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A  COMPARATIVE STUDY OF THE ALDOLASES OF 

FASCIOLA HEPATICA AND ZYGOCOTYLE LUNATA

CHAPTER I 

INTRODUCTION

The carbohydrate metabolism of parasitic helminths has been in­

vestigated extensively, and reviews of most of the work are available 

(von Brand, 1960; Read, 1961; Read and Simmons, 1963). Evidence for the 

involvement of the Embden-Meyerhof sequence in the primary catabolism of 

carbohydrate is substantial, and some of the enzymes associated with phos- 

phorylative glycolysis have been characterized. Differences have been 

demonstrated between host and parasite enzymes as well as between enzymes 

from different species of parasites. They may differ in kinetic properties 

(Mansour and Bueding, 1953; Bueding and MacKinnon, 1955a; Bueding and Man- 

sour, 1957; Agosin and Aravena, 1959a), in substrate specificity (Bueding, 

Ruppender and MacKinnon, 1954; Bueding and MacKinnon, 1955b; Agosin and 

Aravena, 1959a), in reactions with chemotherapeutic agents (Mansour and 

Bueding, 1954; Bueding and Mansour, 1957), and in immunochemical reactions 

(Mansour, Bueding, and Stavitsky, 1954; Bueding and MacKinnon, 1955b; 

Henion, Mansour, and Bueding, 1955).

Several studies on the characteristics of aldolases of organisms 

other than helminths have been published. Herbert, et al., (1940) sur­

veyed the physical properties of rabbit muscle aldolase. Warburg and
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Christian (1943) studied the properties of crystalline muscle aldolase and 

aldolase from yeast. The conditions necessary for optimal activity of this 

enzyme in Clostridium perfringens were determined by Bard and Gunsalus 

(1950). The aldolase from culture forms of Trypanosoma cruzi was described 

by Baemstein and Rees (1952). It was also studied in the culture form of 

Trichomonas vaginalis (Baemstein, 1955). Phifer (1962) compared the al­

dolases of Aedes aegypti, Anopheles quadrimaculatus, and Culex quinque- 

fasciatus.

Aldolase from helminths has been characterized only for larvae 

of two species. That from the cysticercus of Taenia crassiceps has a 

functional pH optimum of 8.9 to 9.0 in tris buffer, a of 6.1 x 10“^ M  

FDP, and an extended stability at -20 C. It is not inhibited by cations 

nor are they necessary for optimal functioning, since metal-binding agents 

do not inhibit. lodoacetate is not inhibitory to this enzyme, indicating 

that there are no functional sulfhydryl groups (Phifer, 1958). Larval 

Trichinella spiralis aldolase functions optimally at about pH 8.5 in tris 

buffer, and has a Km of 3 x lO"^. %t is inhibited by cations, but metal 

and sulfhydryl binding agents do not effect it (Agosin and Aravena, 1959b).

This study concerns the characterization of aldolase in homogen- 

ates of two species of trematodes, Fasciola hepatica Linnaeus, 1758, and 

Zygocotyle lunata (Diesing, 1836) Stunkard, 1917, and compares its act­

ivity in the two worms. When possible, comparison with aldolase reported 

from other sources is made.



CHAPTER II

MATERIALS AND METHODS

Fasciola hepatica of the Texas Gulf Coast strain was obtained 

from the bile ducts of locally slaughtered cattle and from laboratory 

maintained infections in albino mice. Flukes from the abattoir were 

transferred to the laboratory in the saline medium of Dawes (1954). 

Laboratory infections were terminated between 37 and 42 days.

Zygocotyle lunata was collected from the caeca of naturally 

infected domestic ducks. Laboratory stocks of this worm were maintained 

in albino mice for periods of from 28 to 32 days before use.

For experiments, gravid worms with empty guts were selected and 

washed several times with 0.154 M  KCl made alkaline with 8  ml/liter of 

0.02 M  KHCO 3 . They were then suspended in an appropriate amount of this 

medium, and homogenized in an all-glass Potter-Elvehjem homogenizer im­

mersed in crushed ice. Fresh whole homogenate containing approximately 

4 mg of wet tissue/ml was used for assay. Comparisons were made between 

this standard mixture and whole homogenate, centrifuged homogenate, hom­

ogenate of flukes with full guts, and whole worms, stored for varying 

lengths of time at -20 C, and suspended in either 0.85% (w/y) NaCl or 

0.154 M  KCl. Centrifugation was at approximately 600 x g for 15 minutes 

in a cold centrifuge head.

