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I. INTRODUCTION 

 

 

 

The line between a full processor and a microprocessor has always been a rather subjective one. 

Subsequently, there are only a few technologies straddle that line more so than Advanced RISC 

Machine (ARM) based applications processors [1]. These behemoth microprocessors are at the 

heart of almost every major mobile handset [2] and capable of running full operating systems 

while still maintaining the low power advantages of their embedded brethren. As these 

applications processors become more adept, and subsequently the devices based on them become 

more feature laden, they become even more difficult to define. As the evolution of these devices 

progress, they will continue to become a category of their own, as such it stands to reason that 

they should be treated as a category of their own.  

The overwhelming majority of these application processors utilize the ARM Instruction Set 

Architecture (ISA) [2].  ARM is used in a variety of different embedded systems ranging from the 

high-end applications processors to low end microcontrollers. This ISA is the Intellectual 

Property (IP) of the company ARM Holding Ltd. The company, founded on the development of 

an early version of the ARM ISA, has spent decades modernizing and expanding the architecture. 

This has led to many innovations that have contributed to the further differentiation between 

ARM and
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other embedded ISAs. Instead of manufacturing processors themselves, they license the IP cores 

to other companies allowing them to modify the technology to their own needs. This arrangement 

has resulted in literally hundreds [3] of companies producing billions of ARM processors per year 

[4] [5].  

Rarely is licensing and manufacturing an exact copy of a core enough to meet the needs of a 

complex design. Thus licensees often times modify the core, package it with other components, 

or both. Using space reduction packaging technologies these companies are capable of containing 

an entire system to one footprint on a circuit board. While there are different methods to 

packaging system components together, for the purposes of this paper and project they shall all be 

referred to as integrated systems [6] [7] [8]. These integrated systems come in many varieties of 

capability, function, and complexity.  

It should be obvious that many of these integrated system designers are direct competitors. It 

stands to reason then, that just like choosing any other option of processors it is important to be 

able to compare and differentiate between similarly purposed integrated systems. While a 

plethora of benchmarks exist for embedded systems and full processors, and even a few for 

applications processors, finding a benchmark that tests an entire system contained within a single 

device is much more difficult. Even when using the same core for the same design goal, two 

companies can and likely will have widely divergent components within the integrated system. 

Likewise, the methodology of packaging the components will have differences as well. It isn‟t 

enough just to test the core, but the entire system as a whole must be benchmarked due to the 

components being inseparable. After all, for this purpose, it behaves as a single device. 

OBJECTIVES 

Because of their prevalence, the intent of this thesis is to explore the topic of benchmarking 

integrated systems that are specifically in the applications market and powered by ARM 
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technology. There are several questions on this subject that should be answered. Importantly, 

whether these ARM-based applications processors differ enough to be treated separately should 

be answered. The next question is whether or not full knowledge of the core obviates the 

necessity of testing the full system in these cases. Along with this, determination of whether or 

not there is an acceptable benchmark suite that is capable of adequately testing the full 

capabilities of an integrated system will be equally important. If there is not, then the reasons one 

hasn‟t been developed need to be investigated. The final consideration is what the future holds for 

these devices, and the part that will play. 

CONTRIBUTIONS 

This paper makes several contributions.  

 The collection of technologies included within the boundaries of packaging technology 

that are dedicated to containing a system to a single footprint is shrouded in ambiguity 

and conflicting nomenclature. The terms system-on-chip, system-in-package, and 

package-on-package are frequently used in slightly different nuances, and occasionally 

interchangeably, while in other research instances they are heavily distinguished. This 

overview and explanation will help to remove this ambiguity and will clarify the all-

encompassing definition of “integrated systems”.  

 It is necessary to determine what the acceptable characteristics are for a standard 

benchmark intended for integrated systems. To do so, a brief summary of critical features 

that should be expected in a standard benchmark is overviewed. The topic of misusing 

benchmarks is also reviewed and discussed. 

 The OMAP3530 [9] integrated system will be tested with the benchmark suite MiBench 

[10]. The results of running the benchmark are included, with thorough documentation, 

charts, time stamps, and other relevant information. 
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 A thorough exploration of the state of benchmarks applicable to the target platforms 

(ARM-based applications integrated system) shall be completed. This includes 

determining if the industry standards are sufficient as well as providing a succinct 

collection of previous relevant experiments and results.  

SUMMARY 

Competing designs of ARM-based applications integrated systems are widespread enough to 

warrant their own benchmarking standard. To test just the ARM cores is not sufficient to compare 

or contrast the capabilities of the integrated systems. Additionally application end processors 

balance the strengths of normal embedded microprocessors with full processors, thus 

benchmarking against one or the other category is inconclusive and superfluous. With the 

growing industry the necessity will continue to climb. 

Chapter 1 provides a detailed overview of the project and the thesis statement. The second 

chapter focuses on the background knowledge necessary for the project. This begins with a 

detailed overview of the ARM Instruction Set Architecture starting with its history and 

prominence in modern devices and ending with specific details of the architecture. The section on 

ARM is followed by a look at what makes an integrated system by overviewing the specifics of 

some of the packaging technologies that are used to contain an entire system to one footprint.  

Next a detailed look at the test device itself, the Beagle Board, is included. The background 

chapter is completed with an overview of benchmarking. Chapter 3 includes a close examination 

of preparing the Beagle Board for the experiment, a look at selecting the appropriate benchmark, 

and the specifics of the benchmark selected. Following this, the fourth chapter details the results 

of the work. This begins with an examination of the results of benchmarking the Beagle Board. 

The other prevalent part of this chapter looks at the results of researching various benchmarks for 

existing results and comparisons between system integrated circuits such as those between the 

OMAP and i.MX platforms. Chapter 5 concludes the thesis.
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II. BACKGROUND 

 

 

 

In order to understand the necessity of a benchmark suite specifically aimed at integrated systems 

that use ARM ISAs, it is imperative to have a background. As mentioned in the Introduction, 

ARM is very widely licensed and its use is rapidly expanding. These licensees are using ARM 

based technology in different ways to create their own systems. Some of these systems are 

integrated together on a single chip or within a package and sold as its own product; therefore, an 

overview is necessary of both ARM technology and packaging techniques for integrated systems. 

One such product is TI‟s OMAP series. The Beagle Board is a convenient interface with an 

OMAP processor, thus is used as a platform for benchmarking experiments. It is highly 

functional, and is adaptable to a large variety of projects.  The Beagle Board also has the 

advantage of being fully open-source. This device will be further explored in the sections below.  

The study of benchmarks has been thoroughly explored, so it is not the purpose of this paper to 

broaden or expand this topic. However, it is necessary to examine some of what is available in 

order to highlight the absence of applicable benchmark suites.  It will become clear that there are 

many benchmarks that do provide some suitable tests for these systems. However, none of these 

benchmarks are satisfactorily comprehensive.  
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ARM 

One of the most common Instruction Set Architectures (ISA) being developed for modern 

applications is the Advanced RISC Machine (ARM).  ARM is a 32-bit ISA based on the Reduced 

Instruction Set Computer (RISC) design strategy.  This architecture has made sweeping advances 

since its conception, expanding into multiple embedded markets, particularly those related to 

consumer electronics.  It is important to understand how widespread ARM cores have developed 

and how rapidly they have achieved that level of success in addition to the processor capabilities 

and architecture. 

History and Marketing 

Originally, ARM stood for Acorn RISC Machine and was developed by a branch of a small 

British company, named Acorn Computers Ltd, hoping to get into the business computing 

market.  There were not any viable processor options that fit their needs or market goals, so they 

chose to develop a new architecture after being inspired by a RISC project completed by a group 

of Berkeley graduate students proving architecture development could be done on low budget and 

limited facilities. After completing the ARM1 primarily as a development project in 1985 [11], 

eventually the ARM2 and later the ARM3 were marketed. In 1990, Apple Computer and Acorn‟s 

silicon contractor, VLSI Technology, aided in researching the next stage in ARM development 

[5].  These contributions lead the team to break off into its own company: Advanced RISC 

Machines Ltd. Eventually the company renamed itself ARM ltd (or ARM Holdings) in 1998 

when it floated itself on the London stock market [5]. 

ARMs first embeddable RISC core in 1991 was the result from the early joint efforts between 

Apple, Acorn and V-tech [11]. This first embeddable core was also based off the new ARMv3 

architecture, and was named the ARM6 as a result of a new core naming scheme. Over the next 

two decades several versions of the ISA were developed, the most recent being the ARMv7 

debuting with the Cortex family in 2004 [5]. For a better visual of the architecture version as 
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related to its processor family Table 1 has been included. This table has been simplified; there are 

a variety of sub-architecture versions that distinguish the differences between the families. 

Likewise some families exist over the span of several architectures, using different sub-

architectures during the lifetime of that family. 

Table 1: ARM Versions and Families 

Architecture Families

ARMv1 ARM1

ARMv2

ARM2 

ARM3

ARMv3

ARM6 

ARM7

ARMv4

ARM7TDMI 

ARM8 

StrongARM 

ARM9TDMI

ARMv5

ARM7EJ 

ARM8 

ARM9E 

ARM10E 

Xscale

ARMv6

ARM11 

Cortex-M

ARMv7

Cortex-A 

Cortex-M 

Cortex-R  

During this time ARM also developed a variety of innovations to allow more chip specializations 

and options. These will be further detailed in the Features and Expansions section, though 

introduced here.  One of the more notable developments was Thumb, an operating state that uses 

a 16-bit subset of compressed ARM instructions that could be toggled on or off. A more 

sophisticated version of Thumb, titled Thumb-2, exists in the current architecture families. 

Thumb and Thumb-2 can also be used as the sole architecture, excluding the regular ARM 

instruction set altogether.  Another innovation is Jazelle, a Java execution mode used to more 

efficiently execute Java byte code.  Other more common, natural advancements included options 
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of adding a floating-point unit (FPU), Digital Signal Processing (DSP) oriented designs, and 

multicore designs.  

ARM Holdings operates on a business structure of licensing its cores out to different companies as 

intellectual property. This is done in lieu of manufacturing and selling individual chips 

themselves. As of 2011, the company is able to boast [2] over 15 billion ARM cores have been 

shipped and over 200 companies have an ARM license. When compared to the 1.5 billion 

licensed and sold as of 2005, the accelerating growth is clear to see. Currently over 95% [2] [12] 

of the mobile handsets use ARM technology, and even more impressively, the technology exists 

in over 25% of all electronic devices. It is expected that in 2011 [4] alone there will be 5 billion 

more IP cores sold.   

Features and Expansions  

As previously mentioned in the History section, many standard options that are commonly 

expected in embedded systems were developed for the ARM processors to increase the potential 

applications and industry competition. These came in a variety of feature sets ranging from the 

common capabilities such as inclusion of a floating point unit or multicore to much more specific 

and advanced options such as expansions to the instruction set with Thumb.  Many of the features 

weren‟t integrated until more recent revisions of the ISA. 

