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ABSTRACT 

 
DECREASING OCCLUSION AND INCREASING EXPLANATION IN INTERACTIVE 

VISUAL KNOWLEDGE DISCOVERY 
 
 

by 
 

Abdulrahman Ahmed Gharawi 
 

May 2018 
 

Lack of explanation and occlusion are the major problems for interactive visual 

knowledge discovery, machine learning and data mining in multidimensional data. This 

thesis proposes a hybrid method that combines visual and analytical means to deal with 

these problems. This method, denoted as FSP, uses visualization of n-D data in 2-D in a set 

of Shifted Paired Coordinates (SPC). SPC for n-D data consists of n/2 pairs of Cartesian 

coordinates that are shifted relative to each other to avoid their overlap.  Each n-D point is 

represented as a directed graph in SPC. It is shown that the FSP method simplifies pattern 

discovery in n-D data providing explainable rules in a visual form with significantly 

decrease of the cognitive load for analysis of n-D data. The computational experiments on 

real data has shown its efficiency on both training and validation data.  
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CHAPTER I 

INTRODUCTION 
 

For a long time, lack of explanation and occlusion have been the major problems for 

interactive visual knowledge discovery, data mining and machine learning in multidimensional 

data. This thesis proposes a hybrid method that combines visual and analytical means to deal 

with these problems in visual knowledge discovery. The proposed method, denoted as FSP, uses 

visualization of n-D data in 2-D in a type of General Line Coordinates (GLC) [Kovalerchuk, 

Grishin, 2017, Kovalerchuk, 2018] known as Shifted Paired Coordinates (SPC). A set of Shifted 

Paired Coordinates for n-D data consists of n/2 pairs of Cartesian coordinates that are shifted 

relative to each other without overlap.  Each n-D point A is represented as a directed graph A* in 

SPC, where each node of the graph is a 2-D projection of A in a respective pair of the Cartesian 

coordinates.     

       The proposed FSP method significantly decreases cognitive load for analysis of n-D data 

and simplifies discovery of explainable patterns in n-D data. At the upper level, the steps of the 

FSP are: (1) Filtering out less efficient visualizations from multiple SPC visualizations, (2) 

Searching for sequences of paired coordinates that are more efficient, and (3) Presenting the 

SPC visualizations only with better sequences to the analyst. FSP includes the randomized search 

for pairs of coordinates and explainable “rectangular” classification rules with maximized 

accuracy on training and validation data.  

       The computational experiments with the 9-D Wisconsin Breast Cancer data, 33-D 

Ionosphere data, and 8-D Abalone data from UCI Machine Learning repository show efficiency 

of the FSP method on training and validation data.   The visualization process in SPC is 

reversible, i.e., all n-D information is visualized and can be restored from visualization for each 
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n-D case. This hybrid visual analytics method allows classifying data in a way that can be 

communicated to the domain experts such as medical doctors in the explainable/understandable 

and visual form.  

 

Shifted Paired Coordinates: Challenge and Opportunity to Better Visualization 

 
The Shifted Paired Coordinates (SPC) visualization of n-D data requires splitting n 

coordinates X1-Xn to pairs producing n/2 non-overlapping pairs (Xi,Xj), such as (X1,X2), (X3,X4), 

(X5,X6),…,(Xn-1,Xn) [Kovalerchuk, 2014; Kovalerchuk, Grishin, 2017, Kovalerchuk, 2018]. In 

SPC, each pair (Xi,Xj) is represented as a separate orthogonal Cartesian Coordinates (X,Y), 

where Xi is X and Xj is Y.  

         In SPC visualization design each coordinate pair (Xi,Xj) is shifted relative to other pairs to 

avoid their overlap. This creates n/2 scatter plots. Next in SPC, for each n-D point 

x=(x1,x2,…,xn),  the point (x1,x2) in (X1,X2) is connected to the point  (x3,x4) in (X3,X4) and so on 

until  point (xn-2,xn-1) in (Xn-2,Xn-1) is connected to the point  (xn-1,xn) in (Xn-1,Xn) to form a 

directed graph x*. Figure 1 shows the same data visualized in SPC in two different ways due to 

different pairing of coordinates. 

  

Figure a: Point a in (X1,X2), (X3,X4), (X5,X6) as 

a sequence of pairs (3,2), (1,4) and (2,6). 

Figure b: Point a in (X2,X1), (X3,X6), (X5,X4) as a 

sequence of pairs (2,3), (1,6) and (2,4). 

Figure 1:  6-D point a=(3,2,1,4,2,6) in Shifted Paired Coordinates. 
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          In general, there are multiple combinatorial ways to form pairs of coordinates for SPC and 

to sequence pairs. The SPC visualization graphs xk* of each given n-D point x differ for different 

sequences Sk of pairs of coordinates. Fig. 1a illustrates it for a 6-D point a=(3,2,1,4,2,6) 

visualized in pairs (X1,X2), (X3,X4), (X5,X6), and Fig. 1b shows this point visualized in pairs 

(X2,X1), (X3,X6), (X5,X4).  

         The SPC allows visualizing each individual n-D point losslessly, but together graphs of 

multiple n-D points occlude each other. See Fig. 2. This creates a difficulty for discovering 

patterns to classify cases of opposing classes in SPC.  In Fig. 2 some areas are visibly dominated 

by cases of the specific color. However, it is not sufficient to build discrimination rules to 

classify cases visually. It required an addition analytical process. Such process is proposed in this 

thesis. SPC visualizations with some sequences Sk can reveal classification patterns of n-D data 

better than with using other sequences. The dependence of the visualization from the different 

pairing coordinates creates a challenge and an opportunity to find better pairs and their 

sequences.   

 

Figure 2: A set of 688 Wisconsin Breast Cancer (WBC) data visualized in SPC as 2-D graphs of  10-D points with benign cases 
in Red and malignant cases in Blue. 
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        The challenge is that it is impractical to conduct interactive search of efficient sequences of 

pairs of coordinates for the large number of sequences. The total number of pairs of n 

coordinates is the number of combinations C(n,2)=n!/((n-2)!×2!), e.g., 45 for n=10. Next, there 

are multiple different sequences of the same set of n/2 pairs, e.g., (X1,X2),(X3,X4),(X5,X6),…,(Xn-

1,Xn) and (X5,X6),(X3,X4),(X1,X2),…,(Xn-1,Xn).The number of these sequences (orders) is (n/2)! 

for the same set of n/2 pairs, e.g., (10/2)!=120 for n=10. Thus, the total number of sequences of 

all pairs of n coordinates is (n/2)!×C(n,2)= (n/2)!×n!/((n-2)!×2!) and for n=10 it is 45×120=5400. 

