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ABSTRACT 

 

 

SURFACE OFFSET AND SLIP RATES FOR THE WINTER RIM FAULT SYSTEM 

IN THE SUMMER LAKE BASIN, OREGON 

by 

Jennifer Michelle Hall 

November 2017 

 

The 66-km-long Winter Rim Fault (WRF) system, located in the northwestern 

Basin and Range Province, encompasses several Holocene fault scarps within the 

Summer Lake basin that include the WRF system, a normal fault divided into three 

segments: Slide Mountain (SMF), Winter Ridge, and Ana River (ARF), and the newly-

mapped Thousand Springs fault (TSF). The current least-compressive stress field is 

oriented ~264 (Crider, 2001). The USGS estimates a slip rate of 0.43 mm/yr, earthquake 

magnitudes of 6.5-7.19, and recurrence interval of 3.1 ka (Crone et al., 2009). However, 

these estimates are only based upon ARF and the unfavorably slip-oriented SMF. With 

high-resolution LiDAR, means to calculate a more inclusive slip rate estimate is possible, 

with fault scarps that cut radiocarbon-dateable tufa-coated paleoshorelines from 

Pleistocene Pluvial Lake Chewaucan. The faults have been active since the lake receded, 

and paleoshorelines are offset and no longer continuous. Twenty-four shoreline tufa 

samples were measured and calibrated, however 17 samples were eliminated, mostly due 
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to discordant duplicate ages and unacceptable 13C ranges. Results revealed Pluvial Lake 

Chewaucan’s most recent highstand at ~1,340 m is 13.4 ± 0.1 to 13.7 ± 0.5 ka BP, with 

an average age of 13.5 ka BP, along with an earlier and higher highstand approximately 

26.2 ± 0.2 to 34.3 ± 0.3ka at ~1,380 m. Comparing fault scarp-based slip distribution data 

with four historical events, it is reasonable to estimate that there have been approximately 

three to six surface-rupturing events since the earlier higher highstand along the Winter 

Ridge and SMF segments, two to three events for the ARF segment since the most recent 

highstand, and one to two events on the TSF between 2.12-4 and 12-15 ka BP. The 

USGS estimated the WRF system to have a slip rate of 0.43 mm/yr. From this study, I 

presented slip rates that ranged between 0.18 to 0.74 mm/yr, which lie squarely in the 

middle of Crone et al (2009) published range. This method provided the opportunity for 

obtaining slip rates through means other than trenching.  
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CHAPTER 1 

INTRODUCTION 

The northwestern Basin and Range (NWBR) is a region with active normal faults 

(Error! Reference source not found.) where earthquake recurrence intervals exceed 

seismicity records (Pezzopane and Weldon, 1993; Personius et al., 2009). Low modern 

strain rates (Kreemer et al., 2012) and lack of historical seismicity records for NWBR 

faults, including the Abert Rim fault, Alvord fault, Surprise Valley fault, and the Winter 

Rim Fault (WRF) system present a challenge to constraining the seismic hazard (Error! 

Reference source not found.) (Crone et al., 2009). 

The WRF system, located along the northwestern edge of the NWBR (Error! 

Reference source not found.), encompasses several Holocene fault scarps that cut 

Quaternary sediments within the Summer Lake basin, suggesting an active system 

(Pezzopane, 1993). The USGS estimates that the 66-km long WRF system has a slip rate 

of 0.43 mm/yr, potential earthquake magnitudes of 6.5-7.19, and a recurrence interval of 

3.1 thousand years (ky) (Crone et al., 2009). These estimates are based upon three trench 

investigations, two on the Ana River segment and one on the Slide Mountain segment 

(Error! Reference source not found. and Error! Reference source not found.). 

Trenching across the longest, largest-offset Winter Ridge segment has proven difficult 

because of high sedimentation rates associated with massive landslides that line the 

Winter Rim (Badger and Watters, 2004), yet this is the segment that is optimally oriented 

to slip in the current stress setting. 
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 Fortunately, fault scarps cut a dateable geomorphic feature--tufa-coated 

paleoshorelines from Pleistocene Pluvial Lake Chewaucan. Because the faults have been  

Error! Reference source not found. 
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Error! Reference source not found.  
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Error! Reference source not found. 
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active since the lake receded, these dateable, paleohorizontal features have been 

deformed, cut, and offset, and are no longer continuous. 

By combining offset of paleoshorelines with radiocarbon dating of tufa and high-

resolution Light Detection and Ranging (LiDAR)-derived elevation data, I am able to 

calculate surface offsets, dip slip rates, and slip distributions for the Winter Rim Fault 

system. With the lack of historical surface-rupturing events in the northwestern Basin and 

Range, datasets from this study will be compared with carefully selected, well-

documented, normal-sense motion surface-rupturing events within 1,000 km of the Basin 

and Range. The historical events selected for this study, despite differences in tectonic 

settings, are ideal analogs for comparing historical slip distributions with slip 

distributions calculated for the WRF system. 

These datasets allow us to address the question: How do surface offsets and slip 

rates vary spatially and temporally within the Summer Lake basin? This method has 

proven successful in nearby Surprise Valley, CA (Figure 2) (Marion, 2016) and the 

Alvord basin, OR (Figure 2) (Oldow and Singleton, 2008), providing an opportunity for 

obtaining dip slip rates through means other than trenching. The primary goal of this 

work is to quantify surface offsets and fault slip rates to better constrain hazard potential 

for the WRF system.  
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CHAPTER 2 

BACKGROUND 

Pluvial Setting 

 The NWBR hosted several closed-basin pluvial lakes in the Pleistocene, including 

Lake Chewaucan (Figure 2), whose lake levels fluctuated due to changes in climate 

associated with the regression and transgression of the North American ice sheet. Lake 

Chewaucan had a maximum highstand (1,377 m, 113 m deep) approximately 1,314 

thousand years ago (ka) before present (BP) (Cohen et al., 2000). Other significant 

highstands occurred ~200-165 ka BP and ~89-50 ka BP, as constrained by 

lithostratigraphic, paleontologic, and geochemical indicators within sediment cores 

(Cohen et al., 2000; Negrini et al., 2000).  

 Along the margins of the basin, paleoshorelines mark the highstands and 

stillstands (Figure 4). Paleoshorelines represent a paleohorizontal datum with a natural 

variability of about 2 m (Hopkins and Dawers, 2016). They can be either erosional or 

depositional features, and can take several forms, including wave-cut notches, beach 

ridges, berms, and bars. Controlling factors that dictate the type of feature that is formed 

include local slope, shoreline orientation, the amount and particle size distribution of 

sediment supply, accommodation space, wind strength, fetch, water depth, and the length 

of time that lake level remains stable at a particular elevation (Reheis et al., 2014). An 

erosional feature in one location, such as a wave-cut notch, may correlate with a 

depositional feature in another location, such as a beach ridge, berm, or bar, depending on 

depositional settings at given elevations and locations. 
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Error! Reference source not found.  
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Error! Reference source not found.  
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Tufa, a shore-zone lacustrine calcium carbonate (CaCO3) deposit, can precipitate 

in the swash and photic zones in the form of capping tufa, beachrock, and capping tufa 

over beachrock (Figure 5) (Nelson et al., 2005; Felton et al., 2006). Tufa development 

correlates with bedrock exposure and landform orientation, as well as the longest fetch 

direction. As tufa deposits require wave agitation and biomediation to precipitate, these 

samples record lake level within a few meters (m) and can be radiometrically dated 

(Felton et al., 2006). 

 At Lake Chewaucan’s maximum highstand of 1,377 m, the lake covered a surface 

area of 181 km2 with a maximum depth of 113 m (Allison, 1982). Pluvial lakes can cause 

crustal flexure, as has demonstrated at Lake Bonneville and Lake Lahontan (Crittenden, 

1963; Adams et al., 1999; Karow and Hampel, 2010; Hampel et al., 2010). In these cases, 

deformation of paleoshorelines is not caused only by slip along faults, but by isostatic 

rebound of the crust. Lake Bonneville had an average depth of 150 m, with a maximum 

depth of 335 m, and a surface area of 51,800 km2 (Crittenden, 1963), and shorelines at 

the center of the lake were offset by a maximum of 35 m from those on the periphery.  In 

comparing the volume of Lake Bonneville (10,461 km3) and Lake Lahontan (2,054 km3) 

(Karow and Hampel, 2010) to Lake Chewaucan (~20 km3), the load exerted on the crust 

by Lake Chewaucan is <1% that of the large lakes, suggesting isostatic rebound is an 

unlikely factor in the Summer Lake basin. I therefore assume that the deviation of 

paleoshorelines from horizontal in the Summer Lake basin can be attributed to tectonic 

deformation. 
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Error! Reference source not found. 

