
 MUTUAL AUTHENTICATION PROTOCOLS

 FOR

RFID SYSTEMS

 By

 ASRAR AHMED OMER

 Masters of Science in Computer Science

 Oklahoma State University

 Tulsa, Oklahoma

 2007

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 December, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215333494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

 MUTUAL AUTHENTICATION PROTOCOLS

 FOR

 RFID SYSTEMS

 Thesis Approved:

 Dr. Johnson Thomas

 Thesis Adviser

 Dr Istvan Joyner

 Dr. Debao Chen

 Dr. A. Gordon Emslie

 Dean of the Graduate College

 iii

ACKNOWLEDGEMENTS

I would like to thank all my committee members who helped me in completing

my thesis. Specially, Dr Johnson Thomas, who was my inspiration, he helped me in every

step of the way. I like to personally thank him for all of his guidance and help.

 I would like to thank all my friends specially Mustafa Hilal Qureshi and ER Sabri

who helped me keep up my morale and gave me lot of good memories.

 I would like to thank from the bottom of my heart my brother Masroor Ahmad for

his support and help to reach this goal. I would like to thank my beloved parents Mr.

Mehboob Ahmed (Late) and Mrs. Khalida Mehboob for all their support, help and

prayers.

 In the end I would like to thank ALLAH for giving me the patience and guidance

that was needed to complete my research.

 iv

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION ...1

 1.1 RFID Overview..1
 1.2 RFID Components ...3

1.2.1 Transponder or RFID Tag...4
1.2.2 Transceiver or RFID Reader...5
1.2.3 Back-end Servers (or Back-end Databases)..6
1.2.4 Operating Frequencies ..6

 1.3 Advantages of RFID System ...7
 1.4 Terminology and Basic Definitions ...8

 1.4.1 RFID System...8
 1.4.2 Symmetric-Key Cryptography..8
 1.4.3 Asymmetric-Key Cryptography..8
 1.4.4 Authentication...9
 1.4.5 Challenge-response Protocol ..9
 1.4.6 Hash Function ...10
 1.4.7 Random Number Generator..11
 1.4.8 Pseudo Random Functions..11

2. SECURITY AND PRIVACY ISSUES ...14

 2.1 Security Issues ...14
 2.2 Privacy Issues...14
 2.3 Security Considerations ...15

 2.3.1 Confidentiality ..15
 2.3.2 Authenticity...15
 2.3.3 Availability ...16
 2.3.4 Anonymity ..16
 2.3.5 Integrity...16
 2.3.6 Indistinguishability ...17

2.3.7 Forward Security...17
2.4 Risks and Threats...17

2.4.1 Physical Attacks..17
2.4.2 Denial of Service (DoS Attack) ..17
2.4.3 Counterfeiting ...17
2.4.4 Spoofing..18
2.4.5 Eavesdropping...18

 v

Chapter Page

2.4.6 Database Desynchronization...18
2.4.7 Traffic Analysis ..18

2.5 RFID Standards..18
2.5.1 Contactless Integrated Circuit Cards ..19
2.5.2 RFID in Animals...20
2.5.3 Item Management ...20
2.5.4 Near-Field Communication (NFC) ...20
2.5.5 Electronic Product Code (EPC) ..21

3. LITERATURE REVIEW ..23

 3.1 Privacy Protection Approaches..23

 3.1.1 Kill Command...23
3.1.2 Faraday Cage ..23
3.1.3 Active Jamming ..23
3.1.4 Blocker Tag...24

 3.2 Bill of Rights..24
 3.3 Security Protection Approaches...25

3.3.1 Non-Cryptographic Primitives..25
3.3.1.1 Key Permutation ..25

3.3.2 Hash Functions Schemes ..26
3.3.2.1 Hash-Lock Scheme ..26
3.3.2.2 Extended Hash-Lock Scheme..27
3.3.2.3 Hash-based Varying Identifier ...29
3.3.2.4 Hash Chain-based Scheme...30
3.3.2.5 Mutual Authentication Scheme based on Synchronized Secret31

