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Abstract: While knowledge discovery and n-D data visualization procedures are often efficient, the loss of information, occlusion, and 

clutter continue to be a challenge. General Line Coordinates (GLC) is a rather new technique to deal with such artifacts. GLC-Linear, 

which is one of the methods in GLC, allows transforming n-D numerical data to their visual representation as polylines losslessly.  The 

method proposed in this paper uses these 2-D visual representations as input to Convolutional Neural Network (CNN) classifiers. The 

obtained classification accuracies are close to the ones obtained by other machine learning algorithms. The main benefit of the method 

is the possibility to use the lossless visualization of n-dimensional data for interpretation and explanation of the discovered relationships 

besides the classical classification using statistical learning strategies. 

Keywords: Machine learning, CNN, General Line Coordinates, lossless visualization, multidimensional data.  

 

1.  INTRODUCTION 

 

   Many procedures for n-D data analysis, knowledge 

discovery and visualization have demonstrated efficiency 

in the past. However, the loss of information, occlusion, 

and clutter in visualizations of n-D data continue to be a 

challenge for visual knowledge discovery. The dimension 

scalability challenge for visualization of n-D data is 

present at a low dimension of n = 4. Since only 2-D and 

3-D data can be directly visualized in the physical 3-D 

world, visualization of n-D data becomes more difficult 

with higher dimensions as there is greater loss of 

information, occlusion and clutter. General Line 

Coordinates (GLC) [Kovalerchuk, 2018] visualize 

multidimensional data losslessly. There is no dimension 

reduction or loss of information during the visualization 

process. The n-dimensional data points are projected onto 

2-D graphs without losing any information in the process, 

in contrast to (for instance) Self Organizing Maps. One of 

the methods from GLC is the GLC-Linear (GLC-L) 

[Kovalerchuk, Dovhalets, 2017, Kovalerchuk, 2018]. 

     GLC-L projects multidimensional data into polylines 

that allow seeing the high dimensional data in a regular 2-

D space.  The use of GLC-L to visualize a single n-D point 

at a time produces its polyline, which can be interpreted 

as an image. The process is repeated for every given n-D 

point creating a set of images of n-D points from different 

classes. Transforming numeric multidimensional datasets 

into 2-D graphs (images) using GLC-L provides a unique 

lossless transformation of data. Visualizing only one n-D 

data instance at a time eliminates clutter and provides a 

clean visualization for all the data points. 

    Those artificially created images can be used later for 

classification if needed. Users can compare these images 

side-by-side for extraction of possible rules, features and 

relations, --with the condition that the number of images 

is relatively small and the patterns are recognizable by 

humans.  Feeding these images to a CNN in a supervised 

learning paradigm allows automating this classification 

task for even larger datasets. 

The proposed conversion of a numeric Machine 

Learning (ML) classification task to an image recognition 

task opens a unique new opportunity for resolving long-

standing ML challenges of: (1) giving explanation to the 

discovered ML models, and (2) controlling overfitting and 

overgeneralization of ML models. This opportunity 

follows from the advantages of the visual analysis of 

multidimensional data as outlined below.   

Explainable models often are too complex for domain 

experts, e.g., a decision tree with 50 layers and hundreds 

of nodes. Such large trees way exceed the magical number 

72 of the Miller's law that is a limit on human capacity 

for processing information [Miller, 1956]. Thus, complex 

numeric ML models such as CNN must be “degraded” to 

the level of human understanding. 

In contrast, humans recognize images with much larger 

number of features than 72. The face recognition by 

humans is one of such examples. It is quick and often 

preattentive due to parallel processing capabilities of the 

human visual system, in contrast with the sequential 

processing of the numeric information. 

Thus, we suggest visual explanation of ML models on 

numeric data as an alternative to the traditional 

explanation in natural language or mathematical forms, 

that we call textual explanation, for short.  