When looking at the more common features available to standard specific-purpose 

microprocessors, some of the most prominent recurring options include DSP and FPUs. In 

modern designs multicore is also a commonly available feature.  A general purpose Single 

Instruction Multiple Data (SIMD) [13] engine for multimedia applications is also an available 

option in upper end processors. SIMD extensions operate transparently with the OS utilizing 

existing ports.  A more advanced version, titled NEON [14], was developed for the ARMv7 

architecture and uses wider vectors as well as featuring its own pipeline. NEON vastly 
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outperforms the older SIMD, at least doubling its speed [14].  The final option of note is 

TrustZone [15], a multi-tiered infrastructure that provides a combination of software and 

hardware security features tightly integrated into the processor. NEON, SIMD, and TrustZone all 

extend the base instruction set. In the next session, Processors, a figure will illustrate which of 

these features are available with the various detailed processor families. 

Multiple extensions exist to supplement the basic 32-bit ARM ISA: Thumb, Thumb-2, and 

Jazelle [16]. Thumb is a subset of common ARM instructions reduced to 16-bits. To clarify, a 

processor with Thumb enabled still has 32-bit wide registers and buses, it just uses smaller 

instructions. This is done so that when using 16-bit memory, the processor does not need to make 

two fetches per instruction, which would significantly reduce performance. These instructions are 

then decompressed during decompression. Another advantage of this system is allowing emphasis 

on code density when necessary. Now, in the most recent two architectures (ARMv6 & ARMv7) 

Thumb-2 is also available. In actuality, Thumb-2 is a stock feature of the Cortex series. Thumb-2 

is a hybrid instruction set with all of the Thumb 16-bit instructions and a subset of the original 

ARM 32-bit instructions, designed to seamlessly use the variable instruction length. It boasts [17] 

[18] a 25% boost in performance over thumb and a 26% reduction in memory usage. The original 

32-bit ARM instruction set can still be included with Thumb-2, in fact it even allows for more 

seamless transitions. In addition to the Thumb options, Jazelle [19] is an ARM extension that is 

focused towards Java support. It has both software and hardware components. There are now two 

versions of Jazelle: Direct Bytecode eXecution (DBX) and Runtime Compilation Target (RCT). 

The original, DBX, allowed direct execution of Java bytecode. RCT, also referred to as ThumbEE 

uses Just-in-Time (JIT) and Ahead-of-Time (AOT) compilation methods. ThumbEE is capable of 

handling a larger variety of execution environments than just Java. Due to this it is more preferred 

and is supported by real-time and mandatory in application driven processors in the ARMv7 

architecture.  
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In the previous section, History and Marketing, a few of the older processor families include a 

few letters at the end of the name (see Table 1). These are as follows: „T‟, „D‟, „M‟, „I‟ [20] 

which are usually included together, as well as „E‟ and „J‟. These indicate specific features.  The 

„T‟ is fairly obvious and indicates the Thumb extension previously described. Both the „D‟ and „I‟ 

are separate debugging options, the former standing for „Debug mode‟ which is Joint Test Action 

Group (JTAG) support, and the latter meaning ICE support is available.  The „M‟ is a little less 

straightforward and stands for multiply to indicate that the pipelines are deeper and an enhanced 

multiplication instruction is used. This is relative to the older processors. The DSP feature is 

indicated by the „E‟ which stands for extended, and this implies all of „TDMI‟ is included. Finally 

„J‟ indicates the Jazelle extension. In the Cortex family these labels are no longer required 

because many of these features are assumed to be part of the product, or have been replaced or 

updated.  

One of the differences between some processors developed by ARM is the type of memory 

control unit that is used. Application-specific processors also use a more advanced memory 

control system than the embedded processor alternatives. These are respectively identified as 

Memory Management Unit (MMU) [20] and Memory Protection Unit (MPU) [20].  Both of these 

are used for protection against unwanted accesses to system resources. The MMU also includes 

hardware to support virtual memory. 

Processors 

There are three primary processor market categorizations used at ARM [21]:  Classic, Embedded, 

and Applications. These are categorized by the added capabilities from advanced features, as well 

as increasing performance and functionality. This is demonstrated by the graph shown in  
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Figure 1.  In addition to these, there are a few specialty processors worth briefly acknowledging 

that exist outside of the main three categories such as the SecurCore line for security applications 

and FPGA target processors.  

 

 

Figure 1: ARM Processor Categories by Capability [21] 
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The classic processors consist of the previous three major ISA versions of ARM architecture. 

ARM7 (Actually the ARM7TDMI or ARM7EJ) [22], using ARMv4, is almost entirely antiquated 

at this point, with the company firmly suggesting a Cortex counterpart. ARM9 (ARMv5) [23]is 

still in use as a low-end single processor for DSP and java applications. ARM11 [24] is based on 

ARMv6, and is still seeing wide use as a potential option in modern development. Several of 

these older processors have a binary compatible counterpart in the Cortex family to allow for 

design upgrades that do not require large scale software redesign. 

The second classification of processors used by ARM is the modern embedded processors, 

denoted Cortex-R and Cortex-M for real-time and microcontroller oriented applications 

respectively.  Each of these utilizes the ARMv7, as indicated by the Cortex title, and thus 

includes the Thumb-2 Instruction set automatically along with other Cortex series standards.  

However to distinguish them from the applications line, both of these processor families utilize 

the MPU for memory control. They also operate on a Real-Time Operating System (RTOS) in 

conjunction with user generated code. The Cortex-R [25] features deeper pipelines and uses high 

clock frequencies. It also utilizes Tightly-Coupled Memory (TCM) for fast access to important 

data or instructions that are needed for immediate access. TCM is considered level 1 memory, 

and in some cores it entirely replaces the cache. In contrast, the Cortex-M [26] is designed with 

low-power, code density, and interruption management as focus points. The Cortex-M series 

exclusively uses Thumb-2 and does not have the ARM instruction set. Thumb-2 allows it to 

maintain the low impact design requirements of its 8/16-bit competitors while still keeping the 

performance advantage offered a 32-bit machine. Due to this instruction set it is able to function 

as the industry standard by vastly outperforming competition in a MIPs per MHZ comparison.   

The final classification of processors at ARM is the applications series, Cortex-A [27]. These are 

used for high functionality, and are defined by their ability to run complex and complete 

operating systems. Differing from the embedded classification Cortex processors, the applications 
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series uses the MMU instead of the MPU for memory control. Additionally the option of up to 

four cores is available supporting a fully coherent L1 cache. The Cortex-A family is more open in 

the number of available options and extensions than its counterparts. Certain features that are 

used as options in the other processor families are automatically included in all Cortex-A 

processors, namely Jazelle and NEON.  

A more complete observation of the different features that were detailed in the prior section and 

their availabilities for the different processor families may be observed in Figure 2. This image is 

organized by the specific architecture used to create the columns. The top half uses color to 

indicate the processor classification, and the processors are listed above their respective 

architecture version. Listed below each of these architectures are the various options available to 

the specific architecture.  

 

Figure 2: ARM Processors and Features [21] 
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For simplicity and disambiguation, Table 2 is also included to specifically examine the available 

instruction set extensions available by each processor family. Thumb, a staple of ARM processors 

since its conception, is available in all models. The newer Thumb-2 is a primary feature in the 

more recent families. Jazelle shows itself to be available in the higher end applications models, so 

was excluded in the Cortex-M and Cortex-R, and wasn‟t available yet in the design of the ARM7.  

As mentioned before, the ARM ISA is completely excluded in exchange for only using Thumb-2 

in the Cortex-M.  Also, a slight error in Figure 2 claims NEON is available in Cortex-R, though a 

closer look at the feature [14] disproves that claim. 

Table 2: Instruction Set Options 

ARM Jazelle Thumb Thumb-2 SIMD NEON TrustZone

Cortex-A R R R R R R

Cortex-M R R

Cortex-R R R R O O

ARM11 R O R O O O

ARM9 R O R

ARM7 R R

KEY

R - Required

 O - Optional

Blank - Unavailable

  

Architecture 

Because ARM is based on RISC design, it shares all of the pertinent characteristics of a RISC 

instruction set. However, it was deemed necessary to enhance and expand the capabilities of a 

typical RISC machine. ARM still uses the fixed instruction width, load/store architecture, simple 

addressing modes, and uniform register files [16] common to RISC machines. The object of these 

additions were to create seamless improvements aimed at increasing throughput and 

compensating for some of the advantages CISC machines generally have. A couple examples of 

this include conditional execution to reduce branching overhead and the ability to load and store 

multiple instructions [16].  

Currently ARM utilizes 37 registers broken down into 30 for general purpose, 6 status registers, 

and a program counter [28] [1]. This is used as a general standard, though certain processors do 
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make slight modifications to this model.  At any given time, fifteen of the general use registers 

are accessible in addition to the program counter and the status register.  Which registers are 

available depends on which operating mode is being used by the processor. There are seven 

operating modes used by ARM, six of which are privileged with the seventh being the user mode. 

The first two privileged modes are entered for interrupt handling; IRQ for low-priority normal 

interrupts and FIQ for immediate needs interrupts [28]. Abort mode and undefined mode are used 

for memory access violations and unrecognized instructions respectively [1].  Supervisor mode is 

used for software interrupts and when the system is reset [28]. The system mode uses the exact 

same registers as the user mode. Figure 3 illustrates the different modes and register swaps that 

accompany them. 

 

Figure 3: ARM Registers [1] 
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The six status registers consist of a single Current Program Status Register (CPSR) and five 

Saved Program Status Registers (SPSRs) [28] [1]. The user and system modes make use of the 

CPSR, which contains the current state of the machine. Whenever the mode is changed the 

content of the CPSR is preserved into the corresponding SPSR. The state is stored in the SPSR to 

allow a return to the previous state upon completion of the interrupt or handling of the exception 

that prompted the mode change. The full breakdown of the program status registers can be seen in 

Figure 4 below. There are a few noteworthy bits in the register. The bottom 5 bits are used to 

indicate the current operating mode [28].  Of high import is the 6
th
 bit labeled T, this is a read-

only bit used to determine whether or not the machine is operating in the Thumb ISA or the ARM 

ISA [28]. The „I‟ and „F‟ bits are used to enable or disable low priority and high priority 

interrupts respectively [28]. The 25
th
 bit, „J‟, is used to indicate if the processor is in a Jazelle 

state [1]. The most significant four bits are labeled NZCV and are referred to as the condition 

flags. These are flagged for the following conditions: negative result from ALU, result of zero 

from ALU, ALU operation carried out, and ALU operation overflowed [1]  [16] [28]. 

 

Figure 4: ARM Status Register [1] 
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INTEGRATED SYSTEMS 

Generally packages contain a solitary Integrated Circuit (IC) or transistor within. In a functional 

system there are multiple components, collectively used together to complete a designated 

purpose. It can be extrapolated from this that a circuit board supporting a system would have 

several packaged ICs contained on it. Each of these components is then connected where 

necessary by using traces on different layers. While this is functional and manageable with 

intelligent layout, it can take up large amounts of space on the board. This can be an unfortunate 

consequence because many devices are subject to severe space limitations in their design, which 

becomes difficult with multiple packages on the same board each making its own footprint. This 

is especially problematic once the number of necessary traces for each package is considered. 

