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ABSTRACT

In hydrologie modeling, uncertainties are known to reside in model inputs, 

i.e., rainfall estimates, model parameters, observations of streamflow, and in some 

cases in the model structure itself. Estimation of the total prediction uncertainty 

for a hydrologie forecast first requires knowledge of the error characteristics of 

input rainfall estimates. Traditionally, evaluation of quantitative precipitation 

estimates (QPEs) has been accomplished by comparing remotely sensed rainfall 

to ^ in t  rain gauge observations. In addition to errors associated with rain gauge 

measurements, it has been noted that sampling sizes between a typical radar pixel 

and a rain gauge orifice differ by about eight orders of magnitude (Droegemeier et 

al. 2000). It is thus highly desirable to design an objective, quantitative 

methodology that evaluates the skill of precipitation algorithms at the hydrologie 

scale of application, a watershed. QPEs from different algorithms are input to the 

VyZo ™ hydrologie model. Thousands of simulations are performed in an 

ensemble fashion in order to "expose" each rainfall input to the entire parameter 

space. Probabilistic statistics are utilized to compare the predicted probability 

density functions (pdfs) to observations of streamflow. Results indicate the 

spatial variability of rainfall observed by radar is indeed important for skillful 

hydrologie predictions.
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The developed ensemble approach is also used to evaluate the propagation 

characteristics of error in rainfall estimates to hydrologie predictions. Predictions 

of peak discharge and time-integrated discharge volume are shown to be very 

sensitive to rainfall perturbations. Ensembles are then constructed to include the 

combined uncertainty in QPEs and model parameters. Several case studies are 

utilized to show how the total prediction uncertainty can be accurately estimated. 

Moreover, additional sources of uncertainty are identified for a case where 

simulation bounds derived from predicted pdfs do not replicate observed behavior 

during summer months. This may be due to inadequate parameterization (e.g., 

initial abstraction) or to model structure. Soil moisture observations from the 

Oklahoma Mesonet are introduced to reveal some explanation for conditions 

where the Green and Ampt submodel may not adequately characterize the 

infiltration behavior during summertime low flows.
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CHAPTER I. INTRODUCTION

Some of the worst natural disasters in the world have been a result of 

excess water or lack of it. Excess water can initially present itself in the liquid or 

frozen phase. These meteorological extremes, e.g. heavy rainfall or snowfall, 

become a hydrologie problem given facilitating boundary and initial conditions in 

the atmosphere and land surface. Predicting water transport and fate encompasses 

many physical aspects of the hydrologie cycle. Quantitative precipitation 

estimation/forecasting (QPE/QPF) is the first step in the hydrologie prediction 

process. Accurate depiction of the rainfall field does not necessarily result in 

accurate forecasts of streamflow; it simply provides a characterization of the 

initial state of the system. The accuracy of future states (i.e., predictions) is based 

on our knowledge of the system's dynamic behavior (i.e., the model) and how 

well we parameterize these known physical processes to simulate observed 

system behavior. The relationship between rainfall and runoff has been found to 

be nonlinear and must be modeled (Droegemeier et al. 2000). The study 

undertaken examines predictability issues associated with a hydrologie prediction 

system in response to differing precipitation inputs.

Accurate hydrologie prediction will impact many agencies involved in the 

protection of hves, property, and the natural environment. At small time and 

space scales, real-time streamflow forecasts can be used to warn against



hazardous runo% potentially resulting in flooding. Floods and flash floods kill 

more people annually than any other weather-related disaster. On average, about 

130 people in the U.S. lose their hves to floods in a given year. A majority of 

those deaths occur inside vehicles. In addition, property damages due to flooding 

average about $1 bühon a year with occasional losses exceeding $5 billion. A 

real-time hydrologie prediction system may be used to warn the pubhc and invoke 

mitigation strategies weh in advance of the flood impact. A more recent threat to 

the U.S. is potential contamination of municipal water supphes by terrorists. It is 

beheved that the hydrologie prediction system discussed herein can be coupled to 

a water quality model that models additional physical processes such as 

advection, dispersion and decay. This application can provide predictions as to 

the severity and extent of a toxic spiU and the locations that may be impacted 

downstream. The hydrologie prediction system used in this study may also be 

coupled to a storm surge model. It can supply needed initial and boundary 

conditions as to the amount of discharge impacting inland estuaries. The storm 

surge model would then predict the additional volume of water impinging upon 

the estuary from the ocean. With this, flood inundation regions from a land- 

falling hurricane could be mapped out in advance so that mitigation strategies can 

be implemented. At longer times and larger spatial extents, snow pack on 

watersheds can be monitored and subsequent streamflow forecasts can be utilized 

in watershed management, hke dam operations and for agricultural purposes.



Overall, the hydrologie prediction system serves as a necessary component to 

mitigate natural hazards and disasters.

Estimates of precipitation serve as input to the hydrologie model used in 

this study. These estimates can be derived from many meteorological models and 

observational sensors such as rain gauges, satellites, weather radars, numerical 

weather forecasts, and combinations therein (i.e., multisensor estimates). They 

have traditionally been accepted as an accurate depiction of the initial state of the 

hydrologie system. The error characteristics of current precipitation estimates 

must be known; and moreover, the accuracy of these estimates must be improved 

before the uncertainty in hydrologie forecasts can be quantified and ultimately 

reduced. As pointed out in Droegemeier et al. (2000), hydrologie forecast 

uncertainty cannot be reasonably assessed until the uncertainty in the rainfall 

observations have been determined a priori. Entekahbi et al. (2002) identify the 

precipitation inputs as one of the major limitations to improved hydrologie 

predictability. Evaluation and quantification of uncertainty in model inputs is a 

major goal of this study.

Several quantitative precipitation algorithms are under development at the 

National Severe Storms Laboratory. It is highly desirable to leam which 

algorithms supply the most accurate inputs for hydrologie prediction purposes. 

This knowledge will guide future research in QPE algorithm developments. A 

true hydrologie evaluation can be accomplished most appropriately by testing



them directly; that is, by inputting them in the model and determining how well 

the model predictions of streamflow compare with observations. This 

methodology is attractive in that the experiment is being performed at the 

hydrologie scale of application. It can be argued, however, that model parameters 

can be judiciously adjusted or calibrated to account for errors in model inputs 

(e.g., QPEs). Systematic biases, originally present in the model inputs, can be 

mitigated or corrected in order to yield accurate streamflow forecasts. In short, 

adjustable model parameters can obscure uncertainties that were initially present 

in the model inputs. A new approach is proposed herein to account for 

uncertainty in the model parameters. Each input is “exposed” to the same degree 

of uncertainty in the parameters. An evaluation of model skill will elucidate the 

model input that results in the most accurate hydrologie predictions in light of the 

model parametric uncertainty. This concept is developed fully in Chapter III.

Input uncertainty is a component of the total prediction uncertainty in 

environmental modeling. It has been noted in several places, far too many to 

document herein, that forecasts of future states of the natural environment are 

plagued with inaccuracies. There are many reasons for this that depend on the 

physical system being modeled. In numerical weather prediction, for example, 

the future states of the atmosphere are very sensitive to accurate depictions of the 

initial conditions, leading to the theory of chaos (Lorenz 1963). A small error in 

the atmospheric initial state grows exponentially into much larger errors as



forecast times increase, drastically reducing the skill of the single, deterministic 

forecast (Lorenz 1969; Hamill and Colucci 1997). An alternative approach, 

called first perturbs the initial conditions withm bounds

dictated by observational uncertainty. Each initial condition is used to produce a 

deterministic forecast, which is referred to as an ensemble An ensemble

of forecasts is created by randomly selecting initial conditions that have an equal 

likelihood of representing the true state. These values are samples from the 

probability density function (pdf) that represents the distribution of the "true" 

initial state. Many simulations are then performed based on random selection of 

initial conditions from the pdf, where each member comprising the ensemble 

represents a single, deterministic possibility of the outcome. The group of 

members, or forecast ensemble, is treated collectively so that a probability of the 

forecast system state can be estimated. The spread of the forecasts represents the 

forecast uncertainty due to uncertain initial conditions while the mean of the 

forecasts is considered the best estimate (Stensrud et al. 2000). This probabilistic 

approach has shown improvements in the accuracy of weather forecasts at 

medium-range (Tracton and Kalnay 1993; Toth and Kalnay 1993) and short-range 

(Du et al. 1997; Hamill and Culucci 1997; Stensrud et al. 2000).

This kind of stochastic forecasting has attractive properties to risk analysts 

who often use cost-loss models based on forecasts with provided uncertainty 

bounds. As a simple example, consider a decision a rancher might need to make



in regard to transporting animals that may be in danger due to rising river levels. 

The cost of moving cattle out of a floodplain that doesn't end up flooding (i.e., a 

false alarm) may be insignificant compared to the penalty ensued in the event that 

the cattle aren't moved and are lost to a flood (i.e., a missed forecast). Future 

action may be taken if a probabilistic forecast of flooding is less than 50%. In this 

case, the penalty for a missed forecast outweighs the cost of needlessly 

transporting the cattle in a no-flood event.

Estimating the total uncertainty inherent to a forecast of an environmental 

variable involves the identification and quantification of uncertainty in all the 

following areas: model inputs, boundary and initial conditions, model parameters, 

model representations of physical processes, and observations of the system 

behavior. If successful, the pdf of future states of the system can be estimated 

accurately. An accurate pdf will greatly benefit decision-makers who are utilizing 

the forecasts for their application.

In numerical weather prediction, a m^ority of ensemble forecasts have 

been produced by members with different initial conditions. The underlying 

assumption is that the total prediction uncertainty is composed entirely of 

uncertainty in the initial conditions alone. No attempt is made in this scenario to 

quantify uncertainty in the model physics, physical parameterizations, numerics, 

or observations of the atmospheric state. Stensrud and Fritsch (1994) and 

Stensrud et al. (2000) include model uncertainty in addition to initial condition



uncertainty into separate ensembles. This combined approach has led to more 

dispersive forecasts, thus better representing the true pdf. Moreover, 

computational constraints have traditionally limited the number of simulations 

plausible for real-time applications. This has encouraged the creation of 

ensembles that produce the maximum amount of dispersion with the minimum 

number of simulations or members. The inclusion of additional components of 

uncertainty in environmental modeling, such as in the model physics, 

accomplishes this goal.

In hydrologie modeling, the total prediction uncertainty has been assumed 

to be largely, if not solely, a function of parametric uncertainty. This approach 

assumes that the model physics are perfect as well as the model inputs. Model 

parameter ensembles are created in an analogous fashion as initial condition 

ensembles described previously. In this case, parameter values are randomly 

chosen from the each parameter's pdf, or estimate thereof. Simulations are 

performed for each parameter realization to produce an ensemble of streamflow 

forecasts. This forecast ensemble is then used to derive the forecast distribution, 

measures of central tendency as well as the spread or uncertainty bounds of the 

forecasts. Little to no attention has been given to errors associated with model 

inputs (e.g., QPEs), model physics, or observations of streamflow. This 

observation is surprising given the wealth of studies in the literature documenting 

poor performance of radar-based rainfall algorithms. A m^or cornerstone of this



study involves the accounting for uncertainty in QPEs as an important component 

in hydrologie prediction uncertainty. Also, propagation characteristics of this 

input uncertainty are revealed.

This study is largely being undertaken in response to several 

recommendations promoted by CUAHSI (2002), NRC (2001) and USWRP PDT- 

9 (Droegemeier et al. 2000). The three basic research questions are stated and 

summarized below.

1. How can comparisons of QPE algorithms be performed 

systematically and quantitatively?

It is well acknowledged that the accuracy of streamflow predictions from a 

hydrologie model is heavily dependent on the accuracy of the rainfall inputs. 

Several efforts are underway (e.g., Gourley et al. 2002) to improve QPE by 

understanding the situations in which radar estimates can be erroneous and 

utilizing data from multiple sensors (e.g., infrared satellite, rain gauges, numerical 

weather output, and lightning flashes). Moreover, QPE from dual-polarization 

radars offers improvements where reflectivity-based rainfall estimates can be 

problematic due to had contamination, ground clutter and anomalous propagation, 

and beam blockages. As these QPE algorithms are being formulated, it is vital to 

the developers to know the error characteristics associated with the estimates. 

Currently, there is no system in place that would systematically monitor the



progress of improvements in QPE algorithms in a statistically and hydrologically 

relevant way (Ciach and Kr^ewski 1999a,b; Ciach et al. 2000).

Traditionally, improvements in rainfall algorithms have been measured by 

comparing the remotely sensed QPEs to rain gauges at collocated grid points. 

This verification methodology lacks robustness for several reasons. First of all, 

true multisensor algorithms (e.g., Gourley et al. 2001) incorporate gauge data in 

their QPE schemes. Thus, it becomes a challenge to utilize truly independent data 

sources for veriEcation purposes (Young et al. 2000). The use of these gauge 

values for verification purposes is thus inappropriate in this scenario. This 

situation could potentially be remedied if some gauges were withheld from the 

estimation scheme and used for veriEcation instead. This evaluation design 

sacriEces the accuracy of the precipitaEon esEmates and relies on a dense network 

of rain gauges.

Several references site the lack of accuracy with rain gauge point 

measurements (e.g., Zawadzki 1975). UnderestimaEons are common with 

increasing wind speeds, and the gauges may only represent the rainfall that occurs 

in close proximity to the gauge. Highly vanable rainfall may not be represented 

very accurately by a rain gauge network. Moreover, there are issues regarding the 

scales of measurement between rain gauges and remotely sensed rainfall. It has 

been noted that the sampling sizes between a typical radar pixel and a rain gauge 

onEce differ by about eight orders of magnitude (Droegemeier et al. 2000).



A methodology is proposed herein that provides the framework to evaluate 

QPE algorithms at the scale of application, a watershed. The probabilistic 

approach enables uncertainty estimates or confidence intervals to be assigned to 

the predicted hydrologie variables. A statistical analysis based on hydrologie 

predictions from differing QPE inputs as compared to observed streamflow 

reveals characteristics inherent to the algorithms. It is believed that this 

hydrologie analysis will serve as a tool for QPE algorithm assessment and 

refinement.

2. What are the predictability and limits-to-prediction in the 

hydrologie system?

The concepts of predictability are developed fully in NRC (2001). In 

general, if a forecasting system possesses predictability, then performance 

measures have been diagnosed and met when comparing the predicted variables 

to observations. One of the specific goals in predictability and limits-to-prediction 

outlined in the science initiatives in Homberger et al. (2001) is to demonstrate the 

degree of predictability in hydrologie systems using probabilistic approaches to 

deal with uncertainty in modeling. This study accomplishes this goal.

An ensemble prediction system is implemented to ultimately quantify the 

total uncertainty in model predictions. Characteristics of prediction uncertainty for 

a given model structure are revealed through an examination of the relative
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contributions of uncertainty from model inputs, model parameters, and 

combinations. The approach undertaken provides an accurate assessment of the 

forecast pdf, which is useful to end-users of hydrologie forecasts. It also reveals 

steps in the modeling process where uncertainties are large and can dominate the 

overall predictive uncertainty. This information is useful for focusing efforts on 

making improvements to the modeling process where they are needed most. 

Moreover, ensembles can now be constructed to minimize the number of 

simulations needed, and thus computation resources, while maximizing dispersion 

or spread. It is also shown how uncertainty in the model physics and observations 

of streamflow can be identified in this study. If uncertainties in the model inputs 

and parameters are accounted for, then any residuals must be due ta  uncertain 

model physics, imprecise observations, or numerical uncertainties.

3. How do uncertainties in model inputs propagate to errors in model 

predictions?

The final science question is posed in response to the second goal 

identified by the NRC (1999). The report states the need for the identification and 

understanding of the sources of uncertainty and the propagation of uncertainty in 

hydrologie systems. Presently, there is a lack of information regarding the error 

characteristics associated with radar QPEs. Moreover, many traditional 

hydrologie models rely on the principle of superposition to produce streamflow
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using the unit hydrograph theory. These model structures thus dictate linear 

hydrologie responses to perturbations in rainfall inputs. The model used herein 

permits nonlinear hydrologie responses as this system behavior has been widely 

observed (e.g., Droegemeier et al. 2000). The study undertaken assesses the 

impact of uncertainties in radar-based QPEs on hydrologie predictions of 

streamflow. Propagation characteristics of input uncertainties are revealed by 

using historic hydrologie data sets that were collected over a natural hydrologie 

laboratory in Oklahoma.

An existing natural outdoor laboratory for hydrologie research is located 

in the Blue River Basin, near Blue, OK. (Fig. 1.1). The Blue River Basin drains 

about 1200 km .̂ The headwaters of thb basin are about 80 km away from the 

nearest weather radar while the basin outlet is over 200 km away from a radar. 

Radar-based rainfall estimates at far range may have errors due to beams 

overshooting shallow profiles of reflectivity, bright band contamination, and 

improper reflectivity-to-rainfall conversion equations. The long distance from 

radars makes this basin a good candidate for evaluating QPE algorithms at 

moderate to far range.

The Blue River Basin is also attractive for hydrologie research due to the 

natural characteristics of the basin. There are no reservoirs in the basin, and there 

are very few known diversions. In addition, the model used in this study has been 

carefully calibrated and utilized rather extensively on the Blue River Basin. The
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FIG. 1.1. The study area including the Blue River Basin (shaded in yellow), 

WSR-88D radars, Mesonet rain gauge locations (red filled circles), USGS 

gauging sites (light blue filled triangles), and a shaded relief map of Oklahoma.
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model parameters have been refined manually using many observations of rainfall 

inputs and discharge combined with simulations of discharge. Nevertheless, as 

will be described in Chapter m , the methodology used herein offers a stochastic, 

automated approach for handling uncertainty contained in the parameter sets, and 

is thus readily applicable for use on basins with little or no prior modeling 

experience. The previous assembly of hydrologie datasets such as parameter 

maps needed in the model and observations of rainfall (by rain gauges and radar) 

and basin discharge greatly facilitate running the required simulations.

The focus in this natural outdoor laboratory is placed on the uncertainty in 

the rainfall inputs and to demonstrate a new methodology in comparing different 

QPE algorithms by examining the basin response in a probabilistic manner. The 

skill of forecast ensembles that are comprised of different inputs, model 

parameterizations, and combinations is assessed for several hydrologie events. 

The approach taken also reveals the optimum number of members needed to 

produce an ensemble that adequately describes the true forecast pdf. The 

methodology is applied here to the VyZo ™ hydrologie model with inputs provided 

by NSSL's Quantitative Precipitation Estimation and Segregation Using Mulitple 

Sensors (QPE SUMS) algorithm. The application of this methodology is directly 

transportable to other prediction systems that have inherent uncertainty, such as 

numerical weather prediction models or other QPE systems.
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CHAPTER n. BACKGROUND

2.1 Quantitative Precipitation Estimation 

2.7.7 Ram Gawggj

Accurate measurement of precipitation in liquid and frozen phases is vital 

for commerce, agriculture, transportation, mitigating natural hazards, and 

environmental modeling. In agriculture, rainfall amounts combined with 

additional meteorological information often dictate the seasonal yield for a given 

crop. Monitoring snowfall accumulations and icing conditions impacts 

transportation on US highways and in airways. The costs associated with weather 

related delays are rather significant and must be considered in commerce 

(Stevenson 1997). The National Weather Service (NWS hereafter) is the agency 

in the US that is responsible for issuing warnings to the public prior to the onset 

of floods and flash floods. Presently, precipitation estimates from the Weather 

Surveillance Radar-1988 Doppler (WSR-88D) radar (Crum and Alberty 1993) are 

the primary tools used for monitoring impending flash floods. Other applications 

utihze precipitation estimates as initial and boimdary conditions to model physical 

hydrological processes such as river discharge, chemical concentrations in lakes, 

rivers, and estuaries, the severity of storm surges from a hurricane, land surface 

and atmospheric interactions such as évapotranspiration, and prediction of future
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atmospheric states including quantitative precipitation forecasting. The following 

section outlines traditional, current, and future methods of monitoring rainfall.

Conceptually, the simplest way to measure rainfall is to collect it in a 

device such as a rain gauge. Historically, the frequency of rain gauge 

measurements has been dependent on the observer manually measuring the depth 

of rainfall. The change in design of these instruments has largely been in 

response to the need to automate rainfall recordings and collect rainfall data in 

remote regions. Today, rain gauges can collect, record, and transmit rainfall 

amounts almost continuously through the use of small buckets that tip, drain, and 

activate a magnetic sensor, with larger buckets that use a weighing device, and 

also measurements of the total capacity in a small cylinder. Other types of non- 

collecting rain gauges estimate rainfall rates by measuring the scintillation in an 

optical beam produced by the raindrop shadows, acoustic waves caused by 

raindrops impacting a water surface, and the momentum/sound of raindrops 

falling on a styrofoam cone in a disdrometer (Nystuen et al. 1996). Typically, the 

diameter of a single rain gauge orifice is on the order of centimeters. The number 

of rain gauges that are deployed in a given region depends on the network 

configuration. The Oklahoma Mesonetwork (Mesonet), which is considered to be 

a very dense mesoscale weather observation network, operates 115 stations in the 

entire state (see Fig. 1.1). It can thus be said that the network monitors rainfall 

over approximately 8 m̂  of area in the entire state of Oklahoma, or 10 of total
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land area. Uncertainties in dowam-wWe rainfall measurement by rain gauge 

networks point largely to how well these "point" measurements characterize 

rainfall over the remaining ungauged area. In addition, a wealth of research has 

noted underreporting of rainfall amounts by gauges due to wind effects and loss 

of water mass during recordings.

Nystuen (1999) summarizes the error characteristics of different types of 

automatic rain gauges under differing weather conditions. In regard to collection- 

type gauges, they are typically placed on top of a surface as opposed to being dug 

into the ground. The gauge itself can cause turbulence, and irregular flow 

patterns result near and above the instrument. The perturbed wind flow often 

results in an undercatch that can be as large as 40% for high wind situations (see 

e.g., Wilson and Brandes 1979; Legates and DeLiberty 1993). Underestimates of 

heavy rainfall rates may also occur due to loss of rainfall in between 

measurements or "tips" as is the case with the tipping bucket rain gauge 

(Marselek 1981 and others). Underestimates of rainfall may also occur for low 

rainfall rates because a finite volume of water mass is needed before the small 

bucket can tip and trigger the sensor. The tipping bucket gauge thus has a 1-min 

rainfall rate resolution of ±12 mm hr'. It is believed, however, that the largest 

errors with rain gauge measurements occur with weuZ estimates of precipitation 

(i.e., accounting for the rest of the land area that receives rainfall but isn't gauged 

as is the case with the Oklahoma Mesonet). The sampling error may be especially
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prevalent for highly variable rainfall occurring over a sparse network of gauges. 

Better characterizations of spatially nonuniform rainfall may be possible using 

remote sensing platforms such as radar and satellite.

2.J.2 Æoddr

The advent of the WSR-88D radar has offered the potential to estimate 

rainfall at temporal resolutions equal to or higher than rain gauges and over very 

large regions at high spatial resolutions. The WSR-88D network employs 

approximately 120 radars that are jointly operated by the Department of Defense, 

Federal Aviation Administration, and National Weather Service. Each WSR-88D 

radar produces operational estimates of precipitation by measuring the power 

returned from hydrometeors illuminated by the radar beam. A radar reflectivity 

factor is computing by determining the ratio of power returned to the receiver to 

that transmitted by the antennae. Other factors entering the so-called radar 

equation quantify the constant operating characteristics of the radar and the range 

to the backscattering objects. The reflectivity data are collected at up to 14 

elevation angles, along 360 radiais (1° azimuthal resolution), out to a maximum 

range of 460 km (1 km range gate spacing) every 5, 6, or 10 minutes depending 

on the operating mode of the radar. The radar is said to be in precipitation mode 

when there is sufficient reflectivity observed by the radar. The occurrence of 

significant reflectivity underneath the radar umbrella initiates the precipitation
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processing subsystem (PPS). This algorithm performs various quality control 

checks on the reflectivity data and ultimately generates a suite of precipitation 

accumulation products at each grid point out to 230 km in range. The algorithm 

remains very similar to its original design, which was developed at the NWS 

Hydrologie Research Laboratory in the 1980s (Fulton et al. 1998).

A multitude of adaptable parameters are used in the processing system 

with the intention of fine-tuning it to different geographic locations and 

seasonally variable weather conditions. Despite this flexibility, most radars 

utilize the same parameters to convert the radar-measured variable, reflectivity, to 

a rainfall rate. The process to do this reflectivity-to-rainfall conversion (Z-R) 

requires regressing an equation to observations of reflectivity and rain gauge 

accumulations. Most WSR-88D radars use the default, empirically-derived 

convective relationship from Woodley et al. (1975):

Z = 3 0 0 R '\ (2.1)

where Z is in mm^ nun ̂  and R is in mm hr ' .

Numerous studies have pointed out substantial variability in computed Z-R 

relationships (Wilson and Brandes 1979 and references therein). Multiplicative 

factors (e.g., 300 in (2.1)) and exponents (e.g., 1.4 in (2.1)) vary at different 

geographic locations, with different seasons and storm types, with rainfall
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intensity, throughout different stages of storm lifecycles, and in the presence of 

vertical air density gradients (Dotzek and Beheng 2001). The physical reasoning 

for a majority of the reported variability lies in the sensitivity of the radar 

reflectivity factor to raindrop sizes and their distributions. The exact radar 

reflectivity factor (Z in mm^ mm'^) can be determined only when the particle 

concentrations (»,) and drop diameters (D, in mm) within a sample volume are 

known (fédéral Meteorology 7fand6oo^ No. 77 1990):

(2.2)

Theoretically, radar reflectivity can be determined exactly by measuring particle 

drop size distributions using a disdrometer. However, these in-situ measurements 

sample only a minute fraction of a precipitating cloud. WSR-88D sample 

volumes are many orders of magnitude greater than areas sampled by 

disdrometers. Thus, measurements of hydrometeor concentrations and their 

diameters within radar sampling bins cannot be known precisely. It may also be 

seen from (2.2) how sensitive the reflectivity factor is to larger drop diameters in 

a sample volume. For example, a drop 3 mm in diameter in a theoretical 1 mm  ̂

sample volume returns a reflectivity factor of 729 mm  ̂ mm' .̂ A drop 1 mm in 

diameter in the same unit volume only returns a reflectivity of 1 mm^ mm'  ̂(2.1).
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Despite having a reflectivity factor 729 times greater than the smaller drop, the 

bigger drop only has 27 times as much liquid volume. Variability in drop size 

distributions in rainfall results in uncertainty in Z-Æ equations (and thus 

quantitative rainfall rates) using linearly polarized radar data. Hydrometeor size 

spectra may be better resolved with dual polarization radar measurements (Seliga 

and Bringi 1976; Illingworth and Caylor 1989).