Fig. 1 shows an example of a possible way of visual 

explanation. Here, 9-D breast cancer data [Lichman, 

2013] of benign and malignant cases is linearly separated 

(with over 96% accuracy) with distinct visual patterns 

using the GLC-L visualization method [Kovalerchuk, 

Dovhalets, 2017]. While the natural language description 

of these distinct patterns is not obvious, their visual 

distinction is way more clear. The angles at the bottom of 

the figure (see Fig. 1) indicate the contribution of each of 

the 9 attributes (dimensions) to the separation of classes. 

For SVM (Support Vector Machines), visual explanation 
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can be in the form of visualized support vectors from 

opposing classes that SVM algorithm finds on images and 

uses for classification. More examples of visual 

explainable patterns for numeric classification tasks are 

provided in   [Kovalerchuk, 2018].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The visual explanation can be accompanied by a textual 

explanation, with an approximate linguistic description of 

differences of these visual patterns that can be generated 

by using fuzzy linguistic variables. Next, Fig. 1 can be 

used to construct the exact linear discrimination model as 

it is generated in [Kovalerchuk, Dovhalets, 2017].   

More generally, the visual explanation approach can be 

viewed as a part of the new paradigm of Computing With 

Images (CWI) [Kovalerchuk, 2013] that augments 

traditional numeric computations and Zadeh’s Computing 

With Words (CWW) [Zadeh, 2012] concept.  

Our goal is to combine visual representation of multi-

dimensional data with the powerful deep learning 

technology.  Our novel approach uses deep learning 

(CNN) architectures to classify not the original data points, 

but rather the 2-D images generated by the GLC-L method. 

In other words, we use lossless visualization of images as 

intermediary data representations. We apply this two-step 

process on standard data benchmarks to validate the 

proposed method. In our experiments, we compare our 

results with the ones obtained by applying the CNN model 

on the original data. 

 

2.  OUR METHOD: GLC-L + CNN  

 

   Originally, GLC-L was designed to visualize a linear 

function F(x). Each attribute xi from n-D point 

x=(x1,x2,..,xn) is mapped to a line segment, and the line 

segments are stacked one on the top of each other with 

angles Qi computed from the coefficients C=(c1,c2,…,cn) 

of the linear function F. The length of the line is the value 

of the attribute. A large value produces a longer line 

segment than a smaller one. The coefficients C are 

normalized in the range [-1,1], producing a new set of 

coefficients K= (k1, k2, …,kn): ki = ci/cmax  producing a new 

linear function:  

y = k1x1+ k2x2 + k3x3 + ... + knxn  (1) 

In GLC-L the angles are, Qi = arccos(ki).  For experiments 

with CNN, we can generate angles Qi directly because the 

goal is wider than just a linear function. The segment is 

going to the right for positive ki and to the left for the 

negative ki.     

   Automatic search for the best coefficients can be 

optimized to separate better cases of opposing classes by 

a random search algorithm. It scans the search space for 

different sets of coefficients on the training dataset and the 

best coefficients are then evaluated on the test dataset.  

 

3.  DATA TRANSFORMATION 

 

   The transformation process consists of (1) choosing a 

random set of coefficients (with respective angles), and 

(2) transforming the data using those coefficients. Using 

the same set of randomly chosen coefficients to visualize 

each data instance separately with GLC-L allows creating 

a set of artificial images. The image captures of the 

visualizations inherit their corresponding labels from the 

original data. Once the data are transformed and images 

are created, the newly rendered images are entered into a 

machine learning algorithm for training and testing. This 

process is repeated n times to find the best set of 

coefficients (angles) using a random search strategy for 

finding of the best coefficients set (angles).  

   For the best coefficient set, a second testing set is 

required to test properly them on independent data to 

avoid overfitting. For this purpose, the system takes in a 

dataset, shuffles it and splits it into two new sets for each 

iteration. The first set (set-1) is 80% of the original data 

and the second set (set-2) is the remaining 20% of the 

samples. For the experimental setup, a 10-fold cross 

validation is applied on set-1 during the search of best 

coefficients. Set-2 is used to test the system after the best 

coefficients are established. 

   The data transform has many parts, which could be 

optimized, including the architecture of the CNN itself. 