With the potential of hundreds of leads each, this is particularly true with modern high end 

microprocessors. Combine that with the need for memory and other system components to fully 

function, this rapidly becomes an expensive and difficult proposition. Some devices complicate 

this further, such as mobile handsets, which are constantly and simultaneously becoming sleeker 

and increasingly overloaded with a user functions that require new parts.  

To conserve space, a natural solution is to package some of these commonly paired components 

together. The three most common design approaches are System-on-a-Chip (SoC), System-in-

Package (SiP), and Package-on-Package (PoP) [6]. While small differences between these exist, 

they are frequently used interchangeably in conversations and in papers. This confusion is 

understandable due to the end result between all three approaches being the same; a full system is 

contained to one footprint. Another contributing factor to the misuse of nomenclature is that these 

advanced packaging techniques are not mutually exclusive; it is possible to have a combination of 

all three integration techniques. All interconnectivity of each of the components that make up the 

entire system is handled within the design. For the purposes of this paper all designs that utilize 

these approaches and their variants will be referred to as integrated systems. 
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System-on-a-Chip 

The first of the space saving strategies, SoC, is the practice of putting several different system 

components on the same wafer die. Because all components are on the same plane, this is 

considered a 2-D packaging technique [8].  These types of chips commonly involve the use of 

different IP designs individually purchased [29] [30]. SoC has the advantage of almost always 

being the smallest and cheapest solution, and there is no compelling reason to use another method 

if this will do the job [31]. However, there are situations that are compelling enough to utilize 

other packaging technologies; to name a few, it adds stress to die size constraints [8] [32] and 

memory is difficult to include [8] .In fact it is generally considered better practice to use a 

different packaging technique for memory [6]. 

One such device is the Texas Instrument‟s Open Multimedia Application Platform (OMAP), 

which utilizes application end ARM cores. As the name implies, this particular example of a SoC 

is an ASIC targeted at media applications. In addition to the ARM RISC core, there is also a TI 

developed DSP core included, a shared memory system between the two, as well as other system 

components [9]. Other significant ARM-based application oriented SoCs exist on the market; 

these include the Samsung Hummingbird [33], Qualcomm Snapdragon [33], Nvidia Tegra [33], 

and Innovative Multimedia Extension (i.MX) [34].  

System-in-Package 

In contrast to the SoC approach, SiP places several different dies in the same package, and uses 

wire bonding between the dies [6]  [7]  [29]. There is a small amount of ambiguity surrounding 

the definition of SiP. Some sources [31] take a broad definition by declaring a SiP to be any 

package with more than a single chip, and then defining a variety of subtypes such as Multichip 

Modules (MCM) and Multichip Packages (MCP).  PoP is frequently included among these 

subtypes as well.  Occasionally, a more specific definition is used, identifying SiP as a 3-D 

technique consisting of a vertical stack of chips [6] [8].  
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Figure 5: System in Package [6] 

 

This more detailed definition usually accompanies a second separate term for the practice of 

multiple chips being placed on the same plane and possibly board. This 2-D counterpart is 

designated as a System-on-Platform (SoP) [8]. For purposes of this paper, SiP will include all 

techniques that involve a single package containing more than one chip, thus separating PoP from 

the others. Figure 5 shows the cross-section of a SiP, with two chips encapsulated in a single 

package. 

SiP has a variety of advantages over a purely SoC approach. This is particularly true when 

dealing with the subject of memory as noted in the System-on-a-Chip section. Also some 

components are difficult or impractical to place on a SoC [31]. These are examples of viable 

reasons to use a SiP approach.  Despite these advantages, SiP still faces some complexity and cost 

issues because of the wire bonding challenges between the different chips [29]. It also has higher 

power consumption [32]. It is clearly demonstrated that both systems have their strengths and 

weaknesses. Due to this, it is the conclusion of experts that both of these systems will coexist 

depending on the needs of the solution [31] [32].  

Package-on-Package 

The final major classification of integration techniques, PoP, is the practice of stacking different 

encapsulated packages on top of one another. PoP holds the same advantages over a pure SoC 

solution that SiP does. Though, between the two, other comparisons, aside from the obvious 

inclusion of extra encapsulations in PoP, can be drawn. It should be noted this technique comes at 
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the cost of a larger footprint [6], though the payoff is considerable. First of note is the improved 

memory options, SiP requires special and customized memory footprints, whereas PoP is 

designed to allow standardized footprints, thus any standard memory component is valid and 

useable [6]. In a similar fashion, almost any ASIC IC holds the same advantage; they can be 

individually packaged and use a standardized footprint [6]. Not requiring customized interfaces to 

fit additional dies in the same package makes IC procurement much easier, thus PoP allows 

cleaner and easier business deals during creation of these systems [6]. Also reliance on wire-

bonding methods is heavily reduced with innovations such as through-silicon vias (TSVs) [35], 

standardization in packages to support PoP [36], and implementation of flip-chip Ball Grid 

Arrays (BGA) [37]. 

A cross-section of a PoP design is shown in Figure 6. This particular image is actually that of the 

system included on the Beagle Board discussed in the next section. There are two stacked 

packages in this image. The bottom package contains a single die, which is actually an OMAP. 

The top package contains two dies, one for flash memory the other for SDRAM. To conclude, 

this is a fantastic demonstration of the different integrated system techniques; this is a PoP 

containing an SoC in the bottom package and a SiP in the top package. 

 

 

Figure 6: Package on Package Cross-section Using BGA Packaging [38] 

 



21 

 

BEAGLE BOARD  

Open-source software is fairly common, ranging from small applications to full operating systems 

such as Linux [39]. These programs are familiar to a variety of user communities, and allow for 

free use of the program as well as unfettered access to the source code.  The complete access to 

all development resources enables user generated modifications and development. Occasionally 

open-source hardware devices are also released for experimentation. Similarly to software, the 

schematics, Bill of Materials (BOM), Printable Circuit Board (PCB) layouts, and all other 

information is released for free [40]. One such device is the TI Beagle Board, which was created 

specifically to be an open-source hardware product. Though it was aimed at hobbyists [41], the 

device was developed with the intention of familiarizing development communities, and 

particularly university students [42], with OMAP driven products.  

The Beagle Board, seen in Error! Reference source not found. below, is designed to allow 

obbyists to experiment with TI‟s OMAP3530 PoP processor. The board has gone through a 

variety of updates and revisions; the specific version seen in Error! Reference source not found. 

s revision C4. Along with each revision, a full user guide is published alongside it that contains 

all information expected with open-source hardware devices such as the BOM and detailed 

overviews of each component. It should be noted that the board only offers a minimum set of 

features and is not intended to be used in end products [38]. It is instead focused towards starting 

projects and experimentation. The Beagle Board is still equipped with a suite of standard input 

and output (I/O) interface components, debugging interface components, and has multiple 

expansion capabilities. The Beagle Board has been used in a variety of projects, and a large 

community [43] has emerged around it, even supporting annual tournaments. 
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Figure 7: BeagleBoard Rev C4 

Specifications 

Mechanically, the board was designed to take up minimal space. The Beagle Board was designed 

on a six layer PCB. It only encompasses an area of 3.0 inches wide by 3.1 inches in length.  It 

should also be noted, the board is designed to allow daughterboard devices to be attached to its 

underside. From an electrical standpoint, low power was a key consideration. It is able to fully 

operate on a 5V supply and drawing only 350 mA.  

Interface and Extensions 

This section examines the specific features of the C4 revision of the Beagle Board. Excluding the 

expansion board connection, there are thirteen different sources of interface with the Beagle 

Board. These are detailed in  
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Table 3 and numerically labeled on Figure 8.  

The board is designed to function by using the USB On-The-Go (OTG) port for both power and 

communication. Though for both functions there are alternative options. For power, a jack is 

located on the board providing the option of using a 5V DC power supply. It should be noted that 

the USB Host port does not have sufficient power to run most USB devices without use of the 

power jack [38].  For communication, in addition to the USB inputs, a 10-pin header is included 

to allow access to the RS232 serial port, though this method is cumbersome and requires several 

obscure converter cables.  

Because the OMAP is a multimedia focused platform, audio and video I/O components are 

included on the board. The audio uses a simple 3.5mm stereo jack for both input and output. For 

video there are two different output options. The first is S-Video and second is DVI-D, though the 

DVI-D out actually uses a HDMI connecter for space conservation, thus requiring a converter 

cable. There is also an option of connecting a small display or reading data off of the LCD 

headers. 

The remaining interfaces are as follows. There is a JTAG for advanced debugging by use of an 

emulator. Also, a 6-in-1 MMC/SD device is used for enabling a variety of MMC+ supported 

devices. There are four status LEDs, three of which are controlled by user software and the final 

is a power indicator. Finally, two buttons are included on the board. The first is a reset button and 

the second is labeled the user/boot button. The second button can be used in conjunction with the 

reset button to change the boot order; alternatively, user software determines its purpose.  
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Table 3: OMAP Interfaces and Beagle Board Connectors 

Interface Connector

1 USB OTG USB Mini AB

2 USB Host USB A

3 Optional Power 5V DC

4 JTAG 14-pin Header

5 Serial (RS232) 10-Pin Header 

6 S-Video S-Video

7 DVI-D HDMI

8 Stereo Out 3.5mm L + R

9 Stereo In 3.5mm L + R In

10 Indicators N/A

11 Buttons N/A

12 SD/MMC 6 in 1 SD/MMC/SDIO

13 LCD Connection Two 2x10 Headers  
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Figure 8: Interfaces [38] 

There is an expansion socket provided that allows for additional functionality. New boards can be 

developed to take advantage of this 28 pin header to add more specific capability. A couple 

examples of these include an OLED display [44] or a lithium ION battery pack [45]. There are 

also expansions that don‟t use the socket such as the Flyswatter [46] for the JTAG.  

OMAP3530 and POP Memory 

The Beagle Board uses a .4mm pitch PoP package with an OMAP3530DCBB72 720MHZ 

processor on bottom; the top features both NAND and SDRAM [38]. This is the specific 

configuration observed in the illustration (Figure 6) used to demonstrate PoP packaging in the 

section above.  
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As with any other series of OMAP processors, the OMAP3530 is a SoC that targets multimedia 

applications. Utilizing the Cortex-A8 core, the OMAP is fully capable of running several 

different operating systems. A comprehensive list of specifications is included in  

 

 

Table 4. To see how the other system components in the OMAP interact with the processor, 

examine the block diagram provided in Figure 9. 

