, and the Riccati 

equations.  Otherwise, it updates the process noise matrix by multipling an identity 

matrix by the amount of time since the last measurement in seconds and updates the 

Riccati equations. 

 

Regardless, the matrix then calculates the residual matrix, Res, checks whether 

the filter is still starting up, and then determines the new mode for the system.  To do 

this, the filter compares the residuals to the standard deviation, sqrt(R), of the 

measurement times a constant defined in the Config file, EQThres.  The modes that the 
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filter can enter and how they impact processing are described in the Offset Detection 

section. 

 

Normally, though, the filter will update the state, S1, using the current gain 

matrix, K, pack it up, and send the data on to DataWriter. 
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X4 - DataWriter 
 

DataWriter is created with a queue.  The Kalman filters put their processed data 

into this queue.  When the data is gathered from the queue, the times are read, and the 

data is put into a list for that specific time-step. 

 

If the read time-step is greater than the current time-step in DataWriter, then 

the current time-step in DataWriter is updated.  This process then sends the data to 

TVLiveSlip.  This is done by going through the list of time-steps and sending the data for 

each time-step that is less than the current time-step in DataWriter minus a specified 

delay, DWDelay.  The sending of all data for a time-step to TVLiveSlip is necessary for 

the inversion process. 

 

If the data received is below the last sent time-step, then the data is ignored. 

 

The first purpose of this process is to hold and sort data from the filters.  Since all 

the data from the initial RabbitMQ does not arrive ordered, time-steps from some sites 

may be processed before the same time-steps from other sites.  This process 

implements a pause to allow as many sites to report data as reasonably possible.  This, 

though, must be balanced with how long the delay can last before impacting the overall 

goal of the whole system. 
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The second purpose is to delay the output to TVLiveSlip.  TVLiveSlip starts a sub-

inversion as soon as it receives data but sending 5-10 seconds of data in a very short 

time would impact the performance of the sub-inversions.  To limit this, there is a pause 

between sending separate time-steps to temporally spread out the workload. 

 

Lastly, this process also reduces the workload on TVLiveSlip.  By organizing the 

data into separate time-steps before sending it to TVLiveSlip, TVLiveSlip can focus on 

sub-input matrix, SIM, calculations for the relevancy of new sites and spawning off sub-

inversions. 
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X5 - TVLiveSlip 
 

TVLiveSlip, upon startup, creates a smoothing matrix, SM, based on the 

subfaults.  This is currently running with no corner fix.  This means that for the corners 

and the sides, the number for each subfault corresponds to the number of adjacent 

subfaults.  Figure 10 shows how this works out spatially, and Figure 11 shows how this 

works out into the smoothing matrix.  When corner fix is turned on, the diagonal is set 

to 4. 
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Figure 10 - This is a diagram of how the smoothing matrix works.  The boxes denote 
subfaults.  The numbers inside show the value that the fault has in the smoothing 
matrix.  Figure 13 shows how these subfault values translate into the smoothing matrix. 
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Figure 11 - This figure shows how the subfault values in figure 12 translate into a 
smoothing matrix.  This only shows the top 2 subfault rows.  The first 4 rows and 
columns, since every subfault those subfaults are adjacent to are also in the matrix, 
those rows and columns all add up to 0.  In the full matrix, all rows and columns will add 
to 0. 
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The detected offset matrix, DOM, is also created.  A dummy site, DUMMY, is 

added so that the matrix maintains the correct dimensions when empty.  Several other 

matrices are also created with the correct dimensions during startup. 

 

When the main process starts up, a control pipe watcher is started up.  This 

allows TULiveFilter to communicate the settings and changes in settings to this process.  

Certain variables cannot be changed without restarting the whole program because 

they are immensely important and are incredibly difficult to change on the fly.  Details 

of this can be found in Appendix A – Config File Settings.  Mostly, though, the control 

pipe watcher is used for adding, removing, and checking for relevancy of sites as the 

filters are started and stopped. 

 

An inversion watcher process is also started.  This process occasionally kicks on 

and runs through the list of all running inversion processes.  If an inversion process has 

been running for too long, it kills the inversion and logs that it was killed.  This stops the 

whole system from clogging up when an inversion hangs for any reason. 

 

The main process gathers the data from DataWriter and passes it to a spawned 

inversion process along with all other necessary variables.  In this way the system 

parallelizes the inversions.  Multiple inversions can be running at once without causing 

the system any significant issues.  This allows for inversions that take longer than 1 
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second to process to be run.  Figure 12 shows how the inversions would stack to allow 

for multiple at the same time. 

 

Figure 12 - This figure demonstrates how the parallelization already implemented 
works.  Essentially, since each inversion is an independent separate process, they can 
run concurrently.  Inversion 1 is started and takes X seconds to complete.  Before 
inversion 1 finishes, inversion 2, 3, and so on can all be started and run at the same 
time.  Start time staggering, ideally ~1 second on a 1 Hz network, is necessary to not 
overload the system.  Each inversion takes almost 100% of a computational unit, so 
there needs to be more than X cores for the system to work. 

 

The stacking depends both on this system and the computer system design.  

Each inversion tends to require almost all of a core to itself, so for each expected 

inversion on a 1 Hz network (how many seconds a single inversion takes), a dedicated 

core is required.  So, running a 6 second inversion on 8-cores would be fine, on 4-cores 

with hyper-threading will start to cause issues, and on 4-cores the system will 

bottleneck.  Another thing to consider is how long the inversion takes in the worst-case 

scenario.  An inversion where all offsets are zero will run faster than an inversion where 
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the offsets are all non-zero.  So even running an inversion that takes 6 seconds when 

there is the occasional random offset may still run into issues on an 8-core system when 

there is a large event.  So, designing the computer system and picking the amount of 

subfaults to invert across needs to be done carefully, and should err very conservatively 

if there are any questions about reliability in typical large events. 

 

In the inversion process, the data is organized correctly.  Once organized, a NNLS 

inversion is run to get the slip distribution.  The resulting best-fit model is multiplied by 

the sub-input matrix, SIM, to get the calculated offset matrix, COM.  The moment and 

moment magnitude are calculated based on the best-fit slip distribution.  Finally, all the 

data is packed up and passed along to SlipWriter. 
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X6 - SlipWriter 
 

SlipWriter takes the solutions from TVLiveSlip and organizes the data. 

 

First, it takes the data and repacks it into the format that the RabbitMQ needs 

for output.  It checks the time and if the time is later than the current latest time 

received, it updates the current latest time.  Then, it checks the magnitude of the event 

and will send an email to someone if a large enough magnitude offset is detected, 

greater than SWMagnitude in the Config file. 

 

Secondly, it looks at the current latest time and, with a delay setting in the 

Config file, SWDelay, it determines if any data needs to be sent to the RabbitMQ.  The 

delay is currently unnecessary, and it does not work now.  Anytime the value is not 0, 

the whole process does not work.  If any data does need to be sent to the RabbitMQ, 

then it sends the data as appropriate, which currently is as soon as it is received. 

 

This process also had write-to-disk capabilities.  They were removed but were 

useful in the past.  This process also handles sending out emails during large events.  

Organizing it this way makes it easier since the inversions do not have to handle figuring 

out when the last email was sent and if they should send another.  Also, each inversion 

does not have to open a separate connection to the RabbitMQ to pass its data out. 
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X7 - RMQtoMDB 
 

This is a standalone process.  It takes the data output from the RabbitMQ, 

repacks it, and sends it to the MongoDB.  This two-step method between the end of 

SlipWriter and the database the aggregator pulls from before being displayed in the GPS 

cockpit is to allow other systems, such as the future tsunami estimation system, to hook 

into and acquire the slip distributions and other offset information.  The MongoDB is a 

responsive system sending only the most recent information on request.  This can cause 

systems down the pipeline to potentially miss data.  The RabbitMQ is an active system, 

broadcasting all data as it comes in.  This allows downstream processes to get all data 

instead of some. 

 

This program uses a wildcard to capture all data coming through the RabbitMQ, 

so there only needs to be one instance running.  Therefore, this system is not directly 

hooked into the TULiveFilter communication and control system. 
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XI - Behavior 
 

Because of how complex the system and its goals are, it tends to exhibit some 

behaviors that are odd to those unfamiliar. 

 

When the whole system loses data, it will pause.  But, because of the delay in 

DataWriter, the last output from the system will be about 15 seconds before the system 

went down.  When the system starts back up, the stored 15 seconds will be passed 

through and then a time jump will occur to the current time. 

 

If an anomalous measurement is detected, the filter will pause for a short 

duration.  This, on a 1 Hz network, this corresponds to the number of measurements to 

wait before declaring that an offset has been detected, MesWait.  For example, if 

MesWait is set to 5, then once a seismic wave reaches and offsets the station, the 

station will wait about 5 seconds before beginning to process data.  This only affects 

when the first waves reach the site.  Once the filter switches into ongoing event mode 

then data will be processed as it comes in.  If DWDelay is 15, the first site will take  

about 20 (realistically ~22.5  2.5) seconds plus the time to invert it and other 

processing time before any indication that an event has happened appears. 

 

When an event does occur, stations right at the cusp of detection may behave 

very oddly.  They may appear to flicker in and out.  This is because the offset is near the 

lower detection limit of the filters.  This results in the filters receiving a few anomalous 
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offsets followed by a few normal. Therefore, all the measurements are processed as 

normal with the filter switching between a possible event mode and a detection 

enabled mode without flipping into an ongoing event mode.  This causes the flicker and 

may last for a few minutes.  This will not be observed in GPS Cockpit if DWDelay is 

significantly greater than MesWait (i.e. DWDelay = 15, MesWait = 5). 

 

The system also gets more accurate as the magnitude of the event increases.  

This is due to the signal to noise ratio being better in large-scale events.  Another factor 

is that for small events, the first few measurements of the event may pull the actual 

baseline into the offset a bit before the offset deviates enough to generate anomalous 

measurements.  This results in reduced overall offset estimations.  As the magnitude of 

the event increases, the overall offset increases and the small tugs into the offset before 

anomalous measurements are detected become less significant. 

 

One last reason is because as the magnitude of the event increases, more sites 

from a wider area will detect offsets. 

 

Another thing to consider is the random offsets detected by the system.  These 

have a variety of sources.  Since each filter is independent, these will not usually have a 

significant impact on large events, though noting them during an event is important.  

Regardless of the specific situation, a false offset will slightly skew a slip solution, but 

not significantly for large events. 
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Because of the initial convergence period, the system will not to be able to 

detect events that occur right after the system starts up.  The duration of the 

convergence period depends on EQPause in the Config file. 

 

Also, the system has a maximum offset possible between one time-step and the 

next or the measurement is ignored.  This can cause issues at times.  If an antenna gets 

replaced or the point positioning system gets restarted, the system may have trouble if 

the perceived offset is too great.  Essentially, the data gets ignored and the filter will 

stagnate at the last measurement that it considered to be good.  This can be overcome 

by temporarily adjusting the settings correctly but may mean having to completely 

restart the system so those filters calibrate to the new measurements. 

 

There is no hard lower detection limit for the system.  Since the measurements 

are peppered with white and colored noise, the lower detection limit is a probability 

distribution.  This distribution depends on the covariances of both the filters and the 

measurements, P and R.  Also, MesWait and EQThres affect the detection limits.  

Determining the detection probability distribution is complex, implementing it is 

difficult, and the actual distribution is of little use in real-time systems operating as 

intended.  Furthermore, the lower magnitude events are more accurately measured 

using other seismic methods. 
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In the GPS cockpit, when a site detects an offset, a few things can happen.  If the 

offset is in the opposite direction to the expected motion, the NNLS will keep the system 

from moving in the opposite direction and the system will show a blue arrow, observed 

offset, but no significant red arrows, calculated offset.  When an offset is detected in the 

historically observed the direction, then a blue arrow and, depending on the NNLS slip 

distribution, a red arrow, calculated offset, may also show up.  When the site is near a 

boundary between faults, then two red arrows may appear.  This is because the site is 

being run independently by two different systems, so it is getting values from each 

system.  For the observed offset, since the Kalman filters in both instances are receiving 

the same data, there will be some minor differences based on when each filter began 

and there are two blue arrows, but they normally will appear as one arrow.  But, 

because the faults have different motions, that same offset may be interpreted into 

different calculated offsets based on the fault mechanics on both faults resulting in the 

two distinct red arrows.  This only happens if the site detects an offset and both faults 

can generate realistic slip distributions based off it and surrounding data. 
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XII - Cascadia Implementation 
 

The system has already been implemented in Cascadia.  It uses a 20x10 subfault 

model.  There are 20 subfaults along strike and 10 subfaults along dip creating 200 

overall.  This was done for performance reasons.  The system that it currently runs on is 

not powerful enough to reliably run more subfaults. 

 

As such, the longest time the system has been running continuously in a 

reasonably recent build is about 46 days.  During that time, the system had two 

instances where it detected events larger than 9.0, both were false.  Neither of these 

events were recorded but were likely due to cycle slips. 

 

Cascadia was chosen as the main fault for development for a few reasons.  First, 

CWU is in the region impacted by a large fault movement.  Also, many of the sites being 

processed specifically by CWU are in the Pacific Northwest.  Third, Cascadia represents 

the largest seismic hazard in the US.  While the magnitude potentials are eclipsed by the 

Aleutian trench, the location relative to the major cities of Seattle, Portland, and 

Vancouver mean a large earthquake would cause significant damage. 
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XIII - South San Andreas Implementation 
 

The system has been implemented for the south San Andreas Fault.  This was 

done to test a few things about the expandability of the system.  First, testing if the 

system can work on a second fault since most development and testing had been done 

solely on Cascadia.  Secondly, it tests if the system can work on a strike-slip fault and 

exposes any potential problems with the general methods already implemented.  

Thirdly, this tests the ability to run multiple instances simultaneously. 

 

Using this model has shown no significant issues running the program on 

different faults.  But, it has highlighted a few issues concerning running multiple 

instances at the same time.  These issues are talked about in the Future Work section. 
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XIV - Future Work 
 

Slip-rate distribution, in the current system, cannot be calculated accurately.  

This system is designed to determine the slip as quickly as possible.  Therefore, it does 

no travel time correction for the seismic waves.  This results in each filter representing 

offsets from slip at different times.  This affects the accuracy of the system, but not 

significantly enough to affect the ability to use this system for rapid earthquake 

assessment.  The most accurate slip distributions are produced 5-15 minutes after a 

large event.  This is because the system must wait for the total slip to finish, usually 

under 8 minutes (Ishii, Shearer, Houston, & Vidale, 2005), and then the seismic wave 

travel time, usually under 5 minutes.  These issues make simply differencing the slip 

distributions to get the slip-rate distribution inaccurate. But, as designed, the system 

will produce estimates about 30 seconds after the event is first detected. Furthermore, 

it will produce estimates close to the final magnitude within a few minutes.  The other 

issue is the influence of noise on the system altering the final results and making a 

perfect result impossible to obtain. 

 

The seismic wave travel time can be automatically corrected in the code.  The 

Kalman filter keeps track of how many measurements have passed since the offset was 

first detected.  By passing this into the DataWriter, the data can be reorganized based 

on how many measurements have passed instead of based on time.  A simple data 

cleaning can also be run; if a filter detects an offset much earlier or later than other 

filters, it can be removed.  The reorganized data can then be passed to the inversion and 
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it will output a more accurate slip distribution.  This slip distribution can then be 

differenced to get an approximate estimate of the slip-rate distribution through time. 

 

There are two problems with this method which make it unsuitable based on the 

design goals.  First, it requires all the filters that detect an offset to report the first 

detected offset before any data can be processed.  This adds about a five-minute delay 

to the system.  This completely defeats the goal of a rapid earthquake assessment 

system.  Second, the system can be designed to do both, but the inversions would have 

to be doubled by running a second instance of DataWriter, TVLiveSlip, and SlipWriter.  