 

 The overflow channel between Summer Lake and Upper Chewaucan Marsh 

(Error! Reference source not found.), across the Paisley fan, has an upper intake 

elevation of 1,336 m (Allison, 1982; Licciardi, 2001). However, groundwater flow in 

permeable sediments and fault zones may allow the water level to equilibrate across the 

four sub-basins (Langridge et al., 2001). Licciardi (2001) reported radiocarbon ages of 

gastropods (Error! Reference source not found.), three of which located in latest 

Pleistocene shorelines at Lake Abert, and the other in the fan-delta in Lower Chewaucan 

Marsh (Error! Reference source not found.). Although helpful constructing paleolake 

levels, the Lake Abert radiocarbon ages are not useful for calculating slip rates in the 

Summer Lake basin. The land barrier between the two water basins will still allow the 

basins to be connected, but that does not necessarily mean that they will equilibrate at the 

same elevation. Comparing elevations of paleoshoreline tufas of both basins would not 

yield useful data because there are many faults in between Summer Lake and Lake Abert. 

Due to these variables, only radiocarbon ages from the Summer Lake basin will be used 

in this study. 
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Tectonic Setting 

  The northwestern Basin and Range (NWBR) lies north of the Mendocino triple 

junction (MTJ), inboard of the active Cascadia subduction zone (Error! Reference 

source not found.). Much of the strain that passes inboard and north of the MTJ may not 

be accommodated by rigid fault blocks, but by structures near the convergent boundary 

(Pezzopane, 1993). The stress regime changes from compression in the subduction 

setting on the coast to extension in the Basin and Range Province. The Winter Rim fault 

system bounds the Summer Lake basin in south-central Oregon (Error! Reference 

source not found.). Other fault systems within the NWBR include the Surprise Valley, 

Goose Lake Graben, Warner Valley, Abert Rim, Viewpoint, and Crack-in-the-Ground 

(Error! Reference source not found.). 

 Regional principal stress directions were determined by Crider (2001) analyzing 

23 Mw > 4.0 earthquake focal mechanisms for the past 90 years between the Brother’s 

fault zone and the Cascade volcanic arc (Error! Reference source not found.). With this 

method, the least compressive stress, or direction of extension, was determined to be 

oriented nearly E-W (264°). Crider (2001) also noted dikes that strike ENE-WSW (256°), 

alignments of three of more cinder cones that trend N-W (244º), and NS alignment of 

joints in lacustrine sediments that compared favorably to regional stress inversions. 

Treerotchananon (2009) analyzed the magnitude of extension in all horizontal directions 

for 161 fault scarps and 56 fault blocks on the north end of the Summer Lake basin 

(Error! Reference source not found.) resulting in an estimated extension of 1.5–5.5% 

along the maximum extension direction of 285º. Pezzopane and Weldon (1993) 
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characterized regional fault orientations to estimate a horizontal slip azimuth of 267°. 

From this, I infer a regional extension direction that is  
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Error! Reference source not found. 

 

E-W to slightly ENE-WNW in the Summer Lake region (Crider, 2001; Treerotchananon, 

2009; Pezzopane and Weldon, 1993). 

 The Winter Rim fault (WRF) system cuts Tertiary basalt flows and basaltic 

cinders dated at 6.3 ± 0.4 Ma and 6.6 ± 0.3 Ma, respectively (Diggles et al., 1990). 

Therefore, slip along the faults that formed the Summer Lake basin initiated <6.3 ± 0.4 

Ma. 

The WRF system is a normal fault divided into three segments: Slide Mountain, 

Winter Ridge, and Ana River (Error! Reference source not found.). The west-dipping 

Thousand Springs fault (TSF) also lies within the Summer Lake basin (Error! Reference 

source not found.). The Summer Lake basin is a half-graben, with the major basin-

bounding structure of the Winter Ridge fault to the west and Slide Mountain fault to the 

south (Error! Reference source not found.). The Winter Ridge section is the longest 

section of the fault system, displays the largest fault scarps, and is most favorably 

oriented to slip in the current stress field (Error! Reference source not found.). While 

paleoseismic studies have been conducted on the Ana River Fault, the fault length is 

relatively minor compared to Winter Ridge fault section that has not had paleoseismic 

studies. Fault scarp heights vary from less than 1 m to composite scarps more than 750 
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m; simple relationships between scarp height and scarp length have not yet been 

identified (Crider, 2001). 

 There are disputes on whether the Ana River fault (ARF) is a splay or segment of 

the WRF, or a separate fault. Pezzopane (1993) argued that the ARF may connect or be a 

splay of the WRF system due to the large amount of displacement for a fault of short 

length. Langridge (1998) suggests that instead of a splay for the WRF system, the ARF is 

a short fault that is involved with a complex stepover from the Summer Lake graben to 

the Silver Lake graben (Error! Reference source not found.). Another hypothesis is that 

the ARF is involved in a series of right-stepping active normal faults that trend towards 

Fandango and Viewpoint faults in the north (Error! Reference source not found.) 

(Langridge, 1998). Utilizing equations from Wells and Coppersmith (1994), if the ARF 

has approximately 2-4 m of surface offset, then the scaling relations of the fault length 

predict a length of approximately 34-45 km (Langridge, 1998). For the purposes of this 

study, the Ana River fault is considered a segment of the WRF system because it lies 1.5 

km away from the Winter Ridge fault. 

Paleoseismology 

 A number of previous studies have investigated the paleoseismicity of the Winter 

Rim Fault system. I provide a brief overview of these studies here in order to provide 

comparison for my results. 

Winter Rim Fault System 

The topographic rims surrounding the Winter Ridge and Slide Mountain fault 

segments are Miocene to early Pliocene basalt flows that lay nearly horizontal (Travis, 



 

 

15 

 

1977; Walker, 1963). Discontinuously beneath the basalt rim, the Miocene to early 

Pliocene rhyolitic and dacitic tuff, tuffaceous sedimentary rocks, and rhyodactitic and 

andesitic flows dip 5° to 10° westward into the escarpment (Walker, 1963). 

Badgers and Watters (2004) analyzed three of the seven major landslides in the 

Summer Lake basin (Error! Reference source not found.) and the maximum to 

minimum ages determined were the following: 1) Bennett Flat: 900-270 to 16.8 ka BP; 2) 

Foster Creek: 180 to 16.8 ka BP; and The Punchbowl: 10 to 1.9-4 ka BP. Negrini and 

Davis (1991) used a correlation model with projecting the stratigraphic position of 

geologic features of the relatively poorly dated Summer Lake record with the relatively 

well-dated pluvial Lake Russell (modern-day Mono Lake) in eastern California, 

predicting a maximum age of 16.8 ka BP for the end of the Pleistocene pluvial Lake 

Chewaucan highstand. The 16.8 ka BP highstand age is based on a superimposed 

paleoshoreline on the Bennett Flat landslide debris at an elevation of 1,378 m and the 

stratigraphic position of the youngest lacustrine sediments a few cm above Tephra A 

(Badger and Watters, 2004). However, within the LiDAR-based mapping, I do not see 

evidence of a paleoshoreline superimposed on the Bennett Flat landslide at the elevation 

of 1,378 m. 

Badger and Watters (2004) estimate that the Winter Ridge-Slide Mountain fault 

segments is capable of producing a MW ≈ 7 earthquake, the basis of landslides that line 

the western-southwestern margin of the basin. Pseudostatic analysis revealed that strong 

shaking was required to initiate landsliding events, triggering the weak tuffaceous east-

dipping sedimentary rocks to fail along planar surfaces and the overlying 1-km thick 
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volcanic basalt flow sequence to landslide. (Badger and Watters, 2004). Landslide debris 

is mostly unstratified mixtures of basaltic and tuffaceous sedimentary bedrock.  
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Slide Mountain Fault Segment 

The Slide Mountain fault segment of the WRF system is located on the southern 

boundary of the basin (Error! Reference source not found.) and dips to the northeast 

with a strike of 300° (Error! Reference source not found.), highly oblique to the 

current E-W extension direction. Pezzopane (1993) conducted two trench investigations 

along the Slide Mountain segment (trenches 831a-1, 831a-2) (Error! Reference source 

not found.), while only one trench (831a-1) was logged and described. 