 

Figure 9: OMAP35xx Block Diagram [30] 

 

 

 

Table 4:  OMAP3530 Parametrics [30] 
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OMAP3530

CPU 1 64x+,ARM Cortex-A8  

Peak MMACS 4160  

Frequency(MHz) 520  

RISC Frequency(MHz) 720  

On-Chip L1/SRAM
112 KB (DSP),32 KB (ARM Cortex-

A8)  

On-Chip L2/SRAM
96 KB (DSP),256 KB (ARM Cortex-

A8)  

RAM(KB) 64 KB  

ROM 16 KB (DSP),32 KB (ARM Cortex-A8)  

EMIF 1 32-Bit SDRC,1 16-Bit GPMC  

External Memory Type 

Supported

LPDDR,NOR Flash,NAND 

flash,OneNAND,Asynch SRAM  

DMA(Ch) 64-Ch EDMA,32-Bit Channel SDMA  

Video Port (Configurable)
1 Dedicated Output,1 Dedicated 

Input  

Graphics Accelerator 1  

MMC/SD 3  

McBSP 5  

Pin/Package 423FCBGA, 515POP-FCBGA  

POP Interface Yes (CBB)  

I2C 3  

McSPI 4  

HDQ/1-Wire 1  

UART(SCI) 3  

USB 2  

Timers 12 32-Bit GP,2 32-Bit WD  

Core Supply (Volts) 0.8 V to 1.35 V  

IO Supply(V) 1.8 V,3.0 V (MMC1 Only)  

Operating Temperature 

Range(°C)
0 to 90,-40 to 105  

 

 

The Cortex-A8 belongs to the applications series of ARM processors. All of the common features 

described in ARM section attributed to the application processors are included, though it is 

notable that the A8 is specifically a single core design [47]. This particular processor is developed 

to operate in frequency ranges of 600MHZ to 1 GHZ, and uses an integrated L2 cache [27]. 
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Cache sizes are displayed in the above table. Two pipelines are featured in the Cortex A-8. The 

main pipeline is superscalar, 13 stages long, and utilizes in-order execution [48] [49] [50] [51]. 

The NEON unit utilizes a 10-stage pipeline for the SIMD based media instructions [50] [51] [52]. 

The core‟s block diagram is included below in Figure 10. 

 

Figure 10: Cortex- A8 [47] 

 

The top-mounted memory used in the revision C4 Beagle Board consists of two different memory 

components. The first component of memory is the 256 MB of NAND Flash, and it is the default 

boot device order unless the USER button is pressed. Also included in the PoP memory is 256 

MB of DDR SDRAM, which runs at 166 MHZ.  
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BENCHMARKS 

The specifics of benchmarking have been the subject of debate and research for decades. It goes 

without saying that using the same tools to measure two different systems is the only fair way to 

compare them. A variety of different benchmarking suites have become industry standards for 

this reason. It also can be safely concluded that it is important to ensure a thorough and fair 

application of the suite to each test subject in the comparison to prevent skewed or biased results. 

However, in practice there is rarely a perfect suite for the job, and misuse of the benchmark suites 

is frequent [53] [54]. Those are issues with benchmarking that arise in the best of circumstances, 

however, in the case of integrated systems (as defined in this thesis); the situation is dire. The 

search for a quality benchmark suite that tests all the functionality of an integrated system, 

without being designed for a full CPU, leaves much to be desired. Examining what properties 

make a standard benchmark and how they are misused will be observed in this section, though the 

results of research to find benchmarks for integrated systems will be explored in Chapter 4. 

Standard Benchmark Qualities 

There are a variety of benchmarks used as industry standards, most of which focus on a specific 

application or platform. Media, microprocessors, and server towers are among some of these 

focus targets.  The costs and accessibility of these benchmarks are as varied as their purposes.  

Upper end benchmarks include the Standard Performance Evaluation Corporation (SPEC) [55], 

EDN Embedded Microprocessor Benchmark Consortium (EEMBC) [56], and Berkley Design 

Technology, Inc. (BDTI) [57].  The former consists of a large number of different suites, and has 

been widely popular; it has at times comprised over half of reported conference benchmark 

results [53]. The latter two examples are both embedded processor oriented suites. On the other 

end of the spectrum from these proprietary benchmarks, a large number of open-source 

benchmark suites exist. One worthy of note is Dhrystone [54]. Dhrystone is several decades old, 

though it is still used today as a popular synthetic benchmark choice for integer operations.   
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Ideally a benchmark that is treated as the industry standard should have certain properties 

associated with it. It should be thorough so that it tests the entire system or application.  A good 

benchmark should not be biased; in other words, it should be representative of normal conditions 

and software used [58]. Additionally to be meaningful, it should be difficult for vendors to design 

a system that does well in the benchmark without actually being a good system. This is relevant 

because vendors are known to cheat  [53] [54].  Another important quality is that a standard 

benchmark should be current with modern specifications [54]. Clear guidelines or standards on 

running and scoring the benchmarks should also be provided so results can be consistently 

reproduced and relied upon [53] [54]. They provide some metric of measurement so that the 

results can be fairly compared; generally results should be easy to understand and relate to other 

metrics.  Popular benchmark developers actually certify results (or hire third party businesses) to 

improve the trustworthiness of their product [59].  

Misuse 

Even using an ideal benchmark, there are several ways to incorrectly exploit results. Misuse can 

be defined as employing the benchmark in some other way than intended. This can come in a 

variety of ways, from ignoring a few guidelines laid out by the benchmark to designing a system 

in a way to maximize the benchmark results specifically. Whether deliberate or accidental, 

benchmark misuse skews results, sometimes considerable amounts [53], which can falsely 

advertise the tested product or mislead future research.   

One major source of misuse is the failure to follow the guidelines of implementing the 

benchmark.  Incompletion is a good example of this. One paper extensively examined the 

different ways SPEC was misused [53], and one recurring theme was incompletion. It found that 

it was common to not run all the programs in the suite, and that less than a third of research 

papers even provided a reason why. Those that did stated they were only examining the expected 

areas of increased performance, or couldn‟t get all the programs to run. Both of these answers 



31 

 

should be taken as a red herring to the results. Speedup results in SPEC are calculated based on 

using all the programs, so this leads to a misuse in the scoring as well, because assumptions had 

to be made for the missing programs. A similar fallacy existed in not running a program in the 

suite to completion, and then extrapolating the results from a sample from the beginning. It 

doesn‟t take much contemplation to see the danger in that approach. Though the paper does make 

a point to show that these can all be understandable in certain circumstances, it is still a misuse of 

the intent of the benchmark. 

Age is also a consideration for benchmark misuse. As new systems are developed and change, the 

validity of a program begins to decrease. This is particularly true with Dhrystone [54]. The white 

paper on Dhrystone indicates that the benchmark easily fits in most modern L1 caches, meaning it 

is worthless for testing memory stress. Despite this, people still use Dhrystone. The same thing 

was noticed with the study on SPEC misuse; though SPEC95 had been discontinued, a large 

number of research papers were still using it [53].  Even if these benchmarks are correctly used, it 

just isn‟t reasonable to use them on modern systems as most of the tests are no longer valid or 

thorough. 

The above prevalent examples of misuse are generally innocent, or at the very least 

understandable. Unfortunately it is not unheard of for a more intentional and debatably malicious 

form of misuse to occur. Using favorable assumptions to oversell the results is one example of a 

twist on the above. Though even worse than that, designers are very capable of making a system 

in such a way that it „tricks‟ the benchmark by optimizing their system to specifically score well 

on an industry standard benchmark. Dhrystone is particularly infamous for this because of how 

easy it is to do [54].  
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Prolific Benchmarks 

As previously defined, one of the most popular standardized benchmarks for embedded systems 

is BDTI [57] [60]. Primarily, their benchmarks are targeted towards signal processing 

capabilities, though they have some less used application benchmarks. BDTI is considered a 

respectable standard, and offers a great amount of reliability and trustworthiness to its clients. 

They even post summarized results of results for specific cores that have been tested with BDTI 

benchmark suites. The Cortex-A8 is among these and can be located on their website [61]. 

The other significant powerhouse in the embedded systems benchmark market is EEMBC [60] 

[62]. This consortium provides a multitude of benchmark suites that cover a wide array of targets 

based on application focus. Much like BDTI, they do publish their results online, though it is 

much more detailed. The specifics of certification are also well guarded, another common ground 

with BDTI [63]. BDTI does claim technical superiority in the rigorousness of their benchmarks 

[63], particularly in the DSP market. Another downside that has been noted is that some of the 

specific tests within the benchmark suites are not well-thought out or representative of realistic 

conditions [60]. EEMBC operates in two modes [63]. First is an out-of-the-box mode that uses 

non optimized code and is noted as truly fair, though not realistic. Alternatively, the option to 

optimize code (C or assembly level) is available, though there are no guidelines or recommended 

approaches for it which makes it difficult to fairly compare the results. These flaws and 

complaints do not outweigh the benefits of EEMBC, there are plenty of valid reasons they are 

accepted as a standard. 

On the other end of the spectrum there is SPEC [55], a benchmark suite for high-performance 

computers. It also happens to be one of the most popular industry standard benchmarks [53].  

SPEC tends to utilize neutral programming language to improve its diversity, and also features 

many different suites with specific design goals. SPEC also provides rules on implementation, 

which makes comparisons that use this benchmark correctly trustworthy. 
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Another rather popular benchmark is Dhrystone [54] [63]. This is an integer synthetic benchmark 

that is still used in many embedded systems despite its age. ARM Holding uses it to help 

advertise their processors on their product pages [27].  Its popularity can likely be attributed to 

being open-source as well as the widespread use generated from being the first to successfully use 

a single score as a performance indicator [64] .   

One open-source benchmark suite aimed at embedded applications is Mediabench [65]. The suite 

consists of media and telecommunication applications. Unfortunately, the original suite requires 

software that has been discontinued, or is difficult to find. There is a sequel suite, Mediabench II, 

that has seen some development but seems largely incomplete and abandoned. Although these 

benchmarks are not available, they were very popular at one time. During research and literature 

review, this particular benchmark suite came up in some recent benchmark surveys [58]. It was 

worth mentioning due to the potential a completed version might have had as well as the 

frequency it was encountered.
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III. IMPLEMENTATION 

 

 

  

In preparation for running any benchmarks or other tests, it is necessary to choose a platform to 

run them. The Beagle Board is ideal for this purpose. To prepare the beagle, it must be set up to 

run similar to a personal computer complete with an operating system and hardware peripherals.  

Ubuntu [66], a Linux distribution, is selected as the OS. Equally necessary is an appropriate 

benchmark suite. MiBench [10], the benchmark used for this experiment, is non-application 

specific and focuses on generic embedded systems use.  

The Beagle Board suits the purpose of benchmarking an integrated system for several reasons. 

First, the integrated system on the Beagle Board exceeds the basic criteria to be considered an 

integrated system; it is an exemplary example of such. Secondly, by nature of its design it is 

easily accessible for experimentation. In fact, as previously explored, that is the intent of the 

Beagle Board. Finally, the board has a large following and support community providing more 

readily available software resources and user guides.   

Although a myriad of benchmark suites do exist, MiBench suits the purposes of this experiment. 

Some of the proprietary benchmarks were discarded for sheer cost reasons (BDTI and EEMBC), 

and others were legacy (Media Bench [65]).  Hardware constraints also played a part in selection. 

Because MiBench is general purpose, many appropriate test areas are covered.  
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Preparing MiBench to run on the Beagle Board is not the only necessary task in order to prove or 

disprove the thesis; in reality it is far from it. However, the process of attempting to find the most 

applicable resources for the experiment does provide a thorough experience to help gauge 

availability of benchmarks suited to the needs of ARM-based application integrated systems. 

Other research focuses are mandatory. It is imperative to survey some of the overall better suited 

suites and research results of past benchmark tests on germane systems by other parties as well.  