Because the inversions are the most intensive processes in the entire system, this 

effectively doubles the computational requirements of the system.  The system would 

not need to run the second inversions when no offsets are detected.  But this means the 

second inversions would kick on about five minutes after the event, when the system is 

most needed.  Because the inversions process much slower during actual large events 

than during smaller or false events, the system would slow down significantly during 

events that it was designed to rapidly assess and potentially drop out of real-time.  

Therefore, the computational increase both compromises the ability of the system to 

function when needed and forces less subfaults or sites to be processed to reduce the 

computational load to something the system can handle. 

 

The other main thing that still needs to be done is to extend the system to run 

multiple instances within the same folder.  In the current version each instance must be 
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run in a separate folder.  The system uses a hardcoded subfault file, Config file, and Run 

log file.  To extend the program, the Config file needs to be defined on the command 

line, the Run log needs to either be command line or removed, and the subfault file 

should be command line. 

 

The Run log file needs to be defined separately for each instance running to 

avoid overwriting the file and, in the case of 100’s of instances running, to avoid output 

collisions from occurring.  The easier option is to completely remove the Run logs. 

 

Because of the creation of the DUMMY site early in the initialization of the 

TVLiveSlip file, the subfault file needs to be known early on.  One method to solve this is 

to simply replace the subfault file outside the program for the newest instance.  The 

other way is to pass the specified file into the program in the command line and pass 

that through to TVLiveSlip before the initialization of DUMMY site. 

 

A better method to improve this is to completely remove the DUMMY site.  This 

would require removing all code referencing it directly.  Another thing that would have 

to change for this implementation is the code for adding sites to the subfault offset 

matrix.  The DUMMY site maintains the dimensions so a standard vstack command can 

be used to add new subfault offset lines to the overall matrix.  The system would have 

to switch to checking the dimensions of the subfault offset matrix and if they are zero by 

zero then just replace the matrix rather than using the vstack command. 



 

59 
 

 

There is another issue with this, regardless of whether a separate folder or single 

folder option is used.  This revolves around when one of the systems goes haywire, 

which may happen from time to time.  Determining specifically which process needs to 

be killed is nearly impossible to do.  To get around this, a setting in the Config file to kill 

the entire process is necessary.  The Config files are more easily identifiable than the 

specific processes.  There is a setting in the Config file already to do this, but it is not 

completely implemented.  To fully implement this setting smoothly into the system 

would require large portions of every piece of code to be rewritten. 

 

The system should also be updated to use Euler poles instead of direction of 

convergence (Moores & Twiss, 1995).For smaller faults such as Cascadia, the Middle 

America trench, etc., the use of Euler poles would not create any significant changes to 

the results.  But, for larger faults, such as South American trench, the Japanese trench 

and the Aleutian trench, the curvature of the Earth effects how the plates are coming 

together.  So, the direction of convergence does not work well on those faults. 

 

The direction of convergence and Euler pole methods also need to be altered to 

better account for strike-slip faults.  Basically, instead of using a direction of 

convergence or Euler pole the system should be using a specific value denoting pure 

strike-slip, thereby keeping the system from trying to act as a dip-slip fault and 

generating unrealistic scenarios. 
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Another thing that may be worth doing in the future is to implement MAGMA 

(Tomov, 2010).  MAGMA is the latest iteration of the linear algebra package LAPACK.  It 

allows linear algebra problems to be parallelized across multiple cores, CPUs, and GPUs.  

By switching the NNLS inversion to MAGMA, it would allow more complex inversions to 

be run.  This could include using more sites or more subfaults in the inversion.  Though, 

this only makes sense for very large GPS networks and large computers.  The current 

benefits from implementing this are minimal, with the current inversion parallelization 

method being able to handle all current data rapidly. 

 

Further testing and fine-tuning of the system is necessary.  The system has a lot 

of settings in the Config file.  For stability and reliability testing, the system has mainly 

been running on unrealistic settings that would be impractical in the real world.  The 

system, therefore, needs to be tested further on realistic synthetics to figure out specific 

settings for the system.  This needs to be done for each specific instance of the program 

because subfault size will change and requirements for relevancy, offset detection, and 

various other settings need to be changed accordingly. 

 

Work extending the expandability of the system also needs to be done.  Pulling 

more hard-coded settings out of the code and adding them to Config files would help.  

Some of the settings that could still be pulled out are connection settings and some of 

the hard-coded delays.  
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XV - Conclusion 
 

This project extends the monitoring and assessment of large earthquakes.  By 

using smaller processes, it extends the capacity and ability of this system to rapidly 

assess large earthquakes while reducing the computation spikes resulting from them.  

By adding this system into the current seismic, teleseismic, and deep ocean buoy 

seismic and hazard estimation systems in place, the overall ability of various 

organizations to rapidly assess earthquakes and their hazards will be improved 

significantly. 

 

Further, this system brings into being what individuals in the community have 

been saying for years, a GPS-based seismic system has advantages in speed and 

accuracy in the evaluation of large earthquakes.  Further work needs to be done 

concerning extending the system around the Pacific, adding in tsunami run up 

estimations, and further testing and fine tuning the system on a fault by fault basis.  At 

the current moment, the system acts as an applicable, functioning platform and 

bluepring for future work. 
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XVII - Appendixes 

Appendix A – Config File Settings 
 

Systemwide Settings 

Run 
Currently not implemented.  Ideally kills the system 
(Boolean). 

Email 
Who to send an email to when the system needs to 
(email string). 

  

TULiveFilter settings 

ConfigCheck 
How frequently to check the Config file for changes 
(seconds). 

  

DataRouter settings 

SendData 
Whether DataRouter passes data through to the 
system.  Useful to test and debug issues concerning 
filters being turn on and off (Boolean). 

  

Kalman settings 

EQPause 
How long to freeze the offset detection ability after 
an offset is detected (measurements). 

EQThres 

How big an anomalous measurement must be 
before triggering the offset detection limit 
(multiple of the standard deviation of the 
measurement covariance) (float). 

MesWait 
Number of consecutive anomalous measurements 
before triggering the offset detection 
(measurements). 

DieTime 
How many seconds to wait since the last data was 
received before turning the filter off (seconds). 

MinR 

Default value for the covariance matrix of the 
measurements if the value comes through as 0.  
Needs to be greater than 0 or the system crashes 
(float). 

Offset 
Whether to add a synthetic offset into the system 
(Boolean). 

MaxOffset 
Maximum amount of offset between two 
measurements, reduces cycle slip impact (meters). 

  

DataWriter settings 
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DWDelay 
How many time-steps to wait before the 
DataWriter sends the data to the inverter (time-
steps). 

SendFreq 
How many time-steps to skip between sending a 
time-step to the inverter (time-steps). 

  

TVLiveSlip settings 

Alpha Smoothing parameter for the inverter (float). 

MaxChildren 
How many different inversions can be spawned at 
any instant (value). 

InvKillTime 
How long to wait before the inversion gets 
terminated, prevents the system from stalling 
(seconds). 

Label 
String prefixed to the output label, viewable in the 
GPS cockpit as solution (string). 

Model 
What the subfault model is called in the GPS 
cockpit (string). 

Tag 
What the tag for the data in the MongoDB, 
typically current, but in the future may change as 
historical models are run (string). 

  

TVLiveSlip settings only read once 

MinOffset 
What the offset needs to be for the site is deemed 
relevant to the model (meters). 

RangeThres 
Maximum percentage of subfaults that the site is 
deemed irrelevant for before being deemed 
irrelevant to the whole system (percentage) (0-1). 

Convergence 
Direction on convergence between the plates 
based on the footwall, needs to be updated to 
account for Euler poles (degrees). 

StrikeSlip Whether the fault is strike slip or not (Boolean). 

  

SlipWriter settings 

SWDelay 
Delay between receiving a solution and outputting 
it to the MongoDB, can be left at 0 
(measurements). 

SWMagnitude 
How large an event magnitude must be before 
sending an email (moment magnitude). 
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SWDuration 
How long after a SWMagnitude email is sent 
before a second email can be sent (minutes). 

Email Who to email in the case of a large event 
  

Cycler settings 

Cycle 
Whether to run the program that turns the 
SendData value between True and False repeatedly 
to test stability (Boolean). 
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Appendix B – Variables 
 

Mk Covariance matrix from the previous Kalman filter state 

Φk 
Matrix describing how the Kalman filter system evolves from 
measurement to measurement 

Pk Covariance matrix for the current Kalman filter state 

Qk Process noise matrix for the Kalman filter 

Kk Gain matrix for the Kalman filter 

H 
Measurement matrix describing how what is measured is represented 
in the Kalman filtering system 

Rk Covariance matrix for the measurements 

I Identity matrix 

k Current time-step of the filter system 

Resk 
Residual matrix, the difference between the predicted measurement 
and the current measurement 

Xk Measurement matrix 

ST Current predicted measurement ( S1 + S2 ) 

S1 The state that the Kalman filter is filtering for 

S2 The baseline state for the Kalman filter system 

H(x) Heaviside function of x 

Ψ  State reset matrix 

Ξ Filter covariance reset matrix 

thres 
Earthquake threshold value, EQThres(Config file) * standard deviation 
of the current measurement 

SM Smoothing matrix used during the inversion to constrain the inversion 

SIM 
Sub-input matrix used to describe how each site should move based 
on slip 

CL Correlation list to relate matrix rows to GPS sites in TVLiveSlip 

alpha Smoothing variable 

adjsubfaultslip  Potentially remove 

Y Subfaults moving adjacent to the current subfault 

subfaultslip  Matrix defining how slip is observed 

DOM Detected offset matrix 

SLIP Calculated slip distribution 

COM Calculated offset matrix 
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Appendix C - Proof 
 
Both of these proofs are only for a 2 state system, i.e. N, E.  The actual system used was 
3 state, N,E,V.  The first proof is the code as used in this thesis. 
 

𝑀𝑘 = [
𝑀𝑦 0

0 𝑀𝑧
] ; 𝐻 =  [

1 0
0 1

] ; 𝐻𝑇 = [
1 0
0 1

] ;  𝑆𝑇 = [
𝑆1 0
0 𝑆3

] ;  𝛷𝑘 = [
1 0
0 1

] ; 𝑅𝑘

= [
𝑅𝑦 0

0 𝑅𝑧
] ;  𝑄𝑘 = [

𝑄𝑦 0

0 𝑄𝑧
] ;𝑀𝑒𝑎𝑘 = [

𝑀𝑒𝑎𝑦 0

0 𝑀𝑒𝑎𝑧
] ; 𝑆2 =  [

𝑆2 0
0 𝑆4

] 

 
 

𝑀𝑘 = 𝛷𝑘 𝑃𝑘−1 𝛷𝑘
𝑇 + 𝑄𝑘 

𝐾𝑘 = 𝑀𝑘  𝐻𝑇 ( 𝐻 𝑀𝑘  𝐻𝑇 + 𝑅𝑘)−1 
𝑃𝑘 = ( 𝐼 − 𝐾𝑘 𝐻 ) 𝑀𝑘 
 
𝑅𝑒𝑠𝑘 = 𝑀𝑒𝑎𝑘 − 𝐻 𝛷𝑘 𝑆𝑇𝑘 − 𝑆2 
𝑆𝑇(𝑘+1) = 𝛷𝑘 𝑆𝑇𝑘 + 𝐾𝑘 𝑅𝑒𝑠𝑘 

 
𝑆2 =  𝑆2 + 𝑆𝑇𝑘 

𝑆𝑇𝑘 = [
0 0
0 0

] 

𝑃𝑘 = [
1000 0

0 1000
] 

 
 
 
Riccati EQ Proof 
𝑀𝑘 = 𝑃𝑘−1 + 𝑄𝑘 
𝐾𝑘 = 𝑀𝑘  ( 𝑀𝑘 + 𝑅𝑘)

−1 
𝑃𝑘 = ( 𝐼 − 𝐾𝑘 ) 𝑀𝑘 
 

𝐾𝑘 = [
𝑀𝑦 0

0 𝑀𝑧
] ( [

𝑀𝑦 0

0 𝑀𝑧
] + [

𝑅𝑦 0

0 𝑅𝑧
])−1 

𝐾𝑘 = [
𝑀𝑦 0

0 𝑀𝑧
] ( [

𝑀𝑦 + 𝑅𝑦 0

0 𝑀𝑧 + 𝑅𝑧
])−1 

𝐾𝑘 = [
𝑀𝑦 0

0 𝑀𝑧
] 

[
 
 
 
 

1

( 𝑀𝑦 + 𝑅𝑦 )
0

0
1

( 𝑀𝑧 + 𝑅𝑧 )]
 
 
 
 

 

𝐾𝑘 =  

[
 
 
 
 

𝑀𝑦

( 𝑀𝑦 + 𝑅𝑦 )
0

0
𝑀𝑧

( 𝑀𝑧 + 𝑅𝑧 )]
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𝛿𝑦 = 
𝑀𝑦

(𝑀𝑦 + 𝑅𝑦)
; 𝛿𝑧 = 

𝑀𝑧

( 𝑀𝑧 + 𝑅𝑧 )
 

𝐾𝑘 = [
𝛿𝑦 0

0 𝛿𝑧
] 

 
 
𝑃𝑘 = ( 𝐼 − 𝐾𝑘 ) 𝑀𝑘 

𝑃𝑘 = ( [
1 0
0 1

] − [
𝛿𝑦 0

0 𝛿𝑧
]) [

𝑀𝑦 0

0 𝑀𝑧
] 

𝑃𝑘 = [
1 − 𝛿𝑦 0

0 1 − 𝛿𝑧
] [

𝑀𝑦 0

0 𝑀𝑧
] 

𝑃𝑘 = [
𝑀𝑦 ( 1 − 𝛿𝑦 ) 0

0 𝑀𝑧 ( 1 − 𝛿𝑧 )
] 

휀𝑦 = 𝑀𝑦(1 − 𝛿𝑦); 휀𝑧 = 𝑀𝑧(1 − 𝛿𝑧) 

𝑃𝑘 = [
휀𝑦 0

0 휀𝑧
] 

 
 
𝑀𝑘 = 𝑃𝑘−1 + 𝑄𝑘 

𝑀𝑘 = [
휀𝑦 0

0 휀𝑧
] + [

𝑄𝑦 0

0 𝑄𝑧
] 

𝑀𝑘 = [
휀𝑦 + 𝑄𝑦 0

0 휀𝑧 + 𝑄𝑧
] 

 
 
State Proof 
𝑅𝑒𝑠𝑘 = 𝑀𝑒𝑎𝑘 − 𝐻 𝛷𝑘 𝑆𝑇𝑘 − 𝑆2 
𝑆𝑇(𝑘+1) = 𝛷𝑘 𝑆𝑇𝑘 + 𝐾𝑘 𝑅𝑒𝑠𝑘 

 
𝑅𝑒𝑠𝑘 = 𝑀𝑒𝑎𝑘 − 𝑆𝑇𝑘 − 𝑆2 
𝑆𝑇(𝑘+1) = 𝑆𝑇𝑘 + 𝐾𝑘 𝑅𝑒𝑠𝑘 

 
𝑅𝑒𝑠𝑘 = 𝑀𝑒𝑎𝑘 − 𝑆𝑇𝑘 − 𝑆2 

𝑅𝑒𝑠𝑘 = [
𝑀𝑒𝑎𝑦 0

0 𝑀𝑒𝑎𝑧
] − [

𝑆1 0
0 𝑆3

] − [
𝑆2 0
0 𝑆4

] 

𝑅𝑒𝑠𝑘 = [
𝑀𝑒𝑎𝑦 − 𝑆1 − 𝑆2 0

0 𝑀𝑒𝑎𝑧 − 𝑆3 − 𝑆4
] 

𝑅𝑒𝑠𝑦 = 𝑀𝑒𝑎𝑦 − 𝑆1 − 𝑆2;  𝑅𝑒𝑠𝑧 = 𝑀𝑒𝑎𝑧 − 𝑆3 − 𝑆4 

𝑅𝑒𝑠𝑘 = [
𝑅𝑒𝑠𝑦 0

0 𝑅𝑒𝑠𝑧
] 

 
𝑆𝑇(𝑘+1) = 𝑆𝑇𝑘 + 𝐾𝑘 𝑅𝑒𝑠𝑘 

𝑆𝑇(𝑘+1) = [
𝑆1 0
0 𝑆3

] + [
𝛿𝑦 0

0 𝛿𝑧
] [

𝑅𝑒𝑠𝑦 0

0 𝑅𝑒𝑠𝑧
] 



 

70 
 

𝑆𝑇(𝑘+1) = [
𝑆1 0
0 𝑆3

] + [
𝛿𝑦 𝑅𝑒𝑠𝑦 0

0 𝛿𝑧 𝑅𝑒𝑠𝑧
] 

𝑆𝑇(𝑘+1) = [
𝑆1 + 𝛿𝑦 𝑅𝑒𝑠𝑦 0

0 𝑆3 + 𝛿𝑧 𝑅𝑒𝑠𝑧
] 

 
 
Reset Proof 
𝑆2 =  𝑆2 + 𝑆𝑇𝑘 

𝑆𝑇𝑘 = [
0 0
0 0

] 

𝑃𝑘 = [
1000 0

0 1000
] 

 
 
𝑆2 =  𝑆2 + 𝑆𝑇𝑘 

𝑆2 =  [
𝑆2 0
0 𝑆4

] + [
𝑆1 0
0 𝑆3

] 

𝑆2 =  [
𝑆2 + 𝑆1 0

0 𝑆4 + 𝑆3
] 

𝑆𝑇𝑘 = [
0 0
0 0

] 

𝑃𝑘 = [
1000 0

0 1000
] 

 
 
The second proof is an optimized version that incorporates everything into the Kalman 
filter. 
 

