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ABSTRACT 

COLD TOLERANCE, DIAPAUSE AND WINTER SURVIVAL OF THE BROWN 

MARMORATED STINK BUG (HALYOMORPHA HALYS) 

 

by 

 

Naomi Elizabeth Sibayan 

 

March 2018 

 

The brown marmorated stink bug, Halyomorpha halys, is native to eastern Asia and is an 

invasive pest in the United States. Limited research has been done regarding the factors 

influencing this species’ winter survival within invaded northern regions. Cold tolerance has 

been previously evaluated in the eastern United States, bot nut within western populations. 

Winter diapause. Along with any potential links between diapause and cold tolerance remain 

unstudied. I examined characteristics of cold tolerance, diapause and overwintering sites to 

evaluate the factors contributing to the winter survival and, ultimately, persistence of this pest 

within central Washington. This study measured seasonal changes in cold tolerance of H. halys 

by determining its cold tolerance strategy and supercooling ability via the supercooling point 

(SCP). Metabolic suppression (as measured by flow-through respirometry) indicated that 

diapause was induced by a critical photoperiod of 11h:13h (L:D), indicating a process potentially 

influenced by multiple environmental factors. Also at this time, females no longer had developed 

eggs in the ovaries, indicating reproductive arrest. Overwintering sites monitored with 

temperature dataloggers measured daily minimum temperatures at an outdoor enclosure and 

naturally-selected overwintering site. We verify that populations of H. halys are chill-intolerant 

(i.e. a portion of individuals die prior to freezing) with minimum cooling temperatures between -

10 °C and -15 °C causing survival rates to drop in field and lab populations by 73% to 6% and 

86% to 14%, respectively. Cold tolerance significantly differed by light-hour regime (F(3) = 4.55, 
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p-value = 0.0048), sex (F(1) = 9.49, p-value = 0.0026), and mass (F(2) = 4.62, p-value = 0.033). 

The mean supercooling point (± SEM) of individuals in central Washington was -12.6 ± 0.2 °C. 

Diapause was observed to be a prerequisite to achieving maximum levels of cold tolerance and 

must also involve a subsequent period of cold acclimation. Given their extent of cold tolerance, I 

conclude that under natural conditions, H. halys cannot effectively survive winters within Central 

Washington State, a conclusion supported by the 100% mortality in an outdoor population. To 

persist in this region, H. halys will likely need to rely on human-built thermally-insulated 

refugia. 
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INTRODUCTION 

The brown marmorated stink bug, Halyomorpha halys (Stål 1855) (Heteroptera, 

Pentatomidae), is native to east Asia, and was first identified as an invasive insect species in the 

United States in 2001 in Allentown, Pennsylvania (Hoebeke & Carter 2003). Presently, H. halys 

has been detected in 42 states and the District of Columbia in the United States (Northeastern 

IPM Center 2018). This species is an increasingly serious pest for many agricultural crops, 

resulting in significant economic loss due to feeding injury. Damage exceeding $37 million on 

apple crops in the Mid-Atlantic region alone demonstrates the destructive potential of this pest 

(United States Apple Association 2010). Both nymphs and adults use their probosci to pierce 

plant surfaces, inject digestive enzymes and suck plant fluids causing severe plant tissue damage 

(Rice et al. 2014). This pest has a broad host range including annual row crops, orchard fruits, 

ornamental and non-crop plants (Leskey et al. 2012; Lee et al. 2013; Rice et al. 2014; Haye et al. 

2015; Bergmann et al. 2016), and readily moves between hosts based on seasonal fruit 

availability (Chung et al. 1995, Funayama 2004). A broad host range and the tendency to shift 

host-plants augment the impacts of H. halys, thus extending its growing season and allowing it to 

outcompete native stink bugs (which typically have smaller seasonal outbreaks). In conjunction 

with its feeding habits, adult H. halys are highly mobile and capable of dispersing >2 km (Zhang 

et al. 1993), which poses challenges to managers attempting to effectively monitor and contain 

populations. Unlike other species, which are limited by the location or seasonality of a specific 

host species, the extensive host range and high mobility of H. halys make it unlikely that 

resource availability is a limiting factor in the geographic range of H. halys. Current management 

practices have consisted of season-long repeated insecticide treatments, resulting in disruptions 

of previous integrated pest management (IPM) programs (Leskey et al. 2012).  
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H. halys may have the ability to establish populations across the entirety of the 

contiguous United States based on degree-day models (Holtz & Kamminga 2010), ecological 

niche modeling (Zhu et al. 2012), and models involving phenology and population dynamics 

(Nielsen et al.  2016; Nielsen et al. 2017). While much research has been done on the damage 

caused by H. halys (e.g., host-plant impacts and insect ontogeny) that exclusively occurs during 

the agricultural growing season (Rice et al. 2014), researchers have just begun to investigate the 

factors affecting the winter survival of this pest. Insects, being ectothermic, are strongly 

influenced by ambient air temperatures, which inevitably dictate their life histories (e.g., 

development and mortality). As H. halys continues to move into more northern temperature 

regions, winter conditions will strongly affect its overall geographic distribution and population 

dynamics. The ability for a pest to survive these adverse conditions, relies heavily on multiple 

physiological factors. To better understand the abilities H. halys possesses for winter survival 

and its presence within the western United States, we studied the physiological factors of cold 

tolerance and diapause within Washington state.  

Insects living within the Temperate Zone, occupy regions with seasonal, environmental 

variation, and must cope with periods of adverse conditions. The northern limits of other stink 

bug species have been linked to monthly winter minimum temperatures (Musolin 2007). An 

important adaptation for these insects has been the ability to gain effective physiological 

tolerance against cold, adverse conditions. This ability to survive is commonly referred to as cold 

tolerance (also “cold-hardiness”) and is a well-documented aspect of insect overwintering 

(Leather et al. 1993). Of the pentatomid species studied in relation to overwintering in the 

Temperate Zone, most species do so as adults (Saulich & Musolin 2012). For these species, there 

are three main cold-tolerance strategies: freeze tolerance, freeze intolerance, and chill intolerance 
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(Lee & Denlinger 2010). Freeze tolerance is the ability to tolerate ice forming within the body. 

