

 BENCHMARKING ARM-BASED APPLICATION

INTEGRATED SYSTEMS

By

SETH WILLIAMS

Bachelor Science in Electrical Engineering

Oklahoma State University

Stillwater, Oklahoma

2011

Submitted to the Faculty of the

Graduate College of the

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of

MASTER OF SCIENCE IN ELECTRICAL

ENGINEERING

December, 2011

ii

 BENCHMARKING ARM-BASED APPLICATION

INTEGRATED SYSTEMS

 Thesis Approved:

Dr. James Stine

 Thesis Adviser

 Dr. Sohum Sohoni

 Dr. Weihua Sheng

 Dr. Sheryl Tucker

 Dean of the Graduate College

iii

TABLE OF CONTENTS

Chapter Page

TABLE OF CONTENTS .. III

LIST OF TABLES ... V

LIST OF FIGURES .. VI

I. INTRODUCTION ... 1

Objectives .. 2

Contributions ... 3
Summary .. 4

II. BACKGROUND .. 5

ARM .. 6

History and Marketing .. 6
Features and Expansions .. 8

Processors ... 10
Architecture .. 14

Integrated Systems ... 17
System-on-a-Chip ... 18
System-in-Package ... 18

Package-on-Package ... 19
Beagle Board ... 21

Specifications ... 22
Interface and Extensions ... 22

OMAP3530 and POP Memory ... 25
Benchmarks ... 29

Standard Benchmark Qualities ... 29
Misuse ... 30

Prolific Benchmarks ... 32

III. IMPLEMENTATION ... 34

Beagle Board Setup ... 35
Setting up Ubuntu for the Beagle Board .. 36

MiBench .. 36
Composition ... 37

iv

Execution .. 38

Research Focuses ... 39
Benchmark Criteria .. 40

IV. RESULTS ... 41

Benchmark Research ... 42
Possible Benchmarks .. 42

Existing Benchmark Results ... 45
MiBench results ... 50

Automotive/Industrial ... 51
Network .. 53
Consumer .. 53

Office .. 55
Security ... 56

Telecommunication .. 57

V. CONCLUSIONS .. 59

Analysis ... 60

Are Application Processors Distinct? ... 60
Is Testing the Core Enough? .. 62
Are Current Benchmarks Adequate? .. 62

What is the Future Trend? .. 63
Future Work ... 64

Summary .. 65

BIBLIOGRAPHY ... 66

GLOSSARY ... 71

ACRONYMS .. 73

APPENDICES .. 75

Appendix A: Partition Geometry ... 75
Appendix B: MiBench Details .. 76
Appendix C: Cortex-A comparisons ... 78

v

LIST OF TABLES

Table Page

Table 1: ARM Versions and Families ... 7

Table 2: Instruction Set Options .. 14

Table 3: OMAP Interfaces and Beagle Board Connectors .. 24

Table 4: OMAP3530 Parametrics [30] ... 26

Table 5: MiBench Categories .. 37

Table 6: TI OMAP3530DCBB72 [30] vs. AMD Turion
 TM

 64 X2 Mobile Dual-Core [76] 51

Table 7: Automotive & Industrial Benchmark Descriptions ... 76

Table 8: Consumer Benchmark Descriptions .. 76

Table 9: Office Benchmark Descriptions... 77

Table 10: Network Benchmark Descriptions ... 77

Table 11: Security Benchmark Descriptions ... 77

Table 12: Telecommunications Benchmark Descriptions ... 77

Table 13: Cortex-A Comparisons .. 79

vi

LIST OF FIGURES

Figure Page

Figure 1: ARM Processor Categories by Capability [21] .. 11

Figure 2: ARM Processors and Features [21] ... 13

Figure 3: ARM Registers [1] ... 15

Figure 4: ARM Status Register [1] .. 16

Figure 5: System in Package [6] .. 19

Figure 6: Package on Package Cross-section Using BGA Packaging [38] 20

Figure 7: BeagleBoard Rev C4 .. 22

Figure 8: Interfaces [38] .. 25

Figure 9: OMAP35xx Block Diagram [30] ... 26

Figure 10: Cortex- A8 [47] .. 28

Figure 11: Stream [59]... 46

Figure 12: Stream Adjusted [59] ... 46

Figure 13: Normalized BYTEmark Results [59] ... 47

Figure 14: SunSpider Javascript [67] .. 48

Figure 15: (a) BrowserMark (b) GLBenchmark 2.0 [67] .. 49

Figure 16: Automotive Runtimes 1 ... 52

Figure 17: Automotive Runtimes 2 ... 52

Figure 18: Network Runtimes ... 53

Figure 19: Consumer Runtimes ... 54

Figure 20: Consumer Runtimes 2 .. 54

Figure 21: Office Runtimes ... 56

vii

Figure 22: Security .. 57

Figure 23: Telecommunications Runtimes .. 58

Figure 24: Telecommunication Runtimes ... 58

Figure 25: MiBench Instruction Counts [10] .. 78

1

I. INTRODUCTION

The line between a full processor and a microprocessor has always been a rather subjective one.

Subsequently, there are only a few technologies straddle that line more so than Advanced RISC

Machine (ARM) based applications processors [1]. These behemoth microprocessors are at the

heart of almost every major mobile handset [2] and capable of running full operating systems

while still maintaining the low power advantages of their embedded brethren. As these

applications processors become more adept, and subsequently the devices based on them become

more feature laden, they become even more difficult to define. As the evolution of these devices

progress, they will continue to become a category of their own, as such it stands to reason that

they should be treated as a category of their own.

The overwhelming majority of these application processors utilize the ARM Instruction Set

Architecture (ISA) [2]. ARM is used in a variety of different embedded systems ranging from the

high-end applications processors to low end microcontrollers. This ISA is the Intellectual

Property (IP) of the company ARM Holding Ltd. The company, founded on the development of

an early version of the ARM ISA, has spent decades modernizing and expanding the architecture.

This has led to many innovations that have contributed to the further differentiation between

ARM and

2

other embedded ISAs. Instead of manufacturing processors themselves, they license the IP cores

to other companies allowing them to modify the technology to their own needs. This arrangement

has resulted in literally hundreds [3] of companies producing billions of ARM processors per year

[4] [5].

Rarely is licensing and manufacturing an exact copy of a core enough to meet the needs of a

complex design. Thus licensees often times modify the core, package it with other components,

or both. Using space reduction packaging technologies these companies are capable of containing

an entire system to one footprint on a circuit board. While there are different methods to

packaging system components together, for the purposes of this paper and project they shall all be

referred to as integrated systems [6] [7] [8]. These integrated systems come in many varieties of

capability, function, and complexity.

It should be obvious that many of these integrated system designers are direct competitors. It

stands to reason then, that just like choosing any other option of processors it is important to be

able to compare and differentiate between similarly purposed integrated systems. While a

plethora of benchmarks exist for embedded systems and full processors, and even a few for

applications processors, finding a benchmark that tests an entire system contained within a single

device is much more difficult. Even when using the same core for the same design goal, two

companies can and likely will have widely divergent components within the integrated system.

Likewise, the methodology of packaging the components will have differences as well. It isn‟t

enough just to test the core, but the entire system as a whole must be benchmarked due to the

components being inseparable. After all, for this purpose, it behaves as a single device.

OBJECTIVES

Because of their prevalence, the intent of this thesis is to explore the topic of benchmarking

integrated systems that are specifically in the applications market and powered by ARM

3

technology. There are several questions on this subject that should be answered. Importantly,

whether these ARM-based applications processors differ enough to be treated separately should

be answered. The next question is whether or not full knowledge of the core obviates the

necessity of testing the full system in these cases. Along with this, determination of whether or

not there is an acceptable benchmark suite that is capable of adequately testing the full

capabilities of an integrated system will be equally important. If there is not, then the reasons one

hasn‟t been developed need to be investigated. The final consideration is what the future holds for

these devices, and the part that will play.

CONTRIBUTIONS

This paper makes several contributions.

 The collection of technologies included within the boundaries of packaging technology

that are dedicated to containing a system to a single footprint is shrouded in ambiguity

and conflicting nomenclature. The terms system-on-chip, system-in-package, and

package-on-package are frequently used in slightly different nuances, and occasionally

interchangeably, while in other research instances they are heavily distinguished. This

overview and explanation will help to remove this ambiguity and will clarify the all-

encompassing definition of “integrated systems”.

 It is necessary to determine what the acceptable characteristics are for a standard

benchmark intended for integrated systems. To do so, a brief summary of critical features

that should be expected in a standard benchmark is overviewed. The topic of misusing

benchmarks is also reviewed and discussed.

 The OMAP3530 [9] integrated system will be tested with the benchmark suite MiBench

[10]. The results of running the benchmark are included, with thorough documentation,

charts, time stamps, and other relevant information.

4

 A thorough exploration of the state of benchmarks applicable to the target platforms

(ARM-based applications integrated system) shall be completed. This includes

determining if the industry standards are sufficient as well as providing a succinct

collection of previous relevant experiments and results.

SUMMARY

Competing designs of ARM-based applications integrated systems are widespread enough to

warrant their own benchmarking standard. To test just the ARM cores is not sufficient to compare

or contrast the capabilities of the integrated systems. Additionally application end processors

balance the strengths of normal embedded microprocessors with full processors, thus

benchmarking against one or the other category is inconclusive and superfluous. With the

growing industry the necessity will continue to climb.

Chapter 1 provides a detailed overview of the project and the thesis statement. The second

chapter focuses on the background knowledge necessary for the project. This begins with a

detailed overview of the ARM Instruction Set Architecture starting with its history and

prominence in modern devices and ending with specific details of the architecture. The section on

ARM is followed by a look at what makes an integrated system by overviewing the specifics of

some of the packaging technologies that are used to contain an entire system to one footprint.

Next a detailed look at the test device itself, the Beagle Board, is included. The background

chapter is completed with an overview of benchmarking. Chapter 3 includes a close examination

of preparing the Beagle Board for the experiment, a look at selecting the appropriate benchmark,

and the specifics of the benchmark selected. Following this, the fourth chapter details the results

of the work. This begins with an examination of the results of benchmarking the Beagle Board.

The other prevalent part of this chapter looks at the results of researching various benchmarks for

existing results and comparisons between system integrated circuits such as those between the

OMAP and i.MX platforms. Chapter 5 concludes the thesis.

5

II. BACKGROUND

In order to understand the necessity of a benchmark suite specifically aimed at integrated systems

that use ARM ISAs, it is imperative to have a background. As mentioned in the Introduction,

ARM is very widely licensed and its use is rapidly expanding. These licensees are using ARM

based technology in different ways to create their own systems. Some of these systems are

integrated together on a single chip or within a package and sold as its own product; therefore, an

overview is necessary of both ARM technology and packaging techniques for integrated systems.

One such product is TI‟s OMAP series. The Beagle Board is a convenient interface with an

OMAP processor, thus is used as a platform for benchmarking experiments. It is highly

functional, and is adaptable to a large variety of projects. The Beagle Board also has the

advantage of being fully open-source. This device will be further explored in the sections below.

The study of benchmarks has been thoroughly explored, so it is not the purpose of this paper to

broaden or expand this topic. However, it is necessary to examine some of what is available in

order to highlight the absence of applicable benchmark suites. It will become clear that there are

many benchmarks that do provide some suitable tests for these systems. However, none of these

benchmarks are satisfactorily comprehensive.

6

ARM

One of the most common Instruction Set Architectures (ISA) being developed for modern

applications is the Advanced RISC Machine (ARM). ARM is a 32-bit ISA based on the Reduced

Instruction Set Computer (RISC) design strategy. This architecture has made sweeping advances

since its conception, expanding into multiple embedded markets, particularly those related to

consumer electronics. It is important to understand how widespread ARM cores have developed

and how rapidly they have achieved that level of success in addition to the processor capabilities

and architecture.

History and Marketing

Originally, ARM stood for Acorn RISC Machine and was developed by a branch of a small

British company, named Acorn Computers Ltd, hoping to get into the business computing

market. There were not any viable processor options that fit their needs or market goals, so they

chose to develop a new architecture after being inspired by a RISC project completed by a group

of Berkeley graduate students proving architecture development could be done on low budget and

limited facilities. After completing the ARM1 primarily as a development project in 1985 [11],

eventually the ARM2 and later the ARM3 were marketed. In 1990, Apple Computer and Acorn‟s

silicon contractor, VLSI Technology, aided in researching the next stage in ARM development

[5]. These contributions lead the team to break off into its own company: Advanced RISC

Machines Ltd. Eventually the company renamed itself ARM ltd (or ARM Holdings) in 1998

when it floated itself on the London stock market [5].

ARMs first embeddable RISC core in 1991 was the result from the early joint efforts between

Apple, Acorn and V-tech [11]. This first embeddable core was also based off the new ARMv3

architecture, and was named the ARM6 as a result of a new core naming scheme. Over the next

two decades several versions of the ISA were developed, the most recent being the ARMv7

debuting with the Cortex family in 2004 [5]. For a better visual of the architecture version as

7

related to its processor family Table 1 has been included. This table has been simplified; there are

a variety of sub-architecture versions that distinguish the differences between the families.

Likewise some families exist over the span of several architectures, using different sub-

architectures during the lifetime of that family.

Table 1: ARM Versions and Families

Architecture Families

ARMv1 ARM1

ARMv2

ARM2

ARM3

ARMv3

ARM6

ARM7

ARMv4

ARM7TDMI

ARM8

StrongARM

ARM9TDMI

ARMv5

ARM7EJ

ARM8

ARM9E

ARM10E

Xscale

ARMv6

ARM11

Cortex-M

ARMv7

Cortex-A

Cortex-M

Cortex-R

During this time ARM also developed a variety of innovations to allow more chip specializations

and options. These will be further detailed in the Features and Expansions section, though

introduced here. One of the more notable developments was Thumb, an operating state that uses

a 16-bit subset of compressed ARM instructions that could be toggled on or off. A more

sophisticated version of Thumb, titled Thumb-2, exists in the current architecture families.