Optimization of hyper-parameters of the CNN are out of 

Figure 2: Visualization of 4-D data with GLC-L. The data 

attributes x1-x4 are all positive numbers with the value of 1. 

Having the same values for all attributes makes all of the line 

segments to be equally long. The first angle Q1 is negative, which 

turns the line to the left, and the other angles Q2-Q4 are positive, 

turning the line to the right. 

Figure 1: Wisconsin Breast Cancer dataset representation using 

GLC-L. Instances from one class are projected above in blue, 

while instances from the other class are below in red. 
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scope for this study. Experiments were focused on how 

different parts of the data transform system effect the data 

transformation while evaluating the artificially created 

images on the same CNN. Experiments were performed 

to understand how image size of the artificially created 

images, line thickness and the size of search of random 

coefficients affects classification. These experiments were 

all done on the same dataset using the same data split for 

training and testing subsets. The split for the subsets was 

80% for the training set, 10% for the validation set and 

10% for the testing set. For all experiments with different 

line thicknesses and sizes of the artificially created images, 

the same coefficients were used.   

 

3.1 Line Thickness 

   The thickness of the line directly corresponds to how 

many pixels are being used in the created image. Having 

a thin line corresponds to a small number of pixels 

actually being used in the image representation. Having 

more pixels used corresponds to having more information 

in the image. We conducted experiments to test the last 

statement with different line widths and their effect on 

classification. The value t, which controls the width of the 

line, was the only variable being changed in these 

experiments. For each experiment, five different runs 

were performed, and their average is reported as the test 

accuracy. A run consists of selecting coefficients, 

transforming the data and classifying the transformed data 

with a CNN. 

   The experiments 1-3 conducted with line thickness at t 

= 0.1, t = 1.0 and t = 2.0, respectively. Fig. 3 shows 

examples of how different t values change the line 

thickness and the visualization itself.  

    

Table 1 contains the results of experiments conducted to 

test the impact of the line thickness on the classification 

accuracy using a CNN. There is a dramatic improvement 

in accuracy going from t = 0.1 to t = 1.0. After that there 

is not much gain in classification accuracy going to t = 2.0. 

These experiments show that the thicker lines produce 

greater accuracy (see Table 1 for more details).  

 

3.2 Size of Artificially Created Images 

   Four different experiments were conducted to see the 

effect of the size of artificially created images on CNN 

classification accuracy. In these experiments, only the size 

of images was varied. The CNN input dimension was 

matched to the image size, but all other hyper-parameters 

remained unchanged. For each of the 4 experiments 5 

different runs were performed, and the average of the 5 

runs is reported on the test accuracy. Having images larger 

than 100x100 makes the accuracy drop significantly. 

Accuracy such as 51.75% and 48.24% is the result of the 

CNN not being able to converge during training. This is 

due to the hyper-parameters of the CNN. The hyper-

parameters were tuned manually by trial runs and 

checking on much smaller images. Optimization of hyper-

parameters for a CNN is out of scope for this study and it 

the topic of the future studies.. 

 

Figure 3: Projection Line Thickness with different t values. 

Image 1, 2 and 3 were randomly saved from the experiment. 

4th column shows the t value used in the corresponding row. 

Table 1:  Accuracy results using different line thickness. 

Run # t =0.1 t =1.0 t =2.0 

1 48.24% 71.92% 71.05% 

2 72.80% 71.92% 73.68% 

3 75.43% 70.17% 71.05% 

4 48.24% 74.56% 72.80% 

5 71.92% 76.31% 73.68% 

Average 63.23% 72.97% 72.45% 

 

Figure 4: Examples of different image sizes used in 

experiments. Larger images produce much more detailed line. 

Table 2: Accuracy dependence on the image size for data sets.  