Insects exhibiting freeze intolerance survive only to the point of freezing, and chill-intolerant 

insects face mortality before freezing occurs. Most temperate insects are freeze-intolerant within 

the Northern Hemisphere, and no known species of Heteroptera has been found to tolerate 

freezing (Bale 1991; Saulich & Musolin 2012). The point at which body fluids freeze can be 

altered via supercooling (SCP): reducing the temperature of ice crystallization (Tc) of the body 

fluid. This is typically accomplished through various mechanisms: polyol cryoprotectant 

accumulation (e.g. glycerol, sorbitol, etc.), voiding the gut of ice-nucleating agents, antifreeze 

proteins, and undergoing biochemical adjustments (Lee 1991, Leather et al. 1993, Koštál et al. 

2004; Koštál et al. 2008). The determination of the SCP can be a good place to start when 

investigating cold tolerance, because it serves as the theoretical minimum temperature at which 

an insect can survive.  

The seasonal cold tolerance of H. halys was investigated by Cira et al. (2016), where they 

measured the supercooling ability and determined the cold tolerance strategy of this pest in the 

eastern United States. Mean SCP measurements in Virginia (-13.48 ±0.4 °C) and Minnesota (-

16.93 ±0.23 °C), showed that the region of cold-acclimation, rather than geographical origin 

strongly determined SCP ability. While SCP served to predict field mortality rates, it was 

determined that H. halys exhibits the cold tolerance strategy of chill intolerance, in which adults 

experienced high mortality rates above the temperature at which they froze. Because H. halys 

was first introduced to the United States on the eastern coast, the majority of research has 

focused on these eastern populations. However, by 2004 West Coast populations of H. halys 

became established, thus offering an opportunity to study geographic variation (Hoddle 2013; 
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Ingels & Varela 2014). In this study, I investigated the physiological responses to declining 

temperatures that have previously remained unstudied in the western United States.  

In many temperate insects that overwinter, cold tolerance is known to evolve 

simultaneously with diapause, another adaptation that strongly contributes to insect survival 

during adverse conditions. Diapause is a period of hormone-regulated (endogenously-mediated) 

dormancy that allow insects to reduce energy consumption during periods of inactivity due to 

adverse environmental conditions (Mansingh 1971). For ease of understanding, I will follow the 

terminology of Koštál (2006), who defines the stages of diapause through an eco-physiological 

perspective. Diapause as a physiologically dynamic process, with factors that fluctuate by time, 

responsiveness, sensitivity, and intensity. The five phases of diapause include the induction, 

preparation, maintenance, termination, and finally post-diapause quiescence. The induction 

phase occurs during a “sensitive phase” (genetically mediated) where environmental cues are 

perceived and transduced into a physiological switch from direct development to diapause and 

begins when an environmental cue (e.g., photoperiod, temperature, etc.) reaches a critical level. 

The preparation phase occurs in some insects when the induction phase is not immediately 

followed with diapause initiation, and involves a period of behavioral and physiological changes, 

that are necessary for later expression of diapause. Diapause initiation is the beginning phase of 

what is known as the period of “diapause development” where direct development 

(morphogenesis) ceases, and metabolic rate is significantly suppressed. The maintenance phase 

involves the persistence of endogenous developmental arrest, even when environmental 

conditions may be favorable for continued development, and metabolic rates remain relatively 

low and constant. The termination phase involves a reduction in diapause intensity, ultimately 

allowing for the potential resumption of development, which has the advantage of synchronizing 
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a post-diapause reproductive population. Lastly, insects in post-diapause quiescence have the 

potential to resume “normal” developmental and metabolic processes in the presence of 

favorable conditions.   

The behavioral and physiological changes of diapause differ between species but can be 

manifest and measured as suppressed metabolic rate and arrested development (e.g. reproductive 

status) (Tauber et al. 1986). Diapause is often necessary for the synchronization of reproductive 

individuals once sufficient resources are again available (Musolin 2007; Mansingh 1971) and can 

occur in a species either through an obligate (a fixed component of ontogeny) or facultative 

(responsive to environmental token stimuli) process (Koštál 2006). Many environmental cues 

can regulate diapause induction and termination, with photoperiod and temperature being the 

most common. As days get shorter, north-temperate insects cease development, suppress their 

metabolism, and often improve cold tolerance. The timing of diapause development is critical, 

especially in species where cold tolerance and diapause are linked, as in some pentatomid 

species (Šlachta et al.  2002). Entrance into diapause too early cuts short the season that allows 

direct development, whereas entrance too late can leave the insects susceptible to fatal cold 

temperatures early in the fall, and can present the most immediate impediment to range 

expansion in the temperate zone (Bradshaw et al. 2000, 2001). Determining how insects can 

overcome the physiologic challenges associated with extreme weather conditions is a critical, 

particularly in pest scenarios. Effectively understanding the dynamics of a population throughout 

its entire life cycle, including the seasonal periods where no direct environmental interaction 

occurs but the population persists, aids in the forecasting of future outbreaks, and predictions of 

long-term impacts.   
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Within their native range H. halys is known to undergo facultative diapause (Watanabe 

1978): diapause is photoperiod-dependent with temperature playing a synergistic role in the early 

phases (e.g. induction and preparation) (Saulich & Musolin 2012;Watanabe 1979; Niva & 

Takeda 2002; Niva & Takeda 2003). The critical photoperiod (daylength that induces diapause, 

also referred to as photoperiodic threshold) for diapause termination in the spring has been 

extensively studied, and has an estimated daylength between 13.5h and 12.7h (Watanabe 1979; 

Yanagi & Hagihara 1980; Nielsen et al. 2016; Nielsen et al. 2017). However, prior research has 

also cautiously assumed that this critical photoperiod serves the same function for diapause 

induction in the fall, even as there currently lacks sufficient quantitative support for this notion. 

