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Abstract

Visualizing Multidimensional Data with General Line

Coordinates and Pareto Optimization

by

Jacob Brown

December 2017

These results, will show that the use of Linear General Line Coordinates

(GLC-L) can visualize multidimensional data better than typical methods,

such as Parallel Coordinates (PC). The results of using GLC-L will display

visuals with less clutter than PC and be easier to see changes from one graph

to the next. Visualizing the Pareto Frontier with GLC-L allows n-D data to

be viewed at once, compared to typical methods that are limited to 2 or 3

objectives at a time. This method details the process of selecting a ”best”

case, from a group of equals in the Pareto Subset and comparing it against

an optimal solution. Selecting a ”best” case from a Pareto Subset is difficult,

because every individual is better in some ways to its peers. The ”best” case

is the solution to the specific task for each dataset.
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CHAPTER 1

Introduction

In multi-objective optimization, the “ideal” situation, when one solu-

tion dominates all others, is extremely rare. The major challenge in Pareto

Optimization, is selecting a “best” case among Pareto solutions. This informal

process is typically assisted by traditional visualization of the Pareto Fron-

tier for 2-3 objectives in 2-D or 3-D. This study is devoted to this problem

for higher dimensions, where it is very challenging. Currently the primary

method for this, is the method of PC that has several limitations, including

occlusion. This thesis, details the process of applying new n-D data visual-

izations, called GLC-L and is a subclass of General Line Coordinates (GLC).

Using GLC-L will show the advantages of visualizing multidimensional data,

the Pareto Frontier and the ”best” solution to a task with the help of an In-

teractive Decision Maker (IDM), by producing graphs with less clutter than

typical methods.

1.1 Parallel Coordinates

PC has uses for focusing on points of data. For example, image that

there is a csv file, text file, database, or any data storage device, which has

the stats of all NBA basketball players. If one basketball player is chosen and

focused on, we can see dips and rises in performance over time. Using PC is
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an easy way to visualize multi-dimensional data. The use of PC allows a user

to see correlations in the attributes and if they meet at similar junctions.

Visualizing multi-dimensional data is difficult, because of the magni-

tude of the information. Each dataset can have numerous attributes. These

columns can be accompanied by thousands of rows, sometimes referred to,

as individuals. When a dataset is over three dimensions and one hundred

rows, the human eye has a hard time distinguishing the differences in the

data. When looking at a graph and understanding it, less is more, especially

in an optimization problem, where there may be an infinite number of pos-

sible solutions. A common problem with PC, is that, as the data becomes

more complex, that the graph becomes increasingly cluttered. Advanced vi-

sual techniques strive to limit the amount of details being displayed at one

time, by finding similarities and drawing them.

The problem with PC, is that it can be susceptible to clutter. Clutter

on PC comes in two main forms. First, when there are hundreds or thousands

or more lines drawn, the lines start to draw over themselves. Secondly, when

there are too many dimensions visualized at once, PC becomes either squished

or to stretched out. The more dimensions that are graphed in one setting, the

wider or more compact the visualization will become. If PC produces a display

so wide that it can’t be viewed all at once, then the visualization looses some

of its integrity, because the reader must page back and forth to view the data.

There are techniques available to remove some of the clutter, such as

using Principle Component Analysis to reduce the number of dimensions to

consider, while still trying to preserve, as much of the integrity of the data,

as possible. The draw back to this method, is that the data compression is

lossly, meaning that some of the data is lost, while the data was compacted
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[22]. The best way to visualize, is to have a way that won’t impose a loss

of data, referred to, as being lossless [12]. In this study, we present ways of

viewing data in graphs that are depictions of a lossless data representation.

The use of PC doesn’t make it obvious what attribute of data is the

most important to the user, when high n-D data is used, and PC is susceptible

to clutter. There are ways to remove clutter, but at the expense of losing data.

Thus, PC may not solve the task of finding a ”best” candidate, whereas plots

of GLC-L will.

1.2 General Line Coordinates

The GLC used in this study, is for visualizing and solving a specific

task, better than typical methods can, where most current techniques look to

optimize only 2-D or 3-D dimensional data. This process weighs each dimen-

sion with a coefficient. This coefficient is between the bounds of 0 and 1, for

some data that has been normalized. So, if a column of data isn’t important

to the task we are solving, it could be assigned a coefficient of 0, whereas if a

dimension of data was considered the most important, it could be assigned 1.

Each coefficient used, uses the equation 1.1.

radj = acos(coefj) (1.1)

The symbols used in equation 1.1 are:

1. coefi has one coefficient for each dimension of data.

2. radj is the result of the coefficient transformation, converted to radians

3



3. acos is the call for arc cosine in c++, which converts its value to radians

Algorithm 1 is pseudo code to produce graphs of GLC-L. Using GLC-L

shows the candidates with the greatest weighted sum that we call magnitude,

provide a way to spot outliers and produce plots with less occlusion than

PC. Examples of GLC-L can be seen in Figure 1.1 (a), (b) and (c), which

are drawings of the Central Washington University (CWU) computer science

grade data for students classified, as being pre-major, using GLC-L. For a

description of the CWU dataset, please go to the Methodology section.

Algorithm 1 GLC-L
Require: c = number of rows (n-D objects, cases), n = number of columns

(dimensions), d[i,j] = data table c x n
1: for i = 0 do i < c
2: x = 0
3: y = 0 ▷ Draw a line from one point to the next
4: for j = 0 do j < n
5: draw_dot(x, y)
6: radius = d[i,j]
7: angle = rad[j]
8: new_x = x + radius * cos(angle);
9: new_y = y + radius * sin(angle);

10: draw_line(x, y)
11: ▷ Current point to draw is (new_x, new_y)
12: draw_line(new_x, new_y)
13: x = new_x
14: y = new_y
15: ▷ Draw a dot at the bottom for each row of data
16: draw_dot(x, 0)
17:

The dots drawn at the bottom line in Figure 1.1 (a), (b) and (c), detail

the magnitude of each row of data displayed. The higher the magnitude a row

of data has, the more important that row is to solve the specific task for that

dataset and is marked by a dot that is drawn on the bottom of those figures.

4



In Figure 1.1 (b), the different angles denote a new dimension of data. The

coefficients provide angles that give space between rows of data, creating a

clearer graph and a way to easily spot, when rows of data are removed from

one plot to the next. Figure 1.1 (c) has the projections of each dimension of

data mapped to the solid black line [13]. Figure 1.1 (c), also detail the angles

that are drawn, with the use of the dashed lines.

(a) (b) (c)

Figure 1.1: GLC-L of CWU Dataset
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1.3 Pareto Optimization

Pareto Optimization is a Multi-Objective Optimizations Strategy

(MOOS), that looks to optimize multiple objectives at the same time, by

creating a subset of values that are comparable to one another [3] [1]. A

MOOS deals with a set of objectives that may compete, cooperate or have

no relationship. Pareto Optimization seeks to resolve the problems between

conflicting objectives, by finding a subset of cases, where one case may be

better in one or more aspects, but won’t be better in all instances. The

selected set doesn’t allow for repeats and cannot be dominated by a single

case. If successful, the optimization will return a subset that is smaller than

the original set of data. If the algorithm returns one value, then the data

being analyzed, has a case that dominated all others.

1.3.1 Pareto Test, Subset and Frontier

A Pareto Test states, that a Pareto Optimization algorithm is, where

every individual inside its subset are considered equally good, because no one

row is better off than its neighbors [6]. In society, there is no such thing, as

anything being completely equal, as cultural beliefs will influence a decision.

The importance of using Pareto Optimization, is that it returns a subset

of values that can be considered optimal. The subset can also provide a list

of alternatives to try and maximize different categories. Imagine a factory

with five different production categories. Each category can be improved, but

only at the expense of another category, like spending money to build more

products or to cut cost and maximize profit, yet still meet the manufacturing

needs. The problem is having a form of selector to choose an optimal solution
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and ”best” case between the different production categories. Every production

category has the same number of predicates assigned to every individual in the

Pareto Subset, specifying that each candidate is equally, as good. A predicate

is a Boolean variable that describes a person, object, place or thing. Using

predicates based on the American culture and the task we seek to solve, our

method will select a ”best” case from a Pareto Subset. Without imposing these

cultural predicates to solve a specific task, like selecting a ”best” case, it is

impossible to do so, because there is no way to differentiate between the ”best”

case and an optimal solution. This is similar to the analogy by Watanabe’s

Ugly Duckling theorem that states,

unless we superimpose some cultural bias, it is impossible to differ-

entiate a swan from a duck. In other words, to recognize different

patterns in our cognition and to identify a certain object, we must

first weigh a number of predicates with our cultural background

and determine which predicates are more important or relevant

than others [18].

Watanabe’s argument is that a form of selector is needed to determine that a

swan is a duck, because elements in the Pareto Subset are equally good [5]. A

swan is the ”best” case out of many ducks that are optimal solutions. In our

situation, an IDM selects an optimal solution and ”best” case from the Pareto

Subset, declaring that the swan is our ”best” case and the optimal solution is

one of the many ducks in the Pareto Subset.

