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Abstract

Wireless sensor networks are an emerging technology which has the promise of revo-

lutionizing the way of collecting, processing and disseminating information. Due to

the small sizes of sensor nodes, resources like battery capacity, memory and process-

ing power are very limited. Wireless sensor networks are usually unattended once

deployed and it is infeasible to replace batteries. Designing energy-efficient proto-

cols to prolong the network life without compromising too much on the network

performance is one of the major challenges being faced by researchers.

Data generation in wireless sensor networks could be bursty as it is dictated by

the presence or absence of events of interest that generate these data. Therefore

sensor nodes stay idle for most of the time. However, idle listening consumes as

much energy as receiving. To save the unnecessary energy consumption due to idle

listening, sensor nodes are usually put into sleep.

MAC protocols coordinate data communications among neighboring nodes. We

designed an energy-efficient MAC protocol called PMAC in which sleep-awake sched-

ules are determined through pattern exchange. PMAC also adapts to different traffic

conditions.

To handle bursty traffic and meanwhile preserve energy, dual radio interfaces

with different ranges, capacity and power consumption can be employed on each

individual sensor node. We designed a distributed routing-layer switch agent which

intelligently directs traffic between the dual radios. The low-power radio will be

xii



used for light traffic load to preserve energy. The high-power radio is turned on

only when the traffic load becomes heavy or the end-to-end delay exceeds a certain

threshold. Each radio has its own routing agent so that a better path can be found

when the high-power radio is in use.

Data gathering is a typical operation in wireless sensor networks where data flow

through a data gathering tree towards a sink node. DMAC is a popular energy-

efficient MAC protocol specifically designed for data gathering in wireless sensor

networks. It employs staggered sleep-awake schedules to enable continuous data

forwarding along a data gathering tree, resulting in reduced end-to-end delays and

energy consumption. we have analyzed end-to-end delay and energy consumption

with respect to the source node for both constant bit rate traffic and stochastic traffic

following a Poisson process. The stochastic traffic scenario is modeled as a discrete

time Markov chain and expressions for state transition probabilities, the average

delay and average energy consumption are developed and are evaluated numerically.

Simulations are carried out with various parameters and the results are in line with

the analytical results.

Lots of work had been done on constructing energy-efficient data gathering trees

at the routing layer. We proposed a sleep scheme at the routing layer called DGSS

which could be incorporated into different data gathering tree formation algorithms.

Unlike DMAC, in which nodes are scanned level by level, DGSS starts scanning

from the leaf nodes and shrinks inward towards the sink node. Simulation shows

xiii



that DGSS can achieve better energy efficiency than DMAC at relatively higher data

rates.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are application-specific wireless ad hoc networks

consisting of nodes equipped with sensors, computing devices and wireless commu-

nication devices. In recent years, the rapid advances in low-cost, low-power circuit

design have enabled the development of WSNs and made it one of the emerging tech-

nologies that may change the world one day. WSNs are envisioned as a paradigm

shift [24] from the traditional information collection and have the promise of rev-

olutionizing the way of collecting, processing and disseminating information about

environment. The distributed nature of WSNs makes it more fault-tolerant. The ad

hoc nature of WSNs allows a fast deployment of the network, making it attractive

to military applications and hostile environment.

Many different types of sensors, such as light, thermal, acoustic, magnetic, me-

chanical sensors, can be equipped on sensor nodes. That empowers WSNs to have

a wide range of potential applications in various fields such as environmental mon-

itoring [11], habitat monitoring [34, 61], structural monitoring [65, 28], precision
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agriculture [31], weather condition, health care [51], battlefield surveillance [7] and

homeland security, etc.

1.2 Unique Features and Challenges

While WSNs share many commonalities with traditional ad hoc networks, they also

have a few unique features which open specific challenges to researchers. Those

unique features and challenges include [25]:

• Application specific WSNs are not generic purpose networks like the In-

ternet, but application-specific. Different applications might require differ-

ent sensing and communication technologies. For instance, some applications

might be delay-sensitive and some might not at all; some applications may

tolerate data loss and some others may not. It is unlikely to have generic solu-

tions for all the different applications with very different requirements. Since

WSNs are heavily driven by the application, the protocols developed need to

be tailored, to a large extent, for the application that a particular network is

built to address.

• Self organization The ad hoc nature of WSNs requires sensor nodes in a

WSN to coordinate with each other and organize themselves (with little or no

external help) into a fully functional network, which can then relay the sensed

information back to the data collecting sink nodes.

2



• Scarce resources The size of sensor nodes limits the resources available to

sensor nodes, such as battery power, memory, computational power. The limi-

tations of memory and computational power might be mitigated soon with the

rapid development of fabrication techniques. The energy constraint, however,

is unlikely to be solved in the near future with the slow progress in improving

battery capacity. Sensor nodes are usually left unattended after deployment

and it is infeasible to either replace or recharge their batteries due to the large

scale of WSNs. Hence, energy-efficient protocols are needed for prolonging net-

work lifetime. Due to the scarce resources, the protocols designed for WSNs

should also be kept as simple as possible.

• Large scale WSNs may consist of thousands or even millions of tiny sensor

nodes. The large scale of WSNs requires the protocols for WSNs must be more

scalable, compared to the current ad hoc networks. Hierarchical architecture,

localized algorithms, and data aggregation might have to be used to achieve

high scalability.

• Bursty traffic Unlike the traditional network mostly driven by human, WSNs

are driven by environmental events in most of applications. Therefore, the data

flow is very bursty — low data rates during most of the time and high data

rates when events occur.

• Data centric This represents a paradigm shift [22] from traditional networks.

Traditional networks are address-centric, in which we know where to get the

3



data we are interested in. While in WSNs we only know things we are inter-

ested in, but do not know where they are located. In other words, WSNs tend

to operate as a collective structure, rather than supporting many independent

point-to-point flows [63].

• Data redundancy This requires in-network processing such as data aggre-

gation or data fusion to reduce the amount of data flowing around in the

networks.

1.3 Energy Savings in Wireless Sensor Networks

Since energy constraint is one of the most challenging issues WSNs are facing, energy

saving surely becomes one of the primary research topics on WSNs. Numerous

energy saving techniques and protocols have been proposed at different layers of the

OSI (Open Systems Interconnection) model. We now review some of the work at each

layer along the OSI protocol stack to understand those techniques and challenges

related to energy savings.

1.3.1 Physical Layer

Physical layer includes the physical devices, communication channels and topology

control. Low-power hardware design, modulation and encoding schemes are critical

for saving energy in sensing, data processing and communication. Since topology

4



control is more relevant to protocol design, we will focus on the energy efficient

formation of network topology.

Topology control or power control usually refers to the construction of network

topology by adjusting the transmit power and hence the transmission range of each

node. In other words, the per node transmit power is determined as the result of

topology control [47]. Since the formation of the initial topology has direct impact

on the degree (number of neighbors) of a sensor node, which in turns has impact on

the interferences and data redundancy, improper topology will have negative impact

on the energy consumption. Therefore, energy efficient topology control schemes are

vital in maximizing the network lifetime. The goal in topology control is to have each

node transmit at the lowest possible power while preserving network connectivity

and the robustness to node failures. Transmitting at unnecessarily high power not

only reduces the lifetime of the nodes and the network, but also introduces excessive

interference, which reduces the network capacity and increases the end-to-end delay.

Topology control has been well studied in wireless ad hoc networks [16, 47, 26] and

has been formulated as network optimization problems. The formulation methods

vary with different optimization metrics and constraints. Both [16] and [15] target

at minimizing the total transmit power and meanwhile maintaining strong network

connectivity. However, [16] assumes there exists unidirectional links in the network,

while [15] assumes only bidirectional links exist in the network. Authors in both

papers proved their problems are NP-Complete and hence heuristics were used. One

5



of the heuristic methods is to assign power based on minimum spanning tree, which

gives an approximation ratio of 2.

In [47], topology control is formulated as a constrained optimization problem

whose objective is to minimize the maximum transmit power with the constraints to

maintain connectivity or bi-connectivity. Optimal solutions were presented for both

connected and bi-connected static networks. Distributed algorithms based on simple

heuristics were presented for mobile networks. Consequently, there is no guarantee

on network connectivity.

The drawback in the above formulations is that they all assume the networks are

static and the coordinates or the distances among all the nodes are known before

hand and are fixed, which may not be realistic in WSNs. Localized and distributed

algorithms [48, 62] are better candidates for WSNs. [62] proposed a distributed

cone-based algorithm which does not need know the global position information of

the nodes in the network but only local information instead. Each node makes local

decisions on its transmit power in such a way that they collectively guarantee global

connectivity. The algorithm assumes that all nodes know each other’s direction

through message exchange. Two phases are involved in the algorithm. The first

phase is to find a connected graph by letting each node continue grow its transmit

power until it finds at least one neighbor for any cone with angle α or it hits the

maximum transmit power. The second phase is to reduce the node degrees, in

which redundant edges are removed. This helps in reducing node interferences and

improving throughput.
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1.3.2 MAC Layer

In WSNs, sensor nodes communicate with their neighbors through shared wireless

channels. If multiple nodes in a neighborhood send data through the shared channel

at the same time, collision occurs and data will be garbled. Therefore, some kind

of coordination mechanisms need be in place for such one-hop communications.

MAC (Medium Access Control) layer protocols provide such mechanisms by deciding

which node(s) should transmit first. MAC layer is a sub-layer of the Logical Link

Control (LLC) layer in the OSI model, as only one-hop communication is concerned.

MAC layer protocols can be divided into contention-free and contention-based MAC

protocols.

As mentioned earlier, bursty traffic is one of the unique features of WSNs. Radios

on sensor nodes stay in the idle-listening state for most of the time since heavy

traffic loads only present when events occur. It is a known fact that most of radio

devices consume as much power in the idle-listening state as in the receiving state.

Significant amount of energy will be wasted if radios are left in such idle-listening

state. Many energy efficient MAC protocols have been proposed for WSNs, trying

to bring down the per node idle-listening power consumption by lowering the duty-

cycles of radios through sleep scheduling. In other words, radios are put into sleep

if they are not involved in any data communication.

SMAC [71] is a well-known energy efficient MAC protocol specifically designed

for WSNs. It forces sensor nodes operate at low duty cycle by putting them into
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sleep periodically instead of idle listening. Sensor nodes also sleep during overhear-

ing to save power. Although SMAC saves power, it does not adapt to network traffic

well since it uses a fixed duty cycle for all the sensor nodes. A duty cycle tuned for

heavy traffic loads results in energy wastage when the traffic is light, while duty

cycle tuned for light traffic loads results in low throughput under heavy traffic loads.

SMAC with adaptive listening [72] was proposed later on to achieve adaptive duty

cycles. The Timeout-MAC protocol (TMAC) [56] improves SMAC in [71] by intro-

ducing adaptive duty cycles. If there is no activity in the vicinity of a node for a

time TA, the node goes to sleep. Such an adaptation frees the application from the

burden of selecting an appropriate duty cycle. TMAC has the same performance

as SMAC under constant traffic loads, but saves more energy under variable traffic.

The downside of TMAC’s aggressive power conserving policy is that nodes can go

to sleep rather early, resulting in increased latency and lower throughput. Another

drawback in both SMAC and TMAC is that, they group the communication during

small periods of activity. As a result, the protocols collapse under heavy traffic loads.

Data-gathering MAC (DMAC) [32] is another protocol that uses adaptive duty cy-

cles. It yields low end-to-end delay in convergecast communication by staggering

the sleep-awake schedules of the nodes at different levels of the data gathering tree.

DMAC outperforms SMAC in terms of latency, throughput and energy efficiency for

low-rate data gathering.

Above are the examples of coordinated or synchronous duty cycling, in which

sleep-awake is synchronized across all nodes, or subsets thereof. Distributed time
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synchronization [17] is usually needed in this case and it is quite challenging to

achieve for large scale networks like WSNs. As a contrast, uncoordinated or asyn-

chronous duty cycling establishes sleep schedules without any explicit coordination.

B-MAC [45] and X-MAC [8] are examples of such asynchronous duty-cycling proto-

cols. In B-MAC, sensor nodes wake up periodically to check if there is any activity

currently on the channel. If so, the sensor nodes stay awake to receive any possible

incoming traffic. Whenever a sensor node wants to send data, a long preamble is

sent out first. The preamble lasts longer than the receiver’s sleep interval to ensure

that the receiver is awake upon any data transmission. B-MAC can achieve very

low duty cycle under light traffic, as only a short period of time is needed in sensing

the channel activity within every awake time. However, B-MAC could stay awake

unnecessarily due to overhearing traffic bound for other nodes. X-MAC tried to

solve this overhearing problem by using a sequence of short preambles instead of

a really long one. In contrast to B-MAC and X-MAC, where the sender initiates

a preamble to ensure the receiver is ready to receive, RI-MAC [53] uses a receiver

initiated scheme, where the sender waits for a beacon or signal from the receiver to

start data transmission.

1.3.3 Routing Layer

Routing protocols define the paths to relay data packets. As for wireless ad hoc net-

works, routing protocols for WSNs can be classified as proactive (or table-driven)
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protocols, reactive (or on-demand) protocols and hybrid (both proactive and reac-

tive) protocols. Proactive routing protocols try to maintain an up-to-date map of the

network, by continuously evaluating known routes and attempting to find out new

ones. This task is realized by sending reliable and up-to-date routing information

from each sensor node to every other node in the network. Unlike proactive routing

protocols, reactive protocols only start a route discovery procedure when needed. In

this case, a sort of global search procedure is started. Although it does not require

constant updates to be sent throughout the network, as in pro-active protocols, this

process does cause delays, since the requested routes are not available and have to

be found. For WSNs, we need factor in the unique features of WSNs, such as limited

resources and large scale. This results in the existence of numerous routing proto-

cols specifically for WSNs. A new routing paradigm called data-centric routing has

been introduced in the directed diffusion paper [22]. In traditional wired networks,

people do know where the information they want is. Therein the routing is to find

a path between a pair of addressable end nodes. This is so called address-centric

routing. While in a WSN, the data people are interested in may scatter all around

the network and people have no idea where those data are located. The data-centric

routing is to find the data of interest and consolidate them if necessary.

As far as energy consumption concerns, one of the goals is to design energy

efficient routing protocols which minimize the per route/flow power consumption.

However, finding the minimum energy path and using it for every communication

are not the best thing to do for prolonging network lifetime, as the frequent usage of

10



a low energy path leads to energy depletion at the nodes along that path and in the

worst case may lead to network partition. To prevent the optimal path from getting

depleted, it is necessary to use sub-optimal paths sometimes in order for the network

to degrade gracefully as a whole rather than getting partitioned. In other words, the

energy dissipation is more evenly distributed or balanced among the sensor nodes

in the network. In [49], multiple paths are found between source and destination,

and each path is assigned a probability of being chosen, depending on the energy

metric. Every time data are to be sent from the source to destination, one of the

paths is randomly chosen depending on the probabilities. This ensures that none of

the paths is used all the time, preventing from energy depletion.

[41] proved that the routing problem in WSNs so as to maximize network life-

time is NP-hard, where the lifetime is defined as the number of successful routing

requests before the first failed routing request. A two-step heuristic algorithm is

developed to maximize the network lifetime. The basic idea is to delay the energy

depletion at a node as much as possible. [12] formulates the routing problem as a

linear programming problem, where the objective is to maximize the network life-

time defined as the time when the network partition happens due to battery outage.

A shortest path routing algorithm is proposed based on link costs reflecting both the

communication energy consumption rates and the residual energy levels at the two

end nodes. Simulation shows that the routing algorithm can achieve network life-

time that is very close to the optimal network lifetime obtained by solving the linear

programming problem. [66] proposed a novel utility-based nonlinear optimization
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formulation to the maximum lifetime routing problem. Based on this formulation,

a fully distributed and localized routing algorithm was presented and was proved to

converge to the optimal point where the network lifetime is maximized.

Kim and Liu [27] studied the routing problem in WSNs where sensors are duty-

cycled, which is quite common in WSNs. When sensors alternate between on and off

modes, delay encountered in packet delivery due to loss in connectivity can become

a serious problem, and how to achieve delay-optimality is non-trivial. For instance,

when sensor nodes’ sleep-awake schedules are uncoordinated, it is not immediately

clear whether a sensor node with data to transmit should wait for a particular

neighbor (who may be on a short route) to become active before transmission, or

simply transmit to an active neighbor to avoid waiting. To obtain some insight

into this problem, the authors formulate the above problem as an optimal stochastic

routing problem, where the randomness in the system comes from random duty

cycling, as well as the uncertainty in packet transmission due to channel variations.

Some existing optimal routing algorithms are no longer optimal when duty cycling is

introduced. An optimal centralized stochastic routing algorithm was developed for

randomly duty-cycled WSNs, and a distributed algorithm utilizing local sleep-awake

schedules was also presented in the paper.

A good survey on the routing techniques for WSNs is available in [5].
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1.3.4 Transport Layer

Transport layer usually provides the end-to-end reliability as it sits on top of an

unreliable network layer. Congestion control is another duty of the transport layer.

Congestion control significantly improves the end-to-end throughput and delay by

throttling down the date rates at source nodes when congestion is detected. In

WSNs, data gather from multiple sensor nodes to a single or few sink nodes. This

unique traffic pattern in WSNs puts heavy burden on the relaying sensor nodes

near the sink(s). Congestion at those nodes will cause long end-to-end delay, low

throughput and unnecessary energy wastage. Therefore, congestion or rate control

in WSNs is critical to overall network performance and even to the energy saving

purpose.

CODA [59] is an energy efficient congestion control scheme for WSNs. It com-

prises three mechanisms: receiver-based congestion detection, open-loop hop-by-hop

backpressure and closed-loop multi-source regulation. The congestion detection is

based on the combination of the present and past channel loading conditions, and

the current buffer occupancy ratio. Backpressure signals will propagate upstream

back to the source node right after congestion is detected.

RCRT [40] is a rate-controlled reliable transport protocol, which targets at high-

rate and loss-intolerant applications such as imaging, where large volumes of data

are generated and flow through the network. RCRT uses end-to-end explicit loss
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recovery, but places all the congestion detection and rate adaption functionality at

the sink nodes.

The PSFQ protocol presented in [58] is a sink-to-sensors congestion control

method. It pumps data segments slowly but fetch data quickly. It provides guaran-

teed delivery, which is useful for applications such as code updates.

1.3.5 Application Layer

Energy can also be saved at the application layer by reducing data redundancy

through in-network processing. A key idea here is to exploit the correlations among

the observed data and to remove the data redundancy without loss of useful infor-

mation to the application. This helps to reduce the network traffic and save energy.

In-network processing include compression or aggregation. Data aggregation re-

mains one of the most active research areas in WSNs. An important notion behind

data aggregation is that computation is cheaper than communication in terms of

energy consumption [25].

1.3.6 Cross Layer

Layering is a software engineering concept. It divides a complex system into smaller

modules so that each module has its own requirements and can be handled by

different groups of people. People work on one module need little knowledge about

other modules. Well-defined interfaces will integrate different modules back into a

consolidated system. This divide-and-conquer approach is necessary for building a
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complex system. However, due to the lack of knowledge on other layers, an optimal

solution found out for one layer may no longer be optimal when things are pieced

together. As you may have seen in previous sections, many researches on WSNs

have been conducted for finding optimal solutions for energy savings at a particular

layer. However, people start to realize that they have to go across the boundaries

of existing layers in order to better utilize the scarce resources in WSNs. That is

where cross-layer design comes from. Below are some of the examples.