An accurate estimation of the critical photoperiod in the fall is necessary to predict the potential 

for northern range expansion of this species, particularly if the photoperiod bears the risk of 

becoming maladaptive in colder regions (Musolin 2007). Like other stink bugs (e.g., Nezara 

viridula; Musolin & Numata 2003a, 2003b), photoperiod is the primary cue for diapause 

induction in H. halys (Niva & Takeda 2003), with late instars (4th & 5th) and adults being 

sensitive to this environmental stimulus. The northward expansion of H. halys may be limited in 

colder climates, including the Pacific Northwest, where cold weather arrives before diapause is 

induced via shorter photoperiods.   

Cold tolerance and diapause occur simultaneously in temperate insects, which 

complicates our ability to understand one independently of the other. Additionally, while there 

may exist certain endocrinological links between the two, one cannot assume the basis of one on 

account of the other (Denlinger 1991). The cold tolerance of this species has been investigated in 

the eastern United States, but the relationship between that and diapause has remained 

unresolved. One strategy to distinguish the relationship between these two factors, is to compare 
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the physiological responses of a species to decreases in ambient temperature (through natural 

seasonal acclimatization and artificial acclimation) in both diapausing and non-diapausing 

populations (Šlachta et al. 2002). Through this comparative approach, one can evaluate: (1) the 

regulatory mechanisms responsible for the physiological changes in overwintering insects and 

(2) of how each physiological response is reflected in the insect’s acquired level of cold 

hardiness. 

In this study, we present data that improves our understanding of  (1) the characteristics 

of diapause throughout the onset and duration of the winter season, (2)  the seasonal changes in 

cold tolerance of overwintering adults in the western United States, and (3) the potential links 

between the onset of diapause and cold tolerance in adults via changes in the physiological 

parameters of Halyomorpha halys. Determining how H. halys overcomes physiologic challenges 

associated with adverse winter conditions is critical in forecasting potential outbreaks, the 

potential for range expansion to the north, and predicting their long-term impact within a region, 

especially during this period of warming temperatures.  
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METHODS 

Collection and Monitoring of Live Specimens 

Adult and late-instar (3rd – 5th) nymphs were collected within Washington state in 

Yakima and Walla Walla, WA, at two weeks to monthly intervals from April to October. 

Individuals were collected from host-plant vegetation and human structures using insect nets, or 

on drop cloths following beating of vegetation with wooden sticks. Individuals were stored 

within BugDorm Rearing and Observation Cages (#1452A, BioQuip Products) to allow for 

sufficient air ventilation and prevent injury from elevated temperatures, and transported to an 

outdoor shelter in Yakima, WA (46 °.60’3.5176” N latitude and -120 °.61’6.6340” W longitude).  

H. halys reared and maintained outdoors were kept within BugDorm 2 rearing cages (#1462C, 

Bioquip Products), with the outdoor cages housed within a large luminite outdoor cage 

measuring 6 x 12 x 6’ (#1412C, Bioquip Products), all secured within a wooden shelter to ensure 

the security of the colony and prevent the potential for escape. This outdoor enclosure allowed 

for the stink bugs to experience the naturally occurring environmental temperatures experienced 

within the field. Temperature dataloggers (HOBO Pro v2, Onset Computer Corporation) were 

placed within and outside the outdoor enclosure to monitor both ambient-air temperature (°C) 

and light intensity (units)/photoperiod throughout the seasonal transition of fall to winter 

(October – February). This population of H. halys were sampled at three-week intervals 

throughout Fall and Winter for experiments of both cold tolerance (e.g. cold-tolerance strategy 

and supercooling point), and diapause regulation (e.g. metabolic rate and reproductive status). 
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A portion of the collected H. halys adults were transported to the Central Washington 

University Vivarium, a facility designed to contain animals and pathogenic material, thus 

appropriate for the quarantine of H. halys within Kittitas county. The facility includes negative 

pressure air flow (filtered before venting to outside), multiple-door entry to prevent escapes, 

limited-access security, and individually temperature- and photoperiod-controlled chambers. 

These laboratory colonies were housed within BugDorm 1 rearing cages (#1452, Bioquip 

Products), and kept under constant environmental conditions: a reproducing Long-day light 

regime of 16L:8D, a temperature at 25 °C, and 60 ±5% relative humidity. A portion of adults 

were assigned to a breeding colony and housed separately. Offspring produced by the breeding 

colony supplemented the field-collected laboratory populations. Combined these remaining 

individuals were designated toward experiments. This laboratory population of H. halys was 

sampled for experiments of both cold tolerance (e.g. cold-tolerance strategy and supercooling 

point), and diapause regulation (e.g. critical photoperiod, metabolic rate and reproductive status). 

All stink bug colonies were reared/maintained on raw organic vegetables (tomatoes, carrots, 

green beans, snap peas, watercress shoots, as were available), organic almonds, and organic figs 

and water, which was refreshed every other day. Nymphs hatched from the reproductive 

breeding colonies were housed separate of the adults within smaller clear plastic containers with 

mesh lids for proper air ventilation, with nymphs of like developmental stage grouped together to 

prevent predation.  

Field measurements of microclimate at naturally-selected and artificial (field enclosure) 

overwintering sites were necessary to understand how our local climate affects the winter 

survival of H. halys. These monitored populations (from both Yakima, WA and Walla Walla, 

WA) also served as a source for season-long collection of H. halys for tests determining cold 
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tolerance and diapause. Winter temperatures experienced by H. halys were also monitored from 

a naturally chosen overwintering site on the outside of a residential home near Pioneer Park in 

Walla Walla, WA. This site featured cedar shingle siding where H. halys were found to 

aggregate within the crevices underneath the exterior paneling of the structure. This house is 

within a few blocks radius of Pioneer Park (46.0662 °N, 118.3178 ° W), a well-established site 

of H. halys. A dual-probed temperature datalogger (add make/model) was also placed at this site 

to monitor the internal temperature beneath the exterior paneling, as well as the external 

ambient-air temperature from October 2016 to June 2017.  