These trenches exposed a fault zone in Pleistocene pluvial deposits, fluvial and 

reworked alluvial deposits, debris flows, and colluvium (Pezzopane, 1993). The 

lowermost deposits in the downthrown block were intensely folded, faulted, and 

interlayered with fault-derived colluvium (Pezzopane, 1993), suggesting multiple events 

that occurred while Lake Chewaucan stood at a level above the trench. Lacustrine units 

have wavy and irregular contacts with adjacent units, likely the result of coseismic soft-

sediment deformation (Pezzopane, 1993). 

Immediately east of Trench 831a-1 (Error! Reference source not found.), a 

stream cut alluvial fan deposit consisted of landslide debris, reworked alluvium, and burn 

layers with an abundance of charcoal (Pezzopane, 1993). A recalibrated radiocarbon age 

of 2.12 ± 0.21 ka BP on the charcoal provides a minimum age for the faulting 

(Pezzopane, 1993). The lower portion of this landslide deposit is cut by the 2-4 ka BP 

Neopluvial paleoshoreline at an elevation of 1,280 m (Allison, 1982). 

Near Trench 831a-2 (Error! Reference source not found.), a piece of charcoal 

was buried 4-5 m beneath the surface of lacustrine section of the footwall block at an 
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elevation of approximately 1,341 m (Pezzopane, 1993). A recalibrated radiocarbon age of 

38.5 ± 1.6 ka BP (Pezzopane, 1993). provides an age for these deeper shoreline deposits. 

For the Slide Mountain fault segment, Pezzopane and Weldon (1993) determined 

an estimated average slip rate of 0.4-0.6 mm/yr from vertical offsets along three 

topographic profiles across the scarp and an estimated age of displaced lacustrine 

sediments and colluvium of approximately 16 ka BP. 

Winter Ridge Fault Segment 

There have been no paleoseismic trenching studies along the Winter Ridge fault 

segment of the Winter Rim Fault system (Error! Reference source not found.). The 

lack of trenching may be because of the high sedimentation rates from the surrounding 

km-high bedrock escarpment and landslide debris, making it difficult to quantify vertical 

offset due to the absence of correlative lakebed units on either side of the fault. On the 

basis of large landslide deposits, Badger and Watters (2004) estimated that the Winter 

Ridge-Slide Mountain fault is capable of producing Mw 7 earthquakes. In addition, long-

term Miocene vertical slip rates of 0.3-0.44 mm/yr and >0.4 mm/yr were calculated for 

the Winter Ridge section by Simpson (1990) and Langridge (1998), respectively, based 

on the age of 6.3-6.6 Ma for the rim-capping basalts (Diggles et al., 1990), and sediment-

filled depth of 1.5 km (Langridge, 1998). 

Ana River Fault Segment 

The Ana River fault segment, located in the northern region of the Summer Lake 

basin (Error! Reference source not found.), dips to the east with a strike of 345° 
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(Error! Reference source not found.). Of the three Winter Rim Fault system segments, 

the most paleoseismic studies were conducted on the Ana River fault, which has one of 

the best preserved tephrostratigrahic records in the northwestern United States (Langridge 

et al., 2001). 

Pezzopane and Weldon (1993) logged a trench at the southern end of Klippel 

Point (Error! Reference source not found.) that revealed Pleistocene tephra layers 

displaced by approximately 4 m by at least two surface-rupturing earthquakes. Younger 

faults cut older fault-derived colluvial wedges, which lie unconformably on well-bedded 

lacustrine sands, leading Pezzopane (1993) to infer that this event occurred soon after the 

deposition of the lacustrine sands and the uppermost tephra. Based on the stratigraphic 

position of the tephra and the relative position of the four dated ashes, Pezzopane (1993) 

inferred that the two youngest faulting events occurred after the withdrawal of 

Pleistocene Lake Chewaucan, which he estimated was 16 ka BP. 

The trench exposed a broad deformation zone, but a relatively narrow fault zone 

in the beveled and deformed pluvial lake deposits, that occurred while pluvial Lake 

Chewaucan stood above the trench site (Pezzopane and Weldon, 1993). Using an offset 

of 5 m, which Pezzopane (1993) interpreted as evidence for earlier episodes of faulting 

prior to the lake withdrawal, the Ana River fault segment has a slip rate of approximately 

0.3 mm/yr. Pezzopane and Weldon (1993) measured displacement on four topographic 

profiles along Ana River Fault with an average surface offset of 3.25 m, while projecting 

far-field slopes indicated overall vertical separation of ~4 m. The slip rate is estimated to 

be approximately 0.2-0.6 mm/yr (Pezzopane and Weldon, 1993). 
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Langridge (1998) describes evidence for surface-rupturing events through a series 

outcrop exposures and trench excavations near the River Trench, located on the southern 

bank of the Ana River (Error! Reference source not found.). By calculating 

sedimentation rates and correlating tephra from trench and natural exposures, Langridge 

(1998) determined the ages of eleven middle-to-late Quaternary faulting events that he 

assigned to the Ana River section: 47.6 ka BP, 7.6-14 ka BP, 12-15 ka BP, 25.5 ± 1.0 ka 

BP, 27-31 ka BP, 51 ± 5 ka BP, 73 ± 7 ka BP, 81 ± 6 ka BP, 130 ± 5 ka BP, 160 ± 10 ka 

BP, and 167 ± 10 ka BP. Overall, a complete record of eight events are recognized over 

the past ~87 ky with additional older, less-constrained events before this time. The 

average recurrence interval over these eight events is ~11 ky with a slip rate of ~0.12--

0.14 mm/yr (Langridge, 1998). The five most recent events described by Langridge 

(1998) span the Holocene to early Quaternary timeline most applicable to this study with 

correlating the radiocarbon ages of the paleoshoreline tufa. These events are further 

described below. 

Event I- ultimate earthquake 

Pezzopane (1993) inferred that the 4-m fault scarp formed during two post-lake 

events. As the Ana River scarp does not extend and continue to be prominent beyond the 

1,280-m elevation “Neopluvial” shoreline (Allison, 1982), Langridge (1998) reasons that 

the event occurs before the re-advancement of Winter Lake, which later eroded the scarp 

farther downbasin. The event also occurs before the re-development of aeolian dunes. 

Within the River Trench, there are several vertical fissures filled with Mazama Tephra 

that do not cut the overlying Mazama dune deposits (Langridge, 1998). Therefore, Event 

I is bracketed between after the Mazama eruption of ~7.6 ka BP and before the Winter 
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Lake advancement ~4 ka BP. The “Neopluvial” shoreline cuts an alluvial fan deposit near 

Slide Mountain fault segment; at the base of the deposit a radiocarbon date of 2.12 ± 0.21 

ka BP from pieces of charcoal provide a minimum age of faulting. Therefore, Event I 

may have occurred between 7.6 ka BP and 2.12-4 ka BP. 

Event II- penultimate earthquake 

Due to the large amount of offset in the fault scarps post-lake and the absence of 

Mazama tephra, another event must have occurred pre-Mazama eruption (~7.6 ka) and 

after the lake receded. Within the strata, there are brittle fractures in the form of fissures, 

which imply water levels had dropped below the levels of both trenches by time of Event 

II. Langridge (1998) suggests that Lake Chewaucan fluctuated from moderate to higher 

water levels ~10 ka, indicating a maximum age of faulting. Therefore, Event II may have 

occurred between 7.6 and 10 ka BP. 

Event III- the last sub-lacustrine earthquake 

This event post-dates all known tephras ages and is associated with soft sediment 

deformation. The upper most lacustrine silts and coarse-grained gravel facies at Klippel 

Trench are offset, which is consistent with the known water levels around Klippel Point 

at that time (Langridge, 1998). Fault traces cut and postdate the entire deep-water Ana 

River section (Negrini et al., 2000; Cohen et al., 2000), which is overlain by shallow 

water deposits. Based on the rate of sedimentation, the surface of the deep-water deposits 

is estimated to be around 14 ka (Langridge, 1998). There has been no observation of the 4 

Craters Tephra, age dated to 13 ± 1 ka, within this section of strata (Langridge, 1998). 

Between the age inferences of the drying lake and the youngest lake-deposited tephras, 

this event may have occurred between 12 and 15 ka (Langridge, 1998). 
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Event IV 

 The angular and onlap relations between the Trego Hot Springs Tephra and Wono 

Tephra, along with the thickened section adjacent between the two tephra, point to being 

evidence for Event IV. This event is constrained below Tephra E and an evaporitic unit 

above, occurring approximately 25.5 ± 1.0 ka (Langridge, 1998). 

