
A SURVEY OF NON-SMOOTH OPTIMISATION METHODS

AND AN EVALUATION OF A METHOD FOR

HINIMAX OPTIMISATION

By

ROSEMARY FERNANOES
II

Bachelor of Technology
Indian Institute of Technology

Madras, India
1977

M~ster of Engineering
Asian Institute of· Technology

Bangkok, Thailand
1979

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements
for the Degree of
MASTER OF SCIENCE

December 198)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215333507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A SURVEY OF NONSMOOTH OPTIMISATION TECHNIQUES

AND AN EVALUATION OF A METHOD FOR

MINIMAX OPTIMISATION

Thesis Approved:

-· .

(j_!LO.A,~ Jl --;;;:Q,u £L00

J')hzh AA / } . ,(~.A-._.__
DE?'an of Gradua'te College

ii
12Jf)J82

PREFACE

This thesis surveys the recent developments in

nondifferentiable optimisation and examines the performance

of a two-stage method suggested by Hald and Madsen. A

modification is suggested for the second stage and a

comparison is presented.

I would like to express my deep appreciation and thanks

to my adviser, Dr. J. P. Chandler, for his intelligent

guidance, thoughtfulness and encouragement.

I am also thankful to my other committee members,

Dr. Thoreson and Dr. Grace for their advice and support.

Very special thanks are due to my friend, Mei-Hui Chen,

for her continued support and help in typing the thesis.

I am very grateful to my parents, Mr. and Mrs. Thomas

and to my Parents-in-law, Dr. and Mrs. Fernandes for their

encourgement and understanding.

I wish to dedicate this thesis to my husband Gerard,

and my son, Shane, who have made everything seem so good and

worthwhile.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II. SURVEY 5

III. A MINIMAX METHOD 16

Details of Hald and Madsen Method • • • • • 17
Methods Used for Stagel and Stage2 • . • • • 24
Termination Criteria • . • • • . • • 28

IV. TESTING AND DISCUSSION

Test Problems

V. SUMMARY • •

VI. SUGGESTIONS FOR FURTHER STUDY .

BIBLIOGRAPHY

APPENDIX A - DEFINITIONS

APPENDIX B - THE SUMMARY OF DIFFERENT METHODS

APPENDIX C - PROGRAM LISTING

1 v -

29

29

43

46

47

55

59

62

Table

I .

II.

I I I.

IV.

v.

VI.

VII.

VIII.

IX.

X.

LIST OF TABLES

Comparison of number of iterations to
solve problem 1

Comparison of stagel and stage2
convergence rate•.

Comparison of convergence rate
using differentA ..•...

Comparison of convergence rates for
different A using line search

Comparison of number of iterations to
solve problem 2•..

Comparison of convergence rates
using different A

Comparison of convergence rates for
different ~using line search •..

Comparison of number of iterations to
solve problem 3 •••••••••

Comparison of convergence rates
using different 1\ • •••••••

Comparison of convergence rates for
different A_using line search ...

Page

30

31

32

33

34

35

36

37

38

38

XI. Comparison of number of iterations

XII.

to solve problem 4 • . . . • . • 40

Comparison of convergence rates
using different 1\ • ••••••• 40

XIII. Comparison of number of iterations
used to solve problem 5 . • • • 42

XIV. Comparison of convergence rates
using different 1\. • • ••• 42

XV. Number of iterations for different methods ..• 60

XVI. Number of iterations for different A ... 61

v

LIST OF FIGURES

Figure

1. Supporting Hyperplanes to Non-Differentiable
Convex Function ...••.••

2. The Contours of Problem 6 .

3. The Contours of Problem 7 .

vi

Page

6

39

41

CHAPTER I

INTRODUCTION

Nonsmooth optimisation or nondifferentiable

optimisation (NDO), as opposed to smooth optimisation,

refers to problems where the objective function to be

minimised is not necessarily differentiable everywhere.

This phenomenon occurs frequently in mathematics and

optimisation. Furthermore, nondifferentiable functions are,

in general, more difficult to minimise than smooth

functions. Hence there is a need to find efficient and

practical methods to solve the NDO problem.

In recent years there has been a growing interest in

developing techniques to solve nonsmooth optimisation

problems [27]. Various approaches have been suggested, many

of them are based on methods already available for smooth

optimisation. There is an enormous amount of literature

available on smooth optimisation, the methods of steepest

descent and conjugate gradients, and also quasi-Newton

methods have reasonable extensions to non-smooth

optimisation problems •.

At present there is a considerable interest in this

area and it is not possible to say yet what the best

approaches are [27]. A survey of the recent developments in

1

2

this field is presented in chapter II.

Problems in NDO can [31], in general, be treated as

problems with random discontinuities in the objective

function or as problems in which a great deal of information

is available about the nature of the discontinuities. Most

nondifferentiable optimisation problems can be formulated as

composite functions [27]. However, in practice this may be

complicated or may require too much storage. There are

various algorithms to solve such composite functions. A

common kind of composite function studied is the Minimax

problem, which can be defined as the minimisation of a

function F(x) where

F(x) =max { fj(x} },

and fj (x) are smooth functions.

j = 1, ...• , m

When the only information available at any point x is

f(x) and a normal vector g to a supporting hyperplane, the

problem is more difficult to solve. If the function f is

nondifferentiable at x, 9 is referred to as the subgradient

at x. The subdifferential ~f is defined as the set of all

subgradients at x. This class of problem is called the

basic NDO. Fewer methods are available for basic NDO.

Algorithms for basic NDO have not progressed far because of

the limited availability of information.

Some simple examples of problems [12] that occur in NDO

are described below. The first example is that of finding

the best solution to an overdetermined system (m>n) such as

occurs in data fitting applications. Given a set of data

points, the problem of finding the best linear fit so that

the error is minimised is a non-differentiable problem.

n
~ e
i=O

where e = 1 mx + b - y t is

nondifferentiable as a function of m and b.

Consider a simple problem in elasticity. An elastic

band whose upper end is fixed and lower end is tied to a

unit point mass. When the band is stretched by a positive

amount x, it exerts an upward (restoring) force propotional

to x. When unstretched no force is exerted. When the mass

is oscillating vertically the force, f is given by

f(x) = g - kx if X >= 0

g if X <= 0.

where g is the acceleration due to gravity and k is the

propotionality constant for Hooke's law. The function is

continuous but may not be differentiable at 0.

Another example is when the constraints are themselves

dependent on parameters.

Min

subject to

f(x)

g(x) + p <= 0

h(x) + q = 0

The solution v(p,q) depends upon p and q and is not

differentiable everywhere, e.g. where g(x) + p = 0.

3

One of the most important applications of NDO is in the

area of nonlinear programming through the use of exact

penalty functions [28]. By reformulating some difficult

problems in linear and nonlinear programming as NDO

problems, we can increase the ability to handle such

problems.

4

A study of a method for minimax problems by Hald and

Madsen [34] and modification of this method following

Fletcher's [28] guidelines is described in chapter III. The

performance of the modified method is tested using the test

problems described in chapter IV, and by comparison to

similar methods. Some mathematical definitions are given in

appendix A. A large bibliography is also included.

Appendix B contains the program listing.

CHAPTER II

A SURVEY

The interest in developing techniques to solve NDO

problems has been recent. Until 1964, the method most

investigated [9] for the minimisation of nondifferentiable

functions was the so called "cutting plane method",

discovered by Cheney and Goldstein [10] and independently by

Kelley [47]. Cutting plane methods have been used widely in

constrained optimisation.

Cutting plane algorithms are elementary in principle.

A series of improving approximate linear programs, whose

solutions converge to the solution of the original problem,

are developed. Cutting plane algorithms determine the

hyperplane that separates a current point x from the

constraint set. Algorithms differ in the manner in which

the hyperplane is selected. This selection is an important

aspect of the algorithm, since it is the distance of the

hyperplane from the current point that determines the rate

of convergence of the method [56]. Nondifferentiable convex

functions allow the possibility of a number of supporting

hyperplanes as illustrated in figure 1.

5

f(x)

.....

x*

Figure 1. Supporting hyperplanes to non­
differentiable convex function

6

X

A description of cutting plane methods is given by

Leunberger [56] and Zangwill [94]. The convergence of the

cutting plane methods does not depend upon the

differentiability of the objective function. As observed by

Wolfe [88) the rate of convergence of cutting plane

algorithms seems better for non-smooth functions than it is

for smooth functions. A refinement of the cutting plane

method is given by Hogan [45]. Some results on the

convergence rates of cutting plane algorithms are given by

Eaves and Zangwill [21] and Wolfe [89].

In 1964, Shor [81] pioneered the subgradient algorithm.

Since that time the method has been highly developed in the

Sovient Union. Subgradient (SG) optimisation is a technique

that attempts to solve the problem of minimising a general

nondifferentiable convex function, and is about the simplest

possible general method for solving basic NDO problems.

Shor's method is applicable to any convex function. A good

survey of Soviet research in this field is given by Poljak

[73]. It reviews the research efforts by Soviet authors in

developing subgradient methods for NDO.

The minimisation method using space dilation in the

direction of the difference of two successive gradients due

to Shor [82] has been found [9] to be a very effective

method for difficult non-differentiable problems. It has

been observed [51] that good results are obtained by using

Shor's method of space dilation and quasi-Newton methods.

For certain structured LP programming problems whose size

makes any known version of the simplex method impractical,

the simple algorithm due to Shor has proved to be effective

[45]. But that it does not converge as fast as even the

steepest descent methods when the function is

differentiable.

A convex function f(x) allows the possibility of a

number of supporting hyperplanes at a nondifferentiable

point x as was shown in figure 1. For each hyperplane we

can define

f(x+h) >= f(x) + hTg

where g is a normal vector to a hyperplane at x. Such a

vector is referred to as the subgradient at x. The set of

all subgradients at x is referred to as the subdifferential

at x and is defined by

7

T
f(x) = { g t f(x+h) >= f(x) + h g }

8

To solve the basic nondifferentiable problem Lemarechal

[51] considers also an extension of the powerful method of

conjugate gradients which has been widely used in ·

unconstrained optimisation of smooth functions. In [53]

Lemarechal tries to synthesize conjugate subgradient methods

and to extend them to a wider class of bundle methods. The

method is based on "bundling" subgradients. The objective

function is required to be regular. [see appendix A]

A similar method based on bundling subgradients is

described by Wolfe[BB]. This method is reasonably effective

for both differentiable and nondifferentiable convex

objective functions. When f is quadratic this method is

exactly that of Hestenes and Stiefel [45].

The bundle methods try to accumulate information

locally about the subdifferential of the objective function.

A bundle method is a line search method which solves

subproblems to define the step direction. The subgradients

are used to find the step direction, and are added to the

bundle B on sucessive iterations. The method continues this

way until o E B. Then the bundle is reset, for instance, to

the current subgradient and the iteration is continued.

With careful manipulation of B [27], a convergence result

can be proved and a suitable termination test obtained. In

these methods a sequence {xK} is generated where

where h~ is stepsize and p~ is the direction.

9

Mifflin's algorithm [66] is a modification of the

algorithm by Lemarechal [53]. This version differs from

that of Lemarechal because of its rules for line search

termination and the associated updating of the search

direction. Mifflin's method can be used on a wider class of

optimisation problems with only minimal restrictions on the

allowable type of constraints or objective function [66].

Subgradient methods have been used to solve large scale

problems. Generalisations of the SG methods beyond convex

objective functions have been attempted by Nurminskii [69]

[70] with partial success.

The application and extension of the relaxation method,

referred to as subgradient relaxation methods, to certain

dual problems in network scheduling is discussed by Fisher

et al [24]. Chaney and Goldstein [9] present an extension

of the subgradient method to max families and quasi­

differentiable functions. An algorithm for solving ordinary

nonlinear programming problems in a NDO context is described

by Pshenichnyi [75]. The rate of convergence of this method

is also investigated. A good bibliography can be found a

book by Lemarechal and Mifflin [54].

A class of algorithms for minimising any convex, not

necessarily differentiable, function f of several variables

is described by Kiwiel [48]. The methods require only the

calculation of f and one subgradient of f at designated

points. These methods generalise Lemarechal's bundle method

[53]. Instead of using all previously computed

10

subgradients, the method uses an aggregate subgradient which

is recursively updated as the algorithms proceed. The

algorithms can be viewed as an extension of Pshenichnyi's

linearisation method [75]. The concept of aggregation has

also been applied in [49] [50], to a modified algorithm due

to Mifflin [66].

Application of a boxstep method to column generation

problems and a variety of scheduling problems is described

by Marsten [62]. The performance of the boxstep method is

compared to that of subgradient optimisation methods.

Application of some versions of steepest descent

methods to NDO have been considered by Demjanov [17] and

Bertsekas and Mitter [6]. A survey of the area and an.

extensive bibliography may be found in [6]. Most of these

methods are restricted in its application to non­

differentiable problems, and do not seem to have a straight

foward implementation in the general case. A procedure by

Cullum et al to certain solve nondifferentiable sums of

eigenvalues of symmetric matrices based on steepest descent

is given in [14].

Function comparison methods (also known as direct

search methods), a class of general methods for minimising

smooth functions, have also been applied to NDO problems.

The only advantage of these methods is that they are in

general simple. The major disadvantage is that few

guarantees can be made regarding convergence~ moreover, they

11

are often slow. In these methods, successive estimates x

of the minimiser x* is made by comparing the values of the

objective function at a general set of points including x.

Examples of direct search methods are the simplex method of

Nelder and Mead [61], and methods of Rosenbrock [78], Hooke

and Jeeves [46], Spendley, Hext and Hemsworth [83] and

Davies, Swann and Campey. Although the method of Powell

[74] is in principle a conjugate direction method, the

computation of partial derivatives is not required. A

similar method is that of Zangwill [93].

The simplex method is used more often than the other

direct search methods, and the general principles are

described below. A simplex in R may be thought of as a

polyhedron with n+l distinct vertices, denoted by vi, i = 1,

••• , n+l. Hence by replacing any point vi by w, we obtain a

new simplex. Given a set of rules for changing the current

simplex and by requiring that each vertex of the simplex is

a value of the function F(x), we can generate a sequence of

simplices so that the final simplex may have the minimiser

x* as one of the vertices. The precision of the estimate

depends upon the size of the final simplex.

Spendley, Hext, and Hemsworth [83] appear to have been

the first authors to propose a simplex method, but their

strategy was too rigid to permit rapid convergence in most

cases. An efficient simplex method is that described by

Nelder and Mead [61].

12

It has been suggested by Wright et al [31] that direct

search methods may be used to solve the non-differentiable

optimisation problem, when the function or its gradient is

discontinuous at its solution or when the gradient has many

discontinuties or when the discontinuties have no special

structure.