The analyst cannot observe all of them to find one with the best visual separation of classes. The 

FSP algorithm resolves this issue by automatic search for the best sequences and presenting only 

a few best visualizations to the analyst.  
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CHAPTER II 

VISUAL KNOWLEDGE DISCOVERY 

FSP Algorithm 

 
The FSP algorithm: 

(a)  Filters out less efficient rules and visualizations for supervised classification learning, 

(b)  Searches for sequences of pairs of coordinates and respective rules that are more efficient 

for supervised classification learning, and  

(c)  Presents the SPC visualizations only with better sequences to the analyst.   

       The main characteristic of FSP is avoiding interactive exploration of the exponential number 

of alternative sequences with the following major steps: 

Step 1: Random generation of sequences of pairs of coordinates S;   

Step 2: SPC representation of n-D data in sequences S from Step 1;   

Step 3: Machine learning process for learning “rectangular” classification rules with high 

accuracy, precision and recall in sequences S from Step 2; 

Step 4: Full automated visualization process: SPC representation of best n-D rules in the best full 

sequences S of pairs of coordinates S discovered in Step 3; 

Step 5: Simplified automated visualization process: SPC representation of best n-D rules in the 

best subsequences S of pairs of coordinates S discovered in Step 3; 

Step 6: Interactive visualization process: an analyst interactively controls and manages produced 

SPC visualizations.  

       The approach of this algorithm is in line with [Wilinski, Kovalerchuk, 2017]. It produces 

efficient classification rules and 3-D visualization of n-D data. In that paper another visualization 
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method called Collocated Tripled Coordinates from the class of General Line Coordinates (GLC) 

is combined with Machine Learning for predicting the investment strategy.  

       The ideas of steps 1 and 2 already have been explained above. The step 3 uses rules and 

learning criteria presented below.   

       Rules and Learning Criteria. The filtering works on a set of rules such as rules (RL1)-

(RL8) listed below. Each Rule is defined on an n-D point x=(x1,x2,…,xn) to be classified to some 

classes:   

If (xi,xj) Î R1 then x Î class 1,                                                                                     (RL1) 

If (xi,xj) Î R1 & (xk,xm) Î R2 & (xs,xt) Î R3 then x Î class 1                                        (RL2) 

If  ((xi,xj) Î R1  Ú  (xk,xm) Î R2 ) &   (xs,xt) Î R3   then  x Î class 1                               (RL3) 

If  ((xi,xj) Î R1  Ú  (xk,xm) Î R2 ) &   (xs,xt) Ï R3   then  x Î class 1                               (RL4) 

If  ((xi,xj) Î R1  Ú  (xk,xm) Î R2 ) &   (xs,xt) Ï R3   then  x Î class 1,  else x Î class  2  (RL5)                         

If (xi,xj) Î R1 & (xk,xm) Î R2 & (xs,xt) Ï R3 then x Î class 1                                        (RL6) 

If (xi,xj) Î R1  &  (xi,xj) Ï R2 & (xi,xj) Ï R3 then x Î class 1                                        (RL7) 

If  (xi,xj) Î R1  Ú  (xk,xm) Ï R2  v   (xs,xt) Ï R3   then ) x Î class 1                                  (RL8) 

where R1, R2 and R3 are specific rectangles, in respective pairs of Cartesian coordinates in a 

given sequence S of pairs of coordinates S, e.g., R1 can be in (X1,X2).   

       The filtering follows common Data Mining/Machine Learning strategy of learning rules on 

training data and validation on validation data. The quality of learning of classification and 

expected visualization for rules (RL1)-(RL4), (RL6)-(RL8) is measured by the precision and 
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recall of classification of training and validation data, where the precision Pr is the fraction of  

the of cases predicted correctly by the Rule to the all predicted cases by the Rule: 

  Pr= |{cases predicted correctly by the Rule}| / |{all predicted cases by the Rule}|. 

The precision Pr for the basic Rule (RL1): If (xi,xj) Î R1 then x Î class 1,  is calculated as 

follows:      

  𝑃𝑟 = $%('()
$%('()*$+('()

                                                      (9)  

where n1(R1) is the number of points of class 1 in R1 (i.e., the number of correctly classified 

cases), and n2(R1) is the number of points from class 2 in R1 (i.e., the number of misclassified 

cases). More generally, for any Rule(x) such that  

If Rule(x) then x Î class 1               (10) 

the precision is  

              𝑃𝑟 = $%(,-./)
$%(,-./)*$+(,-./)

         (11) 

where n1(Rule) is the number of points of class 1 that satisfy the if part of the Rule and n2(Rule) 

is the number of points of class 2 that satisfy the if the part of the Rule too.  

        The formula (11) is applicable to all rules (RL1)-(RL8). For example, the precision Pr for 

the Rule (RL4) is calculated as follows: 

𝑃𝑟 = $%('()*$%('0)1$%('(&'3)1$%('0&'3)
$%('()*$%('0)1$%('(&'3)1$%'0&'3)*$+('()*$+('0)1$+('(&'3)1$+('0&'3)

             (12)                    

where  

n1(R1) and n1(R2) are the number of points of class 1 in R1, R2, respectively,  

n1(R1&R3) is the number of graphs x* of the n-D points of class 1 that have 2-D points in both R1  and R3,  

n1(R2&R3) is the number of graphs x* of the n-D points of class 1 that have 2-D points in both R2  and R3,  
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n2(R1&R3) is the number of graphs x* of the n-D points of class 2 that have 2-D points in both R1  and R3,  

nb(R2&R3) is the number of graphs x* of the n-D points of class 2 that have 2-D points in both R2  and R3.  

Here  

𝑛1(𝑅%) + 𝑛1(𝑅+) − 𝑛1(𝑅%&𝑅9) − 𝑛1(𝑅+&𝑅9) is the number of correctly classified n-D points by Rule 

(RL4) and	𝑛2(𝑅%) + 𝑛2(𝑅+) − 𝑛2(𝑅%&𝑅9) − 𝑛2(𝑅+&𝑅9) is the number of misclassified n-D points by 

this Rule. 