4. PROBLEM STATEMENT..33

5. PROPOSED METHODOLOGY...36

 5.1 Protocol 1 ...37

5.1.1 Assumptions..37
5.1.2 Authentication...37

 5. 2 Protocol 2 ..42
 5.2.1 Assumptions..42
 5.2.2 Authentication...42

 5.3 Protocol 3 ...46
 5.3.1 Assumptions..46
 5.3.2 Authentication...46

 5.4 Protocol 4 ...50
5.4.1 Assumptions..50

 5.4.2 Authentication...50
5.5 Protocol 5 ...55

 vi

Chapter Page

5.5.1 Assumptions..55
5.5.2 Authentication...55

6. SECURITY ANALYSIS

 6.1 Security Analysis of Protocol 1 ...60
 6.2 Security Analysis of Protocol 2 ...64
 6.3 Security Analysis of Protocol 3 ...67
 6.4 Security Analysis of Protocol 4 ...70
 6.5 Security Analysis of Protocol 5 ...74

7. PERFORMANCE ANALYSIS

 7.1 Performance Analysis of Protocol 1 ..79
 7.2 Performance Analysis of Protocol 2 ..80
 7.3 Performance Analysis of Protocol 3 ..81
 7.4 Performance Analysis of Protocol 4 ..81
 7.5 Performance Analysis of Protocol 5 ..82

8. APPLICATION OF PROPOSED SECURO RFID PROTOCOL...........................85

 8.1 Supply Chain Application..86

8.1.1 System Model ...87
8.1.2 System Setup...87

8.1.2.1 Tag Initialization..88
8.1.2.2 Database Initialization ...88
8.1.2.3 RFID Read/Write Protocol ..89

8.1.3 Security Requirements in Supply Chain ...90
8.1.3.1 Visibility ..90
8.1.3.2 Authoritative Access..90
8.1.3.3 Authenticity of Tags ..91
8.1.3.4 Unlinkablility ...91

9. CONCLUSION AND FUTURE WORK ..92

REFERENCES ..94

 vii

LIST OF TABLES

Table Page

 1. Tag Classification ..4

 2. Frequency Classification ..7

 3. Core Comparison ...35

 4. Comparison of Security Requirements between Proposed Protocols77

 5. Comparison of Security Requirements with Other Protocols78

 6. Computational Loads and Memory Requirement for Proposed Protocols83

 7. Comparison of Computational Load and Memory Requirement

 with Other Protocols ...84

 viii

LIST OF FIGURES

Figure Page

 1.1 RFID System...3

 1.2 A Philips 1. Code RFID Tag...5

 1.3 A Pseudo Random Function (PRF)...12

 2.0 RFID technology standards and frequency bands ..19

 3.1 Steps 1 – 4 of VB protocol 1...26

 3.2 Hash-Locking: A reader unlocks a hash-locked tag. ..27

 3.3 Randomized Hash-Locking: A reader unlocks a tag
 whose ID is k in the randomized hash-lock scheme ...28

 3.4 Hash-based Enhancement using Varying Identifiers ..30

 3.5 Hash Chain Scheme ..31

 5.1 Protocol 1 (PRNG on Reader Side) ..41

 5.2 Protocol 2 (PRNG on Reader and Tag Side) ..45

 5.3 Protocol 3 (PRNG on Reader Side and Updating after Authentication)49

 5.4 Pseudo Random Seed production from Master Key ..50

 5.5 Creating Message α from PRF ..51

 5.6 Creating Message β from PRF ..53

 5.7 Protocol 4 (Using Tag Master Key) ...54

 5.8 Creating Message α from PRF ..56

 5.9 Creating Message β from PRF ..57

 ix

Figure Page

 5.10 Protocol 5 (Using Universal Master Key) ...59

 8.1 Networked RFID Systems ...85

 8.2 Networked RFID System in Supply Chain ..86

 x

NOMENCLATURE

C Counter value

DoS Denial of service attack

fk (x) Pseudo-random function with x as variable and k as secret seed

ID static identification number

K Master key

K1 first associated key value

K2 second associated key value

K1last first associated key value used at last attempt

K2last second associated key value used at last attempt

n pseudo-random number

n' pseudo-random number generated by attacker

PRF Pseudo-random function

PRNG Pseudo-random number generator

TIN tag-index number

XOR Exclusive-OR operation

 1

CHAPTER 1

INTRODUCTION

1.1 RFID Overview

Radio Frequency Identification (RFID) is a type of automatic identification

system. The purpose of an RFID system is to enable data to be transmitted to a portable

device, called a tag, which is read by an RFID reader and processed according to the

needs of a particular application. The data transmitted by the tag may provide

identification or location information or specifics about the product tagged, such as price,

color, date of purchase, etc. RFID aims to identify objects remotely, with neither physical

nor visual contact.

RFID system consists of three components:

1. An antenna or coil

2. A transceiver (with decoder)

3. A transponder (RF tag) electronically programmed with unique

information.

The antenna emits radio signals to activate the tag and read and write data to it.