Variable metric methods, also known as quasi-Newton

methods, are effective for minimising smooth functions. An

application of quasi-Newton methods to NDO problems is

suggested by Han [40]. He developed a class of methods for

minimising a nondifferentiable function which is the maximum

of a finite number of smooth functions. The method proceeds

by solving iteratively quadratic programming subproblems to

generate search directions. The combined Hessian matrices B

in the quadratic programming problems are updated in a

variable metric way. The stepsize procedure does not use an

exact line search. However, as pointed out by Fletcher

[29], the combined Hessian matrix B is updated by

differences in the qradient of a Lagrangian function and

hence depends upon Lagrange multiplier estimates. If the

estimates become unbounded then B is likely to become

unbounded.

Various other methods have been developed for

nondifferentiable functions. The most general class of NDO

composite functions is the minimax problem as defined by

(1.1). Most of the methods surveyed here are applicable to

13

the minimax problem.

For such problems, an algorithm with second order

convergence can be obtained by linearising the individual

functions over which the max is taken. Studies of this type

of method has been conducted by Osborne and Watson [72] and

Charalambous and Conn [8]. As with Gauss-Newton methods,

convergence is not guaranteed. This can be solved by using

a restricted step type of method. Application of a

restricted step type method to overdetermined systems (m>n)

of nonlinear equation has been investigated by Madsen [57].

The functions are assumed to be continuous. The algorithm

is based on successive linear approximations to these

functions. The resulting linear systems are solved subject

to bounds. The convergence of this algorithm is guaranteed

and the rate of convergence on regular functions is

quadratic. However, on singular functions [see appendix A

], the convergence is only linear. In order to obtain a

better rate of convergence Hald and Madsen [34] have

proposed a two-stage algorithm. The stagel algorithm is the

same as the one described by Madsen [57]; a switch to stage2

is made when irregularity is detected. The stage2 algorithm

uses a quasi-Newton method. Another method to solve the

problem of singular functions is suggested by Madsen and

Schjaer-Jacobsen [59].

General nonlinear minimax approximation problems [1]

involving a finite point set have been reformulated and

14

solved by well-established methods such as the barrier

function method of Fiacco and McCormick [23]. Application

of NDO in the area of nonlinear programming through the use

of penalty functions is described by Fletcher [27]. Another

approach is to use an algorithm for nonlinear programming as

a means of generating a direction of search, and to use the

exact penalty function as the criterion function to be

minimised approximately. This approach is described by Han

[38], Coleman and Conn [13], and Mayne [64].

A general algorithm for composite nondifferentiable

optimisation problems has been presented by Fletcher. In

[28] Fletcher considers the minimisation of composite

functions from a nonlinear optimisation viewpoint. This

class of composite functions is quite general since it

includes exact penalty function, nonlinear minimax functions

and best approximations. Using both linear approximations

of the constraints and quadratic approximation to F,

Fletcher proves that the method has second order rate of

convergence. He also shows that his method converges

globally if a trust region is incorporated on the stepsize.

The method is called the QL method, since it makes both

quadratic and linear approximations.

Rockafellar [76] and Womersley [92] both deal with

optimality conditions. Wormersley derives second order

necessary and sufficient conditions for problems involving

piecewise smooth functions. Rockafellar deri~es first order

15

conditions for problems whose constraints and objective

function are locally lipschitz. Optimality conditions have

also been described by Fletcher [27].

Currently, research is being carried out in many of

these areas. Because of its simplicity, the subgradient

method has received much attention, but it is at best

linearly convergent. The Bundle methods are also being

investigated. The possibility of using quasi-Newton methods

to update the matrix B in the quadratic programming

subproblems is being studied. The modified BFGS formula

given by Powell [74] is expected to work well.

CHAPTER III

A MINIMAX METHOD

The method descrbed in this chapter is the method

proposed by Hald and Madsen [33]. It combines linear

programming and quasi-Newton methods for minimax

optimisation, and consists of two stages. The algorithm

used in stage 1 is based on successive linearisations of the

objective function. The resulting linear subproblems are

solved subject to bounds. The bounds are adjusted depending

on how good the approximation is to the objective function.

It was proved [33] that the st~ge 1 algorithm has quadratic

convergence when there are n+l active functions at x*, that

is, when the function is regular. In other words, the

problem satisfies the Haar condition. [see Appendix A]

The stage 2 quasi-Newton algorithm is used only if an

irregular solution is detected. In this case, second order

derivative information may be needed in order to obtain a

fast final rate of convergence. If stage 2 iteration is

unsuccessful, then a switch is made back to stage 1.

Several switches may be necessary before the solution is

found.

It has been proved [36] that the algorithm will always

converge to a stationary point of the problem.

16

17

Details of Hald and Madsen Method

The minimax problem can be defined as the minimisation

of a maximum function F(x), where the maximum is taken over

a finite set.

F(x) =max {f 1 (x), f 2 (x), ••••• , ~x) },

fj(x), j = 1, mare smooth functions,

x = {x~, x 2 , ••••• , x., }.

(1)

The objective function is, in general, a non­

differentiable function having discontinuous first partial

derivatives at the minimum. The minimum is normally

situated at a point where two or more functions are equal.

When the minimum is well determined, only first order

information is required, and the convergence is quadratic.

However, if the minimum lies in a smooth valley, a quasi­

Newton method is used to obtain a fast final rate of

convergence.

The method consists of four parts:

(i) STAGE 1 ITERATION

(ii) CONDITIONS FOR SWITCHING TO STAGE 2

(iii) STAGE 2 ITERATION

(iv) CONDITIONS FOR SWITCHING BACK TO STAGE 1

(i) STAGE 1 ITERATION

The minimiser x* for the objective function F(x)

defined by (1) is determined by sucessive iterations.

Suppose an approximate feasible estimate of the minimiser at

the kth iteration is x~. The increment h~ is determined

as a vector that minimises F(x~, hk), which is linearly

approximated by F(xK, h~), using Taylor's series.

n of.
F (x" , h") = max { fJ (x ") + ~ _.::._ (x k.) • hi }

i=l ~X,i

j = 1 , ... m

subject to the constraint

18

(2)

t t h I t = max I h1 , h2 , •••• h.,. I <= J\.k , /\k> 0. (2a)

Since (2) is valid only for small values of h, the value of

1\ h ll is forced to be small enough by using the

restriction (2a).

The value of A depends on how good the linear

approximation is to the objective function, and is chosen

as large as possible subject to a certain measure of

agreement being maintained between each fj and its

linearisation.

The above problem can be transformed into the following

linear program by introducing an extra variable p

Minimise p
h, p

Subject to n d f ·
fj(x"-) + ~ :.J (x~) hi<= p

i=l c}X=z:

(3)

- !\" <= h <= 1\ ...

This problem can be solved by a standard linear

programming method. We have used the method for quadratic

and linear programming by Lemke. The formulation of (3) for

Lemke's algorithm is described in a later section.

19

The point xK• 1 = x~ + h" can be accepted as the next

point in the iteration if the function F(xKtl) decreases.

However, as pointed out by Fletcher [28], this condition is

not sufficient to guarantee convergence. The following

condition is used

F(xlt.) - F(xtc+h~c.) >= C1 [F(xlc.) - F(xiC, hK.)] (4)

where

C 1 is a small positive number.

That is, if the decrease in the objective function exceeds a

small multiple of the decrease predicted by linear

approximation it implies there is adequate agreement between

objective function and its approximation.

If the condition (4) is satisfied, then

x K+l = xlc. + h" otherwise,

There is no line search involved.

Determination of -"'tc+I.

The value of /\~e -+1. depends upon how well the iteration

approximates the linear function to the actual, and is

determined so as to try and provide the inequality

F(xk , h"-) < F(x").

If the decrease in the objective function

F(xJC.) - F(x".,.1 ~ h 1J is<= C1 [F(xK.) - F(x", htc)], (5)

C 1 <C 2 <1.

then the decrease in F is rather poor. Hence we use a

smaller bound

20

;\ki'l = c 3 t ' h IC II , c.3 < 1.

If F(x"') - F(x~ + htc) <= c4 [F(x") - F(x", h")],

c2 < c4 < 1.

(6)

(7)

Then the decrease in F is close to the decrease predicted by

linear approximation, hence the bound is increased

Ak•"l = c s t l h 14 f I ·
In all other cases,

(8)

(9)

The parameters C~, C2 , C~, C4 , c5 and C6 are arbitrary and

are not very sensitive. The values generally used are 0.01,

0.25, 0.75, 2.0, 1.0 or 0.5, respectively.

Determination of active set

An important concept is that of an active set. For

each iteration in stage 1, the active set A is determined.

It is defined by the index set,

A " = A (X ") = { j I F (X ") - f j (X 1(.) < = E-1} (1 0)

where E~ is a small positive number defined by the user. We

have used E~ = .OlF(x). This defines the functions that

are "active" at x. A* is defined as follows,

A*= A(x*) = { j 1 F(x*) = fj (x*) }, - (11)

and contains the index set of the functions that are active

at the solution.

(ii) CONDITIONS FOR SWITCHING TO STAGE 2

A switch is made to stage 2 when a smooth valley is

detected through the solution. In general, at the minimum

(x*) some functions are equal. Suppose that the number of

such functions is S and the functions are fj, such that,

for

F(x*) = F (x*) > f·(x*)
j

j E A(x*)

i rt A(x*).

Then, the following must hold in the valley and at the

solution

fjo (x) - fj (x) = 0, (j "'= j

j E- A(x*) and j 0 E- A(x*) is fixed.

If s >= n+l, then the Haar condition is satisfied.

21

(12)

(13)

This implies that the Jacobian { f' (x*) f·(x*) = F(x*) } J

has a rank n. Then the minimum is well determined and there

is no smooth valley. However, if s <= n, then the Jacobian

has rank < n, and we require more information to obtain a

fast convergence.

Suppose the latest three iterates x~, x~_ 1 , xk-~

have been calculated in stage 1 then a switch to stage 2 is

made if the following conditions (14), (15), and (16) are

satisfied.

then,

where

If .Aj >= 0 j E- A,

A J<-1 = A 1'-2 = A 1<-

tl .'i:..Ajf 'i (X f.>t I <= E- 2
]fA

E.2 > o.
·Note: Condition (16) is tested only if (14) and (15) are

(14)

(15)

(16)

satisfied, and is true when x~ is close to a solution x*

with A* = A~~:..

22

These conditions ensure that unnecessary iterations are

avoided in stage 2. If the quasi-Newton iteration is started

with the wrong active set, a switch would be made back to

stage 1 after a few iterations.

(iii) STAGE 2 ITERATION

Stage 2 is used only when the curvature effects are not

negligible and the value of x is close to the minimum x*.

Suppose the functions that are equal at the minimum be

defined as in (13). Then for a local minimum the following

conditions must hold:

and

~ A•f'·(x) = 0,
j~A :.J J

(~ .A·) - 1 = 0,
jfA J

)..j >= 0

fj0(X) - f j (X) =0

where, jo C: A,

j E:' A,

j 0 ""'= j

(17)

(18)

(19)

The unknowns are A and x. A quasi-Newton method is

used at this stage. The quasi-Newton method used at this

stage should be locally and linearly convergent.

Instead of using the quasi-Newton iteration as

suggested by Hald and Madsen, I have used a method similar

to one described by Fletcher [30] for the stage 2 iteration.

23

It has been proven that this method has quadratic

convergence and hence is an improvement over the one

suggested by Hald and Madsen. A comparison is presented in

the next chapter.

The conditions (17) and (18) become the Kuhn-Tucker

conditions when (1) is put into the following form

Min v

subject to fj(X) <= V

By using the following quadratic approximation for f

f(x+h) = f(x) + f'(x) * h + hTf"(x) *h.

We can determine h , at the kth iteration from

Min v + 1 I 2 h"1'B h
h, v

subject to f (X 1(.) + f' (xJ() * h <= v

where, B is defined by

B = ~ A• f· jEA . J J ,
J

(20)

(21)

As described before, the restricted stepsize condition

(22) is introduced to ensure convergence,

\ l h ! \ <= 1\k

Hence problem (21a) can be written as

Min
h, v

subject to

v + 1 I 2 h~ B h

v - f' (x~) * h >= f(xk)

h +A>= 0

-h +f\>= 0

(22)

(23)

This is a quadratic programming problem, and is solved using

Lemke's algorithm.

(iv) CONDITIONS FOR SWITCHING BACK

TO STAGE 1

24

A switch is made back to stage 1 if any of the

following conditions (24), (25) or (26) fail to hold.

Suppose r(x,A) denotes the vector of the left hand side of

(17), (18) and (19). In order to continue the quasi-Newton

iteration, the length of the vector r should decrease.

11 r(x"+1' ;\IC'tl.) tt <=~II r(x~,;\")U

where 0 < ~ < 1. (We use~= .999.)

(24)

A test that no function with an index from outside the active

set becomes dominating is made

F (X IC ,. 1) = maX { f j (X I' ·tl) } , j E- A (25)

The multipliers corresponding to the active set should be

non-negative

A j >= 0, j f A. (26)

These conditions ensure that convergence is maintained in

stage 2.

Methods Used for Stage 1 and Stage 2

The algorithms used for the stage 1 and stage 2

iterations are described in this section.

(i) ALGORITHM USED TO SOLVE THE LINEAR

PROGRAM OF STAGE 1

The method used to solve the linear program of stage 1

and the quadratic program of stage 2 is the Lemke's

algorithm for quadratic and linear programming. Lemke's

algorithm is an extension of the Simplex method to solve

25

minimise l/2xTGx + gTx where G is positive definite

subject to AT x >= b (27)

X >= 0

Using Wolfe's dual, this can be restated using

Lagrangian multipliers y for the constraints A~x >= b, and u

for bounds x >= 0.

The associated Lagrangian function L(x, y, u) is then

expressed as,

L(x,y,u) = l/2xTGx + gTx- yT(ATx- b)- T u x.

Define slack variables

v = ATX- b.

The first order necessary conditions (or the Kuhn-Tucker

(KT) conditions: see appendix A) for (28) are then

u - Gx + Ay = g

V - AT X = -b

U, y 1 V, X >= 0

The linear complementarity problem then be expressed as

w - Mz = q

w >= 0, z >= 0

where,

w = I~ I, z = G
A

-A I 0 , q = '-6l.