DOZER [9] is a data gathering protocol which meets the requirements of periodic

data collection and ultra-low power consumption. It makes MAC-layer, topology

control, and routing all coordinated to reduce energy wastage of the communica-

tion subsystem. Using a tree-based network structure, packets are reliably routed

towards the data sink. Parents thereby schedule precise rendezvous times for all

communication with their children. Experiments show that DOZER can achieve

radio duty cycles in the magnitude of 0.2%.

[10] proposed a cross layer optimization approach which assumes a very simple

MAC protocol and makes use of both routing and MAC layers information to re-

duce congestion, improve delivery ratio, and optimize energy usage. The proposed

approach uses multiple disjoint collection trees, rooted from sink, with non over-

lapping duty cycles. At the MAC layer, it exploits the fact that nodes that are on

different data collection trees need not to communicate with each other, hence the

sleep-awake schedules for each tree are different.
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[64] proposed a minimum power configuration (MPC) approach to energy conser-

vation in wireless sensor networks. In sharp contrast to earlier research which treats

topology control, power-aware routing, and sleep management in isolation, MPC

integrates them as a joint optimization problem in which the power configuration

of a network consists of a set of active nodes and their transmit powers. Analysis

shows that the minimum power configuration of a network is inherently dependent

on the data rates at sources. Several approximation algorithms were presented with

provable performance bounds compared to the optimal solution, among which is

a practical Minimum Power Configuration Protocol (MPCP) that can dynamically

(re)configure a network to minimize its energy consumption based on current data

rates.

1.4 Organization of the Dissertation

This dissertation is organized in chronological order in which different research top-

ics had been conducted. Chapter 2 presents the Pattern-MAC (PMAC), which is an

adaptive energy efficient MAC protocol specifically designed for WSNs. How duty

cycles in PMAC adapt to different traffic conditions is explained. Performance of

PMAC is evaluated through simulations and comparisons with existing MAC pro-

tocols like SMAC and TMAC are made. Chapter 3 presents a software architecture

for sensor nodes with dual interfaces. A routing layer component called switch agent

is introduced to distribute traffic between the two interfaces, depending on traffic
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loads. It shows how traffic switching helps in saving energy under light traffic with-

out compromising throughput and end-to-end delay under heavy traffic conditions.

Performance is also evaluated through simulations. Chapter 4 presents analytical

models for a popular data gathering MAC protocol — DMAC under both CBR

traffic and stochastic traffic. The analytical models are evaluated numerically and

validated through simulations. Chapter 5 presents a scheme managing sleep sched-

ules at the routing layer. The motivation of this work is explained and comparisons

are drawn between the routing sleep scheme and the existing DMAC protocol. Chap-

ter 6 summarizes the work and outlines the direction of my future research.
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Chapter 2

An Energy Efficient MAC Protocol for WSNs

2.1 Introduction

Sensor nodes in wireless sensor networks are powered by batteries and are left unat-

tended after deployment. Due to the ad hoc nature and the large scale of the

network, it is almost impossible to recharge or replace their batteries once they run

out of power. Therefore, power saving strategies play a critical role in prolonging the

network’s lifetime. As you may see from the previous chapter, many research efforts

have focused on developing power saving schemes for wireless sensor networks.

Due to the burstiness of traffic in wireless sensor networks, radios on sensor nodes

stay in the idle-listening state for most of the time as heavy traffic conditions present

only when events occur. It is a known fact that most of radio devices consume as

much power in the idle-listening state as in the receiving state. Significant amount

of energy will be wasted if radios are left in such idle-listening state. Many energy

efficient MAC protocols have been proposed for wireless sensor networks, trying to

bring down the per node idle-listening power consumption by lowering the duty-

cycles of radios through sleep scheduling. In other words, radios are put into sleep
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if they are not involved in any data communication. Additionally, it is important to

achieve a good balance between energy consumption and performance metrics like

throughput and delay. A trade-off among the afore-mentioned parameters can be

achieved by adjusting the sleep-awake schedules of sensor nodes. Existing protocols

differ in the way they generate the sleep-awake schedules, and consequently yield

different trade-offs between energy consumption and performance. Protocols that

adapt their sleep-awake schedules to different traffic conditions have been observed

to give better performance than the others.

In this chapter, we present a new sensor MAC protocol called Pattern-MAC

(PMAC), wherein the actual sleep-awake schedule of a sensor node is determined

based on the node’s own tentative sleep-awake schedule, and its neighbors’ tentative

sleep-awake schedules as well. Patterns in the tentative sleep-awake schedules of a

sensor node are adaptive to the traffic conditions observed at that node. We find that

such a scheme can achieve different degrees of trade-off among energy, throughput

and latency, sometimes even better than the existing schemes. In addition, sensor

nodes using PMAC exhibit a high degree of energy localization when compared to

the existing protocols. By energy localization, we refer to the phenomenon wherein

only those sensor nodes along the communicating path expend energy, while other

nodes in the vicinity do not. Such a feature is indeed a necessity for wireless sensor

networks.

Two variations of PMAC are presented in this work — one is in favor of power

savings (PMAC-I) and the other is in favor of throughput (PMAC-II). Simulation
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results show that both the variants of PMAC exhibit better energy localization when

compared to SMAC without adaptive listening [71] and TMAC [56]. Furthermore,

in comparison to SMAC without adaptive listening, both the schemes achieve more

power savings under light traffic loads, and higher throughput under heavier traffic

loads. The PMAC-I also shows better power efficiency1 when compared with TMAC.

The preliminary results of this work had been published in [73].

2.2 Related Work

Several MAC protocols have been proposed in the literature for sensor networks.

The proposed protocols can be classified as either schedule based or contention

based [29]. Schedule based protocols use time division multiple access (TDMA)

mechanism, wherein each node is assigned a particular time to transmit. Though

such protocols offer energy savings by avoiding collisions and idle listening, they have

little flexibility in handling traffic fluctuations and node mobility. Contention based

protocols do not avoid collisions but can gracefully deal with traffic fluctuations and

node mobility. They can be further classified as random protocols and slot based

protocols. Random protocols are like “aloha” and allow a node to transmit whenever

it wants to. These protocols consume lot of energy in idle listening. While some

mechanisms have been proposed to reduce the energy consumption, the efficacy of

these mechanisms critically depends on the radio’s ability to switch on quickly. Slot

1Power efficiency is defined as the ratio of throughput achieved per unit of energy consumed.

20



based protocols aim to achieve a middle ground between schedule based protocols

and random protocols by organizing the sensor nodes in a slotted system.

SMAC [71] is a MAC protocol in which the sensor nodes are synchronized to

follow a slotted time structure. Each slot is divided into two periods — awake and

sleep. The awake period occurs at the beginning of each slot, during which any

node wishing to transmit should contend for the channel. The sleep-awake duration

for all the sensor nodes is the same and depends on the duty cycle, which is fixed

before hand. Although SMAC saves power, compared to protocols with no duty

cycles, it does not adapt to network traffic very well, since its duty cycle is fixed. A

duty cycle tuned for heavy traffic loads results in energy wastage when the traffic

is light, while the duty cycle tuned for light traffic loads results in low throughput

under heavy traffic loads. SMAC with adaptive listening [72] was proposed later

on to achieve adaptive duty cycles. In this chapter, we refer to SMAC as the one

with fixed duty cycle published in [71]. The Timeout-MAC protocol (TMAC) [56]

is another slotted protocol which improves SMAC by introducing an adaptive duty

cycle. In TMAC, a node goes to sleep only when there is no activity in its vicinity

for a time TA seconds. Such an adaptation frees the application from the burden

of selecting an appropriate duty cycle. TMAC has a similar performance as SMAC

under constant traffic loads, but saves more energy under variable traffic.

While TMAC performs better than SMAC, it has poor energy localization char-

acteristics, i.e., even sensor nodes that are not actively communicating expend con-

siderable energy. This is because inactive sensor nodes still need wake up after every
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slot time and listen for TA seconds, to check for network activity. If by some means,

a sensor node can get to know that its neighbors will remain inactive over the next

several consecutive slots, then it can sleep throughout all those time slots without

waking up in between. Such mechanism might result in better energy localization

than those in which each node has to wake up after every slot time. This is also the

underlying principle of the proposed Pattern-MAC(PMAC) protocol.

2.3 Overview of PMAC

PMAC is a “time slotted” protocol like SMAC, but with a much shorter time slot

than SMAC. In SMAC, a node can stay awake for a certain duration of a time slot,

and go to sleep for the remaining duration; while in PMAC, a node can either be

awake or asleep during a time slot.

2.3.1 Rationale behind PMAC

Idle listening is one of the main sources of energy wastage. Energy saving MAC

protocols try to minimize the length of the idle listening period. Fig. 2.1 shows the

lengths of idle listening periods in SMAC, TMAC and the proposed PMAC protocols

in the extreme case of no traffic in the sensor network.

In SMAC, sensor nodes have to wake up periodically even when there is no traffic

in the network, thus wasting power. A small duty cycle can reduce this wastage,

but it will cause low throughput when the traffic becomes heavy. In TMAC, sensor
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Figure 2.1: Comparison on the length of sleeping periods among SMAC, TMAC and
PMAC with no traffic

nodes need to wake up at the beginning of each time frame for a time TA even when

there is no traffic in the network, as a node needs to check for any activity in its

neighborhood. In PMAC, a sensor node gets information about the activity in its

neighborhood before hand through patterns. Based on these patterns, a sensor node

can put itself into a long sleep for several time frames when there is no traffic in the

network. If there is any activity in the neighborhood, a node will know this through

the patterns and will wake up when needed. Thus PMAC tries to save more power

than SMAC and TMAC, without compromising on the throughput.

2.3.2 Pattern vs Schedule

A sleep-awake pattern is a string of bits indicating the tentative sleep-awake plan

for a sensor node over several slot times. Bit 1 in the string indicates that the node

intends to stay awake during a slot time, while 0 indicates that the node intends

to sleep. For example, a pattern of 001 for a node indicates that, the sensor node
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tentatively plans to be asleep for two consecutive slot times, and stay awake in the

third. Since the pattern is only a tentative plan, it is subject to change.

A sleep-awake schedule for a sensor node is a string of bits indicating the actual

sleep-awake itinerary which the node will follow. Bit 1 in the string indicates that

the node will stay awake during a slot time, while 0 indicates that the node will

remain asleep.

The above definitions imply that a node’s sleep-awake pattern need not be its

sleep-awake schedule. In PMAC, the schedule for a node is derived from its own

pattern and, the patterns of its neighboring nodes. Therefore patterns do affect the

sleep and awake times of a node, and thus the protocol’s performance.

In the next few paragraphs, we explain our approach for arriving at a node’s

pattern and schedule.

2.4 Protocol Details

As explained before, a node’s pattern alters its sleep and awake times. In order

to achieve a good throughput without compromising on the energy savings, it is

important that the generated pattern should adapt to the network traffic.

2.4.1 Pattern Generation

Let P j be the binary string representing the pattern of a node j. This pattern is

associated with node j over N time slots. We call this sequence of N time slots as
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a period. In case the length of P j is less than N , then the pattern gets repeated for

the remaining duration. For example if P j = 01, and if N = 5, then tentative plan

for node j over the next five time slots will be 01010, i.e., the node will intend to

sleep during slots 1, 3, and 5, and to remain awake during slots 2 and 4. In PMAC,

we restrict a pattern to be 0m1, where m = 0, 1, · · ·N − 1. The number of 0 bits

in a pattern, denoted by m, indicates the traffic load around the node having the

pattern. A large m indicates the traffic load is light, while a small m (even a 0)

indicates the traffic load is heavy.

In order to adapt to the traffic conditions, a node’s pattern is updated during

each period using the local traffic information available at the node and exchanged

at the end of each period. Let P j
i be the working pattern of node j during period

i, where i = 1, 2, · · · . Note that P j
i can be different from P j

i+1 depending upon

the node j’s traffic conditions observed during period i. P j
i+1 can be obtained from

P j
i through either single or multiple updates occurring in period i. Let xi be the

number of pattern updates during period i and P j
i,n, where n = 0, 1, · · · xi, be the

nth new pattern obtained in the sequence of updates. The starting pattern in the

sequence during period i, P j
i,0, is the working pattern P j

i . The last updated pattern

in the sequence, P j
i,xi

, is going to be the working pattern in the next period i.e.,

P j
i+1 = P j

i,xi
.

When the network is activated, the working pattern at every node has just one

bit during the first period, which is 1, i.e., P j
1 = 1, ∀j in the network. This simply

assumes the traffic load is heavy at the beginning and every node should be awake.
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Pattern updates during the first period start with the working pattern P j
1 , i.e.,

P j
1,0 = P j

1 = 1. If there is no data2 for a node j to send at the first time slot of bit 1,

then it indicates that the traffic load around node j is potentially light. Therefore,

the node can afford to sleep for some time. Hence, node j updates its pattern to 01,

i.e., P j
1,1 = 01. If we find that the node has no data to send during the second time

slot of pattern bit 1, the node is encouraged to sleep longer by doubling the number

of 0 bits in P j
1,1, i.e., P

j
1,2 = 001. This doubling effect continues in the following time

slots of bit 1, until the number of 0 bits in the updated pattern reaches a predefined

threshold δ. Beyond δ, the number of 0 bits is linearly increased. If there is no data

for node j to send during period 1, the following sequence of patterns is generated

at node j:

1, 01, 02 1, 04 1, · · · 0δ 1, 0δ 01, 0δ 02 1, 0δ 03 1, · · · 0N−1 1.

This approach of exponential increasing the sleep time during light traffic allows the

nodes to save considerable amount of energy. As you can see from the above, the

sleep pattern that is generated mimics the slow-start algorithm of TCP [55].

If node j has any data to transmit at any time slot regardless of the pattern bit

at that time slot, then the next pattern in the sequence goes back to 1. This enables

node j to wake up quickly to handle the traffic load. The following update, if any,

is going to start with this new pattern.

2This data can be either the node’s own data, or the data generated by other nodes which it
has to relay.
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The pattern generation scheme used in PMAC is summarized in the following

expression:

P j
i,n+1 =



01 ifP j
i,n = 1 and

node j has no data to send during the next slot of bit 1;

02m1 ifP j
i,n = 0m1(0 < m ≤ δ/2) and

node j has no data to send during the next slot of bit 1;

0m+11 ifP j
i,n = 0m1(δ ≤ m < N − 1) and

node j has no data to send during the next slot of bit 1;

0m1 ifP j
i,n = 0m1(m = N − 1) and

node j has no data to send during the next slot of bit 1;

1 if node j has data to send during a slot,

irrespective of the slot’s pattern bit.

(2.1)

It is easy to see that by increasing δ, the application can increase the aggressiveness

of the sensor nodes to conserve energy. Similar to this multiplicative increase -

acute decrease of the sleep times, other schemes such as additive increase - multiple

decrease, additive increase - acute decrease, etc. can be employed, if the applications

prefer them.
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2.4.2 Pattern Exchange

A node’s pattern is just a tentative sleep-awake plan. In PMAC, the actual sleep-

awake schedule is derived based on the node’s own pattern and the patterns of its

neighbors. New patterns that are generated for the subsequent period are broad-

casted by the nodes at the end of the current period.

- -� �STF STF

- -� �PRTF PRTF� �- -PETF PETF

· · · · · ·
-�
TR TE

6
w w

- -� �N slots N slots

Figure 2.2: Division of time frames

To accommodate this pattern exchange, time is divided into super time frames

(STF) as shown in Fig. 2.2. Each STF consists of two sub-frames. The first is called

Pattern Repeat Time Frame (PRTF), during which each node repeats its current

pattern. PRTF in turn is divided into different time slots of duration TR. PRTF

is nothing but the sequence of N time slots that we referred to as a period in the

previous discussions. At the end of these N slots, PRTF has one additional time slot

during which all the sensor nodes stay awake. This special time slot is used to speed

up communication. Long delay may happen if the downstream neighbors are in a

long sleep mode when upstream nodes have data destined for them. The upstream

nodes cannot send data since they know the destination nodes are not ready, while
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the downstream nodes might think there is no traffic destined for them, and thus

update their patterns for even longer sleep. During this special time slot, data from

upstream nodes can be sent to downstream nodes so that downstream nodes can

update their patterns to 1 and wake up quickly. This special time slot can also be

used for broadcasting.

The second sub-frame of STF is called Pattern Exchange Time Frame (PETF),

during which new patterns are exchanged between neighbors. PETF again, is divided

into various time slots of duration TE. New patterns are generated during PRTF at

every node to reflect the latest traffic information by following the rules summarized

in Eqn. (2.1). The last generated pattern during a particular PRTF becomes the

pattern for the next PRTF, and will be advertised to the neighbors during the

PETF. The pattern is cyclically repeated during PRTF such that each time slot has

one pattern bit assigned. Patterns received from its neighbors during the preceding

PETF are also repeated in the same way. If a node j receives no new patterns from

some of its neighbors during the preceding PETF (probably due to collisions), it

then repeats their old patterns.

- �PRTF - �PETF

A
0 0 1 0 0 1 w

Figure 2.3: Illustration of pattern exchange
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Fig. 2.3 illustrates how pattern generation and exchange process takes place in

PMAC. In Fig. 2.3, we assume that sensor node A has a pattern 001 at period i.

Node A repeats its pattern during PRTF. Let δ = 4 and N = 6. Pattern updates

start with PA
i,0 = 001. If node A has no data to transmit during the entire PRTF

period, it generates a new pattern, PA
i,1, at time slot 3, since the node has pattern

bit set to 1 at that time slot. PA
i,1 becomes 04 1 based on the pattern generation rules

presented earlier. PA
i,1 will be updated at time slot 6, at which another pattern bit

1 appears. PA
i,2 now becomes 05 1 and is the last updated pattern. It is set as the

pattern to be exchanged during PETF. However, if there is data at node A at any

time slot, the new pattern goes back to 1. For instance, if there is data at time slot

2, PA
i,1 is set to 1. Thereafter, if there is no data at time slot 3, PA

i,2 = 01.

The span of a time slot TR is chosen such that it is long enough to handle a

complete data transmission (contention window + RTS + CTS + DATA + ACK).

The choice for N , the number of time slots in PRTF depends on the application.

If N is high, then it is possible for the sensor nodes to have more sleep time, and

thus more energy can be saved. However, this may also increase the latency in data

transmission. Thus there is a tradeoff between energy saving and latency.

The number of time slots in PETF is set to the maximum number of neighbors a

sensor node could have. The span of a time slot TE in PETF is chosen long enough

to broadcast a pattern. A large contention window may be needed at the beginning

of each PETF time slot to avoid collision. However, longer PETF is, more overheads
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are introduced and thus more energy gets wasted. It is a tradeoff between energy

saving and reliability.

2.4.3 Schedule Generation

So far, we have explained how a node generates and exchanges its patterns with its

neighbors. The purpose of the above exercise is to come up with the actual sleep-

awake schedule for a node. To recall, the sleep-awake schedule of a node is a string

of bits indicating the actual sleep-awake itinerary which the node will follow. Each

bit in the string indicates the actual state of the node during a slot time. Bit 1

indicates that the node will stay awake, while 0 indicates that the node will remain

asleep.

