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Abstract

This thesis is focused on visual target tracking. Visual target tracking has been

widely studied. The main idea is to be able to determine the target’s location

from a video sequence. Techniques such as the Kalman Filter and its varia-

tions have been proved to be the optimal solution when the system is linear

or can be linearized, and Gaussianity can be assumed. But these conditions

often do not hold in real world applications. Therefore, an alternative approach

based on Sequential Monte-Carlo methods, also known as the Particle Filter,

arose among others and has become a popular technique for target tracking

recently. The particle filter is able to estimate the target state under nonlinear,

non-Gaussian conditions. Different types of particle filters have been devel-

oped over the years, but one of the most popular is the sampling importance

resampling (SIR) algorithm. However, in conditions of highly structured clut-

ter and occlusion the filter’s performance is decreased and the tracker can lock

into the background and loose the target. Since motion information has been

shown to be very important for the unmanned target tracking problem, in this

thesis I introduce a new method to make the SIR filter more robust against

these conditions by indirectly including velocity information in the likelihood

function of the SIR filter. I propose augmenting the SIR filter state vector in

order to use particle velocity information to prevent particles with poor motion

estimates from obtaining large weights. The main original contributions of this

thesis include the following:

• I developed the theoretical formulation for the State Vector Augmented

SIR filter algorithm.

x



• I reformulated the normalized cross correlation used in the Likelihood

function of the SIR filter to include the velocity information in it.

• I developed an algorithm to generate synthetic data sequences with tar-

gets that can change both in magnification and rotation for testing the

efficacy of tracking algorithms in a controlled environment.

• I developed a simple template update strategy to deal with target ap-

pearance changes.

• I prove the effectiveness of the proposed algorithm with tracking results

obtained from two longwave infrared sequences and two synthetic data

sequences.

The results show that this new method can improve tracking perfor-

mance for moving targets immersed in strong structured clutter.
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Chapter 1

Introduction

Recently, particle filters have become popular for video object tracking [33,

58].Traditionally, the state dynamics are assumed to obey a first-order Marko-

vian model. Different particle filtering approaches are reviewed by [2]. In

particular, the sampling importance resampling(SIR) filter [2] is widely applied

in the target tracking community.

One of the main issues with the SIR particle filter is that it can not

avoid assigning large weights to particles that have a poor motion hypothesis.

Thus, developing a way to utilize velocity information is important in order

to deal with this problem. Different approaches have been developed in recent

years. From high-order particle filters that use multiple previous states [41], to

including velocity information into the state transition model [63] for dealing

with the target appearance model variations. Nevertheless, these approaches

fail to include any velocity information directly in the likelihood function of

the filter.

Considering this problem, the focus of this thesis is to develop a method

that incorporates velocity information in the likelihood function of the SIR filter

for video tracking. The proposed method is based on a state vector augmen-

tation technique that uses the current and past measurements to estimate the

particle velocity. A similar approach is presented in [40] but they utilize a

1



block/patch matching. In the method proposed in this thesis, I use template

matching because it often works better than other approaches for infrared video

signals.

1.1 Organization

This thesis contains six chapters where I discuss different topics related to video

target tracking, making strong focus on the theory of particle filters.

Chapter 2 covers basic concepts of visual target tracking. I explain the

main components of a tracking algorithm and, additionally, I review recent

popular techniques in the civilian visual target tracking community.

Chapter 3 offers an extensive discussion about particle filters, including

the most widely implemented algorithms for target tracking. In addition I

review recent techniques that include velocity information for target tracking

using a particle filter framework.

In Chapter 4 I introduce the concepts and mathematical formulation

of the state vector augmentation technique for the likelihood function of the

SIR filter, which is the main contribution of this thesis. Additionally, I discuss

a target template update strategy that was implemented in order to achieve

better results in tracking for one of the studied sequences.

Chapter 5 is focused on the experimental work developed in order to

demonstrate the effectiveness of the new method proposed in Chapter 4. I

show the results obtained from evaluating the proposed method in four different

sequences, two synthetic and two obtained using a longwave infrared sensor,

and compare the method’s performance with that of the standard SIR filter.

2



Finally, in Chapter 6 I provide a summary of the main contributions of

this thesis, mentioning its advantages and limitations. In addition, I suggest

directions for the future research related to the presented work.

3



Chapter 2

Background

Visual tracking is the process of inferring the motion of objects of interest, e.g.,

targets, over time given an image sequence [33].It is used to identify, locate and

determine the position of the targets in each frame of a video [13].

Target tracking is often associated with military applications but it is

also used for civilian ones [17]. In the military field, the objective is to be

able to determine the locations of enemy objects and to be able to predict

accurately what their motion will be. Typical military objects that are of

interest for tracking include aircrafts, missiles and ground vehicles. In the case

of civilian practices, target tracking has been widely used in the last few decades

for weather radars, security surveillance, public transportation systems, rescue

missions, among others [33, 60]. In these applications a common interest is to

determine the movement of the targets, specifically, body and facial recognition

and expression identification, human behavior, Doppler velocity, wind speed

and direction of movement [33]. Another field where target tracking is widely

used is in economics where it helps to monitor and predict the stock market

behavior.

The work presented in this thesis is related to visual video target track-

ing for civilian applications. Therefore, in this chapter I will cover the different

definitions and methods related to visual target tracking, providing a clearer
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explanation of the process itself, as well as a simple overview of the differ-

ent tracking methods used in the last decades. I will discuss the process in

three main stages: detection, data association and tracking. These stages are

implemented using different probabilistic and statistical approaches.

2.1 Detection

The first stage of a track processor is Detection. It consist in being able to

detect the presence of the target and recognize it from the images or infor-

mation provided by the sensors. In video target tracking, the data recorded

corresponds to a discrete image of a specific scenario. The goal is to be able

to extract the fundamental, or at least, important features of the target(s).

The idea is to identify the target(s) properties in the image and reject all the

information that does not belong to any target of interest. For example, if the

targets are cyclist in a competition video, it is important to discard any pieces

of the image belonging to the scenario itself like the sky, trees, the racetrack,

etc. since they can become false alarms and cause failures in tracking. Such

objects and image structure are generally referred to as “background” and/or

“clutter”. In visual target tracking, the four main approaches that have been

used for background and clutter rejection are: spatial filtering, motion estima-

tion, background subtraction and segmentation [60].

2.1.1 Spatial Filtering

Since the beginning of the 20th century spatial filters have been used for target

tracking [7]. They can be classified in two groups: linear and nonlinear. In the

linear approach, background and clutter are usually modeled as additive noise.
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Thus, a signal r(x) acquired from the sensor and consisting of a target s(x)

immersed in background and clutter is assumed to be of the form

r(x) = s(x) + n(x). (2.1)

where x ∈ R2 for processing the video in 2D on a frame by frame (i.e., image

by image) basis and x ∈ R3 for true 3D spatiotemporal processing.

The spatial filter h(x) attempts to obtain s(x) from the composite sig-

nal r(x). Assuming a white and stationary noise signal, it has been shown

that in order to maximize the signal to noise ratio, the cross correlation filter

is the optimal choice [28]. This approach is very limited and tends to fail in a

wide number of situations, like infrared target tracking where the nature of the

noise makes it non-stationary [7]. On the other hand, many nonlinear filters

can perform better under this condition. Some commonly used nonlinear filters

are the median filter and morphological filters. The median filter performs effi-

ciently to reject impulse noise. For targets that are impulse-like in appearance,

a widely used approach has been to apply the median filter and then subtract

the median filtered image from the original. The rationale for this is that, for

such targets, the median filter provides an estimate of the background at each

pixel. In view of (2.1), subtracting the median at each pixel will therefore

provide an estimate of the target signature by rejecting the background and

clutter [55]. Through an abus de langage, this operation has historically been

called the “high-pass median filter.”

In situations where the background presents highly structured objects,

i.e., clutter, morphological filters are used to reject them. Typical morphologi-

cal operations, such as erosion and dilation can be combined in order to create

6



more complex ones, such as opening and closing. The main idea is to suppress

the background clutter while enhancing target-like structure within an image.

Another nonlinear filter is the thresholding filter. This filter is very

useful in video sequences where the target color, illumination, and intensity,

among others, are very different from the background and clutter. Therefore by

setting a threshold one can easily detect the occurrences of the target through

the sequence. The big issue with this filter is determining the optimal threshold

level. Furthermore, this filter could be combined with other spatial filters in

the latest stage in order to eliminate results that could cause false alarms in

the detection process [7].

2.1.2 Motion Estimation

A main feature of motion estimation is to find the movement of the target

between image frames. The most popular and simple method was introduced

by Lucas and Kanade in 1981 [35]. It assumes small changes in the target

appearance and position model between contiguous frames to estimate motion

vectors. The technique is based in least squares minimization and the error

cost function is formulated by the sum of square differences (SSD), or l2 norm

squared [35]. The main issue of this algorithm lies in its linearity assumption.

Hence, it fails to track for targets under nonlinear kinematics or when there is

substantial apparent motion of the target.

Motion estimation can be implemented by block matching [20,23,36,62].

Each image or video frame acquired from the sensor is divided into blocks of a

fixed size, 8× 8 or 16× 16 in the case of [20], and then each block is compared

with its correspondent best matching block in the following frame to estimate
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the movement of the object. Motion estimation has been widely implemented

for video compression [36] and in the target tracking community is popular for

traffic movement tracking [36]. The algorithm is simply a matched filter that

minimizes the l1 or l2 norm between blocks from adjacent frames. The principal

advantage of motion estimation is that it can effectively reject false alarms

with similar appearance, structure, and/or texture to the targets but different

motion. The biggest disadvantage is its computational complexity [20,62].

2.1.3 Background Subtraction

For a moving target in a stationary scene, background subtraction has been

widely used to perform detection by rejecting the background and clutter based

solely on the target motion; this approach is effective even in the absence of

any a priori information about the target appearance [42]. Most of the algo-

rithms based on background subtraction consider a static background model

which simplifies the problem since static pixels are associated with background

and clutter. Real-time surveillance systems use background subtraction be-

cause it’s simple and fast to implement; besides, the position of the camera

is usually fixed, which validates the static assumption of the background. A

big problem with this assumption is that it might generate false alarms in

situations where either the sensor or background are not static. Different ap-

proaches to alleviate this issue have been proposed over the years. Some of the

most popular techiniques include statistical background models as a mixture of

Gaussian distributions [52], or a priori known target free background models

fed to the tracking processor to train the model and create a set of possible

background images [21]. Another popular technique consists in a low compu-
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tational approach for online applications based on median filters of gray-scale

image sub-blocks in a fixed number of frames with background statistics and

model update [50]. Nevertheless, all of these have disadvantages either because

of their computational complexity or false alarms causing drifting issues in the

target motion model.