        We use precision for rules (RL1)-(RL4) and (RL6)-(RL8) instead of accuracy because these 

rules predict only one class. All cases that do not satisfy the condition of these rules are not 

classified (refused to be classified). The computing accuracy would require predictions of the 

class for all cases as it is the case for rules (RL5). Therefore, rules in set of rules (RL5) we use 

the accuracy for filtering.  Note that a high precision Rule from sets of rules (RL1)-(RL4), 

(RL6)-(RL8) may covers only a few cases, but the precision value does not show it’s low 

coverage. Therefore, we also use the recall 

RC = |{cases predicted correctly by the Rule}| / |{all cases}| 

that is a fraction of cases correctly predicted by the Rule to all cases to be predicted.  

 The Random generation in Step 1 consists of two substeps:  

(RS1) Randomly generate a set of pairs of coordinates from coordinates X1-Xn,  

(RS2)  Randomly generate sequence Sk for a set of pairs from (RS1).   

 The Machine Learning process in Step 3 consists of following three substeps: 

(ML1) Search for rectangles in each (Xi,Xj) that maximize precision or accuracy of a 

Rule from (RL1)-(RL8) on training data for given Sk,  

(ML2) Evaluate this Rule on validation data,  

(ML3) Repeat (RS1)-(RS2) and (ML1)-(ML2) in attempt to reach desired 

precision/accuracy and recall.  
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(ML3) Combine promising rules to get a stronger Rule in precision, accuracy and recall.  

 The Automated Visualization process in Steps 4-5 consists of the following steps: 

(AV1) Visualize in SPC most accurate classification results. This includes visualization 

of only best results.  

(AV2) Remove data that are covered by best results in (IV1), 

(AV3) Repeat (RS1-RS2) and (ML1-ML3) for remaining data in search for the best 

classification results. 

 The Interactive Visualization process in Step 6 is as follows:  

(IV1) Substitute automatic search in (ML1) by interactive search where the analysts 

select rectangles in SPC visualization using GUI.  

(IV2) The automatic system supports this interactive process by computing accuracies of 

rules based on selected rectangles and removing data covered by best results found before 

the next interactive selection of new rectangles starts.  

Fig. 3 shows the overall design of the FSP process.  

 

 

Figure 3: Overall design of the FSP process. 

 
 
 

Random	generation	
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Machine	Learning	
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Frequency Visualization Algorithm 

 
One of the challenges of SPC visualization for larger data sets is a form of occlusion 

caused by a limited resolution of data on the screen. It leads to overlap of similar data including 

complete colocation of some lines. In addition, identical cases will collocate on any visualization 

at any resolution. Therefore, the task is enhancing the SPC visualization to show frequency of 

the lines.       

       The algorithm for this, denoted as FRE algorithm, consists of the following steps: 

(F1) For each consecutive pairs of coordinates (Xi,Xj), (Xk, Xm) form sets of edges {Eq} that are 

collocated or nearly collocated under some threshold T, 

(F2) Count the number of edges Cq(T) in each of these sets,   

(F3) Draw each such set of edges Eq with the adjustable width w: 

(a) Equally proportional to the number of edges in Eq for each node, 

(b) Unequally proportional to the number of edges in Eq for each node without adjusting to 

the data density,  

(c) Unequally proportional to the number of edges in Eq for each node with adjusting to the 

data density. 

       Fig. 4 illustrates the differences between versions (a)-(c) of the algorithm FRE for Red 

graphs in SPC.  The version (a) is “neutral”, the analyst can use it when no specific node it set up 

to explore, Versions (b) and (c) are for exploring specific nodes of interest (e.g. nodes of the 

discovered classification Rule), because the large width of edge in (a) may   occlude that specific 

node.  
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(a) Equal expansion of the 
width of edges. 

(b) Unequal expansion of the 
width of edges focused in the 

given node of graph. 

(c) Unequal expansion of the 
width of edges adjusted to data 

density focused in the given 
node of graph. 

Figure 4: Alternative frequency visualization. 
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CHAPTER III 

EXPERIMENTAL CASE STUDIES 

Experimental Case Study 1 

 
       The computational experiments with the 9-D Wisconsin Breast Cancer (WBC) data, from 

the UCI Machine Learning repository [3] presented below, show the efficiency of the FSP 

algorithm. To get the even number of coordinates and 5 pairs of coordinates, the coordinate X5 

was duplicated in X10 getting total 10 coordinates.  

       The discovered patterns were found by the search in the set of rules (RL1)-(RL8). In 

particular, on WBC data, the FSP algorithm found an efficient sequence of the pairs of the 

coordinates. This sequence of pairs is (X5,X1), (X4,X3), (X9, X8), (X5, X2), (X6, X7). Here X5 is 

used in two pairs (X5,X1) and (X5, X2). The SPC visualization with this sequence reveals 

classification pattern with precision over 90% in all 11 random 70%:30% splits that are 

presented in Tables 1 and 2. The best precision on the training data is 99.3%, which is 

accompanied by the high precisions on the validation data (98.21%), in one of the 70%:30% 

splits of the given data into the training and the validation data.  

Table 1. Number of cases that satisfy the if part of Rule 1 in 11 random 70%:30% splits of data. 

70%:30% 
random 

data splits  

Number of cases that satisfy if part of the Rule 1  
Red class Blue Class 

training validation total training validation Total 
1 303 122 425 17 4 21 
2 300 105 405 10 4 14 
3 290 132 422 20 4 24 
4 291 110 401 2 2 4 
5 253 123 376 2 1 3 
6 297 116 413 13 3 16 
7 301 121 422 12 2 14 
8 299 122 421 12 4 16 
9 282 127 409 10 4 14 

10 307 116 423 27 7 34 
11 282 117 399 27 9 36 

Average 291 119 411 14 4 18 
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Table 2. Precision, recall and coverage of Rule 1 in 11 random 70%:30% splits of data. 