BEAGLE BOARD SETUP 

Preparing the Beagle to run benchmarks is a muti-step process. To do so requires obtaining 

compatible hardware peripherals. Most of them were common and easy to acquire, but others 

were more arcane or very specific. The standard I/O used can be inferred from  

 

 

 

 

 

 

 

Table 3 listed in the Beagle Board section of Chapter 2.  This does require a USB hub, however, 

for full usability. A special crossover cable (IDC10-DB9) working in tandem with a null modem 

cable is needed for serial communication with the device. The second step of set up is to get an 

operating system to functionally run on the Beagle Board.  There has been lots of effort in making 

the different significant operating systems available in the past. Though the best supported and 

easiest to implement for this are Linux distributions. While there have been many projects to 

bring the various Linux distributions to the Beagle Board, Ubuntu is best suited to the task. Also 
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it has the most community support among the Linux distributions. However setting up Ubuntu to 

run on an SD card is still an arduous task.  

Setting up Ubuntu for the Beagle Board 

The support sites for the Beagle Board make the ARM binary interface of the most recent 

versions of Ubuntu available. During the time of this exercise, the most recent stable version of 

Ubuntu is 10.10 (Maverick Meerkat). The approach used to run Ubuntu requires use of a SD card 

for the kernel and root file system. The card used for this was a 16GB SDHC Kingston device. 

The first necessary step is to format the card into two specific partitions with specific geometry; 

the first is the boot partition (FAT32), and the second (ext2) is for the root file system. The boot 

partition contains a pair of beagle board specific boot loaders and the kernel image. Older 

versions of Ubuntu were not available and users had to make their own image and root file 

system copies using recommended software.  For more details on partitioning the card see 

Appendix A. Secondly, if using an older version of the Beagle Board it is necessary to update the 

x-loader on the NAND flash to get the latest versions of Ubuntu running. This requires a serial 

connection and a copy of x-loader placed on a SD card. One can manually overwrite the previous 

version in this way. Next it is possible to boot from the card, though the initial boot does take a 

considerable amount of time. Unfortunately the images that are available are very limited in 

features, and do not even include a GUI. Thus the fourth and final step is the simple but time 

consuming process of acquiring and installing enough applications for a comfortable working 

environment. One nice feature of using the SD cards with the boot loaders established on the first 

partition is that one can easily interchange different cards with different operating systems. 

MIBENCH  

MiBench [10] (pronounced “my bench”) is an open-source benchmark suite designed specifically 

for embedded systems. This suite was developed in 2001 at the University of Michigan – Ann 

Arbor. When MiBench was developed ARM was still emerging, so they designed it to be 
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compatible for many differing ISAs by using C source code for all benchmarks. At the time there 

was not a clear dominating ISA; nothing as powerful or comprehensive as something like the 

Cortex-A series existed.  To their credit they did include tests for floating point units (FPUs), 

even though that was not a common feature yet.  Other embedded systems benchmarks from the 

same time were much more single application focused. Despite legacy design goals, many of the 

tests in this suite are still relevant in purpose. One area it is very weak on is media applications. 

As an area that ARM has made large strides in, this makes it an incomplete benchmark for beagle 

board.  However, on the other side, media specific benchmarks usually don‟t focus on many of 

the other areas that this one does have. 

Composition 

Taking the stance that the embedded system domain has a wide range of applications, MiBench, 

in turn, attempts to provide a wide range of benchmarks. These are broken into six primary 

categories based on the most common embedded system applications: auto/industrial, consumer, 

office, network, security, and telecommunications. MiBench has a set of 35 embedded 

applications across these categories. Many of the benchmark tests include a short and a long 

version within them. Table 5 shows a summary of each category set.  

Table 5: MiBench Categories 

Auto/ Industrial Consumer Office Network Security Telecomm

basicmath jpeg ghostscript dijkstra blowfish enc. CRC32

bitcount lame ispell patricia blowfish dec. FFT

qsort mad rsynth (CRC32) pgp sign IFFT

susan(edge) tiff2bw sphinx (sha) pgp verify ADPCM enc.

susan(corner) tiff2rgba stringsearch (blowflow) rijindael enc. ADPCM dec.

susan(smoothing) tiffdither rijindael dec. GSM enc.

tiffmedian sha GSM dec.  

The first set of tests, automotive and industrial control, is somewhat self-explanatory; it focuses 

on applications that are found in control systems. These focus on basic math functions, sorting, 
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bit counting, and shape recognition. The next set, consumer, is aimed at the market of consumer 

devices, and is therefore the most applicable set to the Cortex A-8. They include image 

compression and MP3 encoding and decoding to name a few. This set is lacking in video and 

other modern multimedia expectations, and indicated prior. The third set focuses on embedded 

processors primarily found in office appliances. Thus it is primarily deals with text specific 

programs. Fourth, the network set is focused on applications dealing with the kind of application 

found in networking devices. Shortest path algorithms and tree lookups are prime examples of the 

programs found within. Security benchmarks include programs that run hash algorithms and 

encryptions. Finally, the sixth category is telecommunications. Included within this are tests 

specific to frequency analysis, checksums, and voice encoding/decoding.   For a specific detail of 

each benchmark, check Appendix B:  MiBench Details. 

Execution 

Each benchmark has to be individually installed or compiled with GCC. The MiBench developers 

include an executable file in each of the benchmarks to be run once ready. These provide a strong 

representation of the workload associated with the program. Frequently the executables are 

accompanied by input examples. To differentiate between the large and small versions of each 

benchmark test, sometimes two separate executables are included, while at other times, different 

input samples are used.   

In preparing to run the benchmarks, simple scripts are written that utilize each benchmark 

executable five times and store each individual run time to the same file. The script is written in 

such a way as to go through this process with every large and small version in an entire category, 

thus there are six different scripts. In addition to the shell scripts, one simple C program is written 

to provide a precise execution time for each of the benchmarks. The program will accept the 

benchmark execution command line as a string and complete after the time calculation.  This 

script and C combination is implemented for multiple reasons: reduction of human error, 
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automated compilation of results, providing a sample pool to help isolate anomalous run times, 

and to make the process less laborious.  

Unfortunately, one drawback of MiBench is that it isn‟t prolific; therefore, it is difficult to relate 

the results. This is especially true without output metrics, or clear guidelines on how to measure 

the benchmarks. To provide context, contrast, and scalability the benchmark is also to be run on a 

fairly standard laptop (Specs in Chapter 4). The laptop is in a different category than the OMAP. 

The intent is not to compare the two; it is only to provide context with something that has been 

more universally tested.  Because the AMD processor in the laptop has more readily accessible 

performance results, one can easily look them up to provide frame of reference for the MiBench 

results. 

RESEARCH FOCUSES  

Two primary research focuses can help answer some of the questions that were asked in the thesis 

introduction regarding benchmark availability for integrated systems.  The first of these research 

focuses pertain to finding any available benchmarks that are in use as well as being relevant to the 

target platform. Within that goal, it would be appropriate to ensure that using them does not 

automatically generate benchmark misuse to make them apply to meet these needs. Similarly, it is 

also necessary to make sure the benchmarks are comprehensive enough. The second topic of 

study is oriented around finding the results of past benchmark results of integrated systems 

comparisons. This focus can be realized by seeking literature that has already compared different 

application integrated systems. Another avenue to pursue within this focus is searching the results 

databases stored by some of the larger benchmark suites. Whether or not an existing suite has 

been effectively used in the aforementioned task, and if not, what methods have been used for 

providing comparison will be discovered in this way. This second focus will also serve to indicate 

both where applications processors have been tested against full processors or microprocessors 

and to which classification they better belong.  
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Benchmark Criteria 

Due to the hybrid features of applications processors, particularly when considering the already 

ambiguous nature of distinguishing processors and microprocessors, it is necessary to survey 

benchmarks from both classifications. Aspects from benchmark suites of both of these 

classifications will be found to be relevant. However, the search is for a suite that successfully 

manages to test both ends of the applications processors. More than that, to meet all the sought 

after criteria of being applicable to integrated systems, the suite must be capable of testing a full 

system instead of just the core.  

The benchmarks that are found to be acceptable will have to feature several specific qualities. The 

most obvious of which is that it is comprehensive enough to not require secondary benchmarks to 

fill in untested capabilities. In contrast, an overly generic benchmark would fail to thoroughly test 

the system‟s purpose and capabilities. It should be a forgone conclusion that the benchmark 

should have all the qualities (or be able to produce them) expected of a standard while not being 

susceptible to intentional misuse. These are just a few of the more significant pitfalls that might 

make a particular benchmark ill-suited for the task. Other benchmark specific issues may also 

disqualify them from being suggested or nominated to be the standard.
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IV. RESULTS 

 

 

 

The intent of the research in this thesis is to find the state of availability of benchmark suites 

appropriate for ARM-based applications integrated systems.  As mentioned, the primary focuses 

of research includes potential suitable benchmarks and what results exist from past comparisons 

and tests. Because no clear standard or potential candidate is readily apparent, an assessment of 

the future of the target platform was also included.  

Literature is reviewed to find the future of ARM Holding Ltd. and its ISA. Finding the 

specifications of the IP cores of ARM processors was quite easy. Great detail is made available 

with technical manuals published by ARM Holding Ltd. Likewise, the literature shows great 

detail in the expanding techniques to create integrated systems as well as the increasing number 

of licensees that combine the technologies. Finally, literature indicating the prevalence of 

applications processors completes the research on the future of the target platforms.   

The results of MiBench on the OMAP3530 are included alongside the scale comparison provided 

with the standard laptop. These are broken into each of the six primary categories outlined by the 

MiBench developers. Again it should be noted that MiBench is not being proposed as a standard, 

nor is comparing OMAP3530 against an AMD processor the focus of study. Instead this is merely 

a sample benchmark along with a medium of comparison. 
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BENCHMARK RESEARCH 

There are many benchmarks and corresponding published results that have been done for ARM 

cores as well as some or fewer for integrated systems that include them. To underscore the 

availability of these results, ARM Holding Ltd. posts Dhrystone results on the processor profile 

pages. Likewise, the two most prevalently used embedded benchmark suites, BDTI and EEMBC 

[60], post summarized results online that are free to view [61]. Respectable measures for ARM 

cores such as the Cortex-A8 are widely available. To a lesser degree, finding comparisons [33] 

and successful benchmark results [67] [68] of integrated systems, particularly SoCs, is also a 

relatively manageable endeavor.  

Fully applicable benchmarks, or results, that met the criteria of being acceptable at a standard 

quality without being misused (by the definition explored in Chapter 2) are not found to be 

universally applied. In fact, nothing that is found presented itself as an obvious benchmarking 

standard for ARM-based application integrated systems.  Though nothing presented itself as an 

obvious choice, plenty of material does exist that is worthy of closer examination. It would be 

erroneous to claim that there are no benchmark suites that merit consideration. Some of the past 

benchmarks and subsequent comparisons between the different ARM-based integrated systems 

also contribute to the topic.  