Table 2.1: Rules to generate the actual schedule at node j in favor of power saving

Pattern bit
at node j Packet to send

Pattern bit at
the receiving node Schedule at node j

1 1 1 1

1 1 0 1−
1 0 ∗ 1−
0 1 1 1

0 1 0 0

0 0 ∗ 0

1: awake 0: sleep ∗: either 1 or 0

For the first N slots in PRTF, a schedule bit of 1 or 0 is obtained based on the

pattern bit values of the node and its neighbors corresponding to that slot. In this

chapter, we present two schemes for generating the schedule bits. The first scheme
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Table 2.2: Rules to generate the actual schedule at node j in favor of throughput

Pattern bit
at node j Packet to send

Pattern bit at
the receiving node Schedule at node j

1 1 1 1

1 1 0 1

1 0 ∗ 1−
0 1 1 1

0 ∗ 1 (some neighbor) 1−
0 ∗ 0 (all neighbors) 0

1: awake 0: sleep ∗: either 1 or 0

(PMAC-I) is from the receiver’s perspective — the sender node can send data only

when the receiver is awake. This scheme turns out to be in favor of power saving.

The second scheme (PMAC-II) is from the sender’s perspective — the sender can

send data as long as it is awake and force all potential receivers to be awake. This

scheme turns out to be in favor of throughput. The rules associated with these two

schemes are summarized in Table 2.1 and Table 2.2, respectively.

The rules for arriving at the schedule bit value for node j for a given slot in

PMAC-I are enumerated below:

1. Let the pattern bit at node j be 1 and let there be a packet in its buffer to

be sent to a neighbor. If the pattern bit for the receiving node is also 1, then

the schedule bit for node j is set to 1. This means that node j will wake up

at that particular time slot and send the data, since it knows that the receiver

might be awake.
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2. Let the pattern bit at node j be 1 and let there be a packet in its buffer to

be sent to a neighbor. However, the pattern bit for the receiving node is 0. In

this case, the schedule bit at node j to be 1−, where 1− implies node j should

wake up at the beginning of that time slot and listen for a certain period of

time. If it hears nothing from its neighbor within that period, it can go to

sleep. At the first glance, it would appear that it is better to set the actual

schedule at node j to 0. That is, let node j sleep from the right beginning of

that time slot to save more power. However, since the pattern bit of node j is

1, it could be a potential receiver and its neighbors may try to send data to

it. If node j ignores this possible happening, and if it goes to sleep, the packet

destined to it will be lost, and the energy spent on transmitting this packet is

wasted.

3. The pattern bit at node j is 1 and there is no packet in its buffer. In this case,

irrespective of the pattern bits of its neighbors, the schedule bit at node j is

set to 1−. The reason is the same as we explained in case 2.

4. The pattern bit at node j is 0 and there is a packet in its buffer to be sent.

If the pattern bit at the receiving node is 1, the schedule bit of node j is

set to 1. This implies that, node j is going to wake up at that time slot for

transmission, although it intended not to. This can improve the throughput

without consuming any additional energy. Throughput is improved by waking
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up node j earlier than it is supposed to. No additional energy is consumed

because the packet in the buffer needs to be transmitted sooner or later.

5. The pattern bit at node j is 0, and there is a packet in its buffer to be sent.

If the pattern bit at the receiving node is 0, the schedule bit for node j is set

to 0. This would imply putting node j into sleep, since the destination node

is not ready to receive. To send the packet, node j must wait until the time

slot at which the destination node has pattern bit 1.

6. The pattern bit at node j is 0 and there is no packet in its buffer. In this case,

no matter what pattern bits its neighbors have, the schedule bit of node j is

set to 0. This means that node j is going to sleep mode. If some neighbors

have packets for node j, they have to wait until the time slot at which the

pattern bit of node j becomes 1. This would introduce longer delays for the

first few packets when the traffic becomes heavy, but the subsequent packets

will experience lower delays as node j’s pattern adapts to the new traffic.

In PMAC-II, changes have been made for rules 2,5 and 6 in PMAC-I:

2′) If the pattern bit at node j is 1 and there is a packet to be sent to a neighbor,

then the schedule bit for node j is set to 1 instead of 1− even though the

pattern bit at the receiver is 0. That means node j can compete for the

channel and go ahead to send the data if it wins the channel. By doing this,

node j is assuming the receiver is going to be awake to receive the data. From
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the perspective of the sender node j, as long as it is awake and has data to

send, it can send the data rather than wait for the receiver to become awake.

It is obvious that this rule is going to improve the throughput and latency.

5′) Consequently, to guarantee the receiver to be awake when a sender is sending

data, rule 5 in PMAC-I must be changed. Let the pattern bit at node j be

0. If one of its neighboring nodes has pattern bit 1, then node j realizes that

it could be a potential receiver and thus stays awake for a certain period of

time at the beginning of the current time slot. Again this helps to improve the

throughput and latency. The side-effect of this approach is that, more nodes

may stay awake even when they are not involved in the communication. This

results in more power consumption.

6′) The only case, a node j sets it schedule bit to be 0 is when it own pattern bit

is 0 and all it neighbors have pattern bits 0 as well.

Based on the application, we can dynamically choose either one of the two

schemes to fit the need of the application better.

2.4.4 Channel Access during Wake-up Times

When the nodes are awake, they follow a channel access scheme similar to that of

SMAC. The state diagram in Fig. 2.4 shows the transitions from one state to another

when a node is awake. At the beginning of each wake-up period, the radio is in idle

listening. If a node has data to send, it senses the channel for a randomly chosen
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period of time. If channel is free, it sends out Request To Send (RTS) and waits

for Clear To Send (CTS) coming back. After receiving CTS correctly, it sends out

data and waits for ACK coming back. Like SMAC, inter frame spaces can be used

to allow an ongoing communication to be complete. For those nodes following rule

2 or 3 for setting their schedule bit, they listen for an incoming RTS for a certain

amount of time. If no RTS is received or the received RTS is not destined to them,

they will sleep for the rest of the current time slot. All nodes sleep and wake up

based on their schedules calculated from their patterns.
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 CARRIER    SEND
RTS

CTS
WAIT

   SEND
DATA

ACK
WAIT

   SEND

schedule = 1
schedule = 0
or overhear
rts /cts

data to send
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rts  sent

cts  received

   data sent
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or timeout

   SEND
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schedule = 1
cts timeout

   DATA
WAIT

ACK

SENSE

Figure 2.4: State diagram of PMAC

2.4.5 Time Synchronization

Since time is slotted, some level of synchronization among the sensor nodes is needed

in PMAC. However, as only large time scales are involved in PMAC (in the order of
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hundred milliseconds), small clock drifts would not be a problem. The sensor nodes

can use some loose time synchronization schemes, such as those proposed in [57, 35]

to synchronize the sensor nodes. Synchronization can be done by introducing a

synchronization period at the end of a PETF.

2.5 Qualitative Discussion

In this section, we give a qualitative discussion on the efficacy of PMAC.

2.5.1 Adaptability to Traffic Conditions

As we stated in the previous section, the number of 0 bits in a new pattern grows

exponentially when the traffic load is light. This means that sensor nodes can fall into

a long sleep quickly under light loads. Hence, PMAC is able to save more power

than SMAC. If any data is detected during the current PRTF, the new pattern

generation process will start over from 1. This enables, a sensor node to wake up

quickly when the traffic load becomes heavy. PMAC is thus able to adapt to the

traffic conditions. We also note that the pattern repeating process may compromise

the speed of adapting to the network traffic, since new patterns must wait until the

next PRTF to be effective.

2.5.2 PMAC-I v.s. PMAC-II

Two variants of PMAC, PMAC-I and PMAC-II, have been presented to address

the tradeoff between power saving and throughput. PMAC-I is designed from a
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receiver’s perspective — if a receiver is sleeping when a sender has data for it, the

sender has to wait until the receiver wakes up. This approach is going to conserve

lots of energy, but the throughput may not be high. PMAC-II is designed from a

sender’s perspective — all potential receivers are forced to stay awake for a period of

time such that the sender can send data as long as it is awake. This approach gives

higher throughput, since the sender do not have to wait until the receiver wakes up.

However, since all the potential receivers are forced to stay awake for some time,

energy will be wasted at those nodes which are not the actual receiver.

PMAC-I adapts to traffic condition better in terms of power saving and energy

localization, while PMAC-II adapts to traffic condition better in terms of throughput

and latency. PMAC-I can be used in cases where the energy saving is the major

concern, while PMAC-II can be used in cases where the throughput and latency

become major concerns. We can also use both schemes in a single application at the

same time and dynamically choose the one which fits the needs of the application

better to achieve good balance between energy saving and network performance.

2.5.3 Power Savings through Localization

In PMAC, only those sensor nodes involved in a communication will wake up fre-

quently. Other sensor nodes that do not participate in the data gathering/relaying

process will sleep for longer times. In other words, PMAC selectively wakes up sensor

nodes. Fig. 2.5 illustrates the power saving through localization feature of PMAC

on a 5 × 5 mesh. Suppose that the only traffic in the network is from the source
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node to the sink node along the path indicated by the arrows. At steady state, only

those sensor nodes on the path will stay awake to handle the traffic. Other nodes

not involved in the communication will sleep through most of the PRTF period.

- - -

6
-

6

6

6

source

sink

— sleep — awake

Figure 2.5: An example topology to illustrate energy localization

2.5.4 Power Savings through Reduced Idle Listening

We have just described how PMAC saves energy by allowing sensor nodes that are

not involved in any communication to remain asleep. This in turn, reduces the

energy wasted due to idle listening during the periodic wake-ups that take place in

SMAC. PMAC can also potentially introduce additional idle listening than SMAC.

This occurs if in the actual schedule of a sensor node, there are two consecutive

awake time slots, but during the second time slot no communication is associated

with the sensor node. This is the case where its pattern has two consecutive 1’s

when the traffic load is light. Fortunately, because of the sparse spurts of traffic in

sensor networks, this kind of pattern does not occur quite often.
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2.5.5 Resource Usage

The patterns followed by tentative schedules are just binary strings, which can be im-

plemented using bitmaps. Even though PMAC stores the patterns of its neighbors,

the extra memory usage incurred should be negligible. The pattern evolution pro-

cess and actual schedule generation can be done through bitwise operations, which

requires insignificant cpu time. The pattern exchange is an overhead in terms of en-

ergy consumption, compared to existing protocols like SMAC and TMAC. However,

the memory usage and cpu time for pattern exchange are not significant either. In a

word, PMAC does not introduce significant resource usage in terms of memory and

cpu time compared to existing protocols like SMAC or TMAC.

2.6 Analytical Model

We present a simple analytical model to study the pattern generation process and

calculate the steady state average power savings in PMAC under light traffic. We

calculate the average power savings by estimating the number of zero bits appearing

in the pattern. For simplicity, we ignore the pattern repetition during PRTF pre-

sented earlier, and study PMAC with the following model. Starting with a working

pattern 1, if no data is available at a node for transmission at the time slot with

bit 1, the pattern for the next two slots is set to be 01. Again, if no data to be

sent during the previous two time slots, the next working pattern for the subsequent

slots becomes 001, and so on. While the above model may not completely capture
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the complete traits of the protocol, the analysis does provide good insight into the

results that follow.
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Figure 2.6: Markov chain of the pattern generation process

Let p be the steady state probability that the buffer at node j is non-empty at

a particular time slot. As we are interested in the steady states, it is reasonable to

assume p is a constant over all the time slots. For the sake of simplicity, we also

assume δ = N = 2M . Now we can use the Markov chain as shown in Fig. 2.6 to model

the pattern evolution process. In the figure, each state is indicated by the number of

0 bits in its pattern. Let P0, P20 , P21 , P22 , · · · , P2i , · · · , P2M be the probability that

the sensor node is in each of those states. We can have the following equations based

on the Markov chain:

P20 = (1− p)P0

P21 = (1− p)(2
0+1)P20

P22 = (1− p)(2
1+1)P21

...
...

P2i = (1− p)(2
i−1+1)P2i−1
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...
...

P2M = (1− p)(2
M−1+1)P2M−1 + (1− p)(2

M+1)P2M

By substitution, we have for 0 ≤ i ≤M − 1

P2i = (1− p)(2
i−1+1) · · · (1− p)(2

0+1)(1− p)P0

= P0(1− p)[(
∑i−1

j=0 2
j)+(i+1)]

= P0(1− p)(2
i+i) (2.2)

and

P2M = (1− p)(2
M−1+1)P0(1− p)(2

M−1+M−1) + (1− p)(2
M+1)P2M

=
P0(1− p)(2

M+M)

1− (1− p)(2M+1)
(2.3)

From the Markov chain, we should also have

P0 = pP0 + τ0P20 + τ1P21 + · · ·+ τiP2i + · · ·+ τMP2M (2.4)

where τi = 1 − (1 − p)2
i+1 is the transition probability from state P2i to P0 for all

0 ≤ i ≤M . We can verify that Eqn. (2.4) holds by plugging Eqn. (2.2) and Eqn. (2.3)
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into it. Since a sensor node must be at one of those states, the summation of the

probabilities should be 1.

1 = P0 + P20 + P21 + P22 + · · ·+ P2i + · · ·+ P2M

= P0 + P0

M−1∑
i=0

(1− p)(2
i+i) + P0

(1− p)(2
M+M)

1− (1− p)(2M+1)
(2.5)

Hence,

P0 =
1

1 +
∑M−1

i=0 (1− p)(2i+i) + (1−p)(2
M+M)

1−(1−p)(2
M+1)

(2.6)

Now the probability at Eqn. (2.2) becomes

P2i =
(1− p)(2

i+i)

1 +
∑M−1

i=0 (1− p)(2i+i) + (1−p)(2
M+M)

1−(1−p)(2
M+1)

(2.7)

for 0 ≤ i ≤M − 1. The probability at Eqn. (2.3) becomes

P2M =
1

1 +
∑M−1

i=0
1−(1−p)(2

M+1)

(1−p)(2
M−2i+M−i)

+ 1−(1−p)(2
M+1)

(1−p)(2
M+M)

(2.8)

The average number of 0 bits, denoted by E(0) in a pattern, can then be obtained

as follows

E(0) =
M∑
i=0

(
2i P2i

)
(2.9)
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When the traffic is heavy, p is close to 1. From Eqn. (2.6), we can see that P0 is also

close to 1 and thus E(0) is close to 0. When the traffic is light, p is close to 0. From

Eqn. (2.8), we can see that P2M tends to 1 and thus E(0) is close to 2M .

We will now derive an expression to determine the additional amount of power

saved at a particular node in PMAC over SMAC. Consider a time interval of length

E(0) ∗TR, where TR is the slot time in PMAC. It is easy to see that, over this entire

duration, a sensor node will be asleep in PMAC. If T is the frame duration in SMAC

and d is the duty cycle, then over the same time interval of E(0) ∗ TR, a node in

SMAC will be awake for the duration E(0)∗TR

T
∗ d. Thus the amount of additional

energy saved at a particular node in PMAC over SMAC is given by

Esave =
E(0) ∗ TR ∗ d ∗ Pidle

T
(2.10)

where Pidle is the power consumption when sensor nodes are in idle listening state.

Let S be the number of sensor nodes in the network not involved in the data gath-

ering/relaying process, then the idle listening energy saved by PMAC in the sensor

network during the time interval can be calculated as

Etotal
save = S ∗ E(0) ∗ TR ∗ d ∗ Pidle

T
(2.11)
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2.7 Simulation Results

We have simulated SMAC, TMAC and PMAC(I and II) using the latest version of

NS-2. The energy consumption, throughput and latency of those three protocols

have been investigated and comparisons have been made.

Table 2.3: Parameters used in the simulations

Parameter Value

initial energy 100 Joules

transmit power 24.75 mW

receiving power 13.5 mW

idle power 13.5 mW

bandwidth 20 kbps

contention window 63 ms

The simulations were done on a 5× 5 mesh topology, as shown in Fig. 2.5. In all

the simulations, we have used UDP as the transport layer protocol and variable bit

rate traffic sources with exponentially distributed “on” and “off” periods are used.

Constant bit rate sources are applied during each “on” period. Different traffic loads

are achieved by changing the traffic rate during the “on” periods. The simulation

time is set to 1500 seconds. For PMAC, TR = 258ms and TE = 104ms, where TR

and TE are the slot time in PRTF and PETF, respectively. The number of time slots

in PRTF is 64 and the number of time slots in PETF is 4. For SMAC, the listen

time is set to 143ms, the sleep time 1290ms and the cycle time 1433ms. The same

cycle time is used for TMAC. The TA time in TMAC is set to 142ms. The same
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virtual cluster scheme as for SMAC is used for TMAC in the simulation. Some of

the parameters used in the simulations are listed in Table 2.3, wherein we used the

same radio parameters as presented in the SMAC paper [71]. Those parameters are

based on the low power radio transceiver module TR1000 from RF monolithics, Inc.
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Figure 2.7: Comparison on total energy consumption among SMAC, TMAC and
PMAC under different traffic loads

Fig. 2.7-2.9 compare the energy consumption, throughput and power efficiency

among SMAC, TMAC and PMAC(I and II) under different traffic loads with varying

time intervals: 1, 5, 10, 20, 40, 60 seconds. This simulation was done on the same

5×5 mesh network as shown in Fig. 2.5. Fig. 2.7 shows that PMAC-I consumes least

energy among those four approaches for all traffic loads. The energy consumption

in PMAC-I and PMAC-II drop much faster than SMAC and TMAC as the traffic

becomes light. That means both PMAC-I and PMAC-II can adapt to the traffic

better than the other two schemes in terms of power saving. Although TMAC

adopts an adaptive duty cycle, it still consumes more power than expected. The
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under different traffic loads

reason could be that the TA timers may be scheduled multiple times and thus keep

nodes idle listening for a long time. Fig. 2.8 shows that the throughput of all the

four protocols are pretty close when the traffic is light, indicating sleeping does not

affect traffic flowing through in this case. However, when the traffic is heavy, TMAC,

PMAC-I and PMAC-II all have significant improvements on the throughput. That is

because all the three protocols are using adaptive duty cycles, while periodic sleeping

due to fixed duty cycle blocks the traffic flowing through in SMAC. PMAC-II can

have better throughput than TMAC although PMAC-I can not. Fig. 2.9 compares

the four protocols in terms of their power efficiency. Power efficiency, which is the

throughput achieved per unit of energy consumed, is given as

power efficiency =
total throughput

total energy consumption
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Figure 2.9: Comparison on power efficiency among SMAC, TMAC and PMAC under
different traffic loads

It has been observed that all the three protocols with adaptive duty cycles have better

power efficiency than SMAC, especially when the traffic load is heavy. PMAC-I has

the highest power efficiency although its throughput is not as high as TMAC and

PMAC-II. That also means PMAC-I is the best choice among those four protocols

when the energy saving is the major concern.

Fig. 2.10 shows the contour maps of the residual energy distribution of a 5 × 5

mesh network with the same communication path as shown in Fig. 2.5. We observe

that in PMAC-I, those nodes at the upper-left corner and the lower-right corner,

which are not involved in the communication, have more residual energy in compar-

ison with the other three. This is because in SMAC, those nodes not involved in the

communication still have to wake up periodically; in TMAC, the TA timer could

be scheduled multiple times and thus keep nodes idle-listening for a long time even
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Figure 2.10: Contour maps of residual energy on a 5 × 5 mesh for SMAC, TMAC
and PMAC

not involved in a communication; in PMAC-II, according to rule 5, all the potential

receivers must stay awake for a certain period of time in favor of throughput, hence

some nodes waste energy unnecessarily. In a word, PMAC-I shows better energy

localization than the other three.

Fig. 2.11 shows the single-hop and end-to-end latency of all the four protocols.