Diapause regulation 

Metabolic Rate 

To characterize diapause within this species the timing of diapause-induced metabolic 

suppression was determined in both the outdoor population (dictated by seasonal timing and 

natural cues), and the laboratory population (dictated by modified photoperiod while temperature 

remained a constant), following the methods of Irwin et al. (2001) and Lester and Irwin (2012). I 

monitored the seasonal changes in metabolic rates observed in the outdoor population by 

measuring the CO2 production of stink bugs in three-week intervals throughout the fall and 

winter seasons beginning in mid-August to late-January (n = 7 per week). Similar changes in 

metabolic rate were monitored in the laboratory population, but sampled at intervals dictated by 

the Light-dark (LD) regime as described below, in our attempts to identify the critical 

photoperiod for diapause induction. The total number of individuals analyzed for the outdoor and 

laboratory populations was n = 56 and n = 107 respectively.  
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Individuals were pre-weighed and inserted into one of seven glass respirometry 

chambers, with an additional chamber that was run empty as a control, all enclosed within an 

incubator with no light present. All eight chambers included a section of pipe cleaner ~ 4cm in 

length to provide the insect with a textured surface to grasp and encourage a resting state. CO2 

production was measured using flow-through, positive-pressure respirometry (Sable Systems 

International) at 5, 10, and 15 °C with a one-hour holding time to achieve temperature 

equilibrium before data collection. Each chamber was flushed with fresh air for 5 min, before 

CO2 enrichment was measured for 15 min using a Licor Li-6251 CO2 analyzer. These production 

values were transformed via integration (Sable Systems Expedata) to determine the volume of 

CO2 enrichment per unit time for each individual, then divided by body mass for a final 

calculated value of CO2 per gram per hour. Three different temperatures were used to allow for 

the analysis of metabolic response to temperature, which is an indicator of metabolic suppression 

associated with diapause. 15 °C was used as the upper limit to approximate the resting metabolic 

rate that occurs during normal activity, which should be consistent throughout the study period, 

regardless of seasonal temperatures. Any depression observed at this temperature would indicate 

that environmental temperature was not the sole regulator of metabolism, and the insect was 

therefore experiencing endogenous metabolic suppression. 

Reproductive Status   

Female stink bugs from both the photoperiodic threshold and metabolic rate experiments 

were evaluated for reproductive arrest, a common indicator of diapause, via dissection of the 

gonads. Immediately following metabolic rate and cold tolerance measurements, each stink bug 

was dissected and evaluated for its reproductive status, with reproductively arrested females 

indicated by the presence of immature oocytes (Niva and Takeda, 2002). Insect legs, wings, and 
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scutellum were removed prior to dissection, and each insect was pinned ventral side-down in a 

petri dish. General Ringer’s solution was used for all dissections. 

Critical Photoperiod 

Adult H. halys were exposed to decreasing day-length to determine the critical 

photoperiodic cue for diapause induction as proposed by Šlachta et al. (2002). Late instar 

nymphs are known to be photo-sensitive (Niva & Takeda date), so to ensure that newly emerged 

adults were allowed adequate sensitive exposure to the experimental photoperiods, individuals 

from the breeding colony reared to the 5th instar were transferred from the CWU Vivarium 

(temperature 23 °C at 60% humidity) to an incubator (temperature 20 °C at 60% humidity). The 

relative age of the 5th instars were tracked via age groups, in which one age group is defined as 

all egg clusters laid within a two-week period.  Upon transfer from the vivarium to the incubator, 

the available photoperiod of 16L:8D was decreased to the next lowest designated LD regime of 

15.5L:8.5D. The photoperiod was incrementally reduced there-after in light-hour duration by 30-

min intervals, to end at a day-length of 12L: 12D. This step-wise progression allowed the 

individuals to transition from photoperiods known to encourage reproduction, to photoperiods 

that could potentially serve as a token stimulus for diapause induction. The duration of each 

photoperiod was determined by observed natural seasonal changes in daylight duration 

experienced in Yakima, WA, and required a total of 105 days. At the transition of one LD regime 

to the next, individuals were sampled from each assigned age group for a total sample size of n = 

10, in which both metabolic rate and reproductive status were measured as described above. 
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Cold Tolerance 

Cold Tolerance Strategy  

Measures of cold tolerance strategy in H. halys, were modelled after the methods of 

Šlachta et al.  (2002) and Cira et al.  (2016). Three groups of insects were used: (1) field-

maintained adults from the outdoor colony representing the natural course of seasonal cold-

acclimation, (2) non-diapausing adults produced in the laboratory (reared at a long-day 16L:8D 

regime at 23 °C), and (3) diapausing adults produced in the laboratory (reared at a short-day 

12L:12D regime at 23 °C; Niva & Takeda 2002). Groups 2 and 3 were established from field-

collected 5th instar H. halys (F2 generation) from late-August through September of 2017, that 

were brought into the lab and maintained at the desired LD regimes as they emerged into adults. 

These two groups underwent a cold-acclimation process consisting of a gradual decrease in 

temperature over the course of 15 days: 20 °C (2days)  15 °C (2 days) 10 °C (2 days)  5 

°C (2 days)  0 °C (7 days). Photoperiod regimes were maintained throughout the cold-

acclimation process from 20 °C to 5 °C, according to the particular LD regime group (either LD 

or SD), then transitioned into continuous darkness at the final holding phase of 0 °C. Once the 

cold-acclimation period was finished, insects were tested for levels of chill intolerance. 