The Edgeworth-Pareto Hull is a convex hull that surrounds the values

in the Pareto Subset and is a partial representation of the Pareto Frontier.

The Edgeworth-Pareto Hull focuses on upper and lower bound values for the

Pareto Frontier, which centers on the upper limits of the Pareto Subset. The
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lower bound values are the points in each dimension that are the minimum

in the Pareto Subset, i.e., the smallest number in dimension z is 1, m is 2

and y is 0. A line is drawn from the minimum dimensions of z to m and

y, as the lower part of the convex hull. In some cases, the list of possible

solutions in the Pareto Subset may be too many. If this is encountered, the

edges of the convex hull, may be used, as an optimal solution [15]. However,

the edges of the Edgeworth-Pareto Hull reflect the Pareto Frontier and the

edges that are greater than the lower bound ones will typically dominate the

values in the Pareto Subset. If the upper edges of the Edgeworth-Pareto Hull

are considered, as a valid candidate, those edges represent the maximum values

for each dimension. Since Pareto Optimization creates a subset of values that

are non-dominating, the last thing that would be an acceptable ”best” case, is

a solution that dominates and is not considered equally, as good, as the other

candidates in the Pareto Subset. Normally the edges of the Edgeworth-Pareto

Hull are a dominating solution and is why it isn’t often used, as a candidate

for consideration, because they may not be feasible solutions. Therefore, it

won’t be considered, as a viable prospect in this study.

The Edgeworth-Pareto Hull also has applications in regard to graph

theory [14]. One way to possibly remove the typical dominated solution that

the Edgeworth-Pareto Hull is limited by, is to visualize the Edgeworth-Pareto

Hull and find the distance between the outer points. The perimeter of the

Edgeworth-Pareto Hull will form edges, allowing weights or distances to be

applied to those edges. However, this problem is difficult to do with n-D data

that is optimizing more than 2 or 3 objectives at a time. Further study is

required to use this strategy and will not be included in this thesis.
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1.3.2 Simulating Pareto Optimization on Randomly

Generated Data

The purpose of this section is to give an example of how Pareto Op-

timization is performed on a randomly generated dataset. The reason to use

a random dataset, is that the random data can be small and easily viewed,

compared to the datasets used in this study, which are complex, by having

hundreds of rows of data and more than 5 dimensions. This will be accom-

plished by giving an example of how the Pareto Test is implemented on random

data and the formation of the Pareto Subset on the random data. The routine

of creating the subset and justifying, why rows of data are added to the Pareto

Subset, will explain how the three datasets used in this study, will form their

own Pareto Subsets, that are used in the Results section of this paper.

We evaluate our data, by performing the Pareto Optimization upon it,

to find a set of feasible solutions, known, as a Pareto Subset. The Pareto Test,

compares each row in a dataset, to all others in it. An example of pseudo code

of the algorithm used to form the Pareto Subset, can be seen in Algorithm 2.

A row is added to the Pareto Subset if:

1. It has not been added to the Pareto Subset before.

2. Each dimension in the chosen row, is not less than each value in the row

being compared to.

3. The individual has at least one dimension that is greater than the one

being compared to and equal to or less than the other dimensions [3].

If successful, the optimization will return a subset of individuals, that

has less members in it than the original dataset. Refer to Table 1.1, as a
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random dataset and Table 1.2, as a subset of the random data. Note that

Table 1.2 is the results of a successful execution of Pareto Optimization on

Table 1.1. All of the rows in Table 1.2 are unique, one row doesn’t have values

that are greater for each of its attributes and the subset has one less row, than

the original random dataset [2].

With that in mind, row one from Table 1.1 was excluded from Table

1.2, because the second row in Table 1.1 had the values of 1 3 3 4 5 and is

greater or equal in all aspect, than the first row in Table 1.1. That means that

the first row in Table 1.1, failed the test on the second row in Table 1.1. If a

row fails against another, that row is excluded from the Pareto Subset.

Table 1.1: Dataset

A B C D E
1 2 3 4 5
1 3 3 4 5
1 4 3 2 5
1 5 3 4 2

Table 1.2: Pareto Subset

A B C D E
1 3 3 4 5
1 4 3 2 5
1 5 3 4 2

If the algorithm returns a subset with one row, the dataset being ana-

lyzed had an individual that dominated all others. Since Pareto Optimization

is a non-dominated solution, returning one row in a subgroup, is a ”bad” rep-

resentation of a Pareto Subset [3]. Meaning, that for a row to dominates all

others, its values must be greater than all being compared. Algorithm 2 is

pseudo code of the Pareto Optimization algorithm, used in these examples.

There are M number of n-D points in n dimensions under consideration.

The Pareto Optimization in Algorithm 2, has a computational complexity of
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O(n2). Algorithm 2, illustrates one row being added to the Pareto Subset

and tested against all other rows in the dataset that’s under evaluation. The

number of rows in the dataset that are the same, as the row being tested,

would normally make the algorithm fail on the tested row, because it would

be greater than, less than or equal to the row being compared to. However, this

can be fixed by subtracting the total number of possible rows the algorithm

needs to succeed on, by the number of rows that are just like that individual.

If success, the row stays in the Pareto Subset, else it is discarded. The next row

is retrieved and the process continues until the end of the dataset is reached.

If the optimization strategy produces a single n-D point in the Pareto

Frontier, we observe why one row dominated all others. The greatest indi-

vidual, is recorded and the row that dominated all others is sliced off. We

repeat the process, until it is deemed that the dataset can or can’t be used.

This method of slicing off upper bound values can also be implemented, when

the Pareto Subset only has a few candidates under consideration. In this

study, some upper bound rows were removed from consideration for certain

datasets. For the CWU dataset describe in the Methodology section, it allows

the comparison between new candidates more senior students, than a unique

best student (dominant case). This increased the size of the Pareto Subsets

and justified the removal of those candidates. Look to the Results section for

an explanation of why these candidates were removed.
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Algorithm 2 Pareto Optimization
Require: c = number of rows (n-D objects, cases), n = number of columns

(dimensions), d[i,j] = data table c x n, p = pareto subset, initialized to
the first row in d

1: for m = 1 do m <= c
2: z = length of p
3: ▷ tRpow is the total number of rows that have passed the test to be

added into the Pareto Subset
4: tRpow = 1
5: ▷ Test the current row in pareto against all others
6: for i = 1 do i <= c
7: g = 0
8: l = 0
9: for j = 1 do j <= n

10: if p[z, j] ≥ d[i, j] then g++
11: if p[z, j] <= d[i, j] then l++
12: ▷ Count the rows the algorithm succeeds on
13: if l < n and g ≤ n then tRpow++
14: if tRpow ≥ c then keep row being tested in Pareto Subset and get

next unique row
15: else the row failed, so remove it from the Pareto Subset and grab the

next unique row

1.4 Interactive Decision Maker

The drawback of using Pareto Optimization, is that it creates a subset

of values that are considered equally good. From that equality, the Pareto

Subset falls into the Ugly Duckling Theorem, of how do you know the difference

between a swan and a duck or how do know the difference between the ”best”

candidate and an equal partner. We can’t choose the ”best” candidate, until

we impose a way to do so. The disadvantage of using Pareto Optimization, is

also one of its advantages, as it leads to the creation of the Interactive Decision

Maker IDM for selecting an optimal value and ”best” case to compare to.
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1.4.1 Euclidean Weights

For this study, an Euclidean Distance method will select the mean

average case from the Pareto Subset. First step is to get the average of each

dimension. Next, each element in a row is subtracted, by the average of that

dimension, raised to the power of two and returns the square root of the

sum. This total is added up to determine, which row of data has the smallest

difference to the average of each attribute. This final case is than visualized

and compared against all other previous visualizations, depicted in Algorithm

3.

Algorithm 3 Selecting an optimal solution with Euclidean distance
Require: c = number of rows (n-D objects, cases), n = number of columns

(dimensions), d[i,j] = data table c x n, avg = an array of mean values for
each dimension

1: minNum = 99999
2: index = 0
3: for i = 0 do i < c
4: sum = 0
5: for j = 0 do j < n
6: sum = sum + (d[i, j] − avg[j])2

7:
8: if sum ≤ minNum then index = i

The IDM selects an optimal solution, that is similar to the use of K-

Means, where K-Means looks to find the centroid of each cluster of data [4].

Our method of using an IDM, settles on an individual that is closest to the

center of the Pareto Subset, with one cluster in that subset, for each class

in a dataset. Rows of data inside a Pareto Subset typically have a smaller

range, compared to an entire dataset. This implies that the data in a Pareto
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Subset is more like one another and forms a tighter cluster. Therefore, using an

Euclidean Distance method to select an optimal solution will pick a candidate

that is likely more similar to the ”best” case.

To choose an optimal solution, we select a subset of the Pareto Subset

of n-D points and visualize only this subset. This subset can be defined by the

Euclidean Distance D, from a given Pareto n-D point, i.e., points with D <

T, where T is a threshold included in the subset and D is the distance. This

process measures the distance between the centroid of the Pareto Subset and

its members, by using an Euclidean Distance method, as part of our IDM for

selecting a goal that is declared as optimal [15]. Another comparison is made,

and the cycle repeats itself on a different row and finally a row is chosen, as

feasible.