Both Fig. 2.11(a) and Fig. 2.11(b) show that SMAC has the highest single-hop and
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Figure 2.11: Comparison on latency among SMAC, TMAC and PMAC under dif-
ferent traffic loads

end-to-end latency. That is because the periodic sleeping blocks the traffic flow

through fast. PMAC-I also has pretty high latency. That is the sender can not

send data if the receiver has pattern bit 0 until the pattern bit at the receiver is

changed. This may be delayed until the next PRTF and thus causes a high latency.

Fortunately, PMAC-II can achieve latency as low as TMAC. That is because it is

more in favor of throughput and the sender does not need wait for the receiver

to become awake. Obviously, TMAC and PMAC-II are better choices when the

throughput and latency become major concern.

2.8 Summary

This chapter presents an energy efficient MAC protocol, called PMAC, where pat-

terns in tentative sleep-awake schedules of a sensor node are adaptive to the traffic
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conditions observed by that node. Patterns are exchanged among neighbors af-

ter some time. The actual sleep-awake schedules are generated based on a sensor

node’s own patterns and its neighbors’ patterns. Our simulation results show that

in comparison to SMAC, PMAC achieves more power savings under light loads, and

higher throughput under heavier traffic loads. The PMAC-I also show better power

efficiency when compared with TMAC. The improved performance of PMAC indi-

cates that “pattern exchange” is a promising framework for improving the energy

efficiency of the MAC protocols used in sensor networks.
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Chapter 3

A Traffic-Aware Switch Agent for WSNs

3.1 Introduction

There have been a number of approaches to deal with the bursty traffic in wireless

sensor networks with sensor nodes bearing a single radio interface. These approaches

include protocols at both medium access control (MAC) and routing layers. Adap-

tive MAC protocols such as SMAC [71], TMAC [56] and PMAC [73] adopt adaptive

duty cycles based on the traffic load. The radio is woken up when the traffic load

is heavy and is put into sleep when the traffic load is light. Those protocols assume

the physical layer has a large enough bandwidth to handle the peak traffic.

Dual radios can also be used to deal with bursty traffic. Dual radios typically

consist of one radio with a relatively high bandwidth, high power and longer trans-

mission range, and the other with a relatively low bandwidth, low power and shorter

transmission range. The low-bandwidth and low-power radio is used under light traf-

fic condition to save energy, while the high-bandwidth radio is turned on only under

heavy traffic conditions. In this chapter, we present and evaluate the architecture

of a distributed routing-layer switch agent for wireless sensor nodes equipped with

52



such kind of dual radios. The switch agent intelligently activates the high-bandwidth

and high-power radio based on either traffic condition or end-to-end delay. Com-

pared with existing works, our approach is completely decentralized in that each

node makes a local decision to wake up the appropriate high-bandwidth radios for

transferring the data to the destination. Each radio interface has its own routing

agent so that a better path can be found for the high-bandwidth radios. A switch

agent sits on top of the two routing agents to distribute traffic between the dual

radio interfaces. We have also proposed supporting enhancements (such as schemes

for maintaining the routing cache) that can result in additional energy savings at

network nodes. It is of practical value as a distributed and energy efficient way to

handle bursty traffic in wireless sensor networks with dual radios.

We have provided extensive simulation results to test the performance of our

proposed switch agent architecture using NS-2. Our simulation results indicate

that: (i) the end-to-end delay and throughput achieved by the proposed distributed

interface switch framework are comparable to those achieved in a network of sensor

nodes equipped only with IEEE 802.11 radios, (ii) the energy consumed in the

network using our interface switch framework is a fraction of that consumed in a

network of the IEEE 802.11 sensor nodes and is quite comparable to that of sensors

using only IEEE 802.15.4 radios.

The preliminary results of this work had been published in [74].
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3.2 Related Work

A few previous work had been done on dual radios. [43] proposed the CoolSpots

model which focuses on using bluetooth and WiFi radios in a single hop mode. A few

switching policies have been proposed to make the switching decisions. Although

reference [43] claims that the CoolSpots model can be used for ad hoc peer-to-peer

configuration, it does not address the complexities of the routing layer that arise as

a result of different transmission ranges of the two radios. [70] proposed a network

architecture consisting of a set of high-bandwidth nodes and low bandwidth nodes.

The low bandwidth nodes connect to the high-bandwidth nodes thereby reduce the

total number of transmissions to reach the destination. This increases the lifetime of

low-bandwidth nodes. The high bandwidth nodes are assumed to be connected to a

power source and hence do not have any energy constraints. [60] proposed the usage

of dual radios to avoid network congestion and maintain the application fidelity in

overload traffic conditions. A small number of statically placed virtual sinks with

separate longer-range radios form a secondary network. The longer-range radios at

the virtual sinks stay active all the time. Traffic will be redirected to the secondary

network when network congestion is detected in the primary network. When both

the primary and secondary networks are overloaded, the system falls back on the

traditional congestion mitigation schemes like rate control or packet dropping. The

drawbacks of this approach are that statically placed virtual sinks may not adapt to

network conditions very well and there is no power management scheme adopted for
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the longer-range radios. In this research, the longer-range radios are dynamically

selected and activated only when needed, which saves energy since overload traffic

conditions only account for a small portion of the network lifetime in most cases.

A more recent work by [52] introduces ideas similar to the ones introduced by

us in this research. They proposed a network architecture containing devices that

have a single low-bandwidth radio and devices with both low-bandwidth and high-

bandwidth radios. The low-bandwidth radios are always turned on and the high-

bandwidth radios are always turned off. However, the high power radio at a specific

node called the topology controller is always kept on. When a low-bandwidth node

has data to send to a particular destination, it sends a path request to the topol-

ogy controller. The topology controller selectively wakes up the high-bandwidth

radios along the path from the source to the destination. The data travels along

low-bandwidth nodes to high-bandwidth node, passes through a sequence of high-

bandwidth nodes, and finally goes from the high-bandwidth node to the destination

along low-bandwidth nodes. While the work done in [52] is interesting, it has a

few drawbacks. It uses a centralized controller (with no energy constraints) which

partially negates the advantages and philosophy of a truly distributed sensor net-

work. Also, only the source nodes are allowed to make the decision on using the

high-bandwidth nodes for transmission which could decrease the utility of the high

power radios.
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3.3 Overview of the Switch Agent

We assume the high-bandwidth radio has a relatively longer transmission range than

the low-bandwidth radio. This is true for radios used with the IEEE 802.11 and the

IEEE 802.15.4, even though high-bandwidth radio does not necessarily assume a

longer range, for instance, the ultra-wide band radios in the IEEE 802.15.3a or the

wireless USB devices have high bandwidth but fairly short transmission range.

We will call the interface with the lower bandwidth and shorter transmission

range as Interface-I and the one with the higher bandwidth and longer transmission

range as Interface-II. A switch agent is a software component that distributes traffic

between these two interfaces. By default, Interface-II is powered-off and is woken

up by sending appropriate control message along Interface-I. We will assume that

Interface-I is always active (with appropriate duty cycle) and that the network is

connected when all the nodes activate their Interface-I. A distributed protocol such

as AODV [44] is executed to populate the routing tables at each node. This routing

table will provide next-hop information along different routes in the network based

on Interface-I. Since the reachability of Interface-II is higher than Interface-I, at each

sensor node we need to find a new set of routing table based on Interface-II. If the

reachability of Interface-II is a multiple of the reachability of Interface-I, then with

appropriate modification to the AODV protocol, it may be possible to approximate

the routing table related to Interface-II from the Interface-I routing tables, thus

saving energy at nodes. In general, this may not be possible. Additionally, running
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Figure 3.1: Positioning of the switch agent

the routing protocols on Interface-II will likely find a shorter higher-bandwidth path

than constructing one from the Interface-I routing tables.

In order to use a different routing agent for the Interface-II, the switch agent

is placed above the routing agents. The protocol stack is illustrated in Fig. 3.1,

where RA-I and RA-II are the routing agents used by Interface-I and Interface-II,

respectively.

Two switching schemes have been proposed for the switch agent based on different

application delivery requirements: the queue-length switching and the delay-bound

switching. In the queue-length switching, switching occurs whenever an interface

queue length exceeds a predefined threshold. In the delay-bound switching, switching

occurs whenever the end-to-end delay of a certain traffic flow exceeds an upper-

bound limit demanded by applications. The queue-length switching is in favor of an
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application’s throughput demands, while the delay-bound switching is in favor of an

application’s demands on end-to-end delays.

3.3.1 Components of the Switch Agent

Every switch agent has the following components: interface queue monitor for queue-

length switching, end-to-end delay monitor for delay-bound switching, sleep-wakeup

unit, route cache unit, and timers.

3.3.1.1 Interface Queue Monitor

The duty of the switch agent is to switch Interface-II on and forward the traffic to

Interface-II in order to meet the application demands and/or when the traffic rate

at a node becomes high, necessitating the use of Interface-II. In order to make this

happen, we need a component to monitor the packet transmission queue at every

node. In this research, we have chosen to monitor the length of the interface queue

in between RA-I and MAC-I, since the queue length reflects the cumulative effect of

both incoming traffic rate and transmission rate. We will use a predefined threshold

called THRESHOLD HT. Whenever the queue length exceeds THRESHOLD HT

and if the Interface-II is on, then the incoming traffic is diverted to Interface-II.

3.3.1.2 End-to-end Delay Monitor

For delay-bound switching, the switch agent at every node x maintains a data struc-

ture. For a traffic flowing to a destination d through this node x, there will be an
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entry for it in the data structure. Let us assume node y is the previous hop of this

node x, if x is not the source node where the traffic flow is initiated. Then the

entry can be expressed as a quadruple [d, De, Dl, Te], where d denotes the destina-

tion node id, De denotes the last updated end-to-end delay from this node x to the

destination node d, Dl denotes the last updated one-hop delay from the previous

hop y to this node x, and Te denotes the expiration time at which the entry will be

removed. Initially, both De and Dl have a value of 0. Whenever node x receives a

data packet through its Interface-I, it will find out the current one-hop delay Dc of

the data packet by computing the difference between the current time and the time

stamp (when entering the previous hop y) in the packet header. Note that every

data packet is time-stamped when entering a node. If node x is the destination

node or an intermediate node other than the source node in which an entry already

exists for the same destination d, a comparison between the current one-hop delay

Dc and the last updated one-hop delay Dl will be drawn. If the difference exceeds

a predefined threshold DIFF, then a delay update will be triggered. This node x

will add the current one-hop delay Dc into its last updated end-to-end delay De and

send the result back to its previous hop y. Meanwhile, the current one-hop delay

Dc will replace the last updated one-hop delay Dl. Once the previous hop y receives

the delay packet, it will update its end-to-end delay. It turns out the delay updates

are initiated at destination nodes and propagate back to source nodes hop by hop.

The reason of having DIFF is to limit the number of delay packets flowing around

in the networks so that the delay packets would not use too much bandwidth.
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3.3.1.3 Route Cache

On-demand routing agents like AODV, establish routes whenever there are data

packets bound for a certain destination. We will use two route caches, one for

each interface. We will denote these route caches (the routing tables) as RC-I and

RC-II corresponding to Interface-I and Interface-II, respectively. When the network

initially starts up, only Interface-I is on. If there is a data packet originated at some

node, RA-I at that node will broadcast a route request. A route will be established

after receiving a route reply from either the destination node or a node knowing how

to reach the destination node. The routing agent like AODV can reestablish a route

whenever a route is expired or repair a route when the next-hop neighbor is dead.

All the Interface-IIs will be turned on for the initial switching since no cached routes

yet. RA-II will do the same to establish a route and the route will be cached for the

subsequent switching.

A RC-I entry is made to expire if messages along Interface-I are not delivered

to the next-hop specified in that entry. In this case, the entry is purged and the

routing agent at the node is activated to recalculate the route. An RC-II cache entry

(corresponding to Interface-II) will expire if it has not routed any data packets on it

for a period of time. Apart from caching all the route information to destinations at

relating to Interface-I, the number of hops (with Interface-I) required to reach each

destination can also be stored and updated from time to time. The caching of hop

counts will help to make a ringcast instead of broadcast for sending wake-up control
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messages. Ringcast is a broadcast but restricting the TTL (Time-To-Live) of the

broadcasted packet to a limited number of hops. This can save energy and improve

the scalability of the protocol.

3.3.1.4 Sleep-wakeup Unit

The sleep-wakeup unit at a node is responsible for (i) turning on Interface-II at

the node and (ii) sending control messages along the node’s Interface-I to turn on

Interface-II at other nodes. If an entry for a particular destination has to be popu-

lated in RC-II, we have resort to a broadcast/ringcast to determine the path (made

up of Interface-II) to the destination. These broadcast/ringcast control messages

are sent by the sleep-wakeup unit along Interface-I. Let us consider a scenario when

a RC-I entry is available and the RC-II entry has expired at node x for destination

d. The cache RC-I at x will give us the next hop node (say y) on the path to d

using Interface-I. Waking up node y’s Interface-II may not be prudent since we can

possibly bypass node y owing to the increased range of Interface-II at x. For this

reason, node x will send a broadcast/ringcast message to wake up Interface-II on all

the nodes that receive the message. After this, routing protocol is run on Interface-

II to create an entry for d in RC-II after which x starts forwarding data along this

path. The nodes that turned on their Interface-II will turn it off in case they do not

receive any data for forwarding along Interface-II for a period of time.

Now consider the scenario that both RC-I and RC-II entries are available at

node x for destination d. Having a RC-II entry for d does not imply that the route
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is active, since the intermediate nodes along that path could have turned off their

Interface-II due to inactivity. Let z be the next hop neighbor of x on RC-II towards

d. Further let y′ be the next hop node in RC-I to the destination z. Now a unicast

wake-up control message is sent to node y′ using Interface-I at node x with the

destination as node z.

A wake up registry is maintained at node x to indicate that node z is woken up

to route data packets to destination d. This will avoid unnecessary transmission of

wake-up messages. The entries in the registry are purged from time to time.

3.3.1.5 Timers

Three timers are maintained in the switch agent: IDLE TIMER, CACHE TIMER

and REGISTRY TIMER. The IDLE TIMER keeps track of the traffic that is seen

by Interface-II. In the absence of any traffic for a duration of time, defined by

IDLE INTERVAL, Interface-II will be turned off. CACHE TIMER is fired peri-

odically to purge old paths and determine new ones. The REGISTRY TIMER

is maintained to purge the entries in the registry. Each registry entry will be of

the form [d, t], where d is the destination and t is the timestamp indicating the

latest time the node has seen a data traffic to destination d through its Interface-

II. When the REGISTRY TIMER is fired, all the entries that satisfy the relation

curT ime− t > REG TTL will be removed, where curT ime is the current wall clock

time and REG TTL is a predefined threshold.
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3.4 Protocol Details

As stated earlier, the switch agent sits at the routing layer and on top of two routing

agents, each of which is for two different interfaces. In our distributed protocol nodes

receive four types of packets:

• wake-up packets - control packets generated from the switch agent to wake

up the Interface-II. Wake-up message could be either a unicast message or

a broadcast/ringcast message. All control packets communicate through the

Interface-I;

• routing packets - control packets generated by the routing agents to establish

or update a route;

• delay packets - control packets for updating end-to-end delays. Used only for

the delay-bound switching scheme.

• data packets - data packets originated from the sensors.

In each of the intermediate nodes along a route, every packet must go through

all the protocol layers until the switch agent. When the data packet reaches its

destination node, it will be passed to the upper layers above the routing layer.

We tag all packet headers with a channel ID. The data packet generated by the

application or the control packet generated by the switch agent at the node of origin

will have a channel ID 0. The switch agent, after determining the channel to use,

will use an ID 1 and 2 for the packets going through Interface-I and Interface-II,
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respectively. We will describe the protocol details based on the types of the packet

the switch agent receives.

3.4.1 Receiving a Routing Control Packet

When the switch agent receives a routing control packet, it will first check the header

of the packet. If the header is tagged with a channel ID 1 (resp. 2), the routing

packet will be forwarded to RA-I (resp. RA-II).

3.4.2 Receiving a Delay Packet

For the delay-bound switching scheme, whenever the switch agent at a node receives

a delay packet, it first check if there exists a delay entry on the list for a particular

destination. If not, add a new entry. Then simply update the end-to-end delay in

the existing or the newly added entry.

3.4.3 Receiving a Wake-up Packet

A wake-up packet sent by a node could be either a broadcast/ringcast message or a

unicast depending upon the availability of caching information.

1. Receiving a broadcast/ringcast message: If the switch agent receives a broad-

cast/ringcast message, it will drop the packet when TTL is 0. If the TTL is

greater than zero, the node’s sequence number will be used to eliminate broad-

casting of the old packet. In response to the new wake-up packet, Interface-II

will be started. If this particular node does not observe data flowing through
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its interface for a period of time IDLE INTERVAL after it has been switched

on, then its Interface-II will be put into sleep. An IDLE TIMER will be used

to countdown this interval of time.

2. Receiving a unicast message: If the switch agent receives a unicast wake-up

message through Interface-I and it is the next-hop identified, then the Interface-

II will be switched on and the IDLE TIMER will be rescheduled. Now it will

determine if a unicast or broadcast/ringcast message has to be sent to wake

up the nodes along the path to the destination. This decision is based on

information available at the cache RC-II. In addition, before sending a unicast

message is the wakeup registry searched to see if the next hop node is already

active on Interface-II. If it is active on Interface-II, then the wakeup message

along Interface-I is avoided and the data packets are sent via Interface-II to

the next hop node directly.

If the node receiving the wake-up message is not the next-hop that is identified,

then the message will propagate towards the next-hop node through Interface-

I. If the current node is the destination node of the original data flow, the

message will be dropped and no further unicast of the message will be sent.

3.4.4 Receiving a Data Packet

The data packets received by a switch agent can be either a data packet tagged with

channel ID 1 (pass-through traffic through Interface-I) or a data packet tagged with
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ID 0, which is a data packet originated from the current node. For the queue-length

switching, if there is no registry entry for the destination of the data packet, the

switch agent will forward it to RA-I and the packet will be tagged with channel ID

1. If the interface queue length exceeds the predefined threshold after receiving the

packet, the switch agent will turn on the Interface-II if it is not currently on. The

interface queue will be scanned and the destination with the maximum number of

packets will be found. A registry entry will be added for that destination. For the

delay-bound switching, if the current node is the destination node or an intermediate

node other than the source node, the one-hop delay will be updated and a new end-

to-end delay will be calculated and sent back to the previous hop if the difference

between the current one-hop delay and the last updated one-hop delay exceeds a

predefined range. If the end-to-end delay exceeds the upper-bound limit, the switch

agent will turn on the Interface-II and forward the data packet to RA-II. Otherwise,

the data packet is re-timestamped and forwarded to RA-I.

A broadcast/ringcast or a unicast wake-up message need to be sent to wake

up downstream nodes to that destination. First look up the route cache to see

if any route has been cached for the destination. If the answer is yes, construct a

unicast wake-up packet and set its destination to be the next hop of the cached route

and send the wake-up packet through Interface-I. If the answer is no, construct a

broadcast wake-up packet and broadcast it through Interface-I.

The data packets received by a switch agent could also be tagged with ID 2. That

indicates the Interface-II must be awake already. Otherwise, no packet tagged with

66



ID 2 can be received. The packet will be sent back down through the Interface-II to

the next hop. A registry entry will be added for the destination of the packet, if it

does not exist yet. The expiration time of the entry will be REG TTL. If such an

entry already exists it will be re-timestamped.