2.1.4 Segmentation

Segmentation is the process of dividing the image into perceptually similar,

homogeneous regions or objects [60]. Segmentation can be performed in the

pixel spatial domain, frequency domain, modulation domain or in feature space.

The effectiveness of this method lies in the fact that as it separates an image

into target or background regions, the tracker can focus on the likely target

objects and discard the rest if the image. Segmentation is the basis of Discrim-

inative Tracking methods where the image is broken into regions determined

by a binary classifier that distinguishes between target and background. It is

important to know that segmentation can be either used to initialize the track-

ing process or as a primary detection scheme for each frame in the sequence.

Some of the most popular algorithms include Mean-Shift Clustering [11], k-

means clustering and fuzzy clustering [14], among others. Segmentation has

been used in infrared target tracking as a pre-processing step to extract regions

of interest [4]. In visual target tracking it has also been implemented in the ini-

tial stages of algorithms such as STRUCK [19], MIL [3], and TLD [26], making

them more robust. The main problem with implementing segmentation as part

of the detection process is its high computational complexity, but it has proven

that discriminative models perform better in many situations than generative

9



models [58].

2.2 Data Association

Video target tracking algorithms typically process the incoming video frames

sequentially as they are acquired from the sensor. In the traditional approach,

detection is implemented as an independent process that identifies potential

target measurements in the current frame. Data association is the process of

determining which of these measurements will be used to update each target in-

stance that is currently being tracked. There exist two typical ways to approach

the data association problem. The simplest one is the Nearest Neighbor (NN)

Association in which the track for each target instance is updated using the

exceedance or measurement that is closest to the predicted target position [6].

This method shows good results in single target applications and tends to fail

in situations with multiple targets if they are close to each other. The other

traditional method is choosing the maximum a posteriori probability(MAP)

obtained from a cost function, e.g., minimum distance to the target, minimum

energy difference, maximum cross-correlation. Like the NN method, it tends

to fail under multiple target tracking with high clutter conditions. Considering

this, better solutions using statistical methods were developed. Bar-Shalom [5]

suggested the use of Probabilistic Data Association filter, which weights the

contributions of the different measurements by adding them statistically. This

is performed under the assumption that there exist only one true measurement

that is the result of the distribution of all the target’s instances [5, 44]. Al-

though this method outperforms the previous two in single target situations,

it is not recommended for multiple target tracking because it would need to

10



be implemented for each of the targets in the scene and is very sensitive to

false measurements due to background and/or clutter with properties that are

similar to the target appearance in some respect [5]. A solution for multiple

target tracking is the joint probabilistic data association filter (JPDA) [5] which

prevents distinct target instances from being merged.

The following stage of the target tracking process uses the measurements

obtained from the data association process to update estimates of the variables

such as position, appearance, and state that are maintained for each target

instance currently being tracked. In Sections 2.3 and 2.4 I will describe state

space tracking methods and feature tracking methods and discuss some of their

respective advantages and disadvantages.

2.3 State Space Tracking

In different types of systems the state space model is used to represent explic-

itly the relationship between the objects of interest and their measurements. In

the real world, the measurements obtained from different sensors or devices are

corrupted by some uncertainties which cause the obtained measurements to not

be the true quantities of interest. The nature of these uncertainties can vary

from inherent measurement device inaccuracies to environmental influences to

interference of unwanted objects in the transmission paths, among others. In

the state space methods, it is assumed that the target is governed by a state

space system model with stochastic inputs. The target measurements acquired

from the sensor are modeled as noisy observations of the true target. In the

vast majority of practical applications, the measurement noise is assumed to

be additive. After establishing the relationship between the available measure-
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ments and true target state, the problem is reduced to one of optimization

where the goal is to minimize the error between the true target state and the

estimated target state in some respect(e.g., average error, mean squared error,

mean absolute error). The popular state space trackers are the Kalman filter,

its extensions (EKF and UKF) and particle filters. In this section I will cover

the basics of the state space model as well as a simple explanation for each of

the aforementioned filters. An extended discussion of particle filters, which are

the main subject of this thesis, appears in Chapter 3.

2.3.1 State Space Model

In the state space model the problem is addressed in two components: the

observation model, correspondent to the measurements obtained by the sensing

device, and the state model that is used to express the evolution of the target

state. It is important to realize that the state vector usually includes both

observable and unobservable states.

Let xk ∈ Rm be the true target state vector at discrete time instant

k ∈ N. Throughout this thesis, it is assumed that 0 is included in the natural

numbers so that N = {0, 1, 2, . . .}. The target behavior is governed by the

state update equation (or dynamic equation)

xk = f(xk−1,uk−1). (2.2)

where uk is a zero-mean white stochastic process that is independent and iden-

tically distributed (i.i.d.). In general, the function f(·) in (2.2) could be linear

or nonlinear.
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The measurements (or observations) zk ∈ Rn are given by

zk = h(xk,vk) (2.3)

where the measurement noise vk is zero-mean, white, i.i.d., and mutually un-

correlated with uk. Additionally, the discrete state space model described

by (2.2) and (2.3) usually admits the first order Markov process assumption.

This assumption means that, probabilistically, the conditional probability of

the current state given all previous states is equal to the conditional probabil-

ity of the current state given only the previous state:

p(xk | xk−1, . . . ,x1,x0) = p(xk | xk−1). (2.4)

Given the noisy measurements zk in (2.3), the goal of target tracking is to

estimate the true sequence of target states xk.

Under these conditions, target tracking can be interpreted as a problem

of obtaining state vector estimates given their relationship with the measure-

ments and model parameters, e.g., the parameters of the system and the mea-

surement noises uk and vk and the functions f(·) and h(·) in (2.2) and (2.3).

This is equivalent to estimating the probability density function (pdf) p(xk|z0:k)

which can be solved by sequential Bayesian filters [2]. That is, attempt to pre-

dict future states given the available measurements, and, update the prediction

when new measurements are available. Prediction involves the construction of

the pdf p(xk|z0:k−1) by using the Chapman-Kolmogorov equation:

p(xk|z0:k−1) =

∫ +∞

−∞
p(xk,xk−1|z0:k−1)dxk−1

=

∫ +∞

−∞
p(xk|xk−1, z0:k−1)p(xk−1|z0:k−1)dxk−1

=

∫ +∞

−∞
p(xk|xk−1)p(xk−1|z0:k−1)dxk−1. (2.5)
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The main problem with this approach is that it allows the increase in

the error of the estimation by different types of uncertainties. One of the causes

is that it uses the first order Markov approximation, which limits the use of

past states to the very last one before the current to predict a future state.

Another cause is the incorporation of the measurement and the system noises

to the estimation as additive sources of signal distortion. The update step is

performed when the observable quantity zk arrives. The filtered state xk may

then be estimated by using Bayes theorem to update the posterior distribution

p(xk|z0:k) according to [2]

p(xk|z0:k) =
p(xk|zkp(xk|z0:k−1)

p(zk|z0:k−1)
. (2.6)

The State Space Model does not give any restriction on the types of

function for f(·) and h(·) or for the measurement and the system noises uk and

vk besides being i.i.d, zero mean, mutually uncorrelated random processes.

The following subsections explain some situations where linearity and noise

distribution definition serve to define the optimal filters for each one of the

cases.

2.3.2 The Kalman Filter

This estimation filter was introduced in 1960 by Rudolph Kalman [27]. It is

very popular in real world applications for being an optimal, easy-to-implement

filter. It has been widely used in the computer vision community for visual

tracking and facial recognition [11, 24]. It is also widely used for navigation

systems, military target tracking and GPS.

The Kalman filter is based on the assumption that the functions f(·)
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and h(·), introduced in the Section 2.3.1, are linear, and the measurement and

the system noises uk and vk have a Gaussian distribution. In this sense, if both

assumptions hold, the optimal filter to estimate the system state vector that

minimizes the Mean Square Error (MMSE) is the Kalman filter. This guaran-

tees that the MMSE will be achieved when estimating any affine function of

the state vector. Under these assumptions, the state update and measurement

equations reduce to

xk = Fkxk−1 + uk (2.7)

zk = Hkxk + vk, (2.8)

where Fk is the known state transition matrix of size m×m, Hk is the known

measurement matrix of size n×m, and uk and vk are zero-mean white Gaus-

sian noises with known covariance matrices Q and R. Using this approach, the

pdf construction described in the previous section becomes a simple problem

to solve. It can be proved [27] that if a Gaussian distribution is at the input

of a linear system, the output of the system will also have a Gaussian distri-

bution but with different statistics, i.e., different mean and variance. Hence,

the probability density functions of the state vector xk can be reconstructed

recursively from the first and second order statistics of the initial state x0,

which is assumed to have a known Gaussian distribution. The reason behind

this is that any Gaussian distribution can be entirely described by its mean

and variance.

Under these considerations, a single cycle of the Kalman filter is com-

posed by a two-step computation. The prediction step derives the predicted

mean vector mk|k−1, predicted error covariance matrix Pk|k−1 and Kalman gain
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Kk as follows

mk|k−1 = Fkmk−1|k−1, (2.9)

Pk|k−1 = Qk−1 + FkPk−1|k−1F
T
k , (2.10)

Sk = HkPk|k−1H
T
k + Rk, (2.11)

Kk = Pk|k−1H
T
kS−k 1. (2.12)

And given these, the predicted state xk|k−1 is distributed as [6]

p(xk | z0:k−1) = N (xk,mk|k−1,Pk|k−1), (2.13)

where N (xk,mk|k−1,Pk|k−1) represents a Gaussian distribution with mean

mk|k−1 and covariance matrix Pk|k−1. Then, the update step refreshes the pdf

of the state, posterior mean vector mk|k and posterior error covariance Pk|k

when the measurement vector zk becomes available, as shown by [6]:

mk|k = mk|k−1 + Kk(zk −Hk ·mk−1|k−1), (2.14)

Pk|k = Pk|k−1 −KkHkPk|k−1, (2.15)

p(xk | z0:k) = N (xk,mk|k,Pk|k). (2.16)

After building the posterior pdf p(xk | z0:k) , both steps are repeated for a new

cycle. When the system is linear and the noise sources are Gaussian, the most

optimal filter in terms of MMSE is the Kalman filter. Even for non-Gaussian

noises, the Kalman filter remains as the best linear filter available [6, 25].