70%:30% 
random 

data splits  

Rule precision Rule recall (correct) coverage Rule total 
coverage of 

cases, % 

Rule F measure 
Training, 

% 
Validation, 

% 
Training, 

% 
Validation, 

% 
Total,  

% 
Training Validation 

1 94.06 96.82 44.04 17.73 61.77 64.83 0.5999 0.2997 
2 96.77 96.33 43.6 15.26 58.86 60.9 0.6012 0.2635 
3 93.5 97.05 42.15 19.19 61.34 64.83 0.5811 0.3204 
4 99.3 98.21 42.3 15.99 58.29 58.87 0.5933 0.2750 
5 98.41 99.19 36.77 17.88 54.65 55.09 0.5354 0.3030 
6 95.8 97.47 43.17 16.86 60.03 62.35 0.5952 0.2875 
7 96.16 98.37 43.75 17.59 61.34 63.37 0.6014 0.2984 
8 96.14 96.82 43.46 17.73 61.19 63.52 0.5986 0.2997 
9 96.57 96.94 40.99 18.46 59.45 61.48 0.5755 0.3101 

10 91.91 94.3 44.62 16.86 61.48 66.42 0.6008 0.2861 
11 91.26 92.85 40.99 17.01 58 63.23 0.5657 0.2875 

Average 95.44 96.76 42.3 17.3 59.6 62.35 0.5862 0.2935 
      

The discovered rules in Tables 1 and 2 belong to the set of rules (RL7).  The first Rule in 

Table 1 that we denote as WBC Rule 1 is: 

If (x9,x8) Î R1 & (x6,x7) ÏR2  & (x6,x7) ÏR3   then x Î class 1 (Red, Benign)                  (13)                        

where R1,R2,and R3 are specific rectangles, in respective pairs of Cartesian coordinates (X8,X9) 

and (X6, X7). Table 3 shows the parameters of R1,R2 and R3  in the normalized coordinates.   

Table 3. Parameters of rectangles R1-R3. 

Rectangle Parameters 
Left  Right Bottom  Top 

R1 in (X9,X8)   0.0020 0.1402 0.0734 0.1028 
R2  in (X6,X7) 0.7214 1.001 0.3484 1.001 
R3 in (X6,X7) 0.0081 0.6325 0.6014 1.001 

     

This Rule, with a random 70%:30% data split into the training and the validation data, 

has the precision of 94.6% on the training data, and 96.82% on the validation data. Figs. 5 and 6 

show its rectangles R1, R2 and R3 drawn in the SPC as magenta boxes. The difference between 

these figures is that Fig. 5 shows all graphs that go through rectangle R1 (have node (x9,x8) in R1), 

but Fig. 6 shows only graphs that in addition do not go rectangles R2 and R3.(do not have node 

(x6,x7) in R2 and R3). Thus, Fig. 6 shows only graphs that satisfy Rule 1. 
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Figure 5: WBC data in SPC as graphs representing 10-D points that go through R1 without showing frequency of cases. 

Magenta boxes show rectangles R1-R3. 

In Fig. 5, the width of the lines are not adjusted their frequency, but in Fig. 6 the width of 

the lines is adjusted to their frequencies. The Rule 1 covers 64.8% of all given 9-D points: 446 

cases out of 688 cases (425 Red cases and 21 Blue cases) with the recall value 61.77% (425/688) 

as shown in Table 1. Among these 446 cases 303 Red and 17 Blue cases belong to training data 

and 122 Red and 4 Blue cases belong to validation data. 

 

Figure 6: WBC data in SPC as graphs representing 10-D points that satisfy Rule 1 (go through R1 and not coming to R2 and R3 
shown in magenta. Wide Red lines show the frequency of Red cases. 

 
The cases covered by Rule 1 do not include only the 5.13% (23 cases) of the Red data, 

but include the 91.25 % (219 cases) of the Blue data. This Rule covers only cases found in R1 
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that do not come to R2 or R3. Rule 1 refused to predict other cases. Those other cases are 

dominantly Blues (see Fig. 7) and must be covered by other rules.  The WBC Rule 1 uses only 4 

coordinates that form two pairs (X9,X8) and (X6,X7)  therefore we can simplify the visualization 

of this Rule by showing only them in SPC. It is done in Fig. 8 where each 4-D points is 

visualized losslessly as a single line. The advantage of this visualization is that it is easy to see 

and communicate to the medical experts. The medical expert can easily understand this Rule 

because it simply says that two attributes x8 and x9 must be in some limits identified in Table 3 

and two other attributes x6 and x7 must not have values in some intervals that are shown visually 

in Fig. 8. 

       This allows the medical experts to analyze the consistency of this Rule with the other 

medical domain knowledge, which is extremely difficult for the ML discrimination functions, 

which are “black” boxes or complex mathematical formulas.   

 

 

Figure 7: Remaining WBC cases not covered by Rule 1 (dominated by Blue class). 
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Figure 8: WBC data in 4-D SPC as graphs in coordinates (X9,X8) and (X6,X7) that are used by Rule 1, i.e., WBC cases that go 
through R1 and not go to R2 and R3 in these coordinates. 

 

The simple WBC Rule 2 classifies all remaining cases (not covered by Rule 1) to class 2 is  

If (x8,x9) Î R1 & (x6,x7) ÏR2  & (x6,x7) ÏR3 

then x Î class 1 (Red, Benign) else x Î class 2 (Blue, Malignant)                                (14)   

       This Rule classifies all cases that are either in R2 or in R3 or not in R1 as Blue. This Rule has 

accuracy 93.60% (425+219)/688) on all 688 cases as the confusion matrix shows in Table 4. Its 

accuracy on training data is 92.53% and on validation data it is 96.11% computed from 

respective confusion matrixes shown in Table 4.  

 

Table 4. Confusion matrixes of WBC Rule 2. 

Actual 
class 

Confusion matrix on 
all 688 cases 

 Confusion matrix on 
70% of training cases 
(482) 

 Confusion matrix on 30% 
on validation cases (206) 

Predicted class  Predicted class  Predicted class 
Red  Blue Total  Red  Blue Total  Red  Blue Total 

Red  425 23 448  303 19 322  122 4 126 
Blue  21 219 240  17 143 160  4 76 80 
Total 446 242 688  320 162 482  126 89 206 
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We found a better WBC Rule 3 by searching the rectangles with highest density of Blue cases: 

If ((x1,x6) Î R4 Ú (x3,x5) Î R5) & (x2,x5) Ï R6 then x Î class 2 ( Blue )                          (15) 

This Rule is of type of rules (RL4), but with the conclusion that x belongs to class 2, not class 1. 

Table 5 identifies the rectangles R4-R6 involved in this Rule.  WBC Rule 3 covers the 226 cases 

from class 2 (Blue), and the 12 cases from class 1 (Red) with the total precision of 94.95%.  The 

combined Rule1 and Rule 3 is as follows: 

If Rule1(x) then xÎRed, else if Rule3(x) then xÎBlue, else refuse to classify x           (16)            

The precision, recall and coverage of this Rule relative to all cases are 95.18%, 94.62%, and 

99.42% (Fig. 9). It is the performance details are in the confusion matrix in Table 6.  