Some MAC protocols (like IEEE 802.11 and IEEE 802.15.4) and the routing

agents (like AODV) support callback functions in case of transmission errors. Those

callback functions can be leveraged to make sure the wake-up message can reach

the downstream nodes. If any callback occurs on the unicast wake-up message due

to collisions or poor link quality, an alternative path might be used or a broad-

cast/ringcast wake-up message will be sent out instead.

The pseudocode is listed in Procedures 3.1-3.5.

3.5 Performance Evaluation

3.5.1 Simulation Setup

We have carried out the simulations based on the NS-2 [3] implementation of IEEE

802.15.4 PHY/MAC [4] (the interface with a lower data rate, shorter-range and

lower power consumption) and IEEE 802.11 PHY/MAC [2] (the interface with a

higher data rate and power consumption). The IEEE 802.11 MAC in NS-2 only

implements DCF function, without the complexity of association.

IEEE 802.15.4 standard has been developed to address the unique needs of low

cost and low power of wireless sensor networks. IEEE 802.15.4 and IEEE 802.11
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Algorithm 3.1 Pseudocode for receiving a packet

RECEIVE(pkt) {

//PT RT : routing message from the routing agents

//PT WK: wake-up message from the switch agent

//PT DATA: data packets from the application

//RA-I: routing agent 1; RA-II: routing agent 2

nid← current node id

ptype← packet type of pkt

cid← channel ID tagged in the header of pkt

dst← destination address of pkt

prevhop← previous hop address of pkt

ts← time stamp when pkt is entering the previous hop

if ptype = PT RT then

if cid = 1 then

hand pkt over to RA-I

else if cid = 2 then

hand pkt over to RA-II

end if

else if ptype = PT WK then

call recvWakeup(pkt)

else
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if the delay-bound switching then

call updateDelay(pkt)

if cid = 0 OR cid = 1 then

ts← CURRENT TIME; prevhop← nid

end if

end if

found← registry lookup(dst)

if found = TRUE then

setRegistryExpireTime(dst, REG TTL)

call sendThroughChannel2 (pkt)

else if cid = 2 then

cancel idletimer( ) //cancel the idle timer if it is active

registry insert(dst) //insert a registry entry for dst

setRegistryExpireTime(dst, REG TTL)

call sendThroughChannel2 (pkt)

else if the queue-length switching then

call queueLengthSwitch(pkt)

else if the delay-bound switching then

call delayBoundSwitch(pkt)

end if

end if}
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Algorithm 3.2 Pseudocode for receiving wakeup message

recvWakeup(pkt){

if pkt is a broadcast message then

ttl ← the Time-To-Live of pkt

if ttl < 0 then

drop pkt

else

rq src← source where pkt is originated

rq bid← broadcast id given by the source

fresh← bid lookup(rq src, rq bid)

if fresh = FALSE then

drop pkt //obsolete wake-up message

else

bid insert(rq src, rq bid) //store the latest broadcast id

if registry is empty then

resched idletimer(IDLE INTERVAL)

end if

wake up Interface-II

ttl−− //decrement ttl by 1

broadcast pkt

end if

end if
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else if pkt is a unicast message then

rq dst← destination which the wake-up request is bound to

ip dst← destination address of pkt

if registry is empty then

resched idletimer(IDLE INTERVAL)

end if

if rq dst = address of the receiving node then

wake up Interface-II and drop pkt

else if ip dst = address of the receiving node then

wake up Interface-II

if there exists a cached route to rq dst then

nexthop← cache lookup(rq dst)

call sendWakeup(rq dst, nexthop)

else

call bcastWakeup( )

end if

drop pkt

else

continue to propagate pkt

end if

end if}
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Algorithm 3.3 Pseudocode for updating end-to-end delay

updateDelay(pkt) {

//DIFF: one hop delay variation triggering delay updates

nid← current node id

src← source address of pkt

dst← destination address of pkt

cid← channel ID tagged in the header of pkt

ts← time stamp when pkt is entering the previous hop

delay ent← end-to-end delay entry to dst

if cid = 1 AND src ̸= nid then

delay ent = delay lookup(dst)

if delay ent exists then

one hop delay ← CURRENT TIME - ts

if | delay ent.one hop delay - one hop delay | >= DIFF then

delay ent.one hop delay ← one hop delay

delay ← delay ent.delay + one hop delay

send the new delay to the previous hop

end if

end if

end if

}
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Algorithm 3.4 Pseudocode for queue-length switching

queueLengthSwitch(pkt){

//q: the interface queue between RA-I and MAC-I

tag the header of pkt with cid = 1

send pkt down through Interface-I

if q.length >= THRESHOLD HT then

if Interface-II is sleep then

wake up Interface-II

end if

if registry table is empty then

cancel idletimer( ) //cancel the idle timer if it is active

end if

dst max ← findMax (q)

found← registry lookup(dst max)

if found = TRUE then

call wakeupChannel2(dst max)

registry insert(dst max ) //add an entry for dst max

setRegistryExpireTime(dst, REG TTL)

end if

end if

}
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Algorithm 3.5 Pseudocode for delay-bound switching

delayBoundSwitch(pkt){

delay ent← end-to-end delay entry to dst

tag the header of pkt with cid = 1

delay ent← delay lookup(dst)

if delay ent.delay >= DELAY UPPER BOUND then

if Interface-II is sleep then

call wake up Interface-II

end if

if registry table is empty then

cancel idletimer( ) //cancel the idle timer if it is active

end if

call wakeupChannel2(dst)

registry insert(dst) //add a registry entry for dst

setRegistryExpireTime(dst, REG TTL)

else

send pkt down through Interface-I

end if

}
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both operate within the 2.4G ISM band. Interferences can occur when both types of

devices coexist within a close region [50, 39]. However, two clear channels (25 and 26)

exist outside the 802.11 spectrum and can be used as the primary 802.15.4 channels

for interference-free deployment [21]. Given the above, in our simulations, we have

assumed that the two interfaces operate in different channels with no interference

between them.

We have used on-demand routing protocol — AODV as the routing agents for

both interfaces. We have simulated on a random topology as in Fig. 3.2(a). The

random topology contains 100 nodes randomly generated with three source and

destination pairs which share paths. All the nodes have at least one neighboring

node within the transmission range of IEEE 802.15.4. We have also simulated on

two other different topologies, one with a single joint path (Fig. 3.2(b)), the other

with a single joint node (Fig. 3.2(c)). The simulation results turned out to have the

same trends as the random topology. All the results reported here are for random

topology unless otherwise specified. Bursty traffic was generated at each source

node. The bursty traffic alternates between idle time period and burst time period.

During the idle time period, no data was sent. During the burst time period, data

were sent at a constant bit rate. The time span of the idle time period and the

burst time period both follow a poisson distribution with a certain average. The

data packet size is 70 bytes and the simulation time is set for 30 minutes. The

THRESHOLD HT is set to 32 packets. Some of the other parameters used in the

simulations are listed in Table 3.1.
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(c) Simulation topology with a joint node.

Figure 3.2: Simulation topologies
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Table 3.1: Parameters used in the simulations [1]

Parameter IEEE 802.15.4 IEEE 802.11

transmit power 28.1 mW 660 mW

receiving power 62.1 mW 395 mW

idle power 1.4 mW 35 mW

data rate 250 kbps 2 Mbps

range 15 m 250 m

In the following discussions, the term “switch agent” refers to the scenario

where sensor nodes have both IEEE 802.15.4 and IEEE 802.11 interfaces. The

term “802.15.4 alone” refers to the scenario where sensor nodes with just the IEEE

802.15.4 interface alone are used. The term “802.11 alone” refers to the scenario

where sensor nodes with just the IEEE 802.11 interface alone are used.

3.5.2 Performance Metrics

The following metrics have been used to evaluate the performance of the switch

agent.

1. Average Goodput: the average number of bits (data packets only) received at

a sink node within a unit of time;

2. Packet Delivery Ratio: the ratio of the number of data packets received over

the number of data packets sent out;

3. Average End-to-End Delay: the average end-to-end delay between transmit-

ting a data packet and receiving it at its destination;
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4. Average Energy Consumption: the energy consumption of a single node on

average;

5. Energy Efficiency: the ratio of the number of bits received at the sink nodes

to the total energy consumed.

3.5.3 CBR Traffic

In this simulation, three pairs of flows with constant bit rate traffic start at different

time. The packet size is 70 bytes. The simulation time is only 100 seconds, since it

intends to show the switching moment only.

Fig. 3.3(a) shows that all the three types of interfaces have the same goodput

when the interval is greater than 0.06 seconds. At that point, the traffic load exceeds

the data rate limit of IEEE 802.15.4. Packets start dropping on the IEEE 802.15.4

interface. For the switch agent, the goodput remain close to that of the 802.11 alone,

since the IEEE 802.11 interface has been turned on by the switch agent.

Fig. 3.3(b) shows the packet delivery ratio drops abruptly when the data rate

limit of the IEEE 802.15.4 is reached, while the switch agent has as good delivery

ratio as the 802.11 alone.

Fig. 3.3(c) shows the average end-to-end delay. The switch agent has the same

end-to-end delay as IEEE 802.11. And both delays are lower than that of the

802.15.4 alone, since IEEE 802.15.4 has shorter transmission range and hence more
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hops are involved. The spike at 0.06 seconds for IEEE 802.15.4 is due to the callback

triggered by node failure.

Fig. 3.3(d) shows the average residual energy at each node. IEEE 802.11 con-

sumes much more energy even when the traffic load is light, since its idle listening

energy is much higher. When the traffic load exceeds the data rate limit of IEEE

802.15.4, its energy does not drop much since the IEEE 802.15.4 network is already

saturated. However, the residual energy of the switch agent remain close to that of

the IEEE 802.15.4, since the IEEE 802.11 interfaces were selectively waken up.

Fig. 3.3(e) shows the number of bits received on every unit of energy consumption.

When traffic load is light, IEEE 802.15.4 and the switch agent have better energy

efficiency than IEEE 802.11. When the traffic load is high, the switch agent remains

highest efficiency among the three. It is even higher than that of the 802.11 alone

since the IEEE 802.11 interfaces on the switch agents are selectively waken up.

3.5.4 Bursty Traffic with Varying Rates

Fig. 3.4 and Fig. 3.5 shows the simulation results for bursty traffic with varying rates

on the random topology and the joint path topology, respectively. In this simulation,

we have kept the average idle time and the average burst time to be fixed (both are

10 seconds), and investigated the performance under various traffic rates during the

burst time period.

Fig. 3.4(a) shows that all the three scenarios yield the same average goodputs

when the data rate is lower than 10Kbits/sec. For the data rate greater than
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10Kbits/sec, the traffic load exceeds the data rate limit of IEEE 802.15.4. Pack-

ets start dropping for the 802.15.4 alone. For the switch agent, the goodput remains

close to that of the 802.11 alone, since the IEEE 802.11 interface is turned on by

the switch agent. Apparent goodput drop for both the 802.11 alone and the switch

agent is observed on the joint path topology (Fig. 3.5(a)) when the data rate is

greater than 40Kbits/sec. This is due to the reduced network capacity induced by

increasing collisions along the joint path.

Fig. 3.4(b) shows the packet delivery ratio drops abruptly for the 802.15.4 alone

when the data rate limit of IEEE 802.15.4 is reached, while the switch agent has as

good delivery ratio as the 802.11 alone. Consistent with the goodput, the delivery

ratio drops apparently on the joint path topology ((Fig. 3.5(b)) after 40Kbits/sec

for both the 802.11 alone and the switch agent.

Fig. 3.4(c) shows a transition occurs on the end-to-end delay of the switch agent

when the traffic load becomes heavier. It is the same as that of the 802.15.4 alone

when the traffic load is light, while it gets close to that of the 802.11 alone when

the traffic load increases. The end-to-end delay of the 802.15.4 alone increases dra-

matically when traffic load becomes heavy due to the increased collisions. The

end-to-end delays of the 802.11 alone and the switch agent are also getting worse

after 40Kbits/sec on the joint path topology (Fig. 3.5(c)).

Fig. 3.4(d) shows the average energy consumption at each node. The 802.11 alone

consumes much more energy even when the traffic load is light, since its idle listening

energy is much higher. When the traffic load exceeds the data rate limit of IEEE
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802.15.4, its energy consumption does not increase much since the IEEE 802.15.4

network is already saturated. However, the energy consumption of the switch agent

remains close to that of the 802.15.4 alone, since their IEEE 802.11 interfaces were

selectively waken up.

Fig. 3.4(e) shows the number of bits received on every unit of energy consumption.

When traffic load is light, the 802.15.4 alone and the switch agent have better energy

efficiency than the 802.11 alone. The switch agent surpasses the 802.15.4 alone when

the data rate reaches 25Kbits/sec and remains the highest efficiency among the three

afterwards. That is because the IEEE 802.11 interfaces on the switch agent are

selectively waken up.

3.5.5 Bursty Traffic with Varying Burst Time

Fig. 3.6 shows the simulation results for bursty traffic with varying burst time peri-

ods. In this simulation, we have kept the average idle time to be fixed (10 seconds),

and investigated the performance under various average bursty time. The rate dur-

ing burst time period is 10Kbits/sec.

Fig. 3.6(a) shows an increase of goodput with longer period of burst time for all

the three scenarios. The switch agent has a goodput very close to that of the 802.11

alone, which is also much better than that of the 802.15.4 alone.

Fig. 3.6(b) shows that the switch agent has a delivery ratio close to that of

the 802.11 alone, which is also close to 1. The delivery ratio of the 802.15.4 alone
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decreases with the increase of the burst time period, because the longer burst time

could cause more collisions.

Fig. 3.6(c) shows the average end-to-end delay. The 802.15.4 alone has the largest

delay and the 802.11 alone has the smallest delay. The switch agent falls in between.

When the burst time period increases, the delay of the switch agent is getting closer

and closer to that of the 802.11 alone, since more traffic is being sent through the

higher-bandwidth radio.

Fig. 3.6(d) shows the average energy consumption at each node. The switch agent

consumes much less energy than the 802.11 alone, since only the nodes involved in

data communication will stay awake. It is a little more than what the 802.15.4 alone

consumes.

Fig. 3.6(e) shows the energy efficiency defined by the number of bits received

on every unit of energy consumption. Since the switch agent has a goodput very

close to the 802.11 alone but with a lot less energy consumption, it yields a much

better energy efficiency compared to the 802.11 alone without compromising the

throughput and end-to-end delay. The energy efficiency of the switch agent will

surpass that of the 802.15.4 alone when the traffic load gets heavier.

3.5.6 Delay Bound Switching for Bursty Traffic with Varying Rates

Simulations have been carried out on all the three topologies for the delay-bound

switching. Fig. 3.7 shows the simulation results for bursty traffic with varying rates.

In this simulation, we have kept both the average idle time and the average burst
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time to be 10 seconds and set the upper-bound limit of the end-to-end delay to be

1 second. Simulation results on all the three topologies exhibit the same trend.

Fig. 3.7(a) shows that all the three scenarios yield the same average goodputs

when the data rate is lower than 5Kbits/sec. For data rate in between 10Kbits/sec

and 20Kbits/sec, the average goodputs of both the 802.15.4 alone and the switch

agent drops since the traffic load exceeds the data rate limit of IEEE 802.15.4. The

switch agent drops even more than the 802.15.4 alone. This is introduced by the

extra delay packets in the switch agent. Starting from 25Kbits/sec, the delay bound

switching occurred at the switch agent, so its average goodput jumps close to the

802.11 alone.

Fig. 3.7(b) shows the packet delivery ratio drops abruptly for both the 802.15.4

alone and the switch agent after the data rate limit of IEEE 802.15.4 is reached.

The switch agent drops even more than the 802.15.4 alone before the delay bound

switching occurs at 25Kbits/sec. Again, this is due to the extra delay packets in the

switch agent.

Fig. 3.7(c) shows that the switch agent gives a little higher end-to-end delay than

the 802.15.4 alone before 25Kbit/sec due to the extra delay packets. Delay bound

switching occurs starting from 25Kbits/sec and the end-to-end delay for the switch

agent is getting close to that of the 802.11 alone. Even though the average end-to-

end delay for the 802.15.4 alone is still below 0.2 seconds at the rate of 25Kbits/sec,

the instantaneous end-to-end delay start exceeding the 1 second delay upper bound

at some moment, which triggers the switching.
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Fig. 3.7(d) shows the average energy consumption at each node. The extra

delay packets in the switch agent do not introduce much more energy consumption

than the 802.15.4 before the switching occurs. After switching occurs at the rate of

25Kbits/sec, the switch agent consumes a modestly more energy than the 802.15.4,

which, however, is still far below the energy consumption of the 802.11 alone.

Fig. 3.7(e) shows the number of bits received on every unit of energy consumption.

For both the random and the joint node topologies, the switch agent has higher

energy efficiency than the 802.15.4 alone when the traffic load becomes heavy. That

is not the case for the joint path topology (Fig. 3.7(f)), where its network capacity

is relatively lower so that the traffic rate exceeds its network capacity. However, for

all the three topologies, the switch agent shows higher energy efficiency than the

802.11 alone.

3.6 Summary

This chapter presents a switch agent at the routing layer, sitting on top of dual

routing agents. The switch agent monitors the traffic flow or the end-to-end delay

and switches on the high-bandwidth interface whenever the traffic rate becomes

high or the end-to-end delay exceeds an upper bound. To save energy for using the

high-bandwidth interface, the switch agent caches the routes established previously

so that a unicast wake-up message can be sent out to selectively wake up the high-

bandwidth interface at the downstream nodes. The switch agent also keeps a registry
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for flows which already have the high-bandwidth interfaces awake so that no further

wake-up message transmissions are incurred for subsequent requests.

The simulations shows that the switch agent satisfies applications’ demands on

throughput and end-to-end delay without incurring much energy wastage, compared

to the high-power radio alone.
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Figure 3.3: Comparisons among 802.11 alone, 802.15.4 alone and the switch agent on
the random topology under different CBR traffic loads (for queue-length switching)
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Figure 3.4: Comparisons among 802.11 alone, 802.15.4 alone and the switch agent on
the random topology under different bursty traffic loads (for queue-length switching)
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Figure 3.5: Comparisons among 802.11 alone, 802.15.4 alone and the switch agent
on the joint path topology under different bursty traffic loads (for queue-length
switching)
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Figure 3.6: Comparisons among 802.11 alone, 802.15.4 alone and the switch agent
on the random topology with different burst time (for queue-length switching)
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Figure 3.7: Comparisons among 802.11 alone, 802.15.4 alone and the switch agent on
the random topology under different bursty traffic loads (for delay-bound switching)
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Chapter 4

Modeling and Performance Analysis of DMAC for WSNs

4.1 Introduction

Energy saving is one of the key challenges in wireless sensor networks due to infeasible

battery replacement in most situations. Many MAC protocols have been proposed

to save the unnecessary energy consumption due to idle listening by putting sensor

nodes into sleep. SMAC [71], TMAC [56], BMAC [45] and XMAC [8] are some

examples of the energy saving MAC protocols. DMAC [32] is another energy saving

MAC protocol specifically designed for low-rate data gathering in wireless sensor

networks. It employs staggered sleep-awake schedules to enable continuous data

forwarding along a data gathering tree rooted at the sink node. Contention is reduced

because the active periods are now separated. Additional active periods can be added

to a node with little overhead through the more data flag when a node has multiple

packets to send. A data prediction mechanism is used to add additional receiving

and sending slots in order for other child nodes to send data in a timely manner.