Aldolase was determined by a modification of the method of
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Sibley and Lehninger (1949) as outlined in Sigma Technical Bulletin No, 

750. Additions to the standard mixture were substituted for an equal 

volume of buffer (0.1 ml). A  Bausch and Lomb Spectronic 20 colorimeter 

was used to measure the color density at a wave length of 540 m%.

Protein was measured by the Lowry method (Lowry, ejt al., 1951) 

using crystalline human serum albumin (National Biochemical Corporation) 

for comparison.

Enzymatic activity is expressed in micrograms of alkali-labile- 

phosphate formed per hour per milligram of protein. Where applicable, 

data were analyzed with Student's "t" test and P values of 0.05 or less 

were considered significant.

The following abbreviations are used throughout the text; Tris 

for tris(hydroxymethyl)aminomethane; FDP for fructose diphosphate;

EDTA for ethylenediamine tetraacetate; TGA for trichloroacetic acid;

ALP for alkali-labile-phosphate; for Michaelis-Menten dissociation 

constant.



CHAPTER III

RESULTS

To compare aldolase activity in several homogenates, the amount 

of change produced must be directly proportional to the time allotted.

In this work, homogenates were incubated between extremes of 10 and 110 

minutes. It was established that the production of trioses is linear 

for about one hour in both flukes (Fig. 1).

Velocity of simple enzymatic reactions is directly proportional 

to enzyme concentration, and comparable velocities are obtained only when 

the enzymes are saturated with substrate. The volume of the trematode 

homogenates was varied from 0 . 2  to 1 . 0  ml in 0 . 2  ml increments, and in­

cubation was carried out in an excess of substrate. Activity is linear 

throughout this range of enzyme concentration for both worms (Fig. 2).

In considering the effects of time and enzyme concentration on 

aldolase activity in the homogenates of F. hepatica and Z_. lunata, a 

standard mixture of one ml of homogenate incubated for 30 minutes was 

used for all subsequent determinations.

To determine the pH optima of their aldolases, the homogenates 

of the two worms were subjected to a range of pH from 6.4 to 9.6. Optimal 

activity is at approximately pH 8.1 for both worms when determined in tris 

buffer (Fig. 3).
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When digestion mixtures are incubated at temperatures ranging be­

tween 10 C and 60 C, optimal aldolase activity for F. hepatica is at 40 C,

and near 50 C for Z. lunata (Fig. 4).

When F. hepatica homogenates are incubated with concentrations of 

FDP varying from 1.0 to 50 x 10-^ M, maximal activity for aldolase is es­

tablished at 25 X 10"^ M  and the apparent Michaelis-Menten dissociation 

constant is about 1 x 10"^ M. For lunata, maximum activity is estab­

lished at 25 X 10"3 M, but the apparent Km is around 3.0 x 10“^ M  (Fig. 5).

Experiments conducted to test the stability of whole homogenates, 

centrifuged homogenates, and homogenates of worms with full guts stored at 

-20 C, show a fairly rapid decrease in activity for each of them from day 

to day (Fig. 6 ). The rate of decrease is comparable for all of them, al­

though that for fresh whole homogenates of worms with full caeca is only 

about one-half that of worms with empty guts.

The suspending fluid does not appear to be a factor in maintaining 

stability. The pattern is not greatly different when worms are homogenized 

in the buffered KCl, 0.85% (w/v) NaCl, or 0.154 M  KCl.

Moist whole worms stored at -20 C and homogenized just before use 

show differing stability patterns. Fasciola hepatica aldolase exhibits a 

pattern of decrease similar to that of the stored homogenates, while 

lunata activity shows a steady increase over the time investigated (Fig. 6 ).

The effect of various substances on the aldolase activity of these 

two species of trematodes is shown in Table X. A metal-binding agent, EDTA, 

is without effect. Another metal-complexing agent, cyanide, inhibits about 

50% at 1 X 1 0 " 2  lodoacetate, a known sulfhydryl binder, is inhibitory.

Of the various metals tested, none is stimulatory. Mg-H- has no effect and 

Mn-H- inhibits strongly. Fe-f-H- is only slightly inhibitory at 1 x 10 ^ M
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while Ca++ appears more selective in its effect than the other ions. 