Possible Benchmarks 

The background chapter provided several prolific benchmarks that are either prevalent in industry 

or less-known but better apt for being used for measuring the target devices. This sub-section will 

survey a few of the benchmarks mentioned in this paper (excluding MiBench, as it has been 

thoroughly explored in Chapter 3). The strengths and weaknesses of each of these shall be 

thoroughly analyzed with respect to the target platform of ARM-based integrates systems. 
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Despite their reputation for quality and respectability, BDTI does not make their source or 

certification methods available; thus, it is difficult to interpret at times though it also more 

difficult to cheat [60] [63]. Their primary benchmarks are too application specific 

(telecommunications and video encoding) and only measure single-core performance with results 

that are only relative to one another [60].  They do have a more sophisticated benchmark also 

used for decoding that can handle multi-core, though it still lacks the diversity needed.  To 

summarize, BDTI meets the quality standards, but is too specific for an applications processor, 

and offers little to test a full system.    

The second benchmark for embedded systems was EEMBC. As mentioned, their results are 

posted online and certified; one company, Synchromesh [69], dedicates significant resources to 

certifying and verifying benchmark results [59] [70] to put on EEMBCs database. In addition to 

services like that, EEMBC is a consortium of major companies in the industry; these attributes 

make it a very trusted source. Between the different benchmark suites, the EEMBC database does 

include many products from ARM, as well as many i.MX SoCs in particular. One of their suites, 

Coremark [64] [71], is free and attempts to provide a single measurement score. Results of 

several of the SoCs that have been mentioned in this paper can be found in its database. EEMBC 

clearly meets the needs in quality and widespread use as well as any option could, and it does 

seem capable of testing the abilities of an integrated system.  Unfortunately, it still requires 

multiple suites to test all the capabilities, and there are few tests outside of Coremark that have 

been performed for systems other than i.MX.   

SPEC was the most prolific of CPU oriented benchmarks. Unfortunately, SPEC does not indicate 

that there has been any application towards any kind of embedded system, even application 

processors, despite such a processor‟s abilities to run full operating systems. One would think 

there had been some work done in this area by SPEC, especially with product reviews likening 

the Cortex-A15 more to a normal processor than embedded systems [72]. However, that is simply 
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not the case. The suite itself is very comprehensive and conclusive, but would still be too difficult 

for the applications processors, and is certainly not geared towards them. 

Stepping away from the mainstream options bring a few new possibilities, such as Dhrystone. 

Unfortunately, Dhrystone has many shortcomings such as being too small and old to be relevant 

on modern cache sizes and multicore devices [63]. Another huge problem is the ease in which it 

can be manipulated [54]. These issues, and others, have been previously mentioned in the 

Benchmark section of Chapter 2. Thus, even if Dhrystone might be useable for some embedded 

systems, the Cortex-A series clearly needs a different representation because it has multi-core 

capability, large caches, and FPUs. Dhrystone fails to be appropriate even before considering 

system components.  

There are a variety of other benchmarks of varying complexities that might make one wonder 

why they didn‟t get considered. Surveying all the available benchmarks that might be merely 

implementable on the target platform would be a topic unto itself.  As more options were 

explored, they became increasingly specific-purpose driven, single-score oriented, obscure, or a 

combination thereof. This is not to imply that there are not benchmarks that can be used to some 

extent. In fact, several single-score specific-purpose benchmarks have been used to compare 

SoCs; one of these looked at ARM SoCs included in recent cell phone models [67]. Another 

project ran several suites on older application ARM systems that used the same core [59]. None 

of the benchmarks included in either test were enough to measure the entire system on their own. 

The important information to take away from this is that there are at least some benchmarks that 

can be found that are applicable to ARM-based application integrated systems. It is just also 

equally important to understand that they aren‟t comprehensive or detailed enough to meet the 

criteria of fully benchmarking an entire application integrated system.  
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Existing Benchmark Results 

The previous sub-section explores some of the significant benchmarks that were most likely to 

apply to the target; it also makes several references to existing comparisons and benchmark 

results that are relevant. This sub-section intends to explore some of those referenced results to 

get a grasp on what level of previous work has been done on the topic. This research can help 

indicate if an available benchmark has been used thoroughly enough to satisfy the objective of 

fully comparing multiple target platforms. This also serves to underscore how much difference 

the integrated system components make, which can be used to conclude whether or not only 

comparing the differences between each ARM core is enough to make a conclusive decision. 

The first set of published results to be examined comes from Synchromesh selecting competing 

SoCs and comparing them using several different benchmarks [59]. The benchmarks used consist 

of STREAM, BYTEmarks, HINT, and an MPEG-4 decoded/encoder developed specifically by 

Synchromesh. The tested platforms consist of the i.MX31, OMAP2420, and the Intel Bulverde. 

The first two both use very similar ARM-11 architectures for their core, whereas the Bulverde 

uses an older version of ARM ISA. Due to vastly differing base clock frequencies, the i.MX31 is 

represented twice, once at normal speed and once at half speed. All tested platforms are given as 

similar operating configurations as possible. Even still, the processors operate at different clock 

speeds. The results of each benchmark are included twice; once with just the raw results, and 

once normalized to mitigate the differing clock speed factor.  

Stream is synthetic, and is used to measure sustained memory bandwidth in MB/s.  By using 

Stream, it can be noted that the high speed i.MX is superior in performance by its metrics, but the 

most efficient is the lower clock speed i.MX while OMAP and the higher speed i.MX are similar. 

To demonstrate this Figure 11 shows the results of Stream while Figure 12 clearly shows the 

same results adjusted for the operating frequency of the platform.   
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Figure 11: Stream [59] 

 

 

Figure 12: Stream Adjusted [59] 
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Using normalized BYTEmark results reveal similar trends. Figure 13 indicated the i.MX scales 

very well with an adjusted clock speed; the i.MX manages to outperform the OMAP in terms of 

efficiency despite the operating frequency.  It should also be noted from the experiment that the 

higher speed i.MX outperformed the OMAP.   

 

Figure 13: Normalized BYTEmark Results [59] 
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low speed i.MX outperformed the OMAP. In most instances the processors using the more 

advanced ARM11 dominated the Bulverde.  The results clearly show the memory subsystems 
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A considerably more recent comparison of ARM-based application SoCs that are included in 

smartphones will be explored below [67].  This series of tests included the single-score 

benchmarks SunSpider Javascript Benchmark .9 [73], Rightware BrowserMark [74], and 

GLBenchmark [75].  The primary competing targets utilize the OMAP4430, the Exynos4210, and 

the Tegra 2. Beyond these, other smartphones using older SoCs were incorporated into the test 

pool.  

 
Figure 14: SunSpider Javascript [67] 

 

 
Though little explanation was included, these main focus devices are all ARM-based applications 

integrated systems. The OMAP4430 came out the clear winner of this assembly of benchmarks. 

Looking at Figure 14 will show that it barely edges out competition in quickness to complete the 

SunSpider Javaacript benchmark, with the Exynos4210 and two devices using Tegra 2 taking the 

next three places.  It also wins out in the GLBenchmark 2.0 – Pro, a 3D rendering benchmark, as 

indicated by Figure 15(b). Though, Figure 15(a) demonstrates that BrowserMark slightly favors 

the Tegra 2. This is the only test the OMAP did not come out superior.  

http://www.smartkeitai.com/lg-optimus-3d-beats-samsung-galaxy-s-ii-in-benchmarks/lg-optimus-3d-javascript-benchmark/
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Figure 15: (a) BrowserMark (b) GLBenchmark 2.0 [67] 

 

BTDI, EEMBC, and EEMBC‟s Coremark also have results that can be looked up online; 

unfortunately, the specific details of those cannot be repeated here due to copyrights. However, 

they are easily accessible on company websites, though they do not alter any of implications of 

the results found here.  It can be said that outside of Coremark, most of the results posted are 

novelties and exist only for a few of many SoC designs. In case of Coremark, only the single-

score and test conditions are freely available. As discussed, this would not be useful to thoroughly 

differentiate between integrated systems. BTDI, on the other hand, did manage to provide a very 

thorough examination of the Cortex-A8 [61], though they have done little else with ARM much 

less OMAP or any of its competing systems.  

Overviewing existing benchmarking results for ARM-based applications integrated systems 

highlights several interesting points. First, none of them used benchmarks developed by any of 

the big standard groups. Second, all testers used multiple benchmarks that were unrelated to one 

another to make their comparisons. This indicated that not only were single conclusive options 

not able to be found during the research into this thesis, neither were the experimenting parties 

able to find them. Third, two different SoCs that had nearly identical cores performed very 

differently under the same operating parameters.  To summarize, no apparent tests nor databases 

http://www.smartkeitai.com/lg-optimus-3d-beats-samsung-galaxy-s-ii-in-benchmarks/lg-optimus-3d-browser-benchmark/
http://www.smartkeitai.com/lg-optimus-3d-beats-samsung-galaxy-s-ii-in-benchmarks/lg-optimus-3d-opengl-es-benchmark/
http://www.smartkeitai.com/lg-optimus-3d-beats-samsung-galaxy-s-ii-in-benchmarks/lg-optimus-3d-browser-benchmark/
http://www.smartkeitai.com/lg-optimus-3d-beats-samsung-galaxy-s-ii-in-benchmarks/lg-optimus-3d-opengl-es-benchmark/
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of benchmark results provide a truly comprehensive comparison of ARM-based application 

integrated systems.  

 MIBENCH RESULTS 

Just as explained during the MiBench section under Chapter 3, each benchmark was to be run 

five times to reduce anomalies and provide an average. In order to automate the process, scripts 

that called a small c program were written. Most of the benchmark suite was straight forward in 

implementation, with only a handful of unusable benchmarks. In total, all but six of the individual 

benchmarks were able to compile correctly. The technical reasons for each of these errors were 

vastly different. Though most of the errors derived from the same common theme, this 

benchmark suite is just too outdated. Fortunately, every successfully compiled benchmark was 

successfully run and measured save three exceptions.  Most of them had little variance between 

the five passes indicating quality in terms of precision.  

The remainder of this section will be organized by benchmark category and used to explore the 

results for both of the machines.  

Table 6 compares the two different test platforms. Because the benchmark suite lacks any 

suggested measurement, the best metric is using runtime. The results in the subsections below use 

the standard of measuring the clock directly before running the benchmark and again immediately 

afterwards, then taking the difference. For simplicity the monotonic time clock was used for this 

purpose. The function used is provided from the standard time library for C. It should be noted 

that this clock does include everything being processed, much like the real time clock, thus 

cannot be used to accurately determine measurements such as IPC. The original implementation 

of the benchmark [10], had very precise measurements included such as IPC, branches missed, 

along with a few others. Unfortunately, these results were obtained by simulation using 

SimpleScalar, which doesn‟t help in a real world test. 