Run # 50x50   100x100 200x200  300x300 

1 74.56% 71.92% 51.75% 51.75% 

2 65.78% 71.92% 48.24% 51.75% 

3 74.56% 70.17% 51.75% 51.75% 

4 72.80% 74.56% 72.80% 51.75% 

5 76.31% 76.31% 75.43% 48.24% 

Average 72.80% 72.97% 59.99% 51.05% 
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   Experiments were also performed to show that an 

extensive search is not needed for satisfactory results. For 

this set of experiments the number of epochs was the only 

variable being changed. Three different experiments were 

conducted with 5 runs for each experiment. In the first 

experiment, the number of epochs was set to 1, i.e., only 

one set of randomly selected coefficients was used to do 

the transformation and evaluation of the system. For the 

second and third experiments, the number of epochs was 

set to 20 and 100, respectively, i.e., 20 and 100 different 

sets of randomly chosen coefficients to transform the data 

were evaluated on producing the highest classification 

accuracy. 

 

   Table 3 contains the experimental results for the random 

search algorithm, which is used for selecting coefficients. 

The last row has the averages of the 5 runs for each of the 

experiments with different number of epochs used. There 

is a small improvement going from epochs 1 to epoch 20. 

Experiment with 20 epochs had CNN models trained on 

20 different representations of data, rather than just 1. 

However, based on our experiments, going to 100 epochs 

does not further improve the results.  

   The random search experiments show that the search for 

coefficients does not have to be large. There is abundant 

amount of linear functions, which can be used for the 

transformation of data. While a linear function may exist, 

that produces the best separation of data, it is not required 

for data transformation. 

 

4. DATA SETS 

 

   This section, describes the used datasets and 

preprocessing done to them. These datasets vary in 

number of classes, number of instances, and number of 

attributes per instance. Several of these datasets are from 

the UCI Machine Learning Repository [Lichman, 2013]. 

Table 4 summaries these datasets.  

   The Swiss Roll dataset [Surendran, 2014] is a 

benchmark used to test dimensionality reduction 

algorithms. It has 1600 instances equally spread out 

among 4 classes. There are two subsets of the Swiss Roll 

Dataset: 2-D and 3-D.  

   The Wisconsin Breast Cancer (WBC) dataset is from the 

UCI ML repository. It consists of 699 instances with 11 

attributes. We removed instances with missing values. The 

resulting 683 instances contain 444 benign cases and 239 

malignant cases. The dataset is normalized to [0, 1] 

interval.  

    The wine quality data are also from the UCI ML 

repository. It is composed of red wine and white wine 

datasets with 1599 and 4898 instances, respectively. Both 

subsets have 11 attributes. Red wine quality has 6 

unbalanced classes, with most of the instances belonging 

only into 2 classes. White wine quality dataset has 7 

classes, and it is unbalanced too. Both subsets are 

normalized to [0,1] interval in each attribute. 

    Diabetic Rectionopathy Debrecen Dataset is also from 

the UCI ML repository. These data belong to two classes 

with and without signs of Diabetic Rectionopathy (DR, no 

DR). The data contain 1151 instances with 18 attributes. 

The classes are balanced with 540 instances with no signs 

of DR and 611 instances with signs of DR. Each attribute 

is normalized to [0,1] interval.      

    To test the robustness of the data transform method on 

high dimensional data, a subset of Modified National 

Institute of Standards and Technology (MNIST) database 

was used.  This subset consists of 1000 instances from 

each digits 0, 1 and 2, totaling in 3000 instances. The 

original images are 28x28 pixels (784 dimensions). To 

avoid the curse of dimensionality, we removed the 

padding around the images by cropping only the digit 

portions, resulting in images of size 22x22 pixels (484 

dimensions).  

 

5.  EXPERIMENTAL RESULTS 

 

   For classification, we used several CNNs to evaluate the 

transformation of numerical data with lossless 

visualization provided by the GLC-L considering CNN 

classifiers as one of the most powerful image 

classification tools [Zisserman, 2014]. For a fair 

comparison of performance of the data transform system 

on artificially created images, we conducted two sets of 

experiments for each dataset. In the first one, the raw 

numerical data are the CNN input. In the second one, the 

data transformed with GLC-L are the CNN input. All over 

the experiments, the hyper-parameters of the CNN 

remained the same. For the data transformation system, 

we used the following setting in final experiments: 

 t value of 1.0; 

 size of artificial images 50x50; 

 20 epochs with the data transformation system; 

 10-fold cross validation. 