Antennas are the conduits between the tag and the transceiver, which controls the

system’s data acquisition and communication. When an RFID tag passes through the

electromagnetic zone, it detects the reader’s activation signal. The reader decodes the

 2

data encoded in the tag’s integrated circuit (silicon chip) and the data is passed to the host

computer for processing.

The use of RFID is tracking applications first appeared during the 1980’s even

though RFID was developed by allied forces in WWII so radar operators could

distinguish between friendly and enemy aircraft [16]. RFID systems have also been used

for a few years in commercial applications, for example in contact-less smart cards used

on public transport. However, the boom that RFID technology enjoys today is chiefly due

to the standardization and development of low-cost devices, so-called tags. This new

generation of RFID tags has opened the door to various applications. For example in

supply chains, to locate people, to combat the counterfeiting of expensive items, to trace

livestock, to label books in libraries, etc.

However, theses tags also bring with them security and privacy issues. Security

issues rely on classic attacks, e.g., denial of service, traffic analysis, spoofing,

impersonation of tags or channel eavesdropping. These attacks are rendered more

practicable because of the tag’s lack of computational and storage capacity.

RFID raises issues linked to privacy, in particular the problem of traceability of

objects and thus indirectly of people. RFID tags would permit everybody to track people

using only low-cost equipment. This is strengthened by the fact that tags can not be

switched off, they can be easily hidden, their lifespan is not limited, and analyzing the

collected data can be efficiently automated. RFID tags can be attached without

knowledge of consumer and this is major concern for privacy advocacy groups. The

potential for widespread dissemination, misuse, unauthorized access, and disclosure of

 3

personal information about consumers would increase exponentially and will create a

new source of privacy concern for the public.

1.2 RFID Components

RFID system is an information tracking system that consists of wireless tag T,

wireless reader R, and back-end database, B as shown in Figure 1.1.

Tag: T is comprised of an IC chip and antenna, and sends information to the RFID reader

in response to a wireless probe.

Reader: R is a device that transmits a radio frequency probe signal to T, receives the

information sent by T, and sends the information to the back-end database, B.

Back-End: B is a secure server that has a database and manages various types of

information related to each T, e.g., ID, reader location, read time, and temperature of

sensor. B resolves the ID of T from the information sent by T through authenticated R.

Figure 1.1: RFID System

As shown in the above figure when a reader probes a number of tags, it sends

energy or signal in the form of a radio frequency. Tags on getting the signal energy wake

up and perform the task within the timeframe given in the clock, as requested by the

reader.

 4

1.2.1 Transponders or RFID Tag:

Tags may either be actively or passively powered. Active tags contain an on-

board power source, such as a battery, wile passive tags must be inductively powered via

an RF signal from the reader. Active tags may be read from a greater distance than

passive tags. Active tags may also record sensor readings or perform calculations in the

absence of a reader. Passive tags can only operate in the presence of a reader and are

inactive otherwise.

Tags are categorized into several types according to their physical characteristics

and their applications. ISO/IEC categorizes RFID tags into type A and type B according

to air interface since the characteristics of tags are mostly very different according to used

radio frequency. On the other hand, EPC Global divides it into six categories, Class 0-1,

Class 2, Class 3, Class 4 and Class 5 as a defacto standard. Class 0 and 1 are types of

read only passive identity tags. Class 2 is passive too with additional functionality like

memory or encryption. Class 3 is semi-passive tags and may support broadband. Class 4

is type of active tags and may be capable of broadband peer-to-peer communication with

other active tags in the same frequency band and with readers. Class 5 is active tags and

can support power Class 0-3 tags and communicate with Class 4 tags and with each other

wirelessly. Tags can also be classified by their functionality [17]. Table 1 show five

classes based on functionality defined by MIT Auto-ID Center.

Table 1: Tag Classification [17]

Class Nickname Memory Power Source Features

0 Anti-Shoplift
Tags

None Passive Article Surveillance

1 EPC Read-Only Any Identification Only

 5

2 EPC Read-Write Any Data Logging

3 Sensor Tags Read-Write Semi-Passive or
Active

Environmental
Sensors

4 Smart Dust Read-Write Active Ad Hoc Networking

Universal deployment of RFID systems is nowadays mainly limited due to

security and privacy concerns along with tag cost. Significant market penetration can be

expected only if tags are priced below US$0.1 – 0.05 [3]. In this price range, tags come

with following typical characteristics:

• Limited storage capacity.

• Limited computation power.

• Limited communication capabilities.

• No temper resistance.