Fasciola hepatica activity is affected by Ca-H- only at 1 x 10”^ M, while 

it strongly inhibits Z.. lunata activity at 1 x 10"^ M. EDTA completely 

reverses the inhibition of the various metal ions except in the case 

of Mn-H-, for which inhibition is increased.

Aldolase activity was determined for hepatica from naturally 

infected cattle and laboratory infected mice, and for lunata from 

naturally infected domestic ducks and laboratory infected mice (Table 

II). The average activity of Z . lunata aldolase from both hosts is over 

two times the activity of £. hepatica from both of its hosts. The aldo­

lase activity in Z. lunata from mice is 1.7 times as great as that in 

the same species from ducks, while the activity in £. hepatica from cat­

tle is 1 . 2  times that in individuals from mice.

A  recalculation of the maximum activity as milligrams of organic 

phosphorus per minute per gram weight of tissue as recommended by Meyer­

hof and Beck (1944) shows that F. hepatica contains 0.44 units of aldo­

lase activity as compared to 0.86 units for lunata. These figures are 

far below the activity reported for aldolase activity in rabbit skeletal 

muscle and in Ĉ . perfringens, but the activity in these trematodes is 

well above that recorded for several other organisms (Table III).

Sibley and Lehninger (1949) found an increase in color produc­

tion in their aldolase determination when hydrazine (the trapping agent) 

was added after the incubation of homogenates rather than before incub­

ation had begun. They found this to be due to the action of isomerase in 

the mixture. Ba e m s t e i n  and Rees (1952) verified this effect as a simple 

qualitative test for isomerase. Experiments performed with F. hepatica 

and Z. lunata homogenates reveal no isomerase in either worm (Table IV).
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TABLE I
PER CENT INHIBITION OF ALDOLASE ACTIVITY 

BY CERTAIN SUBSTANCES

Additions
Fasciola hepatica Zygocotyle lunata

1 0 ”^M lO-^M 1 0 “% 1 0 “%

Control 0 0 0 0

EDTA 1 4 0 4

Cyanide 48 0 52 0

lodoacetate 33 15 2 2 1 1

MgS 0 4 0 0 6 7

EDTA +  MgSO^ 0 - 0 -

CaCl2 26 0 6 6 32

EDTA +  CaCl2 0 - 9 -

MnSO^ 71 43 55 27

EDTA +  MnS04 8 8 - 83 -

FeClg 15 3 19 0

EDTA +  F e d  3 0 , - 4
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Additions
F M c l o l a  hepatica ZvKOcotvle lunata

lOT^M 10-4* 10-2* 10“4m

Control 0 0 0 0

EDTA 1 4 0 4

Cyanide 48 0 52 0

lodoacetate 33 15 2 2 1 1

M;;S0 4 0 0 6 7

EDTA +  MgSO^ 0 - 0 -

CÜCI2 26 0 6 6 32

EDTA +  CaCl2 0 - 9 -

MjiSO^ 71 43 55 27

EI>TA + MnS04 8 8 - 83 -

FHCI3 15 3 19 0

EDTA + FeCl 3 0 4



TABLE II
COMPARISON OF FASCIOLA HEPATICA AND ZYGOCOTYLE LUNATA FROM DIFFERENT HOST SPECIES

Measurement
Fasciola hepatica Zygocotvle lunata

Cow Mouse Average 
(all runs)

Mouse Duck Average 
(all runs)

Aldolase Activity

a. J4g ALP/hr/mg protein 259.9 (2 )* 219.1 (13) 224.5 (15) 573.2 (8 ) 328.0 (3) 506.3 (11)

b. mg ALP/min/g wet wt. 0.49 (2 ) 0.40 (14) 0.44 (16) 0.87 (10) 0.82 (3) 0.86 (13)

Total Protein 

(as % wet tissue)
12.3 (5) 11.4 (1 0 ) 11.7 (15) 9.98 (10) 14.6 (7) 11.88 (17)

Average wet weight of 

the worms (mg)
92.03 (43) 11.13 (44) 44.8 (87) 4.5 (108) 6 . 6  (55) 5.4 (163)

*Number in parentheses is the number of determinations or worms
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TABLE III
COMPARISON OF ALDOLASE ACTIVITY FROM VARIOUS SOURCES