Event V 

 Evidence for Event V is mainly stratigraphic, by the increased offset, onlap, and 

gentle lacustrine folding sequence of the Trego Hot Springs Tephra and Wono Tephra 

(Langridge, 1998). This event is constrained below Tephra G with the Wono Tephra 

above, occurring approximately 27-31 ka (Langridge, 1998). 

Langridge (1998) describes six more events in detail, lumping them into a 

category of older events. 

Thousand Springs Fault 

 There have been no paleoseismic studies along the Thousand Springs fault 

(Error! Reference source not found.). The west-dipping Thousand Springs fault is 

located on the central-eastern portion of the basin, among sand dunes and Miocene to 

Pliocene intrusive rhyolitic and dacite plugs, dikes, and complex domes, including related 

flows and flow breccia (Walker, 1963). 

Relevant Historical Earthquakes 

Although paleoseismicity studies show that the region is seismically active, there 

have not been any historical surface-rupturing earthquakes in the WRF system or even 
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within the northwestern Basin and Range (Error! Reference source not found.). In 

order to determine if the slip  

Error! Reference source not found. 

 

distributions calculated in this study are reasonable, I must compare them to historical 

surface-rupturing events. By utilizing the correlative relationship between earthquake 

rupture parameters, such as fault length and displacement, and earthquake magnitudes as 

outlined by Wells and Coppersmith (1994), I can compare my dataset with well-

documented historical events. Badgers and Watters (2004) estimated the Winter Ridge-

Slide Mountain fault segments capable of producing a MW ≈ 7 earthquake. 
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 To find possible historical analogues for this study, I am extending the physical 

boundaries outside of the NWBR. As of 2017, there have been 13 historical surface-

rupturing earthquakes in the Basin and Range Province (DePolo et al., 1991; U.S. 

Geological Survey Earthquake Hazards Program, 2017). These events have a wide range 

of variability in their surface-rupturing patterns, as the Basin and Range is deforming 

spatially and temporally at different rates (DePolo et al., 1991; U.S. Geological Survey 

Earthquake Hazards Program, 2017). By eliminating historical events outside of 1,000 

km from the WRF system and those with strike slip senses of displacement, there are 

eight historical events to consider when comparing historical slip distributions with slip 

distributions calculated for the Winter Rim fault system (Error! Reference source not 

found.). 

Normal fault data from eight historical events were considered to be analogues in 

this study. I compared surface rupture lengths and average displacements, along with 

comparing earthquake magnitudes for those that have been recorded (Error! Reference 

source not found.). Upon further research, I eliminated three additional historical 

earthquakes from this study. The M 5.6 Fort Sage earthquake was eliminated when 

compared to WRF earthquake magnitude estimations (6.5-7.19) (Crone et al., 2009). 

Rainbow Mountain and Stillwater earthquakes was eliminated from the study because the 

amount of right-lateral offset recorded was greater than the vertical separation, and this 

study is based on normal-slip faults (Caskey et al., 1996). Pleasant Valley, Dixie 

Valley/Fairview Peak, Hebgen Lake, and Borah Peak fault scarps are all excellent 

analogues to compare slip distribution data of historical earthquakes to slip distribution 

recorded in the fault scarps of the Summer Lake basin. They are well-documented, have 
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similar fault lengths, and the majority of them ruptured in multiple segments. Despite 

somewhat differences in tectonic setting within the Basin and Range, these five historical 

earthquake events are useful analogues for comparing slip distribution data. 

 

Mw 7.6 Pleasant Valley, NV Earthquake 

On October 2, 1915, four main scarps developed in a right-stepping en echelon 

pattern during a surface-rupturing event with a 60-km long rupture length (Error! 

Reference source not found.). From northeast to southwest, the fault segment rupture 

lengths were: China Mountain (10-km length); Tobin (8.5-km length); Pearce (30-km 

length); and Sou Hills (10.5-km length). The average vertical displacement was 2 m and 

the maximum displacement of 5.8 m occurred on the Pearce scarp (Wallace et al., 1984). 

The scarps are thought to have been well preserved because of the desert climate of the 

region. 

Ms 7.2 Fairview Peak, NV- Ms 6.8 Dixie Valley, NV Earthquakes 

 On December 16, 1954, the Ms 7.2 Fairview Peak earthquake produced a 32-km 

rupture with right-oblique slip where the right-lateral and vertical separation reached a 

maximum 2.9 and 3.8 m, respectively, and an average vertical displacement of 1.2 m 

(Error! Reference source not found. and Error! Reference source not found.) 

(Caskey et al., 1996). A subsequent event, the Dixie Valley Ms 6.8, had a normal slip 

sense with a maximum vertical separation of 2.8 m, and an average vertical displacement 

0.9 m (Error! Reference source not found. and Error! Reference source not found.) 
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(Caskey et al., 1996). Surface ruptures attributed to the Dixie Valley earthquake were 

limited to the Dixie Valley fault. 

Ms 7.5 Hebgen Lake, MT Earthquake 

On August 17, 1959, the Ms 7.5 Hebgen Lake earthquake struck the 28-km long 

en-echelon Hebgen and Red Canyon faults (Error! Reference source not found.). The 

fault dips 45° to 50° and extends to depths of 10 to 15 km (Barrientos et al., 1987). 

Average displacement for entire rupture length was 2.36 m (Error! Reference source 

not found.). 

Ms 7.3 Borah Peak, ID Earthquake 

On October 28, 1983, the Borah Peak earthquake (Ms 7.3) occurred on the Lost 

River Range fault in east-central Idaho (Error! Reference source not found.). The 36-

km long fault is divided into three sections: a) 21-km-long Thousand Springs southern 

segment, b) a 14-km-long Warm Springs western segment, and c) an 8.2-km-long 

northernmost segment (Crone et al., 1984; Scott et al., 1985). The average vertical 

displacement measured was 1.82 m along the entire surface rupture (Error! Reference 

source not found.). 

The Thousand Springs segment of the Lost River fault has the largest amount of 

throw, highest scarps, evidence of sinistral slip, and the most complex features (Crone et 

al., 1984; Crone and Haller, 1991). The average displacement for the Thousand Springs 

segment was 2.1 m, and the largest vertical displacement was approximately 4 m (Error! 

Reference source not found.) (Crone et al., 1984). The complexity and net throw on 



 

 

27 

 

scarps vary considerably, and in many places en echelon scarps indicate both synthetic 

and antithetic displacements (Crone et al., 1984). 

 Surface rupture along the 14.6-km long Warm Springs western segment is 

separated from the Thousand Springs fault segment by a 4.7 km gap. The average vertical 

displacement for the Warm Springs segment was 1.4 m (Error! Reference source not 

found.). The northernmost segment has a maximum throw of 1 m (Crone et al., 1984). 

Slip rates for the Lost River Range fault have been estimated to be 1 mm/yr with the 

overall region accommodating east-west extension (Scott et al., 1985). 

While the Winter Rim fault system encompasses several Holocene fault scarps, 

there have been no recent surface-rupturing events. By carefully investigating surface 

offsets of fault scarps and shoreline offsets, I can compare the slip distributions of the 

Winter Rim fault segments to those that have been well-documented to better constrain 

the seismic history of the WRF system, and thus provide input to the seismic hazard 

potential of the region.  
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CHAPTER 3 

METHODS 

Radiocarbon Dating 

 Eighteen carbonaceous shoreline tufa samples spanning elevations from 1,316 m 

to 1,406 m were collected in the field in August 2015 (Table 4). Tufa was collected from 

locations where dense frameworks of capping tufa with minimal vesicles were laterally 

continuous along wave-formed shorelines (Figure 4, Figure 5, and Plate I); suitable 

locations were limited to the northern and eastern portions of the basin. Seventeen 

samples were carbonaceous tufas and one was a carbonaceous shell, 15 lie east of the 

Thousand Springs fault, two lie west of the Ana River fault, and two lie between the Ana 

River and Thousand Springs faults (Figure 3). Elevation of the tufa samples, extracted 

from either the 10-m (± 2.0 m) DEM or the 1-m (± 0.1 m) high-resolution LiDAR, is 

based on the latitude and longitude of the sample location collected with a handheld GPS 

unit. All samples were dated using accelerator mass spectrometry (AMS) radiocarbon 

geochronology; duplicates of six of the 18 samples were also analyzed (Table 5). 