However, if the dynamics are nonlinear or if the noises are non-Gaussian,

then the Kalman filter is not optimal. The following two subsections are de-

voted to filters that try to tackle nonlinear dynamics, non-Gaussian noises, or

both.
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2.3.3 The EKF and UKF

The Extended Kalman Filter (EKF) emerged as a solution to the non-linearity

problem discussed at the end of Section 2.3.2. At each time step, the EKF

linearizes the system dynamics along a tangent to the state trajectory in order

to simplify the pdf propagation of the KF. The process consists in implement-

ing a Taylor series expansion on the state transition function fk(·) around the

mean value mk−1|k−1 and on the measurement function hk(·) around the pre-

dicted mean value mk|k−1. Typically, the higher order terms of the series are

discarded [6]. The linearization allows to estimate the predicted mean vector

mk|k−1 in the same way it was done for the Kalman filter prediction (2.13)

mk|k−1 = fk(mk−1|k−1). (2.17)

However, the error covariance matrix Pk|k−1 has to be calculated differently

from that in the Kalman Filter. Before computing the covariance (2.10), the

state transition function fk(·) is linearized around mk|k−1, according to [6]

Pk|k−1 = Qk−1 + F̃kPk−1|k−1F̃
T
k , (2.18)

where F̃k = ∂fk
∂xk
|x=xk−1|k−1

is the Jacobian of fk evaluated at xk−1|k−1. The

Kalman gain Kk also requires a different calculation from that of the Kalman

Filter. The function hk(·) is linearized around the predicted mean mk|k−1 before

computing the Kalman gain to obtain

Sk = H̃kPk|k−1H̃
T
k + Rk, (2.19)

Kk = Pk|k−1H̃
T
kS−1

k , (2.20)

where H̃k = ∂hk
∂xk
|x=xk|k−1

is the Jacobian hk(·) calculated at the predicted

mean mk|k−1 [6]. The construction of the predicted distribution p(xk | z0:k−1)
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is defined as

p(xk | z0:k−1) = N (xk,mk|k−1,Pk|k−1), (2.21)

where N (xk,mk|k−1,Pk|k−1) represents a Gaussian distribution with mean

mk|k−1 and covariance matrix Pk|k−1.

The EKF update step refreshes the redefined mean vector mk|k, error

covariance matrix Pk|k, and pdf of the state xk|k when the measurement vector

zk becomes available according to

mk|k = mk|k−1 + K̃k · (zk − H̃k ·mk−1|k−1), (2.22)

Pk|k = Pk|k−1 −Kk · H̃k ·Pk|k−1, (2.23)

p(xk | z0:k) = N (xk,mk|k,Pk|k). (2.24)

Although the EKF has been used in a variety of Navigation applica-

tions, it is not easy to implements, difficult to tune and diverges in many know

situations. The main reason for these issues is that the local linearity approxi-

mation of the EKF fails to be effective when the system dynamics exhibit any

significant nonlinearities. In the beginning of this century, Julier and Uhlmann

proposed the Unscented Kalman filter (UKF) which, based on the unscented

transformation allows to efficiently propagate the pdf through the state update

of a non-linear system. It outperforms both the KF and EKF because it is more

accurate in predicting the first and second order statistics of a Gaussian distri-

bution through non-linear filters and does not need to compute the Jacobian

Matrix [25].

Despite the fact both EKF and UKF deal with the non-linearity issue

of real systems and perform better than the Kalman filter for Gaussian noise,
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they fail to work for systems with non-Gaussian noise. Considering this, the

particle filter, which will be simply explained in the following subsection and

extensively covered in Chapter 3 address the non-Gaussianity issue.

2.3.4 The Particle Filter

The particle filter is used to solve Hidden Markov Chain (HMM) and nonlinear

filtering problems. It estimates the hidden states in the system when only

partial observations are made and the noises are random signals with any kind

of distribution. It computes the posterior distributions of the states by using the

sequential Monte-Carlo filtering. Although its original implementation suffers

from degeneracy problems and fails to track under many circumstances, one of

its variations, the sampling importance resampling particle filter has become

the de facto tracking base algorithm in many tracking systems, e.g., visible

and infrared video target tracking, and radar. This subject will be covered in

Chapter 3 since it is of interest in this work to explain this method and its

variations extensively.

2.4 Feature Tracking

At each time step, the state vector xk and measurement equation (2.3) specify

how the target signature will appear in the observation zk. For video tracking,

in the simplest case (2.3) characterizes the target appearance in terms of image

pixel intensity values. However, in some cases improved tracking performance

can be obtained by instead characterizing the target appearance in terms of

some alternative derived features [60]. For example, it may be advantageous

to formulate (2.3) in terms of the histogram of pixel intensities that occur in
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a bounding box or window about the predicted target centroid. This is called

feature tracking and the derived observation space is referred to as the feature

space.

Thanks to the high frame rate of current video recording devices tar-

get tracking can be simplified based on the spatiotemporal redundancy in the

shapes, sizes, orientations and textures of moving objects. This allows to use

feature similarity between frames to do the tracking. The following subsec-

tions will cover popular feature-based tracking methods: Point tracking, kernel

tracking, contour tracking, multi-feature tracking and track by learning.

2.4.1 Point Tracking

In 2-D imaging, the images are comprised of pixels. Although the spatial

relationships between pixels are fixed and allows to visually represent the ap-

pearance of the objects of interest, some pixels are more important than others.

These pixels are considered interest points. In general, the pixels located on

the edges of a shape carry more information about the shape of the target than

the ones inside it [47] as they mark the boundary between the target and the

rest of the image. After determining interest points that are spatially close to

each other, they can be used as unique features of the object [51].

Given that interest points are used in groups their detection is made by

looking at local structures in the neighborhoods of pixels. In [47] a window of

a small number of pixels is used to compute the interest points by obtaining

the eigenvalues in the vertical and horizontal direction of a correlation matrix

around each pixel. If both eigenvalues were above a certain threshold, the

central pixel of the window was selected as an interest point of the image.
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One of the advantages of using point representations is that they are

a robust strategy to deal with occlusion, because the target is represented

by several points. In addition, as the interest points are selected based on

the magnitudes of the eigenvalues of the correlation matrix around each pixel,

tracking is not affected by rotations. Furthermore, it is an easy algorithm to

implement.

This approach has been used in several tracking algorithm by incorpo-

rating it into the Lucas-Kanade registration algorithm [35], building it into the

particle filter framework [49], or for compensating the camera-ego motions [59].

Nevertheless, the interest point representation has some important limitations.

First of all, they do not have any spatial relationships between each other, which

makes them sensitive to false points, because they are computed independently

for each pixel [47]. They also can not provide any information on the target’s

contour or texture which makes them unsuitable for large-size objects [60].

2.4.2 Kernel Tracking

Comaniciu et al. in [12] used kernel tracking to track human faces and moving

people in subway stations and football games. This method consists in com-

puting local features of the target by convolving a small isotropic kernel about

regions of interest. These kernels have a convex and monotonic profile that

assigns smaller weights to the pixels farther from the kernel’s center [12]. They

represented the targets using color histograms, and for each time frame, po-

tential targets were extracted using an ellipse-shaped kernel with variable size.

They constructed a color histogram from the extracted pixels and matched

them with the reference targets histograms by computing the Bhattacharyya
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distance between both distributions. Then, the mean-shift algorithm was used

to place the kernels to the location where the computed distance was mini-

mum and the process was repeated until the distance fell below a predefined

threshold. Because the mean-shift calculation is approximated by a first-order

Taylor series, the targets must have small motion between frames in order

for the algorithm to work [12, 61]. The kernel approach has also been used

recently in algorithm such as [19] by combining it with a labeling strategy

in a machine learning framework. The method consists in using a kernelized

structured output support vector machine (SVM) learning machine to allow

adaptive tracking. This way, the authors saved from computing the intermedi-

ate classification step of many discriminative methods because in this case the

SVM itself performed the labeling online. The method has been proven to work

better than many current state-of-the-art trackers [33]. In their paper [19] the

authors compare the results with many boosting or random forest algorithms

by establishing two scales on a 4×4 grid with six different types of Haar-like

features for a total of 192 features, each one normalized to give a value be-

tween [−1, 1]. These features are then integrated into a feature vector x and,

finally, they implemented a Gaussian kernel with fixed variance for all analyzed

sequences. Finally, they computed the corresponding discriminant and set the

highest score pixel as the new target location.

2.4.3 Template Tracking

The template tracking technique is based on representing the target with a

window of the image with a specific size but arbitrary shape known as tem-

plate. This method utilizes the pixel intensities of the template and assumes
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they do not vary drastically during the course of tracking. In videos with

color information, three channels (RGB), the color provides another dimension

of target-background separability [60] since the color distribution of the back-

ground is going to be constant through the sequence if the background is static.

It also allows to distinct different targets because their color absorption will dif-

fer. This is a main advantage to monochromatic, gray-scaled, video sequences.

Nonetheless, this advantage also increases the computational cost. Templates

can also be modeled by probabilistic distributions such as histograms [12]. For

instance, templates can be constructed from modulation domain features (AM-

FM) [54] and present a different solution to the segmentation problem.

The main advantage of templates is that they capture both the spatial

and morphological information of objects in an easy-to-implement and effective

way. However, they are sensitive to size, rotation and luminance changes of the

target signatures, as well as partial occlusion. In addition, selecting the size

and shape of the target becomes a problem itself since if it is too big it could

potentially include unwanted background into the signature model or on the

other hand omit parts of it, if it is too small. Therefore, the template tracking

technique is most effective for tracking rigid targets.

2.4.4 Contour Tracking

Considering the changes in the target’s appearance for non-rigid objects, con-

tour representation becomes one of the solution to the problem. There are

three popular techniques which will be described in this work: active contours,

articulated models and silhouettes [60].
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Active Contours

Active Contour models try to identify the boundary of objects by minimizing

an energy function that includes internal forces, external constraints and image

energy at edges [30]. As this method deals with deformable objects it is very

popular in tracking systems of different nature. Besides, it is robust to partial

occlusion [60]. The main disadvantages of this approach are that it does not

consider any spatial or texture information of the target and in general requires

the object motion and deformation rate to be small [30].

Articulated Model

This technique consist in representing the target as a set of multiple-connected

parts that are modeled separately with templates of different shapes, i.e., nor-

mally rectangular or elliptical [9]. It is very convenient for human gesture or

movement tracking [60].

Silhouettes

This method is similar to the active contour representation in that it focuses on

the shape of the object, but, in this case, instead of modeling the boundaries

of the target, it focuses on the interior of the object’s shape to perform the

tracking [60]. In general, target silhouettes are computed after segmentation

where small pieces of targets are combined using morphological filters and

since they are usually binary, the technique is robust to changes in color and

texture [21].
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2.4.5 Multiple Features Tracking

Although, in many applications, a single feature works to describe the object

of interest completely, a way of making a tracking algorithm robust to different

situations is combining some of the different methods aforementioned. A com-

mon approach is to combine two or more appearance based tracking algorithms

to describe the target appearance model and incorporate them into a particle

filter framework [58].

2.4.6 Learning

In many tracking situations, prior knowledge of the object of interest is avail-

able. This allow us to construct a more accurate model for the target. This

training step, performed before initializing the tracking, allows the tracker to

discriminate between clutter and targets. This method is known as learning.