The accuracy of radar rainfall rates may also be limited due to a 

combination of the following: beam height increasing with range, sample volume 

increasing with range, unobserved precipitation growth below the beam, 

reflectivity rapidly decreasing with increasing height, and enhanced reflectivity 

below the 0°C isotherm. These sampling issues are a result of the radar 

transmitting and receiving power along paths of a constant elevation angle. Thus, 

the radar illuminates backscattering particles at higher heights relative to the 

ground with increasing range from the radar. The earth's curvature exacerbates 

height-dependent sampling at far ranges. This range-dependency wouldn't 

necessarily be problematic in radar QPE if the vertical profiles of reflectivity 

(VPR) in precipitating clouds were uniform. Unfortunately, this is rarely the case. 

In cool season, stratiform precipitation for example phase changes occur with 

height resulting in a highly nonuniform profile. The melting and subsequent 

enhanced aggregation of hydrometeors as they fall below the 0° C isotherm 

results in larger diameter particles and thus a drastic increase in reflectivity (2.2).
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This zone of elevated reflectivity, or radar bright band (Austin and Bemis 1950), 

can cause precipitation overestimations up to a factor of 10 if it is not accounted 

for (Smith 1986). Above this layer, reflectivity structures of stratiform 

precipitating systems often reveal a rapid decrease of echo intensity with height. 

Due to the shallow nature of these precipitating clouds, radar samples of raindrops 

are possible only within a limited range near radar. Kitchen and Jackson (1993) 

found that radars typically underestimate surface rainfall by a factor of 10 at far 

range (e.g., 200 km).

Precipitation estimates from radar necessanly have biases that depend on 

range (Joss and Waldvogel 1990; Fabry et al. 1992; Kitchen and Jackson 1993; 

Smith et al. 1996; Seo et al. 2000). Several studies have adopted methods to 

account for the vertical variability of reflectivity by adjusting reflectivity 

measurements taken at some height above the ground so that they correspond to 

reflectivity (and thus rainfall rates) at the surface.

From observations. Joss and Waldvogel (1990) identified three VPRs 

representing different weather situations (thunderstorms, widespread rain, and 

drizzle or snow). They also computed percentages revealing how much the radar 

might overestimate or underestimate the melted water value measured at ground 

level. Later, Harrold and Kitchingham (1975) developed a procedure to compute 

a ratio of reflectivity measurements taken from two different elevation angles. 

This ratio is intended to adjust surface rainfall estimates where high-altitude

22



reflectivity samples were believed to be unrepresentative. Continuing the 

progress made by Harrold and Kitchingham (1975), Andrieu and Creutin (1995) 

proposed correcting for the range-dependence of radar precipitation estimates by 

utilizing a ratio of reflectivity factors taken from two different elevation angles at 

discrete ranges. A mean, singular VPR is then computed through an inverse 

solution. With this, a correction factor may be applied to the entire field of 

surface precipitation estimates based on the mean VPR and radar beam geometry. 

This method accounts for radar rainfall estimates decreasing with range due to 

beam overshooting and beam broadening. Joss and Lee (1995) incorporate real­

time vertical reflectivity information to improve rainfall estimates over the Swiss 

Alps. Within 70 km of radar, reflectivity values from several heights are 

composited to determine a representative, mean VPR. They utilize this average 

VPR along with high-resolution terrain data and radar beam heights to extrapolate 

measured reflectivity values down to the surface. Beyond 70 km, they no longer 

assume the average VPR calculated near the radar represents reflectivity 

structures at far range. Thus, they incorporate climatological profiles to derive 

surface rainfall estimates in these regions. The climatological guidance is also 

applied when there is not enough precipitation near radar to compute a 

representative, mean VPR. The use of radar data alone for domain-wide, 

operational QPE may be insufficient in complex terrain or with shallow-structured 

precipitating clouds (Westrick et al. 1999; Gourley et al. 2002).
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In the last two decades, many studies have demonstrated the capability of 

quantitatively estimating rainfall using multiple parameters that are available with 

polarization diverse radar measurements (e.g., Doviak and Zmic 1993; 2îmic and 

Ryzhkov 1999; Straka et al. 2(XX); Bringi and Chandrasekar 2001). Dual­

polarization radar has the ability to transmit and receive polarized waves in both 

the horizontal and vertical orientations. These measurements provide information 

on the size, shape, orientation, and thermodynamic phase of precipitation particles 

(e.g., Bringi and Chandrasekar 2001). As described above, single polarized radar 

estimates of rainfall are derived from horizontal reflectivity (ZJ. The polarization 

diversity enables the additional measures of differential reflectivity (Z^) and 

specific differential phase (A: )̂, from which rainfall algorithms have been derived 

(Carey et al. 2000 among others). The differential reflectivity is the ratio of the 

amount of backscattered energy in the horizontal by a horizontally transmitted 

wave to the amount of backscattered energy in the vertical by a vertically 

transmitted wave. The specific differential phase is the difference between the 

amphtudes in forward scattering particles in the horizontal and vertical directions. 

Both measures are preferable to horizontally polarized reflectivity alone because 

they are less sensitive to variations in drop size distributions, and rainfall rates 

derived from these variables generally have better agreement with rain gauges 

(Ryzhkov et al. 1997, Carey et al. 2000 among many others).
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It should be noted, however, that dual-polarization radar measurements 

offer improvements in QPE but cannot be considered perfect estimators of 

precipitation. Except under ideal atmospheric conditions, ground-based radars 

have a finite horizon similar to a line-of-sight limitation. Scattering is measured 

at greater heights with increasing range from the radar. The range-dependency is 

exacerbated by the following: wide spacing between adjacent radars, significant 

beam blockages near the radar by complex terrain, and the shallow nature of 

precipitating cloud structures common with cool season, stratiform rain, 

orographic rainfall and snowfall, and clouds that produce rainfall in the absence 

of frozen hydrometeors (i.e., warm rain processes). It is believed that no studies 

to this date have evaluated dual-polarization rainfall rates at ranges beyond 100 

km from a radar. This kind of research will need to be conducted before rainfall 

algorithms based on dual-polarization variables can be considered for operational 

purposes. The following section describes how space-bom sensors may be used 

to estimate rainfall by observing the radiative properties of the atmosphere and 

clouds from above.

2.7.J

The deployment of operational weather satellites in the mid-1960s 

provided new opportunities for rainfall monitoring (Barrett and Martin 1981). 

Satellites are grouped by the nature of their orbit: 1) polar-orbiting and 2)
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geostationary. The former environmental satellites typically follow low-level 

orbits between 500-1500 km above Earth's surface. They are sun-synchronous, 

so that they scan a new strip of the planet during each orbit. While their orbits 

allow them to investigate the entire globe, a given unit area on the surface is 

viewed, at most, twice a day. The geostationary satellites, often referred to as the 

Geostationary Operational Environmental Satellites (GOES), are placed at 

altitudes near 35,400 km above earth's surface. At this height, they follow a 

geosynchronous orbit that allows them to travel at the same rate as the rotation of 

the Earth. They appear to be fixed above a certain point above Earth's surface. 

The geostationary satellites monitor a limited field of view, but may do so 

frequently. Both types of satellites have been equipped with modem sensors 

capable of measuring radiation from earth. They measure energy emitted at 

wavelengths through atmospheric "window wavebands" (Barrett and Martin 

1981). Most studies involved in rainfall monitoring have utilized data from 

radiation emitted at the visible (VIS), infrared (IR), and microwave (MW) 

channels.

Earlier developments in precipitation estimation by a remote sensing 

system aboard satellites have concentrated on tropical convective precipitation 

(e.g., Arkin 1979; Arkin and Meisner 1987; Griffith et al. 1981; Negri et al. 1984; 

Adler and Negri 1988). They were mainly concerned with identifying large-scale, 

long-term rainfall anomalies related to the general circulation of the atmosphere
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(Rasmusson and Carpenter 1982). Many of these study regions are oceanic and 

are thus not equipped with a dense network of rain gauges or radars.

Adler et al. (1993) show how inclusion of MW data improved the 

performance of these techniques. In short, data from the Special Sensor 

Microwave Imager (SSM/I) were used to calibrate rainfall estimates from IR- 

based techniques. Despite poor temporal and spatial sampling of the polar- 

orbiting MW sensor, radiance in the MW portion of the spectrum responds to 

particles having sizes similar to precipitating hydrometeors. Brightness 

temperatures at 37 and 86 GHz provide a direct connection between measured 

radiance and raining areas. Other MW rainfall estimation techniques have 

produced encouraging results (Wilheit and Chang 1980; Spencer 1986; Olson 

1989; Kummerow et al. 1989; Grody 1991; Liu and Curry 1992). However, since 

measurements are made only twice a day, MW data are of little use for techniques 

estimating precipitation at time resolutions on the order of several hours.

An automated technique for estimating rainfall called Precipitation 

Estimation from Remotely Sensed Information Using ArtiGcial Neural Networks 

(PERSIANN) (Hsu et al. 1997) uses satellite imagery and ground-based rainfall 

information. This technique is shown to work well for estimating large-scale 

precipitation patterns over radar-void oceanic regions. Like many other satellite- 

based studies, the main focus has been on precipitation associated with 

convection.
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More recently, studies have refined spatial and temporal resolutions of 

estimation schemes using operational GOES satellites (e.g., Vicente et al. 1998). 

Satellite-based rainfall estimation has received much more attention recently due 

to the launch of the Tropical Rainfall Measuring Mission (TRMM) (Kummerow 

et al. 1998). Like GOES, the TRMM polar-orbiting satellite is capable of 

measuring radiances in the IR and VIS channels. In addition to passive 

measurement in the MW channels, the TRMM satellite is equipped with a 

precipitation radar that actively transmits and receives radiation in the MW 

channel. Data collected from this unique spectrum of observations has led to 

many published results too numerous to catalog herein. Future precipitation 

algorithms may include satellite data for operational applications in regions where 

other data sources (e.g., radar and rain gauge) may be inaccurate or unavailable.

2.7.4 MnZniygfwor

A unique approach to operational QPE is to synergisticaUy integrate data 

from all available precipitation sensors in a so-called multisensor algorithm. 

Previous efforts toward this goal have utilized rain gauge data to remove biases in 

radar-derived precipitation maps (see e.g., Wilson and Brandes 1979; Seo and 

Breidenbach 2002). Gauge-adjusted radar products are used operationally by the 

NWS for flood forecasting, verification of numerical weather forecasts of 

precipitation, and precipitation monitoring. The algorithm that performs most of
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these functions has been developed at the NWS Office of Hydrology and is called 

the Multisensor Precipitation Estimator (MPE). The operational version of this 

algorithm performs similarly to the algorithm that was initially designed at the 

Arkansas Basin River Forecast Center (PI technique) in that it uses radar 

reflectivity data adjusted locally by hourly rain gauge data.

Gourley et al. (2002) advances the multisensor concept with a study that 

examines stratiform precipitation in Arizona. The described study demonstrates 

how IR satellite data can be calibrated with radar data to produce domain-wide 

estimates of precipitation that are more accurate than using radar data alone. 

Today, this initial multisensor concept has been advanced as a real-time algorithm 

called Quantitative Precipitation Estimation and Segregation Using Multiple 

Sensors (QPE SUMS). Precipitation estimates from this algorithm will also be 

evaluated herein, thus a brief algorithm overview follows.

The first procedure employed in QPE SUMS is quality control of the input 

radar reflectivity data. Observations of raw reflectivity data indicate several 

instances of backscatter from non-meteorological targets such as trees, terrain 

features, buildings, towers, vehicles, etc. This kind of "contamination" can carry 

over into precipitation products and yield erroneous accumulations. QPE SUMS 

checks isolated targets for meteorological coherence. Specifically, the clutter 

removal algorithm identifies and removes high reflectivity values that have no 

vertical structure. These suspect grid points must also have zero velocity
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signatures because stationary targets are more common with non-weather 

phenomena.

After the input data from all available radars have been quality controlled, 

they are mosaicked on a common grid using the reflectivity that was measured 

closest to the ground. The algorithm then determines the phase and character of 

precipitation at each grid point. This segregation procedure determines which 

sensors will be activated for QPE. Much research has been reviewed and 

performed on the accuracy of each precipitation sensor for different weather 

scenarios. For example, as described in section 2.1.2 radar reflectivity data can be 

unrealistically high due to hydrometeors that are undergoing phase changes. 

Frozen hydrometeors melt, become water-coated, and aggregate which produces 

high reflectivity returns. QPE SUMS is designed to automatically search for this 

melting layer, and then discard the contaminated reflectivity values that were 

measured in this region. The bright band identification algorithm is described in 

detail in Gourley and Calvert (2003). Moreover, the heights at which the melting 

layer was found from the radar observations are used to map out the rain-snow 

line by comparing the melting layer heights with terrain heights. This enables the 

algorithm to determine the precipitation phase at the surface. This component 

alone is important for transportation purposes (e.g., snow removal operations) and 

characterizing the land surface infiltration rates, roughness, and runoff potential in 

hydrologie modehng.
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Radar reflectivity data are also known to have range-dependent biases 

especially with shallow, stratiform precipitation. First of all, a convective- 

stratiform partitioning algorithm is applied to the data to determine which regions 

are receiving rainfall from stratiform versus convective clouds. In short, this 

subroutine identifies convective grid cells as those that have reflectivity values 

greater than 60 dBZ or reflectivity greater than 35 dBZ at temperatures colder 

than -10° C. The latter requirement is tied to microphysics as high reflectivity 

displaced up to cold temperatures indicates the presence of signiGcant updraft 

velocities common with convection. The remaining non-convective grid cells are 

deemed as being stratiform. QPE SUMS treats the stratiform echo differently in 

the "radar-only" module than in the "multisensor" module. The radar-only 

routine will use a different Z-R equation that is more applicable for stratiform 

precipitation (Marshall and Palmer 1948). The multisensor algorithm builds upon 

the IR satellite and radar regression technique that was prototyped in Gourley et 

al. (2002) to supply meaningful precipitation rates to stratiform pixels at 

intermediate and far range where radar estimates of rainfall are known to be 

inaccurate. That is the primary difference between the two different precipitation 

outputs in the QPE SUMS algorithm.

Next, QPE SUMS incorporates rain gauge observations on an hourly basis 

from the Oklahoma Mesonetwork (Mesonet) to produce gauge-only, mean Geld 

bias adjusted rainfall, and local bias adjusted products. The gauge-only analysis
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incorporates all available rain gauge observations in a domain. Initially, a simple 

quality control (QC) step is applied to the data. The QC routine is capable of 

checking the magnitude, temporal consistency, and spatial consistency of each 

rain gauge report. Currently, only the magnitude check is applied to the data such 

that gauge accumulations are ignored if the accumulations exceed 203 mm/hr. If 

the reporting interval of the gauges is more frequent than one hour, then the 

accumulations are aggregated to produce hourly accumulations. The point 

estimates are analyzed on the 1x1 km QPE SUMS common grid using a Barnes 

objective analysis scheme. The two parameters optimized in the gridding process 

are the weighting function and the radius of influence. Subjective analysis is used 

for observed precipitation events to determine the best parameter settings.

The multisensor and radar-only products are both adjusted using a mean 

field bias correction (-G hereafter) based on the comparison of the nearest grid 

point values to the gauge locations. This adjustment technique is intended to 

remove domain-wide biases on an hourly basis that may be due to improper Z-R 

equations, overestimation from hail contamination, or underestimation from virga. 

The mean field bias is computed as follows:

(2.3)

32



where jS is the bias factor, is the hourly multisensor or radar-only accumulation, 

G, is the hourly gauge accumulation and N is the number of gauges reporting for 

that hour. Some checks are placed on the bias value to ensure that no 

unreasonable biases are computed. If the mean of the gauge accumulations (G,) 

over the entire domain is zero and the mean of the estimator (/(,) at the gauge 

locations is zero, then the bias factor is set to a value of one. If the mean of the 

gauge accumulations (G,) is zero and the mean of the estimator (1?̂ ) at the gauge 

locations is nonzero, then the bias factor is set to a value of zero. Otherwise, the 

entire grid of radar-only and multi sensor hourly rainfall is divided by the bias 

factor to produce the radar-mean field bias adjusted and multisensor-mean field 

bias adjusted products. Like aU other QPE products, these are aggregated to 

produce long-term accumulations.

The multisensor and radar-only products are adjusted on an hourly basis 

using a spatially nonuniform bias adjustment technique (-LG hereafter). This 

adjustment is intended to remove nonuniform biases that may be due to improper 

Z-/( relationships, range-dependency in QPEs from reflectivity proEles that 

decrease with height, and contamination from hail, birds, ground clutter, chaff, 

and other echoes from nonweather targets. First, the difference between the 

gauges and the estimators is computed at each gauge location (e.g., G-/(). A local 

bias field is then computed for the 1x1 km QPE SUMS common grid using the 

point (G-i() values. The parameters used in the Barnes objective analysis scheme
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discussed above are used here to analyze the point (G-/() values at the gauge 

locations to the entire grid. The weighting parameter and radius of influence are 

dependent on the gauge spacing with a given gauge network. Finally, the local 

bias field is added to the multisensor and radar-only hourly products to yield the 

radar-local bias adjusted and multisensor-local bias adjusted QPE products.

A third gauge adjustment strategy initially removes the mean field bias to 

account for domain-wide inaccuracies mainly due to inappropriate equations 

being applied. After the bias is removed, the local bias adjustment as described 

above is implemented to both radar-only and multisensor products. These 

products are referred to as local bias adjusted QPEs with bias removed (-LGG 

hereafter).

The suite of QPE SUMS products includes gauge-only (GAG), 

multisensor (MS) and radar-only (RAD) precipitation with the option of all gauge 

adjustment techniques (-G, -LG, -LGG) applied to each algorithm totaling nine 

different outputs. Each of these algorithms will be input to the hydrologie model 

in order to determine their uncertainty characteristics from the hydrologie 

perspective.

2.2 Hydrologie Models

The definition of a model may be made in several different contexts. 

Here, an environmental model is defined as the process of applying preconceived
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ideas on data to make a prediction in which an informed decision may be made. 

The basic components of a model include inputs, parameters, state variables, and 

observations of the state or output. Models may be classified according to the 

following distinctions: 1) the treatment of the model inputs and parameters as a 

function of space and time, 2) the extent of physical principles that are applied in 

the model structure, and 3) the presentation of results in either a deterministic or 

stochastic manner.

In regard to the first criterion, hydrologie models have historically treated 

basin parameters (e.g., soil infiltration rates) and inputs (e.g., precipitation) as a 

single, basin-averaged number. These lumped  models do not account for the 

spatial variability of model parameters or inputs within a basin. More recently, 

data sets related to basin hydrologie properties and precipitation inputs have been 

made available at high spatial resolutions through advances in remote sensing.

models utilize these maps and thus account for the intra-basin 

variability of parameters and inputs. A hybrid between these two approaches is to 

apply a model at the sub-basin level. models (e.g., Boyles et al.

2001) thus account for differing degrees of the spatial distribution of inputs and 

parameters.

Beck (1987) provides a complete overview on the different classes of 

models. The model classes are differentiated based on the concept of 

Identifiability is the ability to determine unambiguously if a
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hypothesis in the model structure is false (Young 1978). A model developer, for 

example, may want to test several hypotheses by changing the interaction between 

parameters and state variables, i.e., the governing equations. In order to 

determine the success or failure of a given hypothesis, the modeler would then 

examine the prediction from the new structure using the same initial/boundary 

conditions used in the previous structure. In an over-parameterized model, the 

new prediction may be very similar to the former model forecast. This lack of 

sensitivity to a different model structure may indicate that the model has surplus 

content, i.e., the modeler is unable to effectively falsify the tested hypothesis. The 

definition of this characteristic in modeling is called a lack of identifiability and is 

useful in defining the following three classes of models.

The Class I model describes the system behavior in as much detail as 

conceivable. The model structure (composed of state variables and parameters) 

contains all known physical laws that are thought to be important to the dynamics 

of the system. This model has been referred to as a physics-based, or a whitebox 

model. The whitebox analogy refers to the modeler's ability to see directly into 

the model structure. Given a set of input data, the output is a direct solution of the 

physical principles that were applied to the data in the model. Often these logical 

steps or partial differential equations can be quite numerous requiring lots of 

parameterizations. Over-parameterization may result and lead to ambiguities 

when testing new physical hypotheses. The Class I model is prone to a lack of
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identifiability and thus greater structural uncertainty. On the other hand, the 

physics-based model has flexibility in that it can predict future states of behavior 

that have not been observed.

The Class III model is based entirely on past system behavior, i.e., 

observations of input and output, and employs no physical principles. Instead, 

functions are derived that directly relate the input into a system to the output. 

This model has been referred to as a statistical or blackbox model. The blackbox 

analogy suggests that the model structure doesn't reveal the reasoning behind the 

system response to a given input. Predictions from the Class III model are limited 

by the memory of observations of previous system behavior. This model is 

incapable of predicting a future that has not been observed. Moreover, there may 

not be enough historical information about the system being studied in order to 

form the model basis (e.g., basins with no previous records of discharge). This 

leads to the following model of compromise.

The Class II model is the middle ground between the Class I and III 

models. In this case, a set of concepts is still applied; however, the logic is 

calibrated based on the observed input and output data. This model is referred to 

as a conceptual or graybox model. Whitebox suggests that the modeler can 

observe the underlying physics within the model structure as in the Class I model. 

These hypotheses are altered based on observations of the relationships between 

input and output. Often, the modeler may not fully understand why these
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relationships do not agree with predictions based on physical principles alone. 

Inputs, parameters or the model structure itself are adjusted so that the predictions 

match the observed system behavior more closely. The inability to model the 

system perfectly without any calibration obscures the model structure and colors 

it gray. Similar to the Class I model, the Class II model is capable of predicting 

unobserved future states. However, the number of concepts has been reduced. 

Thus, the model is said to be more identifiable. This graybox model has less 

structural uncertainty than the Class I model and more flexibility than the Class 

in  model, and thus makes it preferable for environmental modeling.

The final distinguishing characteristic between models is the method in 

which the results are presented. Deterministic models yield a unique output 

vector for a given set of initial/boundary conditions. This kind of output may in 

fact be useful if the inputs, parameters, and the physical system being modeled are 

known precisely. In environmental modeling, this kind of certainty is rarely the 

case. Typically, there is some uncertainty associated with the inputs, parameter 

values, model structure, and observations of output. This uncertainty can be 

included in the predicted variables and presented in a stochastic or probabilistic 

framework. This provides for the range of possibilities and the likelihood that a 

given prediction will occur. Many references have shown how probabilistic 

information is useful in decision-making, especially when distinguishing between
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accuracy and value in a cost-loss ratio situation (see e.g., Murphy and Ehrendorfer 

1987).

There are many hydrologie models, much too numerous to catalogue 

herein, that may be classified according to the definitions provided above. The 

interested reader is referred to the following list that summarizes the rainfall­

runoff models that are used most predominantly for research and operations: 

CASC2D (Julien and Saghafian 1991; Ogden and Julien 1994; Julien et al. 1995), 

Système Hydrologique European (SHE) (Abbott et al. 1986a; b). Distributed 

Hydrology Soil Vegetation Model (DHSVM) (Wigmosta et al. 1994), 

Precipitation-Runoff Modeling System (PRMS) (Leavesley et al. 1983), 

Sacramento Soil Moisture Accounting Model (SAC-SMA) (Bumash et aL 1973), 

and HEC-HMS model (Hydrologie Engineering Center 2000). The hydrologie 

model used in this study is a commercial model developed at Vieux and 

Associates, called ™ (Vieux and Vieux 2002).

In reference to the previous classifications of environmental models, the 

VyZo ™ model treats parameters and inputs in a spatially distributed fashion, and 

flow simulations are allowed to vary with time, i.e., unsteady. The model is 

considered a Class II model because the governing equations are derived from 

conservation principles while the model parameters are calibrated by scalars using 

the Ordered Physics-based Parameter Adjustment method (OPPA) described by 

Vieux and Moreda (2003). Recall that the Class II model is flexible in that it can
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predict future states that have not been observed while the model is identifiable 

and thus has minimized model structural uncertainties.

Prior to performing simulations, distributed parameter maps that describe 

or are at least analogous to the following soil properties must be obtained for the 

basin of interest: saturated hydraulic conductivity, initial degree of soil saturation, 

and soil suction at wetting front. These soil properties may be inferred from State 

Soil Geographic (STATSGO) survey maps that are freely available for most 

basins in the US in a geographical information system (GIS) format. The 

aforementioned soil properties are required for proper simulation of soil 

infiltration rates that are then used in the formulation and solution of the 

conservation equations (described below). A digital elevation model (DEM) is 

needed for deriving the slope map, watershed boundaries including the basin 

outlet, flow direction map, and the location of DEM-dehned streams. Most GIS 

software is capable of performing the aforementioned operations. The final 

parameter map that must be obtained is a spatially distributed depiction of the 

Manning roughness coefficient. This hydrologie parameter may be inferred from 

readily available land use/land cover maps that are typically derived from aerial 

photography or, more recently, from high-resolution radiometer measurements 

aboard polar-orbiting satellites. Typically, these maps have coded values of land 

use/land cover. Published tables in Chow et al. (1988) are used to convert the 

coded values to actual Manning roughness values. Finally, channel characteristics
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such as the cross-sectional area, geometry, channel side slope, and hydraulic 

roughness must be specified for each stream.

The 1-D conservation of mass (2.4) and momentum equations (2.5), 

commonly referred to as the Saint-Venant equations, are used to derive the 

governing equations in the V/Zo ™ model.