H. halys were randomly assigned to one of three temperature treatments (-5, -10, -15 °C). 

In group 1 (field-maintained, naturally acclimated adults), all three treatments were sampled at 

three-week intervals beginning early-September into late-February 2017. The laboratory-sourced 

groups 2 and 3, were sampled at the end of the artificial cold-acclimation period. For all three 

groups, insect cooling and thermocouple temperature monitoring were done using the same 

cooling methods. Stink bugs were weighted and placed in a 50mL glass test tube, with a copper-

constantan thermocouple held in place against the bug’s body using a foam plug, and then sealed 
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with an addition foam plug. Body temperature of each bug was monitored using a (USB-TEMP 

Measurement Computing get model version) data logger, and the output continuously tracked 

during cooling using data acquisition software (TracerDAQ). The test tube was placed into a 

refrigerated alcohol cooling bath (RTE-740, Neslab) to reach the desired minimum temperature 

treatment. For each trial, the temperature was reduced from room temperature to the desired 

temperature treatment at a rate of 0.5 °C/minute, held at this minimum for 10 minutes, then 

allowed to warm to room temperature at the same rate. At room temperature, each insect was 

provisioned with food and water, and placed within individual plastic containers to be monitored 

daily for mortality over the course of four days. Mortality was defined as any insect that lacked 

any physical response to being gently prodded with a small brush. Mortality for this analysis also 

included moribund insects, as defined as having the inability to right oneself after ~10s, or the 

action of coordinated crawling. The percent mortality was collected for each temperature 

treatment throughout the sampling period from fall into winter. Additional individuals from each 

laboratory population were tested for supercooling ability. For this experiment, group 1 sampled 

n = 48 adults, while groups 2 and 3 consisted of n = 30 – 50 adults per group.  

Supercooling Point  

We monitored supercooling ability through the seasonal changes in the naturally-

acclimated outdoor population, and within the laboratory population undergoing artificial cold-

acclimation. The outdoor population was sampled at three-week intervals throughout the fall and 

winter seasons from late-September to late-January, with these sampling occurrences then 

grouped by season (Fall = Sept – Nov, Winter = Dec – Feb) for statistical analysis. The 

laboratory population was sampled after a gradual cold-acclimation process (described above) 

and separated by light-dark (LD) regime (long-day or short-day). Insect cooling and 



 

15 

thermocouple temperature monitoring were done using the same methods as described above for 

cold tolerance strategy. Cooling bath temperature was reduced from 0 to -40 °C, at a rate of 2 °C 

per minute. The supercooling point was indicated by the exothermic latent heat of fusion.  

Data Analyses 

All statistics were run utilizing R version (get version) in Rstudio version (get version) with an α 

value of 0.05. Shapiro-Wilk tests for normality of residuals and a Levene test for homogeneity of 

variance across groups indicated no violations of ANOVA assumptions. Two-factor ANOVA 

was used to analyze metabolic rate (log-transformed), and supercooling point data. Multiple 

pairwise comparisons between groups were analyzed using least-squares means, and graphically 

represented as least-squares means including 95% upper and lower confidence intervals, with the 

exception of field temperature data. Paired t-tests were used to compare field-temperature data. 

The relationships between survival and temperature (via chill intolerance), and reproductive 

status and light-hour regime were determined using a binary logistic regression model. Multiple 

pairwise comparisons were analyzed using least-squares means in R with in inverse logit link 

argument to produce appropriate predicted probability yields (rather than predicted log yields). I 

evaluated all potential interaction terms within all models, and finding none to be significant, 

therefore they were excluded from the models.  
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RESULTS 

Diapause Regulation 

Metabolic Rate and Reproductive Status 

Metabolic rates of stink bugs, from the naturally-acclimated outdoor population, 

measured at incubation temperatures of 15, 10, and 5 °C all significantly differed across months 

in 15 °C (F(7) = 6.4, p-value < 0.001), 10 °C (F(6) = 3.9, p-value < 0.05), and 5 °C (F(7) = 2.8, p-

value < 0.05) (Fig. 1). Metabolic rates showed no significant difference between sexes over time 

for 15 °C (F(1) = 0.29, p-value = 0.5), 10 °C (F(1) = 1.7, p-value = 0.19), and 5 °C (F(1) = 3.8, p-

value = 0.056). Metabolic suppression was observed to occur beginning late-October through the 

month of November.  

 

Figure 1. Mean metabolic rates including upper and lower confidence intervals, measured at 5, 

10, and 15 °C of overwintering adult H. halys.  



 

17 

Metabolic rates of stink bugs, from the artificially-acclimated laboratory population, 

measured at 15 °C differed significantly across photoperiod (F(7) = 4.35, p-value < 0.001) (Fig. 

2). Metabolic rates did not differ significantly between sex (F(1) = 3.7, p-value > 0.05). The 

photoperiod range of 13.5L:10.5D – 12L:12D produced both a significant metabolic (Fig. 2) and 

reproductive (Χ2
(8) = 46.65, p-value < 0.05) (Fig. 3) suppression from those observed from the 

photoperiod range known to support reproduction (e.g. 16L:8D – 14L:10D). Dissections of 

female H. halys indicated both non-reproductive and reproductive individuals (Fig. 4).  

 

Figure 2. Mean metabolic rate including upper and lower confidence intervals, measured at 15 

°C of artificially-acclimated adult H. halys. Metabolic rates differed significantly across light 

hour availability (F(7) = 4.3, p <0.001). Metabolic rate response to incubation temperature 

showed an initial increase in metabolic rate during the photoperiod of 15L:9D, followed by a 

decreasing trend throughout the photoperiod transition to 12L:12D.  
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Figure 3. Proportion of reproductively active overwintering adult female H. halys. Female 

reproductive status was significantly reduced beginning within the 14L:10D to 13L:11D range.  

 

 

Figure. 4 Dissections of female H. halys indicating the presence of (A) previtellogenic oocytes 

and (B) vitellogenic oocytes. 
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Cold Tolerance 

Cold Tolerance Strategy 

Throughout the supercooling experiments, all individuals that froze died. Naturally and 

artificially cold-acclimated adult Brown-marmorated stink bugs exposed to a series of minimum 

cooling temperatures above the point of freezing, show significant differences in the probability 

of survival across temperature treatments (Χ2
(3) = 51.6, p < 0.01) (Fig. 5). Survival rates began to 

decline when temperature was reduced to -5 °C and showed a significantly reduced probability 

of survival between the two lowest temperature treatments (10 °C & 15 °C). Predicted survival 

rates significantly dropped between -10 °C and -15 °C in the field (73% to 6%) and laboratory 

(86% to 14%) populations. 