Thumb and Thumb-2 can also be used as the sole architecture, excluding the regular ARM

instruction set altogether. Another innovation is Jazelle, a Java execution mode used to more

efficiently execute Java byte code. Other more common, natural advancements included options

8

of adding a floating-point unit (FPU), Digital Signal Processing (DSP) oriented designs, and

multicore designs.

ARM Holdings operates on a business structure of licensing its cores out to different companies as

intellectual property. This is done in lieu of manufacturing and selling individual chips

themselves. As of 2011, the company is able to boast [2] over 15 billion ARM cores have been

shipped and over 200 companies have an ARM license. When compared to the 1.5 billion

licensed and sold as of 2005, the accelerating growth is clear to see. Currently over 95% [2] [12]

of the mobile handsets use ARM technology, and even more impressively, the technology exists

in over 25% of all electronic devices. It is expected that in 2011 [4] alone there will be 5 billion

more IP cores sold.

Features and Expansions

As previously mentioned in the History section, many standard options that are commonly

expected in embedded systems were developed for the ARM processors to increase the potential

applications and industry competition. These came in a variety of feature sets ranging from the

common capabilities such as inclusion of a floating point unit or multicore to much more specific

and advanced options such as expansions to the instruction set with Thumb. Many of the features

weren‟t integrated until more recent revisions of the ISA.

When looking at the more common features available to standard specific-purpose

microprocessors, some of the most prominent recurring options include DSP and FPUs. In

modern designs multicore is also a commonly available feature. A general purpose Single

Instruction Multiple Data (SIMD) [13] engine for multimedia applications is also an available

option in upper end processors. SIMD extensions operate transparently with the OS utilizing

existing ports. A more advanced version, titled NEON [14], was developed for the ARMv7

architecture and uses wider vectors as well as featuring its own pipeline. NEON vastly

9

outperforms the older SIMD, at least doubling its speed [14]. The final option of note is

TrustZone [15], a multi-tiered infrastructure that provides a combination of software and

hardware security features tightly integrated into the processor. NEON, SIMD, and TrustZone all

extend the base instruction set. In the next session, Processors, a figure will illustrate which of

these features are available with the various detailed processor families.

Multiple extensions exist to supplement the basic 32-bit ARM ISA: Thumb, Thumb-2, and

Jazelle [16]. Thumb is a subset of common ARM instructions reduced to 16-bits. To clarify, a

processor with Thumb enabled still has 32-bit wide registers and buses, it just uses smaller

instructions. This is done so that when using 16-bit memory, the processor does not need to make

two fetches per instruction, which would significantly reduce performance. These instructions are

then decompressed during decompression. Another advantage of this system is allowing emphasis

on code density when necessary. Now, in the most recent two architectures (ARMv6 & ARMv7)

Thumb-2 is also available. In actuality, Thumb-2 is a stock feature of the Cortex series. Thumb-2

is a hybrid instruction set with all of the Thumb 16-bit instructions and a subset of the original

ARM 32-bit instructions, designed to seamlessly use the variable instruction length. It boasts [17]

[18] a 25% boost in performance over thumb and a 26% reduction in memory usage. The original

32-bit ARM instruction set can still be included with Thumb-2, in fact it even allows for more

seamless transitions. In addition to the Thumb options, Jazelle [19] is an ARM extension that is

focused towards Java support. It has both software and hardware components. There are now two

versions of Jazelle: Direct Bytecode eXecution (DBX) and Runtime Compilation Target (RCT).

The original, DBX, allowed direct execution of Java bytecode. RCT, also referred to as ThumbEE

uses Just-in-Time (JIT) and Ahead-of-Time (AOT) compilation methods. ThumbEE is capable of

handling a larger variety of execution environments than just Java. Due to this it is more preferred

and is supported by real-time and mandatory in application driven processors in the ARMv7

architecture.

10

In the previous section, History and Marketing, a few of the older processor families include a

few letters at the end of the name (see Table 1). These are as follows: „T‟, „D‟, „M‟, „I‟ [20]

which are usually included together, as well as „E‟ and „J‟. These indicate specific features. The

„T‟ is fairly obvious and indicates the Thumb extension previously described. Both the „D‟ and „I‟

are separate debugging options, the former standing for „Debug mode‟ which is Joint Test Action

Group (JTAG) support, and the latter meaning ICE support is available. The „M‟ is a little less

straightforward and stands for multiply to indicate that the pipelines are deeper and an enhanced

multiplication instruction is used. This is relative to the older processors. The DSP feature is

indicated by the „E‟ which stands for extended, and this implies all of „TDMI‟ is included. Finally

„J‟ indicates the Jazelle extension. In the Cortex family these labels are no longer required

because many of these features are assumed to be part of the product, or have been replaced or

updated.

One of the differences between some processors developed by ARM is the type of memory

control unit that is used. Application-specific processors also use a more advanced memory

control system than the embedded processor alternatives. These are respectively identified as

Memory Management Unit (MMU) [20] and Memory Protection Unit (MPU) [20]. Both of these

are used for protection against unwanted accesses to system resources. The MMU also includes

hardware to support virtual memory.

Processors

There are three primary processor market categorizations used at ARM [21]: Classic, Embedded,

and Applications. These are categorized by the added capabilities from advanced features, as well

as increasing performance and functionality. This is demonstrated by the graph shown in

11

Figure 1. In addition to these, there are a few specialty processors worth briefly acknowledging

that exist outside of the main three categories such as the SecurCore line for security applications

and FPGA target processors.

Figure 1: ARM Processor Categories by Capability [21]

12

The classic processors consist of the previous three major ISA versions of ARM architecture.

ARM7 (Actually the ARM7TDMI or ARM7EJ) [22], using ARMv4, is almost entirely antiquated

at this point, with the company firmly suggesting a Cortex counterpart. ARM9 (ARMv5) [23]is

still in use as a low-end single processor for DSP and java applications. ARM11 [24] is based on

ARMv6, and is still seeing wide use as a potential option in modern development. Several of

these older processors have a binary compatible counterpart in the Cortex family to allow for

design upgrades that do not require large scale software redesign.

The second classification of processors used by ARM is the modern embedded processors,

denoted Cortex-R and Cortex-M for real-time and microcontroller oriented applications

respectively. Each of these utilizes the ARMv7, as indicated by the Cortex title, and thus

includes the Thumb-2 Instruction set automatically along with other Cortex series standards.

However to distinguish them from the applications line, both of these processor families utilize

the MPU for memory control. They also operate on a Real-Time Operating System (RTOS) in

conjunction with user generated code. The Cortex-R [25] features deeper pipelines and uses high

clock frequencies. It also utilizes Tightly-Coupled Memory (TCM) for fast access to important

data or instructions that are needed for immediate access. TCM is considered level 1 memory,

and in some cores it entirely replaces the cache. In contrast, the Cortex-M [26] is designed with

low-power, code density, and interruption management as focus points. The Cortex-M series

exclusively uses Thumb-2 and does not have the ARM instruction set. Thumb-2 allows it to

maintain the low impact design requirements of its 8/16-bit competitors while still keeping the

performance advantage offered a 32-bit machine. Due to this instruction set it is able to function

as the industry standard by vastly outperforming competition in a MIPs per MHZ comparison.

The final classification of processors at ARM is the applications series, Cortex-A [27]. These are

used for high functionality, and are defined by their ability to run complex and complete

operating systems. Differing from the embedded classification Cortex processors, the applications

13

series uses the MMU instead of the MPU for memory control. Additionally the option of up to

four cores is available supporting a fully coherent L1 cache. The Cortex-A family is more open in

the number of available options and extensions than its counterparts. Certain features that are

used as options in the other processor families are automatically included in all Cortex-A

processors, namely Jazelle and NEON.

A more complete observation of the different features that were detailed in the prior section and

their availabilities for the different processor families may be observed in Figure 2. This image is

organized by the specific architecture used to create the columns. The top half uses color to

indicate the processor classification, and the processors are listed above their respective

architecture version. Listed below each of these architectures are the various options available to

the specific architecture.

Figure 2: ARM Processors and Features [21]

14

For simplicity and disambiguation, Table 2 is also included to specifically examine the available

instruction set extensions available by each processor family. Thumb, a staple of ARM processors

since its conception, is available in all models. The newer Thumb-2 is a primary feature in the

more recent families. Jazelle shows itself to be available in the higher end applications models, so

was excluded in the Cortex-M and Cortex-R, and wasn‟t available yet in the design of the ARM7.

As mentioned before, the ARM ISA is completely excluded in exchange for only using Thumb-2

in the Cortex-M. Also, a slight error in Figure 2 claims NEON is available in Cortex-R, though a

closer look at the feature [14] disproves that claim.

Table 2: Instruction Set Options

ARM Jazelle Thumb Thumb-2 SIMD NEON TrustZone

Cortex-A R R R R R R

Cortex-M R R

Cortex-R R R R O O

ARM11 R O R O O O

ARM9 R O R

ARM7 R R

KEY

R - Required

 O - Optional

Blank - Unavailable

Architecture

Because ARM is based on RISC design, it shares all of the pertinent characteristics of a RISC

instruction set. However, it was deemed necessary to enhance and expand the capabilities of a

typical RISC machine. ARM still uses the fixed instruction width, load/store architecture, simple

addressing modes, and uniform register files [16] common to RISC machines. The object of these

additions were to create seamless improvements aimed at increasing throughput and

compensating for some of the advantages CISC machines generally have. A couple examples of

this include conditional execution to reduce branching overhead and the ability to load and store

multiple instructions [16].

Currently ARM utilizes 37 registers broken down into 30 for general purpose, 6 status registers,

and a program counter [28] [1]. This is used as a general standard, though certain processors do

15

make slight modifications to this model. At any given time, fifteen of the general use registers

are accessible in addition to the program counter and the status register. Which registers are

available depends on which operating mode is being used by the processor. There are seven

operating modes used by ARM, six of which are privileged with the seventh being the user mode.

The first two privileged modes are entered for interrupt handling; IRQ for low-priority normal

interrupts and FIQ for immediate needs interrupts [28]. Abort mode and undefined mode are used

for memory access violations and unrecognized instructions respectively [1]. Supervisor mode is

used for software interrupts and when the system is reset [28]. The system mode uses the exact

same registers as the user mode. Figure 3 illustrates the different modes and register swaps that

accompany them.

Figure 3: ARM Registers [1]

16

The six status registers consist of a single Current Program Status Register (CPSR) and five

Saved Program Status Registers (SPSRs) [28] [1]. The user and system modes make use of the

CPSR, which contains the current state of the machine. Whenever the mode is changed the

content of the CPSR is preserved into the corresponding SPSR. The state is stored in the SPSR to

allow a return to the previous state upon completion of the interrupt or handling of the exception

that prompted the mode change. The full breakdown of the program status registers can be seen in

Figure 4 below. There are a few noteworthy bits in the register. The bottom 5 bits are used to

indicate the current operating mode [28]. Of high import is the 6
th
 bit labeled T, this is a read-

only bit used to determine whether or not the machine is operating in the Thumb ISA or the ARM

ISA [28]. The „I‟ and „F‟ bits are used to enable or disable low priority and high priority

interrupts respectively [28]. The 25
th
 bit, „J‟, is used to indicate if the processor is in a Jazelle

state [1]. The most significant four bits are labeled NZCV and are referred to as the condition

flags. These are flagged for the following conditions: negative result from ALU, result of zero

from ALU, ALU operation carried out, and ALU operation overflowed [1] [16] [28].

Figure 4: ARM Status Register [1]

17

INTEGRATED SYSTEMS

Generally packages contain a solitary Integrated Circuit (IC) or transistor within. In a functional

system there are multiple components, collectively used together to complete a designated

purpose. It can be extrapolated from this that a circuit board supporting a system would have

several packaged ICs contained on it. Each of these components is then connected where

necessary by using traces on different layers. While this is functional and manageable with

intelligent layout, it can take up large amounts of space on the board. This can be an unfortunate

consequence because many devices are subject to severe space limitations in their design, which

becomes difficult with multiple packages on the same board each making its own footprint. This

is especially problematic once the number of necessary traces for each package is considered.

With the potential of hundreds of leads each, this is particularly true with modern high end

microprocessors. Combine that with the need for memory and other system components to fully

function, this rapidly becomes an expensive and difficult proposition. Some devices complicate

this further, such as mobile handsets, which are constantly and simultaneously becoming sleeker

and increasingly overloaded with a user functions that require new parts.

To conserve space, a natural solution is to package some of these commonly paired components

together. The three most common design approaches are System-on-a-Chip (SoC), System-in-

Package (SiP), and Package-on-Package (PoP) [6]. While small differences between these exist,

they are frequently used interchangeably in conversations and in papers. This confusion is

understandable due to the end result between all three approaches being the same; a full system is

contained to one footprint. Another contributing factor to the misuse of nomenclature is that these

advanced packaging techniques are not mutually exclusive; it is possible to have a combination of

all three integration techniques. All interconnectivity of each of the components that make up the

entire system is handled within the design. For the purposes of this paper all designs that utilize

these approaches and their variants will be referred to as integrated systems.

18

System-on-a-Chip

The first of the space saving strategies, SoC, is the practice of putting several different system

components on the same wafer die. Because all components are on the same plane, this is

considered a 2-D packaging technique [8]. These types of chips commonly involve the use of

different IP designs individually purchased [29] [30]. SoC has the advantage of almost always

being the smallest and cheapest solution, and there is no compelling reason to use another method

if this will do the job [31]. However, there are situations that are compelling enough to utilize

other packaging technologies; to name a few, it adds stress to die size constraints [8] [32] and

memory is difficult to include [8] .In fact it is generally considered better practice to use a

different packaging technique for memory [6].