𝑀𝑘 = [

𝑀𝑦 0 0 0

0 0 0 0
0 0 𝑀𝑧 0
0 0 0 0

] ; 𝐻 =  [

1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

] ; 𝐻𝑇 = [

1 0 0 0
1 0 0 0
0 0 1 0
0 0 1 0

] ;  𝑆𝑇

= [

𝑆1 0
𝑆2 0
0 𝑆3

0 𝑆4

] ; 

𝛷𝑘 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] ; 𝑅𝑘 = [

𝑅𝑦 0 0 0

0 0 0 0
0 0 𝑅𝑧 0
0 0 0 0

] ; 𝑄𝑘 = [

𝑄𝑦 0 0 0

0 0 0 0
0 0 𝑄𝑧 0
0 0 0 0

] ; 

𝑀𝑒𝑎𝑘 = [

𝑀𝑒𝑎𝑦 0

0 0
0 𝑀𝑒𝑎𝑧

0 0

] ;  𝛹 =  [

0 0 0 0
1 1 0 0
0 0 0 0
0 0 1 1

] ;  𝛯 =  [

1000 0 0 0
0 0 0 0
0 0 1000 0
0 0 0 0

] 

 
 
Riccati Equations 
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𝑀𝑘 = 𝛷𝑘 𝑃𝑘−1 𝛷𝑘
𝑇 + 𝑄𝑘 

𝐾𝑘 = 𝑀𝑘  𝐻𝑇 ( 𝐻 𝑀𝑘  𝐻𝑇 + 𝑅𝑘)−1 
𝑃𝑘 = ( 𝐼 − 𝐾𝑘 𝐻 ) 𝑀𝑘 
 
State Update Equations 
𝑅𝑒𝑠𝑘 = 𝑀𝑒𝑎𝑘 − 𝐻 𝛷𝑘 𝑆𝑇𝑘 
𝑆𝑇(𝑘+1) = 𝛷𝑘 𝑆𝑇𝑘 + 𝐾𝑘 𝑅𝑒𝑠𝑘 

 
State Reset Equations 
𝑆𝑇𝑘 =  𝛹 𝑆𝑇𝑘 
𝑃𝑘 =  𝛯 
 
 
Proof 
Assume M, run through Riccati Equations and show Mk+1 is of the same form. 
Show ST(k+1) is the same form as STk. 
Show reset equations work 
 
Show M(k+1) is same form as Mk. 

𝑀𝑘 = [

𝑀𝑦 0 0 0

0 0 0 0
0 0 𝑀𝑧 0
0 0 0 0

] 

 
𝐾𝑘 = 𝑀𝑘  𝐻𝑇 ( 𝐻 𝑀𝑘  𝐻𝑇 + 𝑅𝑘)−1 

𝐻 𝑀𝑘 = [

1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

] [

𝑀𝑦 0 0 0

0 0 0 0
0 0 𝑀𝑧 0
0 0 0 0

] =  [

𝑀𝑦 0 0 0

0 0 0 0
0 0 𝑀𝑧 0
0 0 0 0

] =  𝑀𝑘  

𝑀𝑘 𝐻
𝑇 = [

𝑀𝑦 0 0 0

0 0 0 0
0 0 𝑀𝑧 0
0 0 0 0

] [

1 0 0 0
1 0 0 0
0 0 1 0
0 0 1 0

] =  [

𝑀𝑦 0 0 0

0 0 0 0
0 0 𝑀𝑧 0
0 0 0 0

] =  𝑀𝑘 

 
𝐾𝑘 = 𝑀𝑘  ( 𝑀𝑘 + 𝑅𝑘)

−1 

𝐾𝑘 = 𝑀𝑘  ( [

𝑀𝑦 0 0 0

0 0 0 0
0 0 𝑀𝑧 0
0 0 0 0

] + [

𝑅𝑦 0 0 0

0 0 0 0
0 0 𝑅𝑧 0
0 0 0 0

] )−1 

𝐾𝑘 = 𝑀𝑘  ( [

𝑀𝑦 + 𝑅𝑦 0 0 0

0 0 0 0
0 0 𝑀𝑧 + 𝑅𝑧 0
0 0 0 0

] )−1 
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𝐾𝑘 = 𝑀𝑘  

[
 
 
 
 
 

1

(𝑀𝑦 + 𝑅𝑦)
0 0 0

0 0 0 0

0 0
1

( 𝑀𝑧 + 𝑅𝑧 )
0

0 0 0 0]
 
 
 
 
 

 

𝐾𝑘 = [

𝑀𝑦 0 0 0

0 0 0 0
0 0 𝑀𝑧 0
0 0 0 0

]

[
 
 
 
 
 

1

(𝑀𝑦 + 𝑅𝑦)
0 0 0

0 0 0 0

0 0
1

( 𝑀𝑧 + 𝑅𝑧 )
0

0 0 0 0]
 
 
 
 
 

 

𝐾𝑘 = 

[
 
 
 
 
 

𝑀𝑦

(𝑀𝑦 + 𝑅𝑦)
0 0 0

0 0 0 0

0 0
𝑀𝑧

( 𝑀𝑧 + 𝑅𝑧 )
0

0 0 0 0]
 
 
 
 
 

 

 

𝛿𝑦 = 
𝑀𝑦

(𝑀𝑦 + 𝑅𝑦)
; 𝛿𝑧 = 

𝑀𝑧

( 𝑀𝑧 + 𝑅𝑧 )
 

𝐾𝑘 = [

𝛿𝑦 0 0 0

0 0 0 0
0 0 𝛿𝑧 0
0 0 0 0

] 

 
 
𝑃𝑘 = ( 𝐼 − 𝐾𝑘 𝐻 ) 𝑀𝑘 

𝐾𝑘 𝐻 =  [

𝛿𝑦 0 0 0

0 0 0 0
0 0 𝛿𝑧 0
0 0 0 0

] [

1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

] = [

𝛿𝑦 0 0 0

0 0 0 0
0 0 𝛿𝑧 0
0 0 0 0

] =  𝐾𝑘  

 
𝑃𝑘 = ( 𝐼 − 𝐾𝑘 ) 𝑀𝑘 

𝑃𝑘 = ( [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] − [

𝛿𝑦 0 0 0

0 0 0 0
0 0 𝛿𝑧 0
0 0 0 0

] ) 𝑀𝑘 

𝑃𝑘 = [

1 − 𝛿𝑦 0 0 0

0 1 0 0
0 0 1 − 𝛿𝑧 0
0 0 0 1

] [

𝑀𝑦 0 0 0

0 0 0 0
0 0 𝑀𝑧 0
0 0 0 0

] 
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𝑃𝑘 = [

𝑀𝑦(1 − 𝛿𝑦) 0 0 0

0 0 0 0
0 0 𝑀𝑧(1 − 𝛿𝑧) 0
0 0 0 0

] 

 

휀𝑦 = 𝑀𝑦(1 − 𝛿𝑦); 휀𝑧 = 𝑀𝑧(1 − 𝛿𝑧) 

𝑃𝑘 = [

휀𝑦 0 0 0

0 0 0 0
0 0 휀𝑧 0
0 0 0 0

] 

 
 

𝑀𝑘+1 = 𝛷𝑘 𝑃𝑘 𝛷𝑘
𝑇 + 𝑄𝑘+1 

𝛷𝑘 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] 

 
𝑀𝑘+1 = 𝑃𝑘 + 𝑄𝑘+1 

𝑀𝑘+1 = [

휀𝑦 0 0 0

0 0 0 0
0 0 휀𝑧 0
0 0 0 0

] + [

𝑄𝑦 0 0 0

0 0 0 0
0 0 𝑄𝑧 0
0 0 0 0

] 

𝑀𝑘+1 = [

휀𝑦 + 𝑄𝑦 0 0 0

0 0 0 0
0 0 휀𝑧 + 𝑄𝑧 0
0 0 0 0

] 

𝑀𝑘 = [

𝑀𝑦 0 0 0

0 0 0 0
0 0 𝑀𝑧 0
0 0 0 0

] 

 
Mk+1 is the same form as Mk. 
 
 
 
Show ST(k+1) is of same form as STk. 
𝑅𝑒𝑠𝑘 = 𝑀𝑒𝑎𝑘 − 𝐻 𝛷𝑘 𝑆𝑇𝑘 
𝑆𝑇(𝑘+1) = 𝛷𝑘 𝑆𝑇𝑘 + 𝐾𝑘 𝑅𝑒𝑠𝑘 

 
𝑅𝑒𝑠𝑘 = 𝑀𝑒𝑎𝑘 − 𝐻 𝛷𝑘 𝑆𝑇𝑘 

𝛷𝑘 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] 
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𝑅𝑒𝑠𝑘 = 𝑀𝑒𝑎𝑘 − 𝐻 𝑆𝑇𝑘 

𝐻 𝑆𝑇𝑘 = [

1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

] [

𝑆1 0
𝑆2 0
0 𝑆3

0 𝑆4

] =  [

𝑆1 + 𝑆2 0
0 0
0 𝑆3 + 𝑆4

0 0

] 

 

𝑅𝑒𝑠𝑘 = [

𝑀𝑒𝑎𝑦 0

0 0
0 𝑀𝑒𝑎𝑧

0 0

] − [

𝑆1 + 𝑆2 0
0 0
0 𝑆3 + 𝑆4

0 0

] 

𝑅𝑒𝑠𝑘 = [

𝑀𝑒𝑎𝑦 − 𝑆1 − 𝑆2 0

0 0
0 𝑀𝑒𝑎𝑧 − 𝑆3 − 𝑆4

0 0

] 

 
𝑅𝑒𝑠𝑦 = 𝑀𝑒𝑎𝑦 − 𝑆1 − 𝑆2;  𝑅𝑒𝑠𝑧 = 𝑀𝑒𝑎𝑧 − 𝑆3 − 𝑆4 

𝑅𝑒𝑠𝑘 = [

𝑅𝑒𝑠𝑦 0

0 0
0 𝑅𝑒𝑠𝑧

0 0

] 

 
 
𝑆𝑇(𝑘+1) = 𝛷𝑘 𝑆𝑇𝑘 + 𝐾𝑘 𝑅𝑒𝑠𝑘 

𝛷𝑘 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] 

 
𝑆𝑇(𝑘+1) = 𝑆𝑇𝑘 + 𝐾𝑘 𝑅𝑒𝑠𝑘 

𝐾𝑘 𝑅𝑒𝑠𝑘 =  [

𝛿𝑦 0 0 0

0 0 0 0
0 0 𝛿𝑧 0
0 0 0 0

] [

𝑅𝑒𝑠𝑦 0

0 0
0 𝑅𝑒𝑠𝑧

0 0

] 

𝐾𝑘 𝑅𝑒𝑠𝑘 =  [

𝛿𝑦 𝑅𝑒𝑠𝑦 0

0 0
0 𝛿𝑧 𝑅𝑒𝑠𝑧

0 0

] 

 
𝑆𝑇(𝑘+1) = 𝑆𝑇𝑘 + 𝐾𝑘 𝑅𝑒𝑠𝑘 

𝑆𝑇(𝑘+1) = [

𝑆1 0
𝑆2 0
0 𝑆3

0 𝑆4

] + [

𝛿𝑦 𝑅𝑒𝑠𝑦 0

0 0
0 𝛿𝑧 𝑅𝑒𝑠𝑧

0 0

] 
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𝑆𝑇(𝑘+1) = [

𝑆1 + 𝛿𝑦 𝑅𝑒𝑠𝑦 0

𝑆2 0
0 𝑆3 + 𝛿𝑧 𝑅𝑒𝑠𝑧

0 𝑆4

] 

 
ST(k+1) is the same form as STk.  Only S1 and S3 are updated, S2 and S4 stay constant. 
 
 
 
Show reset equations work. 
𝑆𝑇𝑘 =  𝛹 𝑆𝑇𝑘 
𝑃𝑘 =  𝛯 
 
𝑆𝑇𝑘 =  𝛹 𝑆𝑇𝑘 

𝛹 = [

0 0 0 0
1 1 0 0
0 0 0 0
0 0 1 1

] 

STk = [

0 0 0 0
1 1 0 0
0 0 0 0
0 0 1 1

] [

S1 0
S2 0
0 S3

0 S4

] =  [

0 0
S1 + S2 0

0 0
0 S3 + S4

] 

 
 
Pk =  Ξ 

Ξ =  [

1000 0 0 0
0 0 0 0
0 0 1000 0
0 0 0 0

] 

Pk = [

1000 0 0 0
0 0 0 0
0 0 1000 0
0 0 0 0

] 

 
Equations set S2 and S4 to current total state, S1 and S3 to zero, and filter covariance 
matrix is reset.  All matrices are still in correct form. 
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Appendix D1 - TULiveFilter.py 
 
#! /usr/bin/env python 
# TULiveFilter, starts other processes, checks config file, stores variables 
 
 
# imports 
from Kalman import Kalman 
from DataRouter import DataRouter 
from DataWriter import DataWriter 
from SlipWriter import SlipWriter 
from TVLiveSlip import TVLiveSlip 
import multiprocessing as mp 
from multiprocessing import Pipe, Process, reduction, Lock, Queue 
from multiprocessing.reduction import reduce_connection 
import threading as thr 
import pickle 
import time 
import json 
import subprocess as sub 
from subprocess import PIPE, Popen 
from datetime import datetime as dt 
from datetime import timedelta as td 
import os 
import difflib 
import logging 
 
 
# set up Run.log for monitoring code 
p = sub.Popen( [ 'rm', 'Run.log' ] ) 
p.wait() 
 
logging.basicConfig( filename='Run.log', level=logging.DEBUG, format='%(asctime)s - 
%(levelname)s   %(message)s' ) 
 
# initialize some variables 
Run = True 
lock = thr.Lock() 
que = Queue() 
listLock = thr.Lock() 
FilterSettings = {} 
global email 
email = "" 
 



 

78 
 

# pickle a connection for sending through a pipe 
def _pickle_connection( connection ): 
 return reduce_connection( connection ) 
 