This price barrier for low-cost tags restricts the range of gates in a tag number

from 500 – 5000, and the number of gates for security purpose is limited to from 200 -

2000 [2]. Due to this limit, it is infeasible to use the existing cryptographic algorithms.

[1].

Figure 1.2: A Philips 1.Code RFID Tag [27]

1.2.2 Transceivers or RFID Reader:

 6

A Reader may contain internal storage, processing power, or an interface to back-

end databases to provide additional functionality. Readers may use tag contents as a look-

up key into a database storing product information, tracking logs, or key management

data.

The communication channel between tags and readers is generally considered

insecure since the channel is based on the air interface. On the other hand, the

communication channel between readers and back-end servers is considered as a secure

channel. Readers can be either peripheral or a handheld device depending on the wireless

network.

1.2.3 Back-end Servers (or Back-end Databases):

Back-end servers receive data from readers, enter the data into a database of their

own, and provide access to the data in a number of forms that are useful to the sponsoring

organization [17]. The back-end database may also perform functions on behalf of either

the readers or tags. It is assumed that the communication channel between readers and

back-end servers is secure channel like the existing VPN or SSL.

1.2.4 Operating Frequencies:

RFID tags and readers operate within several distinct frequency ranges, each of

which is intended for specific application characteristic. According to the application

purposes [17], table 1 shows the characteristics of frequencies that are available for RFID

system.

 7

Table 2: Frequency Classification [17]

Devices Bandwidth Typical Frequency Application Example

Low 30 – 300
KHz

125 – 134 KHz Short Range Applications:
Live stock Identification,
Antitheft Systems

High 3 – 30 MHz 13.56 MHz Smart Card, Smart Card
Label Applications, Baggage
Tracking, Small Product
Labeling

Very High 300 MHz –
3 GHz

U.S.A.: 902 -928 MHz or
2.45 GHz, EU: 865 -868
MHz or 5.8 GHz, Japan:
950 – 956 MHz, Korea:
908.5 – 914 MHz

Toll Collection Applications

1.3 Advantages of RFID System

 The automated identification of objects with electromagnetic fields is the major

purpose of RFID technology. It is expected that this technology will at least partly

replace optical barcodes in the future. The potential benefits of a pervasive low-cost

RFID system are enormous. World wide, over 5 billion barcodes are scanned daily [2].

The major advantages of RFID systems over optical identification with barcodes are:

• The operation without line-of-sight.

• The possibility to rewrite and modify data.

• The operation without any proper positioning.

• Tags can be scanned from distance of several meters.

• Faster than scanning barcodes.

A significant growth of the RFID market is predicted and a major driver for this

rate is the falling prices of RFID – transponders.

 8

There are various applications for low-cost tags such as logistics, point-of-sale

checkouts, animal identification, item management in libraries, and waste management.

More sophisticated RFID tags application includes health care, ticketing, road toll,

electronic purse, access control for facilities, tracking people, key, RFID passports, anti-

theft device and protection against counterfeiting. These RFID tags have the capability to

replace magnetic stripe cards and classical contact smartcards.

Postal and courier mail services are expected to become the second largest market

for RFD item level tagging following the retail sector.

1.4 Terminology and Basic Definitions

 Some of the most commonly used terms are defined below, which will help in

understanding the RFID system and its security models.

1.4.1 RFID System:

Such systems in which wireless devices transmit data and energy via radio

frequency are called RFID systems.

1.4.2 Symmetric-Key Cryptography:

The signer and the verifier share a secret key, whereas the key exchange problem

is solved between them. A single secret key is used for both encryption and decryption.

1.4.3 Asymmetric-Key Cryptography:

 9

Signer has a pair of cryptographic keys – a public key and a private key. The

private key is kept secret in the signer’s environment, while the public key is widely

distributed. A message encrypted with the public key can be decrypted only with the

corresponding private key.

1.4.4 Authentication:

It is assurance of the identity of an entity at the other end of a communication

channel. The protocol where one entity A is authenticated to entity B is called unilateral

authentication. If both entities authenticate to each other, it’s called mutual

authentication.

1.4.5 Challenge-response Protocol:

In challenge-response protocols the verifier sends a challenge request to the

claimant. This challenge can be a randomly chosen number or string which varies from

one request to the other. The claimant “proves” its identity by manipulating the challenge

using the secret which is associated with that entity. It is important not to show this secret

to the verifier during the communication. After receiving the response from the claimant

the verifier validates the response and can be sure whether the claimant knows the secret.