   The experiments were carried out on the CWU 

supercomputer (IBM Power8), taking advantage of the 

GPU clusters. The system was implemented in Python, 

using the Keras CNN implementation. To compare the 

Table 4:  Quick overview of the datasets used in the 

experiments. 

Dataset Instances Attributes Classes 

Swiss Roll 2-D 1600 2 4 

Swiss Roll 3-D 1600 3 4 

Wisconsin 683 9    2 

Red Wine 1599 11    6 

White Wine 4898 11    7 

Diabetic 1151 18    2 

MNIST-Subset 3000 484    3 

 

Table 3:  The accuracy variation for different epochs and runs.  

Run # Epochs=1 Epochs=20 Epochs=100 

1 64.03% 66.78% 66.78% 

2 68.42% 71.05% 65.78% 

3 68.42% 64.03% 69.29% 

4 63.15% 73.68% 68.42% 

5 67.54% 69.29% 65.78% 

Average 66.31% 68.96% 67.21% 
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classification of the two sets of experiments two different 

CNN architectures had to be used. We used a regular CNN 

architecture to classify artificially created images and 

constructed 1-DC convolutional neural network to 

classify vectorial (non-image data). They use the same 

Adam optimizer [Kingma, 2017] with the learning rate set 

to 0.0001. Both networks were set for 1000 training 

epochs with an early stopping checkpoint. The training 

will stop if the validation accuracy for training is not 

improved over 100 epochs. The 1-DC CNN architecture 

used to numerical data is the following: 

 1-D Convolutional Layer with 64 output channels, 

filter length of 2 and rectified linear unit (RELU) 

activation 

 Drop out layer with fraction of input units to drop set 

to 0.4 

 Fully Connected Layer with 1024 output nodes and 

RELU activation 

 Fully Connected Layer with number of output nodes 

equal to the number of classes, with a softmax 

activation 

   The architecture of the CNN used for classification of 

images is the following: 

 Convolutional Layer with 64 output channels, a 

kernel shape of 2x2, stride of 2x2 and RELU 

activation 

 Convolutional Layer with 64 output channels, a 

kernel shape of 2x2, stride of 2x2 and RELU 

activation 

 Pooling layer with pooling size of 2x2 

 Drop out layer with fraction of input units to drop set 

to 0.4 

 Convolutional Layer with 128 output channels, a 

kernel shape of 2x2, stride of 2x2 and RELU 

activation RELU Convolutional Layer with 128 

output channels, a kernel shape of 2x2, stride of 2x2 

and RELU activation 

 Pooling layer with pooling size of 2x2 

 Drop out layer with fraction of input units to drop set 

to 0.4 

 Fully Connected Layer with 256 output nodes and 

RELU activation  

 Drop out layer with fraction of input units to drop set 

to 0.4 

 Fully Connected Layer with number of output nodes 

equal to the number of classes, with a softmax 

activation 

 

   The selection of these settings are the results of several 

trial runs. As we mentioned above, the optimization of the 

network architecture is out of the scope of the current 

research.       

      The original MNIST-Subset was not used in the 1-DC 

CNN because they are already images. Instead, they were 

evaluated with the CNN architecture used for 

classification of the artificially created images. Table 5 

contains results for 7 datasets for the raw input data with 

1-DC CNN and for transforming numerical data with 

GLC-L and classifying images with a regular CNN. The 

results for 1-DC CNN are reported using 10-fold cross 

validation. The results for "Transform + CNN" are the 

average of 20 runs using the data transformation system 

with CNN trained in 10-fold cross validation. 

    

   For CNN classification, the angles between lines in 

polylines that represent n-D points were selected as 

follows. We generated ten different sets of angles {Qi} to 

produce polylines, and computed the accuracy of CNN 

classification of polylines for each {Qi}. The best 

accuracy among these {Qi} is reported. We also conducted 

an experiment with WBC data and MNIST-subset 

polyline images contracted to 25x25 pixels, in order to test 

if the low resolution of image would be sufficient to get 

high accuracy scores. This experiment has shown that 

CNN is capable to find patterns with significant noise 

produced by lowering the image resolution. The resulting 

accuracies of 98.54% for WCB and 89.83% for MNIST-

subset are similar to the accuracy rates obtained for the 

higher resolutions. Next, it opens the opportunity to get 

CNN model faster by decreasing images to 25x25 pixels.  