(2.4)
*  Ac

where w is the 1-D component of velocity, h is the flow depth, r the rainfall rate, i 

the soil infiltration rate, g the acceleration due to gravity, the bed slope, and 

the friction slope. The momentum equation (2.5) is simplified by making the 

assumptions utilized in the kinematic wave analogy. The local acceleration, 

horizontal momentum advection, hydrostatic pressure, and forcing terms on the 

right hand side of (2.5) are all assumed to be at least an order of magnitude 

smaller than the friction and bed slope terms. Thus, the momentum equation (2.5) 

reduces to:

(2.6)
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Neglecting the aforementioned terms to form the kinematic wave equations 

assumes that the slope of the energy grade line and water surface elevation are 

parallel to the land surface slope. It is also assumed that the flow is uniform 

within the element being considered. In nature, water flow over flat terrain may 

be subcritical. In this event, changes in water levels may result in waves 

propagating upstream. These backwater effects can only be accounted for in the 

local acceleration, advection of horizontal momentum, and hydrostatic pressure 

terms. All of these terms are neglected in the kinematic wave model, thus 

solutions of flow depth in areas where backwater effects may be important are not 

sufficient. Next, an appropriate relationship must be utilized that relates the flow 

velocity to the flow depth such as Manning’s equation in SI units;

where is the hydraulic radius (defined in (2.8) below) and n is the Manning 

roughness coefGcient.
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A is the flow depth and w is the elemental flow width. The hydraulic radius in a 

rectangular channel can be approximated by the flow depth when the flow width 

is assumed to be much greater than the flow depth. Combining this 

approximation with the result from (2.6) reduces Manning's equation to:

w 2-. (2.9)
n

The simplified form of the momentum equation above can be substituted into the

continuity equation (2.4) and rearranged to yield the following governing 

equation used for overland flow in the V/Zo ™ model:

(2.10,
dt n dx

The continuity equation may also be expressed in terms of the cross-sectional area 

A instead of the flow depth A. This leads to the formulation of the conservation of 

mass for channelized flow:

—  + —  = 9 , (2 .11) dr Ac

43



where g  is the channel flow rate and g is the rate of lateral flow entering the 

channel per unit length. Analogous to the treatment of (2.4), it can be shown that 

substitutions and approximations of the momentum equation effectively relate the 

flow rate Q to a cross-sectional area A using the Manning equation.

The forcing function on the right hand side of (2.10) is the difference 

between the soil infiltration rate and rainfall rate, or rainfall excess. The Green 

and Ampt equation is used in the treatment of soil infiltration in the VyZo ™ model. 

The infiltration rates are equal to rainfall intensities as long as the rainfall 

intensities are less than the potential infiltration rates. When the rainfall rate 

equals and exceeds the potential infiltration rate, the soil is saturated and water 

becomes ponded at the surface. This ponded water is now available for overland 

or chaimelized flow to the adjacent, downstream grid cells. The potential 

infiltration rate is given as follows:

(2 .12)

where AT is the saturated hydraulic conductivity, 6 is the soil moisture content, i/; 

is the soil suction at wetting front, and 7(t) is the cumulative infiltration. The 

cumulative infiltration prior to soil saturation is calculated from the rainfall rates 

accumulated over time. When the rainfall intensity exceeds the infiltration rate in
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(2.12), the time to ponding (t )̂ and the associated cumulative infiltration at 

ponding time (fp have been reached and are used below. After ponding has 

occurred, the following equation describes the cumulative infiltration /:

I  — 1 — ipA 01n (2.13)
p  /

7 must be solved for implicitly using a method such as a Newton iteration. At this 

point, the cumulative infiltration may be inserted in (2.12) to yield the infiltration 

rate after ponding has occurred. This completes the formulation of the governing 

equations (2.10-2.11) for overland and channel flow in the V/Zo ™ model. The 

next section describes the numerical procedure for obtaining solutions to the 

partial differential equations above.

The governing equations describe the behavior of water depths in channel 

and over land using continuous differential operators. Solving these equations 

requires either an exact, analytic solution or an approximation using finite 

numerical methods. One technique used in environmental modeling is to 

approximate the dérivâtes in a partial differential equation using the finite 

difference method. Another approach that was developed initially for 

applications in mechanical engineering is the finite element method. The 

interested reader is referred to Segerlind (1984) for a detailed treatment of this
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method. Instead of approximating the differential operators as is done in the finite 

difference method, actual solutions to the governing equations are approximated 

whüe maintaining the original differential operator. The method of weighted 

residuals discretizes the function space by using a finite number of points or 

nodes interconnected by elements. The solution method introduces a function 

with well-known characteristics such as piecewise Lagrange polynomials. These 

basis functions are then multiplied by coefficients at nodal locations and summed 

over the entire domain. The method of weighted residuals then seeks to minimize 

the residual, or the amount to which the trial solution fails to satisfy the original 

governing equation by forcing it to zero when considering the weighted average 

of the residual over the entire domain. The residual at nodal points will not be 

identical to zero, while the summation of the residual over the domain should 

approach zero. The Galerkin formulation of the Gnite element method uses the 

basis functions to act as weighting functions when driving the residual to zero. 

This procedure provides for the approximation of the flow depth over land and in 

channels at each node for a particular time step.

The solutions to the governing equations are marched forward in time 

using a finite difference approximation called the weighted Euler approach 

generalized below:

+ (1 -  e ) f  "], (2.14)
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where [/ represents the dependent variable at some time (r = », »+7, etc), F  is a 

function describing the relationship between the dependent variable and time, r. 

The value of 8 determines the weighting placed on the value of the dependent 

variable at time » versus . When 6 is set to 0, the forward Euler method 

results, and may be solved for explicitly. On the other hand, a backward 

Euler method is obtained by setting 8 equal to 1. In this case, must be solved 

for implicitly using a method such as Newton iterations. The forward and 

backward methods are Erst order accurate, while setting the 6 parameter to 0.5 

results in second order accuracy. The backward Euler method produces stable 

results regardless of the size of the time step, thus it is said to be unconditionally 

stable. The forward Euler method, on the other hand, may become unstable with 

large values of At, thus it is said to be conditionally stable. The Vflo ™ model 

employs the forward scheme due to its computational efEciency. The stability of 

the solutions is maintained by constraining the length of the time step by the 

Courant condition. The Courant number is defined as follows:

cAr
V "  — , (2.15)

Ax
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where v is the dimensionless Courant number and c is the velocity at which a 

gravity wave propagates across the smallest element, Æc. The dynamic wave 

celerity is given as:

(2.16)

where g is the acceleration due to gravity and is the depth of the water. For 

stability, the Courant number v must be less than 1. An appropriate value for At 

is found each iteration using (2.15-2.16). This adaptive time stepping technique 

ensures the solution that is propagated forward in time has stable characteristics.

2.3 Model Calibration

Uncertainty in environmental modeling arises due to incomplete 

knowledge about a physical process that relates the input to the output, inaccurate 

measurements of the input and output, and imperfect model parameterizations. 

Model calibration in this context is the process of reducing the ranges in the 

parameter sets so that the parameter uncertainty is reduced. Model cahbration 

strategies are quite numerous and variable, but can generally be classified as 

being either manual or automatic. Manual techniques require a human to 

interactively run simulations using different values for a given parameter. The 

human then makes a decision as to the parameter value that allows the model to
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simulate the system behavior most accurately. Parameter settings that yield 

solutions that are classified as unrepresentative of the observed system behavior 

are termed nonbehavioral and are rejected. This iterative process can be 

inefficient and even ambiguous if there is more than one minimum present in the 

parameter space. Automatic methods, on the other hand, vary in complexity but 

generally involve performing numerous solutions using different parameter 

settings. Past observations of rainfall and runoff are utilized to determine the 

accuracy of each prediction for a given model and its parameter values. The 

decision on the "goodness of fit" in this case is based on some performance 

criteria such as minimizing an objective function, or several objective functions as 

in multicriteria schemes (Gupta et al. 1998; Yapo et al. 1998) that are defined by 

the modeler.

Much attention in the hydrologie literature has focused on the successive 

adjustment of model parameters to observations of rainfall and runoff data 

through automatic methods (see e.g., Sorooshian and Dracup 1980; Seven and 

Binley 1992; Duan et al. 1992 among many others). These automatic methods 

can be further subdivided by their choice of a single, globally optimized 

parameter vector, or a of parameter vectors that model the system adequately 

within a realistic range of observations. Optimization involves deSning an 

objective function or functions, designing an algorithm to search the parameter 

space, utilizing historic records of rainfall and runoff for calibration, and setting
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convergence criteria to terminate the searching procedure. Additional 

subdivisions can be made in automatic calibration methods by the exact searching 

procedure that is implemented.

In general, the searching procedures are designed to minimize (or 

maximize as appropriate) an objective function by identifying a minimum 

(maximum) in the parameter response surfaces. Some examples of these 

algorithms include the pattern search method (Hooke and Jeeves 1961), the 

Rosenbrock method (Rosenbrock 1960), the simplex method (Nelder and Mead 

1965), the random search method (Kamopp 1963), and the adaptive random 

search (ARS) (Masri et al. 1978). The shuffled complex evolution method 

developed at the University of Arizona (SCE-UA) (Duan et al. 1994) is based on 

a synthesis of the best features from several existing procedures such as the ARS 

method (Pronzato et al. 1984) and the genetic algorithm reported in Holland 

(1975) plus complex shuffling (Duan et al. 1992; 1994). The Duan et al. (1992) 

study reports on the following common problems encountered in automated 

model calibration when a global optimum is desired: 1) more than one minimum 

(both local and global) in the parameter response surface, 2) "roughness" in the 

response surface due to discontinuous derivatives, 3) poor sensitivity of the 

response surface caused by insensitive parameters and interactions with other 

parameters, and 4) poorly defined minima due to a response surface with valleys 

and plateaus. In addition, difficulties may arise when the residuals are
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autocorrelated and heteroscedastic (Sorooshian and Dracup 1980). It is shown 

through case examples that the SCE-UA algorithm does indeed locate the global 

minimum in the response surface as desired. However, such automated methods 

will have limited success for Class II models that are more physically-based, have 

more parameters, and will have intercorrelated parameters because they are 

related to physical principles such as conservation of mass and momentum.

A different paradigm in automated calibration exists that is based on the 

premise that environmental modeling inherently includes errors in the 

observations and measurements from which calibration is based, in addition to 

errors in our physical understanding of a process, i.e., errors are present in the 

model structure. Given this uncertainty, there is little reason to believe that the 

algorithmic procedures described in the preceding section will identify the one set 

of parameter values that represents the “true” parameter set. Probabilistic 

calibration methods recognize that there may be several different regions in the 

parameter space that result in equally acceptable simulations of streamflow for a 

catchment.

The generalized likelihood uncertainty estimation (GLUE) method (Beven 

and Binley 1992) assesses the ZikgfiAood that a given parameter set adequately 

simulates the observed system behavior. This concept of "equiGnality” (Freer et 

al. 1996) gives rise to their concept of computing the probability that a given 

parameter set will yield an acceptable result. The GLUE method ultimately
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computes a likelihood distribution for the predicted variable. This procedure 

initially requires the assignment of ranges for each parameter. An ensemble is 

created by sampling the parameter space using a methodology such as Monte 

Carlo simulation. For each parameter set, predicted streamflow is compared to 

observations and given an objective assignment of its "goodness of fit". As is the 

case with all objective functions, the choice of the likelihood measure is a 

subjective one. Van Straten and Keesman (1991) provide a summary of 

performance criteria that are often used. In model calibration, criteria may be 

established for each performance measure to assess whether a given model 

(including the parameter set) yields acceptable behavior or not. This set- 

membership approach was first described by Keesman (1990). After each 

parameter set has been classiRed as either "behavioral" or "nonbehavioral", the 

behavioral models are weighted and rescaled to give a cumulative sum of 1.0. 

The weighting concept is introduced in the event that some information about the 

likelihood distributions becomes available after the initial cahbration step and 

there exists a need to sample the posterior distribution. The weighting may be 

established based on the importance of prior likelihoods (see Tanner 1992) or by 

using a random walk that adapts to the true probability distribution as in the 

Metropolis algorithm (Metropolis et al. 1953; Kuczera and Parent 1998). 

Regardless of the weighting scheme applied, the likelihood measures for each 

model are scaled such that the sum equals unity. The requirements for a discrete
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probability distribution have been met using this procedure; thus providing for the 

computation of uncertainty bounds or quantiles (e.g., 90% simulation limits) of 

predicted streamflow. In essence, the GLUE methodology provides the 

framework to: 1) perform model calibration, 2) assess prediction uncertainty due 

to parameter uncertainty for a given model structure by casting predictions in a 

probabilistic sense, and 3) evaluate the sensitivities of predictions to each 

parameter as in Spear and Homberger (1980). The methodology in Chapter 111 

describes how this probabilistic procedure is expanded to include the uncertainties 

in the rainfall inputs for assessment of the total prediction uncertainty. It will also 

be shown how this ensemble approach can identify model structural errors.

2.4 QPE Evaluation Methodologies

2.4.7 Point MefMwrgmgntg

Rainfall rate algorithms from radar have been evaluated with rain gauges 

and disdrometers at time scales on the order of minutes through simulations and 

observations (Bolen et al. 1998). The techniques used in the comparisons vary in 

complexity from bias, average difference and relative dispersion as in Wilson and 

Brandes (1979) up to making considerations for the space-time differences 

between radar measurements and surface gauge observations. At an instant, a 

radar measurement of precipitation is made at some height, z, above the ground. 

There is a finite amount of time in which the radar-observed precipitation falls to
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the surface and is thus observed by a rain gauge or disdrometer. In addition, 

horizontal winds may advect the raindrops so that they are displaced in space 

from the original measurement location. Approaches have been devised to shift 

the radar observations in time and search for an optimal area of radar data that 

likely contributed to the drop size distributions (DSD) measured at the surface 

(Bolen et al. 1998). The described adjustments seek near equivalence between 

variables measured by radar and by ground-based rain gauges or disdrometers. 

Parameters in the equations that relate the measured variable (e.g., Ẑ p ^^) to 

a physical process (rainfall) are often adjusted or fine-tuned in accordance with 

the disdrometer measurements (Schuur et al. 2001 among others). It can thus be 

noted that many rainfall rate algorithms have been designed and carefully 

calibrated to match disdrometer or rain gauge measurements as closely as 

possible. Comparisons between radar rainfall rates over a volume and gauge 

catchments in a small orifice are complicated by vertical variations in DSD owing 

to precipitate phase changes or precipitation growth below the radar beam, 

horizontal wind drift, underreporting of rainfall rates by gauges due to instrument- 

induced turbulence and splash-out (see previous discussion on rain gauges).

2.4.2 Si/MwluhoTM

Evaluation of the hydrologie response to diHering rainfall algorithm inputs 

(observed and predicted) for flash flood events has recently been explored (Peters
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and Easton 1996; Frank et al. 1999; Ogden et al. 2000; Warner et al. 2000a; b; 

Yates et al. 2000; Sanchez-Diezma et al. 2001; Westrick and Mass 2001). The 

modeling system approaches to evaluation often recognize the nonlinearity in the 

rainf all-runoff transformation (Droegemeier et al. 2000); and moreover, they note 

the complexity of the propagation of seemingly small errors in rainfall fields to 

much larger errors in predicted discharges (Frank et al. 1999; Ogden et al. 2000). 

The potential drawback in using such an approach is the introduction of model 

uncertainty, which is present in physical representations of most environmental 

systems. The nonlinear nature of the physical transformatibn of rainfall to runoff 

may be exacerbated by uncertainties in the modeling process itself, further 

complicating the evaluation capabilities of a hydrologie prediction system.

QPE verification using hydrologie model simulations is also complicated 

by the dependence of the hydrologie response on calibrated parameters. Yates et 

al. (2000) compares flood discharge simulations for a flash flood event that 

occurred on Buffalo Creek outlet on 12 July 1996. The PRMS model (refer to 

Section 2.2) simulated the basin discharge using inputs based on WSR-88D radar 

reflectivity, and measurements from the National Center for Atmospheric 

Research's (NCAR) S-Pol radar, and quantitative precipitation forecasts from a 

dynamic model and an automated algorithmic system. The study manually 

calibrates the saturated hydraulic conductivity parameters for each sub-basin 

using the S-Pol rainfall inputs. These inputs were used for calibration because
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they are assumed to be the most accurate. Not surprisingly, the ^^-based QPE 

algorithm matched the peak estimate of discharge for the flash flood event.

The previous example shows how model results can be dependent on the 

calibration data set from which they were derived, which are potentially 

misleading. Additional calibration procedures for different rainfall algorithms are 

rather cumbersome and have been largely ignored in studies evaluating different 

rainfall algorithms with a hydrologie model. It is suggested in Freer et al. (1996) 

that the GLUE technique be expanded to include the uncertainties associated with 

different rainfall inputs. Extension of the GLUE methodology to account for 

differing rainfall inputs provides a consistent methodology to evaluate the 

hydrologie response to each input independently.  Through extension of the 

GLUE methodology used on the deterministic ™ model to generate likelihood 

distributions, the following chapter describes a new methodology that can 

determine which QPE algorithm is more accurate from a hydrologie perspective 

and at the scale of the integrating watershed. At this time, no known studies have 

evaluated QPE algorithms using a hydrologie model in a probabilistic way that is 

independent of the calibration data set. This ensemble approach is also 

instrumental in identifying model structural errors.
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CHAPTER III. METHODOLOGY

3.1. Research Objectives

The purpose of this study is to answer the following three science 

questions that were posed in Chapter 1: 1) How can comparisons of QPE 

algorithms be performed systematically and quantitatively? 2) What are the 

predictability and limits-to-prediction in the hydrologie system?, and 3) How do 

uncertainties in model inputs propagate to errors in model predictions? An 

ensemble approach to hydrologie modeling is developed to include the 

uncertainties in the input rainfall estimates and model parameters. The combined 

effect of these uncertainties provides a better estimate of the total prediction 

uncertainty. Model parameter ensembles are produced for each quantitative 

precipitation estimation (QPE) algorithm. The combined results from these 

ensembles are compared to each other and to observations in order to evaluate the 

accuracy of the inputs at the hydrologie scale. This evaluation methodology is 

believed to be unique and can apply readily to other modeling applications.

Chapters 1-11 demonstrate a need in hydrometeorology to be able to 

accurately, quantitatively, and systematically evaluate QPE algorithms. The 

extensive use of QPE data in numerical weather prediction models, for 

verification of quantitative precipitation forecasts, in precipitation monitoring, and 

as input to hydrologie models is rather diverse and needs to be evaluated.
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Moreover, a consistent evaluation methodology wiH be vital to developers of new 

QPE algorithms as more remotely sensed rainfall data become available through 

radar and space-bom technologies. The developed evaluation methodology 

assesses the skiU of each rainfall algorithm after they have been submitted to the 

same degrees of model parametric uncertainty. Probabilistic measures are used to 

describe the accuracy of the ensemble of model predictions that were created 

using di^ering inputs. The stochastic approach proposed herein ensures that the 

probabilistic measures are computed independently of the inputs that comprised 

the calibration data set and is thus completely objective.

“Predictability” in environmental modeling encompasses a broad area of 

research (NRC 2001). The NRC (2001) report uses classical definitions for 

predictability sources; that is information present in the initial and boundary 

conditions. A third source of predictability is introduced as the nonlinear scale 

interactions in hydrologie systems. The Erst task in this study involves a 

refinement of the problem statement. In general, a modeling system possesses 

some degree of predictability if forecasts of a given variable have been produced 

and compared to observed system behavior, and the forecasts show skill over a 

benchmark measure such as persistence or chmatology. This dehnition assumes 

that the metric used to evaluate the forecasts takes into account the w/zcertamfy 

that is supplied with each forecasL So, what is predictability? In the context of 

this study, the cAwocfgrwrzc.; of prediction uncertainty are first identified and then
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quantified. SpeciRcally, the first characteristic of prediction uncertainty in this 

study is learning how a perturbation in the model input propagates through the 

model to yield a forecast. Does this perturbation get dampened in the modeling 

process or does it grow?

It would be informative to meteorologists and hydrologists alike if it were 

discovered that significant errors in QPE resulted in negligible hydrologie 

prediction uncertainties. While this circumstance is unlikely, the methodology 

proposed herein has the capability to quantify the impact of perturbing rainfall 

amounts and examining their impacts on simulations of streamflow. The 

magnitude and behavior of the impact of these rainfall errors helps to define the 

needed precision and accuracy in rainfall algorithms and observations of river 

discharge. Moreover, this information can be used to define how much detail is 

needed in the physical modeling process itself. For example, many traditional 

hydrologie models such as the Sacramento model (Bumash 1995) rely on the 

principle of superposition in unit hydrograph theory. If perturbations in rainfall 

fields result in nonlinear basin responses, does such a model structure that relies 

on linearity seem valid? The method proposed herein will answer this and other 

related questions.

Another revealing characteristic of prediction uncertainty is the 

identification of the components of uncertainty and quantifying their relative 

contributions. Figure 3.1 shows a diagram of the simplistic model. There can be
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FIG. 3.1. A schematic of the components of a simple model. Uncertainty may be 

present in the areas noted.
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uncertainty in the model inputs (e.g., rainfall estimates), the model structure (e.g., 

governing equations), model parameters (e.g.. Manning roughness parameter 

derived from land use/cover maps), and observations of the system behavior (e.g., 

streamflow). The total prédiction wncertointy must be estimated by incorporation 

of uncertainty in as many of these areas as possible, as it is the summed effect of 

the aforementioned uncertainty. Several methods have been devised to account 

for uncertainty in the model parameters (see Chapter II, section 2.3 for a complete 

discussion). Thus far, no known studies have computed the summed effect of 

uncertainty in predictions by including uncertainty in the model inputs, i.e., the 

rainfall. The uncertainty associated with in observations of river discharge 

are not explicitly accounted for in this study; however, streamflow measurements 

have errors on the order of 3-6% (Sauer and Meyer 1992) and are second order as 

compared to the other contributions of uncertainty. Once the uncertainty due to 

model parameterization and input errors are quantified, it is shown how other 

sources of uncertainty that are more difficult to identify, such as that within the 

model structure itself, are elucidated.

Better estimation of the combined prediction uncertainty provides for a 

more realistic evaluation of the skill of the hydrologie prediction system. 

Moreover, the ensemble approach enables hydrologie predictions to become more 

useful to users of these forecasts if the total prediction uncertainty is estimated 

more accurately. The creation of ensembles requires running the models, or

61



collection of models, many times in order to encompass the phase space of 

possibilities. Computational constraints, although becoming less and less 

prevalent, engage the modeler to devise ensembles that produce the most spread 

while minimizing the number of simulations needed. After the uncertainties from 

inputs and parameters have been included in a combined ensemble prediction 

system, how many simulations are really required to produce the expected realm 

of possibilities? What is the totaZ prediction uncertainty? This study addresses 

and answers each one of these questions.

3.2. Experimental Plan

3.2.7. Ca$g Data

Prior to performing the hydrologie simulations, model inputs, parameter 

maps, and observations of output must be assembled. The Vflo ™ model requires 

the following parameters that are distributed spatially, but constant in time: 

saturated hydraulic conductivity (Æ), initial degree of soil saturation (6), soil 

suction at wetting front (^), terrain slope % ), flow direction, flow accumulation, 

and the Manning roughness coefficient (n). In addition, the geometry (side slope 

and bottom width) and hydraulic roughness of the defined channels must be 

specified. Prior studies on the Blue River Basin have resulted in the auspicious 

arrangement of all the aforementioned parameter maps and channel cross-

62



sections. All model parameters are analyzed on a common grid. The grid cell 

resolution is 270x270 m.

Model inputs are supplied from the National Weather Service's Arkansas 

Basin River Forecast Center PI algorithm (see Chapter n , section 2.1.4) and from 

the National Severe Storms Laboratory's (Quantitative Precipitation Estimation 

and Segregation Using Multiple Sensors (QPE SUMS) algorithm (see Chapter H, 

section 2.1.4). The nominal resolution of the PI products is 4CK)0x4000 m 

produced hourly. The latter algorithm produces a suite of rainfall estimates, some 

of which rely on calibration from rain gauge measurements from the OK Mesonet 

(see Chapter II, Section 2.1.1). The original resolution of QPE SUMS products 

ranges from 5-min to 1-hour on a grid having l(XX)xl(XX) m grid cell resolution. 

Hourly data are used in this study as opposed to the 5-min data in order to 

mitigate uncertainties due to temporal differences alone. All rainfall products are 

resampled on the common grid employed by the ™ model. Hydrologie 

forecasts are verified using US Geological Survey (USGS) hourly discharge 

observations on the Blue River near Blue, OK (site ID 073325(X)).

The hydrologie evaluation focuses on three cases that resulted in 

significant flow on the Blue River. Details about each case including data 

availability are summarized in Table 3.1. Recently, there have been significant 

improvements and increased diversity of the sensors used in QPE algorithms. 

Rainfall data from the latest developments in QPE have been archived for a
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handful of events in OK from July through December of 2002. The QPE SUMS 

algorithm produces the following outputs over the entire state of OK: multisensor 

rainfall (MS), multisensor rainfall with mean field bias adjustment using Mesonet 

gauges (MS-G), multisensor rainfall with local bias adjustment (MS-LG), 

multisensor rainfall with mean field bias removed and local bias adjustment 

applied (MS-LGG), radar-only rainfall (RAD), radar-only rainfall with mean Geld 

bias adjustment using Mesonet gauges (MS-G), radar-only rainfall with local bias 

adjustment (RAD-LG), radar-only rainfall with mean Geld bias removed and local 

bias adjustment applied (RAD-LGG) and gauge-only rainfall (GAG). Detailed 

explanaGons of each algonthm are provided in Chapter II, section 2.1.4. The 

developed methodology is intended to reveal the value of adding sensors to QPE 

algonthms such as satellite and rain gauge data. The hydrologie evaluaüon is also 

designed to identify the types of gauge adjustment strategies that lead to the most 

accurate hydrologie predicGons. A hydrologie methodology that uses streamGow 

as an independent measurement is vital for evaluating QPEs that use rain gauges. 

Results derived Gom this study may be speciGc to the study basin, hydrologie 

model, and/or precipitaGon inputs. However, it is the methodology of evaluating 

the model inputs using an ensemble approach that is unique and directly 

applicable to other environmental models.

Several aspects of predicGon uncertainty are invesGgated in the second 

phase of the study. Data Gom a signiGcant cool season hydrologie event that
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occurred in November of 1994 (Table 3.1) are used to determine the propagation 

characteristics of rainfall errors to streamflow predictions. Precipitation inputs for 

this particular investigation are provided by the PI algorithm. Next, the ensemble 

approach is used to identify additional uncertainties in the V/Zo ™ model 

formulation using an event that occurred during August of 2002. Precipitation 

inputs for this warm season event are supplied by the QPE SUMS algorithm. The 

three cases used in the hydrologie evaluation are also used to produce ensembles 

based on model inputs, model parameters, and a combined input-parameter 

ensemble. The relative skill and spread of each ensemble is quantified and 

compared. This information, combined with the optimized number of simulations 

needed to produce an accurate ensemble, provides guidance leading to the 

creation of ensembles useful for operational application of this hydrologie 

prediction system.

3.2.2. EvoZwahon a MadeZ Paramgrgr E/wg/n^Zg Approach

The uncertainty of hydrologie predictions cannot be assessed with a high 

degree of accuracy without knowing the error characteristics of the model inputs, 

i.e., the rainfall. New remote sensing technologies from ground-based radar, 

space-bome radar, and satellite are now providing rainfall estimates at scales on 

the order of tens of meters every few minutes. The difficulty in measuring the 

improvement and impact of these technological advances is the lack of
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information regarding the ground truth. Traditionally, this has been accomplished 

using rain gauges. These measurements have their own errors, perhaps

comparable to those of the remotely sensed data, and are sensing rainfall at a 

much smaller scale. For these reasons, a new approach must be considered to 

quantify the uncertainties in the rainfall algorithms and be performed at the 

hydrologie scale of application.