The process itself allows to build a library of target’s signatures by using

the prior information on its appearances and behaviors. Then, these signatures

are matched with real data during the tracking process to find targets. The

main issue with this approach is its high computational cost and storage re-

quirements for large library sets. Different techniques have been used to address

this problem. Principal Component Analysis has been used to reduce library

size by preserving only high energy components [45,57]. Another popular tech-

nique is based on the use of support vector machines (SVM) [3, 19, 26]. The

main issue with many learning algorithm is that once the training process is

done the optimality of the classifier can not be preserved because new data

is being incorporated to the process and new targets that did not belong to

the training library will not be tracked by this classifier. Hence, tracking by
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learning is application specific.
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Chapter 3

Particle Filters

As mentioned in Chapter 2 it is of interest in this thesis to explain extensively

the subject of Particle Filters. Since their introduction in 1993 [18], these

recursive, online estimation methods have become very popular for tracking

and even classifying targets based a state space system model.

Considering the probabilistic nature of the state-space model and its

need for updating information as new data is available, a solution could be a

Bayesian approach that tries to obtain the posterior probability density func-

tion (pdf) of the state from all the available information. In this case, the

recursive approach is desired; that is, allowing data to be processed sequen-

tially as it is received without the need of storing or reprocessing any data

when new measurements are available [2]. In view of this, the concepts de-

scribed in Subsection 2.3.1 open the discussion for having an optimal solution

that, without having any constraint of linearity or Gaussianity, can estimate

the state. This solution is the particle filter [18].

This chapter is structured as follows. Firstly, I will cover the basics

of the particle filter, its advantages and limitations. Then, I will cover some

popular variations in the video target tracking community, e.g., SIR ASIR,

and RPF. Finally, I will cover some recently developed variations to end up

summarizing the information and the reason for the use of the proposed method
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of this thesis that will be explained in Chapter 4.

3.1 Sequential Importance Sampling Algorithm

The Sequential Importance Sampling Algorithm, also known as bootstrap filter,

condensation algorithm or particle filter [2] is the base of all the Sequential

Monte Carlo filters [2], and is based on the Sequential Monte Carlo Sampling

Method [2]. Its objective is to estimate the state by representing the posterior

density function using random samples with associated weights [2]. When the

number of samples used for the estimation is very large, the particle filter

solution tends to the optimal Bayesian estimate. I will broaden the state-

space defined in Chapter 2 as follows. Let {xi0:k, w
i
0:k}

Ns
i=1 be a random measure,

where {xi0:k, i = 1, ..Ns} are a set of Ns particles and {wi0:k, i = 1, ..Ns} their

associated weights that are normalized so they sum to 1. These points support

the description of the posterior pdf p(x0:k|z0:k) allowing it to be approximated

as follows:

p̂(x0:k|z0:k−1) ≈
N∑
i=1

ωikδ(xk − x
(i)
k ). (3.1)

This allows us to have a discrete approximation of the true pdf. It is im-

portant to note that the weights are chosen by using the importance sampling

principle which consists in estimating the properties of a density p(x), difficult

to describe, by using a different density, the importance desity q(·), with similar

properties that can be easily calculated. In this sense, the weighted approxi-

mation to the true posterior given by a particle xik is described as follows:

p(xk) ≈
Ns∑
i=1

ωiδ(xk − xik), (3.2)
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where ωi are the normalized weights of the particles. This allows us to define

ωik in (3.1):

ωik ∝
p(xi0:k|z0:k)

q(xi0:k|z0:k)
. (3.3)

If one wanted to approximate p(x0:k|z1:k) from an already obtained ap-

proximation to p(x0:k−1|z0:k−1), an intelligent approach will be to choose the

importance density such that at time k it admits as marginal distribution at

k − 1 the following factorization:

q(x0:k|z0:k) = q(xk|z0:k)q(x0:k−1|z0:k−1). (3.4)

This will allow to obtain the particles at time k by augmenting the already

existent at time k − 1. With properly mathematical handling, see [2], the

weight update equation could be expressed as

ωik ∝
p(zk|xik)p(xik|xik−1)p(xi0:k−1|z0:k−1)

q(xik|xi0:k−1, z0:k)q(xi0:k−1|z0:k−1)
= ωik−1

p(zk|xik)p(xik|xik−1)

q(xik|xi0:k−1, z0:k)
. (3.5)

If finally, one allows the importance density to be dependent only on the last

state at time k − 1 the weight can be then described as

ωik ∝ ωik−1

p(zk|xik)p(xik|xik−1)

q(xik|xik−1, zk)
. (3.6)

Thus, the posterior density p(xk|z1:k) will be approximated as

p̂(xk|z1:k) ≈
N∑
i=1

ωikδ(xk − x
(i)
k ). (3.7)

It can be proved that as the number or particles Ns tends to infinity the ap-

proximation approaches the true posterior density p(xk|z1:k).

This first approach to particle filtering suffers from a major drawback,

Degeneracy. That is, that after some iterations, only one particle will have a
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significant weight while the others will be negligible. This is caused by the fact

that the variance of the weights can only increase with time. This implies that

most of the particles contribution to the estimation is zero. There are different

developed strategies to avoid this issue. Below, I will address the four main

ones described in [2].

3.2 Generic Particle Filter

A way of measuring the degeneracy of the previous algorithm is by calculating

the number of particles that are effectively contributing to the estimation.

Although this number can not be evaluated exactly, one could use the following

estimate of it to obtain an approximated value:

N̂eff =
1∑Ns

i=1(ωik)
2
. (3.8)

With this approximation, one could avoid degeneracy by applying a resampling

to the particles every time the number of effective particles N̂eff falls below

certain threshold. Let be the set of particles before the resampling step.The

process of resampling consists in generating a new set of particles {xi∗k }
Ns
i∗=1,

where i∗ is the new particles indexes, from the original set {xjk}
Ns
j=1 by resam-

pling Ns times from (3.7) so the probability function of the resampled set is

equivalent to the sum of their normalized weight; that is

Pr(xi
∗

k = xjk) = ωjk. (3.9)

Then, the new weights of the particles are reset to be

ωi
∗

k =
1

Ns

. (3.10)

Finally, let i∗ ≡ i, then, ωi
∗

k = ωik.
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There are several forms to perform the resampling step, this work will

use the one applied in [2] which is the Systematic Resampling. The Generic

Particle Filter is an algorithm that computes the estimate of N̂eff and after it

falls below the threshold applies resampling. Although it is a better approach

than the SIS filter, it still suffers from major limitations. The first one is that it

makes it difficult to parallelize the particles estimation process because all the

particles are combined in the resampling step. The second one is that as the

particles with high weights are statistically selected repeatedly, the estimated

distribution will contain many copies of the same points, causing a loss in

diversity, also known as sample impoverishment. Particularly, this problem in

small noise systems leads to degeneracy in very few iterations [2, 10]. A few

alternatives to the SIS filter will be explained below.

3.3 Sampling Importance Resampling Filter

This method, proposed in 1993 by Gordon et al. is a Monte Carlo method

applied to sequential Bayesian problems. It requires to have a previously known

state evolution and measurement functions, fk(·, ·) and hk(·, ·). It also needs to

obtain samples from the noise process vk−1 and the prior, as well as to evaluate

the likelihood function p(zk|xk) point-wise. It can be derived from the SIS filter

formulation by assigning the importance density q(xk|xik−1, zk) to be the prior

density p(xk|xik−1) and applying resampling in every time step. Considering

this, one can formulate the update equation for the state and the weights as

follows:

xik ∼ p(xk|xik−1), (3.11)

ωik ∝ p(zk|xik). (3.12)
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This means, that the weights of the particles can be drawn proportionally from

the likelihood function which constitutes an advantage of using this algorithm

because the importance weights can be easily evaluated [2]. This makes the

SIR filter a desirable alternative to the SIS filter. However, it still suffers from

the same impoverishment problem of the Generic Particle Filter. Besides, as

the importance sampling density is independent of the measurements zk, there

is no a priori knowledge of the observations which can be very inefficient and

makes the SIR filter susceptible to outliers. A different approach to resampling

is introduced in the Auxiliary SIR filter.

3.4 Auxiliary Sampling Importance Resampling Filter

This particle filter method was introduced by Pitt and Shephard in 1999 in [38]

as an alternative to the SIR filter which is based in altering the order in the

sampling and resampling steps in order to minimize the loss of information

based on the fact that it allows greater distinction between particles which

leads to a better approximation of the target. In a way, the change of order

creates a method that utilizes the future observation information to determine

the actual contribution of each particle in the current observation. It allows

to determine which particles should survive resampling. There are several

modifications to the original implementation. In this work, I will use the same

defined by [2].

The algorithm introduces a different importance density q(xk+1, i|z0:k+1)

based on the future sample pair formed, predicted by the particle xjk+1 and its

index ij, at the current time step k : {xjk+1, i
j}Ms
j=1. Then, using Baye’s rule,

32



the proportionality for the joint density p(xk+1, i|z0:k+1) can be defined as

p(xk+1, i|z0:k+1) ∝ p(zk+1|xk+1)p(xk+1|xik)ωik. (3.13)

Then, one can draw a sample from this joint density, omit the indexes and

generate a new sample {xik+1}ij=1 approximating q(xk+1, i|z0:k+1) by (3.13)

q(xk+1, i|z0:k+1) ∝ p(zk+1|µk+1)p(xk+1|xik)ωik, (3.14)

where µik+1 is some characterization associated with the conditional density

xk+1|xik. Defining

q(xk+1|i, z0:k+1)
∆
= p(xk+1|xik) (3.15)

and writing the joint density as

q(xk+1, i, z0:k+1) = q(i|z0:k+1)q(xk+1|i, z0:k+1), (3.16)

the first or partial weights can be approximated by the relation

q(i|z0:k+1) ∝ p(zk+1|µik+1)ωik. (3.17)

Finally, the sample pair {xjk+1, i
j}Ms
j=1 is assigned with a new weight proportional

to the ratio between the joint density and the importance density:

ωj =
p(zk+1|xjk+1)

p(zk+1|µi
j

k+1)
. (3.18)

Although, in systems of small process noise, the ASIR performs better

than the SIS, the SIR filter outperforms it in systems with large process noise.

The reason is that in small noise µik+1 represents a well characterization of

p(xk+1|xik). Whereas, in large noise, the same single sample characterization is

very poor and the filter’s performance is considerable degraded.
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3.5 Regularized Particle Filter

The main problem with the aforementioned filters is that the resampling step

involves samples drawn from discrete distributions and this might lead to parti-

cle collapse which is basically the case of particle impoverishment where all the

particles occupy the exact same point degrading the performance of the filters

because of the poor posterior density representation. Considering this, there

emerges the Regularized Particle Filter (RPF) which has the same formulation

as the SIR filter except for the resampling step, that in the RPF, involves draw-

ing samples from a continuous representation of the posterior density given by

the approximation

p(xk|z0:k) ≈
Ns∑
i=1

ωikKh(xk − xik), (3.19)

where

Kh(x) =
1

hnx
K(

x

h
) (3.20)

is the rescaled Kernel density K(·), h > 0 is a scalar parameter which defines

the Kernel bandwidth, nx is the dimension of the state vector x and ωik, i =

1, ..Ns are the normalized weights. The Kernel density function is a symmetric

pdf that satisfies:∫
xK(x)dx = 0,

∫
‖x‖2K(x)dx <∞.