 

Table 5. Parameters of rectangles R4-R6 in normalized coordinates. 

Rectangle Parameters 
Left Right Bottom Top 

R4 in (X1,X6) 0.0010 0.9712 0.4180 1.001 
R5 in (X3,X5) 0.0000 0.9881 0.3154 0.7261 
R6  in (X2,X5) 0.0000 0.1003 0.143 0.3153 

 

 
Table 6. Confusion matrix of combined Rules 1 and 3 on all 688 cases. 

 Predicted Red class Predicted Blue class Refusal Total 
Actual Red class 425 12 2 437 
Actual Blue class 21 226 2 247 

Total 446 238 4 688 
 

 
 

 

 

Figure 9: The precision, recall and total coverage of combined Rule 1 and Rule 3 
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Experimental Case Study 2 

The computational experiments with the 33-D Ionosphere data from the UCI Machine 

Learning repository [3] also show the efficiency of the FSP algorithm. To get the even number of 

coordinates and 17 pairs of coordinates, the algorithm in each epoch will select randomly the 

coordinate that will serve as coordinate X34.  In the following results X34 is a copy of X10. The 

discovered patterns also were found by the search in the set of “rectangular” rules (RL1)-(RL8). 

In particular, on Ionosphere data, the FSP algorithm found an efficient sequence of pairs of 

coordinates: (X5, X26), (X27, X16), (X4, X11), (X18, X24), (X28, X31), (X10,X3), (X23, X8), (X22, X30), 

(X21, X10), (X17, ), (X15,X33), (X29, X20), (X9, X6), (X32,X16), (X1,X25), (X12, X14), (X19, X7). Here 

X10 is repeated in pairs (X10, X3) and (X21, X10). Similarly to the Case Study 1, the SPC 

visualization, with this sequence, reveals the visual classification pattern of precision of over 

90% in all the 11 random 70%:30% splits of data into the training and the validation data (see 

Tables 7 and 8). The best precision on the training data is 98.36% with 100% precision on the 

validation data in one of these 70%:30% splits of the given data. The discovered rules in Tables 

7 and 8 belong to the set of rules (RL4).  The first Rule in Table 7 that we denote as Ionosphere 

Rule 1 is: 

If [(x4,x11) Î R1 Ú (x5,x26) Î R8 Ú (x21,x10) Î R9 Ú (x19,x7) Î R10] & 

[(x27,x16)Ï R3 & (x28,x31) ÏR6  & (x23,x8)ÏR4 & (x17,x2) Ï R5 & (x15,x33)Ï R7  & (x9,x6)Ï R2] 

then x Î class 1 (Red ,Good)                                                                               (17)                        

where R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 are specific rectangles, in respective pairs of 

Cartesian coordinates (X4, X11), (X9, X6), (X27, X16), (X23, X8), (X17, X2), (X28, X31), (X15, X33), 

(X5, X26), (X21, X10), and (X19, X7). Table 9 shows the parameters of R1-R10 in the normalized 

coordinates. This Rule, with a random 70%:30% data split into the training and validation data, 
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has the precision 98.36% on the training data and 100% on validation data. Figs. 10 and 11 show 

its rectangles R1-R10 in the SPCs as magenta boxes and cases that satisfy Rule 1 in Fig 11 and all 

cases in Fig. 10. Fig. 12 shows the remaining cases.  

Table 7.  Number of cases that satisfy the Ionosphere Rule 1 in 11 random 70%:30% splits of data. 

70%:30% 
random 

data splits 

Number of cases that satisfy if part of the Rule 1 
Red class Blue Class 

training validation total training validation Total 
1 180 45 225 3 0 3 
2 172 52 224 8 2 10 
3 133 92 225 7 3 10 
4 129 95 224 6 2 8 
5 200 24 224 9 0 3 
6 160 65 225 10 2 12 
7 183 42 225 11 1 13 
8 158 67 225 11 2 13 
9 191 34 225 13 1 14 

10 184 37 221 7 0 7 
11 157 66 223 12 2 14 

Average 170 54 224 9 1 9 
 
 

Table 8. Precision, recall and coverage of Ionosphere Rule 1 in 11 random 70%:30% splits of data. 

70%:30% 
random 

data splits  

Rule precision Rule recall (correct) coverage Rule total 
coverage of 

cases, % 

Rule F measure 
Training, 

% 
Validation, 

% 
Training,  

% 
Validation,  

% 
Total,  

% 
Validation,  

% 
Total,  

% 
1 98.36 100 51.28 12.82 64.1 64.95 0.6741 0.2273 
2 95.55 96.29 49 14.81 63.81 66.6 0.6478 0.2567 
3 95 96.84 37.89 26.21 64 66.95 0.5417 0.4125 
4 95.5 97.93 36.75 27.06 63.81 66.09 0.5308 0.4240 
5 95.69 100 56.98 6.83 63.81 64.67 0.7143 0.1279 
6 94.1 97.01 45.58 18.51 64.1 67.52 0.6141 0.3109 
7 94.32 97.67 52.13 11.96 64.1 67.80 0.6715 0.2131 
8 93.491 97.1 45.01 19.08 64.09 67.80 0.6077 0.3189 
9 93.62 97.14 54.41 9.68 64.1 68.09 0.6882 0.1761 

10 96.33 100 52.421 10.54 62.96 64.95 0.6789 0.1907 
11 92.89 97.05 44.72 18.8 63.53 67.52 0.6037 0.3150 

Average 94.99 97.93 48.43 15.38 63.81 66.38 0.6339 0.2703 
 

 
 

Table 9. Parameters of rectangles R4-R6 in normalized coordinates. 