Fhior to performing any hydrologie analysis, the hourly QPEs from each 

algorithm (refer to Table 3.1) are aggregated in time to yield storm total 

precipitation. These storm total plots are shown for each ease in order to reveal 

subjective differences in the estimates. While this brief analysis fails to quantify 

the true hydrologie uncertainties with the QPEs, it does reveal characteristics 

associated with each algorithm. For example, the output from the GAG product is 

expected to take on a much different appearance from a RAD product. Moreover, 

artifacts due to remote sensing of variables indirectly related to rainfall (e.g., radar 

reflectivity) are revealed. The storm total plots show differences in the spatial 

distributions and magnitudes of rainfall estimated by each algorithm.

The designed hydrologie evaluation methodology must be objective and 

unbiased towards a given QPE input. Global optimization methods in model 

calibration seek a unique parameter set that best simulates the observed behavior 

(see Chapter II, section 2.3 for a complete discussion). If another input is used, 

then the model would likely need to be recalibrated as the previous parameters
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were likely tuned to the expected rainfall inputs. The evaluation methodology 

proposed herein computes probabilities by examination of the allowable 

parameter space for each QPE independently and thus remains unbiased towards a 

given QPE. Model parameter ensembles are created for each input independently. 

The spread and accuracy of the coynpfVation of individual simulations are 

determined based on comparisons with observed streamflow. It is hoped that this 

evaluation methodology will be adopted for systematic evaluation of new QPE 

algorithms.

The first step in setting up a model parameter ensemble involves assigning 

the ranges and distributions of parameter values. If no information is known a 

prior; about the parameter distributions, then a uniform distribution can and will 

be assumed. The V/Zo ™ model (see Chapter II, section 2.2) utilizes maps of 

saturated hydraulic conductivity ( ^ ,  initial fractional water content of the soils 

(0), soil suction at wetting front (^ ), bed slope (,^J, flow direction, flow 

accumulation, and Manning roughness coefficient (») that are distributed 

spatially. The DEM-derived parameters, i.e., 5'̂ , flow direction and accumulation, 

are well-derined, and variations of these parameters are related to scale issues that 

are beyond the scope of this study. The ^  parameter is inversely proportional to 

Æ as revealed in Table 4.3.1 of Chow et al. (1988). Varying the ^  parameter in 

addition to the parameter increases the dimensionality of the parameter space, 

thus increasing the number of simulations by an order of magnitude. For these
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reasons, the AT, 0, and n parameters are assigned ranges while the other parameters 

remain Axed at their predefined values.

The AT, 0, and » parameters are distributed in space and are derived from 

ancillary data. The inference of AT and n from soil types and land use/cover data is 

associated with some uncertainty because they are not measured directly. For this 

reason, they must be perturbed within their physical bounds. Perturbing spatially 

distributed parameter maps can be a daunting task if one were to consider 

perturbing the values from cell-to-cell. The parameter space would increase 

beyond bounds that are not practical to sample and perform model simulations. 

The Ordered Physics-based Parameter Adjustment (OPPA) method described by 

Vieux and Moreda (2003) employs scalars to adjust parameter maps so that the 

magnitudes change while the spatial variation is preserved. This method 

maintains spatial variability commensurate with distributed parameter modeling 

while minimizing the dimensionality of the parameter space. The scalars used to 

multiply the AT and n parameter maps are defined as follows:

where A, is the adjustment factor. In essence, (3.1) employs scalars that range 

from quartering to nearly doubling the parameters from their given values.
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Perturbing the Manning roughness coefficients results in smooth (rough) surfaces 

that have the affect of reducing (increasing) the amount of time it takes water 

moving overland to reach the basin outlet. Increasing (decreasing) the saturated 

hydraulic conductivity has the affect of increasing (decreasing) potential 

infiltration rates (2.12). In this case, more (less) water is lost to the soils and a 

lower (higher) volume of water reaching the basin outlet results. The initial soil 

saturation parameter is varied from 20% (dry) to 100% (saturated) in increments 

of 20%. The ™ model is run on an event-based mode, thus there is no known 

information about spatially distributed antecedent soil moisture conditions. The 

parameter is essentially varied from dry to moist conditions.

The next procedure in setting up a model parameter ensemble involves 

running multiple hydrologie simulations using combinations of possible 

parameter settings for each QPE input. If there were information available 

regarding the initial parameter distributions, then an algorithmic procedure would 

be devised to sample the parameter space strategically to avoid excessive 

computational expense. A uniform distribution is assumed here, and the 

parameter space is sampled thoroughly such that no particular parameter setting is 

favored and given more weight in computing the final probabilities.

The first simulation uses rainfall inputs from the RAD product for the 23 

October 2002 event (Table 3.1). Scalars used to multiply the n and ^  maps are 

determined by (3.1), while the first parameter setting of 0 is set to 20%. Results
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from this simulation are stored in a file. This procedure is repeated over and over 

until all possible parameter combinations have been utilized in the model. Since 

there are Gve different scalars used to adjust each of the three parameters, a total 

of 125 simulations are performed for the RAD rainfall input for the first event. 

Next, the RAD-G product is input to the VyZo ™ model in lieu of the RAD product. 

The exact same parameters are iterated through the model, with the only 

difference being the model inputs. Again, model simulations using the RAD-G 

inputs are stored in a separate file. This procedure is repeated for all available 

rainfall inputs for the 23 October 2002, 28 October 2002, and 03 December 2002 

events (see Table 3.1).

Results from each simulation are compared to observed streamflow in the 

verification step. There are several ways in which predictions of streamflow can 

be evaluated based on comparison to observations. In the hydrologie literature 

(see e.g., Beven and Binley 1992; Romanowicz et al. 1994), a particular model's 

goodness-of-fit is typically determined using objective functions that rely on the 

sum of squared errors. An individual error results from the difference between 

discharge predictions and observations at each observational time step. The error 

variance is then computed throughout an event or during an entire season. The 

objective functions described above have useful statistical properties, but can 

result in a loss of information about a given hydrograph. Consider for example a 

predicted hydrograph that mirrors the observed perfectly, but is offset in time by a
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few hours. The errors computed at each observational time step would be 

significant in this case, as would be the error variance throughout the event. The 

objective functions described above would have little capability in differentiating 

this kind of a predicted hydrograph versus another that has a significantly 

different shape. Similar magnitudes in error variances can be achieved from 

predicted hydrographs that have much different shapes and behavior. This study 

utilizes three objective functions to describe the degree to which each model 

matches streamflow observations. These objectives provide more information 

about hydrographs shapes than statistics based on error variances.

The following variables are computed from the observed discharge and 

each simulation of streamflow: integrated discharge throughout the storm event 

normalized by the basin area (Volume hereafter), maximum discharge throughout 

the event (Peak hereafter), and the time at which the maximum discharge 

occurred (Time hereafter). Figure 3.2 shows how each of these variables are 

derived from a given hydrograph. For flash flood forecasting, it is important for a 

model to be able to match the Time, Peak, and Volume of a hydrograph. The 

Time indicates when a flood wave may impact a region of interest, whüe the Peak 

and Volume variables are related to the magnitude of flooding. For the purposes 

of QPE development, the Volume is the most informative variable. Recall the 

outlet of the Blue River Basin is 200 km from a nearby radar, KTLX (see Fig.

1.1). The extent to which each product may possess biases, especially at medium
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FIG. 3.2. A schematic of a typical hydrograph and the derived variables that are 

used in this study. The Time (sec) variable is the time at which the maximum 

discharge occurs, Peak (cms) is the magnitude of the maximum discharge, and 

Volume is the time-integrated flow under the hydrograph that's been normalized 

by the basin area (nun).
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to far ranges from radar, is important in assessing the relative strengths and 

weaknesses of a particular QPE. These biases will be revealed most explicitly 

upon analysis of the Volume results.

The simplest procedure to verify an ensemble of forecasts is to derive and 

evaluate the first moment of the forecast probability distribution, the mean. In 

numerical weather prediction, it has been shown that the mean of the forecast 

ensemble wiU have a smaller error than the mean error of individual forecasts 

(Leith 1974; Murphy 1988). Thus, the mean of the forecasts, when compared to 

observations, provides an overall indicator of the ensembles’ behavior. This 

evaluation methodology lacks robustness because it is assumed a prion that the 

forecast probability distributions can be approximated by a Gaussian distribution. 

These parametric statistics are attractive due to their simplicity, but additional 

information about the entire probability distribution functions (pdfs) is revealed 

using statistics developed in following sections.

The mean Time, Peak, and Volume of each ensemble is computed. The 

following statistics are utilized in order to compare the ensemble averages to 

observations: Mean Absolute Error (MAE), and root mean squared error

(EM^E). Their definitions are provided below:

O , (3.2)
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M A E . E ^ F , - d ^  (3,3)

where F, represents a forecast from ± e  :±  simulation for Time, Peak, and 

Volume, O is the observation, and J is the expected, or mean value. 

shows how ensemble means compare to observations in an overall sense. MAF 

and FM^F reveal the degree of scatter or variability between individual forecasts 

and observations. Fzajes closest to 1, and AfAFs and FMS'Ff closest to 0 by 

definition have the best agreement with observations of streamflow. Observed 

rainfall is compared to observed streamflow using a runoff coefficient (RO Coeff 

hereafter). This quantity is the discharge volume divided by the basin-averaged 

precipitation summed throughout each event.

The statistics described in (3.2-3.4) are simplistic and provide a first order 

evaluation of the hydrologie variables as compared to observations. However, 

they only consider the ensemble mean and not the fuU spread and distribution of 

predictions. A forecast ensemble provides the copaAiFfy to estimate the forecast 

pdf of the hydrologie variables. A more robust statistic is developed below to 

compare the predicted pdfs to a single observation. In this hydrologie evaluation 

the forecast "probability" distribution is a result of parametric uncertainty alone. 

It is possible, but unlikely, that errors in the model structure and/or observations
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of streamflow are structured to favor a given model input. The word 

"probability" is used cautiously here because the distributions of forecast 

variables may not necessarily be representative of the "true" probability 

distribution function. The probability is more aptly referred to as a conditional 

probability. This concept is explored further in this Chapter.

Probability distribution functions are computed for Time, Peak, and 

Volume using each 125-member ensemble representing the different QPE inputs. 

In many applications, a histogram would be a sufRcient qualitative manner in 

which to display the distribution of a given dataset. However, it must be noted 

that a judicious choice of the number of classes used and the class interval can 

affect the appearance and conclusions drawn from the computed histograms. 

Moreover, histograms are not always smooth or continuous which reduces their 

utility if derivatives are needed. This study computes pdfs for each ensemble 

using Gaussian kernel density estimation (Silverman 1986). In a simplified 

manner, this density estimation technique can be thought of as a smoothed 

histogram. The resulting function is smooth and continuous which leads to better 

estimation of probability exceedence (i.e., 90% simulation limits) and calculation 

of derivatives.

Following Silverman (1986), a kernel density estimate is computed as 

follows:
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= I (3.5)

where /W  is an estimate of ± e  data density, A is the smoothing parameter or 

bandwidth, X is the kernel, X, is the ith prediction, and » is the number of 

ensemble members (with each supplying a prediction). The kernel is actually a 

function itself which satisfies the following condition:

(3.6)

In this case, the kernel is nonnegative and from (3.6) satisGes the requirements for 

a pdf. In (3.5), note how the pdf is computed from the sum of individual kernels 

at the prediction locations. In this sense, the estimated pdf is a compilation of 

several "bumps", where the shape of the bump is defined by the kernel estimator 

being used. In this study, a Gaussian kernel is applied. Thus the kernel density 

estimate becomes

( X  j ~ x )

/(^ )
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where cr is the bandwidth. The choice of the bandwidth deRnes how smooth the 

estimated pdf wdl be. Smaller (larger) bandwidths lead to more (less) bumps in 

the estimated pdf that may or may not be real. In essence, small (large) 

bandwidths place lower (higher) weight on observations that are further away. If 

only one pdf were being estimated, then the bandwidth could be chosen 

subjectively to minimize the insignificant bumps while retaining the "true" shape 

of the pdf. In this study, many pdfs are estimated requiring an objective choice of 

the smoothing parameter, cr. Silverman (1986) recommends using a bandwidth 

that is adaptive to the range or spread of predictions. The following equation is 

used to adaptively adjust the bandwidth to accommodate each dataset:

or-0.79;gn  ̂ , (3.8)

where is the interquartile range of the predictions. Plots of the pdfs are 

produced and subjectively compared. Additional statistics are derived from the 

density estimates.

It is useful to the modeler to understand performance measures of a 

hydrologie model using a given rainfall input. Specifically, measures of central 

tendency, spread, and skill are computed from each pdf. A nonparametric 

measure of central tendency is the 50% simulation limit, or median. This is the
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value corresponding to 0.5 on the cumulative distribution function (cdf). 

Similarly, the spread can be quantised by determining the distance between the 

5% and 95% simulation bounds. Similar to the median, these simulation limits 

are determined from the values corresponding to 0.05 and 0.95 on the cdf. This 

provides for measures of central tendency and uncertainty limits for each 

ensemble. Plots from these measures are produced for each ensemble, thus 

enabling subjective comparison of the simulation limits.

It would be informative to the modeler to know the ensemble skill based 

on the pdfs. This approach is nonparametric and considers each member with 

equal weight. Statistics used to evaluate probability forecasts for multicategory 

events have been developed. A condition for a probability distribution is that the 

probability for a given event must be greater than or equal to zero and less than or 

equal to one. Secondly, the sum of probabilities for the event must be one. The 

pdfs computed from the ensembles may not be an accurate estimate of the true 

underlying pdf if there are uncertainties in the model structure, model inputs, or 

observations of model predictands. Thus, the pdfs computed here are treated as 

conditional probability distributions. Nonetheless, ensemble forecasts are verified 

using the entire data distribution with the understanding that they are most likely 

not accurate estimates of the true pdf.

The ensemble skiU is assessed using the ranked probability score (ÆP5; 

Wilks 1995). This statistic is particularly useful for probability forecasts of an
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event that has a natural ordering. Consider an example where a given ensemble 

forecasts an observed Volume of 6 mm with only a 10% probability, while 

another ensemble forecasts the same observation also with 10% probability. If we 

were only considering one category, then these forecasts would have the same 

skill. However, the accommodates multi-category events so that the 

probability assigned to the other categories is assessed. Using the same example, 

the first example might forecast a Volume in an adjacent category of 7 mm (i.e., 

only 1 mm different from the observed) with a 90% probability, while the second 

ensemble forecasts a Volume of 12 mm with a 90% probability. In this case, the 

second ensemble is penalized more heavily because more probability was 

assigned to a category further removed from the observation. Thus, the is 

said to be sensitive to distance, an attractive property to the skill score. The 

formal definition if provided below:

m ~ \

o,
I-I / \ M . (3.9)

where y, is the cumulative probability assigned to the ith category, o, is the 

cumulative probability of the observation in the fth category, and 7 is the number 

of categories. The ÆP^ values require the selection of categories. Ten categories 

were chosen based on observed Time, Peak, and Volume observations. The first
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Time category was chosen to be the observed time of maximum discharge minus 

one day, with a class interval of five hours. The first Peak and Volume categories 

were chosen to be 25% of the observed variables with class intervals equal to the 

first category. The choice of categories is a subjective one, but is based entirely 

on observed data, not on the predictions. This enables the ÆP5 scores to be 

compared to one another in an objective way.

Probability distributions and subsequent calculation of ÆP.F values from 

two independent ensembles may certainly appear to be different. However, in 

order to justify the statistical significance of the differences, a resampling 

technique is employed. The resampling technique pools together all of the 

ensemble members from two different ensembles. Two new ensembles of the 

same size are created by randomly selecting members from the pooled population.

values are computed for the new ensembles and are stored. This procedure is 

repeated 1000 times. Each is computed and used to produce a

cumulative distribution. The cumulative distribution is then used to determine the 

probability of obtaining the original diH^erence. These confidence levels are 

computed for each ensemble that is being compared. For the 23 October 2002 

event, there are as many as nine different model parameter ensembles 

representing nine different model inputs (see Table 3.1). The confidence intervals 

are thus presented in a 9x9 matrix where repeated results are omitted.
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A hydrologie evaluation of QPE algorithms is accomplished through the 

development of ensembles whose skill is measured by the score. These 

ensembles are produced for each QPE input independently. Each parameter is 

varied within its physical bounds using scalars to produce model parameter 

ensembles. First order parametric statistics such as the AfAE, and are 

used here to compare the ensemble mean to the observations of streamflow. A 

major beneHt of ensemble forecasting is the possibility of estimating the true 

forecast probability distribution. In the hydrologie evaluation method proposed 

herein, pdfs are computed for each QPE input. As discussed previously, the word 

“probability” is used here with the understanding that it is a probability 

conditioned on perfect model physics, perfect observations of streamflow, and 

acctuate estimates of rainfall, all of which are rarely obtainable. The pdfs are 

compared in order to determine the rainfall input that results in the most likely 

forecasts of streamflow, still conditioned on the perfect model and perfect 

observations assumption. values are compared, and the statistical

significance of the differences is evaluated. The parameter ensembles also enable 

the computation of simulation limits, or 5%, 50%, and 95% quantües. These 

derived statistics indicate the spread or uncertainty with the predicted ensemble 

and a measure of central tendency. The combination of these analyses reveals the 

model input that has the best chance of producing hydrologie forecasts, i.e. best 

simulates the observed system behavior.
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The third objective in this study is to determine the sensitivity of 

simulations of streamflow to errors in rainfall measurements. The assumption of 

linearity in the transformation of rainfall to runoff is tested upon examination of 

the impact of perturbing rainfall amounts. If increasing the rainfall inputs to the 

model by a factor of two results in a similar error in simulated discharge, then the 

assumption of linearity is vindicated. On the other hand, perhaps a large 

perturbation in rainfall results in an error in predicted discharge that has a smaller 

relative magnitude. This information indicates that the model predictions are not 

sensitive to the QPE inputs. Conversely, perhaps the introduced errors in rainfall 

inputs blow up into much greater errors in discharge. This nonlinearity in the 

relationship between rainfall and runoff would have large impacts on current 

models that utilize unit hydrograph theory. Moreover, the need to improve the 

precipitation inputs to the hydrologie model would be well justified.

This third science question is addressed using a similar methodology 

developed in the hydrologie evaluation described in section 3.2.2 of this Chapter. 

Specifically, the uncertainties in the model parameters are used to create forecast 

ensembles. It can be argued that the sensitivity of forecasts to input perturbations 

could be determined using a single model structure and parameter set. It is 

unlikely, but nonetheless possible, that the chosen parameter set results in an
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aberrant behavior as compared to the rest of the ensemble members. For instance, 

if an unrepresentative, low value for initial soil saturation is used, there may not 

be much runoff generation even if the rainfall amounts are doubled. One might 

jump to the conclusion that simulated hydrograph responses are insensitive to 

rainfall perturbations. A model parameter ensemble is utilized here to avoid 

making conclusions based on deterministic forecasts, but rather the entire range of 

forecasts. The model inputs used to generate the ensembles are not independent of 

one another, but are simply perturbations of the given, deterministic rainfall input. 

Analogous to the perturbations imposed on the parameter maps, rainfall estimates 

are perturbed from one-half to double their initial value. Five scalars are used to 

perturb the rainfall estimates: 0.5, 0.75, 1.0, 1.33, and 2.0. The 12 November 

1994 event is used for this sensitivity test (Table 3.1).

The scalars used to adjust the n, AT, and 0 parameters are the same ones 

used in the hydrologie evaluation. An ensemble is created for each of the rainfall 

inputs combined with 125 different configurations of model parameters, totaling 

five forecast ensembles. Each of the ensembles uses the same parameter settings, 

but each uses a different model input. After all the simulations are performed, the 

Time, Peak, and Volume hydrologie variables are computed from each member. 

The 6iar, MAE, and EM^E statistics (3.2-3.4) quantify the agreement between the 

forecast hydrologie variables and observations. In addition, pdfs are computed 

from the 125-member ensembles using the Gaussian kernel density estimation
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technique. These pdfs are conditioned on an accurate model structure and 

observations of streamflow. A change in the model structure can certainly result 

in a completely different hydrologie response to the model inputs and their 

perturbations. This sensitivity test is thus speciGc to a single model structure.

The estimation of pdfs enables the computation of .05, .50, and .95 

quantiles. These nonparametric statistics provide information regarding central 

tendency and the spread of the ensemble. The skill of each ensemble is assessed 

using the / ( f  & Since / ( f  S values from different ensembles are being compared, 

the statistical significance must be evaluated using a resampling test. All of the 

discussed statistics are tabulated in a table and some are charted in order to reveal 

characteristics of input uncertainty on hydrologie forecasts. The forecast 

ensemble reveals the sensitivity of model forecasts to rainfall inputs by taking into 

account the deviations that result from all physically realistic parameter sets.

^.2.̂ .2. /dgfirÿicario/i C/nccrmimy in Model

In environmental modeling, uncertainty is known to reside in 

observations, model inputs, boundary conditions, parameters, and in the model 

structure. A forecast ensemble can be carefully crafted in order to encompass the 

uncertainty in all the above areas, thus providing an accurate estimate of the true 

pdf. Several sampling strategies of the parameter space have been developed as 

long as the physical ranges of each parameter can be specified (see e.g.. Chapter
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II, section 2.3). This is much more easily accomplished with a model whose 

structure and parameters have a physical basis, such as with Class I-II models (see 

Chapter II, section 2.2 for a complete discussion). The ™ model uses 

physically based parameters, which means realistic ranges and thus perturbation 

scalars can be assigned a priori.

It is much more challenging to perturb the model inputs, i.e. rainfall 

estimates, without taking into consideration several aspects of the instrument used 

to measure the rainfall. For instance, rainfall estimates as measured by radar are 

known to have system-wide biases, as well as biases that are spatially and 

temporally variable. The number of simulations needed to encompass each and 

every one of these possibilities at each grid cell for each time step would result in 

an unrealistically large ensemble. This obstacle is addressed using all the rainfall 

possibilities from the QPE SUMS precipitation algorithm. This algorithm 

produces a suite of products every hour based on individual sensors and 

combinations. In essence, the suite of products as a whole can be treated as an 

ensemble of model inputs. The large number of members and diversity of 

instruments used to produce the QPEs are assumed, but have not been proven, to 

be an accurate estimate of the true, unknown rainfall pdf. Because the pdf is not 

known perfectly, each QPE SUMS member will be assumed to be an equally 

probable estimator of the true rainfall and will be given equal weight.
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Forecast ensembles can now be created from the range of possibilities 

suggested by the combination of model inputs, model parameters, and the 

assumed uniformity of their distributions. At this point, an estimate of uncertainty 

can be obtained for a given hydrologie prediction as long as the model structure 

and observations of streamflow are perfect. Of course, neither of these conditions 

holds with certitude for aU conditions. Consider, for example, potential errors in 

streamflow observation during low-flow conditions in a large riverbed. The water 

pathways can meander within the riverbed giving it a braided characteristic. A 

point measurement of streamflow may be an underestimation of the total flux of 

water leaving a given cross-section. Here, the observation of streamflow is not 

perfect, as is typically the case with measurements of the environment. 

Nonetheless, measuring streamflow at a given cross-section in a river channel is 

much simpler and easier to accomplish as compared to capturing the spatial and 

temporal variability of rainfall over an entire basin. Similarly, estimation of 

model parameters over the basin based on indirect measurements is also much 

more challenging. The uncertainties in streamflow measurements have been 

estimated to be 3-6% (Sauer and Meyer 1992). These uncertainties are assumed 

to be small as compared to uncertainties associated with model inputs and 

parameters. Uncertainties with streamflow measurements wiU be neglected in 

order to isolate uncertainties in other components of the modeling process (e.g., in 

the model structure).
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It is now assumed that the uncertainties in rainfall estimates and model 

parameters are accounted for by accurate estimation of their respective pdfs. In 

addition, uncertainties caused by observations of streamflow can and are assumed 

to be negligible relative to the aforementioned sources of uncertainty. The 

remaining source of uncertainty in hydrologie forecasts rests in the model 

structure itself. Model structural uncertainties can result from one or more of the 

following: numerical errors, incomplete representations of all the physical 

processes important to the variable being predicted, nonrepresentative model 

formulations due to an incomplete understanding of the physics involved (e.g., 

runoff generation from Hortonian versus Dunne-type), and application, of these 

physics to the precise scale of the basin. These unknowns are impossible to 

quantify for any particular environmental modeling system, otherwise the model 

would be perfect. The identification of model uncertainty is thus accomplished 

by quantification of all other error sources, with the model uncertainty being the 

remaining component of the total error that isn't explicitly accounted for. The 

nuU hypothesis in this case states that the model is perfect. If the null hypothesis 

is correct, then there are no residual errors after the model input and parameter 

uncertainties have been accurately accounted for. The null hypothesis may be 

refuted in the event that there is some residual error for the case event being 

studied. This hypothesis testing assumes that the sensitive parameters have been

87



identified, their ranges have been properly assigned, and the QPE inputs estimate 

the underlying rainfall pdf.

The methodology for model uncertainty identiRcation begins by creating 

an ensemble that is comprised of uncertainties in the model inputs and 

parameters. The 25 August 2002 event is used for this experiment (see Table

3.1). The ensemble is composed of all available model inputs from QPE SUMS 

for this case combined with parameter perturbations used in sections 3.2.2 and 

3.2.3.1. Similar to prior analyses, the bioj, MAE, and ÆMSE statistics are used to 

verify the forecasts of streamflow. In addition, pdfs are derived from the 

ensemble, thus enabling the computation of simulation quantiles and an EPS". 

Confidence levels are not required in this case because RPS values are not being 

compared to one another.

The null hypothesis stating that the model structure is perfect can be 

refuted if the following conditions are satisfied: parameter ranges have been 

adequately assigned, perturbations of QPE inputs represent the true rainfall pdf, 

and statistics indicate that the forecast ensemble does not give the observed 

system behavior. Specifically, if the observations of streamflow fall outside the 

simulation bounds, then the residual error may be attributed to an erroneous 

model structure. It is also plausible that parameter ranges were not assigned to be 

wide enough, or all the QPE inputs are biased so that their pdf does not 

adequately encompass the true rainfall. A possible explanation for the model
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structural uncertainty is provided and supported by evidence from independent 

observations of rainfall, runoff, and soil moisture conditions. Conclusions from 

this experiment may be speciAc to this particular study event, basin, and specific 

ranges of parameters explored. Nonetheless, the focus here is on the fgcAnigng 

used to identify model structural uncertainty.