# check the configuration file for changes 
def _ConfigCheck(): 
 odate = 0 
 ConfigCheck = 60. 
 while( Run == True ): 
  # print "Checking Config file" 
  t = os.path.getmtime( "Config" ) 
  ndate = dt.fromtimestamp( t ) 
 
  if( ndate != odate ): 
   with open( "Config", 'r' ) as f: 
    flines = f.readlines() 
   with open( ".Config", 'r' ) as g: 
    glines = g.readlines() 
    
 
   d = difflib.Differ() 
   diff = d.compare( glines, flines ) 
   newst = [ line[1:].split() for line in diff if line[0] == '+' ] 
 
   for new in newst: 
    if not new: 
     pass 
    elif( new[0][0] == "#" ): 
     pass 
    elif( new[0] == "ConfigCheck" ): 
     ConfigCheck = float( new[2] ) 
    elif( new[0] == "SendData" ): 
     if( new[2] == "True" ): 
      DataRouterPipe.send( [ new[0], True ] ) 
     elif( new[2] == "False" ): 
      DataRouterPipe.send( [ new[0], False] ) 
    elif( new[0] == "EQPause" ): 
     lock.acquire() 
     for filt in RunningList: 
      RunningList[filt][1].send( [ "EQPause", float( 
new[2] ) ] ) 
     lock.release() 
     FilterSettings['EQPause'] = float( new[2] ) 
    elif( new[0] == "EQThres" ): 
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     lock.acquire() 
     for filt in RunningList: 
      RunningList[filt][1].send( [ "EQThres", float( 
new[2] ) ] ) 
     lock.release() 
     FilterSettings['EQThres'] = float( new[2] ) 
    elif( new[0] == "MesWait" ): 
     lock.acquire() 
     for filt in RunningList: 
      RunningList[filt][1].send( [ "MesWait", float( 
new[2] ) ] ) 
     lock.release() 
     FilterSettings['MesWait'] = float( new[2] ) 
    elif( new[0] == "DieTime" ): 
     lock.acquire() 
     for filt in RunningList: 
      RunningList[filt][1].send( [ "DieTime", float( 
new[2] ) ] ) 
     lock.release() 
     FilterSettings['DieTime'] = float( new[2] ) 
    elif( new[0] == "MinR" ): 
     lock.acquire() 
     for filt in RunningList: 
      RunningList[filt][1].send( [ "MinR", float( 
new[2] ) ] ) 
     lock.release() 
     FilterSettings['MinR'] = float( new[2] ) 
    elif( new[0] == "Offset" ): 
     lock.acquire() 
     for filt in RunningList: 
      RunningList[filt][1].send( [ "Offset", new[2] ] 
) 
     lock.release() 
     FilterSettings['Offset'] = new[2] 
    elif( new[0] == "MaxOffset" ): 
     lock.acquire() 
     for filt in RunningList: 
      RunningList[filt][1].send( [ "MaxOffset", 
new[2] ] ) 
     lock.release() 
     FilterSettings['MaxOffset'] = new[2] 
    elif( new[0] == "FKill" ): 
     lock.acquire() 
     i = 0 
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     fkill = str( new[1] ) 
     while( RunningList[i][0] != fkill ): 
      i = i + 1 
      if( i == len( RunningList ) ):break 
     if( i != len( RunningList ) ): 
      RunningList[i][1].send( [ "FKill", True ] ) 
     DataRouterPipe.send( [ "Ignore", fkill ] ) 
    elif( new[0] == "DWDelay" ): 
     DataWriterPipe.send( [ "Delay", float( new[2] ) ] ) 
    elif( new[0] == "SendFreq" ): 
     DataWriterPipe.send( [ "SendFreq", float( new[2] ) 
] ) 
    elif( new[0] == "Alpha" ): 
     InverterPipe.send( [ "Alpha", float( new[2] ) ] ) 
    elif( new[0] == "MaxChildren" ): 
     InverterPipe.send( [ "MaxChildren", float( new[2] ) 
] ) 
    elif( new[0] == "InvKillTime" ): 
     InverterPipe.send( [ "InvKillTime", float( new[2] ) ] ) 
    elif( new[0] == "Label" ): 
     tex = "" 
     for x in range( len( new ) - 2 ): 
      tex = tex + " " + new[x + 2] 
     InverterPipe.send( [ "Label", tex ] ) 
    elif( new[0] == "Model" ): 
     InverterPipe.send( [ "Model", new[2] ] ) 
     SlipWriterPipe.send( [ "Model", new[2] ] ) 
    elif( new[0] == "Tag" ): 
     InverterPipe.send( [ "Tag", new[2] ] ) 
     SlipWriterPipe.send( [ "Tag", new[2] ] ) 
    elif( new[0] == "MinOffset" ): 
     InverterPipe.send( [ "MinOffset", float( new[2] ) ] ) 
    elif( new[0] == "RangeThres" ): 
     InverterPipe.send( [ "RangeThres", float( new[2] ) ] 
) 
    elif( new[0] == "Convergence" ): 
     InverterPipe.send( [ "Convergence", float( new[2] ) 
] ) 
    elif( new[0] == "StrikeSlip" ): 
     InverterPipe.send( [ "StrikeSlip", new[2] ] ) 
     print "StrikeSlip = " + new[2] 
    elif( new[0] == "SWDelay" ): 
     SlipWriterPipe.send( [ "Delay", float( new[2] ) ] ) 
    elif( new[0] == "SWMagnitude" ): 
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     SlipWriterPipe.send( [ "Magn", float( new[2] ) ] ) 
    elif( new[0] == "SWDuration" ): 
     SlipWriterPipe.send( [ "Dur", float( new[2] ) ] ) 
    elif( new[0] == "Email" ): 
     global email 
     email = new[2] 
     SlipWriterPipe.send( [ "Email", email ] ) 
     DataRouterPipe.send( [ "Email", email ] ) 
     
   p = sub.Popen( [ 'cp', 'Config', '.Config' ] ) 
   p.wait() 
   odate = ndate 
   print "Config File Modified" 
   logging.info( "Config File Modified" ) 
   time.sleep( ConfigCheck ) 
 
  else: 
   logging.info( "Config File Not Modified" ) 
   time.sleep( ConfigCheck ) 
 
 
# store filter variables in case filter restarts later 
def UpdateFilter( l ): 
 KalmanList[l[0]].K = l[1] 
 KalmanList[l[0]].M = l[2] 
 KalmanList[l[0]].P = l[3] 
 KalmanList[l[0]].ResetP = l[4] 
 KalmanList[l[0]].State = l[5] 
 KalmanList[l[0]].State2 = l[6] 
 KalmanList[l[0]].IState = l[7] 
 KalmanList[l[0]].IState2 = l[8] 
 KalmanList[l[0]].SMea = l[9] 
 KalmanList[l[0]].offset = l[10] 
 KalmanList[l[0]].Rcount = l[11] 
 KalmanList[l[0]].InitP = l[12] 
 KalmanList[l[0]].PCount = l[13] 
 KalmanList[l[0]].SMCount = l[14] 
 KalmanList[l[0]].EQCount = l[15] 
 KalmanList[l[0]].prevTime = l[16] 
 KalmanList[l[0]].Tag = l[17] 
 KalmanList[l[0]].StartUp = l[18] 
 
# turn off filters as necessary 
def _FilterWatcher(): 
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 sent = dt.now() 
 defdate = sent 
 while( Run == True ): 
  to_delete = [] 
  listLock.acquire() 
  for filt in RunningList: 
   if( RunningList[filt][1].poll() == True ): 
    print "TULiveFilter is starting to kill filter" + str( filt ) 
    t = RunningList[filt][1].recv() 
    if( t[0] == "Kill" ): 
     print "Starting to Kill filter " + str( filt ) 
     RunningList[filt][1].send( True ) 
     l = RunningList[filt][1].recv() 
     if( l == False ): 
      RunningList[filt][1].send( True ) 
      RunningList[filt][1].recv()   
     else: 
      UpdateFilter( l ) 
      RunningList[filt][1].send( True ) 
      DataRouterKillPipe.send( t ) 
      DataRouterKillPipe.recv() 
      to_delete.append( filt ) 
      InverterPipe.send( [ "Remove", t[1] ] ) 
      print "Killed Filter " + str( t[1] ) 
    if( t[0] == "Resend" ): 
     for sett in FilterSettings: 
      RunningList[filt][1].send( [ sett, 
FilterSettings[sett] ] ) 
       
  for x in to_delete: 
   del RunningList[x] 
  listLock.release() 
  if( len( RunningList ) < 1 ): 
   print "Running List length < 0 " 
   logging.info( "THERE ARE CURRENTLY NO RUNNING FILTERS" ) 
  cur = dt.now() 
  if( ( sent <> defdate ) and ( cur - sent > td( minutes = 15. ) ) ): 
   defdate = sent 
  time.sleep( 15 ) 
 
 
# initialize more variables 
with open( ".Config", "w" ) as file: 
 file.write( '\n' ) 
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t = os.path.getmtime( "Config" ) 
odate = dt.fromtimestamp( t ) 
 
print odate 
 
lock = Lock() 
 
 
mp.allow_connection_pickling() 
 
KalmanList = {} 
 
RunningList = {} 
settings = [] 
 
 
FrInvertPipe, ToSWriterPipe = Pipe() 
ControlPipe, SlipWriterPipe = Pipe() 
 
SlipWriter = SlipWriter( FrInvertPipe, ControlPipe ) 
 
SlipWriterProc = mp.Process( target = SlipWriter.Run ) 
 
SlipWriterProc.start() 
 
ToInvertPipe, FrDWriterPipe = Pipe() 
 
ControlPipe, InverterPipe = Pipe() 
 
Inverter = TVLiveSlip( FrDWriterPipe, ToSWriterPipe, ControlPipe ) 
 
InverterProc = mp.Process( target = Inverter.Run ) 
 
InverterProc.start() 
 
 
ControlPipe, DataWriterPipe = Pipe() 
 
ToWriterPipe, FromFilterPipe = Pipe() 
 
FromFilterPipe = que 
 
Writer = DataWriter( FromFilterPipe, ToInvertPipe, ControlPipe ) 
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WriterProc = mp.Process( target = Writer.Run ) 
 
WriterProc.start() 
 
 
ControlPipe, DataRouterPipe = Pipe() 
 
ControlPipe2, DataRouterKillPipe = Pipe() 
 
Router = DataRouter( ControlPipe, ControlPipe2 ) 
 
RouterProc = mp.Process( target = Router.Run ) 
 
RouterProc.start() 
 
ControlPipe, OrgPipe = Pipe() 
 
num = 0 
count = 0 
 
k = thr.Thread( target = _ConfigCheck ) 
k.start() 
 
time.sleep(5) 
 
m = thr.Thread( target = _FilterWatcher ) 
m.start() 
 
ToWriterPipe = que 
 
# main code, start filters as necessary 
while True: 
 
 t = DataRouterPipe.recv() 
 
 listLock.acquire() 
 try: 
  l = KalmanList[t] 
  InverterPipe.send( [ "Add", t ] ) 
  m = InverterPipe.recv() 
  print m 
  if( m[0] == "Add" ): 
   FromRouter, ToFilter = Pipe() 
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   ToFilterPipe, ControlPipe = Pipe() 
   ToFilter = _pickle_connection( ToFilter ) 
   l.Init_Filter( FromRouter, ToWriterPipe, ControlPipe ) 
   z = mp.Process( target = l.FilterOn ) 
   z.start() 
   RunningList[t] =  [ FromRouter, ToFilterPipe, ToFilter ] 
   for sett in FilterSettings: 
    RunningList[t][1].send( [ sett, FilterSettings[sett] ] ) 
   logging.info( "Restarting filter " + str( t ) ) 
   DataRouterPipe.send( [ "Add", t, ToFilter ] ) 
  elif( m[0] == "Ignore" ): 
   DataRouterPipe.send( [ "Ignore", t ] ) 
 except: 
  InverterPipe.send( [ "Add", t ] ) 
  m = InverterPipe.recv() 
  print m 
  if( m[0] == "Add" ): 
   FromRouter, ToFilter = Pipe() 
   ToFilterPipe, ControlPipe = Pipe() 
   ToFilter = _pickle_connection( ToFilter ) 
   l = Kalman() 
   l.setName( t ) 
   l.Init_Filter( FromRouter, ToWriterPipe, ControlPipe ) 
   KalmanList[t] = l 
   z = mp.Process( target = l.FilterOn ) 
   z.start() 
   RunningList[t] = [ FromRouter, ToFilterPipe, ToFilter ] 
   for sett in FilterSettings: 
    RunningList[t][1].send( [ sett, FilterSettings[sett] ] ) 
   logging.info( "Beginning filter " + str( t ) ) 
   num = num + 1 
   send = [ "Add", t, ToFilter] 
   DataRouterPipe.send( send ) 
  elif( m[0] == "Ignore" ): 
   DataRouterPipe.send( [ "Ignore", t ] ) 
 listLock.release() 
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Appendix D2 - DataRouter.py 
 
#! /usr/bin/env python 
# DataRouter, connects to an outside rabbitMQ, recieves data and passes it to the 
correct Kalman filter 
 
#imports 
import amqp 
from multiprocessing import Pipe, reduction, Lock 
from multiprocessing.reduction import reduce_connection 
import pickle 
import json 
import time 
from datetime import datetime as dt 
from datetime import timedelta as td 
import threading as thr 
import subprocess as sub 
from subprocess import PIPE, Popen 
import logging 
import sys 
import traceback 
 
 
class DataRouter: 
 
      # get pipe back from pickled pipe sent through pipe 
 def _unpickle_connection( self, reduced): 
  return reduced[0](*reduced[1]) 
 
      # initialize variables 
 def __init__(self, CPipe, KPipe ): 
  self.ConPipe = CPipe 
  self.KillPipe = KPipe 
  print self.ConPipe 
  self.PipeList = {} 
  self.exchange_name = '' 
  self.host = "" 
  self.userid = "" 
  self.password = "" 
  self.virtual_host = "" 
  self.curtime = dt.now() 
  self.prevtime = dt.now() 
  self.WaitMsg = {} 
  self.CatcherStarted = False 
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  self.count = 0 
  self.First = True 
  self.run = True 
  self.lock = Lock() 
  self.sendData = True 
  self.ignoreList = [] 
  self.nextiter = 0. 
  self.email = "" 
 
        # check for changes to the configuration file 
        def __CPipeWatcher( self ): 
                while( self.run == True ): 
                        t = self.ConPipe.recv() 
                        if( t[0] == "Add" ): 
                                site = t[1] 
                                with self.lock: 
                                        self.PipeList[t[1]] = self._unpickle_connection( t[2] ) 
                                try: 
                                        while( len( self.WaitMsg[site] ) > 0 ): 
                                                self.PipeList[t[1]].send( self.WaitMsg[site][0] ) 
                                                del self.WaitMsg[site][0] 
                                        del self.WaitMsg[site] 
                                except: 
                                        pass 
                                logging.info( "Adding Site " + str( t[1] ) ) 
                        elif( t[0] == "Ignore" ): 
                                self.ignoreList.append( str( t[1] ) ) 
                                del self.WaitMsg[ t[1] ] 
                                logging.info( "Ignoring site " + str( t[1] ) ) 
                        elif( t[0] == True ): 
                                pass 
                        elif( t[0] == "SendData" ): 
                                self.sendData = t[1] 
                        elif( t[0] == "Email" ): 
                                self.email = t[1] 
 
      # set up connection variables for data input 
 def _Connection( self, _host, _userid, _password, _virtual_host, 
_exchange_name ): 
  _connection = amqp.Connection( host = _host, userid = _userid, 
password = _password, virtual_host = _virtual_host, exchange = _exchange_name ) 
  _channel = _connection.channel() 
  _channel.exchange_declare( _exchange_name, 'fanout', passive = True ) 
  _queue_name = _channel.queue_declare( exclusive = True )[0] 
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  _channel.queue_bind( _queue_name, exchange = _exchange_name ) 
  p = sub.Popen( [ 'mail', '-s', 'DataRouter', self.email ], stdin = PIPE ) 
  p.communicate( 'The DataRouter has established a connection with the 
RabbitMQ server at time ' + str( dt.now() ) + '.' ) 
  p.wait() 
  return _connection, _channel, _queue_name 
 