Organism Activity Author
(mg ALP/min/g wet tissue)

Trichinella spiralis larvae 0 . 0 1 Agosin & Aravena, 1959b

Trypanosoma cruzi 0.03 B a e mstein & Rees, 1952

Aedes aegvpti 0.054* Phifer, 1962

Culex quinquefas ciatus 0.065* Phifer, 1962

Trypanosoma hippicum 0.07 Harvey, 1949

Anopheles quadrimaculatus 0 .1 0 * Phifer, 1962

Multiceps serialis larvae 0 .1 2 * Esch, 1964

Fasciola hepatica (full gut) 0.27 This paper

Trichomonas vaginalis 0.28 Baemstein, 1955

Fasciola hepatica 0.44 This paper

Multiceps serialis 0.57* Esch, 1964

Zygocotvle lunata 0 . 8 6 This paper

T. vaginalis (activated) 1.60 Baemstein, 1955

Clostridium perfringens 8 . 0 Bard & Gunsalus, 1950

Rabbit muscle 8.5 Meyerhof, 1951

^calculated from author's data
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TABLE IV
THE EFFECT OF HYDRAZINE ON THE AMOUNT OF 

COLOR PRODUCED (ISOMERASE TEST)

Time 

Incubated 

(min.)

Fasciola hepatica Zvgocotvlie lunata

Hydrazine
before
TCA

Hydrazine
after
TCA

Hydrazine Hydrazine 
before after 
TCA TCA

15 99* 103 119 119

30 195 195 240 240

40 263 268 364 364

* Mg ALP/hr/mg protein



CHAPTER IV

DISCUSSION

The carbohydrate metabolism of Fasciola hepatica has been inves­

tigated in considerable detail. Evidence for the Embden-Meyerhof sequence 

is furnished by demonstrations of essential enzymatic steps and identifi­

cation of necessary chemical intermediates (von Brand, 1952, 1960; Read,

1961). No comparable data exist concerning the mechanisms of anaerobic 

carbohydrate degradation in Zveocotvle lunata. Demonstration of the exis­

tence of an aldolase in Ẑ. lunata in this work, however, is positive evi­

dence for the occurrence of at least a partial Embden-Meyerhof phosphorylative 

glycolytic scheme, i.e., to the triose stage.

The limits within which linearity of aldolase activity is maintained 

with respect to time and to concentration of enzyme were determined. In both 

helminths investigated it was linearly effective for at least one hour at a 

concentration of 4 mg wet tissue/ml of homogenate (Figs. 1 and 2).

Sibley and Lehninger (1949) reported a pH optimum of 8.5 to 9.0 

for rabbit muscle aldolase activity, and Phifer (1958) reported the same 

for Taenia crassiceps larvae. The optimum pH for aldolase activity in Trich- 

inella spiralis larvae is 8.5 (Agosin and Aravena, 1959b). Phifer (1962) 

showed that mosquito aldolases vary in optimal activity between pH 7.4 and 

8.2, All of these studies involved the use of tris buffer. Ify studies, 

also utilizing tris, show that these trematode homogenate aldolases function

18
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optimally near pH 8.1. Studies using other buffer systems tend to demon­

strate slightly lower pH optima. The pH optimum for Clostridium perfringens 

aldolase activity is 7.5 (Bard and Gunsalus, 1950); for Trypanosoma cruzi,

7.3 (Baemstein and Rees, 1952); and for Trichomonas vaginalis, 7.0 (Baern- 

stein, 1955). The pH optima of the aldolase systems of tapeworms, trematodes, 

and nematodes seem to fall within a relatively small range, viz. 8 . 1  to 9 .0 .

To compare the pH optima of mammals, helminths, and insects with those of 

protozoa and bacteria, tris buffer would have to be used in each case. Not 

only do different buffers affect the activity of an enzyme to different de­

grees, but tris may act as a catalyst in splitting substrate to trioses in 

alkaline solution. Furthermore, tris may activate aldolase at high pH's 

(Bounce, Barnett, and Beyer, 1950).