The intention is choosing the Kernel and the bandwidth that minimize

the mean integrated squared error (MISE) between the estimation and the

true posterior. When all the samples have the same weight and the density

is Gaussian with unit covariance matrix, the optimal kernel to choose is the

Epanechnikov and the optimal bandwidth can be defined as in [2]. The main

34



issue with this algorithm is that the Kernel approximation degrades its well-

ness as the states dimensionality increases. Furthermore, the samples are not

guaranteed to asymptotically approximate the posterior.

In general, the SIR filter is still the preferred algorithm within the target

tracking community because of its versatility and straightforward implementa-

tion. In addition, it can be easily mixed with different feature-based tracking

algorithms because of its likelihood function definition.

3.6 Motion inclusion in the Particle Filter framework

The basic formulation of the particle filter avoids to include any motion in-

formation to perform either the prediction, update or both stages of filtering.

Recently, researches have been working extensively to improve the particle filter

implementation to make it robust to different situations such as, appearance

model changes, particle impoverishment, interframe motion among others. In-

cluding motion information then, becomes a very useful tool to be able to deal

with the aforementioned issues. In this section we will briefly describe three

different approaches that include motion information into the particle filter

implementation that have been developed in the last 20 years.

3.6.1 Including Velocity in the State Transition Model in a Particle
Filter

In [63], Zhou et al. introduce a tracking algorithm that, using the particle filter-

ing framework, is able to perform recognition and tracking simultaneously by in-

corporating motion information in the state transition model. The method sta-

bilizes the tracker by incorporating three modifications to conventional tracking
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algorithms. These modifications are: an adaptive appearance-based model for

efficiently dealing with appearance changes; an adaptive velocity motion model

with adaptive noise variance that derives velocity information from the previ-

ous state sample set using a first order linear approximation which allows them

to define an adaptive state transition model; and, finally, an adaptive noise

variance which helps to set an adaptive number of particles.

The adaptive appearance model is time-varying and models all the ap-

pearances up to the previous time instant k− 1. It utilizes a mixture of Gaus-

sians that helps define the likelihood function and is the base for the model

update stage. The likelihood function uses the mixture centers, mixing proba-

bilities and correspondent variances assuming that the distributions are inde-

pendent of each other. For the model update stage, the authors assume the

contributions of the past observations decrease exponentially with time for the

current frame and then, they invoke the expectation-maximization (EM) al-

gorithm described in [1]. It is beyond the scope of this thesis to include the

mathematical formulation for this adaptive appearance model.

For the adaptive state transition model, the authors incorporate the

previous particle configuration in the prediction scheme as follows. They take

the complete sample set {xik−1}
Ns
i=1 and the appearance model of the previous

frame to predict the shift in motion for the current frame by using a first-order

linear approximation based on the constant brightness constraint. This can be

interpreted as follows. Let xk be a sample that satisfies τk(zk; xk) ≈ τ̂k−1, where

τk is the image patch of interest in the current frame and τ̂k−1 ≡ τk−1(zk−1; x̂k−1)

is the previous frame estimation. This can be defined as the current model by

using a first-order Taylor series expansion around the sample x̃k that is set to
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be equal to the state estimated in the previous frame x̂k−1:

τ̃k(zk,x
i′

k ) ≈ τk(zk, x̃k) + Jk(xk − x̃k) = τk(zk, x̃k) + Jkvk, (3.21)

where Jk is the Jacobian matrix of the state and vk = xk − x̃k the adaptive

velocity. Clearing vk from (3.21)

vk ≈ −Bk(τk(zk, x̃k)− τ̃k(zk,xi
′

k )), (3.22)

where Bk is a pseudo-inverse of the Jacobian matrix that can be estimated from

the available {xik−1}
Ns
i=1 and their correspondent image patches. The following

step consists in composing matrices based on the differences in motion vectors

xik−1 and τ ik−1 for each particle, using τk(zk, x̃k) and x̂k−1 as references. Then,

Bk is calculated by using Singular Value Decomposition (SVD) and taking only

the first q values [63]. Note that as the appearance model is adaptive, Bk needs

to be calculated in each timestep.

In order to obtain a good estimation of vk one must run several iterations

until the error between the predicted appearance and the update appearance

model εk is minimized to some value.

Finally, the state transition model can be defined as:

xk = x̂k−1 + vk + Uk, (3.23)

where Uk is an adaptive noise defined as

Uk = RkU0, (3.24)

where Rk is a scale factor that depends on the error εk and helps adjust the

number of particles and U0 is a standardized random vector [63].
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3.6.2 Including Velocity Information in the Likelihood Function of
SIR filters based on Block/Patch Matching

In [40] the authors propose a new method for tracking that involves a new

graphical model that modifies the measurement process to include motion in-

formation into the likelihood function. This means that the current observation

is assumed to be dependent on both the current and previous object configu-

ration and the past observations. It also includes explicit motion information

in the proposal density to deal with two main issues. In general, the proposal

density is very hard to define and a common approach is to use the system dy-

namics as the proposal. However, this assumption implies that the model needs

to be tight enough so it does not get degraded by outliers, but loose enough so

it can cope with abrupt motion changes. Therefore, the method proposed by

Odobez et al. introduces a new definition of the proposal distribution to deal

with the issues aforementioned. Instead of using a template based appearance

model, the authors measure the similarity between visual motion estimated

from low-level information and the motion field induced by the state change.

The object is represented by a region R centered at the origin and that

allows geometric transformations given a shape or a color distribution. These

transformations are based on an affine transformation that includes translation

T, scaling s and aspect ratio r. The affine transformation α(T, s, r) of the

current and previous frame define the new state xk = (αk, αk−1).

The motion estimation is used for observations and for new state values.

They utilize an affine displacement model ~dΘ parametrized by Θ = (ai), i =

1, ..., 6 and defined as

~dΘ(x) =

(
a1 + a2x1 + a3x2

a4 + a2x5 + a6x2

)
. (3.25)
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The estimation of Θ, Θ̂ is made by using a gradient-based multireso-

lution robust estimation method (See [40] for details). This allows to obtain

a robust and accurate estimation of the motion model. Given these estimates

and assuming that the targets coordinates are given in the objects center, one

can measure the variation of the affine transformation αmk−1 and use it to define

the predicted transformation αp:

αpk = αk−1 + αmk−1, (3.26)

where the values in αmk−1 can be derived as some derivative estimates of T, s,

r.

The Data Likelihood model assumes two types of measurements, object

zok and patch gray level zgk measurements that are independent to each other

given the measurements. In addition, the object measurements are assumed to

be uncorrelated. Hence, the likelihood can be defined as:

p(zk|zk−1,xk,xk−1) = p(zok|xk)p(z
g
k|z

g
k−1,xk,xk−1). (3.27)

Modeling the observations is done by using two instances: a visual object mea-

surement approach based in both shape and color models and an image cor-

relation measurement that consists in extracting measures from the parameter

space and implementing warping on gray-level local patches z̃gxk
according to

the state values. Then, the likelihood function is said to have a proportionality

as follows:

p(zok|xk)p(z
g
k|z

g
k−1,xk,xk−1) ∝ pxa(αmk−1, αk, αk − 1)pxb

(z̃gxk
, z̃gxk−1

), (3.28)

where the right-hand side terms are defined as

pxa(αmk−1, αk, αk − 1) = N (αpk, αk,Λξp) (3.29)
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and

pxb
(z̃gxk

, z̃gxk−1
) = K−1 exp

[
−λcorD2

x(z̃gxk
, z̃gxk−1

)
]
, (3.30)

where Λξp is the Covariance of the measurements, K is a normalization constant

that is computed between two consecutive patches, Dx is the distance between

two image patches and λcor is a correlation parameter set to 20 in [40]. Note

that the distance Dx is defined as the inverse of the normalized cross-correlation

between two image patches:

Dx(z̃1, z̃2) = 1−NCC(z̃1, z̃2). (3.31)

The method uses a Cauchy distribution to model the process noise of

the prior which is described by a second order AR model for each component

of α. Finally, the proposal density q(xk|xi0:k−1, z1:k) is defined using the fact

that xk = (αk, αk−1) and letting αk−1 = αik−1 which allows them to draw αk

from q(αk|αik−1, zk, zk−1) using the following:

q(αk|αik−1, zk, zk−1) = N (αk;α
p
k(α

i
k−1),Λξp). (3.32)

It is important to note that this algorithm was developed based on face

tracking and uses elliptical shapes as geometric regions which allows the affine

transformation not to depend on rotation parameters. In more complicated

situations and shapes, in order to have an efficient and accurate affine trans-

formation model, it will be necessary to include the rotation information. It is

also important to note that although this method might seem very useful for

tracking, it requires high computational cost because it combines shape and

color models as well as warping in order to define the likelihood function and

process two consecutive frames to define them.
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3.6.3 High Order Particle Filters

In 2011, Pan and Schonfeld [41] proposed a method that extends the particle

filter formulation from the first order hidden Markov chain model to a higher

order m, which proves to improve the accuracy and robustness of particle filters

in visual tracking.

The new Markov Chain Model for the state-space model is defined so

that, when the order of the chain is m = 1 the current state xk depends only

on the past m states. That can be understood as:

p(xk|xk−1,xk−2, ...x0) = p(xk|xk−1,xk−2, ...xk−m). (3.33)

In order to define the relationship between the states and measurements,

the authors assume a graphical model. First, they assume that the high-order

Markov model is described by an acyclic directed graph. This type of graph

has an associated Moral graph, which is an undirected graph that takes a node

of the directed acyclic graph and adds a new connection with another node

with whom it has a common connection. The Moral graph helps to establish

the independence and conditionality of the states and measurements of the

mth-order Markov chain, which allows to derive the posterior densities given

the following relations:

p(zk|x0:k, z0:k−1) = p(zk|xk) (3.34)

p(xk|x0:k, z0:k−1) = p(xk|xk−m:k−1). (3.35)

Considering the conditional independence obtained from the graphical
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model, the posterior density can be expressed as follows:

p(x0:k|z0:k) ∝ p(zk|x0:k, z0:k−1)p(xk|x0:k, z0:k−1)p(x0:k−1|z0:k−1)

= p(zk|xk)p(xk|xk−m:k−1)p(x0:k−1|z0:k−1). (3.36)

The filtering stage of the algorithm is performed using a SIS framework. The

new defined importance density is:

q(x0:k|z0:k) = q(xk|xk−m:k−1, zk)q(x0:k−1|z0:k−1). (3.37)

This is obtained by augmenting the existing samples xi0:k−1 ∼ q(x0:k−1|z0:k−1)

with the new state xik ∼ q(xk|xk−m:k−1, zk) and applying the conditional inde-

pendence given by the graphical model.