To prepare the tufa samples for radiocarbon dating, they were cleansed with 

ethanol to minimize possible contamination. To carve and obtain 30 mg of dense tufa 

carbonate, I used a Dremel with a diamond-wheel rotary saw. The Dremel and diamond-

wheel rotary saw were cleansed with ethanol between each dense tufa carbonate sample. 

The samples were placed in plastic bags, labeled, and sent to Direct AMS, a 

geochronological analysis laboratory in Bothell, WA, where they were analyzed 

according to their standard procedures.  
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Error! Reference source not found. 

 

  



 

 

30 

 

Error! Reference source not found. 
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Standard procedures for shells include examining for evidence of secondary 

calcite deposits such as caliche that may contaminate the sample. If a thin, friable layer of 

secondary calcite was observed, it would be scraped away with a blade. The thickest part 

of the shell was selected for dating, then heated in sufficient 0.1 M HCl to etch away 

approximately 30% of total mass. For tufa samples, the thickest representative interior 

portion of the largest fragment, or several representative small pieces, were weighed and 

then heated in sufficient 0.1 M HCl to etch away approximately 30% of the total mass. 

This wash is a necessary step in order to remove possible contamination. Direct AMS 

utilized the AMS method to determine radiocarbon ages for this study and followed 

procedures described by Zoppi (2010). 

 Assuming a carbonate sample has carbon originally fixed from the atmosphere, 

the rate in which 14C (t 1/2 = 5.73 ky) decays into 14N is used to calculate a radiocarbon 

age. The production and reservoir of 14C has not been constant through time, requiring 

radiocarbon ages to be recalibrated using calibration data sets to be corrected, as the dates 

could differ thousands of years than the true age. Two complications can occur with 

carbonate samples when radiocarbon age dating. A carbonate sample may have 

incorporated an abundant quantity of “dead” carbon, causing the dates to be much older 

than they really are. Another complication may be that the tufa carbonate sample was not 

dense, allowing the framework to be susceptible to modern atmospheric carbon effects. 

The hydrochloric acid wash at the beginning of the age dating process is meant to remove 

the possibility of these complication contaminations. 

 Radiocarbon ages were calibrated using CALIB Radiocarbon Calibration version 

7.1, based upon robust radiocarbon calibration curves (Stuvier et al., 2017). 
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LiDAR-Based Mapping 

I mapped paleoshorelines and fault scarps using 1-m LiDAR elevation data 

acquired by the University of Alaska-Fairbanks (UAF) and Department of Oregon 

Geology and Mineral Industries (DOGAMI), and 10-m digital elevation models (DEM) 

from the National Elevation Dataset (NED). From these DEMs, I derived shaded-relief 

and slope maps. Shaded-relief images were produced using various sun angles and 

azimuths to best illuminate features of interest. 

 On a basemap of shaded-relief and slope maps, paleoshorelines were mapped by 

hand as precisely as possible at the riser crest, where the bench surface meets the 

erosional scarp (Error! Reference source not found.). Prominent shorelines were 

defined as a protuberant landform that is continuous, well-developed, and can be traced 

for at least 1 km (Figure 4). Fault scarps were mapped at the scarp crest (Figure 6) with 

the aid of slope shaded-relief. 

Calculating Offset 

The mapped fault scarps and paleoshorelines are utilized in this study as two 

different methods of addressing surface offsets and slip rates.  

Surface offset for fault scarps were determined by topographic profiles that were 

drawn perpendicular to the mapped fault scarps. A total of 62 topographic profiles were 

extracted (Plate I) along the basin. Using standard equations (Figure 6), I calculated 

surface offset using the method of Amos et al. (2010) for the Winter Ridge, Slide 

Mountain, Ana River, and Thousand Springs faults (Appendix A).  



 

 

33 

 

Surface offset for paleoshorelines were calculated by determining the elevational 

differences between the highest highstand in several locations around the basin.  
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Error! Reference source not found. 
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Paleoshoreline elevations that differed by more than 2 m along the several locations were 

an indication of deformation (Hopkins and Dawers, 2016), most likely due to offset along 

a fault in Summer Lake. LiDAR-derived digital elevation models (DEM) were utilized to 

determine the elevational differences. 

Calculating Slip Rates 

By utilizing the surface offset measured by paleoshorelines, geochronology ages 

dated from paleoshorelines, and fault dip measurements of 60°, 70°, and 80°, slip rates 

were calculated for the Summer Lake basin. Although structural data on the WRF system 

has not been published, Pezzopane (1993) inferred a steep fault dip for the Ana River 

fault. Uncertainties were determined using standard equations (Taylor, 1997).  
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CHAPTER 4 

RESULTS 

Radiocarbon Dating 

 Measured and calibrated radiocarbon ages for all 24 shoreline tufa samples (18 

samples plus six duplicates) are shown in Error! Reference source not found., with 

locations in Plate I. Calibrated radiocarbon ages range from 12.85 ± 0.12 ka BP to 41.19 

± 0.48 ka BP (2σ uncertainty). One sample had a radiocarbon age greater than the 

maximum theoretical age obtainable by radiocarbon dating (Error! Reference source 

not found.) and was excluded from further analysis. A duplicate of this sample was dated 

to 46.59 ± 0.78 ka BP, also near the upper limit of reliability for radiocarbon; the 

difference in these ages and the old age suggests that these are not reliable ages. 

Error! Reference source not found. 
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Error! Reference source not found. 

Two discordant duplicate samples gave results that differed by >10% and were 

thus excluded from further analysis (Table 6). The remainder, although not within the 

calibrated uncertainty of each other, are within geologic uncertainty of the tufa formation 

process, as the growth of tufa can range from 0.1 mm/yr to ≥30 mm/yr (Rosen et al., 

2004; Seard et al., 2013). 

SLT3-1B sample location was within a rock quarry, rendering the initial in situ 

location difficult to determine, which resulted with the sample being excluded from 

further analysis. 
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Dated samples were also evaluated on the basis of their δ13C (Error! Reference 

source not found.). The 13C:12C isotopic signature may indicate paleoenvironmental 

conditions of the water that the tufa precipitated from. Due to the long residence time of 

dissolved inorganic carbon (DIC) in closed-basin lakes, 12C outgasses faster, leaving 

greater amounts of δ13C in the water. Cohen (2000) obtained δ13C results from 

stratigraphy of ostracod valves near the Ana River Canyon and Wetland Levees (Error! 

Reference source not found.). Theses samples ranged in δ13C levels of -4.75 to 3.5 and -

1 to 3.5 for the Ana River Canyon and Wetland Levees, respectively (Cohen et al., 2000), 

and are indicative of a closed-basin evaporitic lake. Therefore, samples outside of this 

range of δ13C were further excluded from the study, as they may have been influenced by 

outside sources and do not represent the precipitative and evaporative fluctuations of the 

basin outlined in previous studies (Error! Reference source not found.) (Cohen et al., 

2000). 

In Error! Reference source not found., the age of seven remaining acceptable 

samples are plotted by elevation, representing a rough lake-level hydrograph. All seven 

of the samples lie east of the Thousand Springs fault in six sample locations (Error! 

Reference source not found. and Plate I). The age range for pluvial Lake Chewaucan’s 

most recent highstand at ~1,340 m is 13.4 ± 0.1 to 13.7 ± 0.5 ka BP, with an average age 

of 13.5 ka BP (Error! Reference source not found.). In addition, our samples date an 

earlier and higher highstand approximately 26-34 ka at ~1,380 m. 

Paleoshoreline Mapping  

Mapping paleoshorelines can allow an age applied in one location to also be 

applied to another location further along the shoreline length. Locations of shoreline 
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sections are shown in Error! Reference source not found. while the detailed mapping 

of paleoshoreline features are shown in Plate I. Both the elevation range and the 

prominent shorelines are indicated in each area, and prominent shorelines are assumed to 

be correlated since they likely represent longer stillstands. 

Mappable shorelines within the Hadley Butte section ranged from the highest 

elevation of 1,367.3 m to the base of Summer Lake basin at 1,266 m (Plate I). There are 

seven prominent shorelines ranging elevations from 1,365-1,321 m. The most prominent 

occur at 1,330 m, 1,356 m, and 1,360 m (Error! Reference source not found.). 

 

Error! Reference source not found. 
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Mappable shorelines within the Harvey Flat section ranged from the highest 

elevation of 1,363.6 m to the base of Summer Lake basin (Plate I). There are at least six 

prominent shorelines ranging elevations from 1,369-1,325 m. The most prominent occur 

at 1,345 m and 1,351 m (Error! Reference source not found.). 