The effect of temperature is interesting in that lunata aldolase 

was optimally active at about 50 C, while that in F. hepatica functioned 

optimally at 40 C (Fig. 4). Taylor, ££. âl.»>(1948) found that serum albumin 

protects aldolase from inactivation on dilution, and thus allows a higher 

operating temperature. Bounce, £ ^ a l , , (1950) found the optimum temperature 

for muscle homogenate aldolase to be 35 C, and for that in liver homogenate 

to be 45 C. They postulated that the difference between them might be due 

to the lower dilution of liver homogenate used, a factor which permitted 

protective action against dénaturation by proteins in the homogenate. Phifer 

(1962) accepted this "protective protein" hypothesis to account for differ­

ences in temperature optima for aldolase activity among three species of 

mosquitoes. In this study when the same wet weight of tissue from the two 

flukes was compared, a statistically significant difference in the amounts 

of protein in the homogenates of worms taken from mice was demonstrated 

(Table II). Fasciola hepatica, however, shows the greatest quantity of
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protein, and exhibits the lowest temperature optimum. It would appear that 

the different temperature optima cannot be ascribed to the protective action 

of homogenate proteins.

In a Michaelis-Menten type of plot (Fig. 5), the is a rough 

measure of the affinity between enzyme and substrate. The lower the value 

of Kjjj, i.e., the steeper the slope of the curve, the greater the approximate 

affinity. The lowest value reported is 3 x 10“^ M  for T. spiralis larvae 

(Agosin and Aravena, 1959b). Phifer (1958) reported the constant for T. 

crassiceps larvae as 6.1 x 10"^ M. Baernstein (1955) found the apparent 

Kjjj for aldolase in T. vaginalis to be 1.2 x 10”^ M, agreeing with the find­

ings of Baemstein and Rees (1952) for T. cruzi culture, and Bard and Gun­

salus (1950) for C_. perfringens. The constants for three species of mos­

quitoes ranged between 3.2 x 10"^ M  and 3.6 x 10"^ M  (Phifer, 1962). Bounce 

and Beyer (1948) reported a constant of 9 x 10”^ M  for rabbit muscle aldo­

lase. Kju values for FDP of 1 x 10 ^ M  (F. hepatica) and 3 x 10“^ M  (Ẑ . 

lunata) place these two species of trematodes intermediate between nem­

atodes and tapeworms.

A rapid decline on aging is reported for aldolase activity in 

perfringens (Bard and Gunsalus, 1950), T. cruzi (Baernstein and Rees, 

1952), and T. vaginalis (Baernstein, 1955), and the suspending fluid was 

found to be a factor in the stability of the enzyme in T. cruzi and T. 

vaginalis. Taenia crassiceps aldolase was found to be considerably more 

stable with no loss of activity indicated for up to three months at -20 C 

(Phifer, 1958). These investigators also found centrifuged homogenate to 

have an activity similar to that of the whole homogenate.

Aldolase activity in F. hepatica and 7̂. lunata does not decline 

as rapidly as that in Ç. perfringens, and the enzymes are not as stable as
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that in crassiceps. Both trematode homogenates lose activity at about 

the same rate for the first week, but the rate of drop In F. hepatica from 

week one through the fourth week Is over twice that in lunata (Fig. 6 ). 

The supernatant from the centrifuged homogenates gives approximately the 

same activity as the whole homogenates, and it loses activity at about the 

same rate (Fig. 6 ). Evidently the enzymes are soluble and probably not part­

iculate, and the sediments do not contain a lablllzlng or activating factor. 

No differences In activity were In evidence among homogenates suspended In 

buffered or unbuffered KCl or NaCl. The activity in fresh homogenates of 

2" hepatica with full caeca Is considerably lower (50%) than that of the 

other homogenates, but the rate of decline on aging Is not appreciably 

changed (Fig. 6 ). The total protein content of the worms with full caeca is 

about 14% greater than that of worms with empty guts, but this alone does not 

account for such a large variation in activity. This suggests a partial 

nonprogressive Inhibition of the aldolase activity by substances or secre­

tions In the worms' caeca. The nature of the dark pigmented materials seen 

In the caeca of feeding flukes Is not known, but It Is certainly not derived 

from blood as had long been suspected. These flukes feed on the hyperplastic 

epithelium of the host's bile duct (Dawes and Hughes, 1964). The cells of 

the worm's caecal epithelium pass through a series of events that Indicates 

a secretory and absorptive cycle (Dawes and Hughes, 1964; Thorsell and Bjork- 

man, 1965). However, Mansour (1959) observed that the rate of glucose uptake 

In £. hepatica Is the same In worms with or without a ligature closing off 

their "digestive" tracts. This Indicates that neither the absorption of 

glucose, nor the excretion of metabolic products is carried out through the 

gut.