A possible problem with Euclidean Distance and selecting an ideal

point, is that, as the data becomes more complex and has more than 3 di-

mensions, the space between each neighbor increases. As the number of di-

mensions increase, the space between the center of the data and the edges

of the Hypercube can become further spread apart. Which means, that the

data may be closer to the corners of the Edgeworth-Pareto Hull and not at the

center.

1.4.2 Best Case

The decision process selects a ”best” case form a subset in a given

Pareto Subset. In some situations, a few attributes are desired over others

and they get factored into the decision maker [8]. This implies that some

attributes could be dropped in favor of visualizing only a select few dimensions.
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If dimensions of data need to be dropped, GLC-L requires those dimensions

to have a weighted coefficient of 0 [8].

One of the ways to define the ”best case is declaring the row of data

that has the highest magnitude, when the coefficients are applied to the data,

as the ”best.” With n-D data, we take the value of each dimension, multiplied

by its respected coefficient and sum up the results. The row with the highest

magnitude, has the greatest importance. Note, that the row with the greatest

row sum, when adding up the sum of of its columns, is different than the

sum of the rows when the coefficients are applied. Thus, rows with the higher

magnitude are more important than the rows of data with lower magnitude,

even if the lowest magnitude row had the highest sum of all its dimensions

added together. For example, if row g was added up and had a higher row

sum, but had a lower magnitude than row t, then row t is more important

than row g, because row t has a higher magnitude.
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CHAPTER 2

Methodology

Three separate datasets were used in this study. Anonymous data was

received from Central Washington University (CWU) for students who had

taken classes towards completing the pre-major computer science (CS) courses.

Next, weather dataset was retrieved off the National Center for Environmental

Information website, for each month in Ellensburg, from 2010 to 2016. Lastly,

is the dataset for the frequency of health-related searches of 220 regions around

the United States, from 2012 to 2017 and downloaded from kaggle.com.

Using these three datasets, this study shall prove that:

1. visualizing the Pareto Frontier with GLC-L is more efficient, than with

typical methods that only visualize 2 or 3 objectives at a time, where

GLC-L will visualize n objectives in the Pareto Frontier at once

2. graphs made with GLC-L will produce displays with less occlusion than

PC

3. a ”best” case can be picked from a set of values that are considered

equally ”good” in a Pareto Subset and compared against an optimal

solution.

4. the use of GLC-L will solve a specific task for each set of data
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2.1 Central Washington University

Computer Science Grade Data

The grade dataset was anonymously taken from students who started

working towards getting into the CS major at Central Washington University,

between 02-08-2013 and 05-02-2017. The data consisted of 189 data points

of students, all of whom were classified one of four categories. Students were

broken up into classes, based on if the student:

1. already completed the Pre-Major classes and were classified, as being in

the major

2. currently was working towards completing the Pre-Major classes and

were classified, as being Pre-Major

3. switched from the Pre-Major to working on a computer science minor

and were classified, as being switched

4. dropped the CS Major and were classified, as being dropped.

From this list of 189 total candidates, a total of 164 students were deemed fit

for analysis. Twenty-three students weren’t considered, because they hadn’t

completed one or more of the required courses. Two other students weren’t

factored in, because there was only 2 individuals, who switched from taking

the pre-major courses to switching to a minor in CS.

The range of values in the CWU data is between 0 and 4 for each of

the 6 dimensions considered. The courses being evaluated for these students

are:
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1. CS 110

2. CS 111

3. CS 301

4. English 101

5. English 102

6. Math 172

The dataset is then analyzed for students who had transferred in with

higher level credits but were missing a prerequisite class. Higher level classes

mean that those prerequisite classes were holes in the data and needed to be

solved. To fix this issue, those missing values were replaced with a -2. If a

student hadn’t attempted a class yet, those indices’ of data were replaced with

a -1. The column averages were taken and only considered elements that didn’t

have a -1 or -2 to calculate the average. This way the mean, would reflect the

average of the data provided by other students, who had taken those classes.

Then the mean of each dimension, replaced the -2 values. Finally, each -1 that

signified that a class wasn’t taken yet, was changed to a zero.

Constraints were applied to the data to provide clearer displays. The

constraints are, that if a student didn’t have a grade for CS 301, then they

must have attempted at least two of the three upper level classes. The upper

level classes that were considered for this, are CS 111, English 102 and Math

172. This left 119 rows to consider for visualizing and finding a ”best” case.

Look to the Results section, for visual comparisons, between visualizing the

data with PC and GLC-L.
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2.2 Ellensburg Weather Data

The weather dataset was retrieved from the National Center for En-

vironmental Information, for each month in Ellensburg Washington, between

January 2010 and December of 2016. The data consisted of 84 data points

and 6 dimensions. The dimensions of the data are:

1. Average Wind Speed and has a range of 2.9 Miles Per Hour (MPH) to

16.3 MPH.

2. Highest Daily Precipitation and has a range of 0 inches in a day to 1.1

inches per day.

3. Total Precipitation in a month and has a range of 0 inches in a month

to a maximum of 3.46 inches per month.

4. Average Monthly Temperature, between the ranges of 24.6 degrees

Fahrenheit (°F) and 75.9 °F. This dimension of data is the mean value

between the Average Highest Temperature and Average Lowest Temper-

ature.

5. Average Highest Temperature and has a range of 32.3 °F and 92 °F. The

average max temperature for each month, was calculated, based on days

that were equal to or greater than 32 °F.

6. Average Lowest Temperature and has a range of 16.9 °F and 60.3 °F.

The mean for this dimension, considered only days that were equal to or

less than 65 °F.

For further documentation on how these variables were generated, proceed to

the National Center for Environmental Information website, go to datasets,
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click on global summary of the month and select documentation.

The dimensions that measure temperature, can be influenced by the

task that the dataset will solve. The temperature can be scaled through a

system of equations for evaluating what temperatures are best for solving the

task. The best temperature is between the interval of [30,96]. Where 30 and

below and 96 and hotter are less important temperatures than temperatures

that are closer to 73°F. This scaling approach, is using a (triangular) radial

basis kernel function. The equations to scale the dimensions of data for tem-

perature, can be seen below.

A73 + B = 1, A30 + B = 0

A30 + B = 0, B = -A30

A73 + B =1, A73 - A30

A43 = 1, A = 1/43

B = -A30, B = -30/43

C96 + D = 0, D = -C96

C96 + D =1, C73 - C96

-C23 = 1, C = -1/23

D = -C96, D = 96/23

A · X + B, C · X + D

The range of values for each dimension used in the Ellensburg Weather

dataset, is different for each column of data. To give equal consideration

to each dimension, the data is normalized between 0 and 1, where 1 is the

highest value of that dimension and 0 is the lowest. This normalization for

each dimension, was calculated with the Equation 2.1, where x is the variable

being normalized and c is the dimension of data that is getting the min and
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max value extracted from.

(x − min(c))/(max(c) − min(c)) (2.1)

2.3 Health Search and Frequency Data

The health dataset was retrieved from kaggle.com and is based on

Google searches from 2005 to 2017. Only the years of 2012-2017 were con-

sidered for this evaluation. The reason why, is to get data that people are

searching now, instead of in the past. The data consists of 6 classes (one for

every year), 210 data points per class and 9 dimensions. The dimensions of

the data are:

1. cancer

2. cardiovascular disease

3. stroke

4. depression

5. rehab

6. vaccine

7. diarrhea

8. obesity

9. diabetes
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Frequency datasets received from Google are typically normalized be-

tween 0 and 100. The health search dataset is no exception and it was nor-

malized between 0 and 100, when it was first posted to kaggle.com and thus,

when downloaded. Google search frequencies are determined by the number

of searches in an area for a given duration and the health dataset duration

is for one year. Therefore, Google’s frequency normalization was done with

equation 2.2, where f is the frequency, k is the number of times the keyword

has come up in the duration and t is the total amount of search queries. For a

further description of the health dataset, go to kaggle.com, click datasets and

search for Health Searches by Metropolitan Area, 2005-2017.

f = k/t (2.2)
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CHAPTER 3

Results of Study

These results, will show that the use of GLC-L can visualize multidi-

mensional data better than typical methods, such as PC. The results of using

GLC-L display visuals with less clutter than PC and is easier to see changes

from one graph to the next. Visualizing the Pareto Frontier with GLC-L al-

lows n-D data to be viewed at once, compared to typical methods that are

limited to 2 or 3 objectives at a time. This method details the process of

selecting a ”best” case, from a group of equals in the Pareto Subset and com-

paring it against an optimal solution. Selecting a ”best” case from a Pareto

Subset is difficult, because every individual is better in some ways to its peers.

The ”best” case is the solution to the specific task for each dataset.