 

Figure 5. Naturally and artificially cold-acclimated adult H. halys exposed to a series of 

minimum cooling temperatures, show significant differences in the proportion survived across 

temperature treatments (Χ2
(3) = 51.598, p < 0.01).  
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Supercooling Point 

The outdoor population consisted of individuals sourced from Yakima, WA and Walla 

Walla, WA, and were housed within the outdoor enclosure in Yakima, WA. Supercooling points 

of adult H. halys did not significantly differ between populations (F(1) = 0.16, p = 0.68). 

Supercooling points from this naturally-acclimated outdoor population showed significant 

difference between seasons (F(2) = 3.32, p = 0.041), while supercooling points from the 

artificially-acclimated laboratory population differed significantly between LD regimes (F(1) = 

5.74, p =  0.023) (Fig. 6). Both populations tested also showed significant differences between 

sex (F(1) = 5.54, p = 0.021; F(1) = 9.49, p = 0.0026). 

An analysis of both populations combined showed supercooling points that differed significantly 

across light-hour regime (F(3) = 4.55, p-value = 0.0048), sex (F(1) = 9.49, p-value = 0.0026), and 

mass (F(2) = 4.62, p-value = 0.033) (Fig. 6). Neither sex nor mass were significant covariates in 

this analysis.  Supercooling points measured within the ‘fall’ group had a mean SCP of -12.6 °C 

±0.381 in females and -14.5 ±0.402 in males, while the ‘short-day’ group had a mean SCP of -

15.1 ±0.57 in females and -17.0 ± SE 0.66 in males. (Fig. 6), indicating that the ‘short-day’ 

group having significantly lower SCP values than field individuals measured during the coldest 

recorded instances of winter.  
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Figure 6. Supercooling points differed significantly across light-hour regime, sex and mass (F(3) 

= 4.55, p = 0.0048; F(1) = 9.49, p = 0.0026; F(2) = 4.62, p = 0.033) in adult H. halys. A pairwise 

comparison of light-hour regime grouped by sex showed significant differences between the 

‘fall’ and ‘short-day’ groups for both female and male stink bugs (t = 3.845(103), p = 0.0012; t = 

3.845(103), p = 0.0012).  

 

Overwintering Site Characteristics 

Temperature samples were collected at two field sites from October 2016 to April 2017 

in Yakima and Walla Walla, WA. Both sites were outfitted with two temperature data loggers to 

measure both internal and external ambient air temperatures. Temperature data differed 

significantly in Yakima (t(168) = -29.6, p < 0.05), and in Walla Walla (t(170) = -27.9, p < 0.05). 

Daily minimum ambient air temperature at the outdoor shelter in Yakima, WA experienced a 

minimum of -18.14 °C outside the shelter, and -14.96 °C within. Daily minimum ambient air 

temperature at the overwintering site in Walla Walla, WA experienced a minimum of -16.31 °C.  



 

22 

On multiple occasions ambient air temperature dropped below the average supercooling point (-

13.88 °C) observed from the adult H. halys that were housed at both sites throughout the 

sampling season. By the end of January 2017, high mortality in the outdoor enclosure in Yakima 

was observed from both the Yakima (100%) and Walla Walla-sourced (87%) populations. While 

the overwintering mortality in Walla Walla was not directly monitored, only very few H. halys 

emerged from the structure in the spring. 

 

Figure 7. Daily minimum temperature of the outdoor enclosure field site in Yakima, WA from 

10/28/16 to 4/15/17. The minimum ambient air temperature observed was -18.14 °C externally, 

and -14.96 °C within the enclosure. The dashed line indicates observed mean supercooling point 

of -13.88 °C for adult H. halys, and the shaded area indicates temperature range at which the 

least-squares means probability of survival via chill intolerance decreases from 76% to 6%.  
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Figure 8. Daily minimum temperature at a naturally-selected overwintering site of H. halys in 

Walla Walla, WA from 10/27/16 to 4/15/17. The minimum ambient air temperature observed 

was -18.14 °C externally, and -14.96 °C underneath the cedar siding. The dashed line indicates 

observed mean supercooling point of -13.88 °C for adult H. halys, and the shaded area indicates 

temperature range at which the least-squares means probability of survival via chill intolerance 

decreases from 76% to 6%.  
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DISCUSSION 

Within this species, the metabolic changes observed throughout the fall and winter 

seasons follow patterns of metabolic suppression commonly found in other temperate insect 

species. The metabolic rates of naturally acclimated adult brown marmorated stink bugs was 

endogenously suppressed, giving strong evidence of diapause. Induction was observed to occur 

in early-October, followed by a preparation phase, as indicated by metabolic rate changes prior 

to maximal metabolic suppression. This “preparation” phase of pre-diapause (Koštál 2006) is 

characterized by a rapid period of elevated respiration, followed by a gradual decrease to residual 

metabolic levels (i.e. diapause initiation phase) (Fig. 1). These results suggest that in this region, 

H. halys undergoes diapause induction in early-October, and preparation throughout the 

remainder of October into early-November, to fulfill physiological processes presumably 

necessary for effective winter survival (e.g. accumulation of energy stores, biosynthesis of 

cryoprotectant and the limiting of energetic metabolism) (Hand & Podrabsky 2000; Koštál et al. 

2004; Koštál et al. 2007). Given the mortality rates observed during early-winter and the limited 

sample populations available at the time of this study, we were unable to continue metabolic 

measurements through to the end of winter and at spring emergence. Additional sampling would 

allow a more comprehensive picture of the entire diapause process H. halys undergoes, and 

better inform the population dynamics of the subsequent growing season.  