Thus, the weight update (3.3) is redefined as:

ωik ∝
p(zk|xik)p(xik|xik−m:k−1)p(xi0:k−1|z0:k−1)

q(xik|xik−m:k−1, zk)q(x
i
0:k−1|z0:k−1)

= ωik−1

p(zk|xik)p(xik|xik−m:k−1)

q(xik|xik−m:k−1, zk)
, (3.38)

where p(zk|xk) is the likelihood function, the transition probability is given by

p(xik|xik−m:k−1) and the importance density is q(xik|xik−m:k−1, zk). Hence, the

filtered posterior density can be approximated by

p(xk−m+1:k|z0:k) ≈
Ns∑
i=1

ωikδ(xk−m+1:k − xik−m+1:k) (3.39)

Other approaches like the one in [22], try to include velocity information

in the state update model using a particle filter framework. However, their

formulation will not be included in this work.

The existence of these many previous algorithms which have attempted

in one way or another to incorporate motion information into the particle filter-

ing framework strongly motivate the main objective of this thesis, which is to
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obtain a new robust and theoretically rigorous means to consider velocity infor-

mation directly in the SIR filter likelihood function. In the following chapter,

I will explain the methodology used to accomplish our main objective.
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Chapter 4

Adding Velocity Information to the Particle

Filter by State Vector Augmentation

In Chapter 3, I discussed extensively the subject of particle filtering, describing

the main algorithms used frequently in the visual object tracking community

as well as some recently developed variations that are of interest in this thesis.

As I mentioned before, particle filters have become the de facto framework

in target tracking because they are able to deal with non-Gaussian noise and

non-linear systems. However, the technique has several disadvantages and it

is often combined with other feature-based trackers in order to improve the

performance of the tracker [43].

A major problem with particle filters in visual object tracking occurs

in scenarios of structured clutter and a target which exhibits significant ap-

pearance changes through the sequence. Under these conditions it is desired to

have an algorithm that is able to dynamically adapt and update the appear-

ance model of the target when it is necessary. The question of how and when

to perform appearance model updates has been widely addressed in the last

decades [46,56,63].

Under the aforementioned conditions, a very common issue is that some

particles can get large weights even when they have a poor state hypothesis

because they partially match the clutter. As the number of particles is fixed,
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the effect of particles with good state hypothesis that partially match the tar-

get is decreased and what is more, the bad particles are converted into many

more after the resampling step. This has a prejudicial effect on the tracking

performance.

Different strategies including marginalized particle filters and box par-

ticle filters have been implemented in order to improve the sampling effi-

ciency [16,32,48] and efficiently deal with clutter [8,19,32]. Popular techniques

including PCA decomposition, block/patch matching, machine learning, SVM,

model update, fusion of trackers embedded in a particle filter framework for

visual object tracking are reviewed in [58]. Although many of them deal with

different challenging situations, i.e., structured background clutter, occlusion,

rapidly changing target appearance models, many of them do not include any

motion information.

Motion information has been recognized as an important factor to in-

clude when doing video tracking [34, 41, 53, 63]. However, as in practical video

tracking application the camera only produces one frame at each time step, it

is not possible to obtain velocity measurements directly from it without incor-

porating other sensors. This means that there is not an explicit way to ob-

tain velocity information from the measurements. In addition, equation (3.12)

shows that particles with bad velocity hypotheses cannot be penalized using

the weight calculation. In fact, velocity information is often completely omitted

from the likelihood function calculation which is then based only on appearance

variables.

Considering this, it can and does occur that a particle with a good

appearance hypothesis and a good velocity hypothesis obtains the same weight
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as a particle with same appearance hypothesis but a poor velocity hypothesis.

Furthermore, a particle that matches the clutter might get a large weight of

same or larger magnitude than a particle that matches the target, even when the

velocity and appearance hypotheses of the first one are actually poor compared

to those of the second one. This implies that it is necessary to have a way of

preventing the bad particles from being propagated and multiplied in future

time steps and enhancing the effect of the good particles.

All the situations mentioned before motivated the main contribution of

this thesis which is based in including velocity information in the likelihood

function of the SIR filter so the effect of particles with poor velocity hypothesis

can be diminished. In this chapter I will cover a new formulation for the like-

lihood function of the SIR filter that will include indirect velocity information

by introducing a state vector augmentation technique.

The outline of the chapter is as follows: first, I will cover the regular

particle filter formulation. Then, I will define a commonly used likelihood

function for the SIR filter in the context of template tracking. Finally, I will

introduce the new state vector augmentation and define the new formulation

of the likelihood function for incomporating the velocity information into it.

4.1 Standard SIR Filter Formulation

As I discussed in Chapters 2 and 3, the SIR filter is based on the Space State

Model. The SIR filter formulation is based on First-order Markovian state

dynamics [2]. In addition, it is assumed that the target kinematics obey a

constant velocity model [31, 63] typically described by a state vector of the
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generic form

xk =
[
xk ẋk yk ẏk γk γ̇k θk θ̇k

]
, (4.1)

where [xk yk]
T is the target centroid, [ẋk ẏk]

T are the correspondent velocity in

each direction, γk and θk are the magnification and rotation relative to an initial

reference model and γ̇k and θ̇k their correspondent time derivatives. Having the

state update model defined in (2.2) and measurement model defined in (2.3)

and the same formulation for the SIR filter described in Section 3.3 of Chapter 3

in equations (3.11) and (3.12). The posterior density can be approximated the

same way as it was described in equation (3.7).

Let zk be a sequence of images from a video converted to grayscale and

let T be a template for the target, also converted to grayscale, either manually

designated in the first image of the sequence or obtained by a segmentation

process. In the case of this thesis, I will be manually designating the template

based on the available ground truth data. If one defines the state update

equation using the model in equation (4.1), a standard formulation takes the

following form:

xk = Axk−1 + uk. (4.2)

With everything spelled out explicitly, the same equation can be written

as follows:

xk+1

ẋk+1

yk+1

ẏk+1

γk+1

γ̇k+1

θk+1

θ̇k+1


=



[
1 ∆
0 1

]
0 0 0

0

[
1 ∆
0 1

]
0 0

0 0

[
1 ∆
0 1

]
0

0 0 0

[
1 ∆
0 1

]





xk
ẋk
yk
ẏk
γk
γ̇k
θk
θ̇k


+



0
uxk
0
uyk
0
uγk
0
uθk


, (4.3)
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where ∆ is the frame time and u·k are mutually uncorrelated i.i.d. noises that can

be interpreted as models for the second derivatives of the appearance variables

position, magnification and rotation.

In the method implemented in this thesis, the function h of equa-

tion (2.3) creates an image of same size as the frames of the video sequence

filled with zeros and inserts the template T centered at [xk yk]
T with a mag-

nification given by γk, a rotation given by θk and adds the measurement noise

vk. Note that there is no explicit background model in this formulation. For

each particle, the hypothesized target appearance is

zik = h(xik, 0). (4.4)

Let Ωi
k be the spatial support of the template in zik according to the

magnification and rotation of the particle’s hypothesis. Then, the likelihood

function p(zk|xk), used in the SIR filter to assign the weight to each particle,

is often defined as:

p(zk|xk) = e−K(1−ρik), (4.5)

where K is a tunable gain and ρik is a normalized cross correlation defined by:

ρik =

∑
Ωi

k

(zk − zk)(z
i
k − zik)√∑

Ωi
k

(zk − zk)2
∑
Ωi

k

(zik − zik)
2
, (4.6)

where the bar variables denote the mean value of their correspondent variables.

Finally, the estimation of the target’s centroid, magnification and rota-

tion is addressed by taking the expected value with respect to equation (3.7)
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as follows:

x̂k =
[
x̂k ŷk γ̂k θ̂k

]T
=

Ns∑
i=1

ωik
[
xk yk γk θk

]T
. (4.7)

The alternative method implemented only as a manner of comparison for

the target’s centroid calculation is taking the Maximum A Posteriori (MAP),

i.e., largest-weighted particle prior the resampling step as the estimated target

centroid: [
x̂k ŷk

]T
=
[
xi
∗

k yi
∗

k

]T
, i∗ = arg maxi ω

i
k. (4.8)

The SIR filter algorithm described above is used in this work as a com-

parison for the proposed method and main contribution of this thesis. In the

followng section I will describe the proposed method by modifying the SIR

filter equations just described to include the velocity information.

4.2 State Vector Augmentation for the SIR Filter

In the previous section I defined the SIR filter formulation that will be used in

this work. By focusing our attention on the likelihood function described by

equation (4.6) it is easy to note there is not an explicit inclusion of the velocity

information. Therefore, there is not a way one could assign a larger weight to

a particle that has both a good appearance and velocity hypothesis, than to a

particle that only has a good appearance hypothesis.

If one considers that a particle j with state hypothesis xjk−1 had a good

appearance hypothesis, then ρjk−1 must have been large. Additionally, if parti-

cle j has a good velocity hypothesis, then the new state hypothesis xjk should

also have a good appearance hypothesis which would mean that ρjk will also be
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large. By making both of these conditions necessary to assign a large weight

to a particle, an indirect method to include velocity information into the like-

lihood function can be obtained as long as the hypothesis of particle j and the

measurement of the previous time can be retained. A means to do this is using

state vector augmentation.

In the state vector augmentation, the augmented system model is de-

fined by a tilde. Let the augmented state vector be defined as:

x̃k = [xk xk−1]T . (4.9)

Then, the redefined state update model will be given by:

x̃k+1 =

[
A 0
I 0

]
x̃k +

[
uk
0

]
, (4.10)

where I is the 8x8 identity matrix.

The following step is to redefine the measurement model. Let z̆k be a

second realization of zk generated at time step k + 1 given by:

z̆k = h(xk,vk+1). (4.11)

The difference between the two realizations is given by the noise difference:

z̆k − zk = vk+1 − vk. (4.12)

. The augmented measurement vector is:

z̃k = [zk z̆k−1]T . (4.13)

Therefore, the augmented measurement vector can be defined as follows

z̃k =

[
zk

z̆k−1

]
= h̃(x̃k,vk) ≡

[
h(xk,vk)

h(xk−1,vk)

]
. (4.14)
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The last step is to redefine the likelihood function according to the

state vector augmentation of both the state and measurement model. For an

augmented particle i with state vector x̃ik = [xik xik−1]T and measurement

hypothesis z̃ik = [zik z̆ik−1], let Ω̆i
k−1 be the spatial support of the template

magnified and rotated in z̆ik−1. The likelihood function for this particle can be

redefined as

p(z̃k|x̃ik) = e−K(1−ρ̃ik). (4.15)

Finally, the normalized cross correlation between the hypothesis of the aug-

mented particle and two consecutive frames from the sequence is given by:

ρ̃ik =

∑
Ωi

k

(zk− zk)(zik− zik) +
∑
Ω̆i

k−1

(zk−1− zk−1)(z̆ik−1− z̆ik−1)

√√√√∑
Ωi

k

(zk− zk)2 +
∑

˘Ωi
k−1

(zk−1− zk−1)2
√∑

Ωi
k

(zik− zik)
2 +
∑
Ω̆i

k−1

(z̆ik−1− z̆ik−1)2

,

(4.16)

where the bar variables denote the mean value of their correspondent variables.