Each section will first justify the coefficients that were chosen for each

dimension of data. The reasons for each coefficient, directly align, with the

chosen task for every dataset. So, there will be three sets of coefficients used,

one for each of the major dataset. All the graphs of PC are visualized with

R-script and the colorRamps library.
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3.1 Results on Central Washington

University Computer Science Grade Data

To use GLC-L, coefficients must be set for each dimension of data,

with respect to solving a given task. The task for the CWU data, is to find

a ”best” case for admitting students into the CS major. The sampled data in

Table 3.1, is taken from the Pareto Subset of students in the major. These

were the top five candidates in the Pareto Subset for that class, with the

greatest row sum. The upper level classes of CS 301, English 102 and Math

172 were declared to be the most important. From these classes, CS 301 was

deemed to be the most significant, because CS 301 is the most advanced class.

Therefore, the coefficient for this dimension is 1. Math 172 is the second most

important dimension, because of the difficulty of the task and the problems

a student encounters taking that class requires a student to think through

complex puzzles. Finally, the third most important dimension is English 102.

Multiple iterations of coefficients were experimented on Table 3.1 for

best expressing the dataset, by showing that a better grade in CS 301 di-

rectly correlates to the likely hood of being admitted into the CS Major. This

involved graphing the subset with GLC-L, creating tables of different magni-

tudes and by expert opinion, that student 1 > student 5 > student 3 > student

2 > student 4. Based on the way the students did in CS 301, dictated how

they were ranked. If a student had the same grade for CS 301, then the grades

for Math 172 and English 102 were compared.

After the 17th round of experimenting with different weights, the coef-

ficient values are:
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1. 0.15 for CS 110

2. 0.2 for CS 111

3. 1.0 for CS 301

4. 0.1 for English 101

5. 0.5 for English 102

6. 0.75 for Math 172

These constant weights are applied to the data and summed up to get

the total in the column of Magnitude in Table 3.1.

Table 3.1: CWU Coefficients

Student CS 110 CS 111 CS 301 English 101 English 102 Math 172 Sum of Rows Magnitude
1 4 4 4 3.6 3.2 4 22.8 10.36
2 4 4 3.3 3.4 3.8 4 22.5 9.94
3 4 3.1 3.7 4 3.7 3.7 22.2 9.945
4 4 4 3.3 3 4 3.7 22 9.775
5 3 4 3.7 3 4 3.7 21.4 10.025

3.1.1 Evaluating the Dataset

Now that the coefficients are set, we can work to visualize and compare

the data. This comparison requires multiple graphs to view the differences

in PC and GLC-L, when constraints are and aren’t applied to the data. Re-

fer to the Methodology section for a description of the constraints that were

developed for the CWU data.
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(a) In CS Major (b) In Pre-Major (c) Dropped

Figure 3.1: PC of the Non-Constrained CWU Dataset. (a) Is for CS Majors
with 25 rows of data visualized (b) Is for CS pre-Majors with 113 rows of data
drawn (c) Is for students that dropped the CS Major with 25 rows of data
displayed

(a) In CS Major (b) In Pre-Major (c) Dropped

Figure 3.2: PC of the Constrained CWU Dataset. (a) No rows removed
from consideration for students classified, as being in the major, because every
student in the major had at least taken CS 301. 28 rows of data are drawn.
(b) Is for CS pre-Majors with 79 rows of data displayed. (c) Is for students
who dropped the CS Major with 12 rows of data graphed
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With the constraints applied to the data, the visualizations with PC

doesn’t clearly show the reduction in the amount of lines being drawn, when

comparing Figure 3.1 and Figure 3.2. In fact, the visualizations in Figure 3.2

still look very cluttered.

When there are fewer lines drawn at once, PC does show that less

is visualized in Figure 3.2 (c), compared to Figure 3.1 (c). PC problem with

clutter only gets worse, as more rows of data are visualized, especially when the

data visualized doesn’t seem to follow a pattern. PC also becomes increasingly

scrunched together the more dimensions of data are visualized at once.

When the data is constrained, no candidates that were classified, as be-

ing in the major, were dropped from consideration. This was because, as shown

in Figure 3.1 (a) and Figure 3.2 (a), that every student, who was admitted

into the major, passed the constraints that were set (Refer to the Methodol-

ogy section for a description of the constraints used on the CWU dataset.).

However, the use of PC doesn’t make it obvious from one graph to the next if

the same data is represented. Figure 3.3 (a) and (b) with GLC-L is a better

way to see if reductions were made in data.

When using GLC-L, Figure 3.3 (a) and (b) makes it easier to see, when

rows of data are omitted from the display between the non-constrained and

constrained data. Part of this, is from the angles that are used with GLC-L

to symbolize a dimension and help break up a visualization. The easiest way

to see the difference in Figure 3.3 (a) and (b), is to look at the lines with all

the dots on it. The reduction of dots on the line in Figure 3.3 (a) to (b), is

the decrease in the amount of data being displayed. This is a much better

depiction of data reduction, in a visualization, than PC was capable of in the

previous examples.
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(a) Non-Constrained (b) Constrained

Figure 3.3: GLC-L on (a) Non-Constrained CWU grade data (b) Constrained
CWU grade data
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3.1.2 Evaluating the Pareto Subset

The next step is to run each class of data through the Pareto Test and

form a Pareto Subset for each class. Upper bound values were removed from

consideration form two classes of the CWU data. This was done to yield more

candidates for each Pareto Subset. One row was removed from the class of

students who dropped and two from students already enrolled in the major.

This increased the number of candidates by almost double for consideration

for each Pareto Subset. From these experiments, we see that the students

classified, as being in the major and pre-major have the same Pareto Subset,

when the data is constrained or not. This can be visualized in Figure 3.4 and

Figure 3.5, which display those subsets in PC and in Figure 3.6 and Figure 3.7,

which graphs those subsets with GLC-L. Figure 3.4 and Figure 3.5, show that

there was a difference in the Pareto Subset, when the data was constrained

or not for students classified, as dropped. From Figure 3.6 and Figure 3.7,

we can easily see the difference between the graphs for students who dropped

the CS major, vs Figures 3.4 and 3.5, where it’s not, as obvious to notice the

difference. From this observation, the data represented by the constrained data

has limited the amount to analyze in any one picture, making the visualizations

easier to interpret. Also, the data that is constrained in the Pareto Subset for

the students who dropped, is closer together. This means that since the data

is closer together, that the optimal solution that would be chosen from the

constrained data will provide an option that is more optimal and will be a

better comparison to the ”best” case, because the optimal solution is the row

of data closest to the centroid. From this point onward, the CWU constrained

data will be considered for further analysis and the Non-Constrained CWU

data will not be further evaluated.
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(a) In CS Major (b) In Pre-Major (c) Dropped

Figure 3.4: Parallel Coordinates of the Non-Constrained CWU Pareto Subset.
(a) Is the Pareto Subset of CS Majors with 12 rows of data visualized, (b) Is
the Pareto Subset of CS Pre-Majors with 18 rows of data drawn, (c) Is the
Pareto Subset of students that dropped the CS Major with 9 rows of data
displayed

(a) In CS Major (b) In Pre-Major (c) Dropped

Figure 3.5: Parallel Coordinates of the constrained CWU Pareto Subset. (a)
Is the Pareto Subset of CS Majors with 12 rows of data visualized, (b) Is the
Pareto Subset of CS Pre-Majors with 18 rows of data drawn, (c) Is the Pareto
Subset of students that dropped the CS Major with 6 rows of data displayed
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Figure 3.6: GLC-L on the non-constrained Pareto Subset

Figure 3.7: GLC-L on the Pareto Subset of Students in CS Major
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3.1.3 Evaluating the Pareto Frontier

Typically, when visualizing the Pareto Frontier, most strategies only

view 2 to 3 objectives at a time. If more than 3 objectives are encountered in a

dataset, which is a common case, there will have to be multiple visualizations to

view those objectives. With the CWU data, each dimension can be compared

to the most important attribute, which is CS 301. So, to visualize the Pareto

Frontier with typical means in 2-d, it will be 3 * (6-1) graphs that will need

to be produced. 3 stands for the number of classes the CWU data has, 6

signifies the number of dimensions under review and -1 is for all the data

being compared to one dimension. The class of students who dropped, was

chosen for visualizing the Pareto Frontier with typical 2-d means and can be

analyzed in Figures 8. The Pareto Frontier in these visualizations, lay between

the bold points in each picture. Draw a line between each dot and the values

of the data for those dimensions, lay within those bounds.

The Pareto Frontier is an extension of upper bound values, that is

used to express the data. Another way to visualize these representations, is

to see its comparison in GLC-L, which uses a ”perfect student” to compare

against. A ”perfect student”, is a fictional candidate that if real, got a 4.0

in every class they took. In Figure 3.9, we see the Pareto Frontier, measured

against each Pareto Subset for the different CWU classes of data. From this

interpretation, the Pareto Frontier visualized with GLC-L, can be achieved

with one visualization, compared to the five that are required for each class of

the CWU data. For this dataset, this is a 1:5 ratio, when comparing typical

methods for viewing the Pareto Frontier with 2 objectives at a time, compared

to only one drawing implemented with GLC-L. A problem with the typical

approach with viewing the Pareto Frontier with 2 objectives, is that the reader
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needs to constantly scan over visuals they’ve already viewed. Whereas, GLC-L

has everything included in one diagram.