In the fall, H. halys goes through common changes associated with diapause, with some 

difference in the timing of events than has been previously assumed. Photoperiod is the primary 

abiotic cue for diapause induction in many species of insects, including pentatomids. Prior 

research for this species has based phenology and population dynamics research on the 

assumption that a single critical photoperiod serves for both the spring termination and fall 
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induction of diapause. Phenological studies regarding diapause termination, have assumed a 

critical photoperiod of 13.5L:11.5D, while population modelling combined with field 

observations offered 12.7L:11.3D as a better estimate of the critical photoperiod at latitudes 

found in the United States (Watanabe 1979, Nielsen et al. 2016, Nielsen et al. 2017). A 

daylength of 12.7h occurs within this region in mid-September, but my study observed a 

photoperiodic response to occur in early-October when the daylength ranged from 11.3h – 11h 

(Fig. 1) While a two-week difference in diapause induction might not seem severe (particularly 

in more southern latitudes), northern regions can experience rapid seasonal changes (e.g. 

temperature drops) within this relatively short time frame, and can challenge the physiological 

preparedness of a species. To assume that diapause is driven by photoperiod alone, independent 

of other environmental factors is too simplistic. Other seasonal factors such as food availability 

and fluctuating temperatures interacting with declining photoperiod are known to alter a 

photoperiodic response in other species (Takeda & Chippendale 1982; Let et al. 1993; Saulich & 

Musolin 2012).  

In other insects, including pentatomids, temperature modifies the photoperiodic effect of 

diapause induction: elevated temperatures suppress the tendency to diapause while cold 

temperatures encourage diapause, even in the presence of an assumed critical photoperiod 

(Danilevski 1965; Saulich & Musolin 2012). In these scenarios, an effective critical photoperiod 

that successfully induces at least 50% of individuals into diapause would need to be re-evaluated. 

In addition, host-plant factors such as availability, nutritional value, and even the phenophase of 

the food source (e.g. seeds vs. leaves) can influence whether insects experience photoperiod 

sensitivity as the winter season approaches. A study into the pitcher plant mosquito (W. smithii) 

found that less food availability resulted in higher probabilities of diapause (Istock et al. 1995; 
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Saulich & Musolin 2002). This interaction of multiple environmental factors potentially 

influences the point at which H. halys begins to induce diapause within this region. Warmer 

temperatures and the presence of food sources (e.g. seed pods) were observed nearing the end of 

fall collection efforts. However, more experiments are required to identify specific cues, or 

combination of cues, that may be responsible for a more precise timing of diapause induction in 

H. halys.  

Laboratory manipulations of relevant environmental cues for diapause induction further 

supports that notion that a complex interaction of factors influences the timing of diapause 

induction in H. halys. Under controlled laboratory conditions where temperature and food 

availability were consistent, photoperiod sufficiently induced diapause at a critical photoperiod 

longer than what I observed to occur in nature. Within artificially-acclimated laboratory 

populations, photoperiod alone effectively allowed for both metabolic (Fig. 3) and reproductive 

suppression (Fig. 4) in H. halys in photoperiods ranging from 13.5L:10.5D to 12L:12D. This is 

much longer than the observed 11.3L:12.7D to 11L:13D range in the field population. The 

difference between laboratory and field results, indicates that a critical photoperiod is necessary 

but not sufficient to induce diapause within this species under natural conditions.  

Additional support for the timing of diapause induction was achieved through the 

systematic measurement and observed synchrony of reproductive arrest and metabolic 

suppression. Reproductive arrest is known to occur in H. halys prior to overwintering (Niva & 

Takeda 2003; Nielsen & Hamilton 2009) as determined through female dissections and the 

observed previtellogenic state of female H. halys found in or near overwintering sites (Nielsen et 

al. 2017). My study observed a similar timing of reproductive arrest, with the addition of the 

coinciding metabolic rates of individuals experiencing each experimental photoperiod. These 
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simultaneous measurements offer more definitive support for diapause than prior studies have 

provided. However, due to the availability of individuals during testing, sample size was 

relatively low (n = 4-8) for female dissections that assessed reproductive status, thus additional 

testing would offer greater clarification to the significance of each LD regime on reproductive 

suppression.  

While diapause effectively allows H. halys to reduce its seasonal winter energy 

expenditures, the ability to withstand potentially fatal cold temperatures of this region ultimately 

depends on the process of cold tolerance which occurs with diapause. Some individuals die 

before freezing. Survival rates of adult H. halys decreased as the minimum cooling temperatures 

were decreased. This suggests that this species is chill intolerant, which has been verified in east-

coast populations. A LT50 between the temperatures -10 °C and -15 °C indicates that even prior 

to death by freezing, H. halys are not well adapted to survive at low temperatures common in 

central Washington. Such low survival rates would.  

In understanding cold tolerance, the supercooling point (temperature at which ice forms 

in the body) serves as the theoretical temperature minimum at which insects can survive. Recent 

research by Cira et al. (2016), observed supercooling points (SCP) of H. halys in the eastern 

United States (Virginia, West Virginia & Minnesota), and found that the region of cold-

acclimation, rather than geographical origin strongly determined supercooling ability. My 

research in Washington state, showed similar average SCP values (-13.88 °C) for the fall and 

winter seasons combined, to those found in Virginia and West Virginia (-13.48 °C). In addition, 

my research compared SCP values of individuals from either a naturally-acclimatized outdoor 

population and an artificially-acclimated laboratory population (Fig. 6). These comparisons 

allowed for a better understanding of how photoperiod and temperature influence cold tolerance 
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of this species. No prior research has successfully provided quantifiable support to the 

relationship between diapause and cold tolerance in H. halys.  