Mappable shorelines within the Fremont Point section ranged from the highest 

elevation of 1,363.8 m to the base of Summer Lake basin (Plate I). There are seven 

prominent shorelines ranging elevations from 1,368-1,316 m. The most prominent occur 

at 1,316 m, 1,339 m, and 1,348 m (Error! Reference source not found.). 

Mappable shorelines within the Jacks Lake section ranged from the highest 

elevation of 1,368.0 m to the base of Summer Lake basin (Plate I). There are ten 

prominent shorelines ranging elevations from 1,364-1,307 m. The most prominent occur 

at 1,336 m, 1,343 m, and 1,359 m (Error! Reference source not found.). 

Mappable shorelines within the Klippel Point section ranged from the highest 

elevation of 1,380.3 m to the base of Summer Lake basin (Plate I). There are fifteen 

prominent shorelines ranging elevations from 1,380-1,306 m. The most prominent occur 

in two sets, one set is 1,338 m, 1,342 m, 1,346 m, 1,351 m, and a second set is 1,308 m, 

1,320 m, 1,324 m, 1,328 m, and 1,331 m (Error! Reference source not found.). 

Mappable shorelines within Flatiron Point section ranged from the highest 

elevation of 1,374.0 m to the base of Summer Lake basin (Plate I). There are seven 

prominent shorelines ranging elevations from 1,340-1,311 m. The most prominent occur 

at elevations 1,321 m, 1,327 m, and 1,330 m (Error! Reference source not found.). 
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Mappable shorelines within the Diablo Rim section ranged from the highest 

elevation of 1,364.5 m to the base of Summer Lake basin (Plate I). There are seven 

prominent shorelines ranging elevations from 1,364-1,326 m. The most prominent occur 

at 1,331 m, 1,336 m, 1,342 m, and 1,354 m (Error! Reference source not found.). 

Mappable shorelines within the Ten-Mile Ridge section ranged from the highest 

elevation of 1,374.1 m to the base of Summer Lake basin (Plate I). There are eleven 

prominent shorelines ranging elevations from 1,374-1,327 m. The most prominent occur 

at 1,332 m, 1,337, and 1,345 m (Error! Reference source not found.). 

 Outside of these mapped sections, shorelines either did not form, were not well-

preserved because of erosion and/or human activity, or destroyed by landslide debris. 

Wind patterns largely contribute to the formation, or lack of formation, of paleoshorelines 

and shoreline tufa precipitates. The Summer Lake basin lies within the belt of westerlies; 

it appears that this was the case during the Pleistocene as well. This wind pattern results 

in greater wave action on the eastern margin of the lake, creating conditions that promote 

both paleoshoreline formation and growth of shoreline tufa, as well as the relative lack of 

tufa on the western margin of the basin. In addition, on the western margin, landslides 

that occurred while the lake was in place would have destroyed shorelines and perhaps 

limited the amount of time available for new features to form. 

Fault Scarp Topographic Profiles and Surface Offset 

 Although the western margin of the basin does not host many prominent 

shorelines, there are many prominent fault scarps. While shoreline offset allows us to 

measure basin-wide deformation, fault scarps focus in on a single feature within the 

basin. Of the topographic profiles measured within the Summer Lake basin, fault scarps  
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Error! Reference source not found. 

 

Error! Reference source not found. fault segment. Paleoseismic trench location 

(Pezzopane, 1993) indicated by red X. 
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Error! Reference source not found. 

 

Error! Reference source not found.  



 

 

44 

 

 

generally appear simple, some with grabens or hanging-wall rollback. In Figure 6there 

are four topographic profiles depicting the average simple fault scarp topographic profile 

typical from each segment of the WRF system and the Thousand Springs fault. 

 Fault scarp surface offset is plotted along the length of the Winter Ridge, Slide 

Mountain, Ana River, and Thousand Springs faults and shown in Error! Reference 

source not found., Error! Reference source not found., Error! Reference source not 

found., and Error! Reference source not found.. The locations of topographic profiles 

are shown in Plate I; measurements and calculations used to derive these plots are located 

in Appendix A. 

Error! Reference source not found. depicts the surface offset across 30 fault 

scarp topographic profiles along the 29.5-km long Winter Ridge fault segment (Plate I). 

The greatest surface offset measurement (47.4 ± 6.7 m) was excluded from further 

analysis from the Winter Ridge fault segment because it is a bedrock scarp, and thus not 

representative of the most recent earthquakes. Total surface offset ranges from 1.0 ± 0.1 

m to 34.1 ± 1.0, with an average surface offset of 9.7 m. The second largest surface offset 

of 34.1 ± 1.0 m is located 1.6 km from the Slide Mountain fault segment boundary (Plate 

I). With the exception of two topographic surface offset measurements, 6.0 ± 1.3 m and 

7.2 ± 1.7 m, the uncertainties represent less than 15% error of the values. 

 Error! Reference source not found. depicts the surface offset for 23 fault scarp 

topographic profiles along the 16.1-km long Slide Mountain fault segment (Plate I). Total 

surface offset ranges from 1.1 ± 0.1 to 26.1 ± 0.1 m, with an average surface offset of 5.8 

m. The largest surface offset, 26.1 ± 0.1 m, is located 1.0 km from the Winter Ridge fault 
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segment (Plate I). With the exception surface offset values 4.5 ± 1.2 m and 5.3 ± 0.7 m, 

the uncertainties range up to 8% of the surface offset values. 

 Error! Reference source not found. depicts the surface offset for four fault 

scarp topographic profiles along the 7.5-km long Ana River fault segment (Plate I). Total 

surface offset ranges from 2.6 ± 0.1 m to 4.6 ± 0.1 m with an average surface offset of 3.4 

m. The uncertainties are all within 5% of their surface offset values. 

 Error! Reference source not found. depicts the surface offset for five fault scarp 

topographic profiles along the length of the 8.1-km long Thousand Springs fault (Plate I). 

The total surface offset values range between 1.2 ± 0.7 m to 2.2 ± 0.1 m, with an average 

surface offset of 1.6 m. The uncertainties for these values represent error within 7% of 

their surface offset values. 

 With the seven radiocarbon-dated paleoshoreline tufas, the surface offset of 

paleoshorelines determined by elevational differences, and the surface offset from the 

faults scarps, I will be able to address the spatial and temporal variation in surface offsets 

and slip rates in the Summer Lake basin.  
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CHAPTER 5 

DISCUSSION 

Comparing Fault Scarp-Based Slip Distribution Data with Historical Events 

Slide Mountain Fault Segment 

The average fault scarp-based surface offset for the Slide Mountain fault segment 

is 5.8 m (Error! Reference source not found.), representing more than one surface-

rupturing event. Error! Reference source not found. shows the average vertical offset 

recorded during one historical event. The Slide Mountain fault segment is approximately 

16.1 km long (Error! Reference source not found.). Average displacement measured 

along the 14 km long Warm Springs segment during the Borah Peak earthquake is 1.4 m 

(Error! Reference source not found.). Assuming a similar average displacement for a 

single event, I can calculate the likely number of events on the Slide Mountain fault 

segment by dividing 5.8 m by 1.4 m, which is approximately four. Therefore, it is 

reasonable to estimate that there have been approximately three to five surface-rupturing 

events, most likely since earlier higher highstand that occurred approximately 26.2 ± 0.2 

to 34.3 ± 0.3 ka BP (Error! Reference source not found.).     

The Dixie Valley/Fairview earthquake ruptured in segments, and two of the 

segments, Westgate and Gold King, are comparable in rupture length with the fault 

length of Slide Mountain (16.1 km) (Error! Reference source not found.). Westgate (18 

km) and Gold King (16 km) fault segments had average displacements of approximately 

0.4 m and 0.45 m, respectively (Error! Reference source not found.). Comparing the 

average surface offset with Slide Mountain average displacement (5.8 m), those offsets 
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would suggest that there have been approximately 12 and 15 surface-rupturing events 

since ~26-34 ka BP. Crone et al. (2009) estimates that the WRF system has a recurrence 

interval (RI) of 3.1 ky, based on the trench data from the ARF and SMF. This data 

suggests a recurrence interval of 1.7-3.0 ky for the Slide Mountain fault segment, and 

based on the faults orientation to current stress field, I find this range too fast.  