Note that as the actual video frame zk−1 is correlated with the hypothesis

z̆ik−1, the second realization z̆k−1 does not appear in (4.16). Additionally, it is

important to understand that this last mentioned varible is only a theoretical

concept that allows to define a way of considering a realization of the previous

video frame in the current frame likelihood function p(z̃k|x̃ik).

The estimation of x̂k is finally obtained by computing (4.7) and the

target’s centroid is also calculated using (4.8) as a comparison.

Considering all the formulations and implications mentioned before, the

proposed method of this thesis is described as a technique to incorporate indi-

rectly velocity information into the likelihood function of the SIR filter. This

51



method presents a new definition of the particle filter that is more robust than

the regular SIR filter because it prevents particles with poor velocity hypotheses

from surviving the resampling step.

As mentioned before, when the target appearance changes too fast and

there is structured clutter in the background, it is necessary to implement a

target appearance model update [58]. In this thesis, I implemented the State

Augmentation Technique in two set of synthetic data and two of the longwave

infrared (IR) sequences described in [39]. For the two IR sequences, given

the target appearance is not changing drastically and the size of the target is

decreasing throughout the sequences, it is not necessary to update the target

appearance models.

For the synthetic data, the two sequences were developed under dif-

ferent conditions of background. One of the sequences has a simple, uniform

background that has a lot of contrast with the target. The other sequence is

characterized by having structured clutter that has similarities with the tar-

get model in different areas. Considering the simplicity of the first mentioned

synthetic data there is no need to use model update. However, for the sec-

ond mentioned synthetic data, it is crucial to implement an appearance update

model to be able to track the moving object. In the following subsection I

will explain the implemented appearance model update technique that I imple-

mented in the complex synthetic sequence to improve the tracking performance

of both the regular SIR filter and the State Augmented SIR filter.
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4.3 Template Update Strategy

The importance of online appearance model updating for target tracking has

been shown by many authors [19, 33, 37, 46, 58]. Recently, all the popular vi-

sual target tracking algorithms have implemented appearance model update

techniques to deal with the target appearance variations throughout the video

sequences [58].

In [37], Matthew et al. propose an algorithm based on a gradient descent

technique where the template was updated using a combination from the first

frame template and the result from the most recent frame. Other work, like

the one in [29] updates the appearance model using a fixed number of frames.

However, it has been proved that this approach is sensitive to drifting [15]

because the update might be performed more frequently or later than needed,

allowing background leaking into the model.

Considering this, I implemented a simple target appearance update tech-

nique that helped improve the tracking performance of the SIR filter and the

State Augmented SIR filter in one of the synthetic data sequences that I devel-

oped. The algorithm is based on the Normalized Cross-Correlation concept and

uses a library of good appearance model candidates from where the template

update is extracted in case it is needed.

4.3.1 Generalities of the Developed Update Strategy

The template update method is implemented in each frame after having ob-

tained the hypotheses for all the particles. In the case of the standard SIR filter,

for each frame, each particle hypothesizes the target’s appearance according to

equation (4.4). After all the particles have calculated their hypotheses, the es-
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timated state x̂k is calculated according to (4.7). In the case of the State Vector

Augmented SIR filter the only difference comes when each particle hypothesizes

the target’s appearance, which in this case is by using (4.14).

The following step is where the algorithm checks the goodness of the

current frame estimation. It takes the estimated x̂k of the current frame zk

and calculates the size of the estimated target by taking the size of the initial

template T and adjusting it according to the magnification γ̂k and rotation θ̂k.

Then, it extracts a patch P̂k from the current frame zk of the size calculated

from the estimation and centered at the estimated centroid [x̂k ŷk]
T . Then it

takes a modified version of the template T̃k rescales it to the size of γ̂k and

rotates it according to θ̂k. Finally it performs the normalized cross-correlation

between the two of them according to:

ρ̂k =

∑
Ωk

(P̂k − P̂k)(T̃k − T̃k)√∑
Ωk

(P̂k − P̂k)
2
∑
Ωk

(T̃k − T̃k)
2

, (4.17)

where Ωk is the spatial support of both P̂k and T̃k in zk.

After obtaining the normalized cross-correlation coefficient it compares

it with a predefined threshold. For the synthetic data used in this thesis this

threshold was empirically chosen to be 0.4. If the coefficient is larger than

the threshold it means that the current template is still good and the update

it is not performed. In case the coefficient is smaller than the threshold the

algorithm updates the current template by taking the candidate in the library

with the highest frame number. Then the algorithm goes back to the frame

where the new template was extracted and starts over from there. In the
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following subsection I will explain the process of filling the template candidates

library.

4.3.2 Template Library

The template library consists in three possible candidates that have achieved

a high coefficient during the normalized cross-correlation process between the

estimated target appearance and the current template. For each candidate, the

library saves its coefficient value ρ̂k and its frame number k.

At the beginning of the algorithm the template library is filled using the

initial template T setting the frame number k of all the candidates to k = 1

and the coefficient value ρ̂k to the threshold value 0.4. During the first frames

of the video sequence, these initial conditions are replaced. The candidates are

ordered according to their coefficient value. Once the algorithm has detected

the first patch P̂k that has a coefficient ρ̂k larger than the threshold, this is set

to be the first candidate in the library and both its frame number and coefficient

value ρ̂k are stored for comparison later. Then, the algorithm fills the other

two candidates as follows: it takes any patch P̂k that has a coefficient between

the value of the first candidate’s coefficient or 95% of its value and sets it to

be the new second candidate. Then, it takes any patch P̂k with a coefficient

value ρ̂k that is between 90% and 95% of the first candidate’s coefficient value

and sets it to be the new third candidate.

After these new candidates are set, in order to refresh the library, the al-

gorithm just considers any path P̂k with a coefficient higher than the threshold

and compares its value with the three stored values. If that patch’s coefficient

is larger than the first candidate’s or is at least 90% of its value then the patch
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is considered a new candidate and it is stored in the correct position of the

library.

4.4 Final Considerations

It is very important to note that although in this work, the chosen target ap-

pearance model is defined by a template, the proposed state vector augmenta-

tion can easily be extended to different appearance models based on histograms

or other features, e.g., HOG, SIFT, LBP or others.

In the following chapter I will discuss the experiments conducted in

order to show how this new method is more effective for target tracking in

video sequences with structured clutter and delivers comparable results in other

situations where the standard SIR filter tends to succeed in the tracking process.
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Chapter 5

Simulation and Results

In this chapter, I will use both synthetic and real-world infrared video sequences

to experimentally demonstrate the SIR filter state vector augmentation tech-

nique that I proposed in Chapter 4. I compare the proposed algorithm with

the standard SIR filter. Note that both algorithms use the NCC template

matching filter and I implemented the template update strategy explained in

Section 4.3.1 in both algorithms only in one of the synthetic video sequences.

The performances of the algorithms are measured in terms of the Mean Abso-

lute Tracking Error in pixels of the tracking centroid. This error is calculated

by using the ground truth data.

I assume that the initial target size, location and rotation angle are

known a priori using manual designation [4]. According to this information,

I construct the initial template extracting a piece T of the first frame zk. For

each data sequence I have two independent tracker experiments running. In

the first experiment (SIR), the tracker implements a Standard SIR filter in

the pixel domain. In the second experiment (VSIR), the tracker implements

the State Vector Augmented SIR filter proposed in Section 4.2. Note that

both algorithms used a NCC matcher with a static template for all the data

sequences except for the synthetic one with high cluttered background for which

I included the template update strategy explained in Section 4.3.
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(a) (b) (c)

Figure 5.1: Synthetic Data Sequence Base Target and Background Used. (a)
Synthetic Target. (b) Simple Background. (c) Complex Background.

The synthetic data sequences were generated by inserting Figure 5.1(a)

into two different backgrounds, one benign shown in Figure 5.1(b) and one

complex shown in Figure 5.1(c), with trajectory defined by (4.3). The velocity

drift noises for the vertical and horizontal coordinates were defined as Gaussian

with variances of 0.63 and 0.75 respectively. In the case of the magnification

and rotation drift noise, they were set to have a uniform distribution with zero

mean and variances of 3.6 × 10−5 and 6.4 × 10−3 respectively for the simple

sequence and of 4 × 10−3 and 8 × 10−2 respectively for the difficult one. The

length of the benign background sequence was set to 150 frames and the length

of the complex background sequence was set to 100 frames.

The two IR sequences evaluated are part of the longwave IR sequences

described in [39]. They are part of a series of sequences called Brown Camp.

Since the interest was to test the performance of the VSIR for single object

tracking, the used IR sequences are subsequences of two cases of the aforemen-

tioned series. For them, the ground truth data was compiled manually. The

noise variances were estimated by derivative approximation with finite differ-

ences on the ground truth data. Although this is a suboptimal approach, it
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(a) (b)

Figure 5.2: Real Data Longwave Infrared Targets. (a) Target for Brown Camp
1 Case 3. (b) Target for Brown Camp 3 Case 7.

was used for expediency reasons. The pdfs of the noises were based on the ones

chosen for the synthetic data sequences (Normal distribution for the velocities

drifts and uniform distributions for the magnification and rotation drifts) but

the means and variances were obtained from the ground truth data. The ini-

tial position velocity, magnification and rotation were extracted from the first

frame of the ground truth data. The targets selected for the two real data

sequences are shown in Figure 5.2. The target in Figure 5.2(a) belongs to the

Subsequence Brown Camp 1 case 3 (bc1 case3) and the one in Figure 5.2(b)

is part of the Subsequence Brown Camp 3 case 7 (bc3 case7). The length of

the brown camp 1 case 3 subsequence is of 125 frames and the length of the

brown camp 3 case 7 subsequence is 100 frames.