One such device is the Texas Instrument‟s Open Multimedia Application Platform (OMAP),

which utilizes application end ARM cores. As the name implies, this particular example of a SoC

is an ASIC targeted at media applications. In addition to the ARM RISC core, there is also a TI

developed DSP core included, a shared memory system between the two, as well as other system

components [9]. Other significant ARM-based application oriented SoCs exist on the market;

these include the Samsung Hummingbird [33], Qualcomm Snapdragon [33], Nvidia Tegra [33],

and Innovative Multimedia Extension (i.MX) [34].

System-in-Package

In contrast to the SoC approach, SiP places several different dies in the same package, and uses

wire bonding between the dies [6] [7] [29]. There is a small amount of ambiguity surrounding

the definition of SiP. Some sources [31] take a broad definition by declaring a SiP to be any

package with more than a single chip, and then defining a variety of subtypes such as Multichip

Modules (MCM) and Multichip Packages (MCP). PoP is frequently included among these

subtypes as well. Occasionally, a more specific definition is used, identifying SiP as a 3-D

technique consisting of a vertical stack of chips [6] [8].

19

Figure 5: System in Package [6]

This more detailed definition usually accompanies a second separate term for the practice of

multiple chips being placed on the same plane and possibly board. This 2-D counterpart is

designated as a System-on-Platform (SoP) [8]. For purposes of this paper, SiP will include all

techniques that involve a single package containing more than one chip, thus separating PoP from

the others. Figure 5 shows the cross-section of a SiP, with two chips encapsulated in a single

package.

SiP has a variety of advantages over a purely SoC approach. This is particularly true when

dealing with the subject of memory as noted in the System-on-a-Chip section. Also some

components are difficult or impractical to place on a SoC [31]. These are examples of viable

reasons to use a SiP approach. Despite these advantages, SiP still faces some complexity and cost

issues because of the wire bonding challenges between the different chips [29]. It also has higher

power consumption [32]. It is clearly demonstrated that both systems have their strengths and

weaknesses. Due to this, it is the conclusion of experts that both of these systems will coexist

depending on the needs of the solution [31] [32].

Package-on-Package

The final major classification of integration techniques, PoP, is the practice of stacking different

encapsulated packages on top of one another. PoP holds the same advantages over a pure SoC

solution that SiP does. Though, between the two, other comparisons, aside from the obvious

inclusion of extra encapsulations in PoP, can be drawn. It should be noted this technique comes at

20

the cost of a larger footprint [6], though the payoff is considerable. First of note is the improved

memory options, SiP requires special and customized memory footprints, whereas PoP is

designed to allow standardized footprints, thus any standard memory component is valid and

useable [6]. In a similar fashion, almost any ASIC IC holds the same advantage; they can be

individually packaged and use a standardized footprint [6]. Not requiring customized interfaces to

fit additional dies in the same package makes IC procurement much easier, thus PoP allows

cleaner and easier business deals during creation of these systems [6]. Also reliance on wire-

bonding methods is heavily reduced with innovations such as through-silicon vias (TSVs) [35],

standardization in packages to support PoP [36], and implementation of flip-chip Ball Grid

Arrays (BGA) [37].

A cross-section of a PoP design is shown in Figure 6. This particular image is actually that of the

system included on the Beagle Board discussed in the next section. There are two stacked

packages in this image. The bottom package contains a single die, which is actually an OMAP.

The top package contains two dies, one for flash memory the other for SDRAM. To conclude,

this is a fantastic demonstration of the different integrated system techniques; this is a PoP

containing an SoC in the bottom package and a SiP in the top package.

Figure 6: Package on Package Cross-section Using BGA Packaging [38]

21

BEAGLE BOARD

Open-source software is fairly common, ranging from small applications to full operating systems

such as Linux [39]. These programs are familiar to a variety of user communities, and allow for

free use of the program as well as unfettered access to the source code. The complete access to

all development resources enables user generated modifications and development. Occasionally

open-source hardware devices are also released for experimentation. Similarly to software, the

schematics, Bill of Materials (BOM), Printable Circuit Board (PCB) layouts, and all other

information is released for free [40]. One such device is the TI Beagle Board, which was created

specifically to be an open-source hardware product. Though it was aimed at hobbyists [41], the

device was developed with the intention of familiarizing development communities, and

particularly university students [42], with OMAP driven products.

The Beagle Board, seen in Error! Reference source not found. below, is designed to allow

obbyists to experiment with TI‟s OMAP3530 PoP processor. The board has gone through a

variety of updates and revisions; the specific version seen in Error! Reference source not found.

s revision C4. Along with each revision, a full user guide is published alongside it that contains

all information expected with open-source hardware devices such as the BOM and detailed

overviews of each component. It should be noted that the board only offers a minimum set of

features and is not intended to be used in end products [38]. It is instead focused towards starting

projects and experimentation. The Beagle Board is still equipped with a suite of standard input

and output (I/O) interface components, debugging interface components, and has multiple

expansion capabilities. The Beagle Board has been used in a variety of projects, and a large

community [43] has emerged around it, even supporting annual tournaments.

22

Figure 7: BeagleBoard Rev C4

Specifications

Mechanically, the board was designed to take up minimal space. The Beagle Board was designed

on a six layer PCB. It only encompasses an area of 3.0 inches wide by 3.1 inches in length. It

should also be noted, the board is designed to allow daughterboard devices to be attached to its

underside. From an electrical standpoint, low power was a key consideration. It is able to fully

operate on a 5V supply and drawing only 350 mA.

Interface and Extensions

This section examines the specific features of the C4 revision of the Beagle Board. Excluding the

expansion board connection, there are thirteen different sources of interface with the Beagle

Board. These are detailed in

23

Table 3 and numerically labeled on Figure 8.

The board is designed to function by using the USB On-The-Go (OTG) port for both power and

communication. Though for both functions there are alternative options. For power, a jack is

located on the board providing the option of using a 5V DC power supply. It should be noted that

the USB Host port does not have sufficient power to run most USB devices without use of the

power jack [38]. For communication, in addition to the USB inputs, a 10-pin header is included

to allow access to the RS232 serial port, though this method is cumbersome and requires several

obscure converter cables.

Because the OMAP is a multimedia focused platform, audio and video I/O components are

included on the board. The audio uses a simple 3.5mm stereo jack for both input and output. For

video there are two different output options. The first is S-Video and second is DVI-D, though the

DVI-D out actually uses a HDMI connecter for space conservation, thus requiring a converter

cable. There is also an option of connecting a small display or reading data off of the LCD

headers.

The remaining interfaces are as follows. There is a JTAG for advanced debugging by use of an

emulator. Also, a 6-in-1 MMC/SD device is used for enabling a variety of MMC+ supported

devices. There are four status LEDs, three of which are controlled by user software and the final

is a power indicator. Finally, two buttons are included on the board. The first is a reset button and

the second is labeled the user/boot button. The second button can be used in conjunction with the

reset button to change the boot order; alternatively, user software determines its purpose.

24

Table 3: OMAP Interfaces and Beagle Board Connectors

Interface Connector

1 USB OTG USB Mini AB

2 USB Host USB A

3 Optional Power 5V DC

4 JTAG 14-pin Header

5 Serial (RS232) 10-Pin Header

6 S-Video S-Video

7 DVI-D HDMI

8 Stereo Out 3.5mm L + R

9 Stereo In 3.5mm L + R In

10 Indicators N/A

11 Buttons N/A

12 SD/MMC 6 in 1 SD/MMC/SDIO

13 LCD Connection Two 2x10 Headers

25

Figure 8: Interfaces [38]

There is an expansion socket provided that allows for additional functionality. New boards can be

developed to take advantage of this 28 pin header to add more specific capability. A couple

examples of these include an OLED display [44] or a lithium ION battery pack [45]. There are

also expansions that don‟t use the socket such as the Flyswatter [46] for the JTAG.

OMAP3530 and POP Memory

The Beagle Board uses a .4mm pitch PoP package with an OMAP3530DCBB72 720MHZ

processor on bottom; the top features both NAND and SDRAM [38]. This is the specific

configuration observed in the illustration (Figure 6) used to demonstrate PoP packaging in the

section above.

26

As with any other series of OMAP processors, the OMAP3530 is a SoC that targets multimedia

applications. Utilizing the Cortex-A8 core, the OMAP is fully capable of running several

different operating systems. A comprehensive list of specifications is included in

Table 4. To see how the other system components in the OMAP interact with the processor,

examine the block diagram provided in Figure 9.

Figure 9: OMAP35xx Block Diagram [30]

Table 4: OMAP3530 Parametrics [30]

27

OMAP3530

CPU 1 64x+,ARM Cortex-A8

Peak MMACS 4160

Frequency(MHz) 520

RISC Frequency(MHz) 720

On-Chip L1/SRAM
112 KB (DSP),32 KB (ARM Cortex-

A8)

On-Chip L2/SRAM
96 KB (DSP),256 KB (ARM Cortex-

A8)

RAM(KB) 64 KB

ROM 16 KB (DSP),32 KB (ARM Cortex-A8)

EMIF 1 32-Bit SDRC,1 16-Bit GPMC

External Memory Type

Supported

LPDDR,NOR Flash,NAND

flash,OneNAND,Asynch SRAM

DMA(Ch) 64-Ch EDMA,32-Bit Channel SDMA

Video Port (Configurable)
1 Dedicated Output,1 Dedicated

Input

Graphics Accelerator 1

MMC/SD 3

McBSP 5

Pin/Package 423FCBGA, 515POP-FCBGA

POP Interface Yes (CBB)

I2C 3

McSPI 4

HDQ/1-Wire 1

UART(SCI) 3

USB 2

Timers 12 32-Bit GP,2 32-Bit WD

Core Supply (Volts) 0.8 V to 1.35 V

IO Supply(V) 1.8 V,3.0 V (MMC1 Only)

Operating Temperature

Range(°C)
0 to 90,-40 to 105

The Cortex-A8 belongs to the applications series of ARM processors. All of the common features

described in ARM section attributed to the application processors are included, though it is

notable that the A8 is specifically a single core design [47]. This particular processor is developed

to operate in frequency ranges of 600MHZ to 1 GHZ, and uses an integrated L2 cache [27].

28

Cache sizes are displayed in the above table. Two pipelines are featured in the Cortex A-8. The

main pipeline is superscalar, 13 stages long, and utilizes in-order execution [48] [49] [50] [51].

The NEON unit utilizes a 10-stage pipeline for the SIMD based media instructions [50] [51] [52].

The core‟s block diagram is included below in Figure 10.

Figure 10: Cortex- A8 [47]

The top-mounted memory used in the revision C4 Beagle Board consists of two different memory

components. The first component of memory is the 256 MB of NAND Flash, and it is the default

boot device order unless the USER button is pressed. Also included in the PoP memory is 256

MB of DDR SDRAM, which runs at 166 MHZ.

29

BENCHMARKS

The specifics of benchmarking have been the subject of debate and research for decades. It goes

without saying that using the same tools to measure two different systems is the only fair way to

compare them. A variety of different benchmarking suites have become industry standards for

this reason. It also can be safely concluded that it is important to ensure a thorough and fair

application of the suite to each test subject in the comparison to prevent skewed or biased results.

However, in practice there is rarely a perfect suite for the job, and misuse of the benchmark suites

is frequent [53] [54]. Those are issues with benchmarking that arise in the best of circumstances,

however, in the case of integrated systems (as defined in this thesis); the situation is dire. The

search for a quality benchmark suite that tests all the functionality of an integrated system,

without being designed for a full CPU, leaves much to be desired. Examining what properties

make a standard benchmark and how they are misused will be observed in this section, though the

results of research to find benchmarks for integrated systems will be explored in Chapter 4.

Standard Benchmark Qualities

There are a variety of benchmarks used as industry standards, most of which focus on a specific

application or platform. Media, microprocessors, and server towers are among some of these

focus targets. The costs and accessibility of these benchmarks are as varied as their purposes.

Upper end benchmarks include the Standard Performance Evaluation Corporation (SPEC) [55],

EDN Embedded Microprocessor Benchmark Consortium (EEMBC) [56], and Berkley Design

Technology, Inc. (BDTI) [57]. The former consists of a large number of different suites, and has

been widely popular; it has at times comprised over half of reported conference benchmark

results [53]. The latter two examples are both embedded processor oriented suites. On the other

end of the spectrum from these proprietary benchmarks, a large number of open-source

benchmark suites exist. One worthy of note is Dhrystone [54]. Dhrystone is several decades old,

though it is still used today as a popular synthetic benchmark choice for integer operations.

30

Ideally a benchmark that is treated as the industry standard should have certain properties

associated with it. It should be thorough so that it tests the entire system or application. A good

benchmark should not be biased; in other words, it should be representative of normal conditions

and software used [58]. Additionally to be meaningful, it should be difficult for vendors to design

a system that does well in the benchmark without actually being a good system. This is relevant

because vendors are known to cheat [53] [54]. Another important quality is that a standard

benchmark should be current with modern specifications [54]. Clear guidelines or standards on

running and scoring the benchmarks should also be provided so results can be consistently

reproduced and relied upon [53] [54]. They provide some metric of measurement so that the

results can be fairly compared; generally results should be easy to understand and relate to other

metrics. Popular benchmark developers actually certify results (or hire third party businesses) to

improve the trustworthiness of their product [59].

Misuse

Even using an ideal benchmark, there are several ways to incorrectly exploit results. Misuse can

be defined as employing the benchmark in some other way than intended. This can come in a

variety of ways, from ignoring a few guidelines laid out by the benchmark to designing a system

in a way to maximize the benchmark results specifically. Whether deliberate or accidental,

benchmark misuse skews results, sometimes considerable amounts [53], which can falsely

advertise the tested product or mislead future research.