Winter Ridge Fault Segment 

The average fault scarp-based surface offset for the 29.5 km long Winter Ridge 

fault segment is 9.7 m, clearly representing multiple surface-rupturing events (Error! 

Reference source not found. and Error! Reference source not found.). But how 

many? Average displacement measured along the 36 km long Lost River Range during 

the Borah Peak earthquake is 1.82 m (Error! Reference source not found.). Assuming a 

similar average displacement for a single event, I can calculate the likely number of 

events on the Winter Ridge fault segment by dividing 9.7 by 1.8, which is approximately 

five. As these surface-rupturing events occurred after the highest highstand, with ages 

ranged between 26.2 ± 0.2 to 34.3 ± 0.3 ka BP, it is reasonable to estimate that there have 

been four to six surface-rupturing events since the last highest highstand. Crone et al. 

(2009) estimated WRF system’s RI of 3.1 ky, however, Langridge (1998) determined that 

the most recent eight surface-rupturing events recorded at ARF had a recurrence interval 

of ~11 ky. Therefore, since ~26–34 ka BP, it is reasonable that there have been four to six 

surface-rupturing events with a RI of 4.3–8.6 ky. 

Badgers and Watters (2004) estimated that the Winter Ridge-Slide Mountain fault 

was capable of producing a ~M 7 earthquake. The Dixie Valley earthquake was Ms 6.8 

and the average displacement was 0.9 m. Assuming a similar average displacement for a 
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single event, I can calculate the likely number of events on the Winter Ridge fault 

segment by dividing 9.7 m by 0.9 m, which is approximately 11. Therefore, it is not 

reasonable to estimate that there have been 10 to 12 surface-rupturing events since the 

last highest highstand ~26–34 ka BP. The recurrence interval for Winter Ridge fault 

segment, 2.2–3.4 ky, compares reasonably with Crone et al. (2009) RI estimation of 3.1 

ky. However, the RI calculated for the Winter Rim Fault system (Crone et al., 2009) was 

based on limited data. The total fault length for Dixie Valley was 43-47 km, while the 

Winter Ridge and Slide Mountain are a continuously connected arcuate fault segment 

with a total fault length of 45.6 km.  

The Winter Ridge fault segment of the WRF system and the Pearce fault segment 

of the Pleasant Valley fault system both have the greatest amount of fault length, 29.5 km 

and 30 km, and average vertical displacement, 9.7 m and 2.8 m, when compared to their 

respective fault segments, respectively (Error! Reference source not found.). Assuming 

a similar average displacement for the Winter Ridge fault for a single event as the Pearce 

fault, I can calculate the likely number of events on the Winter Ridge fault segment by 

dividing 9.7 m by 2.8 m, which is approximately four. Since ~26-34 ka BP, it is 

reasonable to estimate that there have been three to five surface-rupturing events. 

The Winter Ridge fault segment is currently most favorably oriented to slip in the 

current stress field of the NWBR, while the Slide Mountain fault segment is oriented 

perpendicular to the current stress field (Error! Reference source not found. and 

Error! Reference source not found.). This may explain why the average slip on the 

Slide Mountain fault is approximately 50% less than average slip on the Winter Ridge 

fault (Error! Reference source not found. and Error! Reference source not found.). 
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Ana River Fault Segment 

The average fault scarp-based surface offset for the Ana River fault segment is 3.4 

m (Error! Reference source not found.). The Ana River segment is approximately 7.5 

km long (Error! Reference source not found.). Pezzopane and Weldon (1993) also 

measured topographic profiles and the average surface displacement was 3.25 m. Event I 

and II are very well constrained for the Ana River fault, as the youngest events occurred 

post-lake between 2.12-4 to 7.6 ka BP and 12 to 14 ka BP (Langridge, 1998). Langridge 

(1998) estimated that the most recent event that cause surface-rupturing on the Ana River 

fault segment is had an average displacement of 1.25 m. Assuming a similar average 

displacement for a single event, I can calculate the likely number of events on the Ana 

River fault segment by dividing 3.4 m by 1.25 m, which is approximately three. 

Therefore, this displacement may represent between two and three events since 13.4–13.7 

ka BP. Langridge (1998) described the surface-rupturing events of the Ana River fault 

segment, and that the Event III was bracketed between 12 and 15 ka BP. Therefore, it is 

reasonably for two or three events since the most recent highstand in 13.4–13.7 ka BP. 

Thousand Springs Fault 

The average fault scarp-based surface offset for the Thousand Springs fault is 1.6 

m (Error! Reference source not found.). The Thousand Springs fault is approximately 

8.1 km long (Error! Reference source not found.). Average displacement measured 

along the 8.5 km long Tobin fault segment during the Pleasant Valley earthquake is 1.9 m 

(Error! Reference source not found.). Making the assumption that the surface-rupturing 

events of the Thousand Springs fault occurred post-lake, due to their geomorphic 

appearance, I assume that sediments are approximately 2.12-4 ka BP. Langridge (1998) 
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determined that Event III for the Ana River fault was the last sub-Lacustrine earthquake, 

which brackets the maximum age to 12-15 ka BP. Therefore, I suggest it is reasonable 

that there have been one or two events on the Thousand Springs fault between 2.12-4 and 

12-15 ka BP. 

Within the slip distributions for each fault and fault segment, there is a range of 

variability in value of the surface offset by function of fault length. For example, the 

following are eight surface offset measurements along 7.8 km of the Winter Rim fault 

segment: 6.0 m, 7.2 m, 2.9 m, 4.4 m, 25.0 m, 12.1 m, 23.7 m, and 2.3 m (Appendix A, 

WR1-WR8). The variability between one measurement and the next, and the possibility 

of measurements missing entirely may be due how well the fault scarp is preserved 

because of erosion and/or human activity, or destroyed by landslide debris. Inherently 

due to high-resolution LiDAR, measurements of surface offset do not have much 

uncertainty within their measurements.  

Comparing Fault Scarp-Based Slip Distribution with Local Events 

 Egger et al. (in review) reported the surface offset measured from 78 Surprise 

Valley topographic profiles fault scarps ranged between 0.8 and 22.2 m. With further 

analysis, the average total surface offset for all topographic profiles was approximately 

4.1 m and approximately 2.4 m for the estimated most recent event surface offset event 

(Egger et al., in review). 

 Personius et al. (2009) discovered through means of trenching and stream 

exposures that there had been at least five surface-rupturing events with estimated rupture 

lengths of 53-65 km and displacement estimates of 24.5 ± 1 m. This is indicative that the 

most surface offset from a rupturing event is <5 m within this particular tectonic setting. 
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Five surface-rupturing events would have approximately 1 m of displacement per event. 

Assuming a similar average displacement for a single event of 2.4 m, I can calculate the 

likely number of events on Surprise Valley fault by dividing 22.2 by 2.4, which is 

approximately nine events. The most recent event 1.2 ± 0.1 ka BP recorded offsets 

ranging between 0.6 to 4.9 m in the alluvial fan deposits (Egger et al., in review). 

Comparing Paleoshoreline-Based Surface Offsets with Local Events 

Surprise Valley also hosted a pluvial lake in the Pleistocene (Error! Reference 

source not found.); these fault systems both lie within the NWBR and thus are in similar 

tectonic settings. Marion (2016) calculated average offset of paleoshorelines of the 

Surprise Valley fault (SVF) using LiDAR-based mapping. Measured paleoshoreline 

offset was greatest in the central section of the SVF and gradually diminished near the 

fault tips (Marion, 2016). Marion (2016) also states that slip was distributed 

asymmetrically, with the largest amount of offset in the central section closer to the 

southern extent of the fault than the northern portion. The total offset measured by 

paleoshorelines was greater for SVF when compared to total offset measured by fault 

scarps. Marion (2016) reasons this may be due to the nature of how geomorphic features 

degrade or it could be attributed to a larger structural discontinuity between the northern 

and central portions. 

The average displacement measured for the shorelines of Surprise Valley, mapped 

in three sections, were 5.3 m in the north, 14.4 m in the center, and 4.7 m in the south 

(Marion, 2016). The WRF system slip and total offset is also distributed asymmetrically. 

The northern segment, Ana River, had an average of 3.4 m of displacement. The central 

segment, also the longest segment, Winter Ridge, had the highest average of 
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displacement at 9.7 m. The southern section, Slide Mountain, and 5.8 m of average 

displacement, and the Thousand Springs fault had 1.6 m. There could be changes in the 

substructure that may attribute to WRF system asymmetrical offset. 