(28)

(29)

(30)

(31)

26

FORMULATION FOR STAGE 1

The stage 1 linear problem to be solved may be written

as,

Minimise

Subject to

p

p- F(x~, h~) >• 0

h + 1\ >= 0

~h + 1\ >= 0

Introduce non-negative variables r and s, defined by

i = 1, ••• , n

(32)

(33)

The Lagrangian function for the stage 1 linear problem

can be expressed as

L(x, y, u) = gTx- y~(Ax-b) - uT(xK)

where,

X = [rl , ... , rn•l 51, ... , s., ... 1] (34)

b = fj(xK), -A , -1\ j ::: 1, ... , m

1\ = 1\ em

e~"'~ = [1, 1, ... , 1] n-vector

em = [1, 1, ... , 1] m-vector

g = [0, ... , 0 , 1, o, ... , -1]

J = ~f~(xl') ()f1 (x") ...
dX:L d X n

. .
~f.,. (X k) o fm (xt)

2J xl d x.,

A = -J
m*n

I
n*l

J
m*n

-I
n*l

I 0 -I 0
(n+l)*n (n+l)*l (n+l)*n (n+l)*l

-I 0 I 0
(n+l)*n (n+l)*l (n+l)*n (n+l)*l

I = m*m unit matrix

I = n*n unit matrix

J is an m*n matrix

A is an (m+2(n+l))*(2(n+l)) matrix

The Kuhn-Tucker conditions are the same as equations (30).

27

The linear complementarity problem (32) is solved using

(iv) ALGORITHM USED FOR THE QUADRATIC

PROGRAM OF STAGE 2

The quadratic programming problem (26) can be solved

using the same algorithm of stage 1: Lemke's algorithm for

quadratic and linear programming.

The variables are as described in (35). The only

addition is the matrix G which can be formulated as shown

below

w 0 -w 0
n*n n*l n*n n*l

G = 0 0 0 0
l*n 1*1 1*n 1*1

-w 0 0 0
n*n n*l n*n n*l

0 0 w 0
l*n 1*1 l*n 1*1

28

Termination Criteria

It has been proved in [19] that the method converges to

a stationary point. The kth iteration is terminated when

the following is true

xiC~ 1 - xi<. <= s.

The value of s used is .5d-5. t 2 in equation (16) is

determined as follows

El. (x ") = 0 . 5 min t I f ' (x) 1 1 , s > 1
jfA

= .01 F(x") , s = 1.

CHAPTER IV

TESTING AND DISCUSSION

The performance of the modified algorithm is examined

by comparing the number of iterations required to obtain a

convergence using the same termination criteria as used by

Hald and Madsen. The method is also compared to the method

of Charalambous and Conn [8] using the test problems

described in their paper.

The number of iterations required by stagel and stage2

independently is also evaluated and a comparison is

presented. It was observed that the method is sensitive to

the initial value of A. For each test problem, different

values of A

tabulated.

were given and the rate of ·convergence

A line search was also used to improve the

convergence of slowly converging iterations.

The iterations are counted for each linear or quadratic

subproblem solved. The test problems used are described

below.

Test Problems

Example 1.

This is the example 2 of Madsen [56].

29

30

2 2
f 1 (x) = xl. + X l + x1 x 2

f 2 (x) = sin xl

f 3 (x) = cos x2

Starting point (3,1), A= 1.2

x* = [-.4533, .90659], F* = [.61643, .43793, .61643]

The table below is a comparison of the number of

iterations required by stage1, stage2, and the combined

method to the method by Madsen [57]. The maximum stepsize

is also indicated.

TABLE I

COMPARISON OF NUMBER OF ITERAIONS TO SOLVE PROBLEM 1

No. of iterations Function value li h II

Stage 1 27 .61643d0 .Sd-5

Stage 2 9 .61643d0 .Sd-5

combined 9 .61643d0 .Sd-5

Madsen 20 .61643d0 .67d-4

31

The stagel method is essientially the method of Madsen.

The convergence of stagel is linear as second order

information is not considered as shown in table II. The

effect of 1\ is shown in table III. The algorithm is very

sensitive to the underflow criteria used in Lemke algorithm.

Using l.Od-15 we do not get a solution for problem 1. We

need to use 1.0d-16.

TABLE II

COMPARISON OF STAGEl AND STAGE2 CONVERGENCE RATE

Stage 1 Stage 2
Iteration No.

F I h r F
' h

I

1 .13d2 .12d1 .13d2 .12dl

2 .399dl .11dl .399dl .1098dl

3 .1788dl .55d0 .2244dl .1098dl

4 .85ld0 .55d0 .129ldl .1098dl

5 .851d0 .14d0 .796d0 .350d0

6 .743d0 .14d0 .635d0 .19ld0

7 .644d0 .27d0 .61659d0 .14d-l

8 .644d0 .68d-l .61643d0 (<=).5d-5

9 .627d0 .68d-l

10 .619d0 .68d-l

27 .61643d0 (<=).5d-5

32

TABLE III

COMPARISON OF CONVERGENCE RATES USING DIFFERENT A

No. of iterations F

.5 15 .61643d0

.75 slow convergence

1.0 13 .71249d0*

1.2 8 .61643d0

1.5 slow convergence

As can be seen the value of the initial restriction on

stepsize is important. Using an inaccurate quadratic line

search only when the function value increases improves the

convergence properties considerably as shown in table IV.

This is especially true when the convergence is very slow.

In table IV convergence is obtained in a smaller number of

iterations than in table III. However, the value of A is

still important. This is because the function that is

"active" initially may not be the same for different initial

conditions. Using a line search for this problem has

improved the rate of convergence for all the values ofA.

TABLE IV

COMPARISON OF CONVERGENCE RATES FOR
DIFFFERENTA USING LINE SEARCH

Example 2.

• 5

.75

1.0

1.2

1.5

No. of iterations F

15

14

9

8

8

.61643d0

.61643d0

.61643d0

.61643d0

.61643d0

The following nonlinear programming problem is

considered by Hald and Madsen [33] and by Charalambous

and Conn [8] •

2 2 4 2
Minimise f(x} = (x~-10) +5(x~-12) +x 3+3(x+ -11} +

6 2 4
10x 5 +7x 0 +x 7 -4 x6 J<.rlOx6 -8x.r+l000.

2 4 2
subject to g~(x) = -2x1 -3x 2 -x 3-4x4 -5x5 +127 >0

3
g 3 (X) = -7 X l - 3 X 2 -1 0 X .3- X 4- + x5 + 2 8 2 > 0

2 2
g4 (x} = -23x -x -6x +8x +196 >0

1 2 ~ 7
--

33

34

2 2
g (x) = -4x -x +3x x -2x -5x +llx >0

5 ~ 2 ~2 3 0 7

This transformed to the minmax problem as follows

Minimise fj (X) j = 1, ... , 5

where f . = f - lOg(j) j = 2, ... , 5
J

and fl = f

Note that a large constant (1000) is introduced so that the

convergence is to the maximum positive value of F. Using

X = 3, 3, 0, 5, 1, 3, 0)

and A = 0. 5

We make the following comparison.

TABLE V

COMPARISON OF NUMBER OF ITERATIONS TO SOLVE PROBLEM 2

No. of Iterations F II h II

Stage 1 16 .69864d3 .5d-3

Stage 2 14 .68063d3 .5d-5

Combined 15 .68063d3 .5d-5

Hald & M. 23 .68063d3 .5d-5

Char.& Conn 150 .68063d3 .5d-5

The solution is x = [2.33050, 1.95137, -0.47754, 4.36573,

-.62449, 1.03813, 1.59423]

F = [680.63, 680.63, -1844.987, -728.1519, 680.63]

The effect of A is as shown in table VI. The number of

iterations obtained using a line search is shown in table

VII.

TABLE VI

COMPARISON OF CONVERGENCE
RATES USING DIFFERENT A

No. of iterations F

.5 14 .68063d3

.75 very slow convergence

1.0 5 .691898d3

1.2 very slow convergence·

35

.5

.75

1.0

1.2

1.5

TABLE VII

COMPARISON OF CONVERGENCE RATES FOR
DIFFERENT A USING LINE SEARCH

No. of iterations F

8 .68063d3

very slow convergence· .159ld4

very slow convergence .68998d3

·very slow convergence .91460d3

very slow convergence .68755d3

36

Using the line search improved the convergence for A =

0.5. However, the line search did not greatly improve the

convergence in other cases because the function that is

"active" initially is not an "active" function in the final

convergence. Also only a slow decrease in the active

function was noticed. Hence improving the initial active

function does not improve the rate of convergence rapidly.

Use of a cubic interpolation in the line search improved the

convergence rate.

37

Example 3. The Rosen-Suzuki problem [77] is considered •

Minimise
.l. l. . ~ :3.

f(x) = x~+xl+2x,+x4 -5x,_-5x~-2lx3 +7x4 +100.

subject to g 1 (X) = -x2 -xl-xl-x~-x +x -x +x +8 >0
.t l. ~ 4 :1 2. ~ 4

= -x 2-2x2 -x 2-2x~+x +x +10 >0 1 .l 3 414-

The same transformation described in example 3 is used.

The initial value of x = (0, 0, 0, 0), and t\ = 0.5. The

solution is x = (0, 1, 2, -1) and F = (44, 44, 54, 44).

Table shown below shows the effect of A • The results

obtained by using a line search when the function value

increases is shown in table X. Using line search greatly

improved the convergence rate in this problem.

TABLE VIII

COMPARISON OF NUMBER OF ITERATIONS TO SOLVE PROBLEM 3

No. of iterations Function value ll h II
'

Stage 1 45 .5600372d2 .Sd-4

Stage 2 9 .56d2 .Sd-5

combined 11 .56d2 .Sd-5

H. & M. 16 .56d2 .Sd-5

c. & c. 37 .56d2 .Sd-5

·'

TABLE IX

COMPARISON OF CONVERGENCE RATES USING DIFFERENT A

• 5

• 75

1.0

1.2

No. of iterations

9

not conv. in 35 iter •

not conv. in 40 iter.

not conv. in 29 iter.

TABLE X

F

.44d2

COMPARISON OF CONVERGENCE RATES FOR
DIFFERENT A USING LINE SEARCH

.5

.75

1.0

1.2

No. of It.

9

11

35

8

F

.44d2

.44d2

.43997d2

.44d2

38

39

Example 4.

The problem used by Charalambous and Conn [8] is

considered.

2 2
f)(x) = (2- x

1
) + (2- x 2)

f 3 (x) = 2 exp (- x
1

+ x)

x* = [1.13903, .89956], F* = [1.95222, 1.95222, 1.57409].

The initial value of x ~ (1, -0.1) and A used ~ 1.2. The

contours of the problem are shown in figure 2.

ts-
1

l.o-

I

o.s-
\ \\ !

\ \
2_j \

' ' ' I
'!

.-
;

Or-
;

-0.1,-·----
\ol (),< :.o

Figure 2. The contours of problem 6

40

TABLE XI

COMPARISON OF NUMBER OF ITERATIONS TO SOLVE PROBLEM 4

No. of iterations Function value II h
r '

Stage 1 19 .19522dl .Sd-5

Stage 2 B .l9522dl .Sd-5

Combined 9 .l9522dl .Sd-5

c. & c. 21 .19522dl .Sd-5

Table below showns the effect of A . A line search was

not used as the convergence was quite fast in this problem.

TABLE XI I

COMPARSION OF CONVERGENCE RATES USING DIFFERENT A

. 5

.75

1.0

1.2

No. of ite!."'ations

B

9

9

8

F

.l9522dl

. .:..9522dl

.l9522dl

.19522dl

f 1(x)
1 xl + x2

2 2
f 2 (x) .. (2 - ~) + (2 - xi .
x* = [1, 1), F.* = [2, 2, 2].

The initial value of X "" (1, -0.1) and 1\ = 1. 2. The

contours of the problem are shown in figure 3. Table XIV

shows the effect of ~ . No line search is necessary as

the convergence was rapid.

i

~
1.0 ~

1..

.1
' L
; ...
I

-l.o

I

I
I
I

I
------__J

----------~---------------------------~
0.5 1.0 ~... l.S

Figure 3. The contours o f · probl em 7

41

42

TABLE XIII

COMPARISON OF NUMBER OF ITERATIONS USED TO SOLVE PROBLEM 5

No. of iterations F ll h II

Stage 1 6 .200000dl .5d-5

Stage 2 5 .200000dl .5d-5

Combined 5 .200000d1 .5d-5

c. & c. 8 .2d0000d1 .5d-5

TABLE XIV

COMPARISON OF CONVERGENCE RATES USING DIFFERENT~

• 5

.75

1.0

1.2

1.5

No. of iterations

6

6

6

6

6

.200000d1

.200000d1

.200000d1

.200000d1

.200000d1

CHAPTER V

SUMMARY

There is considerable interest in the development of

algorithms for NDO problems, but it is not possible to say

yet what the best approaches are. Most of the algorithms

surveyed in chapter II have some common features.

Many methods are line search methods in which on each

iteration a direction of search is determined and

xK-+ 1 = x 14 + ol"hK is obtained by choosing ex'" to minimise the

objective functions along a Line. A typical line search

algorithm uses a combination of sectioning and

interpolation. An aspect to be considered is when the line

search minimum is non-smooth. In this case it is not

appropriate to try to make the stepsize small, since such a

point may not exist. Fletcher [26] recommends a different

test, that a line search is terminated when the predicted

reduction is sufficiently small. This test has been used by

Hald and Madsen for stagel iteration.

Most methods for NDO can be considered as extensions of

methods available for smooth optimisation. The simplest

method for basic NDO, the subgradient method, is an analogue

of the steepest descent method. The method is at best

linearly convergent. Similar algorithms using conjugate

43

44

gradients are the bundle methods. The use of approximations

to form linear and quadratic subprograms is another class of

methods. Quasi-Newton methods have been used in conjuction

with some of these methods to obtain faster convergence when

the curvature effects cannot be neglected.

There is at present considerable interest in developing

methods for NDO problems. The applications of NDO methods

to practical problems in linear and nonlinear programming is

being studied.

The method of Hald and Madsen [33] is an effective

method for solving NDO problems. A modification of the

method is studied in this thesis. The method as described

by Fletcher [28] is used for stage 2 instead of a quasi­

Newton method as suggested by Hald and Madsen. An

inaccurate quadratic line search is used when the predicted

value of the function increases. This increases the

efficiency of the algorithm in most cases.

From the numerical evidence presented it can be seen

that the choice of initial restriction A is very important.

As noted before, the efficiency of the algorithm also

depends upon the efficiency of the linear and quadratic

programming method used. Using a line search improves the

convergence properties in general. However when the initial

active function is not a final active function, a line

search for that function does not improve the rate of

convergence rapidly.

45

The modified method has good convergence properties and

may have wide application. It has proved to have equal or

faster rate of convergence than the method of Hald and

Madsen or that of Charalambous and Conn, for the problems

considered in chapter IV.

CHAPTER VI

SUGGESTIONS FOR FURTHER STUDY

There is one feature of the method of Fletcher [26]

that is different from similar methods for smooth

optimisation, known as the Maratos effect. For smooth

unconstrained optimisation when x~ is close to x*, the basic

method reduces the objective function and second order rate

of the basic method is observed. However, as observed by

Maratos [62], this does not happen in NDO. In some NDO

problems, in which second order effects are significant at

the solution, xK can be arbitrarily close to x* and the unit

step of the basic algorithm can fail to reduce the function

F(x). This effect is most likely to occur when the

discontinuity in derivative is large. Further studies in

this area may greatly improve the application of the method

to a general problem.