One major source of misuse is the failure to follow the guidelines of implementing the

benchmark. Incompletion is a good example of this. One paper extensively examined the

different ways SPEC was misused [53], and one recurring theme was incompletion. It found that

it was common to not run all the programs in the suite, and that less than a third of research

papers even provided a reason why. Those that did stated they were only examining the expected

areas of increased performance, or couldn‟t get all the programs to run. Both of these answers

31

should be taken as a red herring to the results. Speedup results in SPEC are calculated based on

using all the programs, so this leads to a misuse in the scoring as well, because assumptions had

to be made for the missing programs. A similar fallacy existed in not running a program in the

suite to completion, and then extrapolating the results from a sample from the beginning. It

doesn‟t take much contemplation to see the danger in that approach. Though the paper does make

a point to show that these can all be understandable in certain circumstances, it is still a misuse of

the intent of the benchmark.

Age is also a consideration for benchmark misuse. As new systems are developed and change, the

validity of a program begins to decrease. This is particularly true with Dhrystone [54]. The white

paper on Dhrystone indicates that the benchmark easily fits in most modern L1 caches, meaning it

is worthless for testing memory stress. Despite this, people still use Dhrystone. The same thing

was noticed with the study on SPEC misuse; though SPEC95 had been discontinued, a large

number of research papers were still using it [53]. Even if these benchmarks are correctly used, it

just isn‟t reasonable to use them on modern systems as most of the tests are no longer valid or

thorough.

The above prevalent examples of misuse are generally innocent, or at the very least

understandable. Unfortunately it is not unheard of for a more intentional and debatably malicious

form of misuse to occur. Using favorable assumptions to oversell the results is one example of a

twist on the above. Though even worse than that, designers are very capable of making a system

in such a way that it „tricks‟ the benchmark by optimizing their system to specifically score well

on an industry standard benchmark. Dhrystone is particularly infamous for this because of how

easy it is to do [54].

32

Prolific Benchmarks

As previously defined, one of the most popular standardized benchmarks for embedded systems

is BDTI [57] [60]. Primarily, their benchmarks are targeted towards signal processing

capabilities, though they have some less used application benchmarks. BDTI is considered a

respectable standard, and offers a great amount of reliability and trustworthiness to its clients.

They even post summarized results of results for specific cores that have been tested with BDTI

benchmark suites. The Cortex-A8 is among these and can be located on their website [61].

The other significant powerhouse in the embedded systems benchmark market is EEMBC [60]

[62]. This consortium provides a multitude of benchmark suites that cover a wide array of targets

based on application focus. Much like BDTI, they do publish their results online, though it is

much more detailed. The specifics of certification are also well guarded, another common ground

with BDTI [63]. BDTI does claim technical superiority in the rigorousness of their benchmarks

[63], particularly in the DSP market. Another downside that has been noted is that some of the

specific tests within the benchmark suites are not well-thought out or representative of realistic

conditions [60]. EEMBC operates in two modes [63]. First is an out-of-the-box mode that uses

non optimized code and is noted as truly fair, though not realistic. Alternatively, the option to

optimize code (C or assembly level) is available, though there are no guidelines or recommended

approaches for it which makes it difficult to fairly compare the results. These flaws and

complaints do not outweigh the benefits of EEMBC, there are plenty of valid reasons they are

accepted as a standard.

On the other end of the spectrum there is SPEC [55], a benchmark suite for high-performance

computers. It also happens to be one of the most popular industry standard benchmarks [53].

SPEC tends to utilize neutral programming language to improve its diversity, and also features

many different suites with specific design goals. SPEC also provides rules on implementation,

which makes comparisons that use this benchmark correctly trustworthy.

33

Another rather popular benchmark is Dhrystone [54] [63]. This is an integer synthetic benchmark

that is still used in many embedded systems despite its age. ARM Holding uses it to help

advertise their processors on their product pages [27]. Its popularity can likely be attributed to

being open-source as well as the widespread use generated from being the first to successfully use

a single score as a performance indicator [64] .

One open-source benchmark suite aimed at embedded applications is Mediabench [65]. The suite

consists of media and telecommunication applications. Unfortunately, the original suite requires

software that has been discontinued, or is difficult to find. There is a sequel suite, Mediabench II,

that has seen some development but seems largely incomplete and abandoned. Although these

benchmarks are not available, they were very popular at one time. During research and literature

review, this particular benchmark suite came up in some recent benchmark surveys [58]. It was

worth mentioning due to the potential a completed version might have had as well as the

frequency it was encountered.

34

III. IMPLEMENTATION

In preparation for running any benchmarks or other tests, it is necessary to choose a platform to

run them. The Beagle Board is ideal for this purpose. To prepare the beagle, it must be set up to

run similar to a personal computer complete with an operating system and hardware peripherals.

Ubuntu [66], a Linux distribution, is selected as the OS. Equally necessary is an appropriate

benchmark suite. MiBench [10], the benchmark used for this experiment, is non-application

specific and focuses on generic embedded systems use.

The Beagle Board suits the purpose of benchmarking an integrated system for several reasons.

First, the integrated system on the Beagle Board exceeds the basic criteria to be considered an

integrated system; it is an exemplary example of such. Secondly, by nature of its design it is

easily accessible for experimentation. In fact, as previously explored, that is the intent of the

Beagle Board. Finally, the board has a large following and support community providing more

readily available software resources and user guides.

Although a myriad of benchmark suites do exist, MiBench suits the purposes of this experiment.

Some of the proprietary benchmarks were discarded for sheer cost reasons (BDTI and EEMBC),

and others were legacy (Media Bench [65]). Hardware constraints also played a part in selection.

Because MiBench is general purpose, many appropriate test areas are covered.

35

Preparing MiBench to run on the Beagle Board is not the only necessary task in order to prove or

disprove the thesis; in reality it is far from it. However, the process of attempting to find the most

applicable resources for the experiment does provide a thorough experience to help gauge

availability of benchmarks suited to the needs of ARM-based application integrated systems.

Other research focuses are mandatory. It is imperative to survey some of the overall better suited

suites and research results of past benchmark tests on germane systems by other parties as well.

BEAGLE BOARD SETUP

Preparing the Beagle to run benchmarks is a muti-step process. To do so requires obtaining

compatible hardware peripherals. Most of them were common and easy to acquire, but others

were more arcane or very specific. The standard I/O used can be inferred from

Table 3 listed in the Beagle Board section of Chapter 2. This does require a USB hub, however,

for full usability. A special crossover cable (IDC10-DB9) working in tandem with a null modem

cable is needed for serial communication with the device. The second step of set up is to get an

operating system to functionally run on the Beagle Board. There has been lots of effort in making

the different significant operating systems available in the past. Though the best supported and

easiest to implement for this are Linux distributions. While there have been many projects to

bring the various Linux distributions to the Beagle Board, Ubuntu is best suited to the task. Also

36

it has the most community support among the Linux distributions. However setting up Ubuntu to

run on an SD card is still an arduous task.

Setting up Ubuntu for the Beagle Board

The support sites for the Beagle Board make the ARM binary interface of the most recent

versions of Ubuntu available. During the time of this exercise, the most recent stable version of

Ubuntu is 10.10 (Maverick Meerkat). The approach used to run Ubuntu requires use of a SD card

for the kernel and root file system. The card used for this was a 16GB SDHC Kingston device.

The first necessary step is to format the card into two specific partitions with specific geometry;

the first is the boot partition (FAT32), and the second (ext2) is for the root file system. The boot

partition contains a pair of beagle board specific boot loaders and the kernel image. Older

versions of Ubuntu were not available and users had to make their own image and root file

system copies using recommended software. For more details on partitioning the card see

Appendix A. Secondly, if using an older version of the Beagle Board it is necessary to update the

x-loader on the NAND flash to get the latest versions of Ubuntu running. This requires a serial

connection and a copy of x-loader placed on a SD card. One can manually overwrite the previous

version in this way. Next it is possible to boot from the card, though the initial boot does take a

considerable amount of time. Unfortunately the images that are available are very limited in

features, and do not even include a GUI. Thus the fourth and final step is the simple but time

consuming process of acquiring and installing enough applications for a comfortable working

environment. One nice feature of using the SD cards with the boot loaders established on the first

partition is that one can easily interchange different cards with different operating systems.

MIBENCH

MiBench [10] (pronounced “my bench”) is an open-source benchmark suite designed specifically

for embedded systems. This suite was developed in 2001 at the University of Michigan – Ann

Arbor. When MiBench was developed ARM was still emerging, so they designed it to be

37

compatible for many differing ISAs by using C source code for all benchmarks. At the time there

was not a clear dominating ISA; nothing as powerful or comprehensive as something like the

Cortex-A series existed. To their credit they did include tests for floating point units (FPUs),

even though that was not a common feature yet. Other embedded systems benchmarks from the

same time were much more single application focused. Despite legacy design goals, many of the

tests in this suite are still relevant in purpose. One area it is very weak on is media applications.

As an area that ARM has made large strides in, this makes it an incomplete benchmark for beagle

board. However, on the other side, media specific benchmarks usually don‟t focus on many of

the other areas that this one does have.

Composition

Taking the stance that the embedded system domain has a wide range of applications, MiBench,

in turn, attempts to provide a wide range of benchmarks. These are broken into six primary

categories based on the most common embedded system applications: auto/industrial, consumer,

office, network, security, and telecommunications. MiBench has a set of 35 embedded

applications across these categories. Many of the benchmark tests include a short and a long

version within them. Table 5 shows a summary of each category set.

Table 5: MiBench Categories

Auto/ Industrial Consumer Office Network Security Telecomm

basicmath jpeg ghostscript dijkstra blowfish enc. CRC32

bitcount lame ispell patricia blowfish dec. FFT

qsort mad rsynth (CRC32) pgp sign IFFT

susan(edge) tiff2bw sphinx (sha) pgp verify ADPCM enc.

susan(corner) tiff2rgba stringsearch (blowflow) rijindael enc. ADPCM dec.

susan(smoothing) tiffdither rijindael dec. GSM enc.

tiffmedian sha GSM dec.

The first set of tests, automotive and industrial control, is somewhat self-explanatory; it focuses

on applications that are found in control systems. These focus on basic math functions, sorting,

38

bit counting, and shape recognition. The next set, consumer, is aimed at the market of consumer

devices, and is therefore the most applicable set to the Cortex A-8. They include image

compression and MP3 encoding and decoding to name a few. This set is lacking in video and

other modern multimedia expectations, and indicated prior. The third set focuses on embedded

processors primarily found in office appliances. Thus it is primarily deals with text specific

programs. Fourth, the network set is focused on applications dealing with the kind of application

found in networking devices. Shortest path algorithms and tree lookups are prime examples of the

programs found within. Security benchmarks include programs that run hash algorithms and

encryptions. Finally, the sixth category is telecommunications. Included within this are tests

specific to frequency analysis, checksums, and voice encoding/decoding. For a specific detail of

each benchmark, check Appendix B: MiBench Details.

Execution

Each benchmark has to be individually installed or compiled with GCC. The MiBench developers

include an executable file in each of the benchmarks to be run once ready. These provide a strong

representation of the workload associated with the program. Frequently the executables are

accompanied by input examples. To differentiate between the large and small versions of each

benchmark test, sometimes two separate executables are included, while at other times, different

input samples are used.

In preparing to run the benchmarks, simple scripts are written that utilize each benchmark

executable five times and store each individual run time to the same file. The script is written in

such a way as to go through this process with every large and small version in an entire category,

thus there are six different scripts. In addition to the shell scripts, one simple C program is written

to provide a precise execution time for each of the benchmarks. The program will accept the

benchmark execution command line as a string and complete after the time calculation. This

script and C combination is implemented for multiple reasons: reduction of human error,

39

automated compilation of results, providing a sample pool to help isolate anomalous run times,

and to make the process less laborious.

Unfortunately, one drawback of MiBench is that it isn‟t prolific; therefore, it is difficult to relate

the results. This is especially true without output metrics, or clear guidelines on how to measure

the benchmarks. To provide context, contrast, and scalability the benchmark is also to be run on a

fairly standard laptop (Specs in Chapter 4). The laptop is in a different category than the OMAP.

The intent is not to compare the two; it is only to provide context with something that has been

more universally tested. Because the AMD processor in the laptop has more readily accessible

performance results, one can easily look them up to provide frame of reference for the MiBench

results.

RESEARCH FOCUSES

Two primary research focuses can help answer some of the questions that were asked in the thesis

introduction regarding benchmark availability for integrated systems. The first of these research

focuses pertain to finding any available benchmarks that are in use as well as being relevant to the

target platform. Within that goal, it would be appropriate to ensure that using them does not

automatically generate benchmark misuse to make them apply to meet these needs. Similarly, it is

also necessary to make sure the benchmarks are comprehensive enough. The second topic of

study is oriented around finding the results of past benchmark results of integrated systems

comparisons. This focus can be realized by seeking literature that has already compared different

application integrated systems. Another avenue to pursue within this focus is searching the results

databases stored by some of the larger benchmark suites. Whether or not an existing suite has

been effectively used in the aforementioned task, and if not, what methods have been used for

providing comparison will be discovered in this way. This second focus will also serve to indicate

both where applications processors have been tested against full processors or microprocessors

and to which classification they better belong.

40

Benchmark Criteria

Due to the hybrid features of applications processors, particularly when considering the already

ambiguous nature of distinguishing processors and microprocessors, it is necessary to survey

benchmarks from both classifications. Aspects from benchmark suites of both of these

classifications will be found to be relevant. However, the search is for a suite that successfully

manages to test both ends of the applications processors. More than that, to meet all the sought

after criteria of being applicable to integrated systems, the suite must be capable of testing a full

system instead of just the core.

The benchmarks that are found to be acceptable will have to feature several specific qualities. The

most obvious of which is that it is comprehensive enough to not require secondary benchmarks to

fill in untested capabilities. In contrast, an overly generic benchmark would fail to thoroughly test

the system‟s purpose and capabilities. It should be a forgone conclusion that the benchmark

should have all the qualities (or be able to produce them) expected of a standard while not being

susceptible to intentional misuse. These are just a few of the more significant pitfalls that might

make a particular benchmark ill-suited for the task. Other benchmark specific issues may also

disqualify them from being suggested or nominated to be the standard.