Aged whole individuals of F. hepatica and _Z. lunata do not show the
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same aldolase stability patterns. The decrease of activity in whole F. hep­

atica is similar to that for stored homogenates, but whole Z. lunata exhibit 

a steady rise in activity over the time observed (Fig. 6 ). The reasons for 

this increase with aging are not readily apparent, but, as stated previously, 

F.. hepatica tissues contain more protein than those of Ẑ, lunata per equiv­

alent amounts of wet tissue. Evidently the increase cannot be attributed 

to lower dilution of temperature-protective proteins in these worms.

Two types of aldolase have been described based on inhibition by 

metal-binding agents. Aldolases of yeast (Warburg and Christian, 1943), 

perfringens (Bard and Gunsalus, 1950), Aspergillus niger (Jagannathan 

and Singh, 1954), and %. vaginalis (Baernstein, 1955) are inhibited by these 

complexing agents. The aldolases of muscle (Warburg and Christian, 1943), 

pea (Stumpf, 1948), 2" cruzi (Baernstein and Rees, 1952), T. crassiceps 

(Phifer, 1958), T. spiralis (Agosin and Aravena, 1959b), and Aedes aegypti. 

Anopheles quadrimaculatus, and Culex quinquefasciatus (Phifer, 1962) are 

not inhibited by such agents. The interpretation of these experiments is 

still in doubt since only the muscle enzyme has been crystallized. The 

enzymes of £, perfringens and A. niger are believed to be metalo-aldolases 

(Bard and Gunsalus, 1950; Jagannathan and Singh, 1954). Warburg and Chris­

tian (1943) suggested that metals may remove a natural inhibitor present in 

the impure preparations. The mosquito homogenate aldolases investigated by 

Phifer (1962) are activated by the chelating agent, EDTA, and inhibited by 

cations. It would appear that a significant level of inhibitory cations is 

present in them.

Homogenate aldolases of F . hepatica and 2* lunata are not affected 

by EDTA, nor by cyanide except at high concentrations (Table I). Trapping 

of triose phosphates by cyanide at a concentration of 0.01 M  would account
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for the apparent loss of activity because the cyanhydrin of triose phosphate 

cannot be split again (Meyerhof, 1951). The various metals tested were se­

lective in their effects, but none were stimulatory (Table I). Mg++ was 

without effect. Mn-H- inhibited strongly. Ferric ions caused slight inhi­

bition at high concentrations. Ca-H- inhibited both aldolases, but only at 

high concentrations for F. hepatica. EDTA completely reversed the effects 

of the metal ions, except for Mn++, in which case the inhibition is actually 

increased. lodoacetate was inhibitory, so it would appear that these aldo­

lases have functional sulfhydryl groups (Table I).

Fasciola hepatica is notorious as a ubiquitous parasite of certain 

herbivorous mammals (Cheng, 1964). That it is not equally adapted to all 

of the hosts in which it may occur is widely substantiated. Infection rate, 

worm burden, worm development and fecundity, and pathogenicity, are known 

to vary greatly among the various hosts (Dawes and Hughes, 1964).

The principal hosts of Z. lunata are water birds (Cheng, 1964), 

although it has been reported in natural and experimental infections from 

ruminants and rodents (Willey, 1941). Very little is known about its phys­

iology. Growth and development differences have been noted in worms from

ducks and rats (Willey, 1941). Bacha (1959, 1964) observed both a natural 

resistance and the development of an age resistance in laboratory rats, and 

that an initial infection causes a decrease in both size and numbers of 

worms from a challenging infection. Zveocotvle lunata is usually said to be 

nonpathogenic (Cheng, 1964), however, obvious physical damage is incurred 

at the site of attachment of the strong ventral sucker in ducks, rats, and 

mice, and the caeca of infected hosts do not have the same appearance as

those of uninfected animals (personal observations).

Large differences in aldolase activity were noted for both F.
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hepatica and Z.. lunata when grown in different hosts (Table II). The abso­

lute age of worms from natural infections could not be determined, but all 

used in experiments were producing eggs and, therefore, mature by definition. 