51 

 

 

Table 6: TI OMAP3530DCBB72 [30] vs. AMD Turion TM 64 X2 Mobile Dual-Core  [76] 

OMAP Turion

Architecture ARMv7A AMD64

Clock Frequency 720 MHZ 2.2GHZ

Pipeline

13 Stage, with separate 

10 State Media Unavailable

Order Dual Issue, In-Order Unavailable

L1 Data Cache

16 Kbyte 4-way 

Associative

64-Kbyte 2-way 

Associative

L1 Instruction 

Cache

16 Kbyte 4-way 

Associative

64-Kbyte 2-way 

Associative

L2 Cache 256 Kbyte 512 Kbyte

Branch Predictor

Dynamic Branch 

Prediction with 

BranchTarget Address 

Cache, Global 

HistoryBuffer, and 8-

Entry Return Stack

Dynamic Branch 

Prediction

ROM

2Gb NAND Flash x 16 

(256MB) - Expanded 

with HDSC 16 GB 160 GB SATA Hard Disk

RAM

2Gb MDDR SDRAM x32 

(256MB @ 166MHz) 2 GB, 667 MHZ,SDRAM

Operating System Ubuntu 10.10

Ubuntu 10.10 in 

VMWare 3.1.3  on 

Windows 7
 

Automotive/Industrial 

All of the automotive benchmarks were completely able to compile on both machines. 

Furthermore, they were able to do so without any need of alterations or fixes. This was the easiest 

test to compile and run because of that lack of complications. Basicmath and qsort output large 

text files detailing thousands of iterations of the same test, one per line. Bitcount also outputs a 

text file, though it has a short list of summarized results of different methods. Finally Susan 

outputs image files with the edges/corners found as well as a final smoothed product.  
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The timing results from the automotive benchmarks can be seen in Figure 16 and Figure 17. The 

numbers listed below the bar graphs indicate the average of the five run times, excluding any 

anomalies. The beagle board in particular has several anomalies in the small basic math and 

bitcount tests, with one case that took several magnitudes of time longer than the other runtimes. 

In contrast, the large versions of each benchmarks had very consistent results. Repeated sets of 

five executions returned similar results, including the anomalies.  

 

Figure 16: Automotive Runtimes 1 

 

Figure 17: Automotive Runtimes 2 
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Network 

This is another benchmark categorization that had no faulty benchmarks within. However, there 

are only two of them in the category: dijkstra and patricia. Both of these output simple text files. 

The timing results can be seen below in Figure 18. All the benchmarks were very consistent. 

 

 

Figure 18: Network Runtimes 
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from typeset.  The timing results from the successful tests can be seen in Figure 19 and Figure 

20. 

 

 

Figure 19: Consumer Runtimes 

 

Figure 20: Consumer Runtimes 2 
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Much like in the automotive benchmarks, some of these had some anomalous results for a single 

test, although most did not. The Beagle Board had some large variation specifically within tiff to 

bw conversions. Also of note, the AMD had a vastly different runtime for the first result of some 

of the tiff conversion tests than the other four. This is likely due to being loaded from the hard 

drive the first time. Outside of these instances though, the results were fairly consistent and had a 

small standard deviation. 

Office 

This is another set of benchmarks that had far less than ideal outcome while compiling and 

running them; only two out of five were successfully implemented. One of them, ghostscript, was 

unable to compile due to poor coding in reference to library use and mistakes as amateur as 

having the wrong number of arguments in a function call. It was unclear how much debugging 

and rewriting would have been required. Rsynth was unable to even configure. Finally, sphinx, 

did successfully configure and compile after a large number of declaration issues as well as a 

pointer error that had to be debugged. Unfortunately, there were no instructions or indication of 

the test to be run by the program. The two functional benchmarks had text files for output. The 

runtime results of these are included in Figure 21, below. One may notice that iSpell large was 

not included, its results were similar to the small in ratio between machine performance, though 

severely impacted the scale of the chart and was not significant enough to warrant a second chart. 

The other results were fairly consistent with one another, though much like in some of the 

previous cases, the first pass of each test had an increase in magnitude of runtime for the laptop. 

One other case of note, the large stringsearch‟s runtime on the Beagle Board was consistently 

approximate to one of two vastly different times.  
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Figure 21: Office Runtimes 
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Only one of MiBench‟s security oriented benchmarks were successfully implemented. The first 

of those that did not compile, PGP, required optimization code to be written depending on the 

specific operating system. As it was expecting a UNIX distribution, Ubuntu was far too removed 

for there to be any basis of support. When combined with the specifics of the topic of this thesis, 

making the results of it tangential anyway, it was deemed unnecessary to attempt to fix. Rijndael 

had some coding errors within. Blowfish reported some segmentation faults, and the text files 

came up empty. Sha successfully returned the expected text file output. A small figure (Figure 

22) shows the runtimes of sha below.  
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Figure 22: Security 

It should be stated that the runtimes were very consistent for the AMD processor, and the larger 

version of Sha as well. The smaller version had three instances that it ran slower than the worst 

case of the large test. This really underscores the kind of inconsistency that has been a recurring 

theme through the small benchmark tests. 

Telecommunication 

All benchmarks included in telecomm were able to successfully compile; the only noteworthy 

complication was an ignored error out of gsm. FFT and CRC32 both had text outputs. The 

program gsm returned an audio output. Finally, adpcm returned a file containing pulse width 

modulation data. The runtimes for these programs are seen in Figure 23 and Figure 24. These 

were actually very precise, with only a few results that had to be discounted. 
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Figure 23: Telecommunications Runtimes 

 

 

Figure 24: Telecommunication Runtimes
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V. CONCLUSIONS 

 

 

 

The introduction begins with a series of questions pertaining to benchmarking ARM-based 

applications integrated systems. Consequently, the first part of the conclusion should to be to 

answer them. As such, the first section explores each of them independently so that the thesis 

statement may be objectively proven or disproven. It is at this juncture that the literature review, 

the benchmarks studied, and the MiBench results finally culminate.  

The second section provides an overview of a few possible avenues of further research and 

explorations. This thesis only touches on what could be done with these devices in the realm of 

benchmarking. Not only could the topics within this thesis be further expanded, other related 

fields of study could originate from topics germane to this paper.  

In the final section of this paper, the validity of the thesis statement shall be challenged.  The 

questions answered in the beginning of this chapter become immediately and directly relevant. 

Upon completing the consequent analysis, the paper will begin to close with the current state of 

benchmarking ARM-based application integrated systems. Finally, it concludes with the reasons 

for this status and what (if anything) should be done to improve it. 
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ANALYSIS 

Several questions are posed in the introduction of this thesis. The first two of these are basic; they 

pertain to the validity of a unique benchmark suite tailored to ARM-based applications integrated 

systems. The next pertinent topic to have been explored is in regard to the status of available 

benchmarks that applies to the target system as well as the reasons for it. Finally, an idea of the 

future of ARM-based technology is to be provided. In short, the answer to these questions implies 

that there is a need that has not been filled. The reasons why will be explored in more detail 

below. 

Are Application Processors Distinct? 

One needs to look no further than the severity that the antique AMD dominated the OMAP to 

clearly see the extent in which regular CPU processors can stand apart from application 

processors. This outcome was expected, and the inclusion of the AMD was just for scale, but that 

does not change the results. It could be said that the beagle board performed poorly due to 

bottlenecks and other influences, or that given a fair test utilizing a simulator might have made 

them closer. Even then, as many shared factors as possible were introduced. The clock speed 

advantage of the AMD made a large difference, though that underscores a difference between the 

processor families; thus, changing one in turn changes the characteristics. Even if one were to 

adjust for the fact that AMD had a clock speed three times faster than the OMAP, the AMD 

consistently performed at least a full increment of time faster. Common sense dictates that a 

modern computer versus an OMAP would have even wider margins. Speculations based off of a 

single test of questionable fairness are not enough to conclude where applications processors 

stand in the processor hierarchy however. Modern processors characterize deeper pipelines, 

simultaneous multithreading, and other options not yet present in most applications processors. 

They operate in higher frequencies, with ARM‟s most advanced model (See Appendix C), still 

operating at a max of 2 GHZ. Applications processors also still carry many expected/required 
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traits of embedded systems that provide constraints, such as being designed to utilize lower power 

and require a very small circuit board footprint. One final difference, these processors are 

designed in such a way they do have the luxury of separate peripherals to aide in specific 

computations such as the video cards and sound processing available to regular processors. To 

illustrate this, the NEON 10 stage pipeline in the Cortex-A8 would not be found in regular CPUs.  

To summarize, although the differences are very thin, applications processors do have different 

design criteria, and are not quite as powerful as regular processors.  

On the other end of the spectrum, the raw facts from the list of characteristics that distinguish the 

Cortex-A series from the other two ARMv7 families go a long ways to show they should be 

treated separately from other micro controllers. Different memory management, expansion into 

multi-core markets, capacity to use full operating systems, branch prediction, and deep pipelines 

are a few of the properties that make them stand apart. Also outside of devices using ARM‟s 

Thumb, real-time DSP and microcontrollers are not generally 32-bit cores. Simply put, for 

modern devices like mobile handsets, the capabilities of microcontrollers and other lower end 

embedded systems processors just aren‟t enough. Therefore, applications processors most 

certainly stand apart from them. 

Nothing clearly outwardly states that applications processors should be treated in their own 

category, though logically they are aimed at a much different purpose than other embedded 

systems or full computers. They have different design criteria than either, and an expected 

performance range that really is centered between the other two. They share qualities from both 

categories of processor. Even if application processors do not justify specific benchmarks tailored 

towards them, they certainly need a suite that covers design constraints of both computers and 

embedded systems for wholesome evaluations. 
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Is Testing the Core Enough? 

One of the questions in the introduction regarded whether or not testing the core was enough to 

distinguish between integrated systems.  In this case the answer is very straight forward: no. One 

of the previous benchmark evaluations surveyed in Chapter 4 clearly demonstrated that two 

integrated systems with similar cores (both ARM11s) performed vastly different. In that case the 

i.MX markedly outperformed the corresponding OMAP in almost every comparison, occasionally 

even before mitigating the i.MX clock speed disadvantage. This proves that two integrated 

systems with the same core perform differently.  Another benchmark compared a vast array of 

different cell phones that utilized different integrated system devices, while they had different 

cores, most of them were all ARM based. Additionally it underscored that several competitors 

were using similar cores, and getting different products upon making their own modifications 

within the same market. Again, the components included within an integrated system make it 

stand apart from the core it originates from and should be considered when comparing two 

devices. Some of the performance differences may simply be because of the application method 

of that core within the integrated system, but it is likely beneficial to intentionally test and 

compare the components when designing a benchmark suite for them. 

Are Current Benchmarks Adequate? 

None of the benchmarks surveyed in this paper met the criteria of being comprehensive, holding 

to standard quality, and being modern enough. Some of them were closer than others, and by 

piecing together several of them, one might be able to comprehensively test a full processor. 

However, using small parts of benchmarking suites is considered misuse, and trying to use pieces 

of a set of benchmarks doesn‟t leave much room for industry wide comparisons.  Essentially, 

there were no strong candidates for the job; in particular MiBench was a poor option for the 

benchmarking the target system. 
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MiBench was terrible for the task, but was one of the most comprehensive options. It was just too 

far out of date and the programs within suffered for it.  Ignoring the failed compilations, it still 

did not have any streaming video or other benchmarks, which are largely important in today‟s 

application processors.  The most detrimental feature of it was that there was not a supplied 

method of implementation, nor were any other benchmark results readily apparent to compare to. 

Because of this, a scale (the AMD) had to be included just to provide context for the results. 

Without it, the results would have been entirely meaningless. 