 
      # main code, check data and send it through to correct filter 
 def Run(self): 
  connection, channel, queue_name = self._Connection( self.host, 
self.userid, self.password, self.virtual_host, self.exchange_name ) 
 
  t = thr.Thread( target = self.__CPipeWatcher ) 
  t.start() 
 
  k = thr.Thread( target = self.__KPipeWatcher ) 
  k.start() 
 
  def callback( msg ): 
   jmsg = json.loads( msg.body ) 
   if( str( jmsg['site'] ) not in self.ignoreList ): 
    if( self.nextiter < float( jmsg['t'] ) ): 
     self.nextiter = float( jmsg['t'] ) 
     logging.info( "DataRouter got data for time {} for 
site {}".format( self.nextiter, jmsg['site'] ) ) 
    try: 
     if( self.sendData == True ): 
      self.PipeList[str( jmsg['site'] )].send( jmsg ) 
    except: 
     try: 
      self.WaitMsg[str( jmsg['site'] )].append( 
jmsg ) 
     except: 
      if( self.First == True ): 
       self.First = True 
       l = thr.Thread( target = self.initFilter, 
args = ( msg.body, str( jmsg['site'] ) ) ) 
       l.start() 
 
  channel.basic_consume( queue = queue_name, callback = callback, 
no_ack = True ) 
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  while True: 
   if( connection.is_alive() == False ): 
    p = sub.Popen( [ 'mail', '-s', 'Inverter', self.email ], stdin = 
PIPE ) 
    p.communicate( 'The DataRouter has lost the connection 
with the RabbitMQ server at time ' + str( dt.now() ) + '.' ) 
    p.wait() 
    connection = self._Connection( self.host, self.userid, 
self.password, self.virtual_host, self.exchange_name ) 
   connection.drain_events() 
 
      # set initial pipe for communication with TULiveFilter 
 def setPipe( self, CPipe ): 
  self.ConPipe = CPipe 
 
      # initialize new site, store messages and wait for response 
 def initFilter( self, msg, site ): 
  try: 
   jmsg = json.loads( msg ) 
   self.WaitMsg[site].append( jmsg ) 
  except: 
   if site not in self.ignoreList: 
    jmsg = json.loads( msg ) 
    self.WaitMsg[site] = [] 
    self.WaitMsg[str( site )].append( jmsg ) 
    self.ConPipe.send( site ) 
   else: 
    logging.info( "Ignoring data for site " + str( site ) ) 
 
      # watch for pipes that need to turn off 
 def __KPipeWatcher( self ): 
  while( self.run == True ): 
   t = self.KillPipe.recv() 
   if( t[0] == "Kill" ): 
    try: 
     with self.lock: 
      del self.PipeList[t[1]] 
     self.KillPipe.send( [ "True" ] ) 
    except: 
     cause = sys.exc_info()[1] 
     for frame in traceback.extract_tb( sys.exc_info()[2] 
): 
      fname, lineno, fn, text = frame 
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      logging.error( "Error - {} {} {} {} {}".format( 
cause, fname, lineno, fn, text ) ) 
      if t[1] in self.PipeList: 
       logging.error( str( t[1] ) + " is in 
Pipelist" ) 
      else: 
       logging.error( str( t[1] ) + " is not in 
Pipelist" ) 
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Appendix D3 - Kalman.py 
 
#! /usr/bin/env python 
# take data from DataRouter and process it, searching for offsets 
 
# imports 
import numpy as np 
from numpy import matlib 
import urllib2 
import json 
from datetime import datetime as dt 
from datetime import timedelta as td 
import logging 
import time 
from multiprocessing import Lock, Queue 
import threading as thr 
import logging 
import sys 
import traceback 
 
class Kalman: 
 
      # initialize variables 
 def __init__(self): 
  self.NAME = '' 
  self.LAT = 0. 
  self.LON = 0. 
  self.HEI = 0. 
  self.delta_T = 1 
  self.H = np.matrix( [ [ 1., 0., 0. ], [ 0., 1., 0. ], [ 0., 0., 1. ] ] ) 
  self.iden = np.matrix( [ [ 1., 0., 0. ], [ 0., 1., 0. ], [ 0., 0., 1. ] ] ) 
  self.K = np.matrix( [ [ 0., 0., 0. ], [ 0., 0., 0. ], [ 0., 0., 0. ] ] ) 
  self.M = np.matrix( [ [ 0., 0., 0. ], [ 0., 0., 0. ], [ 0., 0., 0. ] ] ) 
  self.Mea = np.matrix( [ [ 0. ], [ 0. ], [ 0. ] ] ) 
  self.P = np.matrix( [ [ 1000., 0., 0. ], [ 0., 1000., 0. ], [ 0., 0., 1000. ] ] ) 
  self.ResetP = self.P* 1. 
  self.Phi = np.matrix( [ [ 1., 0., 0. ], [ 0., 1., 0. ], [ 0., 0., 1. ] ] ) 
  self.Q = np.matrix( [ [ self.delta_T,  0., 0. ], [ 0., self.delta_T, 0. ], [ 0., 0., 
self.delta_T ] ] ) 
  self.R = np.matrix( [ [ 0., 0., 0. ], [ 0., 0., 0. ], [ 0., 0., 0. ] ] ) 
  self.Res = np.matrix( [ [ 0. ], [ 0. ], [ 0. ] ] ) 
  self.State = np.matrix( [ [ 0. ], [ 0. ], [ 0. ] ] ) 
  self.State2 = np.matrix( [ [ 0. ], [ 0. ], [ 0. ] ] ) 
  self.IState = np.matrix( [ [ 0. ], [ 0. ], [ 0. ] ] ) 
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  self.IState2 = np.matrix( [ [ 0. ], [ 0. ], [ 0. ] ] ) 
  self.SMea = [] 
  self.DispWork = False 
  self.DispInit = False 
  self.DispNum = False 
  self.EQPrint = False 
  self.offset = False 
  self.Rcount = 0 
  self.InitP = 0 
  self.Pcount = 0. 
  self.smoothing = 60. 
  self.SMCount = 0. 
  self.Wait = 2 
  self.EQFlag = np.matrix( [ [ False ], [ False ], [ False ] ] ) 
  self.EQDState = 0 
  self.EQCount = np.matrix( [ [ 0 ], [ 0 ], [ 0 ] ] ) 
  self.EQThres = 0.001 
  self.StateData = [] 
  self.Time = 0 
  self.OverrideFlag = False 
  self.Ready = True 
  self.send = {} 
  self.prevTime = 0. 
  self.write = True 
  self.Tag = False 
  self.StartUp = True 
  self.defR = 0.0001 
  self.Running = False 
  self.streams = [] 
  self.urlst = "http://www.panga.org/realtime/data/api/" 
  self.urlen = "?q=5min&l=" 
  self.lasttime = 0 
  self.clusters = [] 
  self.Live = False 
  self.First = False 
  self.ptime = 0. 
  self.curtime = 0. 
  self.streamtime = dt( year = 1970, month = 1, day = 1, hour = 0, minute = 
0, second = 0 ) 
  self.child_conn = "" 
  self.First_mea = True 
  self.lock = '' 
  self.run = True 
  self.laMea = 0 
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  self.DieTime = 300. 
  self.PCount = 0. 
  self.KillMe = False 
  self.Synth = [ 0., 0., 0. ] 
  self.MaxOffset = 25.0 
 
      # set filter name 
 def setName( self, n ): 
  self.NAME = str( n ) 
 
      # initialize filter 
 def InitFilter( self, sttime ): 
  self.lasttime = sttime 
  self.Live = True 
  self.First = True 
 
      # watch for changes in the config file 
 def __CPipeWatcher( self ): 
  while( self.run == True ): 
   if( self.KillMe == False ): 
    if( self.ConPipe.poll() == True ): 
     t = self.ConPipe.recv() 
     if( t == True ): 
      self.ConPipe.send( False ) 
     elif( t != None ): 
      if( t[0] == "EQPause" ): 
       self.smoothing = float( t[1] ) 
      if( t[0] == "EQThres" ): 
       self.EQThres = float( t[1] )  
      if( t[0] == "MesWait" ): 
       self.Wait = float( t[1] ) + 1. 
      if( t[0] == "DieTime" ): 
       self.DieTime = float( t[1] ) 
      if( t[0] == "MinR" ): 
       self.defR = float( t[1] ) 
      if( t[0] == "Offset" ): 
       if( t[1] == "True" ): 
        with open( './Offsets.d', 'r' ) 
as file: 
         end = False 
         while( end == False ): 
          line = 
file.readline().split() 
          if not line: 
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 logging.warning( "Could not find Synthetic offset for site " + str( self.NAME ) + " 
in offset file" ) 
           break 
          if( str( 
self.NAME ) == line[0] ): 
          
 self.Synth[0] = float( line[1] ) 
          
 self.Synth[1] = float( line[2] ) 
          
 self.Synth[2] = float( line[3] ) 
           end = 
True 
          
 logging.info( "Found Synthetics for " + str( self.NAME ) + " of " + str( self.Synth ) ) 
       elif( t[1] == "False" ): 
        self.Synth[0] = 0. 
        self.Synth[1] = 0. 
        self.Synth[2] = 0. 
      if( t[0] == "MaxOffset" ): 
       self.MaxOffset = float( t[1] ) 
    else: 
     time.sleep( 1 ) 
   else: 
    time.sleep( 1 ) 
  logging.warning( self.NAME + " CPipe Ending" ) 
 
      # keep code alive as long as data is coming in 
 def FilterOn( self ): 
  conn = self.WConn 
  lo = 0. 
  t = thr.Thread( target = self.__CPipeWatcher ) 
  t.start() 
  self.lock = lo 
  self.child_conn = conn 
  self.Running = True 
  self.ptime = dt.now() 
  self.curtime = dt.now() 
  while( self.Running == True ): 
   self.getData() 
   self.Pause() 
   now = dt.now() 
   if( ( now - self.laMea ) > td( seconds = self.DieTime ) ): 
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    self.KillFilter() 
  t.join() 
  logging.info( self.NAME + " Filter Ending" ) 
  print "Exiting Filter " + str( self.NAME ) 
 
      # get data and process it 
 def getData( self ): 
  update = False 
  num = 0 
  measurementlist = [] 
  try: 
   while( self.RConn.poll() == True ): 
    l = self.RConn.recv() 
    measurementlist.append( l ) 
    self.laMea = dt.now() 
  except: 
   logging.info( self.NAME + " recieved data that could not be 
processed." ) 
   cause = sys.exc_info()[1] 
   for frame in traceback.extract_tb( sys.exc_info()[2] ): 
    fname, lineno, fn, text = frame 
    logging.error( "ERROR - {} {} {} {} {}".format( cause, fname, 
lineno, fn, text ) ) 
    
   
  measurementlist = sorted( measurementlist, key = lambda x: x['t'] ) 
  while( len( measurementlist ) > 0 ): 
   try: 
    timest = measurementlist[0]['t'] 
    if( float( timest ) > self.prevTime ): 
     if( self.testZero( measurementlist[0] ) ): 
      self.prevTime = float( timest ) 
      cn = measurementlist[0]['cn'] 
      cv = measurementlist[0]['cv'] 
      ce = measurementlist[0]['ce'] 
      n = measurementlist[0]['n'] + self.Synth[0] 
      e = measurementlist[0]['e'] + self.Synth[1] 
      v = measurementlist[0]['v'] + self.Synth[2] 
      R = np.matrix( [ [ cn, 0., 0. ], [ 0., ce, 0. ], [ 0., 
0., cv ] ] ) 
      Mea = np.matrix( [ [ n ], [ e ], [ v ] ] ) 
      res = Mea - self.H * self.Phi * self.State - 
self.H * self.Phi * self.State2 
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      if( ( np.abs( res[0,0] ) < self.MaxOffset ) and 
( np.abs( res[1,0] ) < self.MaxOffset ) and ( np.abs( res[2,0] ) < self.MaxOffset ) ): 
       if( self.First_mea == True ): 
        self.FirstMea( Mea ) 
        self.First_mea = False 
       else: 
        self.passMea( timest, Mea, R 
) 
      else: 
       pass 
    del measurementlist[0] 
   except: 
    logging.error( self.NAME + " could not process a 
measurement." ) 
    cause = sys.exc_info()[1] 
    for frame in traceback.extract_tb( sys.exc_info()[2] ): 
     fname, lineno, fn, text = frame 
     loggin.error( "ERROR - {} {} {} {} {}".format( cause, 
fname, lineno, fn, text ) ) 
    del measurementlist[0] 
 
      # test if data is not equal to zero 
 def testZero( self, test ): 
  if( test['n'] <> 0. ): 
   return True 
  if( test['e'] <> 0. ): 
   return True 
  if( test['v'] <> 0. ): 
   return True 
  return False 
 
      # pause 
 def Pause( self ): 
  self.ptime = dt.now() 
  while( self.curtime - self.ptime < td( seconds = 3 ) ): 
   time.sleep( 2 ) 
   self.curtime = dt.now() 
 
      # kill filter if no data recieved for long enough 
 def KillFilter( self ): 
  print "Starting kill process " + str( self.NAME ) 
  self.KillMe = True 
  time.sleep( 1 ) 
  self.ConPipe.send( ['Kill', self.NAME ] ) 
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  print "Request Sent for " + str( self.NAME ) 
  t = False 
  while( t != True ): 
   t = self.ConPipe.recv() 
   print "Kalman t = " + str( t ) 
   if( t == True ): 
    print str( self.NAME ) + " " + str( self.RConn.poll() ) 
    if( self.RConn.poll() == False ): 
     logging.info( "Kill Filter " + str( self.NAME ) ) 
     print "Kill Filter " + str( self.NAME ) 
     self.FilterOff() 
     self.ConPipe.recv() 
     self.Running = False 
     self.run = False 
    else: 
     logging.info( "Don't Kill Filter " + str( self.NAME ) ) 
     print "Don't Kill Filter " + str( self.NAME ) 
     self.ConPipe.send( False ) 
     self.ConPipe.recv() 
     self.ConPipe.send( True ) 
     self.KillMe = False 
     self.ConPipe.send( "Resend" ) 
 
      # pack up data for turning off the filter 
 def FilterOff( self ): 
  Data = [] 
  Data.append( self.NAME ) 
  Data.append( self.K ) 
  Data.append( self.M ) 
  Data.append( self.P ) 
  Data.append( self.ResetP ) 
  Data.append( self.State ) 
  Data.append( self.State2 ) 
  Data.append( self.IState ) 
  Data.append( self.IState2 ) 
  Data.append( self.SMea ) 
  Data.append( self.offset ) 
  Data.append( self.Rcount ) 
  Data.append( self.InitP ) 
  Data.append( self.PCount ) 
  Data.append( self.SMCount ) 
  Data.append( self.EQCount ) 
  Data.append( self.prevTime ) 
  Data.append( self.Tag ) 
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  Data.append( self.StartUp ) 
  self.ConPipe.send( Data ) 
 
      # set variables when filter restarts 
 def UpdateData( self, Data ): 
  self.K = Data[1] 
  self.M = Data[2] 
  self.P = Data[3] 
  self.ResetP = Data[4] 
  self.State = Data[5] 
  self.State2 = Data[6] 
  self.IState = Data[7] 
  self.IState2 = Data[8] 
  self.SMea = Data[9] 
  self.offset = Data[10] 
  self.Rcount = Data[11] 
  self.InitP = Data[12] 
  self.PCount = Data[13] 
  self.SMCount = Data[14] 
  self.EQCount = Data[15] 
  self.prevTime = Data[16] 
  self.Tag = Data[17] 
  self.StartUp = Data[18] 
   
        # check offset flags 
        def EQFlagTest( self ): 
                if( self.EQFlag[0,0] == True ): 
                        return True 
                elif( self.EQFlag[1,0] == True ): 
                        return True 
                elif( self.EQFlag[2,0] == True ): 
                        return True 
                else: 
                        return False 
 
      # check if the number of anomalous measurement is greater than MesWait 
 def EQNumTest( self ): 
  nu = self.EQCount[0,0] 
  if( self.EQCount[1,0] > nu ): 
   nu = self.EQCount[1,0] 
  if( self.EQCount[2,0] > nu ): 
   nu = self.EQCount[2,0] 
  return nu 
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      # process first measurement differently than other measurements 
 def FirstMea( self, Mea ): 
  self.State2 = Mea * 1.0 
  self.StartUp = True 
 