A further modification to the above algorithm is to use

an updating procedure to obtain the next combined Hessian

matrix.

46

BIBLIOGRAPHY

(1) Balinski, M.L. and Wolfe, P. Nondifferentiable
Optimization, Math. Prog. Study 3 (1975),
N.Holland, Amesterdam.

(2} Bandler, J.W. and Charalambous, C. "Nonlinear
Programming Using Minimax Techniques." .Q. Opt.
Th. and~., Vol. 13 (1974), 607-619.

(3) Bazaraa, M.S., Goode, J.F. and Shetty, C.M.
"Optimality Criteria in Nonlinear Programming
without Differentiability." Operations Res., Vol.
19 (1971), 77-86. -

(4) Bazhenov, L.G. "On Convergence Conditions of a
Minimization Method of almost Differentiable
Functions." Cybernetics, Vol. 8 (1972), 607-609.

(5) Bertsekas, D.P. "Nondiffereentiable Optimization via
Approximation." Nondifferentiable Optimization ,
Math. Prog., study 3 N.Holland, Amesterdam (1975)

(6) Bertsekas, D.P. and Mitter, S.K. "A Descent Algorithm
for Optimization Problems with Nondifferentiable
Cost Functionals." SIAM J. on Control, Vol. 11

(7)

(1973), 637-652. -- -

Broyden, C.G.,
Local and
Methods."
246.

Dennis, J.E. and More, J.J. "On the
Superlinear Convergence of Quasi Newton
Math. Comput., Vol. 12 (1973), 223-

(8) Charalambous, C. and Conn, A.R. "An Efficient Method
to Solve the Minimax Problem Directly." SIAM J.
Num. Anal., Vol. 15 (1978), 162-187. -----

(9) Chaney, R. and Goldstein, A. "An Extension of the
Method of Subgradients." Nonsmooth Optimization,
Math. Proc., study 3 (1975), 31-50.

(10) Cheney, E.W. and Goldstein, A.A. "Newton's Method for
Convex Programming and Chebyshev Approximation."
Numerische Mathematik, (1959), 253-268.

(11) Clarke, F.H. ·"Generlised Gradients and Applications."
T.A.M.S, 205 (1975), 247-262.

47

(12) Clarke, F.H. Optimization and Nonsmooth Analysis,
Wiley, Newyork (1983).

48

(13) Coleman, T. F. and Conn, A. R. "Nonlinear programming
via an Exact Penalty Function: Flobal Analysis."
Univ. of Waterloo, Tech. Report CS-80-31 (1980).

(14) Cullum, J., Donath, W.E. and Wolfe, P. "The
Minimization of Certain Non-differentiable Sums
of Eigenvalues of Symmetric Matrices." Math.
Prog., Study 3 (1975), 35-55.

(15) Danskin, J.M. ~ Theory of Max-min, Springer, New
York (1967).

(16) Demjanov, V.F. "Algorithms for Some Minimax Problems."
~· Comp. ~· Sci., Vol. 2 (1968),342-380.

(17) Demjanov, V.F. and Malozemov, V.N. Introduction ~
Minimax, John Wiley, New York (1974).

(18) Demjanov, V.F. and Rubinov, A.M. Approximation
Methods in Optimization Problems, American
Elsevier, New York (1970).

(19) Dennis, J.E. and More, J.J. "Quasi-Newton Methods and
Theory." SIAM Review, Vol. 19 (1977), 46-89.

(20) De Angelis, V. "Minimization of a Separable Function
Subject to Linear Constraints." Proc. Princeton
Symposium on Math. Prog., (1970) 503-510.

(21) Eaves, B.C. and Zangwill, W.I. "Generalised Cutting
Plane Algorithms." Working paper No. 274, Center
for Research in MGT. SC., Univ. of Ca., Berkeley,
(1969).

(22) Elzinga, J. and Moore, T.G. "A Generalized cutting
plane algorithm." Working paper No. 274, Center
for Research in MGT. SC., Univ. of Ca., Berkeley,
(1969).

(23) Fiacco, A.V. and McCormick, G.P. "Computational
Algorithm for the Sequential Unconstrained
Minimization Technique for Nonlinear
Programming." MGT. SC. Vol. 10, No. 4 (1964).

(24) Fisher, M.L., Northup, W.D and Shapiro, J.F. "Using
Duality to Solve Discrete Optimization Problems:
Theory and Computational Experience."~· Prog.
Study 3, Amesterdam, N. Holland (1975).

(25) Fletcher, R. "Methods Related to Langrangian

Functions." Numerical Methods for Constrained
Optimization, ed. Gill, P.E, Murray, W. (1974),
219-239.

49

(26) Fletcher, R. Pratical Methods Q1 Optimization, Vol. I,
Unconstrained Optimization, Wiley, New York
(1980).

(27) Fletcher, R. Pratical Methods~ Optimization, Vol.
II, Unconstrained Optimization, Wiley, New York
(1981).

(28) Fletcher, R. "A Model Algorithm for Composite
Nondifferentiable Optimization Problems."
Numerical Techniques in NDO, Math. Prog., study
17 (1982), N.Holland, Amesterdam.

(29) Fletcher, R. "A New Approach to Variable Metric
Algorithms." Comp. J., Vol. 13 (1970).

(30) Fletcher, R. and Watson, G. A. "First and Second
Order Conditions for a Class of NDO Problems."
Math. prog., Vol. 18 (1980), 291-307.

(31) Gill, P.E., Murray, w. and Wright, M. Practical
Optimization, Academic Press, New York.

(32} Goffin, J.L. "On Convergence Rates of Subgradient
Optimization Methods."~· Prog., Vol. 13
(1977), 329-347.

(33} Goffin, J.L. "Nondifferentiable Optimization and the
Relaxation Method." N.§.. Optimisation, .E..t:.Qc..
IIASA WorkshoE (1977T, 5-30.

(34) Hald, J. and Madsen, K. "Combined LP and Quasi Newton
Methods for Minimax Optimization." Math. Prog.,
Vol. 20 (1981), 49-62.

(35) Hald, J. and Madsen, K. "A 2-stage Algorithm for
Minimax Optimization." Lecture notes in Control
and Inf. Science 14 (1978), 225-239.

(36) Hald, J. and Schjaer-Jacobsen, H. "Linearly
Constrained Minimax Optimization." Math. Prog.,
Vol. 14 (1978), 208-223.

(37) Han, S.P. "Dual Variable Metric Methods for
Constrained Optimisation." SIAM J_. Q.D Control and
Optimization, Vol. 15 (1977~46-565.

(38) Han, S.P. "A Globally Convergent Method for Nonlinear
Programming." .:I_. of Q2f. Theory and ~., Vol.

50

22 (1977), 297-309.

(39) Han, S.P. "Superlinearly Convergent Variable Metric
Algorithm for General Nonlinear Programming
Problems." Math. Prog., Vol. 11 (1976), 263-282.

(40) Han, S.P. "Variable Metric Methods for Minimizing a
Class of Nondifferentiable Functions." Math.
Prog., Vol. 20 (1981), 1-13.

(41) Han, S.P. "A Hybrid method of Nonlinear Programming."
li· _h. Prog., 3 (1977), 297-309.

(42) Held, M., Wolfe, P. and Crowder, H. "Validation of
Subgradient Optimization." Math. Prog., Vol. 6
(1974), 62-88. --

(43) Hestenes, M.R. "Multiplier and Gradient Methods."~·
Opt. Theo. Applns., 4 (1969), 303-320.

(44) Hestenes, M.R. and Stiefel, E. "Methods of Conjugate
Gradients for Solving Linear Systems." Q_ • .Q.L
Research Q! the National Bureau ~ Standards, 49
(1952), 409-436. .

(45) Hogan, w.w., Marsten, R.E. and Blankenship, J.W.
"Boxstep: a New Strategy for Large Scale
Mathematic Programming." Discussion paper No. 46,
N. w. Univ., Evanston, IU (1973).

(46) Hooke, R. and Jeeves J.A. "Direct Search Solution of
Numerical and Statistical Problems." J. Assoc.
Compt. Mach., Vol. 8 (1961), 212. -

(47) Kelley, J.E. "The Cutting Plane Method for Solving
Convex Programs." J. Soc. Ind • ..ill2Ql. Math., Vol.
8 (1960), 703-712.

(48) Kiwiel, K.C. "An Aggregate Subgradient Method for
Nonsmooth Convex Minimzation.", Math. Prog., Vol.
27 (1983), 320-341.

(49) Kiwiel, K.C. A "v.M.M. of Centers for Nonsmooth
Minimization." CP-81-23 Ins. of ~· Syst. Anal.,
Laxemburg, Austria (198lr:-

(50) Kiwiel, K.C. "Efficient Algorithm for Nonsmooth
Optimization and their Applications." Ph.D
thesis, Dept. of Electronics, Univ. of Warsaw,
Warsaw, Poland.

(51) Lemarechal, C. "An Extension of Davidon Methods to
Nondifferentiable Problems. "Nondifferentiable

Optimization, Mathematical Programming Study~,
N. Holland, Amesterdam. (1975).

(52) Lemarechal, C. "Note on an Extension of Davidon
Methods to Nondifferentiable Functions." Math.
Prog., Vol. 7 (1974), 384-387.

(53) Lemarechal, C. "Bundle Methods in Nonsmooth
.Optimization." Nonsmooth Optimization, Proc.
IIASA workshop (1977), Pergamon Press, Oxford.

51

(54) Lemarechal, C. and Mifflin, R. Nonsmooth Optimization,
Proc. IIASA workshop (1977), Pergamon Press,
Oxford.

(55) Lemarechal, C. "Nondifferentiable Optimization:
Subgradient and ~-subgradient Methods." Lecture
Notes in Eco. and Math. Systems, No. 117 (1975).

(56) Leunberger, D.G. Introduction~ Linear and Nonlinear
Programming, Addison-Wesley, Reading, Mas.
(1974).

(57) Madsen, K. "An Algorithm for Minimax Solution of
Overdermined Systems of Nonlinear Equations." J.
~· Math. Appl., Vol. 16 (1975), 321-328.

(58) Madsen, K. "Minimax Solution of Nonlinear Equations
Without Calculating Derivatives."
Nondifferentiable Optimization, Math. Prog.,
Study 3 (1975), 110-126.

(59) Madsen, K. and Schjaer-Jacobsen, H. "Linearly
Constrained Minimax Optimization." Math. Prog.,
Vol. 14 (1978), 208-223.

(60) Madsen, K. and Schjaer-Jacobsen, H. "Singularities in
Minimax Optimization of Networks." IEEE Trans.~
Circuits and Systems (1976), 456-460.

(61) Nelder, J.A. and Mead, R. "A Simplex Method for
Function Minimization." Compt. ~,Vol. 7 (1965),
308-313.

(62) Marsten, R.E. "The Use of Boxstep Method in Discrete
Optimization." li· P., study 3 (1975).

(63) Maratos N. "Exact Penalty Function Algorithms for
Finite Dimensional and Control Optimization
Problems." Ph.D thesis, Unvi. of London (1980).

(64) Mayne, B.Q. "On the Use of Exact Penalty Functions to
Determine Step Length in Optimization

52

Algorithms." Numerical Analysis, Dundee, Lecture
Notes in Mathmetic 773, Springer-Verlag, Berlin
(1980).

(65) Mifflin, R. "An Algorithm for Constrained Optimization
with Semi-smooth Functions." Math. Oper. Res.,
Vol. 2 (1977), 191-207.

(66} Mifflin, R. "A Modification and an Extension of
Lemarechal's Algorithm for Nonsmooth
Minimization." Numerical Techniques for
Nondifferentiable Optimization, Math. Prog.,
Study 17 (1982}, 77-90.

(67) Mifflin, R. "Semismooth and Semiconvex Functions in
Constrained Optimization." SIAM !l,. on Control~
Optimization, Vol. 15 (1976), 959-972.

(68} Murtagh, B.A. and Soliman, F.I. "Subgradient
Optimization Applied to a Discrete Nonlinear
Program in Engineering Design." Math. Prog., Vol.
25 (1983), 1-12.

(69) Nurminskii, E.A. "Minimization of Nondifferentiable
Functions in Presence of Noise." Kiberntics, Vol.
10 (1974}, 59-61.

(70} Nurminskii, E.A. "The Quasi-Gradient Method for
Solving of the Nonlinear Programming Problems."
Cybernetics, Vol. 9 (1973}, 145-150.

(71) Ortega, J.M. and Rheinboldt, w.c. Iterative Solution
~ Nonlinear Equations in Several Var1ables,
Academic Press, New York.

(72) Osborne, M.R. and Watson, G.A. "An Algorithm for
Minimax Approximation in Nonlinear Case."
Computer J., Vol. 12 (1969), 64-69.

(73) Poljak, B.T. "Subgradient Methods: A Survey of Soviet
Research." Nonsmooth Optimisation, Proc. IIASA
Workshop (1977), Pergamen Press, Oxford.

(74} Powell, M.J.D. "A Fast Algorithm for Nonlinear
Constrained Optimization Calculations." Dundee
Conference~ Numerical Analysis, (1977}.

(75) Pschenchinyi, B.N." Nonsmooth Optimization and
Nonlinear Programming." Nonsmooth Optimization,
Proc. IIASA Workshop (1977}, 71-78.

(76} Rockafellar, R.T." Lagrange Multipliers and
Subderivatives of Optimal Value Functions in

Nonlinear Programming." Math. Prog., Study 17
(1982), 28-66. --

(77) Rosen J.B. and Suzuki, s. "Construction of Nonlinear
Programming Test Problems." Comm. ACM, Vol. 8
(1965), 113-120.

53

(78) Rosenbrock H.H. "An Automatic Method for Finding the
Greatest or Least Value of a Function." Comp. il·,
Vol. 3 (1960), 175.

(79) Sachs, E. "Global Convergence of Quasi Newton Type
Algorithm for some Nonsmooth Optimisation
Problems." .Q_. Optimisation Theory Appl., Vol. 40
(1983).

(80) Shor, N.Z. and Shabashova, L.P. "Solution of Minimax
Problems by Generalized Gradient Method with
Space Dilation." Kebernetika 8, 1 (1972), 82-88.

(81) Shor, N.Z. "On the Structure of Algorithms for the
Numerical Solution of Problems of Optimal
Planning and Design." Dissertation, KIEU, USSR
(1964). (in Russian).

(82) Shor, N.Z. and Zhurbenro, N.G. "A Minimization Method
Using Space Dilation in the Direction of the
Difference of Two Successive Gradients."
Cybernetics, Vol. 7 (1971), 450-459.