Further, chemical and physical measurements indicate that these differences 

cannot be explained on the basis of worm age alone (Table II). Zveocotvle 

lunata aldolase activity is greatest in worms from mice although these worms 

were smaller and contained less protein than those from ducks. Activity shown 

by a single experiment with an old (90 day) infection in a rat (593 ^g ALP/ 

hr/mg protein) compared favorably with that in mice, but the worms were twice 

the size of those taken from mice (8.3 vs 4.5 mg wet wt) and their protein 

content (8 .6 % wet wt) was below the average for worms taken from both the 

other hosts. It should not be assumed that aldolase activity would increase 

linearly with age and weight throughout the life of the worm, but the agree­

ment of data from rodents would indicate that worms from ducks simply exhibit 

less aldolase activity than those grown in mice or rats.

The rate of action of aldolase is markedly reduced in Schistosoma 

mansoni by even a small decrease in its substrate concentration (Bueding and 

Mansour, 1957). If aldolase is rate-limiting in Z. lunata also, we might 

conclude that worms from ducks are adapted for a slower rate of carbohydrate 

utilization than worms from rodents. This could relate to the kind of usable 

carbohydrate present in the environment because induction theory would pre­

dict that enzymatic pathways of lesser importance to an organism would not 

be maintained at activity levels in excess of need.

Aldolase activity in £. hepatica from cattle is also demonstrably 

different from that in mice (Table II). The results are not inconsistent 

with worm size, although to accept this would mean accepting increased 

activity in older worms without a concomitant increase in body protein.
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If aldolase activity alone is used as a measure of the compatib­

ility of the parasite and the host, then it might be said that F_. hepatica 

has its best relationship with the cow and Z. lunata with the mouse, where 

activity levels are greatest. It can be seen from the discussion above, 

however, that an increased aldolase activity taken without reference to 

other metabolic information, is not a sure explanation of the compatibility 

of a particular host-parasite relationship.

Calculation of aldolase activity by the method suggested by Mey­

erhof and Beck (1944) places F. hepatica and Z.. lunata in a somewhat median 

position among other organisms that have been investigated (Table III).

The use of hydrazine as a trapping agent in the Sibley and Lehninger al­

dolase determination (1949) probably invalidates a strict comparison with 

values obtained without it, but several methods for the determination of 

aldolase using other trapping agents give values that agree fairly well 

(Bounce, et_ gL, 1950; Meyerhof, 1951).

Two helminths for which aldolase activity has been determined are 

not included in Table III because the arbitrary units of measurement used 

by the investigators make comparison with the Meyerhof units subject to 

considerable uncertainty. Taenia crassiceps larvae is one of these (Phi­

fer, 1958). Normal activity is not stated, but data supplied indicate it 

to be about 13.3 ĵ g ALP/hr/mg dry wt. If we assume dry weight to be 25% 

of the wet weight as indicated by data from other helminths (Fairbairn, 

et a l . 1961), then T. crassiceps activity would appear to be 0.055 mg ALP/ 

min/g wet wt. Bueding and Mansour (1957) determined £. mansoni aldolase 

activity to be 0.17 ji^moles FDP used/mg protein/min at 25 C. If we assume 

that temperature effects S,. mansoni aldolase in the same manner as the 

enzymes of the worms used in my experiments, the activity would be approx-
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imately 2.29 mg ALP/min/g wet wt at 37 C.

The activities of the adult helminth aldolases investigated 

fall within a relatively small range, and they are considerably higher 

than activities recorded for larval worms. The larvae are not closely 

grouped, but tapeworms exhibit 5 to 10 times the activity of the single 

nematode investigated, T. spiralis. Esch (1964) is the only worker to have 

compared aldolase activity in the adult and larva of the same species.

Adult Multiceps serialis aldolase has 5 times the activity of that of its 

coenurus, and is intermediate between the trematodes of the present study. 

This is consistent with the observations between species, and indicates 

that larval activity cannot be assumed to reflect adult biochemistry and 

physiology.

Baernstein and Rees (1952) applied data gathered by Sibley and 

Lehninger (1949) in developing a simple indirect method for the qualitative 

determination of triose phosphate isomerase. It is this enzyme that cat­

alyzes the interconversion of the two triose phosphates produced from FDP 

degradation by aldolase. The experiments showed that dihydroxyacetone gave 

about three times as much color as glyceraldehyde on a molar basis. If 

homogenates are incubated in the presence of hydrazine, the trapping agent, 

the trioses are immediately bound. If hydrazine is added after the reaction 

has been terminated, a change in color should reflect the action of isomerase. 