(a) CS 301 and CS 110 (b) CS 301 and CS 111 (c) 301 and English 101

(d) 301 and English 102 (e) 301 and Math 172

Figure 3.8: Pareto Frontier of students that dropped the CS Major
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Figure 3.9: Using GLC-L to visualize the Pareto Frontier of a ”Perfect Stu-
dent”

3.1.4 Evaluating the Optimal Solution and Best Case

The median solution, selects the row of data that is the closest to the

centroid of the Pareto Subset for each class. That student is compared against

the ”best” case of each class, according to the sum of their magnitude. Tables

3.2, 3.3 and 3.4 details the sum of the rows and the sum of their attributes with

the weighted coefficients applied to each dimension of data. In all instances,

the ”best” case has the highest magnitude, but not always the highest row

sum. This means that the coefficient values that were used, show that some

classes are more important than others, for determining if a student should
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be allowed into the CS Major. A trend in this data shows that, students who

dropped the major have a lower sum of rows, when compared to the next

tier up. For example, students who dropped the CS Major, their ”best” case

is a student with a sum of their rows totaling 16.3 and the ”best” student

for CS Pre-Majors has a sum of 22.7. Another comparison, is the optimal

student from those who dropped the CS Major and the optimal candidate for

students still working towards the Pre-Major. The students who dropped the

CS major have a higher magnitude for their optimal solution, compared to

the lower value for students still working towards completing the pre-major

classes. This can be an indication that the Pareto Subset for the CS Pre-

Majors has a wider range of values to consider. After taking a quick glance

at Figure 3.9, it can be concluded that there is a wider range for students in

the Pre-Major. One way to possibly fix this, is to enforce stricter constrictions

on the data, so an optimal solution for students in the Pre-Major is closer to

that of the students classified, as being in the Major. Tables 3.2, 3.3 and 3.4

clearly show that students who perform better in CS 301 are more likely to

have a higher magnitude than a student who didn’t perform, as well in that

class, but did well in others. This is important, as it enforces the idea that

the better a student does in upper level classes, the more likely that student

will be accepted into the CS Major.

From Figure 3.10, we see that the magnitudes for the optimal and

”best” case are very close together for each class, except for students in the

Pre-Major. This is further proof that the range of values for Students in the

Pre-Major is greater than the other classes. This also gives an indication,

that the optimal solution for the students in the Pre-Major is relatively low,

compared to the optimal solution for students already in the CS Major. What

we can conclude from this, is that the ”best” case from those in the CS Major
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and ”best” case for students in the Pre-Major are very comparable, as they

are within 0.08 of each other’s magnitude. This means that there are students

in the Pre-Major that are ready to be admitted into the CS Major. For each

class of student, the ”best” case is a good representation of a typical student,

who would be the most appealing to be admitted into the CS Major. The

process of using GLC-L is visualized in Figure 3.11.

Table 3.2: Best and Optimal Solutions for Students that dropped the CS Major
Student CS 110 CS 111 CS 301 English 101 English 102 Math 172 Sum of Rows Magnitude
Best 3 3 2.3 2.3 1.7 4 16.3 7.43
Optimal 3 3.3 1.3 3.3 3.7 3 17.6 6.84

Table 3.3: Best and Optimal Solution for those in CS Pre-Major
Student CS 110 CS 111 CS 301 English 101 English 102 Math 172 Sum of Rows Magnitude
Best 4 4 3.7 3.3 3.7 4 22.7 10.28
Optimal 4 3.7 1 3.4 3.4 2.7 18.2 6.405

Table 3.4: Best and Optimal Solution for those in CS Major
Student CS 110 CS 111 CS 301 English 101 English 102 Math 172 Sum of Rows Magnitude
Best 4 4 4 3.6 3.2 4 22.8 10.36
Optimal 4 3.6 3.1 4 3.3 3.5 21.5 9.095

Figure 3.10: Visualizing the ”Best” case and Optimal Solutions, color coded,
as green being the ”Best” candidate and blue for the Optimal Solution
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(a) Non-Constrained CWU dataset (b) Constrained CWU dataset

(c) Non-Constrained Pareto Subset (d) Constrained Pareto Subset

(e) Pareto Frontier (f) Best Case and Optimal Solution

Figure 3.11: Process of using GLC-L and the IDM for selecting a ”Best” case
from a Pareto Subset
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3.2 Results on Ellensburg Weather Data

The task for the Ellensburg Weather dataset, is to find a ”best” case for

what month is preferred to do a hike on, when the temperature is hottest, wind

speed is lowest and has the smallest accumulated rainfall. The average daily

temperature is chosen, as the most important dimension for this task, because

the nicer the average weather, the better the day is. This is proven in the data,

as the months with the higher temperatures, have less monthly precipitation.

Therefore, the coefficient value for the average monthly temperature, is 1.

Since our task will solve what month is the nicest to go on a hike, the

highest average temperature has greater significance, than the lowest average

temperature. The average speed of the wind will affect how warm a day feels

and the months that are hottest can be balanced out with an increase in wind

speed. Therefore, the second most important dimension is the average wind

speed Average Wind Speed, followed by the average monthly temperature, as

3rd best and lowest average temperature with the 4th highest coefficient.

The highest daily precipitation, occurs so rarely within a month’s time,

that its importance is less than the total precipitation within a month. Thus,

the coefficient for total precipitation must be greater, than the weighted sum

for highest daily precipitation.
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The selected coefficient values are:

1. 0.7 for Average Wind Speed

2. 0.25 for highest daily precipitation

3. 0.35 for total precipitation

4. 1.0 for average monthly temperature

5. 0.65 for highest average temperature

6. 0.5 for lowest average temperature

3.2.1 Evaluating the Dataset

We start by drawing the entire dataset, as seen in Figure 3.12 and Fig-

ure 3.13. In both visualizations, 84 rows of data are drawn. One row for each

month. Figure 3.12 and its use of PC, shows that there is separation for high-

est and lowest average temperature. This is an indication of the temperature

difference between every month in Ellensburg. What we can’t see clearly in

Figure 3.12, is what rows of data have the most and least significance to solv-

ing our current task, of what month is the best to go on a hike. We see from

using GLC-L in Figure 3.13, how important each row of data is, to solving our

current task and finding a ”best” case. Figure 3.13 also separates the data out

more, than in Figure 3.12, making it easier to visualize each row of data that

is drawn.
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Figure 3.12: Parallel Coordinates on the normalized monthly Ellensburg
weather dataset from 2010 to 2016

Figure 3.13: GLC-L on the normalized monthly Ellensburg weather dataset
from 2010 to 2016.
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3.2.2 Evaluating the Pareto Subset

After running the Pareto Test on the Ellensburg weather data, 28 6-D

points were added to the Pareto Subset. Refer to the Methodology section,

subsection 2.2 for further explanation on how and why the Ellensburg weather

dataset was normalized.

In Figure 3.14, we see that there is a dramatic reduction in the amount

of lines drawn, when compared to Figure 3.12. Figure 3.14 does illustrate

an outlier in the data. This outlier has the highest total precipitation in the

Pareto Subset and the smallest values for average highest, lowest and monthly

temperature. Figure 3.14 fails to demonstrate what rows of data have the

greatest importance, falling into Watanabe’s Ugly Duckling theorem, of how

do you tell the difference between a swan from a duck. Thankfully, Figure 3.15

is here, to shine the light on the importance of each row of data and how it

will solve our specific task. Figure 3.15 also shows the outlier, like what Figure

3.14 does. In fact, the outlier is the easiest value to see in Figure 3.15, as it

has the smallest magnitude. The outlier can be identified in Figure 3.15, by

glancing at the line at the bottom of Figure 3.15 and observing the dot closest

to the far left.
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Figure 3.14: Parallel Coordinates on the Pareto Subset from the normalized
monthly Ellensburg weather dataset

Figure 3.15: GLC-L on the Pareto Subset from the normalized monthly El-
lensburg weather dataset
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3.2.3 Evaluating the Pareto Frontier

Typically, when visualizing the Pareto Frontier, most strategies only

view 2 to 3 objectives at a time. If more than 3 objectives are encountered in

a dataset, which is a common case, there will have to be multiple visualizations

to view those objectives. With the Ellensburg weather dataset, each dimension

can be compared to the most important attribute, which is average monthly

temperature. So, to visualize the Pareto Frontier with typical means in 2-d,

it will be 6-1 graphs that will need to be produced. 6 signifies the number

of dimensions under review and -1 is for all the data being compared to one

dimension. The Pareto Frontier are visualized in Figures 3.16. The Pareto

Frontier in these visualizations, lay between the bold points in each picture.

Draw a line between each dot and the values of the data for those dimensions,

lay within those bounds.

The Pareto Frontier is an extension of upper bound values, that are

used to express the data. Another way to visualize these representations, is to

see its comparison in GLC-L, which uses ”perfect weather” to compare against.