For all of the studied sequences I utilized a fixed number of particles

set to 700. For all the sequences, when initializing the particles for the SIR

and VSIR filters, the distribution of the noises for the horizontal and vertical

position were set to be Gaussian and uniform for the magnification and rota-

tion noises. For the IR sequences, I extracted the variances and means from

the ground truth data using the method described before. For the synthetic
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Table 5.1: Summarized Results for Synthetic Video Sequences
Mean Absolute Tracking Error (pixels)

Case
Num Gain K Num Template Standar SIR Proposed VSIR

Frames (4.5), (4.15) Runs Update E[·] MAP E[·] MAP

Benign 150 10 10 No 1.7505 2.0090 1.9985 2.4028
Complex 100 10 25 No 14.8441 15.0561 11.5527 12.0532
Complex 100 10 25 Yes 2.5871 2.4296 1.6907 2.1461

sequences, I set the variances and means to be the same used to generate the

videos. The gain K of equations (4.5), (4.15) was set to 10 for the synthetic

data sequences and tuned between 75 and 100 for the IR sequences.

5.1 Results

The results of the validation experiments for synthetic sequences are presented

in Section 5.1.1, while those for the infrared sequences are presented in Sec-

tion 5.1.2.

5.1.1 Synthetic Sequences

Table 5.1 shows the tracking results for the synthetic video sequences. The

tracking performance is quantified in terms of the centroid estimation accu-

racy measurements, e.g., mean square error (MSE) using the expected value

estimation and the MAP estimation. The table includes the results for both

sequences, the number of frame in each one, the number of times I simulated

for each sequence and specifies whether the template update strategy was im-

plemented or not.

From Table 5.1 it is evident that incorporating velocity information into

the likelihood function does not have a noticeable effect when the background is

benign. This can be evident by looking at the frame by frame results obtained
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for one of the runs shown in Figure 5.3. In this case, both filters have a good

estimation and are able to track the target throughout the sequence.

For the complex background, the results of Table 5.1 show that incorpo-

rating velocity information has a substantial effect on the tracking performance.

In fact, even when implementing a template update strategy the proposed VSIR

algorithm provides better tracking results. In Figure 5.4, I show the graphical

frame-wise tracking results when there is no template update strategy imple-

mented. It is evident that both trackers fail to provide a good estimation of

the target’s position throughout the sequence. However, the VSIR filter shows

a better estimation compared to the one obtained from the SIR filter.

The results of Table 5.1 and Figure 5.5 show the remarkable improve-

ment in both tracking algorithms by including the Template Update Strategy,

as expected, since there is a highly structured background and the target ap-

pearance is changing considerably through the sequence. Nevertheless, even in

this case, the proposed VSIR algorithm outperforms the Standard SIR filter.

Notice that the background presents areas with structures that resem-

ble the target appearance. Thus, when the target passes through these ar-

eas, false alarms cause the filters to drift. If a template update strategy is

not implemented, the trackers eventually loose track. However, even when I

implemented the template update strategy, in the cases where the updating

appearance model presents background leaking in it the tracker will still show

drifting but will have a better performance than without any update strategy.

In Figure 5.5, I selected three frames, 73, 77 and 81, to show the pro-

gression of both filters within these frames. From these images, it is evident
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Table 5.2: Summarized Results for Longwave Infrared Video Sequences
Mean Absolute Tracking Error (pixels)

Case
Num Gain K Num Standar SIR Proposed VSIR

Frames (4.5), (4.15) Runs E[·] MAP E[·] MAP

bc1 case3 180 75 15 3.8244 3.8861 3.5183 3.6090
bc3 case7 125 75 25 7.0381 7.1336 2.8784 2.9743
bc3 case7 125 100 25 5.6847 6.6511 2.7767 2.8202

that when the SIR filter starts drifting away, the target appearance model af-

fects the estimation all the way through the end of the sequence. However, the

VSIR filter is able to overcome the drifting thanks to the velocity information.

In general, our results show that there is better performance when taking

the estimation according to the expected value than when considering the MAP

estimation.

5.1.2 Infrared Sequences

The tracking results for the longwave infrared video sequences are shown in

Table 5.2. As mentioned for the synthetic video sequences, the tracking perfor-

mance is quantified in terms of the mean square error (MSE) using the expected

value estimation and the MAP estimation. The table includes the results for

both sequences, the number of frame in each one and the number of times I sim-

ulated for each sequence. Recall that as mentioned before I did not implement

a Template Update Strategy in the sequences. One of the main reasons for not

implementing an appearance model update was to isolated the performance

differences between the Standard SIR and the proposed VSIR filters.

The results of Table 5.2 show that for the real data sequences, the

proposed VSIR filter always exhibits a better performance than the standard

SIR. Additionally, the results prove that the expected value estimation has a
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Figure 5.3: Frame-wise Tracking Comparison of the Two Evaluated Meth-
ods for the Benign Background Synthetic Sequence. The First Column is the
Ground Truth Data. The Second and Third Columns show the Estimation
Obtained from the SIR and Proposed VSIR Filters respectively.
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Figure 5.4: Frame-wise Tracking Comparison of the Two Evaluated Methods
for the Complex Background Sequence without Template Update. The First
Column is the Ground Truth Data. The Second and Third Columns show the
Estimation Obtained from the SIR and Proposed VSIR Filters respectively.
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Figure 5.5: Frame-wise Tracking Comparison of the Two Evaluated Methods
for the Complex Background Sequence with Template Update. The First Col-
umn is the Ground Truth Data. The Second and Third Columns show the
Estimation Obtained from the SIR and Proposed VSIR Filters respectively.

65



lower Mean Absolute Error through the sequence. Another important thing to

notice from the results given in the table is that although the standard SIR

filter is able to track the moving object through the most complex sequence,

bc3 case7, its estimation is very poor compared to the one obtained by the

VSIR filter. Additionally, the results show that by augmenting the tunable

gain in this sequence, the results obtained are better.

Figure 5.6 shows the frame-wise tracking performance for the infrared

data sequence bc1 case3. The images show that as the the target decreases

of size considerably, the standard SIR filter starts having greater difficulties

than the proposed VSIR to estimated the position and appearance model of it.

However, as these sequence is very simple, i.e., there is no occlusion, and the

target changes are very slow, both filters exhibit a good performance and are

able to track the car.

Figure 5.7 shows the frame-wise tracking performance for the infrared

data sequence bc3 case7 when using a gain K = 75. Note that this sequence

is more challenging than the bc1 case3 one since it presents other moving

objects in the scene and partial occlusion of the target. Additionally, the target

is moving fast which cause a more abrupt size change causing a quicker lost

of texture. From these images, it is evident that once the target is partially

occluded by the following vehicle the standard SIR filter starts drifting away,

showing a bad performance already in frame k = 85 and being completely off

the target by frame k = 109 the tracker is already completely off the target. On

the other hand, the proposed VSIR filter does not get affected by the partial

occlusion, in fact is able to keep tracking all the way through the end of the

sequence.
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Figure 5.6: Frame-wise Tracking Comparison of the Two Evaluated Methods
for the bc1 case3 Sequence with Gain K = 75. The First Column is the
Ground Truth Data. The Second and Third Columns show the Estimation
Obtained from the SIR and Proposed VSIR Filters respectively.
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Figure 5.7: Frame-wise Tracking Comparison of the Two Evaluated Methods
for the bc3 case7 Sequence with Gain K = 75. The First Column is the
Ground Truth Data. The Second and Third Columns show the Estimation
Obtained from the SIR and Proposed VSIR Filters respectively.
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Figure 5.8: Frame-wise Tracking Comparison of the Two Evaluated Methods
for the bc3 case7 Sequence with Gain K = 100. The First Column is the
Ground Truth Data. The Second and Third Columns show the Estimation
Obtained from the SIR and Proposed VSIR Filters respectively.
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Figure 5.8 shows the frame-wise tracking performance for the same data

sequence when the gain is set to K = 100. In this case, the standard SIR

manages to keep track of hte target for a longer period but, it is evident that

once the target is partially occluded by the following vehicle the standard SIR

filter starts drifting away later than in the previous case but, is still off the

target by frame k = 109. The proposed VSIR filter performs similar to the

previous case but the estimated magnification is closer to the ground truth

data.

5.2 Final Considerations

In this chapter, I showed the tracking results obtained by implementing the

standard SIR and proposed VSIR methods in two different type of sequences,

synthetic and real longwave infrared. As expected, the proposed algorithm

outperforms the standard SIR in all the challenging conditions and gives com-

parable results when the background is simple and the target appearance does

not vary drastically. Although the algorithm achieves good results in the stud-

ied sequences, its performance needs to be tested with more complex sequences

both in the visual and infrared spectrum and with targets with a highly chang-

ing appearance which will require to implement a robust appearance update

model. Additionally, it requires an improvement in computing efficiency since

it currently can track targets with approximately one frame per second without

implementing any kind of parallel programming.
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Chapter 6

Conclusions and Future Work

This thesis is focused on the target tracking problem and its main contribution

is a State Vector Augmentation for the SIR filter to include the Velocity In-

formation into its likelihood function. In Chapter 1 I introduced the problem.

In Chapter 2, I covered general concepts regarding the target tracking problem

including the two different main approaches: State Space and Feature Track-

ing. In Chapter 3, I reviewed the theory behind the particle filter, its most

popular variations and some variations that allowed to provide a justification

for including velocity information into the estimation of the particle filters to

improve its performance. In Chapter 4, I covered generalities in the calcula-

tions of the SIR filter and introduced and defined the proposed State Vector

Augmented SIR filter. Finally, in Chapter 5 I tested the performance of the

proposed algorithm.

The original contributions of this work are listed below:

• I developed the theoretical formulation for the State Vector Augmented

SIR filter algorithm.

• I reformulated the normalized cross correlation used in the Likelihood

function of the SIR filter to include the velocity information in it.

• I developed an algorithm to generate synthetic data sequences with tar-
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gets that can change both in magnification and rotation for testing the

goodness of tracking algorithms in a controlled environment.

• I developed a simple template update strategy to deal with changes in

the appearance model of the targets analyzed.

• I prove the effectiveness of the proposed algorithm with tracking results

obtained from two longwave infrared sequences and two synthetic datase-

quences.

The most important contribution of this thesis is the mathematical for-

mulation of the State Vector Augmentation for the likelihood function of the

SIR filter (VSIR). The algorithm modifies the normalized cross correlation for-

mula used in the likelihood function of the SIR filter of (4.6) to include the

velocity information as shown in (4.16). The proposed method is able to track

targets efficiently in situations of partial occlusion and rapid changes of the

target appearance. The VSIR tracking performance is superior to that of the

standard SIR filter in challenging conditions and exhibits a similar behavior in

benign data sequences.

Despite its good performance, the algorithm needs to be tested in other

visual and infrared video sequences that require the implementation of an ap-

pearance update model more robust than the one implemented in this work.

Additionally, future work should include comparison of its performance with

other state of the art target tracking methods, such as those covered by [33,

43, 58]. Future work should also include improving the algorithm for faster

execution time, so the model can be fairly compared with different methods in

the civilian target tracking community.
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