More-To-Send packets are used to avoid collision caused by interference between

nodes on different branches of the data gathering tree.
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Most of the work on energy saving MAC protocols for wireless sensor networks

had taken the pragmatic and experimental approaches, with no analytical model

presented to provide insights on how their protocols perform. Simulations are good

for complex systems where the analytical solution is infeasible. However, simulation

is quite time consuming and its results only demonstrate a few scenarios or instances

and may not be enough to draw general conclusions. In this chapter, we present a

generalized model for DMAC and analyze its performance under both CBR traffic

and stochastic traffic following a Poisson process. The stochastic traffic scenario is

modeled as a discrete time Markov chain and the analytical results are obtained

using numerical methods. The consistency between the analytical results and the

simulation results shows that the analytical approach can be used as a complemen-

tary tool for performance analysis on DMAC. The preliminary results of this work

had been published in [75].

4.2 Related Work

Only a few recent work attempted to model and analyze some of the MAC proto-

cols. Yang and Heinzelman had proposed Markov models for both SMAC [68] and

XMAC [69]. In [68], two Markov models were proposed to evaluate the throughput

of SMAC with and without retransmissions. The models were validated through

simulations with varying number of sensor nodes, queue capacity, packet arrival rate

and contention window. Similar approach is used to evaluate the throughput of
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XMAC in [69]. Both analytical models match simulation results within a 5% range.

Even though the lack of analytical work on energy saving MAC protocols for wireless

sensor network, quite a lot of Markov models were proposed to analyze the IEEE

802.11 [6, 13, 19] and the IEEE 802.15.4 [20, 18, 46, 38, 42]. Bianchi [6] proposed a

Markov model to analyze the saturation throughput of the IEEE 802.11 distributed

coordination function, which inspired most of the analytical work coming after it.

To the best of our knowledge, there is no analytical model proposed for evaluating

the performance of DMAC.

4.3 A Generalized Model

Level i · · ·· · ·· · ·r r r rs s s s r s · · ·· · ·

� -5µ
� -T = N × (5µ)

Level i− 1 · · ·· · ·· · ·r r r rs s s s r s · · ·

Figure 4.1: Time slots in DMAC

As shown in Fig. 4.1, DMAC is a time-slotted MAC protocol in which time is

divided into small time slots. All the time slots have equal length and is long enough

to send out one data packet along with control packets. Let µ be the length of such

a time slot. In DMAC, a node will only send one data packet every 5 time slots in

order to avoid collisions, so every 5 consecutive time slots can be virtually grouped

into an active period. The first time slot in an active period is a receiving slot and

labeled by r in Fig. 4.1, and the second slot in an active period is a sending slot
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and labeled by s in Fig. 4.1. The other 3 time slots are all sleeping slots since the

node knows the downstream nodes along a multi-hop path will forward the data

packet in the next 3 time slots. Additional receiving/sending slots will be held in

the subsequent active periods if (1) a more data flag is set in the current data packet

because the sender has more data to send or (2) a sender has lost channel contention

but overheard an ACK packet from its parent or (3) a node on a different branch is

sending an explicit MTS packet.

A cycle, denoted by T , contains N number of active periods. That is, T =

N × (5µ). In the DMAC paper, N = 4. The receiving/sending time slots of a node

at level i−1 is staggered with respect to level i by shifting one time slot to the right.

Assume Er is the energy consumed in the receiving time slot and Es is the energy

consumed in the sending time slot. Also assume that the energy consumed in the

sending time slot is 0 if there is no data to be sent.

4.4 Analysis on DMAC

In this section, we analyze the average delay and average energy consumption at a

single source node under both CBR and stochastic traffic following a Poisson process.

For the sake of simplicity, we ignore the random delay introduced by contention and

assume all the sending slots consume the same amount of energy in presence of data

and same for all the receiving slots, however sending slots and receiving slots may

consume different amount of energy.
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4.4.1 CBR Traffic

CBR traffic can be regarded as a deterministic process. Let Ti be the time moment

at which the ith packet arrives at a node, where i = 0, 1, 2, ..., and ∆t denote the

time interval between two consecutive data packets. Then we have

Ti = T0 + i×∆t (4.1)

For the sake of simplicity, let’s assume T0 = 0 and ∆t = Mµ where M = 1, 2, ....

That is, Ti = iMµ.

4.4.1.1 Case 1: M ≥ 5N

This case can be regarded as M = 5Nc+δ with c = 1, 2, 3, ... and δ = 0, 1, 2, ..., 5N−

1. In this case, the traffic load is so light that only the first receiving and sending

slots in a T cycle are likely to be waken up to receive or send packets.

Ti = iµ(5Nc+ δ)

= (ic+

⌊
iδ

5N

⌋
)5Nµ+ [iδ −

⌊
iδ

5N

⌋
5N ]µ

= (ic+

⌊
iδ

5N

⌋
)5Nµ+∆i (4.2)

where ⌊X⌋ is the floor integer of a real number X and

∆i = (iδ −
⌊
iδ

5N

⌋
5N)µ (4.3)
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Let Di denote the delay of the ith packet at the node, then

Di =


µ−∆i, if 0 ≤ ∆i ≤ µ

5Nµ+ (µ−∆i), if µ < ∆i < 5Nµ

(4.4)

Let D̃ denote the average delay over a large number of data packets. If δ = 0, it

is obvious that D̃ = µ. For δ ̸= 0, let δ
5N

= m
n

where m,n are positive integers

and coprime. It is trivial to show that ∆i is periodic with a period n since n is the

smallest integer such that ∆i+n = ∆i. To calculate D̃, it is sufficient to calculate the

average delay of all the n number of packets in a single period instead. If we can

figure out how many packets out of the n number of packets fall into 0 ≤ ∆i ≤ µ

and how many fall into µ < ∆i < 5Nµ, then we can calculate D̃ easily.

As ∆i is a multiple of µ, 0 ≤ ∆i ≤ µ is equivalent to ∆i = 0 or ∆i = µ. That is,

iδ

5N
−
⌊
iδ

5N

⌋
= 0 (4.5)

or

iδ

5N
−
⌊
iδ

5N

⌋
=

1

5N
(4.6)
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From Eqn. (4.5), we know that iδ
5N

= im
n

must be an integer and hence i = Bn where

B = 0, 1, 2, .... It also means that within a period n, there is exactly one such i

satisfying Eqn. (4.5). From Eqn. (4.6), we have

iδ

5N
= C +

1

5N

i =
5CN + 1

δ
, (4.7)

where C is such an integer that 5CN+1
δ

= ⌊5CN+1
δ
⌋. Let A be the number of such C’s

also satisfying i < n, which can be computed numerically. Therefore, totally (A+1)

out of n number of packets fall into 0 ≤ ∆i ≤ µ and the other (n− A− 1) fall into

µ < ∆i < 5Nµ. Now the overall average delay D̃ at a source node can be expressed

as

D̃ =
1

n

[
n−1∑
i=0

((5N + 1)µ−∆i)− 5N(A+ 1)µ

]
(4.8)

=
µ

n

[
n(5N + 1)− 5N(A+ 1)− 5N

n−1∑
i=0

(
im

n
−
⌊
im

n

⌋)]

=
µ

n

[
5N(n− A− 1) + n− 5Nm(n− 1)

2
+ 5N

n−1∑
i=0

⌊
im

n

⌋]
(4.9)

The summation term in Eqn. (4.8) gives the total delay by assuming all the n number

of packets fall into µ < ∆i < 5Nµ, which overestimates the total delay by 5N(A+1)µ

as (A+1) out of n number of packets fall into 0 ≤ ∆i ≤ µ. The second term deducts
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the overestimated delay from the summation term. Applying the following formula

for positive integers m and n which are co-prime,

n−1∑
i=1

⌊
im

n

⌋
=

1

2
(m− 1)(n− 1), (4.10)

we have

D̃ =
µ

n

[
5N(n− A− 1) + n− 5Nm(n− 1)

2
+

5N(m− 1)(n− 1)

2

]
=

µ

n

[
5N

(
n− 1

2
− A

)
+ n

]
(4.11)

According to Eqn. (4.2), the arrival time of the nth packet will be Tn = (nc+m)T .

That means there are (nc +m) number of T cycles upon receiving the nth packet.

The source node will be waken up at the first and only the first receiving time slot

of every T cycle. Therefore, there are totally (nc +m) awake receiving slots. Since

only one packet can be sent in a cycle T = 5Nµ, only n number of sending time slots

are really awake to send the n number of packets. The average energy consumed

within a T cycle will be:

Ẽ =
1

nc+m
[(nc+m)Er + nEs]

= Er +
n

nc+m
Es (4.12)
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4.4.1.2 Case 2: 5 <= M < 5N

Let ik and ik′ denote the ikth and ik′th packets starting from 0. They are also the

first packets in the kth and k′th T cycles to be buffered and delayed to their next

T cycles, respectively. That is, ik and ik′ will be the smallest integer satisfying the

following condition:

ikMµ− [5Nk′µ+ µ+ 5(ik − 1− ik′)µ] > 0, (4.13)

wherein ikMµ is the arrival time of the ikth packet, ik− ik′ is the number of packets

buffered and sent out before the ikth packet. This condition basically states that

the arrival time of the ikth packet must come after the beginning of the last sending

time slot.

Eqn. (4.13) can be reduced to

ik >
5Nk′ − 5ik′ − 4

M − 5
(4.14)

Since ik is the smallest integer satisfying the above inequality, it can be expressed

as

ik =

⌈
5Nk′ − 5ik′ − 4

M − 5

⌉
(4.15)

It is obvious that the initial condition i1 = 1. Let K be the first T cycle such that

iK = 5NK/M . If such a K exists, then the process follows a periodic pattern. All
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the T cycles thereafter will repeat the first K number of T cycles. Such K can be

numerically computed through the following iterations.

initial condition: k′ = 1 and i1 = 1

iteration: ik =

⌈
5Nk′ − 5ik′ − 4

M − 5

⌉
k = k′ +

⌈
ikM − 5Nk′

5N

⌉
(4.16)

k′ = k

stop condition: ik = 5Nk/M or k is very large

Let S be the set of k’s obtained through the iterations, then the average delay

at a node can be expressed as

D̃ =
Mµ

5NK

∑
k∈S

ik−ik′∑
j=1

(5(j − 1) + 1) +

⌊ 5Nk
M

⌋∑
j=ik

(5Nk − jM)

−
ik−1∑

j=⌈ 5Nk′
M

⌉

(jM − 5Nk′)

 . (4.17)

D̃ can be calculated as ik can be computed through the iterations.

The average energy consumed within a T cycle can be expressed as

Ẽ =
1

K

[
5NK

M
(Er + Es) +KEr

]
=

5N

M
(Er + Es) + Er. (4.18)
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5NK
M

number of packets are sent out in K number of T cycles, each packet consumes

Er + Es amount of energy. An extra receiving time slot in every T cycle is used

before going to sleep.

4.4.1.3 Case 3: M < 5

This case represents a saturated and unstable state. The arrival time of the ith

packet is Ti = iMµ and the sending time of the ith packet is (i× 5µ+µ). Therefore

the average delay upon the sending of the kth packet is

D̃ =
1

k

k∑
i=0

[i(5−M) + 1]µ. (4.19)

The average energy consumption within a T cycle is Ẽ = N(Er + Es).

4.4.2 Stochastic Traffic

Now let us assume the packet arrivals follow a Poisson process {N(t) : t ≥ 0} with a

rate parameter λ, where N(t) is the number of packets that have arrived up to time

t. Then the probability of k number of packets arriving in time interval (t, t + ∆t]

is given by a Poisson distribution:

P [N(t+∆t)−N(t) = k] =
e−λ∆t(λ∆t)k

k!
(4.20)
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where k = 0, 1, 2.... Poisson process is memoryless, which means that the number of

packets arriving after time t is independent of the number of packets arriving before

time t.

Xij denotes the state of a sensor node at the end of every T cycle, where i =

0, 1, 2, ..., N and j = 0, 1, 2, ... are two discrete valued random variables. Random

variable i denotes that the first i number of active periods in the T cycle are used

for receiving and sending. Random variable j denotes that there are j number of

packets buffered at the end of the T cycle. Then the random variables {Xij} forms a

Discrete Time Markov Chain since the next state only depends on the current state

and not on the past. Let Pij,mn denote the state transition probability from state

Xij to Xmn. Let Dij,mn, Eij,mn be the average delay and the energy consumption

incurred at the state Xmn, respectively. Note that Dij,mn, Eij,mn only take into

account the effects of the packets arrived or buffered at the current T cycle and

exclude the effects of the packets buffered at the previous T cycle. A few cases need

be considered here.

4.4.2.1 Case 1: 0 ≤ m < N and m < j

It is obvious that in this case the state transition probability Pij,mn = 0. If j < N ,

then all the j packets buffered at the end of the previous T cycle are supposed to be

sent out at the first j number of active periods of the current T cycle. If j ≥ N , then

the first N number of packets will be sent out in the current T cycle. Therefore,

m ≥ j or m = N is the necessary condition for having a non-zero state transition
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probability Pij,mn. All these states in this case should be excluded in the calculation

of the average delay or the average energy consumption.

4.4.2.2 Case 2: 0 ≤ j < m < N

The state transition probability can be expressed as:

Pij,mn = e−λµ(5(m−1)+1) [λµ(5(m− 1) + 1)](m−j)

(m− j)!
× Ij,m

×e−λµ(5(N−m+1)−1) [λµ(5(N −m+ 1)− 1)]n

n!

= e−λµ(5N) [λµ(5(m− 1) + 1)](m−j)

(m− j)!
× Ij,m

× [λµ(5(N −m+ 1)− 1)]n

n!
(4.21)

where Ij,m is an integral depending on j and m:

Ij,m =
(m− j)!

(5(m− 1) + 1)(m−j)

∫ 5(j−1)+1

0

∫ 5j+1

τ1

∫ 5(j+1)+1

τ2

...

∫ 5(m−3)+1

τm−j−2

∫ 5(m−2)+1

τm−j−1

dτm−jdτm−j−1...dτ3dτ2dτ1 (4.22)

for 0 < τ1 < τ2 < τ3 < ... < τm−j−1 < τm−j < 5(m− 2) + 1.

In this case, in addition to the j number of packets from the previous T cycle,

there must be another (m−j) number of packets arriving during the first 5(m−1)+1

time slots. The probability for that to occur is given by the terms before the Ij,m

term in Eqn. (4.21). However, this does not guarantee that all those (m− j) packets

will be sent out as supposed to be. There are further restrictions on the arrival time

103



of the (m−j) packets in order for them to be sent. The probability of having proper

arrival timings among those (m − j) packets is given by the term Ij,m, which we

will explain in details shortly. Furthermore, there should be another n number of

packets coming and being buffered during the rest of the T cycle, whose probability

is given by the terms after the term Ij,m.

In order to understand the term Ij,m, first let’s recall the order statistics property

of a Poisson process. For a Poisson process {N(t) : t ≥ 0}, suppose we are given

that for a fixed t, N(t) = n. Let Ti be the arrival time of the ith event, where

i = 1, 2, ..., n. Let u1, u2, ..., un be i.i.d random variables each having a uniform

distribution over (0, t) and U(1), U(2), ..., U(n) be their order statistics. Then the

conditional joint probability density function of (T1, T2, ..., Tn) given that N(t) = n

is the same as the joint probability density function of (U(1), U(2), ..., U(n)). That is,

fT1,T2,...,Tn((τ1, τ2, ..., τn)|N(t) = n)

=


n!
tn
, for 0 < τ1 < τ2 < ... < τn < t

0, otherwise

(4.23)

Without loss of generality, we assume µ = 1. According to the order statistics

property in Eqn. (4.23), the conditional joint probability density function of the

(m − j) packets is (m−j)!

(5(m−1)+1)(m−j) , for 0 < τ1 < τ2 < τ3 < ... < τm−j−1 < τm−j <

5(m− 1) + 1. Furthermore, in order for the first packet among the (m− j) packets

to be sent out, it must arrive no later than the (5(j − 1) + 1)th time slot. That is,
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0 < τ1 ≤ 5(j − 1) + 1 must be satisfied so that a more data flag will piggyback the

jth data packet being sent out. As a result, the next receiving/sending time slots

will stay awake to send more data. The second packet must come after τ1 but no

later than the (5j + 1)th time slot, i.e., τ1 < τ2 ≤ 5j + 1, and so forth. Integrating

the conditional joint probability density function over all those ranges will give us

the conditional joint probability for all the (m− j) packets to be sent out.

The average delay Dij,mn can be expressed as

Dij,mn = e−λµ(5N) [λµ(5(m− 1) + 1)](m−j)

(m− j)!

µ

(m− j + n)

×

{
Aj,m + Ij,mBm,N + Ij,m

n∑
k=1

(5(k − 1) + 1)

}

× [λµ(5(N −m+ 1)− 1)]n

n!
(4.24)

where Aj,m is an integral depending on j and m:

Aj,m =
(m− j)!

(5(m− 1) + 1)(m−j)

∫ 5(j−1)+1

0

∫ 5j+1

τ1

∫ 5(j+1)+1

τ2

...

∫ 5(m−3)+1

τm−j−2

∫ 5(m−2)+1

τm−j−1

m−j∑
k=1

(5(j + k − 1) + 1− τk)

· dτm−jdτm−j−1...dτ2dτ1 (4.25)
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for 0 < τ1 < τ2 < ... < τm−j−1 < τm−j < (5(m − 2) + 1), and Bm,N is an integral

depending on m and N :

Bm,N =
n!

(5(N −m+ 1)− 1)n

∫ 5N

5(m−1)+1

∫ 5N

τ1

· · ·
∫ 5N

τn−2

·
∫ 5N

τn−1

n∑
k=1

(5N − τk)dτndτn−1...dτ2dτ1 (4.26)

for 5(m− 1) + 1 < τ1 < τ2 < ... < τn−1 < τn < 5N .

Inside the curly bracket of Eqn. (4.24), the Aj,m term is associated with the

delays of the (m − j) number of packets received and to be sent in the current T

cycle. The Bm,N term is related to the sleep delays of the n number of buffered

packets up to the end of the current T cycle. The last term is associated with the

delays of the n number of buffered packets with respect to the beginning of the next

T cycle. The Bm,N term and the last term together give the delays of the n number

of buffered packets.

4.4.2.3 Case 3: 0 ≤ j = m < N

The state transition probability can be expressed as:

Pij,mn = e−λµ(5(j−1)+1)e−λµ(5(N−j+1)−1) × [λµ(5(N − j + 1)− 1)]n

n!

= e−λµ(5N) [λµ(5(N − j + 1)− 1)]n

n!
(4.27)

106



A node must stay awake at the receiving and sending time slots of the first 5(j−1)+1

number of time slots in the current T cycle in order to send all the j number of

packets buffered during the previous T cycle. To end up at a state Xmn with m = j,

there must be no packet arriving by the end of the first (5(j−1)+1) time slots. The

probability for that to happen is e−λµ(5(j−1)+1) according to the Poisson distribution

in the Eqn. (4.20), wherein k = 0 and ∆t = (5(j − 1) + 1)µ. Also to end up at

a state Xmn, there must be another n number of packets arriving during the rest

of the T cycle after the first (5(j − 1) + 1) time slots. The probability for that to

happen is again given by the Poisson distribution in the Eqn. (4.20), wherein k = n

and ∆t = [5(N − j + 1)− 1]µ.