3 .2 .3 ..) . Ejrinwztion f  [/n cer tm /n y

A major goal in hydrologie forecasting is to estimate the total uncertainty 

associated with a given prediction. It is shown in section 3.2.3.2 how an 

ensemble can be constructed to encompass the uncertainty associated with model 

inputs and model parameters, two major sources of uncertainty in hydrologie 

prediction systems. This quantification of uncertainty leads to the that

a certain hydrologie condition will be accurately predicted given 

hydrometeorological inputs. The other sources of error lie in the model structure 

and observations of streamflow. The latter potential error source has been 

quantified and is negligible in most cases in comparison with the other 

uncertainties. Model structural errors with the vyZo ™ model have been 

discovered, but will be shown to be isolated to specific times of the year. These 

model structural errors are not as prevalent for the three cases used in the 

hydrologie evaluation (section 3.2.2). The total prediction uncertainty can thus be 

estimated by incorporating the uncertainties inherent in model inputs and
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parameters into a combined ensemble. Probabilities of hydrologie conditions are 

accurately estimated for the same three cases used in the hydrologie evaluation 

(refer to Table 3.1).

A combined ensemble is constructed as described previously by 

estimating the rainfall pdf and the pdfs for each model parameter. The rainfall 

pdf is estimated by treating each QPE SUMS member as if it is an equally likely 

estimator of the true rainfall field. This is a valid assumption because the QPE 

SUMS products use all available rainfall sensors and logical combinations in their 

estimation schemes. A uniform distribution of the rainfall products will be 

assumed here. Similarly, the three sensitive parameters used in the vyZo ™ model 

are perturbed within their physical bounds as in (3.1). No assumptions are made a 

priori about the true underlying pdfs of the parameters. Thus, a uniform 

distribution is assumed for the initial parameter settings and their perturbations, 

i.e., they are each given equal weight. Future research will reject those models 

(e.g., given rainfall input and parameter set) that give a prediction that is deemed 

nonbehavioral. This will further refine the simulation bounds for hydrologie 

predictions on the Blue River Basin.

The number of members comprising a combined ensemble is a function of 

the available rainfall inputs for a given case (see Table 3.1) multiplied by the 

number of parameter possibilities (125). After the combined ensemble is 

constructed, a pdf is estimated using the Gaussian kernel density estimation
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technique and plotted for each predicted variable. The MAE, and EM^E 

statistics (3.2-3.4) are computed from the ensemble mean and placed in a table. 

The nonparametric is computed to determine the skiU of the hydrologie 

prediction system and 90% simulation limits are also computed from the pdfs. 

The simulation limits are plotted along with the observed variables to show the 

degree of spread or uncertainty associated with each hydrologie prediction. This 

prediction uncertainty analysis is performed for each hydrologie variable (i.e., 

Time, Peak, and Volume) for aU three cases.

3.2.3.4. Optrmnm Vw/nber q/^Erwembk Mgrn^ers^

The previous section demonstrates how an ensemble can be constructed to 

include the dominant sources of uncertainty for the cases studied. Probabilistic 

forecasts that a given hydrologie variable will be met or exceeded can be 

estimated with this technique. These statistics have large potential value when 

used in practice. Consider, for example, a drainage that is near a residential 

neighborhood. Let's say that flood stage is reached when the maximum discharge 

exceeds 100 cms. Emergency management officials may establish a threshold 

probability (e.g., 40%) that needs to be exceeded in order to evacuate the 

neighborhood. The developed ensemble prediction system is capable of 

estimating these probabilities. When considering the application of such a 

prediction system in real-time, one must be cognizant of potential computation
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constraints when utilizing hundreds of model simulations. A methodology has 

been devised to evaluate the skill of an ensemble of predictions as a function of 

the number of members comprising the ensemble. If the number of members can 

be reduced, then the number of simulations and thus computational requirements 

can be minimized. The approach taken is similar to that shown in Du et al. 

(1997). The 23 October 2(X)2, 28 October 2002, and 03 December 2(X)2 events 

(Table 3.1) are used once again for this test.

Ensembles are first constructed using the maximum number of parameter 

settings (125) coupled with the number of available rainfall products for the three 

cases used in section 3.2.2 and 3.2.3.3 (refer to Table 3.1). Thus, a combined 

ensemble for the 23 October 2002 event has a maximum number of 1125 

members. Monte Carlo permutation techniques are used to randomly sample 

individual members from the total ensemble. The number of members sampled 

ranges from 1 to the maximum number of members comprising the ensemble. 

This procedure is performed KXX) times and the average 5̂ value is reported for 

the number of members used in each ensemble. The repetition and subsequent 

averaging was necessary to ensure that the smaller ensembles didn't cluster in a 

favorable or equally unfavorable region of the phase space. Plots are created that 

show the sensitivity of the to the ensemble size. Moreover, the number of 

ensemble members needed to achieve 90% of the skill attained when considering 

all members is reported.
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The results reported in the next Chapter may indeed be specific to the 

VyZo ™ model, the QPE SUMS rainfall inputs, the events being examined, and/or 

application of the model on the Blue River Basin. Nonetheless, the focus of this 

study is on the methodology of utilizing an ensemble prediction system to 

evaluate the hydrologie performance of different rainfall products in a 

quantitative, objective manner, a major goal in hydrometeorology. The second 

major undertaking is the evaluation of several characteristics of prediction 

uncertainty. Specifically, the approach taken herein will reveal the sensitivity of 

streamflow predictions to perturbed rainfall inputs, isolate and identify model 

structural errors, provide an estimate of the total prediction uncertainty, and 

optimize the number of ensemble members needed for accurate estimation of the 

forecast probabilities.
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TABLE 3.1. A summary of the hydrologie events studied. The Observed Time 

refers to the time of peak discharge, the Observed Peak is the magnitude of the 

peak discharge, and the Observed Volume is the time-integrated discharge 

normalized by the basin area. See Chapter II, section 2.1.4 for a complete 

description of the rainfall products.

Case Start 
Time

Case End 
Time

Observed
Time

Observed
Peak
(cms)

Observed
Volume
(mm)

Available Rainfall 
Products

0000 UTC 

11/12/94

0000 UTC 

11/24/94

2000 UTC 

11/15/94

215.2 41.1 ABRFCPl

0000 UTC 

08/25/02

0000 UTC 

09/01/02

0900 UTC 

8/28/02

6.2 1.6 GAG, RAD, 

RAD-G, RAD- 

LG, MS,MS-G, 

MS-LG

0000 UTC 

10/23/02

0000 UTC 

10/30/02

0000 UTC 

10/26/02

56.7 6.1 GAG, RAD, 

RAD-G, RAD- 

LG, RAD-LGG, 

MS, MS-G, MS- 

LG, MS-LGG

0000 UTC 

10/28/02

0000 UTC 

11/01/02

0600 UTC 

10/30/02

16.4 2.3 GAG, MS, MS-G, 

MS-LG, MS- 

LGG
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0000 UTC 0000 UTC 1600 UTC 13.4 2.5 GAG, RAD,

12/03/02 12/10/02 12/05/02 RAD-G, RAD- 

LG, RAD-LGG
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CHAPTER IV. RESULTS

4.1. Hydrologie Evaluation of Quantitative Precipitation Inputs

Three precipitation events during the fall of 2002 (Table 3.1) resulted in 

significant hydrologie responses on the Blue River Basin in OK. A unique 

methodology has been developed to evaluate the relative skill of hydrologie 

predictions using different quantitative precipitation estimates (QPEs). 

Traditionally, remotely sensed QPEs are compared against independent rain 

gauge observations. In this study, the evaluation is performed at the scale of 

application, an integrating basin. The results from this study reveal the estimator 

that is most likely to provide the best input to the V/Zo ™ model. These results are 

significant because the main impetus of improving QPE algorithms is to 

ultimately improve hydrologie predictions. This study will highlight those 

rainfall algorithms that are most capable of predicting streamflow, and thus 

mitigating the impacts of flash flooding and river flooding. Moreover, the 

methodology requires no prior modeling experience on a basin (i.e., calibration) 

and is completely objective.

4.7.7. 23 2002 Crwe

A subjective comparison of the rainfall products is accomplished by 

simply aggregating the hourly accumulations over the duration of the entire storm.
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Storm total plots for the 23 October 2002 case are shown in Figs. 4.1a-i. Visual 

differences are apparent between the panels indicating the dependence of the 

rainfall patterns on the sensor(s) used to produce the estimates. For example, the 

gauge-only product (GAG; Fig. 4.1a) is quite smooth in comparison with the 

radar-only (RAD; Fig. 4.1b) product. The gauge-only product is composed of 

point estimates of rainfall that have been analyzed on a Cartesian grid. The 

parameters used in the analysis scheme dictate the degree of smoothness in the 

final products. The radar-only product, on the other hand, collects independent 

measurements of rainfall at each grid point. The spatial and temporal resolution 

of the radar data is observably superior, however the radar doesn't measure 

rainfall directly like the rain gauges. The multisensor product (MS; Fig. 4.If) 

bears some resemblance to the radar-only product in terms of the maximum 

rainfall. However, the MS product is noticeably smoother and reflects the use of 

satellite data in its scheme.

Three different rain gauge adjustment strategies are being evaluated in this 

study. Figures 4.1c-e show how these impact the RAD product. Mean field bias 

adjustments applied to the RAD field (RAD-G; Fig. 4.1c) maintain the spatial 

structure in the original product while the magnitude has been scaled. In this 

case, the adjustment procedure results in heavier accumulations of rainfall 

throughout the storm duration. The multisensor product with mean field bias 

adjustment (MS-G; Fig. 4.1g) is affected in a similar manner. The local bias
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ü )  n;s -:. (h) MS-LG

«
(i) MS-LGG
FIG. 4.1. Storm total précipitation plots for the 23 October 2002 case from the 

QPESUMS products: (a) gauge-only, (b) radar, (c) radar with mean field bias 

removed, (d) radar with local bias adjustment, (e) radar with mean Held bias 

removed and local bias adjustment, (f) multisensor, (g) multisensor with mean 

Held bias removed, (h) multisensor with local bias adjustment, and (i) multisensor 

with mean Held bias removed and local bias adjustment. A complete description 

of each algorithm is provided in Chapter H, section 2.1.4. Values are in inches as 

indicated in the color bar. Red dots correspond to Mesonet rain gauging locations 

and cyan triangles are USGS streamgauges.
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adjustment technique places a high degree of emphasis on the GAG product (Figs. 

4.1a, 4.Id, and 4.1h). This adjustment technique was originally designed for areas 

that don't have the high density of rain gauge observations associated with the 

Oklahoma Mesonet. The weighting functions apparently are not optimized for 

this gauge density, so the GAG field (Fig. 4.1a) essentially overrides the original 

RAD and MS fields making the GAG, RAD-LG, and MS-LG nearly 

indistinguishable from one other. The third gauge adjustment strategy appears to 

be a "middle ground" between the mean field bias and local bias strategies. The 

radar product with mean Aeld bias removed and local bias adjustment applied 

(RAD-LGG; Fig. 4.le) has a similar appearance to the RAD-G product (Fig. 

4.1c), but is lighter in accordance with the RAD-LG product (Fig. 4.Id). The 

MS-LGG Held (Fig. 4.1i) also takes on the appearance of being a blend between 

the MS-G (Fig. 4.1g) and MS-LG product (Fig. 4. Ih).

The quantitative component of the hydrologie evaluation begins by 

creating model parameter ensembles for each input shown in Fig. 4.1. Each 

rainfall estimator is input to the V/Zo ™ model for all possible parameter 

combinations (125). Predicted hydrographs are decomposed into three hydrologie 

variables: time at which maximum discharge occurred (Time), magnitude of 

maximum discharge (Peak), and the time-integrated discharge volume normalized 

by the basin area (Volume). These three variables are also derived from the
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observed hydrographs. For reference, the observed hydrograph is shown in Fig.

4.2. The following statistics are used to compare the ensemble mean of predicted 

to the observed hydrologie variables: 6:0.;, MAE, and EM.yE. Utilization of the 

ensemble mean implicitly suggests that the data distribution can be approximated 

with a Gaussian shape. As will be shown, this may not be the case and 

undermines the use of parametric statistics. Nonetheless, the simplicity of the 

calculations is attractive and they reveal fundamental differences between 

predictions and observations of hydrologie variables. Table 4.1 summarizes the 

aforementioned statistics compared to observations. Included in the table is the 

EF.S value. This score essentially compares the entire pdf of the predicted 

variables to a single observation. Predictions that are far removed from the 

observation are penalized more heavily than those falling into nearby categories. 

The ÆP.5 is more robust than the parametric statistics in that it considers die entire 

ensemble of predictions.

Table 4.1 indicates that the Time is predicted most accurately using inputs 

from the RAD-G rainfall product. All statistics support this conclusion. The 

mean of the ensemble that uses the MS product as input has the lowest bias, 

indicating the Time is predicted too early compared to observations. Peak values 

are predicted accurately using inputs from both RAD and MS-G products. The

101



60

I
Io

20

10/23/02 0:00 10/24/02 0:00 10/25/02 0:00 10/26/02 0:00 10/27/02 0:00 10/28/02 0:00 10/29/02 0:00 10/30/02 0:00
Time (UTC)

FIG. 4.2. Observed streamflow at the Blue River, near Blue, OK gauging site 

(USGS #07332500) for the 23 October 2002 case.
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TABLE 4.1. Statistical evaluation of hydrologie predictions for the 23 October 

2002 case. The hydrologie variables being considered are the time of maximum 

discharge (Time), magnitude of maximum discharge (Peak), and time-integrated 

discharge volume normalized by the basin area (Volume). See Chapter n , section 

2.1.4 for complete descriptions of rainfall inputs (in first column) and Chapter IE, 

section 3.2.2 for the statistical definitions. Numbers in boldface indicate the best 

agreement with observations.

TIME ROCoeff Bias MAE RMSE RPS

GAG 0.21 0.95 0.39 0.43 1.10

RAD 0.23 0.95 0.39 0.43 1.02

RAD-G 0.18 0.98 0J%5 033 032

RAD-LG 0.21 0.95 0.40 0.43 1.14

RAD-LGG 0.16 0.94 0.36 0.44 0.99

MS 0.39 0.93 0.59 0.59 2.14

MS-G 0.22 0.94 0.63 0.63 1.79

MS-LG 0.21 0.95 0.39 0.43 1.10

MS-LGG 0.19 0.94 0.37 0.42 1.04

PEAK ROCoeff Bias MAE RMSE RPS

GAG 0.21 1.31 23.67 36.65 0.44
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RAD 0.23 1.27 21.39 31.02 0.43

RAD-G 0.18 1.87 49.17 63.56 1.87

RAD-LG 0.21 1.32 24.08 37.46 0.45

RAD-LGG 0.16 2.17 66.12 88.24 2.42

MS 0.39 0.58 26.45 29.62 1.21

MS-G 0.22 1.15 21.96 30.39 0.43

MS-LG 0.21 1.31 23.86 37.03 0.44

MS-LGG 0.19 1.54 31.52 49.57 0.78

VOLUME RO Coeff Bias MAE RMSE RPS

GAG 0.21 2.03 6.27 8.86 1.86

RAD 0.23 1.96 5.87 7.97 1.88

RAD-G 0.18 2.79 10.89 12.98 4.11

RAD-LG 0.21 2.04 6.33 8.95 1.86

RAD-LGG 0.16 2.84 11.22 13.53 4.14

MS 0.39 1.15 2J1 3.42 0.51

MS-G 0.22 1.96 5.87 8.41 1.65

MS-LG 0.21 2.03 6.30 8.93 1.86

MS-LGG 0.19 2.29 7.87 10.47 2.58
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TABLE 4.2. Significance levels of RPS differences for the 23 October 2002 case. 

Significance levels are determined using a resampling test (see Chapter III, 

section 3.2.2 for complete discussion).

TIME

GAG RAD RAD-

G

RAD-

LG

RAD-

LGG

MS MS-

G

MS-

LG

MS-

LGG

GAG 0.07 0.55 0.99 0.31 0.57 0.99 0.99 0.18 0.40

RAD 0.08 0.99 0.64 0.27 0.99 0.99 0.52 0.19

RAD-G 0.11 0.99 0.99 0.99 0.99 0.99 0.99

RAD-LG 0.07 0.72 0.99 0.99 0.31 0.59

RAD-LGG 0.04 0.99 0.99 0.58 0.38

MS 0.05 0.96 0.99 0.99

MS-G 0.06 0.99 0.99

MS-LG 0.06 0.42

MS-LGG 0.06

GAG RAD RAD- RAD- RAD- MS MS- MS- MS-

PEAK G LG LGG G LG LGG

GAG 0.10 0.26 0.99 0.24 0.99 0.99 0.32 0.24 0.98

RAD 0.09 0.99 0.27 0.99 0.99 0.33 0.24 0.98

RAD-G 0.04 0.99 0.97 0.99 0.99 0.99 0.99
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RAD-LG 0.08 0.99 0.99 0.29 0.23 0.98

RAD-LGG 0.04 0.99 0.99 0.99 0.99

MS 0.06 0.99 0.99 0.99

MS-G 0.13 0.30 0.99

MS-LG 0.10 0.98

MS-LGG 0.06

GAG RAD RAD- RAD- RAD- MS MS- MS- MS-

VOLUME G LG LGG G LG LGG

GAG 0.06 0.13 0.99 0.06 0.99 0.99 0.72 0.06 0.99

RAD 0.05 0.99 0.14 0.99 0.99 0.78 0.14 0.99

RAD-G 0.05 0.99 0.25 0.99 0.99 0.99 0.99

RAD-LG 0.06 0.99 0.99 0.75 0.05 0.99

RAD-LGG 0.04 0.99 0.99 0.99 0.99

MS 0.12 0.99 0.99 0.99

MS-G 0.05 0.74 0.99

MS-LG 0.05 0.99

MS-LGG 0.05
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same skill is achieved using either product. As indicated by Table 4.2, the 

statistical significance of the difference in values is only 33%, confirming 

they are essentially the same. The Volume hydrologie variable considers the total 

flux of water leaving the basin, thus summarizing the prediction in a storm total 

sense. This variable is the most important in terms of quantifying the hydrologie 

predictions for watershed management purposes and for evaluating the accuracy 

of the rainfall inputs. In this case, all statistics indicate the MS product witAowt 

any guwgg cKÿwjtmgnt is the most accurate input after it has been run through the 

model using all possible parameter combinations. Mean field bias adjustments to 

the RAD and MS products result in worse hydrologie predictions. This finding is 

significant because rain gauges have traditionally been thought of as "ground 

truth” and a potential calibration source for radar-based algorithms. RPS values 

for predictions using GAG, RAD-LG, and MS-LG as inputs are nearly identical. 

Table 4.2 indicates that there is only a 6% chance that these values are statistically 

different. These statistics confirm the similarity noted in the appearance of the 

products (Figs. 4.1a, 4. Id, 4.1h).

Data densities are estimated using a Gaussian kernel. In this case, "data" 

refers to the ensemble of predictions for each variable. The kernel density 

estimation procedure provides an estimate of the probability distribution function 

(pdf) describing the ensemble of predicted variables. The word "probability" is 

used here with the understanding that the model inputs, model structure, and/or
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observations may not be perfect. The goal in estimating a pdf here is to benefit 

from the statistical properties inherent with smooth, differentiable functions. 

Specifically, the pdfs qualitatively show the data distribution with no dependence 

on the width or number of categories, a noted problem with histograms. 

Moreover, the pdfs enable accurate estimation of the 5% and 95% simulation 

quantiles.

The computed pdfs for Time, Peak, and Volume are shown in Figs. 4.3- 

4.6. The pdfs supply additional information about the distribution of the 

hydrologie predictions that is not as apparent in the statistical analysis. For 

example, Fig. 4.3 reveals the predictions have a distinct bimodal shape. This 

double peak indicates the pararheter settings used in the ™ model produce 

two different modes of behavior for all model inputs. All products except RAD-G 

and RAD-LGG have a higher density at earlier Times, thus favoring the first 

mode of behavior. Figure 4.4 also reveals a bimodal behavior, especially with the 

pdfs that use inputs resulting in relatively lower Peak predictions (e.g., MS). The 

secondary peaks in the RAD-G and RAD-LGG are less distinct and result in long 

tails at higher Peak values. The secondary peaks in the pdfs are more evident 

with Volume predictions (Fig. 4.5). The MS pdf appears to be signiRcantly 

different from the other pdfs. As it turns out, the statistical levels of the /(PS 

differences between the MS input and all other inputs exceed 99% (see Table

108
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•MS-LG
MS-LGG

0.015 RAD-G
RAD-LG
RAD-LGG

c 0.01

10/24/02 12:00 10/25/02 00:00 10/25/02 12:00 10/26/02 00:00 10/26/02 12
Time of Peak (UTC)

10/27/02 00:00 10/27/02 12:00

FIG. 4.3. Probability density functions of the predicted time of maximum 

discharge (Time) for the 23 October 2002 case. The color coding of the curves 

(noted in the legend) corresponds to the different model inputs used to construct 

the model parameter ensembles. Observed Time is 0000 UTC 26 October 2002.
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"■'■“ "MS
 MS-G
 MS-LG
- -  - MS-LGG 
— RAD 
—  RAD-G
 RAD-LG
- - -  RAD-LGG

c  0.05

arge (cms)

FIG. 4.4. As in Fig. 4.3 but for pdfs of the predicted magnitude of maximum 

discharge (Peak). Observed Peak is 56.7 cubic meters per second (cms).
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FIG. 4.5. As in Fig. 4.3 but for pdfs of the predicted time-integrated discharge 

volume normalized by the basin area. Observed Volume is 6.1 mm.
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4.3), thus providing further support of this inference. The pdfs for all predicted 

variables (Figs. 4.S-4.5) show that the GAG, RAD-LG, and MS-LG inputs are 

nearly identical. This observation confirms the findings in the subjective 

comparison of storm total plots and the statistical analysis. In this case, these 

three products are equivalent, visually and statistically. Their use in a model 

input ensemble or combined input-parameter ensemble may not be warranted as 

these inputs do not result in different hydrologie outcomes. In any case, it is 

informative to the developers of quantitative precipitation algorithms to know that 

these products are the same over the Blue River Basin.

The final component of the hydrologie evaluation for this case involves 

deriving the region in the phase space where 90% of the simulations fall. This is 

accomplished by iteratively summing each pdf in Figs. 4.3-4.5 so that they 

become cumulative distribution functions (cdfs; not shown). The Time, Peak, and 

Volume values corresponding to cumulative densities of .05 and .95 are referred 

to as the 5% and 95% simulation bounds. 90% of the simulations fall within 

those bounds. The distance between the 5% and 95% quantile is an approximate 

measure of the ensemble spread. A wide spread suggests a high degree of 

uncertainty. A smaller spread implies more confidence, yet it is imperative that 

the spread encompasses the observed variable. If not, then a high confidence will 

be placed on an incorrect prediction. A nonparametric measure of central 

tendency is obtained by finding the value corresponding to a cumulative density
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of .50. This is the median of the simulations. Plots of the 5%, 50%, and 95% 

quantiles are shown in Figs. 4.6-4.8. The observed hydrologie variables are 

shown in these plots as a double line. This convention is a reminder that 

observations of streamflow have their own uncertainty, but have been found to be 

only 3-6%.

Figure 4.6 shows that all ensembles envelop the observed Time regardless 

of the rainfall product being used as input. Wider simulation bounds are evident 

with the MS and MS-G inputs suggestive of more uncertainty. The ensemble 

medians for the timing of peak discharge all occur slightly earlier than observed. 

The central tendency of the RAD-G input indicates this product is capable of 

producing the most accurate Time predictions for this case. Statistics in Table 4.1 

support this latter conclusion.

The capabilities of each ensemble to predict the peak discharge are 

revealed in Fig. 4.7. Similar to Fig. 4.6, the simulation bounds from all 

ensembles encompass the observed Peak. Use of the MS product as the model 

input results in the smallest spread of Peak predictions. In this case, the central 

tendency of the predictions is less than the observed. The apparent underforecast 

is indicated explicitly in Table 4.1 with the hiar statistic that uses the ensemble 

mean. The medians of the GAG, RAD, RAD-LG, and MS-LG ensembles lie very 

near the observed value. The spread of the ensembles are different, however, 

which results in variable RPS values. In fact, the lower uncertainty with the MS-
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10/27/02 00:00

10/26/02 18:00

10/26/02 12:00

10/26/02 06:00

® 10/26/02 00:00
%
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10/25/02 18:00

10/25/02 12:00
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10/25/02 00:00
GAG RAD RAD-G RAD-LG RAD-LGG MS MS-G MS-LG MS-LGG

Model Input

FIG. 4.6. Simulation bounds of the predicted time of maximum discharge (Time) 

for the 23 October 2002 case. The open boxes refer to the 50% quantile (median),

while the bars correspond to the 5% and 95% quantiles. The horizontal double 

line is the observed Time.
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GAG RAD RAD-G RAD-LG RAD-LGG MS 
Model Input

MS-G MS-LG MS-LGG

PIG. 4.7. As in Fig. 4.6 but for simulation bounds of the predicted magnitude of 

maximum discharge (Peak) for the 23 October 2002 case.
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, 20

GAG RAD RAD-G RAD-LG RAD-LGG MS 
Model input

MS-G MS-LG MS-LGG

FIG. 4.8. As in Fig. 4.6 but for simulation bounds of the predicted time-integrated 

discharge volume normalized by the basin area (Volume) for the 23 October 2002

case.
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G ensemble, despite the underforecast noted from the ensemble median, produces 

a skill score equivalent to the ensemble that uses RAD model inputs.

Figure 4.8 shows Volume predictions using inputs from the RAD-G and 

RAD-LGG rainfall products do not give the observed system behavior. The 

rainfall amounts from these two algorithms are too high which results in 90% of 

the Volume predictions to be overforecast. The median of the total discharge 

volume predictions using MS inputs agrees rather well with the observed Volume. 

In addition, the uncertainty bounds are relatively small with this rainfall input. A 

better RPS skill score results. The hydrologie evaluation for the 23 October 2002 

indicates the MS algorithm as an input results in the most accurate hydrologie 

predictions for Volume. It should be noted, however, that this initial conclusion is 

conditioned on perfect model physics and observations of streamflow. Errors in 

these components of the modeling process can be structured to favor a given QPE 

input that may be biased. IdentiGcation of possible model structural uncertainties 

is explored in section 4.2.2 of this chapter. Moreover, additional cases are 

examined below to determine the rainfall algorithm that produces the most 

accurate inputs from the hydrologie modeling perspective.