      # set up measurement for processing 
 def passMea( self, Time, Mea, R ): 
  self.Ready = False 
  self.Time = Time 
  self.Mea = Mea 
  self.R = R 
  if( self.R[0,0] < self.defR ): 
   self.R[0,0] = self.defR 
  if( self.R[1,1] < self.defR ): 
   self.R[1,1] = self.defR 
  if( self.R[2,2] < self.defR ): 
   self.R[2,2] = self.defR 
  if( self.offset == False ): 
   self.updateMat() 
  else: 
   self.passupdateState() 
 
      # update Riccati equations 
 def updateMat( self ): 
  if( self.prevTime <> 0 ): 
   self.delta_T = self.Time - self.prevTime 
   self.prevTime = self.Time 
   self.Q = np.matrix( [ [ self.delta_T, 0., 0. ], [ 0., self.delta_T, 0. ], [ 
0., 0., self.delta_T ] ] ) 
  self.M = self.Phi * self.P * self.Phi.T + self.Q 
  interm = (self.H * self.M * self.H.T + self.R ).I 
  self.K = self.M * self.H.T * interm 
  self.P = ( self.iden - self.K * self.H ) * self.M 
  self.calcRes() 
 
        def calcRes( self ): 
                self.Res = self.Mea - self.H * self.Phi * self.State - self.H * self.Phi * self.State2 
                if( self.DispWork == True): 
                        print 'Mea = ' 
                        print self.Mea 
                        print 'Res = ' 
                        print self.Res 
  if( self.OverrideFlag == False ): 
                 self.determineState() 
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      # determine state of filter 
 def determineState( self ): 
  if( ( self.SMCount >= self.smoothing ) and ( self.StartUp == True ) ): 
   self.StartUp = False 
  if( self.SMCount < self.smoothing ): 
   self.EQCount = np.matrix( [ [ 0 ], [ 0 ], [ 0 ] ] ) 
   self.NormalMode() 
   self.endProc() 
  else: 
   if( np.abs( self.Res[0,0] ) < np.sqrt( self.R[0,0] ) * self.EQThres ): 
    self.EQFlag[0,0] = False 
    self.EQCount[0,0] = 0 
   else: 
    self.EQFlag[0,0] = True 
    self.EQCount[0,0] = self.EQCount[0,0] + 1 
   if( np.abs( self.Res[1,0] ) < np.sqrt( self.R[1,1] ) * self.EQThres ): 
    self.EQFlag[1,0] = False 
    self.EQCount[1,0] = 0 
   else: 
    self.EQFlag[1,0] = True 
    self.EQCount[1,0] = self.EQCount[1,0] + 1 
   if( np.abs( self.Res[2,0] ) < np.sqrt( self.R[2,2] ) * self.EQThres ): 
    self.EQFlag[2,0] = False 
    self.EQCount[2,0] = 0 
   else: 
    self.EQFlag[2,0] = True 
    self.EQCount[2,0] = self.EQCount[2,0] + 1 
   if( ( self.EQFlagTest() == True ) and ( self.EQNumTest() > self.Wait ) 
and ( self.offset == True ) ): 
    self.EQState() 
   elif( ( self.EQFlagTest() == False ) and ( self.offset == True ) ): 
    self.FalseEQState() 
   elif( ( self.EQFlagTest() == True ) and ( self.offset == False ) ): 
    self.BeginEQTestState() 
   else: 
    self.NormalMode() 
    self.endProc() 
 
      # process state as normal 
 def NormalMode( self ): 
  self.State = self.Phi * self.State + self.K * self.Res 
  self.State2 = self.Phi * self.State2 
  self.Tag = False 
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  if( self.DispWork == True): 
   print 'State = ' 
   print self.State 
  if( ( self.SMCount < self.smoothing ) and ( self.StartUp == False ) ): 
   self.Tag = True 
  self.send = {} 
  self.send['site'] = self.NAME 
  self.send['la'] = self.LAT 
  self.send['lo'] = self.LON 
  self.send['mn'] = self.Mea[0,0] 
  self.send['me'] = self.Mea[1,0] 
  self.send['mv'] = self.Mea[2,0] 
  self.send['kn'] = self.State[0,0] 
  self.send['ke'] = self.State[1,0] 
  self.send['kv'] = self.State[2,0] 
  self.send['cn'] = self.R[0,0] 
  self.send['ce'] = self.R[1,1] 
  self.send['cv'] = self.R[2,2] 
  self.send['he'] = self.HEI 
  self.send['ta'] = self.Tag 
  self.send['st'] = self.StartUp 
  self.send['time'] = self.Time  
 
      # process measurements when an offset has been detected 
 def EQState( self ): 
                if( self.EQPrint == True ): 
                        print 'Start EQ Process' 
                        print 'Time = ' + str( self.Time ) 
                        print 'ResN = ' + str( self.Res[0,0] ) 
                        print 'ResE = ' + str( self.Res[1,0] ) 
                        print 'ResV = ' + str( self.Res[2,0] ) 
                        print 'StateN = ' + str( self.State[0,0] ) 
                        print 'StateE = ' + str( self.State[1,0] ) 
                        print 'StateV = ' + str( self.State[2,0] ) 
                        print 'RN = ' + str( np.sqrt( self.R[0,0] ) ) 
                        print 'RE = ' + str( np.sqrt( self.R[1,1] ) ) 
                        print 'RU = ' + str( np.sqrt( self.R[2,2] ) ) 
 
 
  self.offsetreset( ) 
                self.SMCount = 0 
                self.SMea.append( [ self.Time, self.Mea, self.R ] ) 
                self.InitP = self.P[0,0] 
                self.P = self.ResetP * 1.0 
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                self.Pcount = 0. 
  self.offset = False 
  self.OverrideFlag = True 
                while( ( True ) and ( len( self.SMea ) > 1 ) ): 
                        self.R = self.SMea[0][2] 
   self.Mea = self.SMea[0][1] 
   self.Time = self.SMea[0][0] 
 
   self.updateMat() 
                        self.NormalMode() 
   del self.SMea[0] 
   if( len( self.SMea ) == 1 ):break 
  self.write = True 
  self.R = self.SMea[0][2] 
                self.Mea = self.SMea[0][1] 
  self.Time = self.SMea[0][0] 
  self.OverrideFlag = False 
                self.SMea = [] 
 
      # process measurements when a few anomalous measurements come in but 
everything is normal 
 def FalseEQState( self ): 
                if( self.EQPrint == True ): 
                        print 'Ending EQ test' 
                        print 'ResN = ' + str( self.Res[0,0] ) 
                        print 'ResE = ' + str( self.Res[1,0] ) 
                        print 'ResV = ' + str( self.Res[2,0] ) 
                        print 'StateN = ' + str( self.State[0,0] ) 
                        print 'StateE = ' + str( self.State[1,0] ) 
                        print 'StateV = ' + str( self.State[2,0] ) 
                        print 'RN = ' + str( np.sqrt( self.R[0,0] ) ) 
                        print 'RE = ' + str( np.sqrt( self.R[1,1] ) ) 
                        print 'RU = ' + str( np.sqrt( self.R[2,2] ) ) 
 
  self.write = True 
  self.endpassState( ) 
  self.OverrideFlag = True 
                self.SMea.append( [ self.Time, self.Mea, self.R ] ) 
                while( len( self.SMea ) > 1 ): 
                        self.R = self.SMea[0][2] 
                        self.Mea = self.SMea[0][1] 
   self.Time = self.SMea[0][0] 
                        self.calcRes( ) 
                        self.NormalMode( ) 
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   self.updateMat( ) 
   del self.SMea[0] 
   if( len( self.SMea ) == 1 ):break 
  self.offset = False 
  self.R = self.SMea[0][2] 
                self.Mea = self.SMea[0][1] 
  self.Time = self.SMea[0][0] 
                self.SMea = [] 
  self.OverrideFlag = False 
 
      # test if an eq has been detected 
 def BeginEQTestState( self ): 
                if( self.EQPrint == True ): 
                        print 'EQ potentially detected at time ' + str( self.Time ) 
                        print 'ResN = ' + str( self.Res[0,0] ) 
                        print 'ResE = ' + str( self.Res[1,0] ) 
                        print 'ResV = ' + str( self.Res[2,0] ) 
                        print 'StateN = ' + str( self.State[0,0] ) 
                        print 'StateE = ' + str( self.State[1,0] ) 
                        print 'StateV = ' + str( self.State[2,0] ) 
                        print 'RN = ' + str( np.sqrt( self.R[0,0] ) ) 
                        print 'RE = ' + str( np.sqrt( self.R[1,1] ) ) 
                        print 'RU = ' + str( np.sqrt( self.R[2,2] ) ) 
 
                self.offset = True 
  self.passStateStart( ) 
  self.write = False 
 
      # begin killing filter 
 def endProc( self ): 
  if( self.offset == False ): 
   self.SMCount = self.SMCount + 1 
   self.NormalMode() 
  else: 
   self.SMea.append( [ self.Time, self.Mea, self.R ] ) 
  try: 
   self.WConn.put( self.send, True, 15. ) 
  except: 
   logging.error( "Site " + str( self.NAME ) + " could not send data for 
time " + str( self.send['time'] ) ) 
  del self.send 
  self.StateData = [] 
  self.Ready = True  
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      # save state after reset 
 def passStateStart( self ): 
  self.IState = self.State * 1. 
  self.IState2 = self.State2 * 1. 
 
      # update state 
 def passupdateState( self ): 
  self.State = self.Phi * self.State 
  self.State2 = self.Phi * self.State2 
  self.calcRes() 
 
      # save state after reset 
 def endpassState( self ): 
  self.State = self.IState * 1. 
  self.State2 = self.IState2 * 1. 
 
      # reset state after offset 
 def offsetreset( self ): 
  self.State2 = self.IState + self.IState2 
  self.State = np.matrix( [ [ 0. ], [ 0. ], [ 0. ] ] ) 
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Appendix D4 - DataWriter.py 
 

#! /usr/bin/env python 
# take data from the Kalman filters, organize it, and pass it through to SlipWriter 
 
# imports 
from multiprocessing import Pipe, Queue 
from datetime import datetime 
from datetime import timedelta 
import time 
import threading as thr 
import logging 
 
class DataWriter: 
 
      # initialize variables 
 def __init__( self, IPipe, OPipe, CPipe ): 
  self.ConPipe = CPipe 
  self.InputPipe = IPipe 
  self.OutputPipe = OPipe 
  self.cutoff = 0 
  self.DataArray = [] 
  self.Sorted = [] 
  self.nextiter = 0 
  self.curiter = 0 
  self.delay = 15. 
  self.run = True 
  self.sendFreq = 1. 
  self.nextSend = 0. 
 
      # check for changes in the config file 
 def __CPipeWatcher( self ): 
  while( self.run == True ): 
   t = self.ConPipe.recv() 
   if( t != None ): 
    if( t[0] == "Delay" ): 
     self.delay = float( t[1] ) 
    if( t[0] == "SendFreq" ): 
     self.sendFreq = float( t[1] ) 
 
      # main code 
 def Run( self ): 
  t = thr.Thread( target = self.__CPipeWatcher ) 
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  t.start() 
  First = True 
  print "NextIter = " + str( self.nextiter ) + " and CurIter = " + str( self.curiter 
) + " and nextSend = " + str( self.nextSend ) 
  while( True ): 
                 # sort code 
   self.Sorted = sorted( self.Sorted, key = lambda x: x[0] ) 
   while( self.nextiter <= self.curiter - self.delay ): 
                       # select data to send 
    short = [] 
    if( len( self.Sorted ) > 0 ): 
     while( ( len( self.Sorted ) > 0 ) and ( 
self.Sorted[0][0] < self.nextiter ) ): 
      del self.Sorted[0] 
     while( ( len( self.Sorted ) > 0 ) and ( 
self.Sorted[0][0] == self.nextiter ) and ( self.nextiter >= self.nextSend ) ): 
      short.append( self.Sorted[0] ) 
      del self.Sorted[0] 
      if( len( self.Sorted ) == 0): 
       break 
    if( len( short ) > 0 ): 
     try: 
                                  # send data 
      self.OutputPipe.send( short ) 
      logging.info( "DataWriter sent data for " + 
str( self.nextiter ) ) 
      self.nextSend = self.nextiter + self.sendFreq 
     except: 
      logging.error( "DataWriter could not send 
data for " + str( self.nextiter ) ) 
     del short 
     time.sleep( 0.5 ) 
    self.nextiter = self.nextiter + 1 
                 # check input pipe 
   try: 
    while( self.InputPipe.empty() == False ): 
     t = self.InputPipe.get() 
     if( t != None ): 
      epoch = t['time'] 
      if( epoch > self.nextiter ): 
       self.Sorted.append( [ epoch, t ] ) 
      if( epoch > self.curiter ): 
       self.curiter = epoch 
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       logging.info( "DataWriter recieved 
data for " + str( epoch ) ) 
       if( self.nextiter == 0. ): 
        self.nextiter = self.curiter 
   except: 
    pass 
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Appendix D5 - TVLiveSlip.py 
 
#! /usr/bin/env python 
# take data from DataWriter, span off slip inversions as necessary 
 
# imports 
import subprocess as sub 
from subprocess import PIPE, Popen 
import numpy as np 
import scipy as sp 
from scipy import optimize 
import math 
from datetime import datetime as dt 
import multiprocessing as mp 
import time 
import ok 
from datetime import timedelta as td 
import json 
from multiprocessing import Lock 
from pytz import timezone 
import threading as thr 
import logging 
import sys 
import traceback 
 
class TVLiveSlip: 
 
      # initialize variables 
 def __init__( self, IPipe, OPipe, CPipe ): 
  self.INDataPipe = IPipe 
  self.OUTDataPipe = OPipe 
  self.ConPipe = CPipe 
  smoothing = True 
  CornerFix = False 
  shortSmoothing = True 
  self.alpha = 1.0 
  cutoff = 0. 
  noise = 0. 
  self.run = True 
  self.maxChildren = 4. 
  self.lock = Lock( ) 
  self.inversionList = [] 
  self.invLock = Lock( ) 
  self.inversionKillTime = 600. 
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  self.Convergence = -1. 
  self.minOffset = -1. 
  self.numFaults = -1. 
  self.rangeThres = -1. 
  self.SubfaultWid = 30. 
  self.SubfaultLen = 60. 
  self.label = "" 
  self.model = "" 
  self.tag = "" 
  self.StrikeSlip = False 
 
  self.Faults = [] 
  first = True 
  with open( './subfaults.d', 'r' ) as file: 
   while True: 
    line = file.readline().split() 
    if not line:break 
    if( ( first == True ) and ( line[0] <> '#' ) ): 
     self.SubfaultLen = float( line[0] ) 
     self.SubfaultWid = float( line[1] ) 
     first = False 
    elif( line[0] <> '#' ): 
     self.Faults.append( line ) 
 
  sites = [] 
  with open( './sites.d', 'r' ) as file: 
   while True: 
    line = file.readline().split() 
    if not line:break 
    if( line[0] <> '#' ): 
     sites.append( line ) 
 
  sites.sort() 
 
  self.numFaults = len( self.Faults ) 
  a = np.ndarray( [ 0. ] ) 
  Offset = a.copy() 
  Offset.resize( ( 1, len( sites * 3 ) ) ) 
  for con in range( len( sites ) * 3 ): 
   Offset[0][con] = 0. 
  self.Correlate = [] 
  self.SubInputs = a.copy() 
  self.SubInputs.resize( ( len( sites ) * 3, len( self.Faults ) ) ) 
            # compute dummy sige variables 
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  for num in range( len( sites ) ): # len sites 
   self.Correlate.append( [ sites[num][0], sites[num][1], 
sites[num][2] ] ) 
   curtime = dt.now() 
   print "Running Site " + str( num ) + " " + str( curtime ) 
   for con in range( len( self.Faults ) ): 
    com = [] 
    com.append( float( self.Faults[con][0] ) ) # Lat 0 
    com.append( float( self.Faults[con][1] ) ) # Lon 1 
    com.append( float( self.Faults[con][2] ) ) # Dep 2 
    com.append( float( self.Faults[con][3] ) ) # Str 3 
    com.append( float( self.Faults[con][4] ) ) # Dip 4 
    com.append( 0 ) # Rake 5 
    com.append( float( self.Faults[con][5] ) ) # Len 6 
    com.append( float( self.Faults[con][6] ) ) # Wid 7 
    com.append( 1 ) # Slip 8 
    com.append( 0 ) # Ten 9 
    com.append( float( sites[num][1] ) ) # station Lat 10 
    com.append( float( sites[num][2] ) ) # Station Lon 11 
    com.append( 0 ) # station Depth 12 
 
    com[5] = 0. 
    info = ok.dc3d( com[0], com[1], com[2], com[3], com[4], 
com[5], com[6], com[7], com[8], com[9], com[10], com[11], com[12] ) 
    self.SubInputs[ num * 3 ][ con ] = float( info[0] ) 
    self.SubInputs[ num * 3 + 1 ][ con ] = float( info[1] ) 
    self.SubInputs[ num * 3 + 2 ][ con ] = float( info[2] ) 
 
           # create mask matrix 
  Mask = a.copy() 
  Mask.resize( ( len( sites ) * 3, 1 ) ) 
  for num in range( len( sites ) * 3 ): 
    Mask[num][0] = 0. 
 