41

IV. RESULTS

The intent of the research in this thesis is to find the state of availability of benchmark suites

appropriate for ARM-based applications integrated systems. As mentioned, the primary focuses

of research includes potential suitable benchmarks and what results exist from past comparisons

and tests. Because no clear standard or potential candidate is readily apparent, an assessment of

the future of the target platform was also included.

Literature is reviewed to find the future of ARM Holding Ltd. and its ISA. Finding the

specifications of the IP cores of ARM processors was quite easy. Great detail is made available

with technical manuals published by ARM Holding Ltd. Likewise, the literature shows great

detail in the expanding techniques to create integrated systems as well as the increasing number

of licensees that combine the technologies. Finally, literature indicating the prevalence of

applications processors completes the research on the future of the target platforms.

The results of MiBench on the OMAP3530 are included alongside the scale comparison provided

with the standard laptop. These are broken into each of the six primary categories outlined by the

MiBench developers. Again it should be noted that MiBench is not being proposed as a standard,

nor is comparing OMAP3530 against an AMD processor the focus of study. Instead this is merely

a sample benchmark along with a medium of comparison.

42

BENCHMARK RESEARCH

There are many benchmarks and corresponding published results that have been done for ARM

cores as well as some or fewer for integrated systems that include them. To underscore the

availability of these results, ARM Holding Ltd. posts Dhrystone results on the processor profile

pages. Likewise, the two most prevalently used embedded benchmark suites, BDTI and EEMBC

[60], post summarized results online that are free to view [61]. Respectable measures for ARM

cores such as the Cortex-A8 are widely available. To a lesser degree, finding comparisons [33]

and successful benchmark results [67] [68] of integrated systems, particularly SoCs, is also a

relatively manageable endeavor.

Fully applicable benchmarks, or results, that met the criteria of being acceptable at a standard

quality without being misused (by the definition explored in Chapter 2) are not found to be

universally applied. In fact, nothing that is found presented itself as an obvious benchmarking

standard for ARM-based application integrated systems. Though nothing presented itself as an

obvious choice, plenty of material does exist that is worthy of closer examination. It would be

erroneous to claim that there are no benchmark suites that merit consideration. Some of the past

benchmarks and subsequent comparisons between the different ARM-based integrated systems

also contribute to the topic.

Possible Benchmarks

The background chapter provided several prolific benchmarks that are either prevalent in industry

or less-known but better apt for being used for measuring the target devices. This sub-section will

survey a few of the benchmarks mentioned in this paper (excluding MiBench, as it has been

thoroughly explored in Chapter 3). The strengths and weaknesses of each of these shall be

thoroughly analyzed with respect to the target platform of ARM-based integrates systems.

43

Despite their reputation for quality and respectability, BDTI does not make their source or

certification methods available; thus, it is difficult to interpret at times though it also more

difficult to cheat [60] [63]. Their primary benchmarks are too application specific

(telecommunications and video encoding) and only measure single-core performance with results

that are only relative to one another [60]. They do have a more sophisticated benchmark also

used for decoding that can handle multi-core, though it still lacks the diversity needed. To

summarize, BDTI meets the quality standards, but is too specific for an applications processor,

and offers little to test a full system.

The second benchmark for embedded systems was EEMBC. As mentioned, their results are

posted online and certified; one company, Synchromesh [69], dedicates significant resources to

certifying and verifying benchmark results [59] [70] to put on EEMBCs database. In addition to

services like that, EEMBC is a consortium of major companies in the industry; these attributes

make it a very trusted source. Between the different benchmark suites, the EEMBC database does

include many products from ARM, as well as many i.MX SoCs in particular. One of their suites,

Coremark [64] [71], is free and attempts to provide a single measurement score. Results of

several of the SoCs that have been mentioned in this paper can be found in its database. EEMBC

clearly meets the needs in quality and widespread use as well as any option could, and it does

seem capable of testing the abilities of an integrated system. Unfortunately, it still requires

multiple suites to test all the capabilities, and there are few tests outside of Coremark that have

been performed for systems other than i.MX.

SPEC was the most prolific of CPU oriented benchmarks. Unfortunately, SPEC does not indicate

that there has been any application towards any kind of embedded system, even application

processors, despite such a processor‟s abilities to run full operating systems. One would think

there had been some work done in this area by SPEC, especially with product reviews likening

the Cortex-A15 more to a normal processor than embedded systems [72]. However, that is simply

44

not the case. The suite itself is very comprehensive and conclusive, but would still be too difficult

for the applications processors, and is certainly not geared towards them.

Stepping away from the mainstream options bring a few new possibilities, such as Dhrystone.

Unfortunately, Dhrystone has many shortcomings such as being too small and old to be relevant

on modern cache sizes and multicore devices [63]. Another huge problem is the ease in which it

can be manipulated [54]. These issues, and others, have been previously mentioned in the

Benchmark section of Chapter 2. Thus, even if Dhrystone might be useable for some embedded

systems, the Cortex-A series clearly needs a different representation because it has multi-core

capability, large caches, and FPUs. Dhrystone fails to be appropriate even before considering

system components.

There are a variety of other benchmarks of varying complexities that might make one wonder

why they didn‟t get considered. Surveying all the available benchmarks that might be merely

implementable on the target platform would be a topic unto itself. As more options were

explored, they became increasingly specific-purpose driven, single-score oriented, obscure, or a

combination thereof. This is not to imply that there are not benchmarks that can be used to some

extent. In fact, several single-score specific-purpose benchmarks have been used to compare

SoCs; one of these looked at ARM SoCs included in recent cell phone models [67]. Another

project ran several suites on older application ARM systems that used the same core [59]. None

of the benchmarks included in either test were enough to measure the entire system on their own.

The important information to take away from this is that there are at least some benchmarks that

can be found that are applicable to ARM-based application integrated systems. It is just also

equally important to understand that they aren‟t comprehensive or detailed enough to meet the

criteria of fully benchmarking an entire application integrated system.

45

Existing Benchmark Results

The previous sub-section explores some of the significant benchmarks that were most likely to

apply to the target; it also makes several references to existing comparisons and benchmark

results that are relevant. This sub-section intends to explore some of those referenced results to

get a grasp on what level of previous work has been done on the topic. This research can help

indicate if an available benchmark has been used thoroughly enough to satisfy the objective of

fully comparing multiple target platforms. This also serves to underscore how much difference

the integrated system components make, which can be used to conclude whether or not only

comparing the differences between each ARM core is enough to make a conclusive decision.

The first set of published results to be examined comes from Synchromesh selecting competing

SoCs and comparing them using several different benchmarks [59]. The benchmarks used consist

of STREAM, BYTEmarks, HINT, and an MPEG-4 decoded/encoder developed specifically by

Synchromesh. The tested platforms consist of the i.MX31, OMAP2420, and the Intel Bulverde.

The first two both use very similar ARM-11 architectures for their core, whereas the Bulverde

uses an older version of ARM ISA. Due to vastly differing base clock frequencies, the i.MX31 is

represented twice, once at normal speed and once at half speed. All tested platforms are given as

similar operating configurations as possible. Even still, the processors operate at different clock

speeds. The results of each benchmark are included twice; once with just the raw results, and

once normalized to mitigate the differing clock speed factor.

Stream is synthetic, and is used to measure sustained memory bandwidth in MB/s. By using

Stream, it can be noted that the high speed i.MX is superior in performance by its metrics, but the

most efficient is the lower clock speed i.MX while OMAP and the higher speed i.MX are similar.

To demonstrate this Figure 11 shows the results of Stream while Figure 12 clearly shows the

same results adjusted for the operating frequency of the platform.

46

Figure 11: Stream [59]

Figure 12: Stream Adjusted [59]

Stream Benchmarks

0.00

50.00

100.00

150.00

200.00

250.00

PXA270

520 MHz

OMAP 2420

330 MHz

i.MX31

532 MHz

i.MX31

266 MHz

Platform

M
B

/s

Copy

Scale

Add

Triad

Stream Benchmarks Adjusted for Clock Speed

0
.1

7

0
.5

5

0
.4

4

0
.8

0

0
.0

1

0
.3

6

0
.3

5 0
.4

2

0
.0

1

0
.3

6

0
.3

4 0
.4

6

0
.0

1

0
.3

4

0
.3

3 0
.4

4

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

PXA270

520 MHz

OMAP 2420

330 MHz

i.MX31

532 MHz

i.MX31

266 MHz

Platform

M
B

/s
 p

e
r

M
H

z

Copy

Scale

Add

Triad

47

Using normalized BYTEmark results reveal similar trends. Figure 13 indicated the i.MX scales

very well with an adjusted clock speed; the i.MX manages to outperform the OMAP in terms of

efficiency despite the operating frequency. It should also be noted from the experiment that the

higher speed i.MX outperformed the OMAP.

Figure 13: Normalized BYTEmark Results [59]

Synchromesh‟s comparisons of the OMAP and i.MX continued to indicate similar outcomes for

the other benchmarks employed as well. The low frequency i.MX device was the most efficient

due to its clock speed being closest to its memory subsystem speed. The i.MX was also concluded

to be the highest performing processor at the high frequency clock speed. In some cases even the

low speed i.MX outperformed the OMAP. In most instances the processors using the more

advanced ARM11 dominated the Bulverde. The results clearly show the memory subsystems

included in the i.MX31 make it superior to the OMAP2420 despite having the same core.

Normalized BYTEmark Values Adjusted for Clock Speed

0.00

0.20

0.40

0.60

0.80

1.00

1.20

PXA270

520 MHz

OMAP 2420

330 MHz

i.MX31

532 MHz

i.MX31

266 MHz

Processor

N
o

rm
a
li
z
e
d

 B
Y

T
E

m
a
rk

 V
a
lu

e
s

Numeric sort

String sort

Bitfield

FP Emulation

Fourier

Assignment

IDEA

Huffman

Neural Net

LU Decomposition

48

A considerably more recent comparison of ARM-based application SoCs that are included in

smartphones will be explored below [67]. This series of tests included the single-score

benchmarks SunSpider Javascript Benchmark .9 [73], Rightware BrowserMark [74], and

GLBenchmark [75]. The primary competing targets utilize the OMAP4430, the Exynos4210, and

the Tegra 2. Beyond these, other smartphones using older SoCs were incorporated into the test

pool.

Figure 14: SunSpider Javascript [67]

Though little explanation was included, these main focus devices are all ARM-based applications

integrated systems. The OMAP4430 came out the clear winner of this assembly of benchmarks.

Looking at Figure 14 will show that it barely edges out competition in quickness to complete the

SunSpider Javaacript benchmark, with the Exynos4210 and two devices using Tegra 2 taking the

next three places. It also wins out in the GLBenchmark 2.0 – Pro, a 3D rendering benchmark, as

indicated by Figure 15(b). Though, Figure 15(a) demonstrates that BrowserMark slightly favors

the Tegra 2. This is the only test the OMAP did not come out superior.

http://www.smartkeitai.com/lg-optimus-3d-beats-samsung-galaxy-s-ii-in-benchmarks/lg-optimus-3d-javascript-benchmark/

49

Figure 15: (a) BrowserMark (b) GLBenchmark 2.0 [67]

BTDI, EEMBC, and EEMBC‟s Coremark also have results that can be looked up online;

unfortunately, the specific details of those cannot be repeated here due to copyrights. However,

they are easily accessible on company websites, though they do not alter any of implications of

the results found here. It can be said that outside of Coremark, most of the results posted are

novelties and exist only for a few of many SoC designs. In case of Coremark, only the single-

score and test conditions are freely available. As discussed, this would not be useful to thoroughly

differentiate between integrated systems. BTDI, on the other hand, did manage to provide a very

thorough examination of the Cortex-A8 [61], though they have done little else with ARM much

less OMAP or any of its competing systems.

Overviewing existing benchmarking results for ARM-based applications integrated systems

highlights several interesting points. First, none of them used benchmarks developed by any of

the big standard groups. Second, all testers used multiple benchmarks that were unrelated to one

another to make their comparisons. This indicated that not only were single conclusive options

not able to be found during the research into this thesis, neither were the experimenting parties

able to find them. Third, two different SoCs that had nearly identical cores performed very

differently under the same operating parameters. To summarize, no apparent tests nor databases

http://www.smartkeitai.com/lg-optimus-3d-beats-samsung-galaxy-s-ii-in-benchmarks/lg-optimus-3d-browser-benchmark/
http://www.smartkeitai.com/lg-optimus-3d-beats-samsung-galaxy-s-ii-in-benchmarks/lg-optimus-3d-opengl-es-benchmark/
http://www.smartkeitai.com/lg-optimus-3d-beats-samsung-galaxy-s-ii-in-benchmarks/lg-optimus-3d-browser-benchmark/
http://www.smartkeitai.com/lg-optimus-3d-beats-samsung-galaxy-s-ii-in-benchmarks/lg-optimus-3d-opengl-es-benchmark/

50

of benchmark results provide a truly comprehensive comparison of ARM-based application

integrated systems.

 MIBENCH RESULTS

Just as explained during the MiBench section under Chapter 3, each benchmark was to be run

five times to reduce anomalies and provide an average. In order to automate the process, scripts

that called a small c program were written. Most of the benchmark suite was straight forward in

implementation, with only a handful of unusable benchmarks. In total, all but six of the individual

benchmarks were able to compile correctly. The technical reasons for each of these errors were

vastly different. Though most of the errors derived from the same common theme, this

benchmark suite is just too outdated. Fortunately, every successfully compiled benchmark was

successfully run and measured save three exceptions. Most of them had little variance between

the five passes indicating quality in terms of precision.

The remainder of this section will be organized by benchmark category and used to explore the

results for both of the machines.