(83) Spendly, w., Hext, G.R., and Hemsworth, F.R.
"Sequential Application of Simplex Designs in
Optimization and Evaluationary Operation."
Technimetrice, 4, 441-461.

(84) Tewarson, R.P. "On Minimax Solutions of Linear
Equations." Comp. ~·, Vol. 15 (1972), 277-279.

(85) Watson, G.A. "The Minimax Solution of an
Overdetermined System of Nonlinear Equations."~·
~·Math. Appl., Vol. 23 (1979), 167-180.

(86) Wierzbicki, A.P. "Lagrangian Functions and
Nondifferentiable Optimization." WP-78-63,
International Inst. for !0£. Syst. Analysis,
Laxemburg, Austria (1978).

(87) Wolfe, P. "Note on a Method of Conjugate Subgradients
for Minimisation of Nondifferentiable Functions."
Math. grog., Vol 7 (1974), 380-383.

(88) Wolfe, P. "A Method of Conjugate Subgradients for
Minimisation of Nondifferentiable Functions."

Math. Prog., Study 3, N. Holland, Amesterdam
(1975).

54

(89) Wolfe, P. "Sufficient Minimization of Piecewise Linear
Univariate Functions." .N.. • ..s_. Optimization,~.
of IIASA Workshop (1977), 103-126.

(90) Wolfe, P. "A Method of Conjugate Subgradients for
Minimizing Nondifferentiable Functions." Math.
Prog. Study 3 (1975), 145-173.

(91) Wolfe, P. "Convergence Theory in Nonlinear
Programming." Integer and Nonlinear Programming,
ed. Abadie, (1970).

(92) Womersley, R.S. "Optionality Conditions for Piecewise
Smooth Functions." Math. Prog., Study 17 (1982),
13-27.

(93) Zangwill, W.I. "Nonlinear Programming via Penalty
Functions." Mgt. Sci., Vol. 13 (1967), 344-358.

(94) Zangwill, W.I. Nonlinear Programming. A Unified
Approach, Prentice Hall, New Jersey (1969).

APPENDIX A

DEFINITIONS

55

56

Definition 1

The Lipschitz Condition

Let Y be a subset of X. A function f: Y -- R is said

to satisfy a Lipschitz condition (on y) provided that, for

some nonnegative scalar K, one has

' f (y) - f (y I) I <= K II y - y I II

for all points y, Y1 in Y; that is also referred to as a

Lipschitz condition of rank K.

Definition 2

The Kuhn-Tucker Conditions

The Kuhn Tucker conditions for the nonlinear

programming problem,

minimise f(x)

subject to

is described below.

Ci,(X) = 0

C l (X) >= 0

i E E

1 E- I

If x* is a local minimiser of the above problem, then

there exist Lagrange multipliers A* such that x*, A* satisfy

the following system.

57

L(x, A) = 0

C :i (X) = 0 iE- E

Ci_(X) >= 0 i ~ I

~i >= 0 i E- I

t.·C·(x) i. ~ = 0 't;/i

The above conditions are valid when the vectors ai*, if

A are independent, where a i =a C.,:. The final condition 1*C

* = 0 is referred to as the complementarity condition and

states that both Ai and Ci cannot be nonzero, or

equivalently that inactive constraints have a zero

multiplier. If there is no i such that Ai.* = Cs.* = 0 then

strict complementarity is said to hold. The case Ai* = Ci*

= 0 is an intermediate state between a constraint being

strongly active and being inactive.

Definition 3

Regular and Singular Minimax Problem

The minimax problem is singular with respect to the

solution x* if the matrix

D = { dfj/;:}xi(x*) } j ~ A

i = l, ... ,n

has rank less than n. Otherwise the problem is regular.

Note : "A" denotes the acture set which consists

of the index of the functions that attain

58

the maximum value at x*.

Definition 4

Haar Condition

Haar Condition is satisfied when any subset of the set

{ f' (x*) I f (x*) = F(x*) }

has maximal rank. This ensures that no smooth valley passes

through the solution.

APPENDIX B

THE SUMMARY OF DIFFERENT METHODS

59

60

TABLE XV

NUMBER OF ITERATIONS FOR DIFFERENT METHODS

Prob. 1 Prob. 2 Prob 3. Prob. 4 Prob. 5

Stage 1 27 16 45 19 6

Stage 2 9 14 9 8 5

Stage 9 15 11 9 5

H. & M. 20* 23 16 - -
c. & c. - 150 37 21 8

* Line search did not improve the rate of convergence.

61

TABLE XVI

NUMBER OF ITERATIONS FOR DIFFERENT A

· Prob. 1 Prob. 2 Prob. 3 Prob. 4. Prob. 5
using using using using using
LS LS LS LS LS

'

. 5 15 15 14 8 9 9 8 * 6 *

.75 slow 14 slow slow slow 11 9 * 6 *
1.0 13 9 5 slow slow 35 9 * 6 *
1.2 8 8 slow slow slow 8 8 * 6 *
1.5 slow 8 - - - - - - - -

* Line search did not improve the rate of convergence.

APPENDIX C

PROGRAM LISTING

62

$JOB
c MODIFIED HALO AND MADSEN ALGORITHM

FOR c
c MINIMAX OPTIMISATION
c
c
C********************* REFERENCES ************************
C 1. HALO, J AND MADSEN ,K "COMBINED LP AND ~UASI NEWTON
C METHODS FOR MINIMAX OPTIMIZATION' MATH. PROG.
c 20, (1981).
C 2. FLETCHER, R. "A MODEL ALGORITHM FOR COMPOSITE NDO
C PROBLEM" M.UH. PROG. STUDY 17 (1982).
C*************************'*********************'**********
c
c
c
c

THIS IS A PROGRAM FOR SOLVING MINIMAX PROBLEMS USING
LINEAR AND QUADRATIC APPROXIMATIONS

c•'n': , . .,., •'<*>'ddddd: in'<>'<>'<,..,.,,., V AR lAB LE REFERENCE ;,;:;, >'<>'<>'<>': ,., ;, ,., >b'<>'<>'< >'dnb': ,.,
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

FAPR
F (.,.')
G (''' ''')
GLM ('~<)
H (>'')
K1
K2
XJ ('''' ''')
XLAMDA

APPROXIMATE FUNCTION VALUE
FUNCTION VALUE
HESSIAN MATRIX
LAGRANGE MULTIPLIERS ASSOCIATED WITH EACH FUNCTION
STEP SIZE
NUMBER OF ITERATIONS IN STAGE 1
NUMBER OF ITERATIONS IN STAGE 2
JACOBIAN FOR DERIVATIVES
RESTRICTION ON STEPSIZE H

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION X(20)
COMMON /STAGE/ISTAGE,Kl,K2,NBUG
COMMON /STG/HMAX,PREFOB

C READ IN THE NUMBER OF PROBLEMS TO BE SOLVED
c

c

c
c
c
c

IOUT=6
IN=5

N0=6
NBUG=O
WRITE(IOUT,20) NO

20 FORMAT(1H0,10X,17H NO OF PROBLEMS= ,!2)

OBTAIN INITIAL VALUES FOR X AND LAMDA AND
CALL STAGE!.

DO 30 NOPROB=l,NO
WRITE(IOUT,25) NOPROB

25 FORMAT (1H1, 14H''<1'PROBLEM NO: , !2)
CALL INITIL (NOPROB,X,N,XLAMDA)
K1=0
K2=0
ISTAGE=2
CALL STAGEl(NOPROB,X,N,XLAMDA)

30 CONTINUE
STOP
END

63

c
c
C SUBROUTINE INITIALISES THE X VALUES
c
c
c
c

c

c

SUBROUTINE INITIL(NOPROB,X,N,XLAMDA)

IMPLICIT REAL'''8 (A-H, 0-Z)
DIMENSION X(20)
GOTO (10,20,30,40,20,60,70),NOPROB

10 N=2
X (1) =3.DO
X (2) =l.DO
XLAMDA=1.2D0
GOTO 1000

20 N=2
X (1) =-1. 2DO
X (2) =l.DO
XLAMDA=.5DO
GO TO 1000

30 N=7
X 1 =3.DO
X 2 =3.DO
X 3 =O.DO
X 4 =5.DO
X 5 =l.DO
X 6 =3.DO
X 7 =O.DO
XLAMDA=0.50DO
GO TO 1000

40 ~=lil :g
X 3 =0
X 4 =0
XLAMDA=0.50DO

GO TO 1000
60 M=3

N=2

~g5:~0.1
XLAMDA=0.750DO
GO TO 1000

70 GO TO 1000
c

1000 RETURN
END

64

c
c
C SUBROUTINE CARRIES OUT THE STAGE1 AND STAGE2 ITERATIONS
c
c
c
c

c

c

c

SUBROUTINE STAGE1(NOPROB,X,N,XLAMDA)

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION XNXT(20)~X(20)~F(20),FNXT(20),H(20),GLM(20),GLA(20)
DIMENSION XJ(20,20J,SUM(~O)

COMMON /SWTH/RESDUL(20)~RPRE(20),R(20),SUM,SUMLGM
COMMON /ACTIV/ AS(3,20J,NPTR,NXTPTR,NS(3)
COMMON /STAGE/ ISTAGE,K1,K2,NBUG
COMMON /STG/HMAX,PREFOB

ECONV=0.5D-3
HCONV=0.5D-5
NPTR=1
NXTPTR=1
C1=1. OD-2
C2=2.5D-1
C3=7 .5D-1
C4=2.5D-1
C5=2.DO
C6=1.DO
JO=O

C DETERMINE ITERATION NO. K, THE FUNCTION VALUES AND JACOBIAN.
c

c

DO 2 I=1,20
GLM(I)=O.DO

2 CONTINUE
CALL FUNCTN(NOPROB,X,N,F,M,JO)
CALL MAX(F,M,FMAX)
FOBJ=FMAX
CALL DERIV(NOPROB,X,N,XJ,M)

C DETERMINE THE ACTIVE SET OF FUNCTIONS.
c

c
c
c

c
c
c
c

PREFOB=O.DO
5 K1=K1+1

IF(K1.GT.35) GOTO 1000
IF (ISTAGE.EQ.2)K2=K2+1
WRITE(IOUT 3) K1 K2

3 FORMAT(/// I ' , '>'<?nb'<ITERATION NUMBER=' , I3, I3, 1 1<>'nh'<')
CALL ACTIVE(FOBJ,F,M)

DETERMINE THE COEFFICIENTS AM AND Q FOR LEMKE'S ALGORITHM.

CALL COEFF(F,M,XJ,N,XLAMDA,MN,GLM,X,NOPROB)
IFLAG=O
IF (NBUG.EQ.1) WRITE(IOUT,6 (X(I),I=1,N)

6 FORMAT(1H0,1X 2HX=,10(E12.5)
IF (NBUG.EQ.1J WRITE(IOUT,8 (F(I),I=1,M)

8 FORMAT(1H0,1X 2HF=,10(E12.5)
IF (NBUG.EQ.1J WRITE(IOUT~9 (GLM(I) ,I=1,M)

9 FORMAT(1H0,4HLGM=,10(E12.~)

CALL LEMKE

CALL LEMKE(MN,IFLAG)

C DETERMINE FUNCTION VALUE PREDICTED BY LP(FARP), INCREMENT(H)
C AND LAGRANGE MULTIPLIERS(LMG) K
c

CALL HVAL(H,N GLA,FAPR,F,M XJ)
IF (NBUG.EQ.1J WRITE(IOUT,J) FAPR

7 FORMAT(/1X, 'FAPR=' ,E15.5)

65

c
C DETERMINE FUNCTION VALUE AT X +H
C K K
c

INT=O
IHFLG=O
DO 10 I=1,N
IF ~DABS (H (I)) . LT. (2. DO>''XLAMDA) . OR. DABS (H (I)). LT .l.D1) GOTO 11
IF H ~I~ . LT. 0. DO) H (I) =-2. DO'''XLAMDA
IF H I . GT. 0. DO) H (I) =2. DO'''XLAMDA

11 XNXT I =X(I)+H(I)
10 CONTINUE

IF(IHFLG.EQ.1) GO TO 44
CALL FUNCTN(NOPROB,XNXT,N,FNXT,M,JO)
CALL MAX(FNXT,M,FMAX)
FOBNXT=FMAX
IF (NBUG.EQ.1) WRITE(IOUT~21)FOBNXT

21 FORMAT(/1X, 'FOBNXT=' ,E15.J)
IF (NBUG.EQ.1) WRITE(IOUT,22)FOBJ

22 FORMAT(/1X, 'FOBJ=' ,E15.5)
CALL ACTIVE(FOBJ,F,M)

c
C DETERMINE F F(X)-F(X ,H)
C R R K
c

c
c
c

c
c
c
c

c
c
c

DIFFK=FOBJ-FOBNXT
IF(DIFFK.GE.O.DO) GO TO 15
IF(K1.GT.3) GO TO 890
JO=K1
GO TO 891

890 JO=NS (1)
891 CALL LINSCH(NOPROB,JO,FOBJ,FOBNXT,X,H,N)

DO 990 I=1,N
XNXT(I)=X(I)+H(I)

990 CONTINUE
10=0
CALL FUNCTN(NOPROB,XNXT,N,FNXT,M,JO)
CALL MAX(FNXT,M,FMAX)
FOBNXT=FMAX
DIFFK=FOBJ-FOBNXT

15 IF (NBUG.EQ.1) WRITE(IOUTJ23) DIFFK
23 FORMAT(' ', 'DIFFK1' ,E15.5

TEST FOR CONVERGENCE.

DO 14 I=1 ,N
H (I) IF (NBUG.EQ.1) WRITE(IOUT,991)

991 FORMAT(' I' 'NEW H',E15.5)
H (I) =DABS (H (I))

14 CONTINUE
CALL MAX(H,N,HMAX1)
HMAX=HMAX1
IF~HMAX.LE.HCONV~ GOTO 1000
IF HMAX.GT.HCONV GOTO 30
GOTO 1000

DETERMINE F(X)=FAPRX
K

30 DIFAPR=FOBJ-FAPR
RATIO=DIFFK/DIFAPR
IF (NBUG.EQ.1) WRITE (IOUT,32) RATIO

32 FORMAT(/1X, 'RATIO=' ,E15.5)

CHANGE X,F,LGM IF LINEARISATION IS GOOD.