Rectangle Parameters 
Left  Right Bottom  Top 

R1  in (X4, X11) 0 .23912 1.001 0.663667 0.999667 
R2  in (X9, X6) 0.1979 0.99869 0 0.0403333 

R3  in (X27, X16) 0.130225 1.001 0 0.0256667 
R4  in (X23, X8) 0.29087 0.58943 1.001 0.946 
R5  in (X17, X2) 0.40433 0.9998 0 0.022 
R6  in (X28, X31) 0.30765 1.001 0 0.0366667 
R7  in (X15, X33) 0.25733 1.001 0.960667 0.998667 
R8  in (X5, X26) 0.125675 0.575667 0.575667 0.645333 
R9  in (X21, X10) 0.25278 0.50868 0.0476667 0.0843333 
R10  in (X19, X7) 0.4203 0.8254 0.194333 0.432667 
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The Rule 1 uses only 20 coordinates that form 10 pairs (X5 ,X26),(X27 ,X16), ( X4,X11), 

(X28,X31), (X23,X8),( X21,X10),(X17,X2),(X15,X33),(X9 ,X6) and (X19 ,X7). Therefore, we simplify 

its visualization by showing only them in the SPCs (see Figs. 13-15) with the lossless 

visualization of each of the 20-D points, as a single polyline. The simple Ionosphere Rule 2 

classifies all remaining cases (not covered by Rule 1) to class 2 is  

If [(x4,x11) Î R1 Ú (x5,x26) Î R8 Ú (x21,x10) Î R9 Ú (x19,x7) Î R10] & 

[(x27,x16)Ï R3 & (x28,x31) ÏR6  & (x23,x8)ÏR4 & (x17,x2) Ï R5 & (x15,x33)Ï R7  & (x9,x6)ÏR2]  
then x Î class 1 (Red, Good) else x Î class 2 (Blue, Bad)                                                         (18)    

This Rule classifies all the cases rejected by Rule 1 as Blue with 99.14% accuracy on all 

the 351 cases (225+123)/351), see the confusion matrix in Table 10. Its accuracy on training 

data is 98.78% and 100% on the validation data based on the confusion matrixes in Table 10. 
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Figure 10: 351 Ionosphere cases in the SPCs as graphs of 34-D points (good cases in Red and bad cases in Blue). Rectangles that 
are used in Ionosphere Rule 1 are in magenta. 

 

 

 

Figure 11: 34-D Ionosphere cases covered by Ionosphere Rule 1. Rectangles from Rule 1 are in magenta. 

 
Table 10. Confusion matrixes of the Ionosphere Rule 2. 

Actual 
class 

Confusion matrix on 
all 351 cases 

 Confusion matrix on 
training data (246, 70%) 

 Confusion matrix on 
validation data (206, 30%) 

Predicted class  Predicted class  Predicted class 
Red  Blue Total  Red  Blue Total  Red  Blue Total 

Red  225 3 228  180 3 183  45 0 45 
Blue  0 123 123  0 63 63  0 60 60 
Total 225 126 351  180 66 246  45 60 105 
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Figure 12: Remaining Ionosphere cases (cases not covered by Ionosphere Rule 1). 

 

 

 

Figure 13: Ionosphere cases in 20-D points covered by the Ionosphere Rule 1. 
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Figure 14: Ionosphere cases in 20-D points covered by Rule 1. 

 
 

 

Figure 15: Ionosphere cases in 20-D points not covered by Rule 1. 

 

Experimental Case Study 3 

The computational experiments with the 8-D Abalone data, male and infant cases, from 

the UCI Machine Learning repository [3] also show the efficiency of the FSP algorithm. The 

discovered patterns were found by the search in the set of “rectangular” rules (RL1)-(RL8). In 
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particular, the FSP algorithm found an efficient sequence of coordinate pairs: (X5, X6), (X1, X2), 

(X3, X8), (X4, X7). Similarly, to Case Studies 1 and 2, the SPC visualization, with this sequence, 

reveals the visual classification pattern of with the precision of over 90% (see Tables 11 and 12) 

in the 11 random 70%:30% splits of data into the training and the validation cases. The best 

precision is 92.06% on the training data and 96.17% on the validation data. Fig. 16 shows 2870 

Abalone data in the SPCs, as graphs of 8-D points, with the male cases in Red, and the infant 

cases in Blue. Rectangles used in Abalone Rule 1 defined below are in magenta. Fig.17 and 18 

show cases covered this Rule and Fig. 19 shows the remaining cases.   

The discovered rules shown in the Tables 11 and 12 belong to the set of rules (RL4).  The 

first Rule in the Table 11, which we denote as the Abalone Rule 1 is: 

If [(x4,x7) Î R1 Ú (x1,x2) Î (R2 Ú R8) Ú (x3,x8) Î(R4 Ú R6) ] & [(x5,x6) Ï ( R3 & R10 & R11 )  

& (x1,x2) Ï(R5 & R9)  & (x3,x8) Ï(R4 & R7)], then x Î class 1 (Red ,Male),                   (19)                        

where R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, and R11 are specific rectangles (see Table 13), in 

respective pairs of the Cartesian coordinates (X4, X7), (X1, X2), (X5, X6), (X3, X8), (X1, X2), (X3, 

X8), (X3, X8), (X1, X2), (X1, X2), (X5, X6), and (X5, X6). The simple Abalone Rule 2, which 

classifies all the remaining cases (not covered by Rule 1) into class 2 is:  

If [(x4,x7) Î R1 Ú (x1,x2) Î (R2 Ú R8) Ú (x3,x8) Î(R4 Ú R6) ] & [(x5,x6) Ï ( R3 & R10 & R11 )  

&(x1,x2) Ï(R5 & R9)  & (x3,x8) Ï(R4 & R7) ] 
then x Î class 1 (Red, Male), else x Î class 2 (Blue, Infant)                (20) 

with accuracy 94.91% on all cases, 93.33% and 98.60% on training and validation data based 

on the confusion matrixes Table 14. 
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(a) Red cases visualized on the top Blue cases. (b) Blue cases visualized on the top the Red cases. 

Figure 16: A set of 2870 Abalone data visualized in the SPCs, as graphs of 8-D points, with the male cases in Red, and the infant 
cases in Blue. Rectangles used in Abalone Rule 1 are in magenta. 

 
 

Table 11. Number of cases satisfying the if part of Abalone Rule 1 in 11 random 70%:30% splits. 

70%:30% 
random 

data splits  

Number of cases that satisfy if part of the Rule 1  
Red class Blue Class 

training validation total training validation Total 
1 1193 304 1497 103 12 115 
2 1034 396 1430 103 37 140 
3 972 463 1435 86 46 132 
4 1015 484 1499 105 40 145 
5 1224 272 1496 126 10 136 
6 1003 371 1374 98 28 126 
7 989 402 1391 92 37 129 
8 1077 389 1466 108 22 130 
9 1146 328 1474 117 31 148 

10 1201 276 1477 121 15 136 
11 996 357 1353 103 35 138 

Average 1078 367 1445 106 29 134 
 
 

Table 12. Precision, recall and coverage of Rule 1 in 11 random 70%:30% splits of data. 