Table 6 compares the two different test platforms. Because the benchmark suite lacks any

suggested measurement, the best metric is using runtime. The results in the subsections below use

the standard of measuring the clock directly before running the benchmark and again immediately

afterwards, then taking the difference. For simplicity the monotonic time clock was used for this

purpose. The function used is provided from the standard time library for C. It should be noted

that this clock does include everything being processed, much like the real time clock, thus

cannot be used to accurately determine measurements such as IPC. The original implementation

of the benchmark [10], had very precise measurements included such as IPC, branches missed,

along with a few others. Unfortunately, these results were obtained by simulation using

SimpleScalar, which doesn‟t help in a real world test.

51

Table 6: TI OMAP3530DCBB72 [30] vs. AMD Turion TM 64 X2 Mobile Dual-Core [76]

OMAP Turion

Architecture ARMv7A AMD64

Clock Frequency 720 MHZ 2.2GHZ

Pipeline

13 Stage, with separate

10 State Media Unavailable

Order Dual Issue, In-Order Unavailable

L1 Data Cache

16 Kbyte 4-way

Associative

64-Kbyte 2-way

Associative

L1 Instruction

Cache

16 Kbyte 4-way

Associative

64-Kbyte 2-way

Associative

L2 Cache 256 Kbyte 512 Kbyte

Branch Predictor

Dynamic Branch

Prediction with

BranchTarget Address

Cache, Global

HistoryBuffer, and 8-

Entry Return Stack

Dynamic Branch

Prediction

ROM

2Gb NAND Flash x 16

(256MB) - Expanded

with HDSC 16 GB 160 GB SATA Hard Disk

RAM

2Gb MDDR SDRAM x32

(256MB @ 166MHz) 2 GB, 667 MHZ,SDRAM

Operating System Ubuntu 10.10

Ubuntu 10.10 in

VMWare 3.1.3 on

Windows 7

Automotive/Industrial

All of the automotive benchmarks were completely able to compile on both machines.

Furthermore, they were able to do so without any need of alterations or fixes. This was the easiest

test to compile and run because of that lack of complications. Basicmath and qsort output large

text files detailing thousands of iterations of the same test, one per line. Bitcount also outputs a

text file, though it has a short list of summarized results of different methods. Finally Susan

outputs image files with the edges/corners found as well as a final smoothed product.

52

The timing results from the automotive benchmarks can be seen in Figure 16 and Figure 17. The

numbers listed below the bar graphs indicate the average of the five run times, excluding any

anomalies. The beagle board in particular has several anomalies in the small basic math and

bitcount tests, with one case that took several magnitudes of time longer than the other runtimes.

In contrast, the large versions of each benchmarks had very consistent results. Repeated sets of

five executions returned similar results, including the anomalies.

Figure 16: Automotive Runtimes 1

Figure 17: Automotive Runtimes 2

Basicmath
Small

Basicmath
Large

Qsort
Small

Qsort
Large

Susan
Smoothin

g Small

Susan
Smoothin

g Large

AMD 0.0290 1.5711 0.0316 0.1831 0.0255 0.3148

OMAP 0.9159 14.1923 0.1207 1.9913 0.0547 1.3520

0.0000
2.0000
4.0000
6.0000
8.0000

10.0000
12.0000
14.0000
16.0000

Se
co

n
d

s
(S

m
al

le
r

Is
 B

e
tt

e
r)

Automotive/Industrial Runtimes 1

Bitcoount
Small

Bitcount
Large

Susan
Edge
Small

Susan
Edge
Large

Susan
Corner
Small

Susan
Corner
Large

AMD 0.0155 0.0209 0.0067 0.0546 0.0108 0.0220

OMAP 0.2493 0.0884 0.0163 0.2842 0.0140 0.2927

0.0000
0.0500
0.1000
0.1500
0.2000
0.2500
0.3000
0.3500

Se
co

n
d

s
(S

m
al

le
r

Is
 B

e
tt

e
r)

Automotive/Industrial Runtimes 2

53

Network

This is another benchmark categorization that had no faulty benchmarks within. However, there

are only two of them in the category: dijkstra and patricia. Both of these output simple text files.

The timing results can be seen below in Figure 18. All the benchmarks were very consistent.

Figure 18: Network Runtimes

Consumer

The consumer benchmarks were faced with a large amount of difficulties during implementation.

Only two of the benchmarks within, jpeg and typeset, were easy to configure and compile. Tiff,

which actually has four different MiBench tests, had issues with mandatory options having been

included in the makefile. Once the source of the error was found that was a simple fix. Lame

compiled easily on the Beagle Board, but had issues on the other machine claiming memory

addressing problems. In contrast, mad used legacy options during compilation; once fixed, it was

found there were architecture specific options in some of the files that prevented getting it

compiled on the Beagle Board. Once compiled, one of the tiff tests had faulty input files. The

successful output consists of several images from tiff, images from JPEG, and Postscript files

Dijkstra
Small

Dijkstra
Large

Patricia
Small

Patricia
Large

AMD 0.0388 0.0981 0.0791 0.2695

OMAP 0.3283 0.9284 1.2006 4.2412

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

Se
co

n
d

s
(S

m
al

le
r

Is
 B

e
tt

e
r)

Network

54

from typeset. The timing results from the successful tests can be seen in Figure 19 and Figure

20.

Figure 19: Consumer Runtimes

Figure 20: Consumer Runtimes 2

Jpeg Encode
Small

Jpeg Decode
Small

Jpeg Encode
Large

Jpeg Decode
Large

Typeset Small

AMD 0.0586 0.0224 0.0722 0.0487 0.0765

OMAP 0.5798 0.3615 1.9373 1.3240 1.7585

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

Se
co

n
d

s
(S

m
al

le
r

Is
 B

e
tt

e
r)

Consumer Runtimes 1

Typeset
Large

Tiff2bw
Small

Tiff2bw
Large

Tiff2rgba
Small

Tiff2rgba
Large

Tiff2medi
an Small

Tiff2medi
an Large

AMD 0.5013 1.0911 0.5560 0.3779 3.3473 0.1349 0.6287

OMAP 8.4047 8.5385 9.8546 7.4645 30.4216 2.9198 9.3425

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

Se
co

n
d

s
(S

m
al

le
r

Is
 B

e
tt

e
r)

Consumer Runtimes 2

55

Much like in the automotive benchmarks, some of these had some anomalous results for a single

test, although most did not. The Beagle Board had some large variation specifically within tiff to

bw conversions. Also of note, the AMD had a vastly different runtime for the first result of some

of the tiff conversion tests than the other four. This is likely due to being loaded from the hard

drive the first time. Outside of these instances though, the results were fairly consistent and had a

small standard deviation.

Office

This is another set of benchmarks that had far less than ideal outcome while compiling and

running them; only two out of five were successfully implemented. One of them, ghostscript, was

unable to compile due to poor coding in reference to library use and mistakes as amateur as

having the wrong number of arguments in a function call. It was unclear how much debugging

and rewriting would have been required. Rsynth was unable to even configure. Finally, sphinx,

did successfully configure and compile after a large number of declaration issues as well as a

pointer error that had to be debugged. Unfortunately, there were no instructions or indication of

the test to be run by the program. The two functional benchmarks had text files for output. The

runtime results of these are included in Figure 21, below. One may notice that iSpell large was

not included, its results were similar to the small in ratio between machine performance, though

severely impacted the scale of the chart and was not significant enough to warrant a second chart.

The other results were fairly consistent with one another, though much like in some of the

previous cases, the first pass of each test had an increase in magnitude of runtime for the laptop.

One other case of note, the large stringsearch‟s runtime on the Beagle Board was consistently

approximate to one of two vastly different times.

56

Figure 21: Office Runtimes

Security

Only one of MiBench‟s security oriented benchmarks were successfully implemented. The first

of those that did not compile, PGP, required optimization code to be written depending on the

specific operating system. As it was expecting a UNIX distribution, Ubuntu was far too removed

for there to be any basis of support. When combined with the specifics of the topic of this thesis,

making the results of it tangential anyway, it was deemed unnecessary to attempt to fix. Rijndael

had some coding errors within. Blowfish reported some segmentation faults, and the text files

came up empty. Sha successfully returned the expected text file output. A small figure (Figure

22) shows the runtimes of sha below.

Stringsearch Small Stringsearch Large iSpell Small

AMD 0.0056 0.0084 0.0137

OMAP 0.0211 0.0464 0.1033

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

Se
co

n
d

s
(S

m
al

le
r

Is
 B

e
tt

e
r)

Office Runtimes

57

Figure 22: Security

It should be stated that the runtimes were very consistent for the AMD processor, and the larger

version of Sha as well. The smaller version had three instances that it ran slower than the worst

case of the large test. This really underscores the kind of inconsistency that has been a recurring

theme through the small benchmark tests.

Telecommunication

All benchmarks included in telecomm were able to successfully compile; the only noteworthy

complication was an ignored error out of gsm. FFT and CRC32 both had text outputs. The

program gsm returned an audio output. Finally, adpcm returned a file containing pulse width

modulation data. The runtimes for these programs are seen in Figure 23 and Figure 24. These

were actually very precise, with only a few results that had to be discounted.

Sha Small Sha Large

AMD 0.0219 0.0462

OMAP 0.0470 0.2133

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

Se
co

n
d

s
(S

m
al

le
r

Is
 B

e
tt

e
r)

Security

58

Figure 23: Telecommunications Runtimes

Figure 24: Telecommunication Runtimes

adpcm
Small

adpcm
Large

C2C32
Small

C2C32
Large

FFT Small FFT Large

AMD 0.2511 3.5393 0.3189 1.4955 0.0552 0.5282

OMAP 0.3752 6.3431 1.1475 7.7024 0.9709 2.8364

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

Se
co

n
d

s
(S

m
al

le
r

Is
 B

e
tt

e
r)

Telecommunications 1

FFT Inverse
Small

FFT Inverse
Large

gsm
encode
Small

gsm
encode
Large

gsm
decode
Small

gsm
decode
Large

AMD 0.0621 0.3243 0.0551 1.0616 0.0371 0.5592

OMAP 0.4139 1.2189 0.0551 2.6647 0.0339 2.6121

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

Se
co

n
d

s
(S

m
al

le
r

Is
 B

e
tt

e
r)

Telecommunications 2

59

V. CONCLUSIONS

The introduction begins with a series of questions pertaining to benchmarking ARM-based

applications integrated systems. Consequently, the first part of the conclusion should to be to

answer them. As such, the first section explores each of them independently so that the thesis

statement may be objectively proven or disproven. It is at this juncture that the literature review,

the benchmarks studied, and the MiBench results finally culminate.

The second section provides an overview of a few possible avenues of further research and

explorations. This thesis only touches on what could be done with these devices in the realm of

benchmarking. Not only could the topics within this thesis be further expanded, other related

fields of study could originate from topics germane to this paper.

In the final section of this paper, the validity of the thesis statement shall be challenged. The

questions answered in the beginning of this chapter become immediately and directly relevant.

Upon completing the consequent analysis, the paper will begin to close with the current state of

benchmarking ARM-based application integrated systems. Finally, it concludes with the reasons

for this status and what (if anything) should be done to improve it.

60

ANALYSIS

Several questions are posed in the introduction of this thesis. The first two of these are basic; they

pertain to the validity of a unique benchmark suite tailored to ARM-based applications integrated

systems. The next pertinent topic to have been explored is in regard to the status of available

benchmarks that applies to the target system as well as the reasons for it. Finally, an idea of the

future of ARM-based technology is to be provided. In short, the answer to these questions implies

that there is a need that has not been filled. The reasons why will be explored in more detail

below.

Are Application Processors Distinct?

One needs to look no further than the severity that the antique AMD dominated the OMAP to

clearly see the extent in which regular CPU processors can stand apart from application

processors. This outcome was expected, and the inclusion of the AMD was just for scale, but that

does not change the results. It could be said that the beagle board performed poorly due to

bottlenecks and other influences, or that given a fair test utilizing a simulator might have made

them closer. Even then, as many shared factors as possible were introduced. The clock speed

advantage of the AMD made a large difference, though that underscores a difference between the

processor families; thus, changing one in turn changes the characteristics. Even if one were to

adjust for the fact that AMD had a clock speed three times faster than the OMAP, the AMD

consistently performed at least a full increment of time faster. Common sense dictates that a

modern computer versus an OMAP would have even wider margins. Speculations based off of a

single test of questionable fairness are not enough to conclude where applications processors

stand in the processor hierarchy however. Modern processors characterize deeper pipelines,

simultaneous multithreading, and other options not yet present in most applications processors.

They operate in higher frequencies, with ARM‟s most advanced model (See Appendix C), still

operating at a max of 2 GHZ. Applications processors also still carry many expected/required

61

traits of embedded systems that provide constraints, such as being designed to utilize lower power

and require a very small circuit board footprint. One final difference, these processors are

designed in such a way they do have the luxury of separate peripherals to aide in specific

computations such as the video cards and sound processing available to regular processors. To

illustrate this, the NEON 10 stage pipeline in the Cortex-A8 would not be found in regular CPUs.

To summarize, although the differences are very thin, applications processors do have different

design criteria, and are not quite as powerful as regular processors.

On the other end of the spectrum, the raw facts from the list of characteristics that distinguish the

Cortex-A series from the other two ARMv7 families go a long ways to show they should be

treated separately from other micro controllers. Different memory management, expansion into

multi-core markets, capacity to use full operating systems, branch prediction, and deep pipelines

are a few of the properties that make them stand apart. Also outside of devices using ARM‟s

Thumb, real-time DSP and microcontrollers are not generally 32-bit cores. Simply put, for

modern devices like mobile handsets, the capabilities of microcontrollers and other lower end

embedded systems processors just aren‟t enough. Therefore, applications processors most

certainly stand apart from them.

Nothing clearly outwardly states that applications processors should be treated in their own

category, though logically they are aimed at a much different purpose than other embedded

systems or full computers. They have different design criteria than either, and an expected

performance range that really is centered between the other two. They share qualities from both

categories of processor. Even if application processors do not justify specific benchmarks tailored

towards them, they certainly need a suite that covers design constraints of both computers and

embedded systems for wholesome evaluations.