        

   Fig. 5 shows samples of polylines found for the CNN 

with the best accuracy on WBC polylines.  In Figure 5, 

humans immediately discover two related features: length 

and height of the top point of the curve as discrimination 

features. These features help to explain the high accuracy 

of CNN on WBC data, even with the drastic decrease of 

the resolution to 25x25 pixels. These features are robust 

to the decrease of resolution. The high accuracy and 

presence of such simple features gave us an insight to 

search for a simpler classification rule understandable by 

a human. The first idea is to check the accuracy of 

Table 5:  Comparison of the results considering several 

data collections and two types of CNNs. 

Dataset 1-DC CNN Transform + CNN 

Swiss Roll 2-D     72.50%         97.43% 

Swiss Roll 3-D     96.18%         97.55% 

Wisconsin     96.92%     97.22% 

Red Wine     60.65%     60.93% 

White Wine     55.91%     60.76% 

Diabetic     73.75%     69.04% 

MNIST-Subset     99.53%     92.93% 

 

Figure 5: Random samples of WBC data visualized in GLC-L 

for the CNN model with the best accuracy.   
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classification using only the Y coordinate of the top point 

of each polyline. 

    Fig. 6 shows the distribution of this feature. It confirms 

this simple hypothesis. With a threshold at 250, practically 

all cases below this threshold are in class 0 and all the rest 

are in class 1. It means that attributes of WBC data with 

larger values and located more vertically in the figure 

contribute more for the sample to be in class 1. This 

classification rule is similar conceptually to the linear 

classification rule described in [Kovalerchuk, Dovhalets, 

2017] for WBC data.   

   It shows that when complimentary simple rules exist 

they can be found by multiple methods. It allows getting 

more confidence in such discovered rules and making 

ensembles of them in the attempt to improve the total 

accuracy. For data with more complex models, CNN and 

other neural networks on artificial images open the 

opportunity to discover such models in images. It also 

allows tracing the network to find understandable features 

that led to the model similar to described in [Mao et al, 

2014].  

 

 

6.  CONCLUSION 

   

Our proposed approach shows how to use lossless 2-D 

visual representation of multi-dimensional data for deep 

learning on CNN architectures. It allows getting: (1) 

classification accuracy comparable with those obtained by 

the CNN on data non-converted to images as Table 5 

shows, (2) visual insight on efficient classification 

features as Fig.  5 shows, and (3) visual insight on 

simplification and explanation of the discovered models 

for the domain experts who are not data scientists as 

Figure 6 shows.  

      In addition to classification and visualization, GLC-L 

allows better understanding of the data, which a dataset in 

its raw representation is lacking. It is reached by 

interpreting vector data as an image. The benefits of using 

the image classifiers such as CNN are that they exploit the 

spatial representation of the pixels in the image (via 

convolution) by mimicking the human visual cortex.   

     In the future, this conversion opens a new opportunity 

for resolving long-standing ML challenges of model 

explanation, controlling model overfitting and 

overgeneralization. Both can come from the combination 

of computational tools suggested in this paper and the 

unique human perceptual abilities to digest easier a larger 

number of features and outliers in the visual form than in 

the numeric form. The idea of GLC visual approach for 

controlling over-fitting and overgeneralization in ML is to 

allows a domain expert to see n-D data in 2-D as it is 

shown in Fig. 1 and then to limit the areas where the 

possible n-D points can be located in these visualizations 

[Kovalerchuk, 2018]. The combination of GLC-L and 

CNN can expand this possibility by visually controlling 

the areas around the polylines uses by CNN for 

classification.       
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Figure 6: Distribution of values of Y coordinate of the top 

points of all polylines for WBC data. 
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