Comparing Deformation with Catlow Valley 

 The Catlow Valley (Figure 2) is a nearby analog where shorelines were studied 

and found to be deformed (Hopkins and Dawers, 2016). There are no fault scarps within 

the area. However, the elevation of the shorelines changes more abruptly near breached 

ramps, which the authors interpret as deformation along faults that do not reach the 

surface. Also within this study, Hopkins and Dawers (2016) established a window of 

inherent variability in elevations of shorelines as it developed and how deviation from 

this window may suggest tectonic deformation. 

Paleoshoreline-Based Slip Rate Calculations 

Slip rates are calculated by dividing the paleoshoreline-based surface offsets by 

the age date of when the offset occurred. As a pluvial lake formed paleoshorelines, they  

Error! Reference source not found. 
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represented a paleohorizontal surface (±2 m) around the lake, and lacustrine tufa that 

precipitated and formed along the shorelines would record the age of shoreline. 

Highstand elevations for each location are shown in Table 7. 

 Error! Reference source not found. shows an age range for an earlier, higher, 

highstand for pluvial Lake Chewaucan. The four radiocarbon-dated tufa samples range 

from 26.2 ± 0.2 to 34.3 ± 0.3 ka BP, with an average age of 29.97 ka BP (Error! 

Reference source not found.). Highstand offset was calculated by subtracting the 

elevation of the highest shoreline of a location from highest highstand shoreline located 

in the Klippel Point section (Error! Reference source not found.).  

By utilizing the shoreline offset that was calculated and the range of ages, I calculated 

slip rates at three different fault dips, 60°, 70º, and 80°, for each shoreline location 

(Error! Reference source not found., Error! Reference source not found., Error! 

Reference source not found., Error! Reference source not found., Error! Reference 
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source not found., Error! Reference source not found., and Error! Reference source 

not found.). A 60° fault dip represents the standard mechanics of a normal fault in an 

extensional environment. A 70º fault dip was used by a geologic modeling company for 

the Ana River fault, and an 80° fault dip represents a steep fault in this study. The 

resulting slip rates for this study range from 0.18 mm/yr to 0.74 mm/yr (Table 8, Table 9, 

Table 10, Table 11, Table 12, Table 13, and Table 14). 

 Since all paleoshoreline offsets were being compared to the highest 

highstand–located at Klippel Point, the paleoshoreline offsets calculated for Flatiron 

Point, Diablo Rim, and Ten Mile Ridge cross multiple faults. Between Klippel Point 

shorelines and the other three locations, the Ana River fault and Thousand Springs fault 

dip towards each other, creating a graben in between them. Correlating shorelines across 

the basin, with two opposing angled faults, means that I’m not calculating slip rates for   
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Error! Reference source not found. 

 

Error! Reference source not found. 

 

Error! Reference source not found. 

 

Error! Reference source not found. 
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Error! Reference source not found. 

 

Error! Reference source not found. 

 

Error! Reference source not found. 

 

 

any shoreline locations east of the Winter Ridge fault. Instead, I am calculating an offset 

rate. While I cannot differentiate which fault, the Ana River fault segment or the 

Thousand Springs fault, slipped more or less to each other, I do know that they are not 

slipping at the same rate. If they were, the net offset between shorelines in Jacks Lake 

and Diablo Rim would be zero. From the shoreline elevations, I know that the eastern 

block is relatively lower than the western block. However, the shoreline data appear to 

indicate that both the western and eastern block (and graben) are relatively higher to the 

north than to the south.   
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 Offset rates ranged from 0.18-0.27 mm/yr, 0.47-0.70 mm/yr, and 0.19-0.28 mm/yr 

for Ten Mile Ridge, Diablo Rim, and Flatiron Point (Error! Reference source not 

found., Error! Reference source not found., and Error! Reference source not 

found.), respectively, but it is not possible to determine how the slip is accommodated 

between the two faults. While noting that the Ana River fault has been estimated a slip 

rate of 0.2-0.3 mm/yr (Langridge, 1998), the Thousand Springs fault dips in the opposite 

direction, and without additional age constraints, it is not possible to determine slip rates 

for the Ana River fault by itself with current data.  

 Slip rates determined for the Winter Ridge fault segment range between 0.36-0.54 

mm/yr in Jacks Lakes, 0.49-0.73 mm/yr in Fremont Point, 0.49-0.74 in Harvey Flat, and 

0.38-0.57 mm/yr in Hadley Butte (Error! Reference source not found., Error! 

Reference source not found., Error! Reference source not found., and Error! 

Reference source not found.). These slip rates are comparable to those calculated for 

Slide Mountain, 0.4-0.6 mm/yr (Pezzopane and Weldon, 1993), and Winter Ridge, 0.3-

0.4 mm/yr (Travis, 1977). Slip rates of <1 mm/yr are reasonable for the Summer Lake 

basin. This may also be due to the high-resolution LiDAR that was used to obtain the 

data, as this study is the first to use LiDAR to determine offsets of shorelines and fault 

scarps. 

 It is important to note that there are assumptions to be made when the two 

correlating shoreline locations are not directly across one fault from each other. The most 

important assumption is that paleoshorelines on either side of the basin have been 

correctly correlated. When correlating shorelines, the two keys are understanding the 

sequences of the shorelines, the highest shoreline at each location is the highest shoreline, 
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and it may be at different elevations due to deformation. The other key is to be able to 

recognize the geomorphic identity of each shoreline within the sequence. Features such 

as how prominent or extensive to each other further my confidence in correctly 

correlating shorelines. While the high resolution of the LiDAR made subtle features more 

apparent than they would in the field, there may be more faults in the basin where slip 

could be occurring, and the resulting rate I’ve calculated would be a sum of rates across 

multiple faults.  

 A few of these slip rates are higher than those that have been previously 

published. There are a few possibilities that could have resulted from the use of my 

methods. First, the highstand shorelines may not have been correctly correlated, 

producing an apparent offset in shorelines that were in reality of two different ages. This 

would affect the shoreline offset calculation, either over compensating for offset, or not 

representing the maximum highstand. The age used maybe also be incorrect, which is 

currently the age of the last pluvial highstand from radiocarbon data from this study. I am 

not sure which of these factors are incorrect, but it is unreasonable for the Winter Rim 

Fault system to have a slip rate > 1 mm/yr.   

Slip rates estimated for Surprise Valley by Personius (2009) is approximately 0.6 

± 0.1 mm/yr. Marion (2015) used the same methods as this study and calculated 

paleoshoreline slip rates that ranged from 0.25 ± 0.02 mm/yr in the north, 1.07 ± 0.05 

mm/yr in the center, and 0.36 ± 0.04 mm/yr in the south (Marion, 2016). The overall 

range of slip rates between the Summer Lake basin and Surprise Valley are comparable.  
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CHAPTER 6 

CONCLUSION 

 By combining offset of paleoshorelines with radiocarbon dating of tufa, surface 

and high-resolution Light Detection and Ranging (LiDAR)-derived elevation data, I was 

able to calculate paleoshoreline-based surface offsets and dip slip rates for the WRF 

system. With surface offsets from the fault scarp topographic profiles, I was able to 

determine slip distributions and compare those to historical surface-rupturing events. 

How do surface offset and slip rates vary spatially and temporally within the Summer 

Lake basin? Although there have not been historical seismicity records for northwestern 

Basin and Range faults, the spatial and temporal variance was addressed by comparing 

data derived from this study with historical and local events. By comparing historical 

records of slip distribution with surface offsets determined from fault scarp topographic 

profiles utilizing the method by Amos et al. (2010), reasonable comparisons were made.  

 The USGS estimated the Winter Rim fault system to have a slip rate of 0.43 

mm/yr, based on trench data from Ana River and Slide Mountain fault segments (Crone 

et al., 2009). From this study, I presented slip rates that ranged between 0.18 to 0.74 

mm/yr, which lie squarely in the middle of Crone et al (2009) published range. As these 

slip rates vary spatially and temporally, selecting a single slip rate or an average would 

not represent the seismic hazard of the entire fault system. While the Winter Rim fault 

system is limited in the sense of radiocarbon dating, due to the lack of paleoshoreline tufa 

growth around the basin, this study produced a new set of radiocarbon-dated tufa ages. 

This method has proven successful in nearby Surprise Valley, CA (Marion, 2016) and the 
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Alvord basin, OR (Oldow and Singleton, 2008), providing an opportunity for obtaining 

surface offsets and dip slip rates through means other than trenching.  
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