”Perfect weather”, is a fictional candidate that if real, got a normalized value

of 1.0 in every dimension or the best value possible for every dimension. In

Figure 3.17, we see the Pareto Frontier, measured against the Pareto Subset

for the weather dataset. The Pareto Frontier visualized with GLC-L, can be

achieved with one visualization, compared to the five that are required for

the weather dataset. This is a 1:5 ratio, when comparing typical methods for

viewing the Pareto Frontier with 2 objectives at a time, compared to only

one drawing implemented with GLC-L. A problem with the typical approach

with viewing the Pareto Frontier with 2 objectives, is that the reader needs

to constantly scan over visuals they’ve already viewed. Whereas, GLC-L has

43



everything included in one diagram.

(a) Average Maximum Temperature (b) Average Minimum Temperature

(c) Average Wind Speed (d) Highest Daily Precipitation

(e) Total Precipitation

Figure 3.16: Pareto Frontier of weather dataset, comparing each dimension to
Average Monthly Temperature
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Figure 3.17: Visualizing the Pareto Frontier with GLC-L on the normalized
Ellensburg weather dataset

3.2.4 Evaluating the Optimal Solution and Best Case

The optimal solution, selects a row of data that is closest to the cen-

troid of the Pareto Subset form the weather dataset. The optimal solution is

compared against the ”best” case, colored coded by the sum of their magnitude

in Figure 3.18. Table 3.5 details the sum of the rows and the magnitude of the

”best” case and optimal solution, when the weighted coefficients are applied

to each dimension of data. Table 3.6 is the original data for the ”best” case

and optimal solution that’s not normalized between 0 and 1. The ”best” case

has the highest magnitude and highest row sum, as indicated in Table 3.5.

The coefficient values that were used, show that some dimensions are more

important than others, for determining what month, would be the best to go

on a hike. For example, the ”best” case didn’t have the highest row sum in the
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Pareto Subset. This is evidence that the ”best” case is chosen from dimensions

of data that have higher numerical values for average monthly temperature,

supporting the coefficients chosen for solving this task. Interestingly enough,

the ”best” case and optimal solution are from the same month and 6 years

apart. Giving an indication that June is the best time to go for a hike, when

it’s not too cold or hot.

From Figure 3.18, we see that the magnitude between the optimal and

”best” case are very close together. This is proof that the range of values for the

two are comparable to each other, as they have a difference in their magnitudes

of only 0.2. However, this gives an indication that the optimal solution is

relatively average, compared to the rest of the Pareto Subset, because the

range of magnitude values in the Pareto Subset, range between 0.75 and 2.54.

This means that there are other months that, would also be viable to go hiking

on. Therefore, the ”best” case is a good representation of a month to go hiking.

Table 3.5: Best and Optimal Solution for the Ellensburg weather dataset with
normalized values

Student Avg. Wind Speed Highest Daily Precip. Total Precip Avg. Monthly Temp
Best 0.820895522 0.345454545 0.320809249 0.773760331
Optimal 0.73880597 0.327272727 0.187861272 0.841942149

Student Avg. Max Temp. Avg. Min Temp. Row Sum Magnitude
Best 0.944877684 0.760368664 3.966165995 2.541388896
Optimal 0.683046683 0.781105991 3.560034792 2.341209294

Table 3.6: Best Case and Optimal Solution for the Ellensburg weather dataset
with original values.
Student Date Avg. Wind Speed H. Daily Precip Total Precip Avg. Monthly Temp Avg Max Temp Avg Min Temp
Best 2010-06 13.9 0.38 1.11 62.05 74.2 49.9
Optimal 2016-06 12.8 0.36 0.65 65.35 79.9 50.8
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Figure 3.18: GLC-L of the Best Case and Optimal Solution from the Ellens-
burg weather dataset

3.3 Results on Health Search Data

The task for the health search dataset, is to find a ”best” case for the

most balanced year, between the frequency of search and rate of illness or

inoculation or self-betterment. To justify the coefficients for the health search

dataset, average values were computed from a collection of statistics on these

subjects and how prevalent they are among the American population, giving

an indication of how popular they should be for being searched. Most of the

statistics were pulled from the Center for Disease Control’s (CDC) website.

For cancer, the statistics are:

1. A total of over 1.5 million new cases of cancer were reported in 2012,

(excluding Nevada), for an annual incidence rate of 442 cases per 100,000

individuals.
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2. The value 442 was derived from the range of values between (369.9 +

416.5 + 420.4 +445.7 + 470 + 461 + 462.1 + 513.7)/8 = 442 to get the

average. These values measure incidence rates by area for the given year

and considers cancer in children, men and women in the United States.

3. 442 divided by 100,000 is 0.00442

4. Since the frequency data is between 0 and 100, take 0.0044 and multiply

it by 100 for a coefficient value of 0.442. [11]

5. This trend for cancer continued with roughly the same values from 2012

to 2014.

The total number of invasive cancers reported through the years increase,

but so does the total population. In 2014 around 0.045% of the American

population had cancer, or roughly 14.5 million people have cancer, vs 318.6

million for total population in 2014, or the 314 million people living in the

U.S. in 2012 or the 323.1 million alive in 2016 [19]. Thus, the coefficient value

of cancer is 0.442.

For cardiovascular disease, the statistics are:

1. The number of cardiovascular deaths in 2014 was 614,348 and is the

number one cause of death in the US or roughly 1 out of every 4 deaths

in the US is from heart disease. Slightly more people who die from

cardiovascular disease, then cancer on a yearly bases.

2. Deaths per 100,000 population is 192.7.

3. The number of new people visiting a hospital and being discharged with

a form of heart disease and surviving in 2015 was 3.05 million individuals.
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This is the growth of the heart disease, compared to the 1.5 million new

cases for cancer in 2012.

4. The estimated number of individuals with cardiovascular disease in the

United States in 2014 was 15.3 million, or 800,000 more people with

heart disease in 2014 than people with cancer, resulting in an increase of

5.5% (15.3/14.5 = 1.055% ) of cases with heart disease, when compared

to cancer [16].

Since heart disease is approximately 5.5 percent more prevalent than cancer

(depending on the year), the coefficient for cardiovascular disease can be the

coefficient of cancer plus 0.055 for a total of 0.497.

For stroke, the statistics are:

1. That stroke has a mortality rate of 1 out of every 20 deaths in America,

compared to the 1 out of every 4 deaths for cardiovascular disease. This

equates to about 140,000 deaths per year in the United States.

2. Roughly 795,000 people have a stroke in the US every year, were 610,000

are new cases. This is also roughly 1/5, as many new cases of stroke, as

there is for new cases of heart disease.

3. There are 1/3 the number of strokes per year, as there are reports of new

cases of cancer.

Since heart disease has a coefficient of 0.497 and is 5 times more likely to

happen than a stroke, the coefficient for stroke should be 5 times less than

cardiovascular disease. This results in a coefficient value for stroke equal to

0.12425.
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For depression, the statistics are:

1. In 2012, the CDC concluded that for the average house hold with people

at the age of 12 and over, hit a depression in a 2-week period at roughly

7.6%.

2. In 2014, the number of doctor visits were recorded, as being 10.3 percent

of all visits, as being contributed to depression.

3. The number of suicide deaths, because of depression, is 13.4 out of every

100,000

Since the number of suicide deaths for every 100,000 is so small, compared

to cancer and cardiovascular disease, a better coefficient value for the dimen-

sion of depression is to measure this coefficient by either the depression in the

households, or by the percent of doctor visits that were labeled, as steam-

ing from depression. An average value is taken from the doctor visits and

depression in the household, for a coefficient value of 0.0895.

For rehab, the statistics are:

1. That according to the CDC, 10.1 percent of people aged 12 and up, have

used some form of illicit drug in the past month. Some 7 million of these

young adults are younger than 26.

2. Close to 21.5 million Americans suffer from a form of substance abuse.

3. Roughly 14.5 million adults 26 or older have a substance problem, com-

pared to the total of 21.5 million individuals, when everything is totaled.

4. The rate of substance abuse decreases with age, as those who continue

their destructive habits have a shorter life span. Therefore, there will be
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less searches for this topic, the older the age group that is considered.

About 21.5 million people suffer from some form of substance abuse, compared

to 14.5 million people having cancer. The coefficient for searches on rehab

should be at least 25% more than cancer, because there are roughly 50% more

patients that are affected by some form of substance abuse, than cancer. Can-

cers coefficient is 0.442, making the coefficient for rehab (0.442*1.25) = 0.5525.

For vaccines, the statistics are:

1. that according to the CDC, children between the ages of 19 and 35

months old, receive 1-7 different vaccines, ranging from 82.7% being

inoculated for influenza type b, to 93.7% of infants receiving shots for

polio. That equates to a lot of searches for vaccines by worried parents

to find out what to vaccinate their child with and where to do so.

2. Since most people have been vaccinated, there is also a high probability

that they’ve searched some vaccines, before in their lives.

3. Take all these percentages and get an average of those percentages, to

yield a value of 86.95%.