4.7.2. 28 October 2002

The next case used for QPE evaluation yielded approximately 40% of the 

Volume than from the 23 October 2002 case discussed above (refer to Table 3.1).
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Rainfall products from the RAD, RAD-G, RAD-LG, and RAD-LGG are not 

available for this hydrologie evaluation due to a failure in the archiving process. 

The overall skill of the available algorithms is determined as well as the accuracy 

of different gauge adjustment strategies. The storm total precipitation amounts 

are shown in Figs. 4.9a-e. Subjective comparison between the products reveals 

much more smoothness with the GAG (Fig. 4.9a), MS-LG (Fig. 4.9d), and MS- 

LGG (Fig. 4.9e) products. These rainfall estimates rely heavily on point rain 

gauge amounts that have been objectively interpolated to grid points between the 

gauges. The analysis scheme tends to produce light rainfall in lower reaches of 

the basin. T% MS product (Fig. 4.9b), on the other hand, utilizes information 

from radars and satellite. Individual storm cells that have moved from a 

southwesterly to northeasterly direction are resolved with this product. Moreover, 

the precipitation appears to fall in upper reaches of the basin, while locations 

downstream receive no rainfall at all. Mean field bias adjustments to the MS 

product (MS-G; Fig. 4.9c) result in a spatial pattern similar to the MS held, but 

the amounts are increased.

The observed hydrograph is shown in Fig. 4.10. Derived Time, Peak, and 

Volume variables for observed and predicted hydrographs are used in a 

quantitative analysis of the ensembles' performance (Table 4.3). The Time is 

predicted most accurately using either the MS-G or MS-LGG rainfall estimates as 

inputs to the model parameter ensembles. The RPS score is improved shghtly
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(a) GAG (b)MS

(c) MS-G (d) MS-LG

(e) MS-LGG
FIG. 4.9. As in Fig. 4.1 but for storm total precipitation plots for the 28 October 

2002 case from the QPESUMS products: (a) gauge-only, (b) multisensor, (c) 

multisensor with mean field bias removed, (d) multisensor with local bias
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adjustment, and (e) multisensor with mean field bias removed and local bias 

adjustment.

20

15

10

5

0 -i----------
10/28/02 0:00 10/29/02 0:00 10/30/02 0:00 10/31/02 0:00 11/1/02 0:00

Time (UTC)

FIG. 4.10. As in Fig. 4.2 but for observed hydrograph for 28 October 2002 case.
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TABLE 4.3. As in Table 4.1 but for statistical evaluation of hydrologie 

predictions for the 28 October 2002 case.

TIME RO Coeff Bias MAE RMSE RPS

GAG 0.14 0.88 0.69 0.69 3.05

MS 0.74 1.25 1.26 1.31 3.65

MS-G 0.42 1.12 0.58 0.61 2.13

MS-LG 0.14 0.88 0.69 0.69 3.05

MS-LGG 0.13 0.91 0.64 0.67 2.11

PEAK RO Coeff Bias MAE RMSE RPS

GAG 0.14 2.99 32.64 40.20 4.28

MS 0.74 0.63 8.10 8.74 1.25

MS-G 0.42 1.43 9.10 13.73 0.69

MS-LG 0.14 3.00 32.74 40.30 4.30

MS-LGG 0.13 3.30 37.69 44.62 4.88

VOLUME RO Coeff Bias MAE RMSE RPS

GAG 0.14 3.27 5.23 6.25 5.14

MS 0.74 1.31 0.71 0.95 0.70

MS-G 0.42 1.79 1.82 2.14 2.19
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MS-LG

MS-LGG

0.14

0.13

3.19

3.75

5.04

6.32

6.09

7.22

4.82

5.97

TABLE 4.4. As in Table 4.2 but for signiGcance levels of RPS differences for the 

28 October 2002 case.

TIME GAG MS MS-G MS-LG MS-LGG

GAG 0.05 0.99 0.99 0.04 0.99

MS 0.04 0.99 0.99 0.99

MS-G 0.08 0.99 0.42

MS-LG 0.05 0.99

MS-LGG 0.05

PEAK GAG MS MS-G MS-LG MS-LGG

GAG 0.05 0.99 0.99 0.17 0.99

MS 0.07 0.99 0.99 0.99

MS-G 0.07 0.99 0.99

MS-LG 0.05 0.99

MS-LGG 0.05
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VOLUME GAG MS MS-G MS-LG MS-LGG

GAG 0.08 0.99 0.99 0.99 0.99

MS 0.10 0.99 0.99 0.99

MS-G 0.06 0.99 0.99

MS-LG 0.08 0.99

MS-LGG 0.23

with the MS-LGG input, but the statistical significance of the RPS differences is 

only 42% as indicated in Table 4.4. Conclusions regarding the Peak predictions 

can differ when considering the mean of the ensemble predictions versus the 

entire pdf. The MS input has the best bias, MAE,  and RMSE, while the MS-G 

algorithm produces the best S score when the entire ensemble of Peak 

predictions is considered. The confidence of the ÆPS differences between the MS 

and MS-G inputs is 99% (Table 4.4). Volume predictions are most skillful using 

MS estimates as an input to the model parameter ensemble. Statistics describing 

the ensemble mean and the entire pdf support this conclusion, while the products 

that rely more heavily on rain gauge estimates (GAG, MS-LG, and MS-LGG) 

result in lower ÆPS skill scores. The ^iojes using the ensemble means from these 

products exceed a factor of 3. It is likely that the point rain gauge estimates for 

this rainfall event do not accurately represent the spatial variable of the true 

rainfall that fell over the basin.
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The derived pdfs from the ensembles reveal additional information about 

the hydrologie predictions produced with the different rainfall inputs. Figure 4.11 

shows the pdfs of the Time predictions. Similar to the analysis of pdfs in section 

4.1.1, two distinct modes of behavior are noted in the predictions. E*redictions 

from the GAG, MS-LG, and MS-LGG algorithms aU favor the earlier mode. The 

MS-G pdf is bimodal and nearly symmetric. Apparently, the model parameter 

ensemble that uses MS-G inputs straddles the inflection point where the different 

modes of behavior reside. The Time predictions from the MS ensemble favor the 

second, later mode. Figure 4.12 shows the pdfs from the differing rainfall inputs 

also exhibit bimodal shapes. In this case, higher densities are associated with 

smaller Peak predictions for all inputs. Predictions from the MS algorithm are the 

lowest which is also the case with the 23 October 2002 event. The shapes of pdfs 

help explain the discrepancy in the statistics that rely on the ensemble mean 

versus the entire pdf (Table 4.3). The mean of the Peak predictions from the MS 

ensemble is sensitive to the secondary relative maximum. This results in an 

expected value that is greater than the median. Mean field bias adjustments 

increase the magnitude of the MS Peak predictions resulting in better agreement 

with observations as indicated by the low value (Table 4.3). The pdfs for 

predicted Volume for this case are shown in Fig. 4.13. The MS algorithm 

produces the lowest Volume predictions, and a bimodal shape is evident once 

again. The mean field bias adjusted MS product results in higher Volume
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FIG. 4.11. As in Fig. 4.3 but for pdfs of the predicted time of maximum 

discharge (Time) for the 28 October 2002 case. Observed Time is 0600 UTC 30 

October 2002.

125



0.1

GAG

0.08 MS-G

—  MS-LG

- - MS-LGG

0.06

§o
0.04

0.02

0
50 100

Peak Discharge {cms)

FIG. 4.12. As in Fig. 4.3 but for pdfs of the predicted magnitude of maximum 

discharge (Peak) for the 28 October 2002 case. Observed Peak is 16.4 cubic 

meters per second (cms).
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PIG. 4.13. As in Fig. 4.3 but for pdfs of the predicted time-integrated discharge 

volume normalized by the basin area for the 28 October 2002 case. Observed 

Volume is 2.3 mm.
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predictions, but not as large as those produced by the GAG, MS-LG, or MS-LGG 

algorithms. The pdfs shown in Figs. 4.11-4.13 reveal the shapes of the 

distributions for the predicted hydrologie variables. They are also used to derive 

simulation quantiles and spreads providing metrics for accuracy and uncertainty.

Figure 4.14 shows the 90% simulation bounds and predicted median for 

timing of peak discharge using different rainfall algorithms as model inputs. The 

spread is a result of parametric uncertainty. The pdf from the MS ensemble (Fig. 

4.11) indicates that the predictions tend toward the second mode of behavior. In 

this case, relative maxima in the pdfs that occur at earlier times are evidently 

more correct than the later ones. Rainfall inputs that rely heavily on rain gauge 

data (e.g., GAG, MS-LG, MS-LGG) produce simulations that encompass the 

observed time to peak. Ensembles of Time predictions using MS and MS-G 

inputs do not accurately provide the observed behavior for this case.

The width of the simulation boimds for ensembles using GAG, MS-LG, 

and MS-LGG inputs is relatively wide for Peak predictions (Fig. 4.15). More 

importantly, the 90% simulation limits do not include the observed peak discharge 

for the aforementioned ensembles. Peak predictions using either MS or MS-G 

inputs result in better agreement with observations. The MS-G ensemble has a 

median simulation that aligns very near the observed peak discharge. The MS 

ensemble has the narrowest uncertainty bounds which include the observed value.
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FIG. 4.14. As in Fig. 4.6 but for simulation bounds of the predicted time of 

maximum discharge (Time) for the 28 October 2(X)2 case.
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FIG. 4.15. As in Fig. 4.6 but for simulation bounds of the predicted magnitude of 

maximum discharge (Peak) for the 28 October 2002 case.
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FIG. 4.16. As in Fig. 4.6 but for simulation bounds of the predicted time- 

integrated discharge volume normalized by the basin area (Volume) for the 28 

October 2002 case.
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Table 4.3, however, indicates that the most skillful Peak predictions are associated 

with the model parameter ensemble that uses MS-G inputs.

The simulation bounds for the Volume hydrologie variable are similar to 

Peak predictions for this case (Figs. 4.15-4.16). MS and MS-G inputs yield an 

ensemble of Volume predictions that cluster near the observed Volume well. The 

MS ensemble has very narrow uncertainty bounds, and the central tendency of the 

ensemble of predictions is close to observations. From Tables 4.3-4.4, adjustment 

procedures that rely heavily on individual gauge amounts do not result in more 

accurate Volume predictions from the hydrologie model. Figures 4.9a, 4.9d, and 

4.9e indicate that the techniques used to adjust QPEs based on point data result in 

smooth, interpolated accumulations, especially in lower reaches of the Blue River 

Basin. Note that there are no rain gauge measurements collected by the Mesonet 

in the Blue River Basin. MS accumulations on the other hand utilize radar and 

satellite data to determine the spatial character of the rainfall Geld. Products that 

rely more heavily on these remote sensing systems resolve no rainfall at all near 

the basin outleL Moreover, noGce how rainfall maxima in the MS Geld (narrow 

part of basin; Fig. 4.9b) occur in regions where minima occur in the GAG and 

MS-LG accumulation products (Figs. 4.9a and 4.9d). The MS and gauge-based 

products are proven to be signiGcanGy different in the staGsGcal analysis. Results 

show that model parameter ensembles using the MS rainfall algonthm as input 

provide the best predicGons for the Volume variable. The MS rainfall input is
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believed to be the least biased and most accurate input based on this hydrologie 

evaluation. It is recognized, however, that the time of peak discharge is not well 

forecast using the MS inputs. Two modes of behavior (i.e., two relative maxima 

in the pdfs) have been noted in nearly all of the ensembles' pdfs for Time, Peak, 

and Volume. The MS ensemble favors the later, less accmate region of the Time 

phase space. Bimodal pdfs are also noted for the Peak and Volume predictions 

with all of the ensembles tending toward the first, lower mode of behavior. 

Explanations for these parametric or possibly model structural modes are 

provided in section 4.1.4.

4.7..). OJ 2002 Cà$g

The Gnal case used for the hydrologie evaluation component of this study 

produced a slightly larger Volume but smaller peak discharge than the 28 October 

2002 case. The storm total accumulations are shown in Figs. 4.17a-e. 

Multisensor products are not available for this case due to a failure in the 

archiving procedure. The observed hydrograph is shown in Fig. 4.18. There is 

agreement in the amoimts and locations of precipitation over the Blue River Basin 

between the independent GAG (Fig. 4.17a) and RAD (Fig. 4.17b) products. The 

radar product with mean Held bias adjustment (RAD-G; Fig. 4.17c), however, 

indicates that overestimation is prevalent over a larger, statewide domain 

requiring reductions in the QPEs. Both RAD (Fig. 4.17b) and RAD-G (Fig.
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a) GAG (b)R.\U

(c) RAD-G (d) RAD-LG

(e) RAD-LGG
FIG. 4.17. As in Fig. 4.1 but for storm total precipitation plots for the 03 

December 2002 case from the QPESUMS products: (a) gauge-only, (b) radar, (c)
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radar with mean field bias removed, (d) radar with local bias adjustment, and (e) 

radar with mean field bias removed and local bias adjustment.
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FIG. 4.18. As in Fig. 4.2 but for observed hydrograph for 03 December 2002

case.
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4.17c) products show a linear discontinuity near the bottom of the images. This 

artifact corresponds to the equidistant point between the Oklahoma City, OK and 

Fort Worth, TX WSR-88D radars (KTLX and KFWS). QPE SUMS mosaics the 

data from the adjacent radars by choosing the beam that measures reflectivity 

closest to the surface. At equidistant points, both radars should measure 

equivalent reflectivity values. However, these images indicate that KTLX 

estimates much higher rainfall amounts. A recent study by Gourley et al. (2003) 

shows that the KTLX radar reports relatively high reflectivity values relative to its 

neighboring radars. This apparent miscalibration of the radar hardware may be 

the root cause requiring the mean field bias adjustment to lower QPEs in the 

RAD-G product (Fig. 4.17c) significantly. The quantitative analysis provided 

herein will illuminate this potential error source in radar-based QPE.

Tables 4.5-4.6 show a statistical evaluation of the different ensembles for 

all three derived variables. In this case, statistics based on the ensemble mean 

agree with the values based on the entire data distribution. All statistics 

indicate Time is predicted best using RAD rainfall as inputs for model parameter 

ensembles, while the ensemble using RAD-G inputs results in the worst Time 

predictions. Different if not opposite conclusions are drawn for Peak and Volume 

predictions though. There are few distinguishing characteristics between the 

GAG, RAD, RAD-LG, and RAD-LGG ensembles (Table 4.5), in agreement with 

observations of storm total precipitation maps (Figs. 4.17a, 4.17b, 4.17d, and
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TABLE 4.5. As in Table 4.1 but for statistical evaluation of hydrologie 

predictions for the 03 December 2002 case.

TIME RO Coeff Bias MAE RMSE RPS

GAG 0.14 0.88 0.69 0.69 3.05

MS 0.74 1.25 1.26 1.31 3.65

MS-G 0.42 1.12 0.58 0.61 2.13

MS-LG 0.14 0.88 0.69 0.69 3.05

MS-LGG 0.13 0.91 0.64 0.67 2.11

PEAK RO Coeff Bias MAE RMSE RPS

GAG 0.14 2.99 32.64 40.20 4.28

MS 0.74 0.63 8.10 8.74 1.25

MS-G 0.42 1.43 9.10 13.73 0.69

MS-LG 0.14 3.00 32.74 40.30 4.30

MS-LGG 0.13 3.30 37.69 44.62 4.88

VOLUME RO Coeff Bias MAE RMSE RPS

GAG 0.14 3.27 5.23 6.25 5.14

MS 0.74 131 0.71 0.95 0.70

MS-G 0.42 1.79 1.82 2.14 2.19
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MS-LG

MS-LGG

0.14

0.13

3.19

3.75

5.04

6.32

6.09

7.22

4.82

5.97

TABLE 4.6. As in Table 4.2 but for significance levels of RPS differences for the 

03 December 2002 case.

TIME GAG RAD RAD-G RAD-LG RAD-LGG

GAG 0.06 0.90 0.99 0.14 0.31

RAD 0.05 0.99 0.86 0.83

RAD-G 0.04 0.99 0.99

RAD-LG 0.05 0.34

RAD-LGG 0.05

PEAK GAG RAD RAD-G RAD-LG RAD-LGG

GAG 0.08 0.99 0.99 0.08 0.74

RAD 0.06 0.99 0.99 0.95

RAD-G 0.04 0.99 0.99

RAD-LG 0.09 0.75

RAD-LGG 0.06

VOLUME GAG RAD RAD-G RAD-LG RAD-LGG
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0.12 0.63

0.13

0.99 0.95 0.94

0.99 0.96 0.96

0.06 0.99 0.99

0.10 0.09

0.11

GAG

RAD

RAD-G

RAD-LG

RAD-LGG

4.17e). The ensemble of RAD-G Peak predictions is much lower compared to 

others as indicated by the ensemble mean statistic. The RP6' skill value is 

also best with the RAD-G product. Similar results are obtained with Volume 

predictions. The RAD-G simulations are much less biased and more skillful. 

Evidently, lower amounts estimated by the RAD-G rainfall algorithm are more in 

tune with an ensemble of predicted hydrographs from the Vflo ™ model. 

However, the timing of peak discharge is erroneously reduced with the RAD-G 

input.

Figures 4.19-4.21 reveal pdfs of predicted Time, Peak, and Volume for 

ensembles using different QPE inputs. The data distributions are a result of 

model parametric uncertainty. As noted in previous evaluation cases, a bimodal 

shape to the pdfs is evident with every ensemble. The Time pdfs (Fig. 4.19) show 

the most extreme bimodal behavior. The RAD-G product favors the first mode of 

behavior. All other ensemble pdfs are bimodal, but have maximum densities at 

later times. In this case, the secondary bumps in the pdfs agree with observed
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PIG. 4.19. As in Fig. 4.3 but for pdfs of the predicted time of maximum discharge 

(Time) for the 03 December 2002 case. Observed Time is 1600 UTC 05 

December 2002.
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FIG. 4.20. As in Fig. 4.3 but for pdfs of the predicted magnitude of maximum 

discharge (Peak) for the 03 December 2002 case. Observed Peak is 13.4 cubic 

meters per second (cms).
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FIG. 4.21. As in Fig. 4.3 but for pdfs of the predicted time-integrated discharge 

volume normalized by the basin area for the 03 December 2002 case. Observed 

Volume is 2.5 mm.
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time to peak more closely. Bimodal shapes are noted for all Peak pdfs in Fig. 

4.20 with higher densities occurring with relatively lower Peaks. As mentioned in 

the statistical comparison, there are very few distinguishing characteristics 

between the GAG, RAD, RAD-LG, and RAD-LGG pdfs. The Peak pdfs (Fig. 

4.20) indicate the RAD-G product is an outlier. Very similar results are obtained 

for predictions of Volume (Fig. 4.21). All predicted pdfs are bimodal and favor 

the first mode of behavior. The RAD-G product produces much lower Volume 

predictions, while the other estimates result in Volume pdfs that are nearly 

identical.

The uncertainty associated with the parameter ensembles is shown in Fig. 

4.22-4.24. The width of the uncertainty bounds for Time predictions, regardless 

of the model input, spans over approximately two days. The high degree of 

uncertainty with these predictions is a result of the nearly symmetrical, bimodal 

shape to the pdfs (Fig. 4.19). The simulation median for the RAD-G ensemble is 

shown to favor the earlier mode of behavior, while the other medians lie closer to 

the observed, later Time. All inputs are capable of producing realistic, behavioral 

predictions in terms of predicting the time of maximum discharge. However, the 

RAD-G product has a tendency to predict earlier than observed Time variables for 

this case.

The 90% simulation bounds for all ensembles encompass the observed 

peak discharge value (Fig. 4.23). As indicated in previous analyses of this case.
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PIG. 4.22. As in Fig. 4.6 but for simulation bounds of the predicted time of

maximum discharge (Time) for the 03 December 2002 case.
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FIG. 4.23. As in Fig. 4.6 but for simulation bounds of the predicted magnitude of 

maximum discharge (Peak) for the 03 December 2002 case.
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FIG. 4.24. As in Fig. 4.6 but for simulation bounds of the predicted time- 

integrated discharge volume normalized by the basin area (Volume) for the 03

December 2002 case.
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ensembles produced from GAG, RAD, RAD-LG, and RAD-LGG inputs yield 

very similar simulation bounds and medians for Peak. While the 90% simulation 

bounds include the observed Peak for these inputs, there appears to be a high bias 

with the model inputs. The RAD-G input, on the other hand, results in less 

uncertainty and the median Peak prediction aligns very close to the observed 

value.

Simulation bounds for the predicted Volume using the RAD-G input (Fig. 

4.24) include the observed Volume. This is not the case with the ensembles that 

use inputs from the other rainfall algorithms. Their uncertainty bounds are 

relatively wide, but biased so high that the 90% simulation quantiles do not 

include the observed Volume. These results point to the RAD-G algorithm as 

providing the most accurate inputs to the Vflo ™ model when the entire parameter 

space is considered. Artifacts noted in the RAD algorithm (Fig. 4.17b) reveal 

possible calibration errors with the KTLX radar resulting in erroneously high 

accumulations. In spite of this apparent bias, gauge adjustments that rely only on 

gauges in close vicinity to the Blue River Basin do little to adjust the 

overestimated precipitation amounts. In fact, local gauge adjustments to the radar 

rainfall field yield products that are nearly indistinguishable from the original one. 

Evidently, there is good radar-gauge agreement at the handful of grid points 

surrounding the Blue River Basin, but these comparisons are not representative of 

the gridded rainfall over the basin. When over 100 radar-gauge comparisons are
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made over the entire state, they indicate the radar-based accumulations are too 

high. The RAD-G product is thus biased low compared to all the other 

estimators. In this case, it turns out to be the most accurate input for hydrologie 

predictions of Peak and Volume variables. It is noted in this case how the Time 

predictions are least accurate using the ensemble that produces the most accurate 

Peak and Volume predictions. This apparent paradox is examined further in 

section 4.1.4 below.

4.1.4. q/'AydroZogic EvaZwahon

The utilization of model parameter ensembles provides a comprehensive 

framework to evaluate the skill and uncertainty with hydrologie predictions that 

use dMerent rainfall inputs. The model parameter ensembles include parametric 

uncertainty in the Vflo ™ model. Model inputs are evaluated from the hydrologie 

perspective in an objective and quantitative manner. Moreover, the parameter 

ensemble approach requires no prior modeling experience or calibration of model 

parameters in order to evaluate rainfall inputs. Time and Peak hydrologie 

variables are important for predicting the onset and magnitude of streamflow that 

may cause flash flooding. The time integrated volume of flow that exits the basin 

(Volume) is important for estimating the amount of water impacting downstream 

users of water such as irrigators, water delivery companies, and dam operators. 

This variable also sums the entire basin response throughout a storm event and is

148



thus a good indicator of the quality of rainfall inputs to the model. Biases in the 

initial inputs can be identlGed if other components of uncertainty in the modeling 

process (e.g., parametric) are taken into account. Three events are used to 

evaluate 9 different QPE algorithms that are input independently to the V/Zo ™ 

model. Model parameter ensembles are created for each input in order to account 

for the uncertainty present in the parameters alone. No accounting of model 

structural errors or observational uncertainties is performed with this hydrologie 

evaluation. The observational uncertainty associated with streamflow 

measurements is smaller than the other error sources. As shown in section 4.2.2, 

the model structural uncertainty is also minimized for these three evaluation 

—cases. Thefesults &om4his study_may_be_specific to the model and its application 

over the Blue River Basin. Moreover, only three case studies are used for the 

hydrologie evaluation. Nonetheless, important information is revealed about the 

model inputs, and the unique methodology proposed herein can be applied in a 

similar fashion for many more cases or for different environmental modeling 

systems altogether.

The statistical results from all three cases have been averaged and are 

summarized in Table 4.7. Ensemble mean hiares for predicted time of maximum 

discharge using all inputs are within 10% of observed Time values. The skill 

value indicates the RAD algorithm produces the best time to peak predictions. 

The hfoj, AfAE, RM5'E, and RP.9 values all indicate the MS input results in the
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TABLE 4.7. As in Table 4.1 but for average statistical evaluation of hydrologie 

predictions for all three cases combined.

TIME Bias MAE RMSE RPS

GAG 0.92 0.53 0.59 1.70

RAD 0.95 0.41 0.51 0.83

RAD-G 0.95 0.47 0.54 1.00

RAD-LG 0.95 0.46 0.55 1.04

RAD-LGG 0.94 0.44 0.55 0.93

MS 1.09 0.93 0.95 2.89

MS-G 1.03 0.60 0.62 1.96

MS-LG 0.92 0.54 0.56 2.07

MS-LGG 0.92 0.51 0.54 1.58

PEAK Bias MAE RMSE RPS

GAG 3.06 36.18 46.72 3.45

RAD 3.02 35.91 47.08 2.82

RAD-G 1.90 31.67 43.73 1.38

RAD-LG 3.10 38.11 50.40 3.05

RAD-LGG 3.52 58.98 75.58 3.98

MS 0.61 17.28 19.18 1.23
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MS-G 1.29 15.53 22.06 0.56

MS-LG 2.15 28.30 38.66 2.37

MS-LGG 2.42 34.60 47.10 2.83

VOLUME Bias MAE RMSE RPS

GAG 3.38 7.02 8.82 4.31

RAD 3.40 7.73 9.62 3.91

RAD-G 2.56 7.10 8.73 3.39

RAD-LG 3.40 7.87 10.10 3.85

RAD-LGG 3.81 10.33 12.39 4.99

MS 123 1.51 2.18 0.61

MS-G 1.88 3.85 5.27 1.92

MS-LG 2.61 5.67 7.51 3.34

MS-LGG 3.02 7.10 8.84 4.28
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worst Time predictions. The pdfs from all cases (Figs. 4.3, 4.11, and 4.19) show 

that there are two distinct modes of behavior for Time Aom aU ensembles. The 

MS ensembles favor the modes that are out of phase with observed Time for both 

cases.

Parameter settings in both modes are examined to determine the nature of 

the bimodal behavior. As expected, the early mode is associated with smaller 

scalars applied to Manning roughness coefficients (n). Smoother surfaces result 

which leads to early timing of peak discharge. Bimodal behavior in the predicted 

pdfs may result from a nonlinear response in Time predictions to a given 

parameter. The scalars chosen to multiply the » parameter are distributed linearly. 

The scalars applied to the saturated hydraulic conductivity parameter show no 

sensitivity to either mode. Scalars applied to the initial soil saturation parameter 

( 0  are quite different for the two different modes. Smaller relative minima in the 

predicted Time pdfs all correspond to members that use 6 values of 100%. 