The equilibrium constant of the isomerization favors the ketotriose, al­

though glyceraldehyde phosphate is the compound which undergoes the sub­

sequent reactions of the glycolytic pathway (Cantarow and Schepartz, 1957). 

However, the presence of isomerase assures the eventual utilization of both 

triose moieties. Fasciola hepatica and lunata homogenates definitely show 

no isomerase by this indirect method (Table IV).
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It is frequently stated that parasitic animals are less efficient 

metabolically than many free-living ones since, typically, carbohydrate is 

incompletely metabolized, leaving considerable potential energy in the end 

product molecules. The apparent absence of isomerase in these trematodes 

is consistent with this hypothesis. However, Read (1961) has pointed out 

that maintaining a metabolic system which extracts the largest practical 

amounts of energy per molecule of substrate has a high energy cost. Para­

sites do not have the physiological problem of obtaining an energy source, 

so a simplification of catabolic reactions might easily occur. Process 

thermodynamics would predict so, because as the number of processes decreases 

the ratio of real work output per unit of theoretical work increases.

The present study constitutes the first characterization of the 

fructoaldolase enzyme from homogenates of adult helminths, and the first 

characterizations among the digenetic trematodes. Only aldolases from a 

larval cestode, T. crassiceps. and a larval nematode, T. spiralis. have 

been characterized previously (Phifer, 1958; Agosin and Aravena, 1959b).

The four aldolases investigated vary in temperature and pH optima, stability, 

and affinity for substrate (K^^). The aldolases from the larval cestode and 

nematode do not appear to contain essential sulfhydryl groups, although 

such groups are apparently present in the aldolases from adult trematodes. 

Metal activation is not demonstrable in helminth aldolases, but metal ion 

inhibition is indicated in three instances. Only the crassiceps aldo­

lase differs in this regard. In general, the physical characteristics of 

the aldolases in the two trematode genera are similar, while the two aldolases 

from larvae differ to some extent from the enzymes of the adults. Such dif­

ferences might be expected on the basis of taxonomic relationships.



CHAPTER V 

SUMMARY

1. Homogenates of Fasciola hepatica and Zygocotyle lunata con­

tain an active aldolase. The demonstration of this enzyme in lunata is 

the first indication of the occurrence of the Embden-Meyerhof system in 

this organism.

2. The limits have been determined within which linearity of 

activity with respect to time and to concentration of enzyme exist.

3. The optimum pH was 8,1 in tris buffer.

4. The optimum temperature for activity was 40 C for F. hepatica

aldolase and near 50 C for Z. lunata.

5. The Michaelis-Menten constant was found to be 1.0 x 10“^ M

FDP for F. hepatica and 3.0 x 10“^M fcr Z, lunata.

6 . Both aldolases were unstable when stored at -20 C in various

suspending fluids. They evidently are soluble enzymes and the homogenate 

sediments do not contain an activating or labilizing factor, A partial 

non-progressive dénaturation of the F. hepatica enzyme by substances or 

secretions in the caeca was indicated.

7. EDTA and cyanide had no effect on the aldolase activity in 

these animals and lend no evidence that these are metal-activated aldo­

lases. Of the metal ions tested, Mg-H- had no effect, and Fe+-H-, Mn-H- and 

Ca-H- were inhibitory to varying degrees. The inhibition can be reversed

28
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with EDI A, except in the case of lfo++ji

8 . lodoacetate was inhibitory, indicating functional sulfhydryl 

groups were present.

9. Activity was demonstrably different between worms grown in 

different hosts. The variation did not appear to relate directly to size 

or age of the w o m s .

10. Aldolase activity per gram wet weight of organisms was 

equivalent to 0.44 Meyerhof units for £. hepatica and 0.86 units for Ẑ . 

lunata. This indicates that these worms have very active aldolases and 

that they probably make considerable use of carbohydrate substrates.

11. Indirect evidence for the absence of triose phosphate iso­

merase in these worms was presented.

12. This study is the first such investigation on adult helminths, 

and the first characterizations of aldolase among the digenetic trematodes. 

The physical characteristics of the aldolases are similar in the two gen­

era, but differ in small degree. Such differences might be expected on 

the basis of taxonomic relationships.
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