IF~RATIO.LE.1.DO)GO TO 31
IF RATIO.GT.1.99DO) GO TO 38

31 IF RATIO.LT.C1) GOTO 38
DO 35 I=1 ,M
F (I) =FNXT (I)
GLM (I) =GLA (I)

35 CONTINUE

66

c

PREFOB=FOBJ
FOBJ=FOBNXT
DO 40 I=l,N
X (I) =XNXT (I)

40 CONTINUE
CALL DERIV(NOPROB,X,N,XJ,M)

C CALL SWITCH IF ACTIVE SET IS LT N+l
c

38 IF(Kl.LT.3) GO TO 41
IF (NBUG.EQ.l) WRITE(IOUT,llll) NS(NPTR),N

1111 FORMAT (I I 5 INS (NPTR) 'N I !214)
IF(NS(NPTR .GT.N)GO TO ~1

C CALL SWITCH(XLAMDA,GLM,HMAX,N,F,XJ,FOBJ,M)
c
C ELSE X REMAINS UNCHANGED. DETERMINE NEXT LAMDA.
c
c

41 EDIF=. OlDO'''XLAMDA

IF(RATIO.GT.C2) GOTO 42
IF (RATIO.LT.1.75DO) GO TO 42
XLAMDA=C4 ~'HMAX
IF (NBUG.EQ.l) WRITE(IOUT~999) XLAMDA

999 FORMAT(' I' 'XLAMDA',El5.5)
GOTO 5

42 IF(RATIO.LT.C3) GOTO 50
IF(RATIO.GT.1.25) GO TO 50
DIFHL= (RATI0-1)
IF(DIFHL.GT.ECONV) GO TO 50
XLAMDA=4'''XLAMDA
GO TO 5
IF(HMAX.NE.XLAMDA) GO TO 50

44 XLAMDA=C5 ~'XLAMDA
IF (NBUG.EQ.l) WRITE(IOUT)43) DIFFK

43 FORMAT(' I' 'DIFFK2' ,El5.5
IF (DIFFK. LT. 0. DO) XLAMDA=C4'"HMAX
GOTO 5

50 XLAMDA=C6''<HMAX
IF (NBUG.EQ.l) WRITE(IOUT,51) HMAX

51 FORMAT(' ', 'HMAX-XLAMDA' ,E15.5)
GOTO 5

1000 WRITE~IOUT,6) (X(I) ,I=l,N)
WRITE IOUT,8) (F(I) ,I=l,M)
WRITE lOUT, 300)

300 FORMAT(/ 15X, 1 ~<>'<>'<CONVERGENCE 1<>'<>'< 1)

RETURN
END

67

c
c
C THIS SUBROUTINE SWITCHES THE STAGES DEPENDING ON THE
C EXISTING CONDITIONS
c
c
c
c

c

c
c

SUBROUTINE SWITCH(XLAMDA,GLM,HMAX,N,F,XJ,FOBJ,M)

IMPLICIT REAL'~8 (A-H, O-Z)
DIMENSION GLM(20),F(20) 0XJ(20,20)JXJM(20)
DIMENSION XJL(20),SUM(2),XJMX(20

COMMON /SWTH/RESDUL(20),RPRE(20),R(20),SUM,SUMLGM
COMMON /STAGE/ISTAGE,K1 K2,NBUG
COMMON /ACTIV/ AS(3,20J,NPTR,NXTPTR,NS(3)

NUM=NS(NPTR)
INDX=AS(NPTR,1)
R (1) =F (INDX)
IF(NUM.LE.1) GO TO 8
DO 15 I=2,NUM
Il=I-1
R(I1)=F(INDX)-F(I)

15 CONTINUE
C IF STAGE=1 TEST CONDITIONS TO SWITCH TO STAGE 2
c
C A) TEST IF LAMDA-1>=0,LAMDA>=O
c

8 GO TO (10,100),ISTAGE
10 SUMLGM=O.DO

DO 20 I=1,NUM
INDX=AS(NPTR I)
IF (GLM(INDXJ.LT.O.DO) GO TO 1000
SUMLGM=SUMLGM+GLM(INDX)
IF (ISTAGE.EQ.2) GO TO 31

20 CONTINUE
SUMDIF=SUMLGM-1.DO
EDIF=.1D-2
IF (SUMDIF.GT.EDIF) GO TO 1000

CC GO TO 31
c
c B) TEST IF IIHII=LAMDA
c

DIFHL=HMAX-XLAMDA
IF (DIFHL.GT.EDIF) GO TO 1000

c
C C) TEST IF A(1,S1)=A(2,S2)=A(3,S3)
c

c

25 IF (NS(1).NE.NS(2)) GO TO 1000
IF (NS(2).NE.NS(3)) GO TO 1000
DO 30 I=2,3
DO 30 J=1 ,NUM
IF (AS(I,J).NE.AS(1,J)) GO TO 1000

30 CONTINUE

C D) TEST IF LAMDA.J<=E2
c

31 DO 32 J=1,N
SUM(J)=O.DO

32 CONTINUE
DO 40 I=1 ,NUM
NI=AS(NPTR,I)
DO 35 J=1,N
XJM!Jl =XJ (NI, J) XJL J =GLM (NI) '''XJM (J)
SUM J =SUM(J)+XJL(J)
XJM J =DABS(XJM(J))

35 CONTINUE

68

c

IF(ISTAGE.EQ.2) GO TO 200
GO TO 71
CALL MAX(XJM,N,XJMAX)
XJMX(I)=-XJMAX

40 CONTINUE
SQSUM=O.DO
DO 50 J=1,N
SQSUM=SQSUM+SUM(J)*SUM(J)

50 CONTINUE
SQRTS=DSQRT(SQSUM)

C DETERMINE E2
MXLMDA= 1. DO

c

IF (NUM.GT.1) GO TO 60
E2=. 0 1D0''<FOBJ /MXLMDA
GO TO 70

60 CALL MAX(XJMX,NUM,XMIN)
E2=. 5DO~<XMIN

70 IF(SQRTS.GT.E2) GO TO 1000
71 ISTAGE=2

GO TO 1200

C IF STAGE=2 TEST CONDITIONS TO SWITCH TO STAGE 1
c
C DETERMINE THE RESIDUAL
c

c
c

100 NO=N+NUM
K2=K2+1
WRITE (IOUT,101) K2

101 FORMAT(/1HO, 'STAGE 2 ITERATION NO: ',I2)
DO 105 I=1 NO
IF (K2.LT.2) RESDUL(I)=O
RPRE (I) =DABS (RESDUL (I))>'<. 999DO

105 CONTINUE

C DETERMINE THE NEW ACTIVE SET
c

125 CALL ACTIVE(FOBJ,F,M)
RESDUL((N+2))=R(1)
GO TO 10

200 RESDUL(1)=SUMDIF
DO 110 J=1,N
JJ=J+1
RESDUL(JJ)=SUM(J)

110 CONTINUE
IF (NUM.EQ.1) GO TO 121
NUM1=NUM-1
DO 120 I=1,NUM1
RESDUL((N+1+I))=R(I)

120 CONTINUE
121 IF (K2.LT.3) GO TO 1200

DO 210 I=1,NO
RESDUL(I)=DABS(RESDUL(I))
IF (NBUG.EQ.1) WRITE(IOUT~130)RPRE(I) ,RESDUL(I)

130 FORMAT(' ', 'RPRE,RESDUL' .~E15.5)
IF(RPRE(I).LT.RESDUL(I)) GO TO 1000

210 CONTINUE
GO TO 1200

1000 ISTAGE=1
K2=0

1200 RETURN
END

69

c
c
c
c

c
c

c

SUBROUTINE LINSCH (NOPROB,JO,FOBJ,FOBNXT,X,H,N)

IMPLICIT REAL*8(A-H O-Z)
DIMENSION X(20),H(26),XL(20),FNXT(20)

STEP=.SDO
AO=O.DO
FA=FOBJ
FB=FOBNXT
DO 5 I=l,N
XL (I) =X (I)

5 CONTINUE
IF (FB.LE.FA) GO TO 50
S=-STEP
DO 10 I=l,N
XL(I)=XL(I)+H(I)*S

10 CONTINUE
CALL FUNCTN(NOPROB,XL,N,FNXT,M,JO)
FC=FNXT (JO)
IF (FC.LE.FA) GO TO 40

C BRACKET C A B
c

Al=AO+S
A2=AO
A3=AO-S
Pl=FC
P2=FA
P3=FB
GO TO 100

40 FB=FC
GO TO 51

50 S=STEP
51 A=AO

B=A+S
52 S=S'''2

IF (DABS(S).LE.l.DO) GO TO 60
WRITE(IOUT,53)

53 FORMAT(' ', 'STEPSIZE TOO LARGE')
S=S/2
GO TO 1000

60 C=B+S
DO 61 I=l,N
XL(I)=XL(I)+H(I)*C
IF (NBUG.EQ.l) WRITE(IOUT~555) XL(I),H(I),C

555 FORMAT (I I ' I XL-H-C I '3El5. :>)
61 CONTINUE

CALL FUNCTN(NOPROB,XL,N,FNXT,M,JO)
FC=FNXT (JO)
IF (FC.GT.FB) GO TO 65
A=B
B=C
FA=FB
FB=FC
GO TO 52

65 D=. 5 ,., (B+C)
DO 69 I=l,N
XL(I)=XL(I)+H(I)*D

69 CONTINUE
CALL FUNCTN(NOPROB,XL,N,FNXT,M,JO)
FD=FNXT (JO)
IF (S.GE.O.DO) GO TO 80

70

c
c
c

c
c
c

c
c
c

c
c
c

c

BRACKET C D B

IF (FD.GE.FB)
A1=C
A2=D
A3=B
P1=FC
P2=FD
P3=FB
GO TO 100

BRACKET DB A

75 A1=D
A2=B
A3=A
P1=FD
P2=FB
P3=FA
GO TO 100

BRACKET BDC

80 IF(FD.GE.FB)
A1=B
A2=D
A3=C
P1=FB
P2=FD
P3=FC
GO TO

85 A1=A
A2=B
A3=D
P1=FA
P2=FB
P3=FD

100

GO TO 75

GO TO 85

C QUAD INTERPOLATION
c

100 H1=A2-A1
H2=A3-A2
DEN=H2*(P1-P2)+H1*(P3-P2)
A4=A2+.5DO*(H2**2*(P1-P2)-H1**2*(P3-P2))/DEN
IF (NBUG.EQ.1) WRITE(IOUT,99) A4

99 FORMAT (I I ' I A4 I ' E 15 . 5)
DO 110 I=l,N
H (I) =A4>'<H (I)

110 CONTINUE
1000 RETURN

END

71

c
c
c
c
c
c
c

c
c

c

c

c

THIS SUBROUTINE DETERMINES THE FUNCTION VALUES

SUBROUTINE FUNCTN(NOPROB,X,N,F,M,JO)

IMPLICIT REAL*8(A-H6o-z)
DIMENSION F(20),X(2)

GO TO (10,20,30,40,50,60,70),NOPROB
10 M=3

IF(JO.EQ.O) GO TO 11
GO TO (11 12, 13) ,JO

11 F (1) =X (1) ~'X (1) +X (2) "'X (2) +X (1) '''X (2)
IF(JO.GT.O) GO TO 1000

12 F(2)=DSIN(X(1))
IF(JO.GT.O) GO TO 1000

13 F(3)=DCOS(X(2))
GO TO 1000

20 M=2
IF (JO.EQ.O~ GO TO 21
GOTO (21,22 JO

21 IF(DABS(X(1 5.LT.1.D-15) X(1)=0.DO
F(1)= (10.DO*(X(2)-X(1)*X(1)))
IF(JO.GT.O) GOTO 1000

22 F(2)= (1.DO-X(1))
GO TO 1000

30 M=5
IF(JO.EQ.O) GO TO 31

31 ~~1J~ f~t~?~~~~5~2~~~~,t~(2)-12)**2+X(3)**4+3*(X(4)-11)**2
¢+10*X(5)**6+7*X(6)**2+X(7)**4-4*X(6)*X(7)-10*X(6)-8*X(7)+1000

IF (JO.GT.O) GO TO 110
32 F(2)=(-2)*X(1)**2-3*X(2)**4-X(3)-4*X(4)**2-5*X(5)+127

IF (JO.GT.O) GO TO 110
33 F(3)=(-7)*X(1)-3*X(2)-10*X(3)**2-X(4)+X(5)+282

IF (JO.GT.O) GO TO 110
34 F(4)=(-23)*X(1)-X(2)**2-6*X(6)**2+8*X(7)+196

IF(JO.GT.O) GO TO 110
35 F(5)=(-4)*X(1)**2-X(2)**2+3*X(1)*X(2)-2*X(3)**2-5*X(6)+11*X(7)

110 DO 112 I=2,5
F(I)=(F(1)-10*F(I))

112 CONTINUE
F(l)=(F(l))
GO TO 1000

40 M=4
IF(JO.EQ.O) GO TO 41
GO TO (41 42 43,44) JO

41 F(1)=X(1),X(i)+X(2)iX(2)+2*X(3)*X(3)+X(4)*X(4)-5*X(1)-5*X(2)
C-21*X(3)+7*X(4)+100

IF(JO.GT.O) GO TO 140
42 F(2)=-X(1)*X(1)-X(2)*X(2)-X(3)*X(3)-X(4)*X(4)-X(1)+X(2)-X(3)+8+

CX(4)
IF(JO.GT.O) GO TO 140

43 F(3)=F(2)-X(2)*X(2)-X(4)*X(4)+2*X(1)-X(2)+X(3)+2
IF(JO.GT.O) GO TO 140

44 F(4)=F(2)+X(4)*X(4)-X(1)+X(3)-3
140 ~~IS~~ ci)~ ib'''F (I)

F(I)=(F(I))
142 CONTINUE

F(l)=(F(l))
GO TO 1000

72

c
50 F(1)=100*(X(2)-X(1)**2)**2

F (2)- (1-x (1)) •'d<2
M=2
N=2
GO TO 1000

60 M=3
IF (JO.EQ.O) GO TO 61

61 ~~1f~x~Ys*~Z+~~~1l~2
C2 61 F(1)=X~2)**4+X(1)**2

IF (JO.GT.O) GO TO 1000

c

62 F(2)=(2-X(1))**2+(2-X(2))**2
IF(JO.GT.O) GO TO 1000

63 F(3)=2*DEXP(-X(1)+X(2))
GO TO 1000

70 GO TO 1000
1000 RETURN

END

73

74

c
c
c THIS SUBROUTINE DETERMINES THE DERIVATIVES
c
c

SUBROUTINE DERIV(NOPROB,X,N,XJ,M)
c
c

IMPLICIT REAL.,.'8 (A-H 0-Z)
DIMENSION F(20),X(26),XJ(20,20)

c
c

GO TO (10,20,30,40,50,60,70),NOPROB
c

10 XJ 1' 1 '"'2. DO.,.•x (1) +x ~2~
XJ 1,2 '"'X (1) +2 .DO'''X 2
XJ 2,1 '"'DCOS (X (1))
XJ 2,2 '"'O.DO
XJ 3,1 '"'O.DO
XJ 3,2 :-DSIN(X(2))
M=3
GO TO 1000

c
XJ 1,2 :10.DO

20 XJ!l,ll~ (-20.DO*X(l))
XJ 2,1 :-l.DO
XJ 2,2 ==O.DO
M=2
GO TO 1000

c
30 DO 15 I'"'1t5

XJ I, 1 =2"X (1) -20
XJ 1,2 :10*X(2)-120
XJ I,3 =4·:·xpr~*3
XJ 1,4 '"'6"X 4 -66
XJ I. s =6o···x ~sr.,.·s
XJ 1,6 =14*X 6 -4*X(7)-10
XJ I,7 =4*X(7)**3-4*X(6)-8