Diapause has been found as a prerequisite to maximum cold tolerance in other 

pentatomids (Šlachta et al. 2002), and my data supports a similar relationship in H. halys: while 

diapause is a prerequisite for developing cold tolerance is not the only driving factor. A 

subsequent period of cold-acclimation is also necessary to achieve the maximum levels of cold-

tolerance in this species. My data provides support for this interaction by (1) tracking the 

supercooling ability and metabolic rates of individuals in a naturally-acclimated outdoor 

population, and (2) comparing the supercooling abilities of outdoor individuals to those within a 

laboratory population. This approach helps to clarify how specific factors (e.g. photoperiod and 

temperature) contribute to winter survival preparation. While there were no significant 

differences in supercooling values across season (Fig. 5), the changes observed in the metabolic 

rates of individuals undergoing the same seasonal transition were both significant (Fig. 1) and 

followed patterns associated with each stage of the diapause process (i.e. induction, preparation, 

initiation, etc.). Other species have strong links between diapause and cold tolerance (e.g. 

mountain pine beetle (Dendroctonus ponderosae); Lester & Irwin 2012), but the lack of 

synchrony between metabolic rate and supercooling, may indicate that there is no strong and 

direct physiological link between cold tolerance and diapause in H. halys. A comparison of the 

SCP values of the field and laboratory populations also illustrates this weak linkage. Our ‘short-

day’ laboratory group experienced a photoperiod (12L:12D) that is known to induce diapause in 

a laboratory setting (Watanabe 1979; Niva & Takeda 2003). This photoperiod, interacting with 

an acute and rapid cold-acclimation process, resulted in the lowest recorded SCP values, even 

lower than any SCP value observed in the outdoor population. Minimum mean SCP values in 
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field and lab populations was -15.1 ±0.46 and -17.1 ±0.66 (males) and -13.14 ±0.60 and -15.1 

±0.57 (females), respectively (Fig. 6). We suspect, that fluctuating temperatures experienced by 

the outdoor population, had a negative influence on the ability for H. halys to become cold 

tolerant. As a result, the SCP values of the outdoor population were much closer to those 

observed in the non-diapausing ‘long-day’ laboratory population (Fig. 6).  

My data suggest that it is not only the environmental factors themselves, but also the 

actual seasonal timing of these factors, that may greatly affect the ability of H. halys to 

successfully survive cold adverse winter conditions. The low temperatures experienced in nature 

during this study ultimately proved fatal to the field population, which experienced 100% 

mortality prior to the end of winter. While this population did experience naturally short 

photoperiods that were effective in suppressing metabolism (Fig. 1), the subsequent seasonal 

period there-after potentially failed to provide a sufficient cold-acclimation process that would 

encourage maximal levels of cold-hardiness, and ultimately survival. That is, H. halys 

experiencing natural outdoor conditions successfully fulfilled the prerequisites to enter diapause, 

but did not become fully cold tolerant, potentially due to an inadequate cold acclimation process. 

These findings offer up a rather complex question: was the reason for the low survival of H. 

halys under natural conditions the result of: (1) the postponed induction of diapause, (2) the lack 

of a subsequent cold-acclimation process, or (3) a combine of the two? A population of H. halys 

that experience postponed seasonal diapause induction, could lack adequate cold tolerance to 

survive the onset of winter temperatures. Diapause has been found to enhance cold tolerance in 

other insects (Denlinger 1991), and the timing of diapause plays a key role. Entrance into 

diapause too early cuts short the growing season, whereas entrance too late can leave the insects 

susceptible to higher mortality levels by cold weather early in the fall. In some cases, the timing 
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of seasonal development presents the most immediate impediment to range expansion in the 

temperate zone (Bradshaw et al. 2000, 2001). This later than expected induction of diapause 

observed in H. halys may turn out to be maladaptive for an invasive population moving into 

more northern and cold regions. While this proved fatal for H. halys over the course of this study 

period, it may also have further reaching implications, contributing negatively to the ability for 

this pest to successfully establish within cold regions in the long-term.   

The daily minimum air temperatures at both the artificial and naturally-selected 

overwintering sites (Fig. 7 & Fig. 8) provided greater clarity to the ineffective levels of cold 

tolerance acquired by H. halys in central Washington, and their inability to survive natural 

conditions. During this study, the natural cold-acclimation process experienced by H. halys was 

ineffective in producing a sufficient level of cold hardiness necessary to survive these regional 

conditions. On multiple days during the study period daily minimum temperatures were low 

enough to cause high rates of mortality in overwintering populations.  

Our data indicate that under natural conditions H. halys does not effectively survive cold 

winters, however it does persist in cold regions by overwintering within thermally-insulated 

human-made structures, of which H. halys are known to utilize (Watanabe et al. 1994; Lee et al. 

2014). There are however, certain disadvantages to overwintering for insects that includes factors 

such as immobility (e.g. potential predation), and other biological risks (e.g. starvation, 

desiccation and cold injury) that emphasizes the importance of good site selection (Leather et al. 

1993). The data collected from the overwintering site in Walla Walla, WA provided an example 

of a potential outcome of overwintering site success and emphasized how the selection of an 

‘weak’ thermal refuge can be detrimental to overall survival (Fig. 8). At the Walla Walla 

overwintering site, survival was low due to the cold, indicating a poorly selected overwintering 
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site. However, high temperatures within overwintering sites may also cause high mortality. Low 

temperatures to reduce energy consumption is particularly important to many species at are non-

feeding throughout the winter (Tauber et al. 1986). There is an energetic trade off to adapting to 

cold, freezing winter temperatures. Lower metabolic rates mean less seasonal energy loss, and 

thus helps in maintaining efficient energy conservation, leading to high survival and potential 

adult fecundity (Irwin & Lee 2000; Irwin et al. 2002).  The selection of an overwintering site is 

of particularly great importance in species of insects that are not freeze tolerant and serves as an 

external physical defense against winter mortality. H. halys utilizes chemical and tactile cues to 

locate overwintering sites (Toyama et al. 2006) and this species has been detected to overwinter 

within the natural landscape (Lee et al. 2014). However, more research needs to be done to 

further investigate the microclimate variables (e.g. humidity, responses to thigmotaxis, light 

availability) aggregations of H. halys potentially select for within both natural and human-made 

overwintering sites that encourages higher rates of winter survival. Better assessment of 

microclimate will help to tease apart the exact environmental variables H. halys experiences, and 

how they tolerate adverse winter conditions, and aid in improved IPM tactics.  
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