62

Is Testing the Core Enough?

One of the questions in the introduction regarded whether or not testing the core was enough to

distinguish between integrated systems. In this case the answer is very straight forward: no. One

of the previous benchmark evaluations surveyed in Chapter 4 clearly demonstrated that two

integrated systems with similar cores (both ARM11s) performed vastly different. In that case the

i.MX markedly outperformed the corresponding OMAP in almost every comparison, occasionally

even before mitigating the i.MX clock speed disadvantage. This proves that two integrated

systems with the same core perform differently. Another benchmark compared a vast array of

different cell phones that utilized different integrated system devices, while they had different

cores, most of them were all ARM based. Additionally it underscored that several competitors

were using similar cores, and getting different products upon making their own modifications

within the same market. Again, the components included within an integrated system make it

stand apart from the core it originates from and should be considered when comparing two

devices. Some of the performance differences may simply be because of the application method

of that core within the integrated system, but it is likely beneficial to intentionally test and

compare the components when designing a benchmark suite for them.

Are Current Benchmarks Adequate?

None of the benchmarks surveyed in this paper met the criteria of being comprehensive, holding

to standard quality, and being modern enough. Some of them were closer than others, and by

piecing together several of them, one might be able to comprehensively test a full processor.

However, using small parts of benchmarking suites is considered misuse, and trying to use pieces

of a set of benchmarks doesn‟t leave much room for industry wide comparisons. Essentially,

there were no strong candidates for the job; in particular MiBench was a poor option for the

benchmarking the target system.

63

MiBench was terrible for the task, but was one of the most comprehensive options. It was just too

far out of date and the programs within suffered for it. Ignoring the failed compilations, it still

did not have any streaming video or other benchmarks, which are largely important in today‟s

application processors. The most detrimental feature of it was that there was not a supplied

method of implementation, nor were any other benchmark results readily apparent to compare to.

Because of this, a scale (the AMD) had to be included just to provide context for the results.

Without it, the results would have been entirely meaningless.

Realistically, the answer as to whether or not a benchmark suite exists that is viable for the target

platform cannot be exhaustively determined; thus, some amount of supposition is required. The

best answer then is “not really.” There are some that can provide meaningful results, particularly

single purposed benchmarks as indicated by the mobile handset comparison provided in Chapter

4. Large portions of some of the larger suites also apply well, though none of them really

distinguished themselves as the correct choice. Because of this, the final stance of this thesis

regarding this particular subject is that there are enough resources available to make due for

minor comparisons but nothing that comes close to being a reasonable benchmarking standard

candidate for these systems.

What is the Future Trend?

ARM processors have been rapidly growing and continue to do so at an accelerated rate. With the

sheer size of their portion of the market, in conjunction with how fast it got there, it is apparent

that ARM will be around for some time. Major corporations that might normally develop their

own processors are simply licensing ARM technology and placing them in these integrated

systems. Also, processor developers are specifically targeting the application processor market

that ARM currently dominates. Not only will ARM continue to expand in the foreseeable future,

other comparable devices will begin to join them on the market.

64

FUTURE WORK

Three possible avenues of future work are readily apparent. The first of these lies in the

possibility of exploring further benchmark capabilities on either the target platform or similarly

related ones. This could be continuing the research done on available benchmarks. After all,

while thorough, it would be naïve to claim that every possible benchmark was reviewed; just the

most prominent and apparent ones were. Another worthwhile endeavor on the subject of

benchmark research would be in determining precisely what an applications processor does need

to be thoroughly compared. A variant of this could be studying benchmarks for integrated

systems. Doing similar studies to expand outside of some of the specific traits chosen for the

target system could also yield interesting results.

In an entirely different vein, the second choice for potential future studies stems from non-

benchmark driven ideas. The Beagle Board alone sports many projects on its community website.

Outside of those, with the right tools many programming projects are available. Studying other

uses for this product could yield many project ideas. Also examining other aspects, such as design

instead of testing, on integrated systems is a recommended topic for study.

Finally, one might continue the brief experiments done here; that would be much more germane

to this topic than the second option for future endeavors. One very obvious way would be to

compare a variety of different test boards similar to the Beagle Board, perhaps even using

different revisions of the Beagle Board. For this purpose, one could use MiBench or an entirely

different benchmark. A test less compromised by the real world, such as simulating these devices

or using a logic analyzer on a JTAG input, could prove highly interesting as well. Finally, a

project dedicated to actually developing a benchmark suite for the target platform would be

worthwhile work.

65

SUMMARY

At the onset of this paper it was theorized that ARM-based application integrated systems were

unique, yet prominent enough to warrant their own standard of benchmarking suites and that

there were none readily apparent. During the course of attempting to prove or disprove this

several topics were covered. First and foremost, the cores within an integrated system should not

be solely consulted when examining the product. Also, application end embedded systems

certainly stand apart from other processors. As ARM dominates huge portions of the market and

functions on selling IP cores, their technology is almost synonymous with the field currently.

Finally, a survey of benchmarks and implementation of one of them demonstrated the lack of real

choices for comparison. Therefore, it is in fact valid to say benchmarks developed for ARM-

based application integrated systems are lacking despite being a near necessity.

66

BIBLIOGRAPHY

[1] ARM Holding Ltd. ARM Architecture Overview. PDF.

[2] ARM Holding Ltd. (2011) Company Profile. [Online]. http://www.arm.com/about/company-

profile/index.php

[3] ARM Holding Ltd. (2011) ARM Licensees. [Online].

http://www.arm.com/products/processors/licensees.php

[4] ARM Technology, " ARM Achieves 10 Billion Processor Milestone," Jan. 2008. [Online].

http://www.arm.com/about/newsroom/19720.php

[5] ARM Holding Ltd. (2011) Milestones. [Online]. http://www.arm.com/about/company-profile/milestones.php

[6] P. Rickert and W. Krenik. (2006) Cell Phone Integration: SiP, SoC, and PoP. pdf.

[7] J.-Q. Lu. (2009, Feb.) 3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems. pdf.

[8] R. Weeraskera, D. Pamunuwa, L.-R. Zheng, and H. Tenhunen, "Two-Dimensional and Three-Dimensional

Integration of Heterogeneous Electronic Systems Under Cost, Performance, and Technological

Constraints," IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS

AND SYSTEMS, vol. 28, no. 8, Aug. 2009.

[9] T. Spits and P. Werp. (2000) OMAP Technology Overview. pdf.

[10] M. R. Guthaus, et al. (2001, Dec.) MiBench: A free, commercially representative embedded benchmark

suite. [Online]. http://www.eecs.umich.edu/mibench/Publications/MiBench.pdf

[11] C. A. a. A. v. Someren, "The History of the ARM CPU," in 'The ARM RISC Chip: A Programmers' Guide.

Addison-Wesley, 1993. [Online]. http://www.ot1.com/arm/armchap1.html

[12] T. Krazit, "ARMed for the living room ," CNET news, Apr. 2006. [Online]. http://news.cnet.com/ARMed-

for-the-living-room/2100-1006_3-6056729.html

[13] ARM Holding Ltd. (2011) DSP & SIMD. [Online].

http://www.arm.com/products/processors/technologies/dsp-simd.php

67

[14] ARM Holding Ltd. (2011) Neon. [Online]. http://www.arm.com/products/processors/technologies/neon.php

[15] ARM Holding Ltd. (2011) TrustZone. [Online].

http://www.arm.com/products/processors/technologies/trustzone.php

[16] ARM Holding Ltd. (2011) Instruction Set Architectures. [Online].

http://www.arm.com/products/processors/technologies/instruction-set-architectures.php

[17] L. Devices, "ARM aims son of Thumb at uCs, ASSPs, SoCs," Linuxfordevices.com, Oct. 2004. [Online].

http://www.linuxfordevices.com/c/a/News/ARM-aims-son-of-Thumb-at-uCs-ASSPs-SoCs/

[18] ARM Holding Ltd, "New ARM Thumb-2 Core Technology Provides Industry-Leading Levels Of Code

Density And Performance," Jun. 2003. [Online]. http://www.arm.com/about/newsroom/319.php

[19] ARM Holding Ltd. (2011) Jazelle. [Online].

http://www.arm.com/products/processors/technologies/jazelle.php

[20] ARM Holding Ltd. (2011) ARM Glossary. [Online]. http://www.arm-development.com/arm_glossary

[21] ARM Holding Ltd. (2011) Processors. [Online]. http://www.arm.com/products/processors/

[22] ARM Holding Ltd. (2011) Classic - ARM 7 Profile. [Online].

http://www.arm.com/products/processors/classic/arm7/index.php

[23] ARM Holding, Ltd. (2011) Classic - ARM 9 Profile. [Online].

http://www.arm.com/products/processors/classic/arm9/index.php

[24] ARM Holding Ltd. (2011) Classic - ARM 11 Profile. [Online].

http://www.arm.com/products/processors/classic/arm11/index.php

[25] ARM Holding Ltd. (2011) Cortex-R Series. [Online]. http://www.arm.com/products/processors/cortex-

r/index.php

[26] ARM Holding Ltd. (2011) Cortex-M Series. [Online]. http://www.arm.com/products/processors/cortex-

m/index.php

[27] ARM Holding Ltd. (2011) Cortex-A Series. [Online]. http://www.arm.com/products/processors/cortex-

a/index.php

[28] W. Hohl, ARM Assembly Language. Boca Raton, Florida, USA: CRC Press, 2009.

[29] J. Lee and H.-J. Lee, "Wire Optimization for Multimedia SoC and SiP Designs," IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS—I, vol. 55, no. 8, Sep. 2008.

[30] Texas Instruments. (2011) OMAP 3530. [Online].

http://focus.ti.com/docs/prod/folders/print/omap3530.html

[31] A. Rougier and E. Bagerman, "SiC and SoC will remain Co-existing System Solutions," Solid State

Technology, p. 36, Oct. 2007.

[32] A. Maurelli, D. Belot, and G. Campardo, "SoC and SiP, the Yin and Yang of the Tao for the New

Electronic Era," Proceedings of the IEEE, vol. 97, no. 1, Jan. 2009.

[33] A. Hardy, "What Powers Android? Hummingbird vs. Snapdragon vs. OMAP vs. Tegra 2: ARM Chips

Explained," Jan. 2011. [Online]. http://androidheadlines.com/2011/01/what-powers-android-hummingbird-

vs-snapdragon-vs-omap-vs-tegra-2-arm-chips-explained.html

68

[34] Freescale Semiconductor. (2011) IMX Home. [Online].

http://www.freescale.com/webapp/sps/site/homepage.jsp?code=IMX_HOME

[35] R. Allan, "IC Packages Feel the Squeeze," Electronic Design, Oct. 2007.

[36] R. Crisp. (2008, Oct.) EE Times. [Online]. http://www.eetimes.com/electronics-news/4079408/killer-app-for-

cell-handsets

[37] F. Carson, "Innovations Push Package-on-Package Into New Markets," Semiconductor International, Apr.

2010.

[38] Beagleboard.org. (2009, Dec.) BeagleBoard System Reference Manual REV C4. [Online].

http://beagleboard.org/static/BBSRM_latest.pdf

[39] Free Software Foundation, INC. (2011) GNU Operating System. [Online]. http://www.gnu.org.

[40] G. Coley, "Take advantage of open-source hardware," EDN, vol. 54, no. 16, pp. 20-23, Aug. 2009. [Online].

http://www.proquest.com.argo.library.okstate.edu

[41] R. Paul, "TI launches hackable Beagle Board for hobbyist projects," Ars Technica, Aug. 2008. [Online].

http://arstechnica.com/open-source/news/2008/08/ti-launches-hackable-beagle-board-for-hobbyist-

projects.ars

[42] Digi-Key Corporation, "USB-powered Beagle Board from Digi-Key Unleashes Community Development

with Laptop-like Performance and Expansion for $149.," Journal of Engineering, p. 48, Aug. 2008.

[Online]. http://www.proquest.com.argo.library.okstate.edu

[43] beagleboard.org. (2011) Beagleboard. [Online]. http://beagleboard.org/

[44] Liquidware. Liquidware - BeagleTouch. [Online]. http://www.liquidware.com/shop/show/BB-

BT/BeagleTouch

[45] Liquidware. (2010) Liquidware sales: Beaglejuice. [Online]. http://www.liquidware.com/shop/show/BB-

BJC/BeagleJuice

[46] Tincan Tools. (2011) Flyswatter Sales. [Online].

http://www.tincantools.com/product.php?productid=16134&cat=0&page=1&featured

[47] ARM Holding Ltd. (2011) ARM Cortex-A8. [Online]. http://arm.com/products/processors/cortex-a/cortex-

a8.php

[48] Embedded Insights. (2010) Cortex-A8. [Online]. http://www.embeddedinsights.com/epd/arm/arm-cortex-

a8.php

[49] A. L. Shimpi. (2011) NVIDIA's Tegra 2 Take Two: More Architectural Details and Design Wins. [Online].

http://www.anandtech.com/show/4098/nvidias-tegra-2-take-two-more-architectural-details-and-design-

wins/2

[50] Embedded Developer. (2006) ARM Cortex A8. [Online].

http://www.embeddeddeveloper.com/cores_variant/14/ARM-Cortex-A8.htm

[51] Texas Instruments. (2011) Cortex-A8_Architecture. [Online].

http://processors.wiki.ti.com/index.php/Cortex-A8_Architecture

[52] ARM Holding Ltd. (2011) ARM Cortex-A8 Reference Manual. PDF. [Online].

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K_cortex_a8_r3p2_trm.pdf

69

[53] D. Citron. (2003) MisSPECulation: Partial and Misleading Use of SPEC CPU2000 in Computer

Architecture Conferences. PDF.

[54] A. R. Weiss. (2002, Nov.) Dhrystone Benchmark White Paper.