15 CONTINUE
XJ 2,1 :XJ 2,1 +40*X(1)
XJ 2,2 =XJ 2,2 + 120-~·x (2) ,h'•3
XJ 2,3 =XJ 2,3 +10
XJ 2,4 :XJ 2,4 +80*X(4)
XJ 2,5 =XJ 2,5 +50
XJ 3,1 =XJ 3,1 +70
XJ 3,2 =XJ 3,2 +30
XJ 3,3 =XJ 3,3 +200*X (3)
XJ 3,4 =XJ 3,4 +10
XJ 3,5 =XJ 3,5 -10
XJ 4' 1 =XJ 4,1 +230
XJ 4,2 =XJ 4,2 +2o.,.•x (2)
XJ 4,6 =XJ 4,6 +120''<X (6)
XJ 4,7 =XJ 4,7 -80
XJ 5,1 =XJ 5,1 +80*X~1~-30*X~2~ XJ 5,2 =XJ 5,2 +20*X 2 -30*X 1
XJ 5,3 =XJ 5,3 +40*X 3
XJ 5,6 =XJ 5,6 +50
XJ 5.7 =XJ 5. 7 -110

c DO 100 I=l ,M
c DO 100 J=1,N
c XJ(I,J)=DABS(XJ(I,J))
c 100 CONTINUE
c

GO TO 1000

c

c

40 N=A

~} i J :~:.~ !il =~ XJ 1,3 =4*X 3 -21
XJ 1,4 =2*X 4 +7
XJ 2,1 =XJ 1,1 +20*X11l+10
XJ 2,2 =XJ 1,2 +20*X 2 -10
XJ 2,3 =XJ 1,3 +20*X 3 +10
XJ 2,4 =XJ 1,4 +20*X 4 -10
XJ 3,1 •XJ 2,1 -20
XJ 3,2 =XJ 2,2 +20*X(2)+10
XJ 3,3 =XJ 2,3 -10
XJ 3,4 =XJ 2,4 +20*X(4)
XJ 4,1 =XJ 2,1 +10
XJ 4,2 =XJ 2,2
XJ 4,3 =XJ 2,3 -10
XJ 4,4 =XJ 1,4 -10
GO TO 1000

50 XJ11,1l=-400*X~1~*(X(2)-X(1)**2) XJ 1,2 =200*(X 2 -X(1)**2)
XJ 2,1 =-2+2*X 1
XJ 2,2 =0
GO TO 1000

60 XJ 1,1 =4*X11l**3 C2 60 XJ 1,2 =4*X 2 **3
C2 XJ 1,1 =2*X 1

xJ 1,2 =2···x 2
XJ 2,1 =-4+2:x(1)
XJ 2, 2 =-4+2--x (2)

c
c

XJ 3,1 =-2'~DEXP(-X(l)+X(2))
XJ 3,2 =-XJ(3,1)
GO TO 1000

70 GO TO 1000

1000 RETURN
END

75

c
c
c
c
C THIS SUBROUTINE DETERMINES THE HESSIAN
c
c
c
c

c

c
c

c

c
c
c

SUBROUTINE HESIAN(NOPROB,X,N,G,M)

IMPLICIT REAL*8(A-H O-Z)
DIMENSION X(20),G(46,20),GG(20)
COMMON /STAGE/ ISTAGE,K1,K2,NBUG

GO TO (10,20,30,40~50,60,70),NOPROB
10 IF (K2.GT.1)GOTO 1~

G~1,1l:2.DO G 1, 2 -l.DO
G 2,1 =l.DO
G 2i2 =2.DO
DO 2 I=3,6
DO 12 J=1, 2
G(I,J)=O.DO

12 CONTINUE
IF (NBUG.EQ.1) WRITE(6~13) (X(I),I=l,2)

13 FORMAT(1H0,2HX=i2(E15.~))
15 G(3,1)=-DSIN(X())

G(6,2)=-DCOS(X(2))

GO TO 1000

20 IF(K2.GT.1) GO TO 1000
MN=M''<N
DO 25 I=1 ,MN
DO 25 J=1,N
G(I,J)=O.DO

25 CONTINUE
G(l,1)=-20.DO
GO TO 1000

30 GG 1 =2.DO
GG 2 =10.DO
GG 3 =12''X(3)>'<*2
GG 4 =6.DO
GG 5 =300*X(5)**4
GG 6 =14.DO
GG 7 = 12''<X (7) >'<>'<2
DO 32 I=1 ,M
DO 32 K=1,N
IK= (I-1) >'<N+K
DO 32 J=l,N
G(IK,J)=O.DO
IF (K.EQ.J) G(IK,J)=GG(J)
IF(J.EQ.6.AND.K.EQ.7) G(IK,J)::4.DO
IF(J.EQ.7.AND.K.EQ.6) G(IK,J)- 4.DO

32 CONTINUE
G (8, 1) =42. DO
G(9,2)=G(9,2)+360*X(2)**2

G 11,4 =86.DO
G 17,3 :G(1763)+200.DO
G 23,2 -30.D -
G 27,6 =134.DO
G 29,1 =82.DO
G 29,2 =-30.DO
G 30,1 =-30.DO
G 30,2 =30.DO
G 31,3 =G(31,3)+40.DO
MTN=M''N
DO 999 I=1,MTN
DO 999 J=l ,N

c 999
G(I,J)=DABS(G(I,J))
CONTINUE

76

c
c

c

GO TO 1000
40 N=4

MN=M*N
DO 42 1=1 ,MN
DO 42 J=1 ,N
G(I,J)=O

42 CONTINUE
G 1,1 =2
G 2,2 =2
G 3,3 =4.
G 4,4 =2
G 5,1 =22
G 6,2 =22
G 7,3 =24
G 8,4 =22
G 9 1 =22
G 16,2 =42
G 11,3 =24
G 12,4 =42
G 13,1 =22
G 14,2 =22
G 15,3 =24
G 16,4 =2

GO TO 1000

50 G 1,1 =-400~(X(2)-3*X(1)**2)
G 1,2 =-4oo•x(1)
G 2, 1 =G (1 , 2)
G 2,2 =200
G 3,1 =2
G 3,2 =0
G 4,1 =0
G 4,2 "'0
GO TO 1000

C2 60 G(2,2)"'12*X(1)**2

77

c
c
c
c
C THIS SUBROUTINE DETERMINES THE SUM OF ACTIVE HESSIAN
c
c
c
c

c

c

SUBROUTINE UPDATE(G,M,N,GLM,HG)

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION GLM(20),HG(20 20),G(40,20)
COMMON /ACTIV/ AS(3,20),NPTR,NXTPTR,NS(3)

DO 10 I=l ,N
DO 10 J=l,N
HG(I,J)=O.DO

10 CONTINUE

IK=O
NAS=NS (NPTR)
DO 30 I=l ,M

CCC NI=AS(NPTR,I)

c
c
c

NI=I
DO 20 K=l N
Nil= (NI-l) '''N
Nl=Nil+K
DO 20 J=l,N
HG(K,J)=GLM(NI)*G(Nl,J)+HG(K,J)

20 CONTINUE
IF(GLM(NI).EQ.O) IK=IK+l

30 CONTINUE

IF (IK.NE.NAS) GO TO 1000
DO 35 I=l,N

c 35
c

HG(I,I)=l.DO
CONTINUE

1000 RETURN
END

78

c
c
c
c
c
C DETERMINES THE MAX VALUE
c
c
c
c

c

c

SUBROUTINE MAX(FUNC,NO,FMAX)

IMPLICIT REAL~'8 (A-H, O-Z)
DIMENSION FUNC(20)

FMAX=DABS(FUNC(1))
DO 10 I=2,NO
IF (FMAX.GE.DABS(FUNC(I))) GO TO 10
FMAX=FUNC (I)

10 CONTINUE

RETURN
END

79

c
c
c
C DETERMINES THE ACTIVE FUNCTIONS
c
c
c
c

c
c

c

SUBROUTINE ACTIVE(FOBJ,F,M)

IMPLICIT REAL 1<8(A-H,O-Z)
DIMENSION F (20)

COMMON /ACTIV/ AS(3,20),NPTR,NXTPTR,NS(3)

NPTR=NXTPTR
NXTPTR=MOD(NXTPTR,3)+1
NS(NPTR)=O
EDIFF=.01DO*FOBJ
DO 10 I=1 ,M
FDIFF=DABS(F(I)-FOBJ)
IF (FDIFF.GT.EDIFF)GO TO 10
NS(NPTR)=NS(NPTR)+1
AS(NPTR,NS(NPTR))=I

10 CONTINUE

RETURN
END

80

c
c
C DETERMINES THE MATRICES FOR THE LINEAR OR QUADRATIC
C LINEAR PROGRAM
c
c
c
c

c

SUBROUTINE COEFF(F,M,XJ,N,XLAMDA,MN,GLM,X,NOPROB)

IMPLICIT REAL1'8 (A-H O-Z)
DIMENSION F(20),XJ(i0,20),XA(30 20),GLM(20),X(20)
DIMENSION AM(40,40) 6Q(40),B(40{40),A(40),HG(20,20),G(40,20)
DIMENSION W(40),Z(4),MBSIS(80J
COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR
COMMON /STAGE/ ISTAGE,K1,K2,NBUG

C DETERMINE Q ('')
c

c

c

c
c
c

c
c
c

MN=M+N1'4+4
MN1=1+N
MN2=M+2'''N+2
MN3=2+N
MN4=MN3+N
N1=N+1

DO 10 I=1 ,N
Q(I)=O.DO
Il=MN-I+1
Q (Il) =XLAMDA
I2=I+MN1
Q(I2)=0.DO
I3=MN2+I
Q(I3)=XLAMDA

10 CONTINUE
Q (MN1) =1. DO
Q(MN4)=-1.DO
DO 20 I=1 ,M
IN3=MN4+I
Q (IN3) =-F (I)

20 CONTINUE
Q!(MN-N-1))=XLAMDA
Q (MN-N-l))=O.DO
Q MN)=O.DO
Q (MN-N))=XLAMDA

INITIALIZE XA (1', ''')

DO 25 I=1,MN2
DO 25 J=1,MN4
XA(I,J)=O.DO

25 CONTINUE

DETERMINE XA (''', ''')

DO 40 J=1,N
DO 30 I=1 ,M
XA(I,J)=-XJ(I,J)
JA1=MN1+J
XA(I,JAl)=XJ(I,J)

30 CONTINUE
JA2=M+J
XA (JA2:. J) =l.DO
JA3=JA..::+N+1
XA ~JA3, J) =-1. DO
XA JA2,JA1)=-1.DO
XA JA3,JA1)=1.D0

40 ~~N~T~~!~!ij:~~fl:g
XA JA2+1 ,MN4 =0
XA JA3+1 ,MN4 =0
DO 50 I=1 ,M
XA (I , MN 1) = 1. DO

81

XA(I ,MN4) =-l.DO
50 CONTINUE

c
C DETERMINE AM("',>'<)
c

c

DO 55 I=l ,MN4
DO 55 J=l ,MN4
AM(I,J)=O.DO

55 CONTINUE
GO T0(56,5l),ISTAGE

C DETERMINE HESSIAN IF CALL FROM STAGE 2
c

c

c

51 K2=K2
CALL HESIAN(NOPROB,X,N,GJM)
CALL UPDATE(G,M,N,GLM,HG

DO 53 I=l,N
I2=MN1+I
DO 53 J=l ,N
AM(I J)=HG(I,J)
AM(I2,J)=-HG(I,J)
J2=MNl+J
AM(I2,J2)=HG(I,J)
AM (I, 12) =-HG (I, J)

53 CONTINUE

C HESSIAN =0 IF CALL IS FROM STAGE 1
c

56 MN5=MN4+1
DO 60 I=MN5,MN
DO 60 J=MN5 MN
AM(I,J)=O.D6

60 CONTINUE
II=O
DO 75 I=MN5,MN
II=II+l
DO 75 J=l ,MN4
AM(I,J)=XA(II,J)
AM(J,I)=-XA(II,J)

75 CONTINUE
IF (NBUG.EQ.l) WRITE(6,61)

61 FORMAT(//15X,8HVECTOR Q)
IF (NBUG.EQ.l) WRITE(6,80) (Q(I),I=l,MN)
DO 70 I=l,MN
IF (NBUG.EQ.l) WRITE(6,80) (AM(I,J),J=l,MN)

80 FORMAT(1H0,20(F6.2))
70 CONTINUE

RETURN
END

82

c
c
c

c
c
c

c

SUBROUTINE HVAL(H,N,GLM,FAPR,F,M,XJ)

IMPLICIT REAL'''8(A-H,O-Z)
DIMENSION H(20),GLM(20) 0F(20) 0XJ(20,20)~FAPRX(20) DIMENSION AM(40,40) 0Q(4) ,B(4 ~40),A(40J
DIMENSION W(40),Z(4),MBSIS(80J
COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR

MN=1 +N

DO 10 I=1 ,N
Il=MN+I
H (I) =Z (I) -z (Il)
WRITE(6 11) H(I)

11 FORMAT(1 I ,2HH=, 10(E12.4))
10 CONTINUE

DO 20 I=1 ,M
I2=2~'MN+I
GLM (I) =Z (I2)