70%:30% 
random 

data splits  

Rule precision Rule recall (correct) coverage Rule total 
coverage of 

cases, % 

Rule F measure 
Training, 

% 
Validation, 

% 
Training,  

% 
Validation,  

% 
Total,  

% 
Validation,  

% 
Total,  

% 
1 92.05 96.20 41.56 10.59 52.16 56.16 0.5727 0.1908 
2 90.94 91.45 36.02 13.79 49.82 54.70 0.5160 0.2397 
3 91.87 90.96 33.86 16.13 50 54.59 0.4948 0.2740 
4 90.62 92.36 35.36 16.86 52.22 57.28 0.5087 0.2851 
5 90.66 96.45 42.64 9.47 52.12 56.86 0.5800 0.1725 
6 91.09 92.98 34.94 12.92 47.87 52.26 0.5051 0.2269 
7 91.48 91.57 34.45 14.00 48.46 52.96 0.5005 0.2429 
8 90.88 94.64 37.52 13.55 51.08 55.6 0.5311 0.2371 
9 90.73 91.36 39.93 11.42 51.35 56.51 0.5545 0.2030 

10 90.84 94.84 41.84 9.616 51.46 56.2 0.5729 0.1746 
11 90.62 91.07 34.70 12.43 47.14 51.95 0.5018 0.2187 

Average 91.07 93.06 37.53 12.80 50.33 55.01 0.5307 0.2241 
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(a) Red cases on the top of the Blue cases. (b) Blue cases on the top of the Red cases. 
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Figure 17: 8-D Abalone cases covered by Abalone Rule 1. 

 
 
 

 

Figure 18:  8-D Abalone cases covered by Rule 1 (only nodes of graphs are shown to decrease occlusion) 
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Figure 19  :  Remaining Abalone cases (cases not covered by Abalone Rule 1). 

 

Table 13. Parameters of rectangles R1-R11. 

Rectangle Parameters 
Left Right Bottom Top 

R1 in (X4, X7) 0.09068 0.6946 0.260333 1.00 
R2 in (X1, X2) 0.7458 0.99955 0.421667 0.99996 
R3 in (X5, X6) 0.0209 0.1015 0.128333 0.190667 
R4 in (X3, X8) 0.94857 1.001 0 0.077 
R5 in (X1, X2) 0.162175 0.253525 0.242 0.113667 
R6 in (X3, X8) 0.46645 0.77602 0.139333 0.399667 
R7 in (X3, X8) 0.25837 0.38017 0.282333 0.388667 
R8 in (X1, X2) 0.355025 0.415925 0.355667 0.436333 
R9 in (X1, X2) 0.26 0.355025 0.161333 0.242 
R10 in (X5, X6) 0.015075 0.167325 0.289667 0.436333 
R11 in (X5, X6) 0.012 0.035675 0.0 0.0586667 

 

 

Table 14. Confusion matrixes of Abalone Rule 2. 

Actual 
class 

Confusion matrix on 
all 2870 cases 

 Confusion matrix on trai-
ning cases (2009, 70%) 

 Confusion matrix on 
validation cases (861, 30%) 

Predicted class  Predicted class  Predicted class 
Red  Blue Total  Red  Blue Total  Red  Blue Total 

Red  1497 115 1612  1193 103 1296  304 12 316 
Blue  31 1227 1258  31 682 713  0 545 545 
Total 1528 1342 2870  1224 785 2009  304 557 861 

 

Experimental Case Study 4 

In order to test the FSP method on high dimensional data, a set of Modified National Institute 

of Standards and Technology (MNIST) Database of handwritten digits [14] has being used. 
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These computational experiments conducted with digits 0 and 1 represented as the 484-D points 

(cases) show the efficiency of the FSP algorithm. The discovered patterns were found by the 

search in the set of “rectangular” rules (RL1)-(RL8).  The training data contain 703 0 and 778 1.  

The discovered Rule1 has a form of a Rule 4 (see page 11). It contains 132 rectangles that are 

spread around 78 242 paired coordinates with average of 1.69 rectangles per pair. In contrast 

with case studies 1-3, in this case study we did not conduct pair permutation and used the 

original order of pairs: (X1,X2), (X3,X4),…,(Xn-1,Xn) due to multiplicity of pairs.   

This multiplicity also creates a challenge to visualize all 484 dimensions in SPC that are used 

by FSP algorithm. This reveals one of the limitations of FSP algorithm based on SPC for the 

direct visualization of discrimination rules. Therefore, below we propose a generalized 

visualization of a discrimination rules for such high-dimensional data (images). The idea of a 

new visualization is to “overlay” the discrimination Rule1 on the input images of digits.  

The steps of the new algorithm that we denote as R2I (Rectangles In Image) below:   

(a) Compute the average image M(0) for digit 0 by averaging all respective pixels of the 

training data of this digit:  

  M(0)={m(i,j): m(i,j)=averagekÎK(Tr(0,k,i,j)} 

where K is the number of digits 0 in the training data and Tr(0,k,i,j) is the intensity of the pixel 

(i,j) of the k-th image of digit 0.  See figure 20. 

(b) Compute the average image M(1) for digit 1 by averaging all respective pixels in the 

same way as in (a). See figure 20.  
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(c) Compute the average image T for digit 0 and 1 by averaging M(0) and M(1). figure 22.  

(d) Find location of the pairs of pixels in the image 21 for digit 0 that have been used in 

rectangles in the discovered Rule1. For instance, let pixels 71 and 72 form a pair of 

coordinates (X71,X72) and the rectangle R1 from Rule1 is discovered in these coordinates.  

(e) Show pixels 71 and 72 in black. Do this for all rectangles involved in the Rule 1. The 

result is in figure 21 and figure 22.   

(f) Conduct steps (d)-(e) for digit 1. The result is in Figure 21 and figure 22. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: SPC pairs presented as black dots in 22x22 empty image for 1 and 0. 

 

 

Figure	20:	Sum	and	average	digits	0	and	1	in	gray	scale 
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The result has a precision over 90% in random 70%:30% splits of data into the training and the 

validation date. The best precision obtained is 96.21% on the training data and 98.03% on the 

validation data. Fig. 21 represents the SPC pairs locations as a dark dot in an empty 22x22 

image.  Fig. 22 shows 2115 MINST data in the average of sums for number 0 and 1 as an image 

of 22x22 pixels (484 dimensions). The dark dots represent pairs that been covered by the rules.  