Saturated soils, however, do not necessarily lead to an expected early or late 

timing of the peak discharge from the model. Fig. 4.3, for example, shows Time 

predictions using the RAD-G inputs with 100% saturation favor the early mode, 

while predictions from all other QPE algorithms tend toward the later mode. On 

the other hand, when the RAD-G product is used as input for the 03 December 

2002 case, the secondary maximum in the pdf (corresponding to 100% initial soil 

saturation; Fig. 4.19) occurs at a later time period. Precipitation inputs with
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different temporal and spatial characteristics interact with complex parameter 

settings to cause members with 100% soil saturation to deviate nonlinearly 6om 

the other members that use unsaturated initial soil conditions. This deviation is 

not consistent, however, and may result in either later or earher Time predictions. 

In any case, the bimodal shapes of the Time pdfs are explained by nonlinear 

sensitivity of Time predictions to initial soil saturation values of 100%.

Table 4.7 shows the ensemble that produces the most skillful Peak 

predictions results from inputs from the MS-G rainfall algorithm. Evidently, 

mean field bias adjustments applied to the MS algorithm result in more skillful 

hydrologie predictions of peak discharge. The RAD product also benefits from 

mean Reid bias adjustments. The RPS for the RAD product improves from 2.82 

to 1.38 after mean field bias adjustments have been apphed. Gauge adjustment 

strategies that rely more heavily on individual gauge amounts (i.e., -LG) result in 

degraded hydrologie predictions. In fact, this evaluation indicates that Peak 

predictions using RAD and MS with no gauge adjustment are more skillful than 

those that rely on local bias ac^ustment schemes (RAD-LG, RAD-LGG, MS-LG, 

MS-LGG) or rain gauge data alone (GAG). This hydrologie evaluation indicates 

the model-preferred gauge adjustment strategy is a mean field bias adjustment for 

the most likely Peak predictions on the Blue River Basin. This gauge adjustment 

strategy maintains spatial details in the precipitation fields while calibrating them 

using dozens of rain gauges in a domain-wide sense.
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Bimodal behavior is also noted with Peak predictions for all ensemble 

pdfs (see Figs. 4.4,4.12, and 4.20). Parameter settings associated with members 

belonging to the lower density, higher Peak mode were found to have initial soil 

saturation settings of 100%. Once again, the bimodal behavior of the pdfs is 

explained by a nonlinear response in Peak predictions to 100% soil saturation. As 

opposed to Time predictions, the result of this parameter setting is consistent and 

thus can be expected. All Peak predictions are much higher as compared to the 

rest of the members when the model soils are initially saturated. The hydrologie 

analysis offers clues about potential model structural uncertainties, especially in 

regards to the inOltration physics used in the ™ model. Identification of 

additional model uncertainties is explored in depth in section 4.2.2.

Table 4.7 indicates a significantly improved RPS for predicted Volume is 

associated with model parameter ensembles that use MS rainfall inputs. 

Predictions of Volume are thus most skillful with this input when model 

parametric uncertainty is included. This brief hydrologie analysis indicates that 

the most accurate QPE from the modeling perspective is the MS algorithm witA 

no gowgg ad/wffmgnt. These initial results differ from QPE algorithms that are 

traditionally developed and compared against independent rain gauge amounts. 

In this case, the MS-LG and RAD-LG algorithms are forced to match individual 

gauge observations. However, they do not result in improvements at the larger 

hydrologie scale of a basin. The analysis shows that Mesonet gauges, while
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considered to be a dense network (115 stations in the state of Oklahoma), often do 

not capture the details in the rainfall Reid needed for accurate hydrologie 

predictions. A slight degradation in hydrologie predictions of Volume occurs 

when gauge adjustments are applied to the MS algorithm. However, the RAD 

product benefits from a mean field bias adjustment. Note that the RAD-G product 

maintains the spatial characteristics of the RAD algorithm, but biases them 

depending on mean, statewide radar-gauge comparisons. The hydrologie 

evaluation has indicated that details in the spatial patterns of precipitation sensed 

by radar and satellite are indeed important for hydrologie purposes. Degraded 

Volume predictions result when these details are smoothed out by interpolated 

rain gauge observations.

Similar to Peak predictions. Volume predictions Rom all ensembles have a 

bimodal shape to their pdfs. Initial soil saturation values of 100% are coincident 

with lower density, higher Volume predictions. Hydrologie predictions from the 

y/Zo ™ model are quite sensitive to this particular parameter setting. Volume 

predictions increase nonlinearly resulting in the bimodal pdf behavior. It is 

assumed that model structural uncertainties are minimal in this hydrologie 

analysis of model inputs while parametric uncertainty has been accounted for. As 

it turns out, all ensembles are affected similarly by the nonlinearity in Volume 

predictions to 100% soil saturation settings. Section 4.2.2 addresses the 

identification of model structural errors in detail.
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4.2. Evaluation of the Characteristics of Uncertainty

This section addresses the second science question posed in this study: 

What are the predictability and limits-to-prediction in the hydrologie system? 

Chapter III refines this question further by proposing methodologies to illuminate 

several c/mrocferifticf of uncertainty. The first task evaluates the sensitivity of 

hydrologie predictions to perturbed rainfall inputs. Are hydrologie predictions 

sensitive to a doubling of rainfall inputs? How do uncertainty bounds associated 

with the predictions respond to perturbed rainfall inputs? Results from this 

sensitivity study also apply to the third science question posed in this study: How 

do rainfall errors propagate to errors in streamflow predictions? The sensitivity 

study highlights the propagation characteristics of model input errors on 

streamflow predictions.

The hydrologie evaluation in section 4.1 reveals some peculiarities in 

predicted pdfs of model parameter ensembles. Two modes of behavior are shown 

to affect all ensembles that use different rainfall inputs. The presence of model 

parametric or structural errors is suggested but not yet shown explicitly. Another 

characteristic of uncertainty, the identification of model structural errors, is 

revealed in this study. Ensembles are constructed to include the combined effect 

of uncertainties in model inputs and model parameters. Observational 

uncertainties can be neglected, which leaves any residual error a result of 

uncertainties in the model structure or inadequate physical parameterizations.
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The physical process for this uncertainty is highlighted and supported with 

evidence from independent measurements.

No known studies have attempted to estimate the total prediction 

uncertainty associated with a hydrologie forecast. Several techniques have been 

devised to primarily account for uncertainty in the model parameters. In section

4.1, for example, ensembles are created from the physical ranges associated with 

each parameter. The derived pdfs, however, are conditioned on perfect model 

inputs, physics, and observations. The first condition is rarely satisfied because 

different QPE algorithms are used as inputs and are found to have varying degrees 

of accuracy. The total prediction uncertainty is estimated for a case where 

observational and model structural uncertainties are minimized. Combined 

ensembles are created to include uncertainty in the inputs and parameters. This 

procedure provides for accurate estimation of predicted pdfs. This allows for pdfs 

to be utilized in decision-making that relies on specific probabilities. This 

ensemble prediction system will be useful for real-time applications if it is 

possible to perform the number of simulations needed for accurate estimation of 

the pdf. Many of the combined ensembles require thousands of simulations. The 

final study evaluates the minimum number of ensemble members needed to 

achieve the skill scores obtained with the full-blown ensemble. This information 

will provide for an estimate, on average, of the minimum number of members 

needed to optimize computational resources.
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4.2.1. Propagafzo» o/" fo ^(frofogzc frgcficrfof»

The sensitivity of hydrologie forecasts to perturbed rainfall inputs is 

examined using ± e  12 November 1994 case (Table 3.1). For this case alone, a 

version of the ™ model is used that assumes the channel side slopes are 

constant. The hydrograph for this case is shown in Fig. 4.25. Rainfall estimates 

are provided by the Arkansas Basin River Forecast Center's PI algorithm. Model 

parameter ensembles are created the same as in the hydrologie evaluation (see 

section 4.1). In this case, model inputs have been scaled from their deterministic 

values, and thus aren't independent from each other as they are in section 4.1. 

The following scalars are used to produce Gve perturbations of model inputs: 0.5, 

0.75, 1.0, 1.33, and 2.0 (corresponding to RAIN*0.5, RAIN*0.75, RAIN* 1.0, 

RAIN* 1.33, and RAIN*2.0 henceforth). Predicted ensembles are then compared 

to observed hydrologie variables following the analysis employed in section 4.1.

Table 4.8 shows a statistical comparison between predictions and 

observations of Time, Peak, and Volume. Table 4.9 indicates all RP5 values 

being compared are different at the 99% statistical significance level. The time of 

peak discharge is predicted most skillfully using rainfall inputs that have been 

halved. Biases of the ensemble means indicate the Time is predicted too early 

6om the other perturbed inputs. Predictions of Peak have the lowest BP5 value 

when inputs from RAIN*0.75 are used. Intuitively, the RAIN* .05 ensemble has a
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FIG. 4.25. As in Fig. 4.2 but for observed hydrograph for 12 November 1994 

case.
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TABLE 4.8. Statistical evaluation of hydrologie predictions for the 12 November 

1994 case. The hydrologie variables being considered are the time of maximum 

discharge (Time), magnitude of maximum discharge (Peak), and time-integrated 

discharge volume normalized by the basin area (Volume). The rainfall inputs are 

perturbed by scalars as noted in first column. See section 3.2.2 for the statistical 

definitions. Numbers in boldface indicate the best agreement with observations.

TIME Bias MAE RMSE RPS

RAIN*0.5 1.01 0.35 0.43 0.55

RAIN*0.75 0.95 0.37 0.42 1.05

RAIN* 1.0 0.92 0.43 0.50 1.47

RAIN*1.33 0.89 0.55 0.59 2.14

RAIN*2.0 0.87 0.67 0.70 3.03

PEAK Bias MAE RMSE RPS

RAIN*0.5 0.42 124.52 133.90 1.79

RAIN*0.75 0.95 85 J 4 101.05 0.51

RAIN* 1.0 1.60 155.55 205.59 1.15

RAIN* 1.33 2.60 345.16 426.55 3.19

RAIN*2.0 4.97 855.03 970.12 5.75
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VOLUME Bias MAE RMSE RPS

RAIN*0.5 0.35 26.92 27.18 2.41

RAIN»0.75 0.67 13.47 14.70 1.00

RAIN* 1.0 1.04 6.66 8.10 0.16

RAIN*1.33 1.58 23.97 26.15 1.74

RAIN*2.0 2.77 72.83 74.45 5.63

TABLE 4.9. As in Table 4.2 but for significance levels of RPS difference

12 November 1994 case.

TIME RAIN*0.5 RAIN*0.75 RAIN* 1.0 RAIN* 1.33 RAIN*2.0

RAIN*0.5 0.12 0.99 0.99 0.99 0.99

RAIN*0.75 0.07 0.99 0.99 0.99

RAIN* 1.0 0.05 0.99 0.99

RAIN* 1.33 0.06 0.99

RAIN*2.0 0.06

PEAK RAIN*0.5 RAIN*0.75 RAIN* 1.0 RAIN* 1.33 RAIN*2.0

RAIN*0.5 0.06 0.99 0.99 0.99 0.99

RAIN*0.75 0.14 0.99 0.99 0.99

RAIN* 1.0 0.06 0.99 0.99
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RAIN*1.33 0.03 0.99

RAIN*2.0 0.06

VOLUME RAIN*0.5 RAIN*0.75 RAIN*1 0RAIN*1 .33 RAIN*2.0

RAIN*0.5 0.14 0.99 0.99 0.99 0.99

RAIN*0.75 0.10 0.99 0.99 0.99

RAIN* 1.0 0.23 0.99 0.99

RAIN*1.33 0.06 0.99

RAIN*2.0 0.09

low bicu when considering the mean, while ensembles that use inputs from the 

larger scalars (i.e., RAIN* 1.0, RAIN* 1.33, RAIN*2.0) overforecast the peak 

discharge. The ensemble using unperturbed rainfall inputs (i.e., RAIN* 1.0) 

produces the most skillful Volume predictions. There isn't a single perturbation 

that satisfies aU three hydrologie objectives: Time, Peak, and Volume. Lower 

rainfall amounts result in the best Time predictions, while rainfall scalars of 0.75 

and 1.0 produce the best Peak and Volume predictions respectively. Explanations 

for this discrepancy lie in the modified channel hydraulics that are used in this 

sensitivity study alone.

Gaussian kernel density estimation is used to produce pdfs for all 

ensembles. These pdfs reveal subtleties, such as bimodal pdf shapes, that aren't
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as obvious in the statistical analysis. The pdfs of hydrologie predictions from 

each ensemble are shown in Figs. 4.26-4.28. The Time pdfs reveal a bimodal 

shape to each curve (Fig. 4.26). The secondary maximum was discovered in 

section 4.1 to be a result of model sensitivities to 100% soil saturation. Time
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0.015 Rain*.75

I
Û

0.005

11/17/94 11/18/9411/14/94 11/14/94 11/15/94 11/15/94 11/16/94 11/16/94 11/17/94
00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

Time of Peak (UTC)

FIG. 4.26. As in Fig. 4.3 but for pdfs of the predicted time of maximum discharge 

(Time) for the 12 November 1994 case. Observed Time is 2000 UTC 15 

November 1994.
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FIG. 4.27. As in Fig. 4.3 but for pdfs of the predicted magnitude of maximum 

discharge (Peak) for the 12 November 1994 case. Observed Peak is 215.2 cubic

meters per second (cms).
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FIG. 4.28. As in Fig. 4.3 but for pdfs of the predicted time-integrated discharge 

volume normalized by the basin area for the 12 November 1994 case. Observed 

Volume is 41.1 mm.
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hydrologie objectives. In this case, the rainfall "algorithms" are dependent on 

one another, so the predicted medians are plotted as a function of rainfall 

multiplier and connected by lines. Figure 4.29 shows the 90% simulation bounds 

encompass the observed Time only when rainfall scalars of 0.5 and 0.75 are used, 

predictions can occur either earlier or later than the rest of the members that use 

unsaturated initial soil conditions. In this case, the secondary peak occurs at later 

times, meaning 100% soil saturation results in a delayed time to peak for all 

ensembles. Lighter rainfall amounts (e.g., RA1N*0.5) also result in later, more 

correct Time predictions. The distributions of Peak predictions (Fig. 4.27) reveal 

the anticipated behavior of lower rainfall inputs (e.g., RAIN*0.5) resulting in 

smaller Peak predictions, while larger inputs (e.g., RA1N*2.0) produce much 

higher Peaks. There is a slight indication of bimodal behavior in the pdfs. The 

secondary bumps are all coincident with relatively higher Peaks, indicating 

members with 100% soil saturation produce anomalously high Peak predictions. 

Volume predictions from the ensembles show a similar dependence on rainfall 

scalar as with Peak predictions (Fig. 4.28). Higher rainfall scalars result in much 

higher predictions of Volume. In this case, however, the bimodal shape to the 

pdfs is not apparent with the Volume predictions.

Propagation characteristics of hydrologie predictions to rainfall 

perturbations are shown with 90% simulation bounds derived from the pdfs. 

Figures 4.29-4.31 show ensemble spreads and measures of central tendency for aU
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FIG. 4.29. As in Fig. 4.6 but for simulation bounds of the predicted time of 

maximum discharge (Time) for the 12 November 1994 case. Model inputs are 

perturbations of the given rainfall estimates. Scalars used to perturb the inputs are 

indicated on the x-axis.
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FIG. 4.30. As in Fig. 4.6 but for simulation bounds of the predicted magnitude of 

maximum discharge (Peak) for the 12 November 1994 case. Model inputs are 

perturbations of the given rainfall estimates. Scalars used to perturb the inputs are 

indicated on the x-axis.
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Rainfall Multiplier

FIG. 4.31. As in Fig. 4.6 but for simulation bounds of the predicted time- 

integrated discharge volume normalized by the basin area (Volume) for the 12 

November 1994 case. Model inputs are perturbations of the given rainfall 

estimates. Scalars used to perturb the inputs are indicated on the x-axis.
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As rainfall magnitudes increase, peak discharges exit the Blue River Basin at 

earlier times. Higher flow velocities result from larger hydraulic radii (resulting 

from higher flow depths) from Manning's equation (2.7). Also, the shape of the 

curve connecting the ensemble medians should asymptotically approach the case 

start time if larger rainfall scalars were employed.

The unexpected result from Fig. 4.29 is the apparent "preference" the 

modified version of the V/Zo ™ model has for lighter rainfall amounts in terms of 

timing. The amount of discharge flowing through the basin for this event is 

nearly an order of magnitude larger than the other case studies (Table 3.1). In a 

modified formulation of the model, the side slopes of the channels are defined to 

be constant at a given cross-section for all flow depths. In reality, the side slopes 

become much flatter at high flow depths, basically representing the flood plain 

adjacent to the riverbed. Thus, for extreme events water leaves the main channel 

and flows over a vegetated, rough flood plain. The observed Peaks are observed 

to arrive later at the basin outlet as a result of this. The analysis of error 

propagation through the model has highlighted an error in regard to specification 

of channel side slopes. This structural or parametric error has been mitigated 

using rating curves for aU other uses of the ™ model in this study.

Predictions of peak discharge appear to be quite sensitive to perturbations 

in rainfall inputs (Fig. 4.30). Intuitively, Peak predictions increase with larger 

rainfall scalars. In addition, the spread of the ensembles increases dramatically
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with higher rainfall amounts. Simulation limits for ensembles using rainfall 

scalars of 0.75, 1.0, and 1.33 encompass the observed Peak value, and are thus 

deemed behavioral. Unperturbed rainfall inputs (i.e., RAIN* 1.0) result in an 

ensemble of predictions that include the observed Peak. It is indicated in Table 

4.8, however, that the best RPS skiU value is assigned to the ensemble using 

RAIN*0.75 inputs. Once again, it appears that the channel-modified version of 

the V/Zo ™ model has a slight preference for lighter rainfall when predicting Peak 

discharge. Channel misspecifications are believed to result in erroneously early 

Time predictions high Peak predictions. With this extreme event, water 

leaves the main channel and flows over the adjacent flood plain. This surface is 

much rougher than in the channel and results in hydrographs that are less peaked, 

and the peaks are delayed. The channel cross sections are not properly 

represented as a function of height in this version of the V/Zo ™ model, which 

results in erroneous Time and Peak predictions. These model structural errors, 

however, should have little impact on Volume predictions. Improved channel 

hydraulics in the V/Zo ™ model utilize rating curves to simulate the channel 

geometry as opposed to modeling it explicitly. Rating curves are used for aU 

other experiments in this study. Thus, conclusions regarding channel 

misspeciûcations apply to this section alone.

Volume predictions are also sensitive to perturbations in rainfall inputs 

(Fig. 4.31). Higher Volumes result from increases in model inputs. The 90%
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simulation bounds also widen as larger scalars are applied to the rainfall 

estimates. Volume predictions using ensembles with scaled rainfall of 0.75 and 

1.0 include the observed Volume for this case. The median from the unperturbed 

ensemble lies closer to the observed which results in a better / ( f  #5 skill value.

The third science question addressed in this study aims to understand how 

input errors propagate to hydrologie predictions. In the case of predicted time of 

maximum discharge, the relationship between input errors and hydrologie 

predictions is nonlinear, as indicated by the curve connecting the medians in Fig. 

4.29. Large positive rainfall perturbations result in early Time predictions. 

However, the curves are nonlinear because the earliest possible Time prediction 

(associated with the largest scalars) is bound by the onset of precipitation. The 

latest possible Time prediction (associated with the smallest scalars) is 

theoretically bound by positive infinity. However, this situation will not occur 

because infinitessimal rainfall amounts will eventually result in no discharge at 

all. In any case, the curve connecting the simulation medians must asymptotically 

approach these bounds and thus take on a nonlinear shape.

Figures 4.30-4.31 show the relationships between rainfall perturbations on 

Peak and Volume predictions. The lines connecting the medians have a linear 

shape. It must be noted, however, that slopes of these lines are rather steep. 

When values on the y-axis in Fig. 4.30 are normalized by the observed peak 

discharge, a fitted line to the simulation medians has a slope of 2.87. This means
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that a doubling of rainfall inputs results in Peak predictions that are approximately 

5.74 times greater. For Volume, a Atted line to the medians has a slope of 1.62. 

This means that a doubling of rainfall inputs results in a Volume prediction that is 

approximately 3.24 times larger. The relationship between rainfall perturbations 

and hydrologie predictions of Peak and Volume are linear, but the slopes are steep 

indicating high sensitivity. This result is profound as it emphasizes the need to 

focus on the accuracy of QPE algorithms used in hydrologie modeling.

4.2.2. f/ncertamry in Mode/

Structural uncertainties are identiAed when all other sources of uncertainty in the 

modeling process are accounted for, and simulaAons still do not give the observed 

behavior, i.e., it is the residual. Ensembles are constructed herein to account for 

uncertainties in the model parameters and inputs. ObservaAonal uncertainAes can 

be safely neglected. Input uncertainties are handled by treating each QPE input as 

an equally likely esAmator of the true rainfall Aeld. Each QPE member uses rain 

gauges, radar, satellites, model data, or combinaAons in its estimation scheme. It 

is assumed that these members encompass the true spread of rainfall possibiAAes. 

Rainfall esAmates for the 25 August 2002 case are shown in Fig. 4.32. Model 

parameters are perturbed within their physical bounds as is done in previous 

secAons. Ensembles are constructed to include the combined uncertainty in 

inputs and parameters. A given ensemble is thus composed of the number of
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FIG. 4.32. As in Fig. 4.1 but for storm total precipitation plots for the 25 August 

2002 case &om the QPESUMS products: (a) gauge-only, (b) radar, (c) radar with 

mean field bias removed, (d) radar with local bias adjustment, (e) multisensor, (f) 

multisensor with mean field bias removed, and (g) multisensor with local bias 

adjustment.

parameter perturbations (125) multiplied by the number of available rainfall 

estimators (7). The observed hydrograph for the 25 August 2002 case is shown in

Fig. 4.33.

Table 4.10 shows statistical results for combined (input + parameter) 

ensembles for four cases on the Blue River Basin. Peak and Volume predictions 

for the 25 August 2002 case are biased extremely high as noted in the tioA 

statistic. Combined ensemble predictions for the October and December events 

do not show this overforecast problem. Moreover, the MAE, RM5E, and EP5 

values for Peak and Volume predictions with the 25 August 2002 case are much

175



TABLE 4.10. Statistical evaluation of hydrologie predictions from combined 

input-parameter ensembles for cases listed in the left column. The hydrologie 

variables being considered are the time of maximum discharge (Time), magnitude 

of maximum discharge (Peak), and time-integrated discharge volume normalized 

by the basin area (Volume). See section 3.2.2 for the statistical definitions. 

Numbers in boldface indicate the best agreement with observations.

TIME Bias MAE RMSE RPS

25-Aug-02 1.04 0.42 0.47 0.77

23-Oct-02 0.95 0.42 0.47 1.10

28-Oct-02 1.01 0.77 0.83 1.52

3-Dec-02 0.94 0.54 0.67 0.96

PEAK Bias MAE RMSE RPS

25-Aug-02 35.93 216.59 243.29 6.00

23-Oct-02 139 32.02 48.49 0.64

28-Oct-02 2.27 24.05 33.16 2.15

3-Dec-02 4.27 44.16 57.51 4.21

VOLUME Bias MAE RMSE RPS

25-Aug-02 24.75 38.00 43.72 6.00
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FIG. 4.33. As in Fig. 4.2 but for observed hydrograph for 25 August 2002 case.
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worse than those for the other cases. The combined ensemble pdfs are shown in 

Figs. 4.34-4.36. Previously, the bumps in the curves were attributed entirely to 

model sensitivities to the soil saturation parameter. In this case, different modes 

may also be due to rainfall inputs. Multiple modes are possible when different 

regions of the phase space are preferred by different rainfall inputs and/or 

parameters. Figure 4.34 shows the pdf for Time predictions from the combined 

input-parameter ensemble has a bimodal shape. Predictions for Peak and Volume 

have trimodal distributions (Figs. 4.35-4.36) with smaller relative maxima 

occurring at larger Peak and Volume values.

The simulation bounds and medians for all cases listed in Table 4.10 are 

shown in Figs. 4.37-4.39. The combined ensembles provide accurate Time 

predictions for all cases. On the other hand, predictions of Peak and Volume by 

the combined input-parameter ensembles for the 25 August 2002 case are much 

greater than observed values. 90% simulation bounds for the other cases listed in 

Table 4.10 include the observed Peak and Volume amounts. However, the 

uncertainty limits for the 25 August 2002 case do not encompass observed Peaks 

and Volumes, and are thus deemed nonbehavioral. The combined ensembles 

include expected uncertainty in the inputs and parameters. The residual error in 

this summer case must be attributed to model structural errors or inadequate 

physical parameterizations. Additional data sets are introduced to identify the 

source of uncertainties in the Vj/Zo ™ model.

178



0.015

0.01

O

0.005

08/27/02 00:00 08/27/02 12:00 08/28/02 00:00 08/28/02 12:00 08/29/02 00:00 08/29/0212:00 08/30/02 00:00
Time of Peak (UTC)

FIG. 4.34. Probability density function of the predicted time of maximum 

discharge (Time) for the 25 August 2002 case using a combined input-parameter

ensemble. Observed Time is 0900 UTC 28 August 2002.
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FIG. 4.35. Probability density function of the predicted magnitude of maximum 

discharge (Peak) for the 25 August 2002 case using a combined input-parameter

ensemble. Observed Peak is 6.2 cubic meters per second (cms).
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FIG. 4.36. Probability density function of the predicted time integrated discharge 

volume normalized by the basin area (Volume) for the 25 August 2002 case using

a combined input-parameter ensemble. Observed Volume is 1.6 mm.
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FIG. 4.37. Scatter plot of predicted time of maximum discharge (Time) versus

observed Time for the cases listed in Table 4.10. The open boxes refer to the 50% 

quantile (median), while the bars correspond to the 5% and 95% quantiles. The 

diagonal double line is the 1:1 hue.
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FIG. 4.38. As in Fig. 4.37 but for scatter plot of predicted magnitude of 

maximum discharge (Peak) versus observed Peak for the cases listed in Table 

4.10.
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FIG. 4.39. As in Fig. 4.37 but for scatter plot of predicted time integrated 

discharge volume normalized by the basin area (Volume) versus observed 

Volume for the cases listed in Table 4.10.
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The lack of significant runoff production (Fig. 4.33) for the 25 August 

2002 case is not entirely intuitive given the relatively high rainfall amounts (Fig. 

4.32) impacting the basin relative to the other cases (Figs. 4.1,4.9, and 4.17). The 

main clue to this discrepancy lies in the time of year at which the events occur. 