           # create smoothing matrix 
  self.smoothMat = a.copy() 
  self.smoothMat.resize( ( len( self.Faults ), len( self.Faults ) ) ) 
         
  if( smoothing == True ): 
   self.smoothMat = a.copy() 
   self.smoothMat.resize( ( len( self.Faults  ), len( self.Faults ) ) ) 
   if( shortSmoothing == False ): 
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    limit = math.sqrt( math.pow( float( self.Faults[0][5] ) / 
111., 2 ) + math.pow( float( self.Faults[0][6] ) / 111., 2 ) + math.pow( float( 
self.Faults[0][2]) / 111.,  2 ) ) * 0.9 
    for num in range( len( self.Faults ) ): 
     for con in range( len( self.Faults ) ): 
      self.smoothMat[num,con] = 0. 
    for num in range( len( self.Faults ) ): 
     con = num + 1 
    while( con < len( self.Faults ) ): 
     if( math.sqrt( math.pow(float( self.Faults[num][0] ) 
- float( self.Faults[con][0] ), 2 ) + math.pow( float( self.Faults[num][1] ) - float( 
self.Faults[con][1] ), 2 ) + math.pow( ( float( self.Faults[num][2] ) - float( 
self.Faults[con][2] ) ) / 111., 2 ) ) < limit ): 
      self.smoothMat[num][con ] = 1. 
      self.smoothMat[con][num] = 1. 
      self.smoothMat[num][num] = 
self.smoothMat[num,num] - 1. 
      self.smoothMat[con][con] = 
self.smoothMat[con,con] - 1. 
      con = con + 1 
   else: 
    for num in range( len( self.Faults ) ): 
     self.smoothMat[num][ num ] = 0 
     if( num > self.SubfaultLen ): 
      for con in range( 1 ): 
       self.smoothMat[num + con][num + 
con] = -1 
       self.smoothMat[num - 
self.SubfaultLen + con][ num + con] = 1 
       self.smoothMat[num + con][ num - 
self.SubfaultLen + con] = 1 
     if( num < ( self.SubfaultLen * ( self.SubfaultWid - 1 ) 
) ): 
      for con in range( 1 ): 
       self.smoothMat[num + con][ num + 
con] = self.smoothMat[num + con][ num + con] - 1 
       self.smoothMat[num + con + 
self.SubfaultLen][ num + con] = 1 
       self.smoothMat[num + con][ num + 
con + self.SubfaultLen ] = 1 
     if( num % self.SubfaultLen <> 0 ): 
      for con in range( 1 ): 
       self.smoothMat[num + con][ num + 
con ] = self.smoothMat[num + con][ num + con] - 1 
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       self.smoothMat[num + con - 1][ num 
+ con] = 1 
       self.smoothMat[num + con][ num + 
con - 1 ] = 1 
     if( num % self.SubfaultLen <> self.SubfaultLen - 1 ): 
      for con in range( 1 ): 
       self.smoothMat[num + con][ num + 
con] = self.smoothMat[num + con][ num + con] - 1 
       self.smoothMat[num + con + 1][ 
num + con ] = 1 
       self.smoothMat[num + con][ num + 
con + 1 ] = 1 
 
   if( CornerFix == True ): 
    for num in range( len( self.Faults ) ): 
     self.smoothMat[num][num] = -4 
 
  self.AddMatrix = a.copy() 
  self.AddMatrix.resize( ( self.SubfaultLen, len( self.Faults ) ) ) 
 
  if( self.StrikeSlip == True ): 
   for num in range( len( self.SubfaultWid ) ): 
    for con in range( len( self.SubfaultLen ) ): 
     self.AddMatrix[ num + con * self.SubfaultWid ][ con 
] = 1. 
 
  sit = 3 * len( sites ) 
  fau = len( self.Faults ) 
 
  tempSubMat = a.copy() 
  tempSubMat.resize( ( sit, fau ) ) 
 
  tempOffMat = a.copy() 
  tempOffMat.resize( ( 1, sit + fau ) ) 
  tempOffMat = [] 
  for num in range( len( sites ) * 3 ): 
   tempOffMat.append( 0. ) 
 
  tempMask = a.copy() 
  tempMask.resize( ( sit + fau, 1 ) ) 
 
  for num in range( sit ): 
   for con in range( fau ): 
    tempSubMat[num][con] = self.SubInputs[num][con] 
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  for num in range( sit ): 
   tempOffMat[num] = Offset[0][num] 
 
  tempMask.fill(0) 
 
  for num in range( fau ): 
   tempMask[sit+num][0] = 1. 
 
  Mask = tempMask.copy() 
 
  self.InvSubInputs = tempSubMat.copy() 
   
 
  self.Offset = tempOffMat 
 
  self.stMask = Mask.copy() 
  proclist = [] 
  print "Self.SubInputs = " + str( self.SubInputs.shape ) 
 
      # check for changes to config file 
 def __CPipeWatcher( self ): 
  while( self.run == True ): 
   t = self.ConPipe.recv() 
   if( t != None ): 
    if( t[0] == "Alpha" ): 
     self.alpha = float( t[1] ) 
    if( t[0] == "MaxChildren" ): 
     self.maxChildren = float( t[1] ) 
    if( t[0] == "InvKillTime" ): 
     self.inversionKillTime = float( t[1] ) 
    if( t[0] == "Label" ): 
     self.label = t[1] 
    if( t[0] == "Model" ): 
     self.model = t[1] 
    if( t[0] == "Tag" ): 
     self.tag = t[1] 
    if( t[0] == "MinOffset" ): 
     if( self.minOffset == -1. ): 
      self.minOffset = float( t[1] ) 
    if( t[0] == "RangeThres" ): 
     if( self.rangeThres == -1. ): 
      self.rangeThres = float( t[1] ) 
    if( t[0] == "Convergence" ): 
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     if( self.Convergence == -1. ): 
      self.Convergence = float( t[1] ) 
    if( t[0] == "StrikeSlip" ): 
     if( t[1] == "True" ): 
      self.StrikeSlip = True 
     else: 
      self.StrikeSlip = False 
    if( t[0] == "Remove" ): 
     logging.info( "TVSlip removing " + str( t[1] ) ) 
     i = 0 
     while( ( i < len( self.Correlate ) ) and ( str( 
self.Correlate[i][0] ) != t[1] ) ): 
      i = i + 1 
     if( i != len( self.Correlate ) ): 
      try: 
       with self.lock: 
        del self.Correlate[i] 
        for pil in range( 3 ): 
         self.InvSubInputs = 
np.delete( self.InvSubInputs, 3 * i, 0 ) 
         self.SubInputs = 
np.delete( self.SubInputs, 3 * i, 0 ) 
         del self.Offset[ 3 * i ] 
      except: 
       cause = sys.exc_info()[1] 
       for frame in traceback.extract_tb( 
sys.exc_info()[2] ): 
        fname, lineno,fn, text = 
frame 
        logging.error( "ERROR - {} {} 
{} {} {}".format( cause, fname, lineno, fn, text ) ) 
     print "Removed " + str( t[1] ) 
     logging.info( "TVSlip removed " + str( t[1] ) )  
        
    if( t[0] == "Add" ): 
     logging.info( "TVSlip adding " + str( t[1] ) ) 
     line = "" 
     a = np.ndarray( [ 0. ] ) 
     temp = a.copy() 
     temp.resize( ( 3, len( self.Faults ) ) ) 
     with open( './site_lat_lon_ele.txt', 'r' ) as file: 
      while True: 
       line = file.readline().split() 
       if not line:break 
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       if( line[0] == t[1] ):break 
     count = 0 
     for num in range( len( self.Faults ) ): 
      com = [] 
      com.append( float( self.Faults[num][0] ) ) 
      com.append( float( self.Faults[num][1] ) ) 
      com.append( float( self.Faults[num][2] ) ) 
      com.append( float( self.Faults[num][3] ) ) 
      com.append( float( self.Faults[num][4] ) ) 
      Rake = com[3] - self.Convergence 
      Rake = Rake + 180. 
      if( Rake < 0. ): 
       Rake = Rake + 360 
      if( Rake > 360. ): 
       Rake = Rake - 360. 
      com.append( Rake ) 
      com.append( float( self.Faults[num][5] ) ) 
      com.append( float( self.Faults[num][6] ) ) 
      com.append( 1 ) 
      com.append( 0 ) 
      try: 
       com.append( float( line[1] ) ) 
       com.append( float( line[2] ) ) 
       com.append( 0 ) 
      except: 
       com.append( 0 ) 
       com.append( 0 ) 
       com.append( 0 ) 
      info = ok.dc3d( com[0], com[1], com[2], 
com[3], com[4], com[5], com[6], com[7], com[8], com[9], com[10], com[11], com[12] ) 
      temp[ 0][ num ] = float( info[0] ) 
      temp[ 1][ num ] = float( info[1] ) 
      temp[ 2][ num ] = float( info[2] ) 
      mag = np.sqrt( info[0]**2 + info[1]**2 + 
info[2]**2 ) 
      if( ( mag < self.minOffset ) ): 
       count = count + 1. 
     if( count / self.numFaults < self.rangeThres ): 
      try: 
       self.ConPipe.send( [ "Add", t[1] ] ) 
       with self.lock: 
        self.SubInputs = np.vstack( [ 
self.SubInputs, temp ] ) 
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        self.InvSubInputs = 
np.vstack( [ self.SubInputs, self.smoothMat ] ) 
        self.Correlate.append( [ 
line[0], line[1], line[2] ]  ) 
        self.Offset.append( 0. ) 
        self.Offset.append( 0. ) 
        self.Offset.append( 0. ) 
      except: 
       cause = sys.exc_info()[1] 
       for frame in traceback.extract_tb( 
sys.exc_info()[2] ): 
        fname, lineno, fn, text = 
frame 
        logging.error( "ERROR - {} {} 
{} {} {}".format( cause, fname, lineno, fn, text ) ) 
     else: 
      self.ConPipe.send( [ "Ignore", t[1] ] ) 
 
      # watch current running inversions and see if any have stalled 
 def __InversionWatcher( self ): 
  while( True ): 
   time.sleep( 10 ) 
   now = dt.now() 
   killlist = [] 
   try: 
    with self.invLock: 
     for inv in range( len( self.inversionList ) ): 
      if( now - self.inversionList[inv][1] > td( 
seconds = self.inversionKillTime ) ): 
       killlist.append( inv ) 
     i = len( killlist ) - 1 
     while( i > -1 ): 
      if( self.inversionList[ killlist[i] ][0].is_alive() 
== True ): 
       self.inversionList[ killlist[i] 
][0].terminate() 
       logging.warning( "Inversion for " + 
str( self.inversionList[ killlist[0] ][2] ) + " terminated" ) 
      del self.inversionList[ killlist[i] ] 
      del killlist[i] 
      i = i - 1  
   except: 
    cause = sys.exc_info()[1] 
    for frame in traceback.extract_tb( sys.exc_info()[2] ): 
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     fname, lineno, fn, text = frame 
     logging.error( "ERROR - {} {} {} {} {}".format( cause, 
fname, lineno, fn, text ) ) 
 
      # main code 
 def Run( self ): 
  num = 0 
  lock = Lock() 
 
  t = thr.Thread( target = self.__CPipeWatcher ) 
  t.start() 
 
  u = thr.Thread( target = self.__InversionWatcher ) 
  u.start() 
 
 
  while( True ): 
                 # try to start another inversion 
   try: 
    station = self.INDataPipe.recv() 
    num = num + 1 
    while( len( mp.active_children() ) >= self.maxChildren ): 
     time.sleep( 0.1 ) 
    with self.lock: 
     p = mp.Process( target=self.SingleInverter, args=( 
station, self.alpha, self.stMask, self.SubInputs, self.smoothMat, self.Offset, 
self.OUTDataPipe, self.Faults, self.Correlate, lock, self.AddMatrix ) ) 
     p.start() 
    with self.invLock: 
     now = dt.now() 
     self.inversionList.append( [ p, now, station[0][0] ] ) 
   except: 
    cause = sys.exc_info()[1] 
    for frame in traceback.extract_tb( sys.exc_info()[2] ): 
     fname, lineno, fn, text = frame 
     logging.error( "ERROR - {} {} {} {} {}".format( cause, 
fname, lineno, fn, text ) ) 
 
 
 
 
 
 def SingleInverter( self, station, alpha, stMask, SubInputs, smoothMat, Offset, 
Pipe, Faults, Correlate, lock, AddMatrix): 
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  date = dt.now() 
  logging.info( "TVLiveSlip beginning inversion for " + str( station[0][0] ) ) 
  time = station[0][0] 
  Mask = stMask.copy() 
  npalpha = alpha 
  npcutoff = 0. 
  npnoise = 0. 
  inv = 0 
  a = np.ndarray( [ 0.] ) 
  Mask = a.copy() 
  k = np.shape( Offset )[0] + len( Faults ) 
  Mask.resize( k, 1 ) 
   
  for i in range( len( Faults ) ): 
   k = np.shape( Mask )[0] - i - 1 
   Mask[k][ 0 ] = 1. 
 
  lit = 0 
  con = 0 
           # organize data 
  while( con <  len( Correlate ) ): 
   start = lit 
   while True: 
    if( len( Correlate[con] ) < 1 ): 
     print "There is an error somewhere in Correlate" 
    if( station[lit][1]['site'] == Correlate[con][0] ): 
     Offset[con * 3] = float( station[lit][1]['kn'] ) 
     Offset[con * 3 + 1] = float( station[lit][1]['ke'] ) 
     Offset[con * 3 + 2] = float( station[lit][1]['kv'] ) 
     if( station[lit][1]['ta'] == False ): 
      Offset[con * 3] = 0. 
      Offset[con * 3 + 1] = 0. 
      Offset[con * 3 + 2] = 0. 
     con = con + 1 
     inv = inv + 1 
     break 
    else: 
     lit = lit + 1 
     if( lit >= len( station ) ): 
      lit = 0 
     if( lit == start ): 
      try: 
       start = lit 
       del Correlate[con] 
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       SubInputs = np.delete( SubInputs, [ 
con * 3, con * 3 + 1, con * 3 + 2 ], 0 ) 
       Offset = np.delete( Offset, [ con * 3, 
con * 3 + 1, con * 3 + 2 ], 0 ) 
       if( con >= len( Correlate ) ): 
        break 
      except: 
       cause = sys.exc_info()[1] 
       for frame in traceback.extract_tb( 
sys.exc_info()[2] ): 
        fname, lineno, fn, text = 
frame 
        logging.error( "ERROR - {} {} 
{} {} {}".format( cause, fname, lineno, fn, text ) ) 
       logging.error( "ERROR - Len 
Correlate = {} and Len SubInputs = {} and Len Offset = {} and lit = {} and con = {}".format( 
len( Correlate ), len( SubInputs ), len( Offset ), lit, con ) ) 
  SubInputs = np.vstack( [ SubInputs, smoothMat ] ) 
  sttime = dt.now() 
  SI = SubInputs 
  OF = Offset 
  for num in Faults: 
   OF = np.append( OF, 0. ) 
  invbegin = dt.now() 
  Solution = sp.optimize.nnls( SI, OF ) 
  invend = dt.now() 
            # run inversion 
  Solution = Solution[0] 
  print "Inversion finished in " + str( invend - invbegin ) 
  FaultSol = [] 
  curtime = dt.now() 
  ttime = curtime - sttime 
           # compute calculated offsets 
  CalcOffset =  SubInputs.dot( Solution ) 
 