4. Taken from the 2012 census, families accounted for 63 percent of all

households and had at least one child living with them that was 18 or

younger (a family is where there are more than 2 people living in a home

and related by blood) [21].

Vaccines are so vital to keeping newborns healthy. Because of this importance,

most families have opted to vaccinate their child, while they were between 19

and 35 months old. This will directly influence the number of searches a
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parent does for vaccines, because they want to keep these vaccines current.

This requires constant searches for new releases of vaccines and locations,

where the vaccines may be administered at, along with getting the traditional

vaccines, like Polio. With growing threats from drug resistant bacteria, it is

even more important for children to be vaccinated at a young age for their

own personal safety. Thus, we take one more average between the 63% for the

number of households with at least one child living with them younger than

18 and the average percentage of people vaccinated at a young age (86.95%).

This produces a coefficient value of 0.79975.

For diarrhea, the statistics are:

1. Every 1 in 9 child deaths, result from diarrhea worldwide, where on av-

erage 369 total deaths occur in the United States every year by diarrhea

(only measured in children) [9].

2. that children with HIV are 11 times more likely to die from diarrhea and

is a current problem in the United States [7]. This prompts concerned

parents to search online about diarrhea and its effects. Diarrhea is no

laughing matter, people can die from pooping so hard or cause hernias

or ruptures in their bowel systems.

3. that typically diarrhea is onset by a form of waterborne or foodborne

illness [17].

Since diarrhea is less common in the United States for water born illness, we

look to foodborne illnesses to figure out the coefficient value to use. Using the

subtotal value in Figure 3.19, those percentages are added up and the average

is taken to produce a coefficient value of (91/5 = 18.2) 0.18 for diarrhea.
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Figure 3.19: Most popular food born illnesses [17]

For obesity the coefficient value is the percentage of people with obesity.

Thus, the coefficient for obesity is 0.365.

For diabetes, the statistics are:

1. Just like with obesity, roughly 100 million people are either diabetic or

prediabetic. As of 2015, 30.3 million people in the United States have

diabetes and the rest were prediabetic.

2. Only 11.6 percent of adults that are prediabetic, know they are predia-

betic. Most of the people who are prediabetic don’t know they are and

are less likely to search diabetes. Close to 50% of all people classified,

as diabetic and prediabetic are living in ignorance. 1 in 4 adults with

diabetes (not prediabetic) don’t know they have diabetes either! That’s

over 50 million individuals that don’t know they are prediabetic!

3. that the number of people with diabetes is so high (1/3 the American
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population) the coefficient value would normally be extremely large, es-

pecially since there are 6 times more people under its effects than cancer.

The coefficient for diabetes will be since roughly 1/3 of America is considered

diabetic or prediabetic. However, since more than half of those classified,

as diabetic or prediabetic, don’t know about their condition, their coefficient

value is halved because of it, bring the weighted sum to 0.165. Since the

number of diabetic people in the United States is 6 times more common than

cancer, its coefficient value is deemed to be the most important dimension in

the health search dataset, because 0.165*6 = 0.99. Therefore, the diabetes

coefficient value is 0.99. All these coefficients were created with averages of

multiple statistics, therefore, the weighted sum for diabetes will be 0.99 and

not 1, even though it is considered to be the most important dimension.

The coefficient values are:

1. 0.442 for cancer

2. 0.497 for cardiovascular disease

3. 0.12425 for stroke

4. 0.0895 for depression

5. 0.5525 for rehab

6. 0.79975 for vaccines

7. 0.18 for diarrhea

8. 0.365 for obesity

9. 0.99 for diabetes
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These coefficients are a base for the normalized health search frequency,

used to create a ratio between the frequency of search and correlation coeffi-

cient. To evaluate these base coefficients, the correlation coefficient for each

dimension of data is considered. The correlation coefficient is computed by

comparing each dimension of data to each year. The correlation coefficients are

added up and the average is taken between the five correlation coefficients for

each year for each dimension of data. The health search frequencies from the

year 2012 is compared to every other year for determining, how linearly related

the dimensions of data are. A ratio is formed between the base coefficients

and the average correlation coefficients. For example, say the base coefficient

for depression is 0.0895%, but the linear coefficient is 40%, then there is ap-

proximately a 5:1 ratio needed to correct the base coefficient. These linear

coefficients will reinforce the base coefficients, by showing graphs that are lin-

early correlated and similar to one another and how the linear coefficients are

more accurate when used on datasets based on trends.

The average correlation coefficient values are:

1. 0.8211006 for cancer, which is roughly double the base coefficient

2. 0.763054 for cardiovascular disease, almost 1.25 times greater than the

base coefficient

3. 0.7765195 for stroke, 5 times greater than the base coefficient

4. 0.7677648 for depression, 8 times greater than the base coefficient

5. 0.8321211 for rehab, 1.66 times greater than the base coefficient

6. 0.6326769 for vaccines, 0.1670 less than the base coefficient

7. 0.6174136 for diarrhea, 3.4 times greater than the base coefficient
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8. 0.7556345 for obesity, double the base coefficient

9. 0.7166228 for diabetes, about 0.25 less than the base coefficient

3.3.1 Evaluating the Dataset

Figure 3.20 and 3.21 (a), (c) and (e) show trends in the frequency of

the health searches form 2012 through 2017. The PC used in these Figures,

show that diabetes was the one of most commonly searched topic in all years,

enforcing that diabetes is an important dimension in the health search dataset.

What we can conclude from these plots of PC, is that the dimensions of car-

diovascular disease and cancer look to have a lower search frequency, than the

other dimensions. This is confusing, because those dimensions have values that

more resemble the other dimensions, but has a higher minimum, compared to

the other columns of data. Using GLC-L in Figure 3.20 and 3.21 (b), (d) and

(f), this disorientation is not noticeable, as the visualizations are not scaled to

do so. However, PC can show the range of values for each dimension, whereas

with GLC-L, the range of values, would have to be expressed in a table. In

Figure 3.20 and 3.21 (b), (d) and (f), the use of GLC-L makes it easy to see,

how similar the data is from one year is to another. The graphs with GLC-L

also show that the spread of the data is very close together and only has a few

outliers in each year and illustrates this clear than visualizing the yearly search

data with PC used in Figure 3.20 and 3.21 (a), (c) and (e). To solve our task

of finding the most balanced year, based on the frequency of searches and how

common a topic is, further evaluation is continued in the next section.

From Figure 3.22 and Figure 3.23, the linear and base coefficients are

compared against one another. The visualizations are very similar to one
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another, partially because the data is linearly correlated. The major difference

in the plots, is the different angles that are used to denote each dimension of

data, as the angles change, when the coefficients change. The plots with

the linear coefficients, do however produce visuals that make it easier to see

trends in the data. The health search dataset is based off Google trend data,

therefore, the coefficients used for the linear coefficients shall be used for the

rest of this study and not the base coefficients.
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(a) PC on 2012 (b) GLC-L on 2012

(c) PC on 2013 (d) GLC-L on 2013

(e) PC on 2014 (f) GLC-L on 2014

Figure 3.20: Comparing GLC-L and Base Coefficients against PC from the
years of 2012-2014
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(a) PC on 2015 (b) GLC-L on 2015

(c) PC on 2016 (d) GLC-L on 2016

(e) PC on 2017 (f) GLC-L on 2017

Figure 3.21: Comparing GLC-L and Base Coefficients against PC from the
years of 2015-2017
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(a) Linear Coefficients on 2012 (b) Base Coefficients on 2012

(c) Linear Coefficients on 2013 (d) Base Coefficients on 2013

(e) Linear Coefficients on 2014 (f) Base Coefficients on 2014

Figure 3.22: Comparing Base and Linear Coefficients 2012-2014
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(a) Linear Coefficients on 2015 (b) Base Coefficients on 2015

(c) Linear Coefficients on 2016 (d) Base Coefficients on 2016

(e) Linear Coefficients on 2017 (f) Base Coefficients on 2017

Figure 3.23: Comparing Base and Linear Coefficients 2015-2017
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3.3.2 Evaluating the Pareto Subset

All plots in Figures 3.24 and 3.25 are drawn with PC and shows a

decrease in the amount of data being visualized, compared to the original data.

The visualized Pareto Subsets in Figures 3.24 and 3.25 with PC, makes seeing

any patterns very difficult to notice. Figures 3.24 and 3.25 aren’t intuitive if

the lower bound outliers were removed from consideration. Observing Figure

3.26, we can easily notice that the lower bound outliers were removed from

consideration.

Using GLC-L is comparable and even better than PC in some instances

for visualizing n-D data. A clear example is present in Figure 3.25 (a) and (b).

In these plots of GLC-L, the 2017 Pareto Subset that is viewed in Figure 3.27

(b), shows that the outliers have been removed from consideration and that

the individuals left in the Pareto Subset are more comparable to each other,

as the distance between each member has decreased from Figure 3.27 (a).