The delay Dij,mn in this case can be expressed as:

Dij,mn = e−λµ(5N) [λµ(5(N − j + 1)− 1)]n

n!

µ

n

×

{
Cj,N +

n∑
k=1

(5(k − 1) + 1)

}
(4.28)

where Cj,N is an integral depending on j and N :

Cj,N =
n!

(5(N − j + 1)− 1)n

∫ 5N

5(j−1)+1

∫ 5N

τ1

· · ·
∫ 5N

τn−2

·
∫ 5N

τn−1

n∑
k=1

(5N − τk)dτndτn−1...dτ2dτ1 (4.29)

for 5(j − 1) + 1 < τ1 < τ2 < ... < τn−1 < τn < 5N .
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Inside the curly bracket of Eqn. (4.28), the Cj,N term is associated with the sleep

delays of the n number of buffered packets up to the end of the current T cycle. The

last term is related to the delays of the n number of buffered packets with respect

to the beginning of the next T cycle.

4.4.2.4 Case 4: 0 ≤ j < m = N

The state transition probability can be expressed as:

Pij,mn = e−λµ(5N) [λµ(5N)](N−j+n)

(N − j + n)!
× Ij,N (4.30)

where Ij,N is an integral depending on j and N :

Ij,N =
(N − j + n)!

(5N)(N−j+n)

∫ 5(j−1)+1

0

∫ 5j+1

τ1

∫ 5(j+1)+1

τ2

...

∫ 5(N−3)+1

τN−j−2

∫ 5(N−2)+1

τN−j−1

∫ 5N

τN−j

∫ 5N

τN−j+1

...

∫ 5N

τN−j+n−1

dτN−j+n...dτN−j+1dτN−j...dτ3dτ2dτ1 (4.31)

for 0 < τ1 < τ2 < ... < τN−j−1 < τN−j < ... < τN−j+n−1 < 5N .

In this case, in addition to the j number of packets from the previous T cycle,

there must be another (N − j + n) number of packets arriving during the current

T cycle. The first (N − j) ones among the (N − j + n) number of packets will be

sent out resulting in a state XNn. The probability to have (N − j + n) number of

packets coming during the current T cycle is given by the terms before the Ij,N term
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in Eqn. (4.30). Again, this does not guarantee that its first (N − j) packets will be

sent out as supposed to be. There is further restriction on the arrival time of the

(N − j+n) packets in order for the first (N − j) packets to be sent. The probability

of having proper arrival timings among those (N − j + n) packets is given by the

term Ij,N .

Without loss of generality, we again assume µ = 1. According to the order

statistics property in Eqn. (4.23), the conditional joint probability density function

of the (N−j+n) packets is (N−j+n)!

(5N)(N−j+n) , for 0 < τ1 < τ2 < ... < τN−j−1 < τN−j < ... <

τN−j+n−1 < 5N . Furthermore, in order for the first packet among the (N − j + n)

packets to be sent out, it must arrive no later than the (5(j − 1) + 1)th time slot.

That is, 0 < τ1 ≤ 5(j − 1) + 1 must be satisfied. The second packet must come

after τ1 but no later than the (5j + 1)th time slot, i.e., τ1 < τ2 ≤ 5j + 1. It

repeats until τN−j−1 < τN−j ≤ 5(N − 2) + 1. After that, τk−1 < τk < 5N , for

k = N − j+1, N − j+2, ..., N − j+n. Integrating the conditional joint probability

density function over all those ranges will give us the conditional joint probability

for all the (N − j + n) packets to be sent out.

The delay Dij,mn can be expressed as

Dij,mn = e−λµ(5N) [λµ(5N)](N−j+n)

(N − j + n)!

µ

(N − j + n)

×

{
Fj,m + Ij,N

n∑
k=1

(5(k − 1) + 1)

}
(4.32)
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where Fj,m is an integral depending on j and m:

Fj,m =
(N − j + n)!

(5N)(N−j+n)

∫ 5(j−1)+1

0

∫ 5j+1

τ1

∫ 5(j+1)+1

τ2

...

∫ 5(N−3)+1

τN−j−2

∫ 5(N−2)+1

τN−j−1

∫ 5N

τN−j

∫ 5N

τN−j+1

...

∫ 5N

τN−j+n−1

· (

N−j∑
k=1

(5(j + k − 1) + 1− τk) +

N−j+n∑
k=N−j+1

(5N − τk))

· dτN−j+n...dτN−j+1dτN−j...dτ3dτ2dτ1 (4.33)

for 0 < τ1 < τ2 < ... < τN−j < ... < τN−j+n < 5N .

The first summation term of Fj,m in Eqn. (4.33) is associated with the delays

of the (N − j) number of packets received and to be sent in the current T period.

The second summation term of Fj,m is related to the sleep delays of the n number

of buffered packets up to the end of the current T cycle. Inside the curly bracket of

Eqn. (4.32), the last term is associated with the delays of the n number of buffered

packets with respect to the beginning of the next T cycle.

4.4.2.5 Case 5: N = m ≤ j ≤ N + n

The state transition probability can be expressed as:

Pij,mn = e−λµ(5N) [λµ(5N)](N−j+n)

(N − j + n)!
(4.34)

In this case, more than N number of packets are buffered by the end of the previous

T cycle, but only N out of them can be sent out. The other (j − N) number of
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packets stay in the buffer. To end up with a state at XNn, there must be another

(n− j +N) number of packets coming during the current T cycle. The probability

for that to occur is given by the Eqn. (4.20), wherein k = n− j+N and ∆t = 5Nµ.

The delay Dij,mn can be expressed as

Dij,mn = e−λµ(5N) [λµ(5N)](N−j+n)

(N − j + n)!

µ

(N − j + n)

×

{
Gj,m +

n∑
k=j−N+1

(5(k − 1) + 1)

}
(4.35)

where Gj,m is an integral depending on j and m:

Gj,m =
(N − j + n)!

(5N)(N−j+n)

∫ 5N

0

∫ 5N

τ1

∫ 5N

τ2

· · ·
∫ 5N

τN−j+n−1

·
N−j+n∑
k=1

(5N − τk)dτN−j+n...dτ3dτ2dτ1 (4.36)

for 0 < τ1 < τ2 < ... < τN−j+n < 5N .

Inside the curly bracket of Eqn. (4.35), The Gj,m term is associated with the

delays of the (N − j + n) number of packets arrived at the current T cycle up to

the end of the current T cycle. The second term is associated with the delays of the

(N − j + n) buffered with respect to the beginning of the next T cycle.

4.4.2.6 Case 6: m = N, j >= 2N

This case represents a saturated and unstable state. It occurs only when the traffic

load exceeds the channel capacity. Since no equilibrium state in this case, Markov
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model is no longer applicable. Therefore, we assume the traffic load is less than the

channel capacity and hence ignore this case.

The state transition probabilities and the delay can be summarized as Eqn. (4.37)

and Eqn. (4.38), respectively.

Pij,mn =



0 if 0 ≤ m < N and m < j

e−λµ(5N) [λµ(5(m−1)+1))](m−j)

(m−j)!

×Ij,m × [λµ(5(N−m+1)−1))]n

n!
if 0 ≤ j < m < N

e−λµ(5N) [λµ(5(N−j+1)−1))]n

n!
if 0 ≤ j = m < N

e−λµ(5N) [λµ(5N)](N−j+n)

(N−j+n)!
× Ij,N if 0 ≤ j < m = N

e−λµ(5N) [λµ(5N)](N−j+n)

(N−j+n)!
if N = m ≤ j ≤ N + n

(4.37)

Dij,mn =



0 if 0 ≤ m < N and m < j

e−λµ(5N) [λµ(5(m−1)+1))](m−j)

(m−j)!

× [λµ(5(N−m+1)−1))]n

n!
µ

(m−j+n)

×{Aj,m + Ij,mBm,N

+ Ij,m
∑n

k=1(5(k − 1) + 1)} if 0 ≤ j < m < N

e−λµ(5N) [λµ(5(N−j+1)−1))]n

n!
µ
n

×{Cj,N +
∑n

k=1(5(k − 1) + 1)} if 0 ≤ j = m < N

e−λµ(5N) [λµ(5N)](N−j+n)

(N−j+n)!
µ

(N−j+n)

×{Fj,m + Ij,N
∑n

k=1(5(k − 1) + 1)} if 0 ≤ j < m = N

e−λµ(5N) [λµ(5N)](N−j+n)

(N−j+n)!
µ

(N−j+n)

×
{
Gj,m +

∑n
k=j−N+1(5(k − 1) + 1)

}
if N = m ≤ j ≤ N + n

(4.38)

Let πij be the equilibrium probability that the system is in the state Xij, then

the global balance equations for the state Xij can be expressed as

πij

N∑
m=0

M∑
n=0

Pij,mn =
N∑

m=0

M∑
n=0

πmnPmn,ij (4.39)
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The sum of all the probabilities of leaving a state should always be 1, i.e.,

N∑
m=0

M∑
n=0

Pij,mn = 1 (4.40)

Therefore, Eqn. (4.39) can be reduced as:

πij =
N∑

m=0

M∑
n=0

πmnPmn,ij =
M∑
n=0

N∑
m=0

πmnPmn,ij (4.41)

Since the state transition probability Pmn,ij is independent of m, Eqn. (4.41) can be

written as

πij =
M∑
n=0

(
P0n,ij

N∑
m=0

πmn

)
(4.42)

Let’s define

π̂n =
N∑

m=0

πmn (4.43)

for n = 0, 1, 2..., then Eqn. (4.42) becomes

πij =
M∑
n=0

P0n,ijπ̂n (4.44)

We further have

π̂j =
N∑
i=0

πij =
N∑
i=0

M∑
n=0

P0n,ijπ̂n =
M∑
n=0

(
N∑
i=0

P0n,ij

)
π̂n (4.45)
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In matrix notation, this becomes, with π̂ the column vector with elements π̂n,

π̂ = Qπ̂ (4.46)

or

(I −Q)π̂ = 0 (4.47)

The determinant of I−Q will be 0. To have a unique non-zero solution of π̂, replace

one of the equation in Eqn. (4.47) with the normalization equation:

M∑
n=0

π̂n = 1 (4.48)

Now we have reduced a set of (M +1)× (M +1) equations into a set of (M +1)

equations instead. Solving Eqn. (4.47) together with Eqn. (4.48) is much easier than

solving Eqn. (4.41). After we have π̂, we can obtain the probability πij that the

system is in the state Xij from Eqn. (4.44).

The average sleep delay incurred in the state Xmn can be expressed as

D̃mn =

∑N
i=0

∑M
j=0 πijDij,mn

πmn

(4.49)

The overall average delay is

D̃ =

∑N
m=0

∑M
n=0 πmnD̃mn

1− π̂0

(4.50)
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Assume the sink node is at level 0, then the average end-to-end delay for a source

node at level L will be

Dend−end = D̃ + (L− 1)µ (4.51)

The energy consumption Eij,mn can be expressed as

Eij,mn =



0, for 0 ≤ m < N,m < j

Er, for m = j = n = 0

(m− j + n)(Er + Es), otherwise

(4.52)

Similarly, the average energy consumed in the state Xmn can be expressed as

Emn =

∑N
i=0

∑M
j=0 πijPij,mnEij,mn

πmn

(4.53)

The overall average energy consumption in a T cycle is

Ẽ =
N∑

m=0

M∑
n=0

πmnEmn (4.54)

4.5 Performance Evaluation

This section presents and compares the numerical and simulation results for both

CBR and stochastic traffic.
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4.5.1 Numerical Evaluation

Even though the integrals in Eqn. (4.37) and Eqn. (4.38) are not closed-form expres-

sions, they all can be evaluated numerically with little efforts. For example, the Ij,m

can be computed through a small MATLAB function shown in the Appendix A.

Table 4.1: State transition probabilities (N=4)

(0,0) (0,1) (0,2) (0,3) (0,4)
(0,0) 0.6792 0 0 0 0
(0,1) 0.2496 0 0 0 0
(0,2) 0.0459 0 0 0 0
(0,3) 0.0056 0 0 0 0
(0,4) 0.0005 0 0 0 0
(1,0) 0.0131 0.6792 0 0 0
(1,1) 0.0048 0.2496 0 0 0
(1,2) 0.0009 0.0459 0 0 0
(1,3) 0.0001 0.0056 0 0 0
(1,4) 0.0000 0.0005 0 0 0
(2,0) 0.0001 0.0131 0.6792 0 0
(2,1) 0.0000 0.0036 0.1839 0 0
(2,2) 0.0000 0.0005 0.0249 0 0
(2,3) 0.0000 0.0000 0.0022 0 0
(2,4) 0.0000 0.0000 0.0002 0 0
(3,0) 0.0000 0.0014 0.0788 0.6792 0
(3,1) 0.0000 0.0002 0.0137 0.1182 0
(3,2) 0.0000 0.0000 0.0012 0.0103 0
(3,3) 0.0000 0.0000 0.0001 0.0006 0
(3,4) 0.0000 0.0000 0.0000 0.0000 0
(4,0) 0.0000 0.0002 0.0122 0.1445 0.6792
(4,1) 0.0000 0.0001 0.0031 0.0405 0.2627
(4,2) 0.0000 0.0000 0.0004 0.0060 0.0508
(4,3) 0.0000 0.0000 0.0000 0.0006 0.0066
(4,4) 0.0000 0.0000 0.0000 0.0000 0.0006

Total 1.0000 1.0000 1.0000 1.0000 0.9999
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All the other integrals in Eqn. (4.37) and Eqn. (4.38) can be evaluated numeri-

cally in similar ways. Table 4.1 lists the state transition probabilities for N = 4 as

stated in the DMAC paper [32]. The packet arrival rate λ = 2 packets/second and

the time slot µ = 0.00967 second. Column j lists the state transition probabilities

from the state X0j to every other state, for j = 0, 1, 2, 3, 4. The summation of each

column is equal or very close to 1 as expected. The state probabilities are listed in

Table 4.2 and it is easy to verify that all the state probabilities add up to 1.

Table 4.2: Probabilities at state Xij (N=4)

0 1 2 3 4
0 0.4735 0.1740 0.0320 0.0039 0.0004
1 0.1798 0.0661 0.0121 0.0015 0.0001
2 0.0343 0.0093 0.0013 0.0001 0.0000
3 0.0077 0.0013 0.0001 0.0000 0.0000
4 0.0018 0.0005 0.0001 0.0000 0.0000
π̂j 0.6971 0.2512 0.0456 0.0055 0.0005

4.5.2 Simulation Setup

We have carried out the simulations on a line topology with 11 nodes using the

NS-2. The data packet size is 70 bytes and the simulation time is set to 60 minutes.

Table 4.3 shows some parameters used in both the DMAC paper [32] and in our

simulations as well.
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Table 4.3: Parameters used in the simulations

Parameter IEEE 802.11

transmit power 660 mW

receiving power 395 mW

idle power 35 mW

data rate 2 Mbps

range 250 m

4.5.3 Simulation Results

Fig. 4.2 compares the numerical and simulation results on average end-to-end delays

and energy consumption with varying arrival intervals for both CBR and stochastic

traffic.

Fig. 4.2(a) shows the numerical results accurately match the simulation results

for CBR traffic with intervals equal or larger than 10µ. An interesting periodic and

symmetric pattern is observed for CBR traffic for the selected time intervals within

the same range. The numerical results for stochastic traffic are also close to the

simulation results for large arrival intervals. As the interval is getting smaller, the

stochastic model requires more states in order to have an accurate prediction, which

explains the growing gap between the numerical and simulation results for stochastic

traffic. Larger delays are observed for stochastic traffic at the selected arrival rates

compared to CBR traffic, which indicates DMAC adapts better to CBR traffic than

stochastic traffic at those arrival rates. The absence of the periodic pattern in
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stochastic traffic reveals that stochastic traffic is less sensitive to the changes of

intervals than CBR traffic is.
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Figure 4.2: Comparisons under different traffic loads

In Fig. 4.2(b), the numerical results are also close to the simulation results when

the arrival interval is large. The absence of oscillation in energy consumption for
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CBR traffic indicates that the energy consumption is less sensitive to the changes of

intervals than the delay is.
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Figure 4.3: Comparisons with different number of active periods in a T cycle

Fig. 4.3 shows the effect of varying number of active periods in a T cycle on

average end-to-end delays and energy consumption. The traffic interval is fixed to

0.6 seconds. Fig. 4.3(a) shows the numerical results of the delay match the simulation
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results pretty well for both CBR and stochastic traffic. The delay increases as the

number of active periods increases for both traffic conditions.

Fig. 4.3(b) shows the energy consumption decreases as the number of active

periods in a T cycle increases for both traffic conditions. Even though stochastic

traffic does not match its numerical results with its simulation results as well as

CBR traffic does, the same tendency is still observed. From Fig. 4.3(a) and 4.3(b),

we can also see the tradeoff between the delay and the energy consumption with the

selection of different number of active periods in a T cycle.

4.6 Summary

In this chapter, we proposed generalized models of the DMAC protocol for both CBR

traffic and stochastic traffic following a Poisson process. A discrete-time Markov

chain is used to model the stochastic traffic scenario. The average delay and energy

consumption at a source node are expressed and can be evaluated numerically. The

close match between the numerical results and the simulation results validates the

correctness of the models. The models provide insight on the adaptivity of DMAC

under CBR and stochastic traffic conditions and indicate that DMAC only adapts

varying traffic conditions to a limited extent due to the low channel utilization and

DMAC adapts CBR traffic better than the stochastic traffic. The stochastic model

can also be applied to scenarios with multiple source nodes.
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Chapter 5

A Routing-Layer Sleep Scheme for Data Gathering in WSNs

5.1 Introduction

Data gathering is a typical operation in wireless sensor networks. As discussed in the

previous chapter, DMAC [32] is a popular energy saving MAC protocol specifically

designed for low-rate data gathering in wireless sensor networks. In this chapter,

we present a sleep scheme at the routing layer instead of the MAC layer, which

could possibly be incorporated with some of the routing-layer data gathering tree

formation algorithms. By placing it at the routing layer, the sleep scheme can utilize

the data gathering tree structures formed with existing algorithms. Furthermore,

different existing MAC protocols can be used without modifications to suite wireless

sensor networks. The key idea of the sleep scheme is to periodically wake up all the

sensor nodes at the same time. Sleeping starts from the leaf nodes where no data to

be sent and then shrinks inward towards the sink node along the data gathering tree.

It turns out only the path involved in data communication will stay awake. This

saves energy without compromising much on the throughput and the end-to-end

delay.
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5.2 Related Work

DMAC employs a staggered sleep-awake schedule to enable continuous data for-

warding on the multi-hop path, which reduces the end-to-end delay introduced by

sleep delay. Contention is reduced because the active periods are now separated.

Additional active period can be added to a node with little overhead through the

more data flag when a node has multiple packets to send. Data prediction scheme is

used to add additional receiving and sending slots in order for other child nodes to

send data in a timely manner. More-To-Send packet is used to avoid collision caused

by the interference between nodes on different branches of the data gathering tree.

DMAC is a very energy-efficient MAC protocol tweaked for data gathering when the

data rate is very low.

At the routing layer, besides the two basic tree structures — the Shortest Path

Tree (SPT) and the Minimum Spanning Tree (MST) [54], lots of more tree-based

algorithms [33, 36, 30, 37] had been proposed for constructing the data gather-

ing tree. Meghanathan [36] proposed a Connected Dominating Set (CDS) based

data gathering algorithm, which prefers to include nodes with relatively high en-

ergy as the backbone nodes and nodes with relatively low energy as leaf nodes,

yielding longer network life than that observed in classical cluster-based algorithms.