[55] Standard Performance Evaluation Corporation. (2011, Apr.) SPEC Corporation Webiste. [Online].

http://www.spec.org/

[56] The Embedded Microprocessor Benchmark Consortium. (2011) EEMBC Corporate Website. [Online].

http://www.eembc.org/home.php

[57] BDTI. (2011) BDTI Corporate website. [Online]. http://bdti.com/

[58] L. K. John. (2006) Performance Evaluation: Techniques, Tools and Benchmarks. pdf. [Online].

http://www.ece.utexas.edu/~ljohn

[59] Synchromesh Computing Services . (2006) Synchromesh Computing Benchmarking: Freescale i.MX31, TI

OMAP 2420, Intel Bulverde for Control Code, “Out of the Box”. Powerpoint.

[60] K. Williston, "Benchmarking basics, part 2: BDTI and EEMBC reviewed," Jul. 2008. [Online].

http://www.eetimes.com/design/signal-processing-dsp/4017669/Benchmarking-basics-part-2-BDTI-and-

EEMBC-reviewed

[61] BDTI. (2011) BDTI Cortex-A8 Overview. [Online].

http://www.bdti.com/Resources/BenchmarkResults/Processors/Cortex-A8

[62] EEMBC. (2011) EEMBC main page. [Online]. http://www.eembc.org/home.php

[63] K. Williston. (2008, Jun.) EE Times. [Online]. http://www.eetimes.com/design/signal-processing-

dsp/4017666/Benchmarking-basics-part-1-Choosing-and-using-benchmarks

[64] S. Gal-On and M. Levy, "CoreMark: A realistic way to benchmark CPU performance," Jan. 2011.

[Online]. http://www.eetimes.com/design/embedded/4212735/CoreMark--A-realistic-way-to-benchmark-

CPU-performance

[65] J. Fritts. MediaBench Consortium. [Online]. http://euler.slu.edu/~fritts/mediabench/

[66] Ubuntu. (2011) Ubuntu Homepage. [Online]. http://www.ubuntu.com/

[67] CJLippstreu. (2011, Feb.) Smart Ketai. [Online]. http://www.smartkeitai.com/lg-optimus-3d-beats-

samsung-galaxy-s-ii-in-benchmarks/

[68] K. Roberts-Hoffman and P. Hegde. (2009) ARM Cortex-A8 vs. Intel Atom: Architectural and Benchmark

Comparisons. pdf.

[69] Synchromesh Computing, LLC. Synchromesh Computing website. [Online].

http://www.synchromeshcomputing.com/index.php

[70] Synchromesh Computing, LLC. (2004) Evaluation and Benchmark Testing: The Freescale Semiconductor

i.MX21 Processor. [Online].

http://brianrwright.com/BrianRWright/Assets/Files/White_Paper_imx21_rev2.pdf

[71] EEMBC. (2011) Cormark Org website. [Online]. http://www.coremark.org/home.php

[72] J. Turley, "ARM’s Cortex-A15 “Eagle” Has Landed," Nov. 2010. [Online].

http://www.eejournal.com/archives/articles/20101109-cortex/

70

[73] Sunsider developers. Sunspider Website. [Online]. http://www.webkit.org/perf/sunspider/sunspider.html

[74] Rightware . Browsermark . [Online].

http://www.rightware.com/en/Benchmarking+Software/BrowserMark/

[75] GLBenchmark. (2011) GLBenchmark Home Page. [Online]. http://www.glbenchmark.com/

[76] AMD. (2006, Sep.) AMD Turion™ 64 X2 Mobile Data Sheet. [Online].

http://support.amd.com/us/Processor_TechDocs/41407.pdf

[77] ARM Holding Ltd. (2011) Cortex-A9 White Paper. [Online]. http://www.arm.com/files/pdf/ARMCortexA-

9Processors.pdf

[78] ARM Holding Ltd. (2011) ARM Cortex-A5 Reference Manual. pdf.

[79] W. Wolf, A. A. Jerraya, and G. Martin, "Multiprocessor System-on-Chip (MPSoC) Technology," IEEE

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, vol.

27, no. 10, Oct. 2008.

[80] HINT . (1999) HINT Main Page. [Online]. http://hint.byu.edu/

[81] J. D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance Computers. [Online].

http://www.cs.virginia.edu/stream/

[82] Inquisitor. (2008) Inquisitor BYTEmark Profile . [Online].

http://www.inquisitor.ru/doc/tests/bytemark.html

71

GLOSSARY

ARM Holding Ltd – British company that owns and develops the ARM instruction set, and sells

ARM cores as intellectual property

Advanced RISC Machine (ARM) – an embedded instruction set architecture that is based on

and expands upon reduced instruction set computer design strategies

Applications Processor – embedded processor that is used in high end devices, and is capable of

running a full operating system

Beagle Board – hobbyist device with large community support that was designed by Texas

Instrument‟s engineers to allow users to experiment with the OMAP3530

i.MX – An Intel SoC that utilizes ARM ISA, and one of the competitors to OMAP

Integrated System – Any device that contains multiple system components within a single

package so that might occupy a single footprint such as SoCs, SiPs, and PoPs

IP Cores – The intellectual content of a processor core design to be licensed on its own so that

the licensee may modify, expand, integrate, and manufacture it to their needs

Jazelle – A specific ISA expansion for ARM for Java Bytecode

72

MiBench – A generic open-source embedded systems benchmark suite

NEON – A media oriented ISA expansion for ARM, occasionally implemented with its own

pipeline

OMAP –A Texas Instruments SoC family of devices that contains an ARM application core and

is commonly used in mobile handheld devices

Package – The ceramic or plastic casing around a chip(s) with different I/O leads for connecting

the contained device to other components

Package-on-Package – A method of stacking different packages and interfacing them directly

with one another

System-in-Package – A package that contains multiple chips, either on the same plane or stacked

on top of one another

System-on-a-Chip – A chip/die that has multiple system components printed on it

Thumb – A special ISA expansion to be included with ARM that uses 16-bit instructions and

expands them to the 32-bit registers seamlessly

73

ACRONYMS

AOT – Ahead-of-Time

ARM – Advanced RISC Machine

ASICs – Application Specific Integrated Circuits

BOM – Bill of Materials

CISC – Complex Instruction Set Computers

CPSR – Current Program Status Register

DBX – Direct Bytecode eXecution

i.MX – innovative Multimedia eXtension

IP – Intellectual Property

ISA – Instruction Set Architecture

OMAP – Open Multimedia Application Platform

JIT – Just-in-Time

74

MMU – Memory Management Unit

MPU – Memory Protection Unit

PCB – Printable Circuit Board

PoP – Package on Package

PSoC – Programmable System on Chip

RCT – Runtime Compilation Target

RISC – Reduced Instruction Set Computer

RTOS – Real Time Operating System

SDHC – Secure Digital High Capacity

SIMD - Single Instruction Multiple Data

SiP – System in Package

SoC – System-on-a-Chip

SPSR – Saved Program Status Registers

UAL – Universal Assembly Language

75

APPENDICES

APPENDIX A: PARTITION GEOMETRY

To establish Ubuntu in a way that the Beagle Board is ready to run it from an SD card, it is

necessary to correctly set up the partition geometry. Before creating the correct partitions it is

required to format the device and clear the partition table. Once confirmed that the device has no

established partitions then the process can begin. The number of heads, sectors, and cylinders

must be set. First, the number of heads is set to 255 and the number sectors are set to 63. This is

constant no matter what SD card is chosen. The formula below is used to calculate the number of

cylinders.

The equation uses C to represent the number of cylinders and B to represent the number of bytes

on the SD card. The values come from the number of heads, sectors, and by assigning 512 bytes

per sector. The result of C should be rounded down to the nearest integer. Once the geometry is

established, the only thing left to do is to create the individual partitions. The first partition is the

FAT32, which is placed on the first 50 cylinders of the card and marked as bootable. The

remaining cylinders are used for the ext2 partition, which contains the root file system.

76

APPENDIX B: MIBENCH DETAILS

This appendix provides two important collections of information relevant to the MiBench [10]

benchmark suite. Primarily it provides a rough description of each test or algorithm included

within the suite. These are broken into six tables (Table 7-

Table 12), one for each category of benchmark. Figure 25 is an image of a table from the

MiBench summary [10] that provides the instruction counts for each of the tests. This

information is secondary to the descriptions.

Table 7: Automotive & Industrial Benchmark Descriptions

Program Description

basicmath Basic math that wouldn't require dedicated hardware: Integers, angles, etc

bitcount Tests bit manipulation abilities using different methods

qsort Sorts array of strings

susan (edges) Recognizes edges in an images

susan (corners) Recognizes corners in an images

susan (smoothing) Smooths edges in an image

Table 8: Consumer Benchmark Descriptions

Program Description

jpeg Compresses and decompresses images

lame Encodes MP3 format sound waves

mad MPEG audio decoder

tiff2bw Converts colored tiff image to black and white

tiff2rgba Converts colored tiff image to RGB format

tiffdither Used for reduction of size and resolution of an image

tiffmedian Simplifies/reduces color palette of image

typeset Emulates typesetting an HTML file

77

Table 9: Office Benchmark Descriptions

Program Description

ghostscript Used to interpret postcript

ispell Spell Checker

rsynth Text to speech

sphinx Speech decoder

stringsearch Case senstive search for strings

Table 10: Network Benchmark Descriptions

Program Description

dijkstra Calcuates shortest path in adjacency matrix

patrica Used to represent routing tables using trees

(CSC32) See Telecommunications Table

(sha) See Security Table

(blowfish) See Security Table

Table 11: Security Benchmark Descriptions

Program Description

blowfish enc/dec Symmetric block cipher with variable length key

pgp sign/verify Public encryption key for secure communication

rijndael enc/dec Block cipher; an encryption standard

sha Secure hash algorithm for exchanging crytographic keys

Table 12: Telecommunications Benchmark Descriptions

Program Description

CRC32 Checksum program, 32-bit cyclic redundancy check

FFT Fast Fourier Transform

IFFT Inverse Fast Fourier Transform

ADPCM enc/dec Adaptive Differential Pulse Code Modulation

GSM enc/dec Voice encoding and decoding

78

Figure 25: MiBench Instruction Counts [10]

APPENDIX C: CORTEX-A COMPARISONS

The commonalities of the application processors are discussed in the Background section about

ARM families; this appendix focuses on what separates them into unique purposes. Each of the

primary Cortex-A cores have distinct purposes and some very significant design variations

including pipeline size, multicore possibility, and ISA expansion options. There are four different

Cortex-A processor cores: Cortex-A5, Cortex A8, CortexA9, and Cortex A15 [27]. The Cortex-

A5 is the lowest end application processor, focusing on using low-power and being low-cost. It

comes in both single and multi-core varieties. On the other end, the A15 is the high-end, high-

79

frequency option. The Cortex-A8 is specifically focused on high-end media applications, thus it

automatically includes NEON. However it only features a single core. Finally the Cortex-A9 is

focused on optimizing the efficiency of power-usage to performance. It also has multi-core

capability. A9 also features a hard-macro implementation that allows extremely high operating

frequency. A compilation [27] [52] [77] [72] [78] of features and specifications is included in

Table 13.

Table 13: Cortex-A Comparisons

Cortex-A5 Cortex-A8 Cortex-A9 Cortex-A15

Multicore 1 - 4, or Single No, or Single 1 - 4, or Single 1-4X SMP

Operating

Frequency Range 300-800 MHZ 600 - 1000 MHZ

600 - 2000

MHZ 1 - 2 GHZ

NEON Optional Included Optional Included

FPU VFPv3 Optional VFPv3 included Optional VFPv4 included

Pipeline Stages 8 13 8 15-24

Out of Order? No No Yes Yes

L1 Cache Size (I/D) 4-64KB/4-64KB 32-64KB 32KB/32KB 32KB/32KB

L1 Cache

Associativity (I/D) 2-way/4-way 4-way 4-way ?

VITA

Seth Williams

Candidate for the Degree of

Master of Science

Thesis: BENCHMARKING ARM-BASED APPLICATION INTEGRATED SYSTEMS

Major Field: Electrical Engineering

Biographical:

Personal Data: Born son to Leo Max. Williams and Teresa Jean Williams in

Lawton, Oklahoma on March 6, 1986.

Education: Graduated from Frederick High School, Frederick, Oklahoma in

May 2004; received Bachelor of Science in Electrical Engineering (with

Computer option) from Oklahoma State University, Stillwater,

Oklahoma, in May 2009; Completed requirements for Master of Science

degree with major in Electrical Engineering from Oklahoma State

University in December 2011.

Experience: Raised in Frederick, Ok; employed by Oklahoma State University

as Undergraduate Research Assistant May 2006 – February 20\

ADVISER‟S APPROVAL: James Stine

Name: Seth Williams Date of Degree: December 2011

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: BENCHMARKING ARM-BASED APPLICATIONS INTEGRATED

SYSTEMS

Pages in Study: 87 Candidate for the Degree of Master of Science

Major Field: Electrical Engineering

 Scope and Method of Study: This study had the primary goal of raising awareness to the

availability, or lack thereof, of a benchmark suite that comprehensively,

effectively, and efficiently tests ARM based system-in-package applications

processors. This was done by researching standard benchmarks to determine

applicability and running the optimal option on the BeagleBoard; an open-source

development tool using a modern ARM processor.

Findings and Conclusions: While there were many options available, it was determined

there is no testing suite has been specifically developed for this due to several

reasons. First, the rate of expansion in ARM‟s share of the market has been rapid,

indicating that a specific suite would not have been necessary even five years ago.

Second, because the ARM cores are entirely licensed as IP to different

competitors, comparisons between the specific processors exist already to

licensees. Finally, many of the existing suites contain large portions of desired

tests. It has also been found that industry suites are not specifically focused in this

area. Suites that are applicable and more readily available to open source oriented

communities are found to be outdate. It is the conclusion of this paper that enough

resources exist to marginally compare two ARM applications processors that have

been included in different packages, though the reality is far from ideal.