Realistically, the answer as to whether or not a benchmark suite exists that is viable for the target 

platform cannot be exhaustively determined; thus, some amount of supposition is required. The 

best answer then is “not really.” There are some that can provide meaningful results, particularly 

single purposed benchmarks as indicated by the mobile handset comparison provided in Chapter 

4. Large portions of some of the larger suites also apply well, though none of them really 

distinguished themselves as the correct choice. Because of this, the final stance of this thesis 

regarding this particular subject is that there are enough resources available to make due for 

minor comparisons but nothing that comes close to being a reasonable benchmarking standard 

candidate for these systems.  

What is the Future Trend? 

ARM processors have been rapidly growing and continue to do so at an accelerated rate. With the 

sheer size of their portion of the market, in conjunction with how fast it got there, it is apparent 

that ARM will be around for some time. Major corporations that might normally develop their 

own processors are simply licensing ARM technology and placing them in these integrated 

systems. Also, processor developers are specifically targeting the application processor market 

that ARM currently dominates. Not only will ARM continue to expand in the foreseeable future, 

other comparable devices will begin to join them on the market. 
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FUTURE WORK 

Three possible avenues of future work are readily apparent. The first of these lies in the 

possibility of exploring further benchmark capabilities on either the target platform or similarly 

related ones. This could be continuing the research done on available benchmarks. After all, 

while thorough, it would be naïve to claim that every possible benchmark was reviewed; just the 

most prominent and apparent ones were. Another worthwhile endeavor on the subject of 

benchmark research would be in determining precisely what an applications processor does need 

to be thoroughly compared. A variant of this could be studying benchmarks for integrated 

systems. Doing similar studies to expand outside of some of the specific traits chosen for the 

target system could also yield interesting results. 

In an entirely different vein, the second choice for potential future studies stems from non-

benchmark driven ideas. The Beagle Board alone sports many projects on its community website. 

Outside of those, with the right tools many programming projects are available. Studying other 

uses for this product could yield many project ideas. Also examining other aspects, such as design 

instead of testing, on integrated systems is a recommended topic for study. 

Finally, one might continue the brief experiments done here; that would be much more germane 

to this topic than the second option for future endeavors. One very obvious way would be to 

compare a variety of different test boards similar to the Beagle Board, perhaps even using 

different revisions of the Beagle Board. For this purpose, one could use MiBench or an entirely 

different benchmark. A test less compromised by the real world, such as simulating these devices 

or using a logic analyzer on a JTAG input, could prove highly interesting as well. Finally, a 

project dedicated to actually developing a benchmark suite for the target platform would be 

worthwhile work. 
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SUMMARY 

At the onset of this paper it was theorized that ARM-based application integrated systems were 

unique, yet prominent enough to warrant their own standard of benchmarking suites and that 

there were none readily apparent. During the course of attempting to prove or disprove this 

several topics were covered. First and foremost, the cores within an integrated system should not 

be solely consulted when examining the product. Also, application end embedded systems 

certainly stand apart from other processors. As ARM dominates huge portions of the market and 

functions on selling IP cores, their technology is almost synonymous with the field currently. 

Finally, a survey of benchmarks and implementation of one of them demonstrated the lack of real 

choices for comparison. Therefore, it is in fact valid to say benchmarks developed for ARM-

based application integrated systems are lacking despite being a near necessity. 
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GLOSSARY 

 

 

 

ARM Holding Ltd – British company that owns and develops the ARM instruction set, and sells 

ARM cores as intellectual property 

Advanced RISC Machine (ARM) – an embedded instruction set architecture that is based on 

and expands upon reduced instruction set computer design strategies 

Applications Processor – embedded processor that is used in high end devices, and is capable of 

running a full operating system 

Beagle Board – hobbyist device with large community support that was designed by Texas 

Instrument‟s engineers to allow users to experiment with the OMAP3530 

i.MX – An Intel SoC that utilizes ARM ISA, and one of the competitors to OMAP 

Integrated System – Any device that contains multiple system components within a single 

package so that might occupy a single footprint such as SoCs, SiPs, and PoPs 

IP Cores – The intellectual content of a processor core design to be licensed on its own so that 

the licensee may modify, expand, integrate, and manufacture it to their needs 

Jazelle – A specific ISA expansion for ARM for Java Bytecode 
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MiBench – A generic open-source embedded systems benchmark suite 

NEON – A media oriented ISA expansion for ARM, occasionally implemented with its own 

pipeline 

OMAP –A Texas Instruments SoC family of devices that contains an ARM application core and 

is commonly used in mobile handheld devices 

Package – The ceramic or plastic casing around a chip(s) with different I/O leads for connecting 

the contained device to other components 

Package-on-Package – A method of stacking different packages and interfacing them directly 

with one another  

System-in-Package – A package that contains multiple chips, either on the same plane or stacked 

on top of one another 

System-on-a-Chip – A chip/die that has multiple system components printed on it 

Thumb – A special ISA expansion to be included with ARM that uses 16-bit instructions and 

expands them to the 32-bit registers seamlessly
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ACRONYMS 

 

 

 

AOT – Ahead-of-Time 

ARM – Advanced RISC Machine 

ASICs – Application Specific Integrated Circuits 

BOM –  Bill of Materials 

CISC – Complex Instruction Set Computers  

CPSR – Current Program Status Register  

DBX – Direct Bytecode eXecution 

i.MX – innovative Multimedia eXtension 

IP – Intellectual Property 

ISA – Instruction Set Architecture 

OMAP – Open Multimedia Application Platform  

JIT – Just-in-Time  
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MMU – Memory Management Unit  

MPU – Memory Protection Unit 

PCB – Printable Circuit Board  

PoP – Package on Package 

PSoC – Programmable System on Chip 

RCT – Runtime Compilation Target   

RISC – Reduced Instruction Set Computer  

RTOS – Real Time Operating System 

SDHC – Secure Digital High Capacity 

SIMD - Single Instruction Multiple Data  

SiP – System in Package 

SoC – System-on-a-Chip  

SPSR – Saved Program Status Registers 

UAL – Universal Assembly Language 
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APPENDICES 

  

 

 

APPENDIX A: PARTITION GEOMETRY 

To establish Ubuntu in a way that the Beagle Board is ready to run it from an SD card, it is 

necessary to correctly set up the partition geometry. Before creating the correct partitions it is 

required to format the device and clear the partition table. Once confirmed that the device has no 

established partitions then the process can begin. The number of heads, sectors, and cylinders 

must be set. First, the number of heads is set to 255 and the number sectors are set to 63. This is 

constant no matter what SD card is chosen. The formula below is used to calculate the number of 

cylinders.  

  

 
   
  
   

  

The equation uses C to represent the number of cylinders and B to represent the number of bytes 

on the SD card. The values come from the number of heads, sectors, and by assigning 512 bytes 

per sector. The result of C should be rounded down to the nearest integer. Once the geometry is 

established, the only thing left to do is to create the individual partitions. The first partition is the 

FAT32, which is placed on the first 50 cylinders of the card and marked as bootable. The 

remaining cylinders are used for the ext2 partition, which contains the root file system.
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APPENDIX B:  MIBENCH DETAILS 

This appendix provides two important collections of information relevant to the MiBench [10] 

benchmark suite.  Primarily it provides a rough description of each test or algorithm included 

within the suite. These are broken into six tables (Table 7-  

 

Table 12), one for each category of benchmark. Figure 25 is an image of a table from the 

MiBench summary [10]  that provides the instruction counts for each of the tests. This 

information is secondary to the descriptions.  

 

Table 7: Automotive & Industrial Benchmark Descriptions 

Program Description

basicmath Basic math that wouldn't require dedicated hardware: Integers, angles, etc 

bitcount Tests bit manipulation abilities using different methods

qsort Sorts array of strings

susan (edges) Recognizes edges in an images

susan (corners) Recognizes corners in an images

susan (smoothing) Smooths edges in an image  

 

Table 8: Consumer Benchmark Descriptions 

Program Description

jpeg Compresses and decompresses images

lame Encodes MP3 format sound waves

mad MPEG audio decoder

tiff2bw Converts colored tiff image to black and white

tiff2rgba Converts colored tiff image to RGB format

tiffdither Used for reduction of size and resolution of an image

tiffmedian Simplifies/reduces color palette of image

typeset Emulates typesetting an HTML file
 



77 

 

 

Table 9: Office Benchmark Descriptions 

Program Description

ghostscript Used to interpret postcript

ispell Spell Checker

rsynth Text to speech

sphinx Speech decoder

stringsearch Case senstive search for strings  

Table 10: Network Benchmark Descriptions 

Program Description

dijkstra Calcuates shortest path in adjacency matrix

patrica Used to represent routing tables using trees

(CSC32) See Telecommunications Table

(sha) See Security Table

(blowfish) See Security Table  

 

Table 11: Security Benchmark Descriptions 

Program Description

blowfish enc/dec Symmetric block cipher with variable length key

pgp sign/verify Public encryption key for secure communication

rijndael enc/dec Block cipher; an encryption standard

sha Secure hash algorithm for exchanging crytographic keys  

 

 

Table 12: Telecommunications Benchmark Descriptions 

Program Description

CRC32 Checksum program, 32-bit cyclic redundancy check

FFT Fast Fourier Transform

IFFT Inverse Fast Fourier Transform

ADPCM enc/dec Adaptive Differential Pulse Code Modulation

GSM enc/dec Voice encoding and decoding  
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Figure 25: MiBench Instruction Counts [10] 

 

APPENDIX C: CORTEX-A COMPARISONS 

The commonalities of the application processors are discussed in the Background section about 

ARM families; this appendix focuses on what separates them into unique purposes.  Each of the 

primary Cortex-A cores have distinct purposes and some very significant design variations 

including pipeline size, multicore possibility, and ISA expansion options. There are four different 

Cortex-A processor cores: Cortex-A5, Cortex A8, CortexA9, and Cortex A15 [27]. The Cortex-

A5 is the lowest end application processor, focusing on using low-power and being low-cost. It 

comes in both single and multi-core varieties.  On the other end, the A15 is the high-end, high-
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frequency option. The Cortex-A8 is specifically focused on high-end media applications, thus it 

automatically includes NEON.   However it only features a single core. Finally the Cortex-A9 is 

focused on optimizing the efficiency of power-usage to performance. It also has multi-core 

capability. A9 also features a hard-macro implementation that allows extremely high operating 

frequency.  A compilation [27] [52] [77] [72] [78]  of features and specifications is included in 

Table 13.  

Table 13: Cortex-A Comparisons 

Cortex-A5 Cortex-A8 Cortex-A9 Cortex-A15

Multicore 1 - 4, or Single No, or Single 1 - 4, or Single 1-4X SMP

Operating 

Frequency Range 300-800 MHZ 600 - 1000 MHZ

600 - 2000 

MHZ 1 - 2 GHZ

NEON Optional Included Optional Included

FPU VFPv3 Optional VFPv3 included Optional VFPv4 included

Pipeline Stages 8 13 8 15-24

Out of Order? No No Yes Yes

L1 Cache Size (I/D) 4-64KB/4-64KB 32-64KB 32KB/32KB 32KB/32KB

L1 Cache 

Associativity  (I/D) 2-way/4-way 4-way 4-way ?
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