Meghanathan [37] also proposed an energy-aware maximal leaf nodes data gathering

algorithm, which minimizes the number of intermediate nodes. Chen et al. [14] pro-

posed a dynamic and adjustable tree structure which has similar amount of children
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among non-leaf nodes. The tree structure can be readjusted when the energy level

of non-leaf nodes falls below a certain threshold. In contrast with plenty of work

on data gathering tree constructions, very few work was presented on incorporating

sleep schemes into those routing-layer algorithms. A routing layer sleep scheme was

proposed in [67] on directed diffusion [22] and it shows that the routing layer sleeping

is more suitable for networks with high redundancy or high contention, while MAC

layer sleeping is more sensitive to contention, and hence is a good choice for light

traffic applications under small scale networks.

5.3 Protocol Details

In this section, we describe our routing-layer data gathering sleep scheme (DGSS)

in details. We use DMAC as a baseline for comparisons and illustration.

5.3.1 Data Gathering Tree and Neighbor List

As mentioned previously, a data gathering tree could be a shortest path tree, a

minimum spanning tree, a maximal leaf tree or a tree with a minimal connected

dominating sets as its backbone, etc. For illustration purpose, we use the shortest

path tree as a data gathering tree. Every node maintains a neighbor list which stores

information about its neighbor nodes. The neighbor list is virtually the routing table.

We will adopt the same hierarchical level scheme as in [23]. The sink node has

a level 0. Initially, the sink node will broadcast a HELLO message. The message
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contains the level id and the sink node id. All the nodes at its immediate neigh-

borhood will receive this message and will have a level 1. The sink node id will be

added to the neighbor lists of all level 1 nodes as their parent and its corresponding

“Active” flag is set to 1, which indicates the radio status. Then all the nodes at

level 1 will broadcast a message with their own level id and node id after waiting

for a random amount of time (to avoid collision). When the sink node receives such

message, it will drop it. If any node at level 1 receives the message, no new level id

will be assigned since it is already labeled with a level id. However, it will add the

node id into its neighbor list and mark it as “Active”. If any node not yet labeled

with a level, it will be labeled with a level incremented by 1 and src node id will be

added into its neighbor list as its next-hop to the sink and marked as “Active”.

In general, let Ni,j denote the node id of the jth node at level i > 1, and {Ni−1},

{Ni}, {Ni+1} denote the set of nodes at level i − 1, i, i + 1 which can hear from

the node Ni,j, respectively. That means {Ni−1}
∪
{Ni}

∪
{Ni+1} contains all the

neighbors of node Ni,j. When node Ni,j broadcasts a message containing (Nij, i),

where Ni,j is the node id and i is the level id, node x ∈{Ni−1}
∪
{Ni}

∪
{Ni+1} will

add it into its neighbor list. The neighbor list at node Ni,j will look like:

Table 5.1: Neighbor list at node Ni,j

Dest Nexthop Nexthop Level Parent Child Active

0 Ni−1,x i-1 1 0 1

0 Ni,x i 0 0 1

0 Ni+1,x i+1 0 1 1
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Wherein the table 5.1, Ni−1,x∈{Ni−1}, Ni,x∈{Ni}, Ni+1,x∈{Ni+1}. The neighbor

list is virtually a routing table, in which the parent node will be the next hop.

Eventually all the active paths together will form a shortest path tree.

5.3.2 Active Leaf Nodes

A node can be identified as leaf node of the data gathering tree if the node’s neighbor

list does not contain any node with a higher level. This can be done locally and

solely based on the neighbor list. A node Ni,j is an active leaf node at time moment

t if it is awake and it has no child node or all its child nodes are asleep. Active leaf

node is the leaf node of a subtree at a certain time moment which consists of only

active nodes. A sleep message always initiates at an active leaf node. If no traffic at

an active leaf node for a certain period of time, a sleep request will be broadcasted

at that node. As a comparison, DMAC behaves like a radar scans level-by-level to

see if any data to send. It adapts to the traffic condition by scanning a little more

frequently if there is more data to be sent. DGSS starts at the leaf nodes and scans

radially inward towards the sink node.

5.3.3 Packet Queue

In traditional networks, the routing layer resolves the next-hop IP address of the

incoming packets as soon as they are received at the routing layer. Then packets

will be sent to logical link layer to resolve the MAC address of the next-hop through

ARP. The packets are then sent down to the MAC layer and buffered at the interface
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queue in between the logical link layer and the MAC layer, since the service rate of

the MAC layer may be much slower than the rate of IP address resolution and ARP

resolution. This mechanism works fine with the underlying assumption that the next

hop is always available. However, for the duty-cycled wireless sensor networks, it is

no longer true. The next hop may be in sleep for some time. In DGSS, we buffer

the incoming packets in a queue before resolving the next-hop address. We make

the rate of dequeuing to be in sync with the serving rate of the MAC layer through

a MAC layer callback function. That is, the next packet will not be dequeued until

the current packet has been sent out by the MAC layer. This way, we control the IP

address resolution rate at the routing layer. If the next hop is in sleep, we don’t have

to keep routing packets to the sleeping next-hop. It can be rerouted to an awake

next-hop instead.

The length of the packet queue will have the accumulative effects of both in-

coming traffic rate and MAC serving rate. It could be used as a good indication of

current network condition.

5.3.4 Sleep Scheme

In DGSS, all the nodes periodically wake up at the same time. This fits existing data

gathering tree algorithms well as most of the algorithms requires tree reconstruction

periodically. In DMAC, even though the wake-up time is staggered and not all the

sensor nodes wake up at the same time, every node will wake up at least once in a
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cycle. Therefore, waking up at the same time does not necessarily increase energy

consumption compared to staggered wake-up.

In DGSS, the sleep starts from the leaf nodes and shrink inward towards the sink

along the data gathering tree. If a leaf node does not have data in its buffer, it will

broadcast a sleep message out to tell its neighbors that it will sleep till the next cycle

and then goes to sleep immediately. There is a random delay before broadcasting the

sleep message to reduce the chance of collision at the MAC layer. The randomness

is proportional to the number of active nodes in its neighbor list. As illustrated in

Fig. 5.1(b), the leaf nodes (in dark gray) are not necessarily at the same level. After

the leaf nodes go to sleep, it appears as if they are pruned from the data gathering

tree. All the active nodes still form a tree structure. Now node 8 and node 5 (in

light gray color) become the active leaf nodes. The same process repeats until all

nodes with no data go to sleep. As shown in Fig. 5.1(a), DMAC scans level by level,

starting from the outmost level all the way towards to sink.

In DGSS, once a parent node receives a sleep message from its child node, it will

update the entry corresponding to the child node at its neighbor list by marking the

active flag to 0. After the parent node receives sleep messages from all its children,

it will become an active leaf node. In case of no data to be sent, it will broadcast

a sleep message. If there is no traffic along a path, a sleep message will quickly

propagate towards the sink along the path. When neighboring nodes other than its

parent node receive the sleep message, they will update their neighbor list and set

the active flag of the sleeping node to be inactive. Every time a node wakes up, all
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Figure 5.1: Comparison between DMAC and DGSS

the entries in its neighbor list will be reset to be active again since all the nodes

wake up at the same time.

5.3.5 Local Rerouting

Rerouting in DGSS only occurs locally. A different next-hop node will be selected to

merge traffic together if the traffic is low. This will increase the channel utilization

on the merged path so that idle listening energy waste could be reduced. Meanwhile

the nodes along the old path can go to sleep and save even more energy.

In DGSS, local rerouting is triggered by receiving a sleep message from its child

nodes. Let’s say when node Ni,j received a sleep message from one of his child nodes

Ni+1,x∈{Ni+1}. If the number of packets in its DGSS queue is below a predefined

129



threshold, then node Ni,j will broadcast a merge request to all its neighbors. The

threshold is proportional to the number of child nodes. Only its child nodes in

{Ni+1} will handle the merge request. Once child nodes receive the merge request,

they will search through their own neighbor lists and try to find their new active

parents. If such parents are found, they will send a join request to their new parents.

Their new parent will mark the join requester as its child and send back a join

acknowledgement. Upon receiving the join acknowledgement, the join requester will

mark the new parent active and then send back an acknowledgement to the merge

request. The merge requester will then mark its child node to be inactive. After

the merge requester receives acknowledgements from all its active child nodes, it will

become an active leaf node. It will send out sleep message and go to sleep if there

is no more packet buffered in its queue.

5.3.6 Position of the Sleep Scheme

Simple data gathering algorithms, like the Shortest Path Tree algorithm, can be

implemented at the MAC layer instead of the routing layer because only single-hop

broadcasts are needed to form such a simple data gathering tree. In that case, the

DGSS can be implemented at the MAC layer too and thus becomes a new MAC

protocol for single-sink data gathering. The neighbor list will be maintained at

the MAC layer and leaf nodes can be identified at the MAC layer as well. Data

packets will be sent down to the MAC layer directly without specifying the next

hop. The default next hop will be the parent node of the current node in the data
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gathering tree. We separate out the sleep scheme and place it at the routing layer

so that it can fit into more sophisticated tree formation algorithms where single-hop

broadcasts are not enough to form the data gathering tree. Furthermore, it can sit

on top of different MAC protocols.

5.3.7 Further Comparison with DMAC

DMAC is better than DGSS in terms of energy saving no matter what tree structures

are under consideration under light traffic condition. The reason is that in DMAC

only nodes at the two adjacent levels involved in data communication will stay

awake. In the extreme case of no traffic at all, every node in the data gathering

tree needs stay awake for only one time slot in DMAC, while only the leaf nodes

of the data gathering tree will stay awake for very short of time period in DGSS.

The downstream nodes have to stay awake until they receive the sleep message from

all the leaf nodes. To make DGSS close to DMAC in terms of energy saving, tree

structures with maximal leaf nodes evenly distributed at different levels will help.

DGSS has better performance than DMAC in terms of throughput and end-to-end

delay under heavy traffic conditions. Take the same tree structure as shown in

Fig. 5.1 and assume node 11 is the only source node with heavy traffic. In DGSS,

only the nodes along the path 11→ 8→ 4→ 2→ 0 will remain active all the time

till all the data packets at node 11 are sent out. In DMAC, every node along the

path 11→ 8→ 4→ 2→ 0 will wake up every 5 time slots. Apparently, DGSS will

yield higher throughput and smaller end-to-end delay than DMAC in this case.
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Both DMAC and DGSS depend on some kind of tree formation algorithms.

DMAC relies on its routing layer protocol to tell it what is its level in the data

gathering tree and who is the next hop, while DGSS keeps the node id, level id and

radio status of its neighbors in a table structure. Therefore, it needs a little bit more

memory for the table structure than DMAC. DGSS identifies the (active) leaf nodes

solely based on the table structure. The cpu time for finding the (active) leaf nodes

is insignificant. And the sleep message in DGSS is a small size control packet. It

only requires a little bit more memory and cpu time as well. In a word, DGSS incurs

only a little extra resource usage in terms of memory and cpu compared to DMAC,

but neither is significant.

5.4 Performance Evaluation

5.4.1 Simulation Setup

We have carried out the simulations in NS-2. The same topology shown in Fig. 5.1

has been used in the simulation with node 0 as the only sink node. Bursty traffic

was generated at each source node. The bursty traffic alternates between idle time

period and burst time period. During the idle time period, no data was sent. During

the burst time period, data were sent at a constant bit rate. The time span of the

idle time period and the burst time period both follow an exponential distribution

with an average idle time of 5 seconds and an average burst time of 2 seconds. It

appears that a random subset of the source nodes may be sending data at a given
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time moment. All nodes wake up every 10 seconds. The data packet size is 70 bytes

and the simulation time is set for 100 seconds. Some of the other parameters used

in the simulations are listed in Table 5.2.

Table 5.2: Parameters used in the simulations

Parameter IEEE 802.11

transmit power 660 mW

receiving power 395 mW

idle power 35 mW

data rate 2 Mbps

range 250 m

5.4.2 Performance Metrics

The following metrics have been used to evaluate the performance of DGSS.

1. Average Goodput: the average number of bits (data packets only) received at

a sink node within a unit of time;

2. Packet Delivery Ratio: the ratio of the number of data packets received over

the number of data packets sent out;

3. Average End-to-End Delay: the average end-to-end delay between transmit-

ting a data packet and receiving it at its destination;

4. Average Energy Consumption: the energy consumption of a single node on

average;
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5. Energy Efficiency: the ratio of the number of bits received at the sink nodes

to the total energy consumed.

5.4.3 Simulation Results

Fig. 5.2 compares the simulation results for DGSS, DGSS with rerouting, IEEE

802.11, DMAC and DMAC with More to Send (MTS).

Fig. 5.2(a) shows that the throughput of DMAC is saturated at very low traffic

rate. This is because that DMAC is using staggered sleep schedules. DMAC scans

through every level to see if there is any data to send or not after every fixed period

of time. Only one node among any five sequential nodes along a path can send data

at a certain moment. This reduces the channel utilization. DMAC is good only for

very low rate communication. Throughput is not the target of DMAC. The design

goal is to save energy by sacrificing the channel utilization. Both DGSS and DGSS

with rerouting demonstrate the throughput is close to that of the IEEE 802.11.

Fig. 5.2(b) shows that the delivery ratios of DGSS and DGSS with rerouting are

close to that of the IEEE 802.11 and much better than DMAC at higher rates.

Fig. 5.2(c) shows a very low end-to-end delay in DMAC for very low rate. Even

though DMAC is using a staggered sleep schedules, the next-hop node will be awake

to receive data. This yields a very low end-to-end delay. When traffic rate becomes,

the end-to-end delay increases dramatically. This arises from the increasing buffering

delay due to reduced channel utilization. For DGSS, if no packets are detected at

the very beginning of each wake-up cycle, the node will sleep. Every packet which
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is received during the sleep time has to wait until the next wake-up cycle. As a

statistical result, the delay is about a half of the wake-up cycle. Once nodes are

awake, all the nodes along the path to sink will keep on until all the packets are sent

out. Therefore it won’t incur extra end-to-end during wake-up period.

Fig. 5.2(d) shows the average energy consumption at each node. DMAC shows

very low energy consumption at low rate, since only the senders and receivers are

awake at any give time moment. DGSS and DGSS with rerouting both consume

much less energy than the IEEE 802.11, especially at the low rate. However, the

energy consumption is still doubled compared to DMAC. DGSS with rerouting con-

sumes little less energy than DGSS at higher rates. It is due to the merge of traffic

flows, even though there is overhead for merge and join control packets.

Fig. 5.2(e) shows the number of bits received on every unit of energy consumption.

The best energy efficiency is observed for DMAC at lower date rates and it becomes

lower for higher data rates. Both DGSS and DGSS with rerouting achieve better

energy efficiency than the IEEE 802.11, and their energy efficiency surpass that of

DMAC at relatively high data rates. DGSS with rerouting reveals a slightly better

energy efficiency at higher rates than DGSS.

5.5 Summary

In this chapter, we have presented a new sleep scheme for a single-sink data gathering

in wireless sensor networks. Instead of staggering schedule, all sensor nodes wake up
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periodically at the same time. The leaf nodes of the data gathering tree rooted at

the sink will be turned off first and shrink inward towards the sink node in case of no

traffic. Downstream nodes stay awake when traffic load is higher. Simulation results

reveal that DGSS gives better throughput and energy efficiency for bursty traffic

at relatively high rate than DMAC, while DMAC is still better for the lower-rate

traffic.
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Figure 5.2: Comparisons among DGSS, DMAC and the IEEE 802.11 with multiple
source nodes
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, a few research work had been conducted on the design and

analysis of energy efficient protocols for WSNs. It is concluded as follows:

• A new MAC protocol, called Pattern-MAC(PMAC), was proposed where pat-

terns in tentative sleep-awake schedules of a sensor node are adaptive to the

traffic conditions observed by that node. Patterns are exchanged among neigh-

bors after some time. The actual sleep-awake schedules are generated based

on a sensor node’s own patterns and its neighbors’ patterns. Our simula-

tion results show that in comparison to SMAC, PMAC achieves more power

savings under light loads, and higher throughput under heavier traffic loads.

Two variants of PMAC — PMAC-I and PMAC-II are proposed to address the

tradeoff between energy saving and performance like throughput and latency.

PMAC-I gives better power efficiency and energy localization than TMAC and

PMAC-II, although its throughput and latency are not as good as TMAC and
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PMAC-II. PMAC-II has been proposed in favor of throughput, whose perfor-

mance is close to that of TMAC. PMAC-I and PMAC-II can be adopted by

a single application at the same time and dynamically chosen to fit the needs

of the application better. A good balance between energy saving and network

performance can be achieved in this case. This also suggests that “pattern

exchange” is a promising framework for improving the energy efficiency of the

MAC protocols used in WSNs.

• A switch agent was designed at the routing layer for sensor nodes equipped

with dual radios. The switch agent sits on top of dual routing agents. It

monitors the traffic flow and switches on the high-power radio whenever the

traffic load becomes heavy. To save energy while using the high-power radio,

the switch agent caches the routes established previously so that a unicast

wake-up message can be sent out to selectively wake up the high-power radio

at the downstream nodes. The switch agent also keeps a registry for flows

which already have the high-power radios awake so that no further wake-up

message transmissions are needed for subsequent requests. Simulation results

demonstrate that the switch agent yields throughput, delay and packet delivery

ratio comparable to the high-power radio interface alone, without incurring

much energy wastage. It is of practical values for handling bursty traffic in

wireless sensor networks.
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• Generalized models of the DMAC protocol were developed for both CBR traf-

fic and stochastic traffic following a Poisson process. A discrete-time Markov

chain is used to model the stochastic traffic scenario. The average delay and

energy consumption at a source node are expressed and can be evaluated nu-

merically. The close match between the numerical results and the simulation

results validates the correctness of the models. The models provide insight

on the adaptivity of DMAC under CBR and stochastic traffic conditions and

indicate that DMAC only adapts varying traffic conditions to a limited extent

due to the low channel utilization and DMAC adapts CBR traffic better than

the stochastic traffic.

• A new sleep scheme was proposed for a single-sink data gathering in wireless

sensor networks. Instead of using staggered sleep schedules, all sensor nodes

wake up periodically at the same time. The leaf nodes of the data gathering

tree rooted at the sink will be turned off first and shrink inward towards the

sink node in case of no traffic. Downstream nodes stay awake when traffic load

is heavy. Simulation results reveal that DGSS gives better throughput and

energy efficiency for bursty traffic at relatively high rate than DMAC, while

DMAC is still better for the lower-rate traffic.
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6.2 Future Work

Most of the work presented here are still tied to a single layer. The energy saving

schemes tweaked for one layer may no longer be good once integrated with other lay-

ers. Finding integrated and cross-layer optimized energy-efficient solutions remains

a big challenge. My future research on wireless sensor networks will be along this

line.
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Appendix A

Sample MATLAB Code for Evaluating the Integrals

function ans = Ijm(j,m)

syms f t;

f=1;

for i=m-j-1:-1:1

f=int(f,t,t,5*(j+i-1)+1);

end

if(j>0)

f=int(f,t,0,5*(j-1)+1);

else

f=int(f,t,0,1);

end

ans=factorial(m-j)*double(f);

ans=ans/((5*(m-1)+1)^(m-j));
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