 

 

 

 

 

 

 

 

Figure	23:	SPC	pairs	presented	as	dark	dots	in	the	average	of	sum	image	of	1	and	0. 

 

Figure	22:	SPC	pairs	presented	as	dark	dots	in	the	average	of	sum	image	of	1	and	0. 
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CHAPTER IV 

CONCLUSION 

Comparison with Published Results 

      Case study 1: the best accuracy reported for the Wisconsin Breast Cancer (WBC) dataset for 

the SVM in [6] is 96.995% with the 10-fold cross-validation tests. Other results are 96.84% [7] 

and 96.99% [8] for the SVM, and 97.28% [6] by combing SVM, C4.5 decision tree, naïve 

Bayesian classifier, and the k-Nearest Neighbors algorithms.  

      These models classify all the cases, while many of our rules refuse to classify some of the 

cases. Our WBC Rule 2 classify all cases, but with lower accuracy 93.60%.  Our better Rule that 

combines WBC rules 1 and 3 has precision 95.18%. While in general, accuracy and precision are 

different, here the combination of rules 1 and 3 cover almost all cases (99.42%, only 4 cases are 

refused). The precision for such high coverage is almost identical to accuracy. Thus, it is quite 

close to the published results, but slightly lower. However, in contrast with SVM, it is visual, has 

clear interpretation and explainable to a domain expert which is very important in domains with 

high cost of errors where the explanation of the model is mandatory.     

      Case study 2: for Ionosphere dataset, the highest accuracy reported by [9] is 98% on training 

and 93% on validation data using the multilayer perceptron. Other results are 94.87% by using 

C4.5 algorithm and 94.59% using Rule Induction RIAC algorithm [10], 97.33% by SVM with 

Particle Swarm Optimization and 10-fold cross-validation [11].  

      These models classify all the objects, while many of our rules refuse to classify some of the 

cases. In contrast, our Ionosphere Rule 2 classify all cases. For this Rule, precision is identical to 

accuracy that is 98.78% on training data and 100% on validation data. Thus, our results are 

slightly higher, than those for the published classification models.  
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      Case study 3: The highest accuracy reported in [12] for Abalone dataset using SVM is 

99.26% with 5-fold Cross-validation for all three classes. Another result is 97.80% accuracy 

using a case base reasoning method [13]. Our result, that are within [93.33, 98.60]% interval, are 

quite close to these published results. Unlike [12], we use a more challenging approach for 

classification 70:30 split, than the 5-fold that is 80:20 split. 

      The goal of [15] was to find large empty rectangles or boxes in 1D, 2D, 3D, 4D, and 5D 

spaces. This goal differs from our goal of finding 2-D rectangles filled by points of a single class 

or dominated by that class. This we have a ‘reverse” task.  Also, the focus of [15] is designing a 

new computationally efficient algorithm to find holes in high dimensional data that runs in 

polynomial time. This is different from FSP algorithm too.  Unlike the empty rectangles in [15], 

FSP algorithm use the rectangles in 2D to classify data.  Also, FSP try to find rectangle that 

contains the points that belong to specific class and reduce the error by finding another rectangle 

that classify the wrong cases in the first rectangle. The potential use  in [15] for strengthening 

FSP using algorithm from [15] to search most non-empty rectangles in 2-D or remove most 

empty before searching for non-empty.  For non-empty rectangles it is likely that algorithm from 

[15] must be modified.  

 

Conclusion 

     The FSP Rule 2 for Wisconsin Breast Cancer (WBC), Ionosphere and Abalone are visual, 

interpretable, and explainable to a domain expert, which is critical, in many domains with 

mandatory model explanation. This comparison shows that the proposed FSP algorithm, with the 

SPC visualization, produced the results comparable with the other major machine learning 

algorithms, in the accuracy and precision. The FSP algorithm has the following significant 
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advantages: it is (i) visual with minimal occlusion, (ii), interactive, (iii) understandable by the 

user, and (iv) simpler than many machine-learning algorithms.  

Future study would focus on using more interpretable rules for discovery by the FSP 

algorithm along with the other General Line Coordinates, beyond SPC. Also, to optimize the 

search time, by discard the highly correlated coordinates in random generation of pairs. That 

reduces run time between 5 to 30 percent in some cases. Another way to optimize the search of 

rectangles is to use one of the evolutionary algorithms instead of purely random ones to find the 

best possible sequence and pairs. The directed search will increase the chance of reducing the 

time and improving the accuracy. 
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APPENDIXS  

APPENDIX A 
 

WISCONSIN BREAST CANCER (WBC) 

Wisconsin Breast Cancer (WBC) dataset from the UCI machine learning repository [3]. 

WBC dataset contains 699 instances with 11 attributes. The patient ID was removed from the 

first dimension. Also, each instance that contains a missing value was removed in the 

preprocessing phase. That produces 688 records with 448 of benign and 240 with malignant 

cases. In addition, the dataset was normalized between 0 and 1. 

 

APPENDIX B 

IONOSPHERE DATASET 

Ionosphere dataset is from the UCI machine learning repository [3]. This dataset contains 

351 instances with 35 attributes where 35th dimension represents the class label of good cases 

and bad cases. In the preprocessing step, the second dimension was removed because it only 

contains zeros resulting 34-D. Also, the dataset was rescaled between 0 and 1. 

 

APPENDIX C 

ABALONE DATASET 

Abalone dataset is a dataset from the UCI machine learning repository [3]. This dataset 

contains 4177 instances with eight attributes for predicting the age of Abalone from physical 

measurements [3]. The 8th attribute represents the classes label. In the preprocessing step, cases 

of the female were removed resulting 1612 male and 1258 infant cases. 
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APPENDIX D 

MNIST-DATASET 

In order to test the FSP method on high dimensional data, the Modified National Institute 

of Standards and Technology (MNIST) [14] was used. MNIST Database originally consists of 

images for digits from 0 to 9 with 28x28 pixels (784 dimensions) for each image. The digits 0 

and 1 in the validation dataset was used after removing the padding. The preprocessed images 

contain a total of 2115, 1135 images of digit 1 and 981 of digit 0 with 22x22 pixels (484 

dimensions) each. 
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