20 CONTINUE

C DETERMINE APPROX. VALUE OF FUNCTION PREDICTED BY LP.
c

DO 40 I=1 ,M
DELTAF=O.DO
DO 30 J=1,N
DELTAF=XJ(I,J)*H(J)+DELTAF

30 CONTINUE
FAPRX(I)=F(I)+DELTAF

40 CONTINUE
CALL MAX(FAPRX,M,FMAX)
FAPR=FMAX
RETURN
END

83

84

SUBROUTINE LEMKE(N,IFLAG)
C ALGORITHM 431
c
C A COMPUTER ROUTINE FOR QUADRATIC AND LINEAR PROGRAMMING PROBLEMS
c
C COMMUNICATIONS OF THE ACM
c
C VOL. 15 SEPT. 1972 PP. 818-820
c
C AUTHOR - ARUNACHALAM RAVINDRAN
c
C MODIFIED BY - PENSRI TEERAVARAPAUG
c
C LANGUAGE- A.N.S.I
C STANDARD FORTRAN
c
C INSTALLATION - OKLAHOMA STATE UNIVERSITY
c
C DATE - DECEMBER 1974
c
C REMARKS
C SINCE THIS PROGRAM IS COMPLETE IN ALL RESPECTS,IT CAN BE
C RUN AS IT IS WITHOUT ANY ADDITIONAL MODIFICATION OR
C INSTRUCTION.IN SUCH CASE FOLLOW THE INPUT FORMAT AS GIVEN
c
C PROGRAM FOR SOLVING LINEAR AND QUADRATIC PROGRAMMING
C PROBLEMS IN THE FORM W=M'''Z+Q, Q. Z=O, W AND Z NONNEGATIVE
C BY LEMKE/S ALGORITHM.
c
C MAIN PROGRAM WHICH CALLS THE SIX SUBROUTINES-MATRX,
C INITL,NEWBS,SORT,PIVOT AND PRINT IN PROPER ORDER.
c

c
c

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION AM(40,40)~Q(40),B(405 40),A(40) DIMENSION W(40),Z(4u),MBSIS(80

COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR

C DESCRIPTION OF PARAMETERS IN COMMON
C AM A TWO DIMENSIONAL ARRAY CONTAINING THE
C ELEMENTS OF MATRX M.
C Q A SINGLY SUBSCRIPTED ARRAY CONTAINING THE
C ELEMENTS OF VECTOR Q.
C L1 AN INTEGER VARIABLE INDICATING THE NUMBER OF
C ITERATIONS TAKEN FOR EACH PROBLEM.
C B A TWO DIMENSIONAL ARRAY CONTAINING THE
C ELEMENTS OF THE INVERSE OF THE CURRENT BASIS.
C W A SINGLY SUBSCRIPTED ARRAY CONTAINING THE VALUES
C OF W VARIABLES IN EACH SOLUTION.
C Z A SINGLY SUBSCRIPTED ARRAY CONTAINING THE VALUES
C OF Z VARIABLES IN EACH SOLUTION.
C NL1 AN INTEGER VARIABLE TAKING VALUE 1 OR 2 DEPEND-
C ING ON WHETHER VARIABLE W OR Z LEAVES THE BASIS
C NE1 SIMILAR TO NL1 BUT INDICATES VARIABLE ENTERING
C NL2 AN INTEGER VARIABLE INDICATING WHAT COMPONENT
C OF W OR Z VARIABLE LEAVES THE BASIS.
C NE2 SIMILAR TO NL2 BUT INDICATES VARIABLE ENTERING
C A A SINGLY SUBSCRIPTED ARRAY CONTAINING THE
C ELEMENTS OF THE TRANSFORMED COLUMN THAT IS
C ENTERING THE BASIS.
C IR AN INTEGER VARIABLE DENOTING THE PIVOT ROW AT
C EACH ITERATION. ALSO USED TO INDICATE TERMINA-
C TION OF A PROBLEM BY GIVING IT A VALUE OF 1000.
C MBSIS A SINGLY SUBSCRIPTED ARRAY-INDICATOR FOR THE
C BASIC VARIABLES. TWO INDICATORS ARE USED FOR
C EACH BASIC VARIABLE-ONE INDICATING WHETHER
C IT IS A W OR Z AND ANOTHER INDICATING WHAT
C COMPONENT OF W OR Z.
c

cc
IOUT=6
IN=S

CCREAD IN THE VALUE OF VARIABLE IP INDICATING THE

CCNUMBER OF PROBLEMS TO BE SOLVED.
cc
CC READ(IN,1030) IP
cc
CCVARIABLE NO INDICATES THE CURRENT PROBLEM BEING SOLVED
cc

IP=1
NO=O

1000 NO=N0+1
IF(NO-IP)1010i1010,1070

1010 WRITE(IOUT,10 0)
1020 FORMAT (/1H0,10X,11HLEMKE CALL)

cc
CC READ IN THE SIZE OF THE MATRIX M
cc
CC READ(IN,1030)N
CC WRITE(IOUT~1030)N
CC 1030 FORMAT (I2J
c
C PROGRAM CALLING SEQUENCE
c

CALL MATRX (N)
c
C PARAMETER N INDICATES THE PROBLEM SIZE
c

CALL INITL (N)
c
C SINCE FOR ANY PROBLEM TERMINATION CAN OCCUR IN INITIA,
C NEWBAS OR SORT SUBROUTINE,THE VALUE OF IR IS MATCHED WITH
C 1000 TO CHECK WHETHER TO CONTINUE OR GO TO NEXT PROBLEM.
c

IF(IR-1000)1040,1000,1040
1040 CALL NEWBS (N)

IF(IR-1000)1050,1000,1050
1050 CALL SORT (N IFLAG)

IF(IR-1000)1660,1000,1060
1060 CALL PIVOT (N)

GO TO 1040
1070 RETURN

END

85

SUBROUTINE MATRX (N)
c
C PURPOSE - TO INITIALLIZE AND READ IN THE VARIOUS INPUT DATA
c

c
c

cc

IMPLICIT REAL''<8 (A-H, O-Z)
DIMENSION AM(40,40) 6Q(40),B(40~40) ,A(40)
DIMENSION W(40) ,Z(4),MBSIS(80)

COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR

IOUT=6
IN=5
RZERO=O.O
RONE=l.O

CC READ THE ELEMENTS OF M MATRX COLUMN BY COLUMN
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
c

DO 2010 J=l N
READ(IN,2600) (AM(I,J) ,I=1,N)

2000 FORMAT (7F10.5)
2010 WRITE(IOUT,2000) (AM(I,J),I=1,N)

READ THE ELEMENTS OF Q VECTOR

READ (IN, 2000) (Q (I) , I= 1, N)
WRITE(IOUT,2000) (Q(I),I=l,N)

C IN
c

ITERATION l,BASIS

DO 2030 J=l ,N

INVERSE IS AN IDENTITY MATRIX.

DO 2020 I=l,N
2020 B(J{I)=RZERO
2030 B(J,J)=RONE

RETURN
END

86

SUBROUTINE INITL (N)
c
C PURPOSE TO FIND THE INITIAL ALMOST COMPLEMENTARY SOLUTION.
C BY ADDING AN ARTIFICIAL VARIABLE ZO.
c

c

c

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION AM(40,40) 6Q(40),B(40~40),A(40) DIMENSION W(40),Z(4),MBSIS(80J

COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR
IOUT=6
RZERO=O.O
TNONE=-1.0

C SET ZO EQUAL TO THE MOST NEGATIVE Q(I)
c

c

I=1
J=2

3000 IF(Q(I)-Q(J))3010,3010,3020
3010 GO TO 3030
3020 I=J
3030 J=J+1

IF(J-N)3000,3000,3040

C UPDATE Q VECTOR
c

c

3040 IR=I
Tl=-Q (IR)
IF(T1)3120,3120,3050

3050 DO 3060 I=1,N
Q (I) =Q (I) +Tl

3060 CONTINUE
Q (IR) =Tl

C UPDATE BASIS INVERSE AND INDICATOR VECTOR
C OF BASIC VARIABLES.
c

c

DO 3070 J=1,N
B~J~IR)=TNONE w J =Q(J)
Z J =RZERO
MBSIS (J) =1
L=N+J
MBSIS(L)=J

3070 CONTINUE
NL1=1
L=N+IR
NL2=IR
MBSIS(IR)=3
MBSIS(L)=O
W(IR)=RZERO
ZO=Q (IR)
L1=1

C PRINT THE INITIAL ALMOST COMPLEMENTARY SOLUTION
c
C WRITE(IOUT,3080)
C3080 FORMAT (3(/),5X,29HINITIAL ALMOST COMPLEMENTARY
C * 8HSOLUTION)
C DO 3100 I=1,N
C WRITE(IOUT,3090)I,W(I)
C3090 FORMAT (10X,2HW(,I4,2H)=,F15.5)
C3100 CONTINUE
C WRITE(IOUT,3110)ZO
C3110 FORMAT (10X,3HZO=,F15.5)

RETURN
3120 WRITE(IOUT,3130)
3130 FORMAT (///5X,36HPROBLEM HAS A TRIVIAL COMPLEMENTARY ,

* 23HSOLUTION WITH W=Q, Z=O.)
CALL PRINT(N)
IR=lOOO
RETURN
END

87

SUBROUTINE NEWBS (N)
c
C PURPOSE - TO FIND THE NEW BASIS COLUMN TO ENTER IN
C TERMS OF THE CURRENT BASIS.
c

c
c

c

IMPLICIT REAL'''8 (A-H, 0-Z)
DIMENSION AM(40,40) 6Q(40),B(40~40),A(40) DIMENSION W(40),Z(4),MBSIS(80J

COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,Ll,NL1,NL2,NE1,NE2,IR

IOUT=6
RZERO=O.O

C IF NL1 IS NEITHER 1 NOR 2 THEN THE VARIABLE ZO LEAVES THE
C BASIS INDICATING TERMINATION WITH A COMPLEMENTARY SOLUTION
c

c

IF(NL1-1)4000,4030,4000
4000 IF(NL1-2)4010~4060,4010
4010 WRITE(IOUT,40~0)
4020 FORMAT (///5X,22HCOMPLEMENTARY SOLUTION)

CALL PRINT(N)
IR=1000
RETURN

4030 NE1=2
NE2=NL2

C UPDATE NEW BASIC COLUMN BY MULTIPLYING BY BASIS INVERSE.
c

4040

4050

4060

DO 4050 I=1,N
Tl=RZERO
DO 4040 J=1, N

IF (DABS(B~I,J)).LT.1.0D-15) B(I,J)=O.DO
IF(DABS(AM J,NE2)).LT.1.D0-15) AM(J,NE2)=0.DO

Tl=Tl-B I, J) '''AM (J, NE2)
A (I) =Tl
CONTINUE

RETURN
NE1=1
NE2=NL2
DO 4070 I=1,N

A (I) =B (I, NE2)
4070 CONTINUE

RETURN
END

88

SUBROUTINE SORT (N,IFLAG)
c
C PURPOSE - TO FIND THE PIVOT ROW FOR NEXT ITERATION BY THE
C USE OF (SIMPLEX-TYPE) MINIMUM RATIO RULE.
c

c
c

IMPLICIT REAL''<8 (A-H, O-Z)
DIMENSION AM(40,40) 6Q(40),B(40540),A(40)
DIMENSION W(40),Z(4),MBSIS(80

COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR

IOUT=6
I=1

5000 IF(A(I))5010,5010,5030
5010 I=I+1

IF(I-N)5020,5020,5100
5020 GO TO 5000
5030 T1=Q(I)/A(I)

IR=I
5040 I=I+1

IF(I-N)5050 5050 5090
5050 IF(A(I))5066,5066,5070
5060 GO TO 5040
5070 T2=Q(I)/A(I)

IF(T2-T1)5080,5040,5040
5080 IR=I

Tl=T2
GO TO 5040

5090 RETURN
c
C FAILURE OF THE RATIO RULE INDICATES TERMINATION WITH
C NO COMPLEMENTARY SOLUTION.
c

5100 WRITE(IOUT,5110)
5110 FORMAT (///5X,37HPROBLEM HAS NO COMPLEMENTARY SOLUTION)

CALL PRINT(N)
IFLAG=1
IR=1000
RETURN
END

89

SUBROUTINE PIVOT (N)
c
C PURPOSE - TO PERFORM THE PIVOT OPERATION BY UPDATING THE
C INVERSE OF THE BASIS AND 0 VECTOR.
c

c
c

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION AM(40,40) 0Q(40),B(40540),A(40)
DIMENSION W(40),Z(4),MBSIS(80

COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR

DO 6000 I=1,N
6000 B(IR,I)=B(IR,I)/A(IR)

Q(IR)=Q(IR)/A(IR)
DO 6030 I=1 N

IF(I-IR)6010,6030,6010
6010 Q(I)=Q(I)-Q(IR)*A(I)

6020
6030

c

DO 6020 J=1,N
B(I,J)=B(I,J)-B(IR,J)*A(I)
CONTINUE

CONTINUE

C UPDATE THE INDICATOR VECTOR OF BASIC VARIABLES
c

NLl=MBSIS (IR)
L=N+IR
NL2=MBSIS(L)
MBSIS(IR)=NE1
MBSIS(L)=NE2
Ll=Ll +1
RETURN
END

90

SUBROUTINE PRINT (N)
c
C PURPOSE - TO PRINT THE CURRENT SOLUTION TO COMPLEMENTARY
C PROBLEM AND THE ITERATION NUMBER.
c

c
c

IMPLICIT REAL~'8 (A-H, O-Z)
DIMENSION AM(40,40) 0Q(40),B(40~40),A(40) DIMENSION W(40),Z(4),MBSIS(80J

COMMON /LEM/AM,B,Q,A,W,Z,MBSIS,L1,NL1,NL2,NE1,NE2,IR

IOUT=6
RZERO=O.O
WRITE(IOUT,7000)L1

7000 FORMAT (10X,13HITERATION NO.,I4)
I=N+1
J=1

7010 K1=MBSIS(I)
K2=MBSIS(J)
IF(Q(J))7020,7030,7030

7020 Q(J)=RZERO
7030 IF(K2-1)7040 7060,7040

C7040 WRITE(IOUT,7050)K1 Q(J)
C7050 FORMAT (10X,2HZ(,I402H)=,F15.5)

7040 IF(K1.EQ.O) GO TO 7 80
Z (K1) =Q (J)
GO TO 7080

C7060 WRITE(IOUT,7070)K1 Q(J)
C7070 FORMAT (10X,2HW(,I402H)=,F15.5)

7060 IF(Kl.EQ.O) GO TO 7 80
W (Kl) =Q (J)

7080 I=I+l
J=J+1
IF(J-N)7010,7010,7090

7090 RETURN
END

91

VITA

Rosemary fernandes

Candidate for the Degree of

Master of Science

Thesis: A SURVEY OF NON-SMOOTH OPTIMISATION METHODS AND AN
EVALUATION OF A METHOD FOR MINIMAX OPTIMISATION

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in kerela, India, August 6, 1955,
the daughter of Mr and Mrs P. J. Thomas.

Education: Graduate from Convent of Good Shepherd July
1972; received Bachelor of Technology in Civil
Engineering 1977 from Ihdian Institute of Tech
nology, Madras, India; received Master of
Engineering in Structure Engineering in 1979 from
Asian Institute of Technology, Bangkok, Thailand;
completed requirements for the Master of Science
degree in Computer Science at Oklahoma State
University Stillwater, Oklahoma inD2ce~ber 1985.

Professional Experience: Research Assistant,
International Ferrocement Information Center,
Asian Institute of Technology, September 1978, to
April 1979; Assistant to Chief Structural
Engineer, Binnie dan Rakaan, Malaysia, September
1980, to September 1981.