           # organize solutions 
  for con in range( len( Solution ) ): 
   FaultSol.append( [] ) 
   FaultSol[con].append( Faults[con][0] ) 
   FaultSol[con].append( Faults[con][1] ) 
   FaultSol[con].append( Faults[con][2] ) 
   FaultSol[con].append( Faults[con][3] ) 
   FaultSol[con].append( Faults[con][4] ) 
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   rake = self.Faults[con][7] 
  
   FaultSol[con].append( str( rake ) ) 
   FaultSol[con].append( Faults[con][5] ) 
   FaultSol[con].append( Faults[con][6] ) 
   Zero = False 
   slip = Solution[con] 
   FaultSol[con].append( str( slip ) ) 
   FaultSol[con].append( "0" ) 
   if( Zero == False ): 
    FaultSol[con].append( Solution[con] ) 
   else: 
    FaultSol[con].append( 0. ) 
  
  FinalCalc = [] 
  num = 0 
  for con in range( len( station ) ): 
   lit = 0 
   while True: 
    if( station[con][1]['site'] == Correlate[lit][0] ): 
     FinalCalc.append( [ station[con][1]['site'], 
station[con][1]['la'], station[con][1]['lo'], station[con][1]['he'], station[con][1]['kn'], 
station[con][1]['ke'], station[con][1]['kv'], CalcOffset[lit * 3], CalcOffset[lit * 3 + 1], 
CalcOffset[lit * 3 + 2] ] ) 
     if( station[con][1]['ta'] == False ): 
      FinalCalc[num][4] = 0. 
      FinalCalc[num][5] = 0. 
      FinalCalc[num][6] = 0. 
     num = num + 1 
     break 
    else: 
     lit = lit + 1 
    if( lit == len( Correlate ) ): 
     break 
 
  send = {} 
 
  short = [] 
 
  for lit in station: 
   short.append( [ lit[1]['site'], lit[1]['kn'], lit[1]['ke'], lit[1]['kv'], 
lit[1]['ta'], lit[1]['mn'], lit[1]['me'], lit[1]['mv'], lit[1]['cn'], lit[1]['ce'], lit[1]['cv'] ] ) 
  send['data'] = short 
  if( station[0][1]['time'] ): 
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   send['time'] = station[0][1]['time'] 
 
  short = [] 
 
  fin = dt.utcfromtimestamp( float( send['time'] ) ) 
 
  don = fin.strftime( "%Y-%m-%d %H:%M:%S %Z" ) 
 
  send['label'] = self.label + " " +  self.model + ' - ' +don + "UTC" 
 
           # calculate moment and moment magnitude 
  Magnitude = 0.0 
 
  for con in FaultSol: 
   Magnitude = Magnitude + float( con[6] ) * float( con[7] ) * np.abs( 
float( con[8] ) ) * float( 1e12 ) 
 
  Magnitude = Magnitude * float( 3e11 ) 
 
  if( self.StrikeSlip == False ): 
   for lit in FaultSol: 
    short.append( lit ) 
  else: 
   for lit in range( int( self.SubfaultLen ) ): 
    temp = FaultSol[lit] 
    temp[8] = float( temp[8] ) 
    for num in range( int( self.SubfaultWid ) ): 
     temp[8] = temp[8] + float( FaultSol[ lit + num * int( 
self.SubfaultLen ) ][8] ) 
    short.append( temp ) 
  send['slip'] = short 
  short = [] 
  for lit in FinalCalc: 
   short.append( [ lit[0], lit[1], lit[2], lit[3], lit[4], lit[5], lit[6], lit[7], 
lit[8], lit[9] ] ) 
  send['estimates'] = short 
  Mw = 0. 
  if( Magnitude <> 0. ): 
   Mw = 2./3. * np.log10( Magnitude ) - 10.7 
   Magnitude = "{:.2E}".format( Magnitude ) 
   Mw = "{:.1f}".format( Mw ) 
  else: 
   Mw = "NA" 
   Magnitude = "{:.2E}".format( Magnitude ) 
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  send['Moment'] = Magnitude 
 
  send['Magnitude'] = Mw 
 
           # send data 
  try: 
   lock.acquire( timeout=1 ) 
   self.OUTDataPipe.send( send ) 
   lock.release() 
   logging.info( "TVLiveSlip finished inversion for " + str( station[0][0] 
) + " taking " + str( dt.now() - date ) ) 
   print "Inverter finished in " + str( dt.now() - date ) 
  except: 
   cause = sys.exc_info()[1] 
   for frame in traceback.extract_tb( sys.exc_info()[2] ): 
    fname, lineno, fn, text = frame 
    logging.error( "ERROR - {} {} {} {} {}".format( cause, fname, 
lineno, fn, text ) ) 
   logging.error( "TVLiveSlip could not send inversion data for " + str( 
station[0][0] ) ) 
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Appendix D6 - SlipWriter.py 
 
#! /usr/bin/env python 
# take data from slip inversion, organize it and pass it outside 
 
# imports 
from multiprocessing import Pipe 
import json 
import pymongo 
from datetime import datetime as dt 
from datetime import timedelta as td 
from datetime import date as da 
import subprocess as sub 
from subprocess import PIPE, Popen 
import threading as thr 
import logging 
import amqp 
import pika 
import asyncore 
import socket 
from amqp import Connection 
import time 
import sys 
import traceback 
 
 
 
class SlipWriter: 
 
      # initialize variables 
 def __init__( self, DPipe, CPipe ): 
  self.InPipe = DPipe 
  self.ConPipe = CPipe 
  self.nextiter = 0. 
  self.curiter = 0. 
  self.run = True 
  self.delay = 2. 
  self.mag = 7. 
  self.dur = 15. 
  self.outputdata = False 
  self.count = 140. 
  self.email = "" 
  self.model = "" 
  self.tag = "" 
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  self.exchange_name = '' 
  self.host = "" 
  self.port = 0 
  self.userid = "" 
  self.virtual_host = "" 
  self.password = "" 
 
      # check for changes to config file 
 def __CPipeWatcher( self ): 
  while( self.run == True ): 
   t = self.ConPipe.recv() 
   if( t != None ): 
    if( t[0] == "Email" ): 
     self.email = t[1] 
    if( t[0] == "Delay" ): 
     self.delay = float( t[1] ) 
     print "SWDelay = " + str( self.delay ) 
    if( t[0] == "Magn" ): 
     self.mag = float( t[1] ) 
    if( t[0] == "Dur" ): 
     self.dur = float( t[1] ) 
    if( t[0] == "Output" ): 
     self.outputdata = t[1] 
    if( t[0] == "Model" ): 
     self.model = t[1] 
    if( t[0] == "Tag" ): 
     self.tag = t[1] 
 
      # main code 
 def Run( self ): 
  t = thr.Thread( target = self.__CPipeWatcher ) 
  t.start() 
  defdate = dt( year = 1970, month = 1, day = 1 ) 
  sent = defdate 
  now = dt.now() 
  iterData = [] 
  self.connection = None 
  self.channel = None 
  credentials = pika.PlainCredentials( self.userid, self.password ) 
  parameters = pika.ConnectionParameters( self.host, self.port, 
self.virtual_host, credentials ) 
  self.connection = pika.BlockingConnection( parameters ) 
  self.channel = self.connection.channel() 
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  self.channel.exchange_declare( exchange = self.exchange_name, 
type='topic', durable = True, auto_delete = False ) 
  storeData = [] 
  while True: 
   now = dt.now() 
                 # check whether to send data 
   if( self.nextiter < self.curiter - self.delay ): 
    self.nextiter = self.curiter - self.delay 
    ind = 0 
                       # send all data necessary 
    while( ind < len( iterData ) ): 
     if( iterData[ind]['t'] <= self.nextiter ): 
      Done = False 
      while( Done == False ): 
       try: 
        time2 = iterData[ind]['t'] 
        print "Sent data for time = " 
+ str( time2 ) 
        isend = json.dumps( 
iterData[ind] ) 
        self.channel.basic_publish( 
exchange = self.exchange_name, routing_key = self.model, body = isend ) 
        print isend 
        Done = True 
       except: 
        time.sleep( 1 ) 
        cause = sys.exc_info()[1] 
        for frame in 
traceback.extract_tb( sys.exc_info()[2] ): 
         fname, lineno, fn, text 
= frame 
         print "{} {} {} {} 
{}".format( cause, fname, lineno, fn, text ) 
      logging.info( "SlipWriter sent data for " + 
str( iterData[ind]['t'] ) ) 
      del iterData[ind] 
      self.count = self.count + 1 
     ind = ind + 1 
    while( len( storeData ) > 0 ): 
     if( storeData[0]['time'] <= self.nextiter ): 
      del storeData[0] 
      
     
   if( now - sent > td( minutes = self.dur ) ): 
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    sent = defdate 
 
                 # recieve data and organize for final output 
   t = self.InPipe.recv() 
   if( t != None ): 
    print "Got Data" 
    if( float( t['time'] ) > self.curiter ): 
     self.curiter = float( t['time'] ) 
     
    estimates = [] 
    for num in t['estimates']: 
     estimates.append( [ num[0], num[7], num[8] ] ) 
 
    slip = [] 
    for con in t['slip']: 
     slip.append( con[8] ) 
 
    data = [] 
    for lit in t['data']: 
     if( lit[4] == False ): 
      data.append( [ lit[0], 0., 0. ] ) 
     else: 
      data.append( [ lit[0], lit[1], lit[2] ] ) 
 
    short = { 'estimates':estimates, 'slip':slip, 'data':data, 
'time':float( t['time'] ), 'label':t['label'], 'Mw':t['Magnitude'], 'M':t['Moment'] } 
 
    fin = json.dumps( short ) 
 
    send = {} 
    send['t'] = float( t['time'] ) 
    send['tag'] = self.tag 
    send['model'] = self.model 
    send['result'] = fin 
 
    iterData.append( send ) 
 
    if( t['Magnitude'] <> "NA" ): 
     if( ( float( t['Magnitude'] ) > self.mag ) ): 
      self.count = 0 
            
 
    cur = dt.now() 
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    if( ( sent <> defdate ) and ( cur - sent > td( minutes = 
self.dur ) ) ): 
     sent = defdate 
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Appendix D7 - RMQtoMDB.py 
 
 
#! /opt/python3.5/bin/python3 
# take the output from rabbitMQ, convert it, and send it out to another mongoDB 
 
# imports 
import pika 
import json 
import pymongo 
 
# set initial variables 
Ihost = "" 
Iexchange = '' 
Iuserid = "" 
Ipassword = "" 
Ivirtual_host = "" 
Iport = 0 
Ikey = "#" 
Ohost = "" 
Oport = 0 
Ouserid = "" 
Opassword = "" 
 
# set up connection information 
Icredentials = pika.PlainCredentials( Iuserid, Ipassword ) 
Iparameters = pika.ConnectionParameters( Ihost, Iport, Ivirtual_host, Icredentials ) 
Iconnection = pika.BlockingConnection( Iparameters ) 
Ichannel = Iconnection.channel() 
Ichannel.exchange_declare( exchange = Iexchange, type = 'topic', passive = True ) 
 
Iresult = Ichannel.queue_declare() 
Iqueue_name = Iresult.method.queue 
 
Ichannel.queue_bind( exchange = Iexchange, queue = Iqueue_name, routing_key = Ikey 
) 
Oclient = pymongo.MongoClient( Ohost, Oport ) 
Odb = Oclient.products 
Odb.authenticate( Ouserid, Opassword ) 
Ocollection = Odb.slip_inversions 
 
# main code retrieve data from RMQ and pass it to MDB 
def callback( ch, method, properties, body ): 
 print( method.routing_key ) 
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 simp = json.loads( body.decode( "utf-8" ) ) 
 print( simp ) 
 Ocollection.insert( simp ) 
 
Ichannel.basic_consume( callback, queue = Iqueue_name, no_ack = True ) 
 
Ichannel.start_consuming() 
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Appendix D8 - Config 
 
Run = False 
 
# Systemwide 
email = email # system wide email for monitoring the system. Sends an email sometimes 
when something goes wrong 
 
 
# TULiveFilter 
ConfigCheck = 10. # How often to check for changes to the Config file (seconds) 
 
# DataRouter 
SendData = True # Used for debugging, stops the data router from passing data to the 
filters 
 
# Kalman 
EQPause = 120. # Offset Detection freeze after EQ (measurements) 
EQThres = 5. # Detection limit, how many standard deviations to consider for anomylous 
measurements 
MesWait = 6. # Number of measurements to wait for 
DieTime = 30. # How long to wait with no measurements before turning filter off 
(seconds) 
MinR = 0.0001 # Minimum measurement covariance value put into the Kalman Filter 
(prevents 0 from screwing up the system) 
Offset = False # Whether to add a Synthetic to the data 
MaxOffset = 40.0 # Maximum Offset allowed in the system, any residual above this is 
ignored (meters) 
 
# DataWriter 
DWDelay = 15. # Delay that the DataWriter waits before sending data to allow data to 
arrive (seconds) 
SendFreq = 1. # How many measurements to wait before sending data to start the next 
inversion 
 
# TVLiveSlip 
Alpha = 1 # Smoothing Parameter 
MaxChildren = 4. # Maximum amount of Parallelization 
InvKillTime = 30. # Wait time before killing an inversion ( SendFreq * [ MaxChildren - 1 ] ) 
Label = Alpha Version - San Andreas - 
Tag = current 
 
# Only Read Once 
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MinOffset = 0.001 # Anything below this value will be treated as 0 when determining if a 
site should be run (Changes to this will not be immediately seen) 
RangeThres = 1. # Maximum percentage of 0's allowed when determining if a site should 
be run (Changes to this will not be immediately seen) 
Convergence = 0. # Movement direction of the footwall fault 
StrikeSlip = True # Determine the output for map view 
 
 
# SlipWriter: 
SWDelay = 0. # Delay before SlipWriter sends data to the database (seconds) 
SWMagnitude = 9.0 # Magnitude that an event must be before it emails about it (Mw) 
SWDuration = 150. # How long between emails to wait at a minimum (so it doesn't 
email every inversion) (minutes) 
Email = email # Who to email 
 
 
# Cycler: 
Cycle = False 
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Appendix D9 - Cycle.py 
 
#! /usr/bin/env python 
'''Cycle.py 
Opens the Config file and switches SendData between True 
and False every 2 minutes.  Used during testing to simulate 
an interruption to the data streams.''' 
 
 
import time 
 
Cycle = True 
x = True 
Text = [] 
 
while( Cycle == True ): 
 with open( 'Config', 'r' ) as File: 
  Text = File.readlines() 
 
 with open( 'Config', 'w' ) as File: 
  for line in Text: 
   line = line.split() 
   if( len( line ) > 3 ): 
    if( line[0] == 'SendData' ): 
     line[2] = str( x ) 
     if( x == True ): 
      x = False 
     else: 
      x = True 
    if( line[0] == 'Cycle' ): 
     if( line[2] == 'False' ): 
      Cycle = False 
     else: 
      Cycle = True 
   l = '' 
   for word in line: 
    l = l + str( word ) + ' ' 
   if( len( l ) > 0 ): 
    File.write( l[:-1] + '\n' ) 
   else: 
    File.write( '\n' ) 
 time.sleep( 120 ) 
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