62



(a) Original Dataset of 2012

(b) Pareto Subset of 2012

(c) Original Dataset of 2013 (d) Pareto Subset of 2013

(e) Original Dataset of 2014 (f) Pareto Subset of 2014

Figure 3.24: Comparing the Pareto Subset and the Original Health Search
dataset with PC form 2012-2014
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(a) Original Dataset of 2015 (b) Pareto Subset of 2015

(c) Original Dataset of 2016 (d) Pareto Subset of 2016

(e) Original Dataset of 2017 (f) Pareto Subset of 2017

Figure 3.25: Comparing the Pareto Subset and the Original Health Search
dataset with PC form 2015-2017
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(a) 2012 (b) 2013

(c) 2014 (d) 2015

(e) 2016 (f) 2017

Figure 3.26: The Pareto Subset viewed with GLC-L from 2012-2017
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(a) 2017

(b) Pareto Subset of 2017

Figure 3.27: Contrasting the Pareto Subset and GLC-L from 2017

3.3.3 Evaluating the Pareto Frontier

With the health search dataset, each dimension can be compared to

the most important attribute, which is diabetes. To visualize the Pareto Fron-

tier with typical means in 2-d, it will be 6(9-1) graphs that will need to be

produced. 6 is for the number of classes (one class per year), 9 signifies the

number of dimensions under review and -1 is for all the data being compared

to one dimension. To remove 40 graphs from this report, 2016 is chosen, as
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the year to view the Pareto Frontier with typical 2-d means. However, the

Pareto Frontier will be visualized with GLC-L for all years. The 2016 health

search class was picked, because 2016 is the most recent full year, as the year

2017 hasn’t concluded yet. The common visualizations for viewing the Pareto

Frontier, can be observed in Figures 3.28. The Pareto Frontier in these visu-

alizations, lay between the bold points in each picture. Draw a line between

each dot and the values of the data for those dimensions, lay within those

bounds.

The Pareto Frontier is an extension of upper bound values, that are

used to express the data. Another way to visualize these representations, is to

see its comparison in GLC-L, which uses a ”perfect search” to compare against.

A ”perfect search”, is a fictional candidate that if real, got a search frequency of

100 in every dimension or the best value possible for every dimension. In Figure

3.29, GLC-L is used to view the Pareto Frontier, using the ”perfect search”

for the health search dataset, as the Pareto Frontier. The Pareto Frontier

visualized with GLC-L, can be achieved with 1 visualization, compared to the

8 plots that are required for each class in the health dataset. This is a 1:8

ratio, when comparing typical methods for viewing the Pareto Frontier with

2 objectives at a time, to only one drawing implemented with GLC-L for each

class under consideration. A problem with the typical approach with viewing

the Pareto Frontier with 2 objectives, is that the reader needs to constantly

scan over visuals they’ve already viewed. Whereas, GLC-L has everything

included in one diagram for one class.
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(a) Cancer (b) Cardiovascular Disease

(c) Depression (d) Diarrhea

(e) Obesity (f) Rehab

(g) Stroke (h) Vaccine

Figure 3.28: Pareto Frontier of the 2016 Health Search dataset, comparing
each dimension to diabetes, with typical methods for evaluating the Pareto
Frontier
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(a) 2012 (b) 2013

(c) 2014 (d) 2015

(e) 2016 (f) 2017

Figure 3.29: Visualizing the Pareto Frontier with GLC-L
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3.3.4 Evaluating the Optimal Solutions and Best Cases

From Table 3.8, every single optimal solution is not, as good, as any

of the ”best” cases, in regards to total magnitude, even when comparing the

optimal solutions to the ”best” cases from other years. The comparison for the

optimal solutions visualized with the ”best” cases can be seen in Figure 3.30,

which confirms the results in Table 3.8, that the ”best” cases have the greatest

magnitude. The most balanced year for frequency of health related searches,

is 2012 and is considered the ”best” case. There can be several reasons why

2012 had a higher frequency of search, compared to the following years, which

showed a decrease in search activity. For reasons why, the search activity

decreased in the preceding years, more research is required, beyond, what

data is provided by the sum of each row in Table 3.8 for giving an indication

of a lowered frequency of search. The range of difference between the ”best”

candidates for total magnitude is 17.6135, vs the total difference between the

optimal solutions that have a difference of 46.13125. Since the range for the

”best” students is almost 3 times smaller, than that of the optimal students, the

”best” candidates are more similar to one another. Similarity in rows of data

can be described by the distance between comparable members in a dataset.

Using a form of Euclidean distance to find the total separation between rows

of data, the data is more alike, has a smaller difference. In conclusion, using

the IDM through this process has selected the most balanced year, between

the frequency of search and rate of illness or inoculation or self-betterment,

and is the ”best” candidate from 2012.
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Table 3.7: Best Cases and Optimal Solutions sorted by year form the Health
Search dataset

Year Student Cancer Cardiovascular Stroke Depression Rehab Vaccine
2012 Best 100 100 93 87 50 100
2012 Optimal 64 55 70 65 53 42
2013 Best 100 100 90 88 48 100
2013 Optimal 67 39 81 72 70 67
2014 Best 82 86 83 66 77 100
2014 Optimal 76 46 72 71 59 56
2015 Best 100 98 66 75 47 96
2015 Optimal 68 53 73 78 47 64
2016 Best 100 100 74 67 33 100
2016 Optimal 67 39 68 73 45 83
2017 Best 100 70 88 72 37 98
2017 Optimal 68 36 84 75 70 78

Year Student Diarrhea Obesity Diabetes Row Sum Magnitude
2012 Best 71 100 91 792 586.91
2012 Optimal 68 75 70 562 418.27
2013 Best 66 91 98 781 578.81
2013 Optimal 66 55 63 580 431.04
2014 Best 62 81 85 722 535.82
2014 Optimal 70 51 72 573 425.81
2015 Best 76 100 95 753 556.13
2015 Optimal 75 61 76 595 439.312
2016 Best 75 87 99 735 541.04
2016 Optimal 66 71 96 608 446.77
2017 Best 87 100 100 752 552.87
2017 Optimal 78 66 71 626 462.62

Figure 3.30: GLC-L of the Best Case and Optimal Solutions from the 2012 to
2017 Health Search dataset. Green is for the ”Best” Cases and blue are the
Optimal Solutions.
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CHAPTER 4

Future Work

Graphing and experimenting with the Edgeworth-Pareto Hull on n-

D data, would be a complex challenge. The weights that, could be used

on the edges is a possible solution to the Pareto Optimization problem for

finding a ”best” case and has applications in graph theory [14]. Experiments

could be drawn up to show the benefits of using the Edgeworth-Pareto Hull

for visualizing the Pareto Frontier and comparing the results against typical

methods that are done in 2-D or 3-D, such as the methods shown in this report.

Further cases for using graph theory with the Edgeworth-Pareto Hull, could

provide other candidates for the Pareto Subset or finding a ”best” case. This

could be accomplished by using shortest path algorithms such as, Dijkstra’s,

Kruskal’s, Prims or even the knapsack problem [10].

Future implementation can incorporate K–means for finding different

clusters of data inside the datasets used in this study and selecting the cluster

that best represents the dataset [20]. Following the same guide lines, as used

in this paper, comparisons between the new ”best” case and optimal solution

could be made to the old ones.
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CHAPTER 5

Conclusion

Pareto Optimization creates a subset of values that are considered

equal, as each individual in the Pareto Subset is better than its peers in some

way. So choosing a ”best” case from the Pareto Subset is difficult to do and

justify. This report successful produced a way of using an IDM for creating

the coefficients that would be used to weigh each dimension and its impor-

tance to solving a specific task. The coefficients created, were also used in

every drawing done with GLC-L and played a role in separating out the n-D

data with the angles that were used to express each dimension in a dataset.

The visualizations between PC and GLC-L were shown to be clearer

with GLC-L on n-D data. GLC-L had less clutter, an easily identified ”best”

case, outliers were made visible and noticing the reduction of data from graph

to graph was effortless. Whereas, the use of PC wasn’t clear in what was

removed, when data was visualized and there was a reduction from a full

dataset on a class, to the Pareto Subset for that class.

The difficulty with viewing the Pareto Frontier with typical means, is

the problem of having to focus on 2 or 3 objectives at a time, otherwise there

may be to many visuals that are produced, and information is lost on the

reader, as the reader has to spend more time analyzing visuals they’ve already

gone over. Using GLC-L to visualize the Pareto Frontier made the ratio for

the number of plots needed, go from 1:c(n-1), where 1 is the one graph drawn
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using GLC-L, c is the number of classes, n is the number of dimensions and -1

is subtracted from n, when comparing all dimensions to the most important

dimension.

These results, show that the use of GLC-L can visualize multidimen-

sional data better than typical methods, such as PC. Using GLC-L yields re-

sults that display visuals with less clutter than PC and is easier to see changes

from one graph to the next. Visualizing the Pareto Frontier with GLC-L al-

lowed n-D data to be viewed in one graph, compared to typical methods that

are limited to 2 or 3 objectives at a time and required many more graphs to

visualize the same thing. This method details the process of selecting a ”best”

case, from a group of equals in the Pareto Subset and comparing it against

an optimal solution and justifying why the ”best” case solves the specific task

chosen by the IDM.
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