An empirical study involving the relationship between rainfall and runoff on the 

Blue River Basin is undertaken to elucidate the apparent lack of runoff production 

during the summer months. Monthly streamflow observations and rain gauge 

observations taken at the Blue River Basin, near Blue, OK are collected from 

1937 to 1997. Each monthly observation (61 total) is plotted in a scatter plot (not 

shown). A line is then fit to the climatological observations for each month. The 

slope of the line is a proxy for the rainfall-runoff relationship. Higher slopes 

mean more runoff results from a unit input of rainfall, while smaller slopes 

indicate little runoff is produced from the same unit input of rainfall. The slope of 

the htted line is shown in Fig. 4.40. The trend of the slope indicates there is 

significantly different runoff production in the Blue River Basin from month-to- 

month. Independent observations of soil moisture conditions in the basin are 

introduced to identify the cause of the dependence of rainfaH-runoff relationships 

on the month of the year.

The Oklahoma Mesonet has installed soil moisture sensors at several sites 

in the state of Oklahoma. Soil moisture observations have been collected on a 

daily basis at the Durant Mesonet site since 1997. This location resides within the
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FIG. 4.40. Climatological trend of monthly rainf all-runoff relationships and soil 

moisture conditions on the Blue River Basin. The slope (blue curve) indicates the 

relationship between rainfall and runoff using 61 years of observations. The other 

curves (see legend) are monthly fractional water content values at depths of 5, 25, 

60, and 75 cm. 7 years of soil moisture conditions from the Durant Mesonet site 

are used to construct the fractional water content climatologies.
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Blue River Basin and is assumed to be representative of soü moisture conditions 

over the basin when several years of observations are considered. Daily 

measurements of fractional water content at 4 different depths (5, 25, 60, and 75 

cm) are grouped into their respective months and averaged for the available, 7- 

year period. This short but representative soil moisture climatology is then 

plotted against the slope parameter that summarizes the rainfall-runoff 

relationship on the Blue River Basin (Fig. 4.40). The trends in the slope 

parameter and fractional water contents are well correlated. In fact, a correlation 

coefficient of 0.85 describes the linear relationship between the slope parameter 

and fractional water content at 75 cm. This indicates runoff production is very 

limited for this basin when deep-layer soils are dry. Recall, the initial soil 

saturation parameter is varied from 20% to 100% and thus represents dry 

conditions in the Green and Ampt model. Simulations still produce too much 

runoff which indicates the Green and Ampt model used in VyZo™ is not 

accounting for enough infiltration over dry, deep-layer soils.

Basara and Crawford (2002) discovered strong linear relationships 

between moderate to deep-layer soil moisture and atmospheric processes. Their 

relationships were found to be a result of the capability of vegetation to transport 

energy in the vertical, i.e., transpiration. This study indicates deep layer soil 

moisture is also correlated with surface hydrologie conditions, at least across 

monthly time scales. Perhaps the linearity between rainfall-runoff relationships
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and soil moisture at deep layers is also influenced by moisture transport between 

the soil surface and the root zone.

The yyZo ™ model uses the Green and Ampt model (see Chapter n, section 

2.2) for infiltration rates. Water becomes available for surface runoff in the event 

that rainfall rates exceed infiltration rates. Prior to this ponding time, all rainfall 

is infiltrated in the soil as an initial abstraction. Abstractions include the 

combined effects of infiltration as modeled by the Green and Ampt equation, 

depression storage on the surface, interception by vegetation, and enhanced 

infiltration caused by conduits for water flow in the soil surface. During the 

summer months, it is plausible that interception by vegetation and flow conduits 

caused by cracks result in higher infiltration rates than those predicted by the 

Green and Ampt equation. The combined ensemble methodology has identified a 

model structural error or inadequate parameterization of saturated hydraulic 

conductivity for this particular case. Future studies will examine larger parameter 

ranges for saturated hydraulic conductivity, include the wetting front suction 

parameter in the combined ensemble, and determine how initial abstractions can 

be handled directly as a boundary condition and included in the ensemble.

4.2.3. fradichon 1/ncgrtamfy

The total prediction uncertainty can be estimated if all sources of 

uncertainty in the modeling process are accounted for or are deemed negligible.
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Section 4.2.2 demonstrates how combined ensembles are created to represent 

uncertainties in model inputs and parameters. Observational uncertainty of 

streamflow is much smaller in comparison and is negligible. Model structural 

uncertainty is more difficult to identify. It is treated as the residual source of 

uncertainty when all other possible roots are included in the ensemble. Model 

infiltration is discovered to be a significant error source, but is only problematic 

during low flow, summer months. This section demonstrates how the total 

prediction uncertainty is estimated for cases when the model structure is valid. 

Future studies should address how the Green and Ampt model can be modified or 

parameterized to adequately simulate infiltration during the summertime. 

Additional infiltration models may need to be considered.

Statistical results are obtained for the combined ensembles for the 23 

October 2002, 28 October 2002, and 03 December 2002 cases (Table 4.10). The 

statistical significance of the differences is not computed for these cases 

because the number of members comprising each ensemble varies. Pdfs of the 

predicted hydrologie variables are shown in Figs. 4.41-4.43 for the 23 October 

2002 case. Figure 4.41 shows a flatter, more dispersive pdf for predicted Time. 

The extreme bimodal shape of model parameter pdfs noted in section 4.1 has been 

smoothed in the combined pdf. It should also be noted that the combined pdfs can 

be refined further by rejecting members that systematically don't produce 

observed system behavior. For example, members using initial soil saturation
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FIG. 4.41. Probability density function of the predicted time of maximum 

discharge (Time) for the 23 October 2002 case using a combined input-parameter

ensemble. Observed Time is 0000 UTC 26 October 2002.
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FIG. 4.42. Probability density function of the predicted magnitude of maximum 

discharge (Peak) for the 23 October 2002 case using a combined input-parameter 

ensemble. Observed Peak 56.7 cubic meters per second (cms).
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FIG. 4.43. Probability density function of the predicted time-integrated discharge 

normalized by the basin area (Volume) for the 23 October 2002 case using a 

combined input-parameter ensemble. Observed Volume is 6.1 mm.
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parameter settings of 100% produce unrealistic Time, Peak, and Volume 

predictions. These members can be rejected from the combined ensemble. 

Judicious selection of appropriate models will remove the bimodal shapes that are 

still apparent in the combined pdfs (Fig. 4.43). In addition, the hydrologie 

evaluation in Section 4.1 highlights specific QPE algorithms that are more likely 

to replicate the observed behavior. Future studies will weight these inputs 

appropriately in order to reduce the uncertainty bounds with the hydrologie 

predictions.

Figures 4.44-4.46 show the pdfs of the combined ensemble predictions for 

the 28 October 2002 case. The pdf for predicted Time (Fig. 4.44) is dispersive 

indicating several regions in the Time phase space are replicated by individual 

members comprising the combined ensemble. The predicted Peak and Volume 

pdfs (Figs. 4.45-4.46) are also more dispersive with a slighter indication of a 

false, secondary bump at higher predictions. Nonetheless, inclusion of QPE 

members in the combined ensemble produces predicted pdfs that better estimate 

the true pdf. Figures 4.47-4.49 show the pdfs of hydrologie predictions for the 03 

December 2002. Similar observations are noted with these predicted pdfs. The 

predicted Time pdf (Fig. 4.47) in this case shows the input ensembles have strong 

preferences for either the early or late mode of behavior. Very few members 

predict Time values between the two peaks. This bimodal shape can be mitigated 

by excluding models employing the 100% soil saturation parameter setting. The

193



10/28/02 10/29/02 10/29/02 10/30/02 10/30/02 10/31/02 10/31/02 11/01/02 11/01/02
12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00

Time of Peak (UTC)

FIG. 4.44. Probability density function of the predicted time of maximum 

discharge (Time) for the 28 October 2002 case using a combined input-parameter

ensemble. Observed Time is 0600 UTC 30 October 2002.
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FIG. 4.45. Probability density function of the predicted magnitude of maximum 

discharge (Peak) for the 28 October 2002 case using a combined input-parameter 

ensemble. Observed Peak 16.4 cubic meters per second (cms).
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FIG. 4.46. Probability density function of the predicted time-integrated discharge 

normalized by the basin area (Volume) for the 28 October 2002 case using a

combined input-parameter ensemble. Observed Volume is 2.3 mm.
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FIG. 4.47. Probability density function of the predicted time of maximum 

discharge (Time) for the 03 December 2002 case using a combined input-

parameter ensemble. Observed Time is 1600 UTC 05 December 2002.
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FIG. 4.48. Probability density function of the predicted magnitude of maximum 

discharge (Peak) for the 03 December 2002 case using a combined input- 

parameter ensemble. Observed Peak 13.4 cubic meters per second (cms).
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FIG. 4.49. Probability density function of the predicted time-integrated discharge 

normalized by the basin area (Volume) for the 03 December 2002 case using a

combined input-parameter ensemble. Observed Volume is 2.5 mm.
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predicted Peak and Volume pdfs (Figs. 4.48-4.49) are also falsely bimodal, but 

the primary density maxima correspond to observations more closely.

Simulation quantiles are computed for the combined ensembles (Figs. 

4.37-4.39) for the three cool season cases. 90% simulation bounds for Time, 

Peak, and Volume predictions envelop observed values. There is a tendency for a 

majority of the members to overforecast Peak and Volume variables, but is likely 

an artifact of the 100% soil saturation setting alone. Hydrologie predictions, 

when assembled in an ensemble framework, replicate the observed streamflow 

behavior on the Blue River Basin for cool season, high flow events. Moreover, 

the predicted pdfs can now be utilized in a decision-making environment. For 

example, a user of the hydrologie predictions may decide that it is in their benefit 

to move equipment and personnel from their facility if predictions of peak 

discharge from the combined ensemble exceed 50 cms with a 50% probability. 

The medians in Fig. 4.38 show this threshold was exceeded for the 23 October 

2002 and 06 December 2002 events. The developed ensembles can now be used 

for such purposes provided the availability of computation resources. The next 

section examines the number of members that are needed to replicate skill scores 

when the entire ensemble is used.
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4.2.4. Opfimwm TVwmtgr

The combined ensemble system provides an accurate pdf of possibilities 

expected with uncertainties in rainfall fields and model parameters. Observations 

of Time, Peak, and Volume all fall within the simulation limits predicted by the 

input-parameter ensemble for cool season cases. This system can be used for 

real-time apphcation provided the number of simulations required to construct the 

ensemble isn't too large. Hydrologie simulations must be performed for each 

member. The combined ensemble for the 23 October 2002 case is comprised of 

1125 members. Computational resources for this ensemble are rather demanding. 

It is thus worthwhile to determine the minimum number of members needed to 

approximate the original skill obtained with the full-blown ensemble.

Ensembles of varying sizes are created for the 23 October 2002, 28 

October 2002, and 03 December 2002 cases. First, an individual member is 

randomly chosen from the full ensemble. Comparisons are made with 

observations and a skiU value is computed. This procedure is repeated again, 

but the number of members is increased and so on. With small ensemble sizes, 

there is a possibility that a given member will be an equally good or poor 

predictor of the hydrologie objective. For this reason, the described procedure is 

repeated 1000 times, and an average value is reported for a given ensemble 

size.
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Figures 4.50-4.52 show average 5̂ values for various ensemble sizes for 

aU three cases. Interestingly, the curves for all cases for all hydrologie variables 

converge to their asymptotic 5 scores rather quickly. In fact, it is shown how a 

mere handful of members is needed to estimate the ensemble skill. Calculations 

are performed to determine the average number of members needed to achieve 

90% of the maximum obtainable skiU. All cases and all hydrologie variables are 

considered in this analysis. It turns out that, on average, only 10 members out of 

a maximum of 1125 are needed to replicate original values. The is 

computed from the entire pdf, thus it is reasonable to assume the pdfs are also 

accurately portrayed. This means 5%, 50%, and 95% quantiles can also be 

estimated from the smaller ensemble accurately. Application of the combined 

ensemble prediction system for real-time purposes is feasible. This study has 

determined that approximately 1% of the total number of available members is 

needed in order to estimate the predicted pdfs. Moreover, section 4.2.3 shows the 

predicted pdfs from the combined ensembles accurately replicate observed 

hydrological responses for cool season, high flow cases on the Blue River Basin.
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FIG. 4.50. Ranked probability score plotted as a function of the number of 

members comprising the ensemble for the 23 October 2002 case. The three 

curves correspond to predictions of time of maximum discharge (Time; open 

squares), magnitude of peak discharge (Peak; Riled circles), and time-integrated 

discharge volume normalized by the basin area (Volume; open triangles).
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FIG. 4.51. As in Fig. 4.50 but for the 28 October 2002 case.
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FIG. 4.52. As in Fig. 4.50 but for the 03 December 2002 case.

205



CHAPTER V. SUMMARY AND CONCLUSIONS

Environmental modeling involves characterizing inputs, parameters, and 

the physical system being modeled. The skill and uncertainty of predictions 

stemming from the model depend on how well these components are represented 

by the model. Hydrologie models transform estimates or forecasts of rainfall into 

streamflow predictions. In the VyZo ™ model, rainfall is infiltrated in the soil until 

rainfall rates exceed the inSltrating capabilities of the soils. Infiltration rates are 

determined by saturated hydraulic conductivity and initial saturation of the soils. 

These parameters are derived from soil classification data sets and are prone to 

uncertainties. After the time of ponding has been reached, excess rainfall is 

partitioned into overland flow. The velocity at which this overland flow reaches 

the channel is dictated by the Manning roughness parameter, derived from land 

use/cover data, in the kinematic wave equation. Finally, water is routed 

downstream through defined channels and the depths are converted to discharge 

values using rating curves. Uncertainties in streamflow predictions are a result of 

uncertainties in the rainfall estimates, model parameters, and in some cases the 

model structure. The study undertaken evaluates characteristics of uncertainty in 

each of these areas using an ensemble approach.

The first science question addressed herein pertains to the lack of a current 

systematic methodology to evaluate the skiU of and monitor the improvements of
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rainfall estimates (Ciach and Krajewski 1999a,b; Ciach et al. 2000). A unique 

approach is undertaken that places judgment on rainfall estimates not by their 

agreement with rain gauge measurements, but rather by the skiU when the QPEs 

are input to a hydrologie model. Justification for improvements to quantitative 

precipitation estimates (QPEs) is often posed in the context of a need for 

improved hydrologie predictions. A methodology is devised to quantify the skill 

of different QPE inputs at the relevant basin scale. Application of this evaluation 

methodology necessarily requires that each model input is treated objectively. 

Specifically, a judicious selection of model parametric values can give the 

impression that a particular model input results in skillful hydrologie predictions. 

However, such a conclusion can only be justified for the unique parameter vector 

that was used. It is realized in environmental modeling that there may not be a 

unique parameter vector that produces the most skillful predictions for all 

situations. The presence of uncertainty in the model inputs and parameter values 

themselves reduces the possibility that a unique parameter set exists at all. A 

methodology is designed to evaluate QPE inputs by including the range of 

hydrologie possibilities resulting from parametric uncertainty. This ensemble 

approach evaluates the skill of QPE algorithms as inputs to a physics-based 

hydrologie model objectively and quantitatively.

Rainfall estimates are supplied to the ™ hydrologie model from the 

Quantitative Precipitation Estimation and Segregation Using Multiple Sensors
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(QPE SUMS) algorithm developed at the National Severe Storms Laboratory. 

QPE SUMS produces a suite of rainfall products that are derived from radar, 

satelhte, rain gauges, and combinations. Each product is input to the hydrologie 

model independently and hundreds of simulations are performed corresponding to 

each parameter combination. Probability density functions (pdfs) are used to 

describe the distribution of hydrologie predictions from each member. The pdf 

itself is then compared to observations of streamflow. A nonparametric statistic 

called a ranked probabihty score (RP5^ is well suited for evaluating probabihstic 

predictions to single observations.

It is first noted that the hydrologie evaluation is performed for three cases 

on the Blue River Basin. Conclusions from this study may be specific to the 

small sample of events, characteristics of the QPE inputs, the ™ hydrologie 

model, or specific hydrologie characteristics of the Blue River Basin. 

Nonetheless, it is the unique methodology of evaluating QPE algorithms from the 

hydrologie modeling perspective that is the focus of this study. Consistencies in 

the results from case-to-case enable the following conclusions to be drawn about 

the hydrologie evaluation of QPE SUMS rainfall estimates:

1. The time of peak discharge is predicted most skillfully using inputs from 

the radar-based QPE SUMS product Details in radar-based rainfall fields 

are important for accurate prediction of peak discharge timing.
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2. Inputs from the multisensor product with mean field bias adjustment (MS- 

G) result in the most skillful peak discharge predictions.

3. The best predictions for the time-integrated discharge volume are

accomplished using inputs from the multisensor algorithm wztA no gowge 

The total volume hydrologie objective is the most revealing 

for QPE evaluation.

4. Three different gauge adjustment strategies to radar-based and multisensor 

products are evaluated. Mean field bias adjustments are found to result in 

superior hydrologie predictions as compared to "local" adjustment 

techniques. Latter techniques place more emphasis on individual rain 

gauge measurements, and spatial details in the original rainfall field are 

smoothed. These details need to be maintained for skillful hydrologie 

prediction.

5. Rain gauge measurements around the Blue River Basin, by themselves, do 

not provide an accurate depiction of the spatial variability of the rainfall 

field needed for accurate hydrologie prediction. Rain gauges comprising a 

network over a much larger region are shown to successfully adjust or 

calibrate QPEs.

The second science question posed in this study relates to defining the 

of the hydrologie system, as requested in NRC (2001). Measuring
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the predictability of a modeling system involves an assessment of prediction skill 

relative to a benchmark and quantification of uncertainty. Several characteristics 

of uncertainty are revealed in this study. First, propagation characteristics of 

rainfall errors to hydrologie predictions are examined. Precipitation inputs are 

perturbed from one-half to double their given, deterministic values. The impacts 

of these perturbations on streamflow predictions provides for the understanding of 

propagation of uncertainty through a hydrologie modeling system, the second 

major goal stated in NRC (1999). Ensembles are created for each rainfall 

perturbation by sampling the realistic parameter space for three sensitive 

parameters employed in the model: Manning roughness coefficient, saturated 

hydraulic conductivity, and initial fractional water content of the soils. The 

findings of this sensitivity study are summarized as follows:

1. Time of peak discharge predictions have a nonlinear response to input 

rainfall perturbations. The timing of peak predictions becomes early as 

rainfall intensities are increased.

2. Peak discharge simulations are sensitive to rainfall perturbations. While 

the relationship between positive rainfall perturbations and peak 

discharges is approximately linear, doubling the rainfall inputs results in 

peak discharge predictions that are increased by more than a factor of 5.
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This result is not consistent with models that rely on the principle of 

superposition in unit hydrograph theory.

3. Predictions of time-integrated discharge volume are also sensitive to 

rainfall perturbations. A two-fold increase in rainfall estimates yields 

discharge volumes that have been amplified by more than 3 times. The 

relationship between uncertainty in rainfall estimates and hydrologie 

predictions, as measured by discharge volume, is approximately linear.

4. The uncertainty bounds associated with discharge peak and volume 

predictions become wider and more dispersive with larger, positive 

rainfall perturbations. Positive perturbations for discharge peak and 

volume predictions are unbound, meaning these hydrologie objectives 

approach infinity with larger and larger positive perturbations. On the 

other hand, predictions of time of peak discharge have smaller spreads 

with positive rainfall perturbations. Perturbations causing lighter and 

lighter rainfall result in time of peak discharges that occur later, 

asymptotically approaching positive infinity.

The next study involves identifying model structural errors or incomplete 

parameterizations of physical processes using a combined ensemble approach. 

Uncertainties may be present in model inputs, parameters, and structure. To a 

lesser degree, there may also be uncertainty with streamflow measurements.
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Combined ensembles are constructed to explicitly account for possible hydrologie 

scenarios resulting from realistic errors in QPEs, sensitive model parameters, and 

their interactions. Observations falling outside of simulation bounds are 

attributed to residual uncertainty in the model structure. The following 

conclusions are made about structural errors in the ™ model:

1. Predictions of discharge peak and volume are anomalously high when the 

initial soil saturation parameter is set to 100%. The behavior of timing of 

peak discharge predictions is inconsistent, with an equal likelihood of

timing predictions occurring either early or late with this parameter 

setting.

2. A modified version of the V/Zo ™ model is tested to determine the effect of 

channel hydraulics parameterizations on streamflow predictions. A model 

that uses assumed trapezoidal channel geometry results in predictions that 

are too early and have overestimated peak discharges. The use of 

empirically derived rating curves better represents channel hydraulics 

producing more accurate predictions.

3. Streamflow predictions for a summertime, low flow case do not replicate 

the observed behavior, even when uncertainties in rainfall estimates and 

model parameters are represented in a combined ensemble. Auxiliary 

observations are introduced to show evidence for limited runoff
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production on the Blue River Basin during summer months and its 

relationship to deep-layer soil moisture. The Green and Ampt submodel 

underestimates initial abstractions, possibly a result of enhanced flow 

conduits in the soil structure and interception by vegetation.

Several methods have been developed in hydrology to account for 

uncertainties in model parameters alone. F*robabilistic predictions stemming from 

these ensembles are thus conditioned on perfect models, inputs, and observations 

of streamflow. These are unrealistic conditions. The study undertaken includes 

the uncertainty in model inputs and parameters in a combined ensemble. 

Observational uncertainties with streamflow measurements are comparatively 

small, and cool season, high flow cases are chosen where the model is more 

representative of conditions.

This is the first known attempt in hydrologie modeling to estimate the 

unconditioned probability density function with a given streamflow prediction. 

Findings regarding estimation of the total prediction uncertainty in hydrologie 

modeling are summarized below:

1. Simulation bounds derived from combined input-parameter ensembles 

encompass observations during the cool season. Hydrologie predictions, 

when used in an ensemble prediction system, replicate observed behavior
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and provide an accurate estimate of the underlying probability density 

function.

2. Hydrologie predictions may now be cast in a probabihstic framework, thus 

enabling the computation of exceedance thresholds. This will be 

beneficial to decision-makers and other end-users of hydrologie 

predictions.

3. Probability density functions of predicted hydrologie variables can be 

refined by rejecting individual members (models) that do not simulate 

observed behavior. For example, it is suggested that members utilizing an 

initial soil saturation value of 100% be withheld from the combined

ensembles.

4. Probabilities can be further improved by weighting individual members 

that have a higher or lower hkelihood of rephcating the observed behavior.

The ensembles used above are composed of 125 parameter combinations 

coupled with as many as 9 different inputs, requiring hundreds of simulations per 

event. Computational requirements for this large number of simulations may 

limit the operational relevance of a combined ensemble prediction system. A test 

is conducted to determine the minimum number of members needed to achieve 

similar skiU scores as those with the fuU ensemble. Skill scores are computed for

214



varying ensemble sizes. Conclusions regarding optimal ensemble sizes are as 

follows:

1. Ranked probability scores improve as a damped exponential with

increasing ensemble sizes.

2. On average, only 10 members are needed in the combined ensemble to 

produce 90% of the skill obtained with the full ensemble.

3. The small number of members needed to construct a skillful combined 

ensemble is operationally feasible.

It is recognized that conclusions obtained for each component of this 

undertaking may not be generalized for all hydrologie models, other basins, or for 

all events on the Blue River Basin. It is the techniques employed to identify and 

quantify various components of uncertainty and their combined effect that make 

this approach to probabilistic modeling unique. Application of the developed 

methodologies can be used to evaluate QPE algorithms under development on any 

basin of interest. Moreover, the uncertainty analysis techniques can be utilized 

for other environmental modeling systems.
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APPENDIX

The sensitivity of parameter settings to errors in peak discharge and time- 

integrated discharge volume is examined for the three cases used in the 

hydrologie evaluation (section 4.1). The error in this case is the absolute 

difference between simulated Peak and Volume versus observed values. 

Contoured error plots are produced for different settings of the saturated hydraulic 

conductivity and Manning roughness coefficient scalars. The error is an average 

computed from simulations using diHerent settings of the initial soil saturation 

parameter. The initial soil saturation parameter was perturbed in the parameter 

adjustment studies throughout, but its sensitivity will not be shown explicitly. 

Parameter sensitivities are examined using inputs that result in the most skillful 

Volume predictions.

Figure A.la-b shows the sensitivity of Peak and Volume predictions to 

parameter settings for the 23 October 2002 case. The most skillful Peak 

predictions (Fig. A.la) are obtained using the smallest scalars for saturated 

hydraulic conductivity and Manning roughness coefficient. Minimizing these 

scalars will have the affect of increasing the magnitude of simulated peak 

discharges, suggesting either the model inputs are too low or smaller parameter 

scalars should have been explored. Figure A.lb shows a different response 

surface. In this case, there appears to be two regions of preferred parametric
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FIG. A. 1. Absolute difference between predicted and observed peak discharge (a; 

in cms) and time-integrated discharge volume (b; in mm) for the 23 October 2002 

case. The error is an average value considering different initial sod saturation 

settings.
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settings. Error is minimized with either the smallest available scalar of saturated 

hydraulic conductivity combined with the largest Manning roughness coefficient 

or in another region corresponding to scalars settings of approximately 0.65 for 

both parameters. When both plots are used in tandem, there is an indication that 

this latter parametric region satisfies both hydrologie objectives for this case.

The model-preferred parameter space is examined for the 28 October case 

(Fig. A.2a-b). Simulations of peak discharge (Fig. A.2a) are most skillful with the 

smallest scalar applied to saturated hydraulic conductivity maps. There doesn't 

appear to be much sensitivity to the Manning roughness coefficient for this case. 

Volume predictions (Fig. A.2b), on the other hand, are optimized with the largest 

scalars applied to both parameters. This result indicates model predictions 

generally produce too much volume and small peaks, at least for this case using 

MS inputs. With error minima being confined to comers and edges of the 

explored parameter space, future studies will need to utilize broader ranges of 

scalars applied to the parameter maps.

Parameteric results from the 03 December 2002 case are shown in Fig. 

A.3a-b. In this case, the largest scalars for both parameters are needed in order to 

minimize Peak and Volume errors. This case suggests either the model inputs are 

too large or larger parameter settings need to be explored.
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FIG. A.2. As in Fig. A. 1 but for the 28 October 2002 case.

219



TO 1,4

D .G  - h .

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Manning Roughness Scalar

0.6  0.8 1.0 1.2 1.4
Manning Roughness Scalar

9x1 13.3 17.3 21.2 25.2 29.1 33.1
Peak Error (cms)

3.3 4.3
Volume Error (mm)

5.3

(a) Peak Discharge (cms) (b) Discharge Volume (mm)

FIG. A.3. As in Fig. A .l but for the 03 December 2002 case.
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