One-way Challenge-response Protocol: In this a timestamp mechanism is used.

The signer A sends the encrypted timestamp tA to the claimant B who decrypts it and

verifies that the timestamp is acceptable.

A → B: EK (tA)

 10

Two-way Challenge-response Protocol: Its makes use of random numbers. In the

case of two-way unilateral authentication, the claimant B must first send a random

number rB to the signer A who encrypts it and sends it back. Verification works by

decrypting the response and comparing it with the random number sent.

A← B: rB

A → B: EK (rB)

In the case of two-way mutual authentication, the entity A must encrypt the

timestamp tA and a randomly selected number rA and send it to the second party B. Then,

the random number rA is encrypted and sent back to the originator who decrypts the

message and compares the result with the send random number.

A → B: E K (tA, rA)

A ← B: E K (rA)

1.4.6 Hash Function:

The basic operation of hash functions is to map an element of larger domains to

an element of smaller domains. This property is utilized in many non-cryptographic

computer applications like storage allocation to improve performance. The purpose of

hash functions in the cryptographic sense is to provide data integrity and message

authentication.

 A one-way hash function (OWHF) is a function which offers preimage and

second preimage resistance. A collision resistant hash function CRHF is a function which

is second preimage resistant and collision-freshness. Hash chain is a variant of hash

functions and utilized in various areas.

 11

1.4.7 Random Number Generator:

Random number generation is used in a wide variety of cryptographic operations,

such a key generation and challenge-response protocols. A random number generator is a

function that outputs a sequence of 0s and 1s such that at any point, the next bit cannot be

predicted based on the previous bits. However, true random number generation is

difficult to do on a computer, since computers are deterministic devices. Thus, if the

same random generator is run twice, identical results are received. True random number

generators are in use, but they can be difficult to build. They typically take input from

something in the physical world, such as the rate of neutron emission from a radioactive

substance or a user’s idle mouse movements. Because of these difficulties, random

number generation on a computer is usually only pseudo-random number generation. A

pseudo-random number generator PRNG produces a sequence of bits that has a random

looking distribution. With each different seed the pseudo-random number generator

generate a different pseudo-random sequence. With a relatively small random seed a

pseudo-random generator can produce a long apparently random string. Pseudo-random

number generators are often based on cryptographic functions like block ciphers or

stream ciphers.

1.4.8 Pseudo Random Functions:

A PRF is a deterministic function f: {0,1}n � {0,1}n which is efficient (i.e.

computable in polynomial time) and takes two inputs x, k belongs {0,1}n. We actually

only consider x to be a variable and let k be a hidden random seed and function index, f

(x, k) = fk (x).

 12

 x fk (x)

 k

Figure 1.3: A Pseudo Random Function (PRF)

 Most of the currently available protocols use hash functions, which are expensive

in terms of chip cost, thus hindering the widespread use of this system. If we can reduce

the cost by using simpler approaches than hash functions, the chip cost will be greatly

reduced. Another problem seen in most protocols is database desynchronization when an

attacker is able to change the values on either the database or at the tag end. Some attacks

may even make the tag non-functional. Some protocols even suffer from scalability

problems as the database has to compute for a particular tag.

 Our approach uses primitive operations, pseudo-random generator (PRNG) and

pseudo-random function (PRF), which can greatly reduce the cost. The first three

protocols use a random number generator. Only one of these uses the PRNG on the tag

side. Identifying the tag with their numbers (or Tag Identification Number) in the

database can solve the scalability problem. By saving the previous values of keys in the

database solves the problem of database desynchronization.

 This thesis is organized as follows: In chapter 2, we look at the security and

privacy issues, as well as the risks and threats currently faced by an RFID system. In

chapter 3, review work done by other scientists and point out some of the deficiencies in

their protocols. In chapter 4, we present the problem statement, that is, we describe the

security problems investigated in this thesis. In chapter 5, we propose five new

lightweight and ultra lightweight protocols for RFID systems. In chapters 6 and 7, we do

f

 13

a security and performance analysis of all the proposed protocols. In chapter 8, we apply

one of our protocols to a supply chain system. In the final chapter, we provide

conclusions to the work done.

 14

CHAPTER 2

SECURITY AND PRIVACY ISSUES

2.1 Security Issues

From the viewpoint of real world applications, the technical design of RFID

readers and tags involve many risks. Existing RFID systems are vulnerable to many

security risks and imply potential privacy problems, since it is very hard to implement the

existing cryptographic algorithms due to the restricted computational power and the

memory size of low-cost RFID tags. A common technology is used in both retail and

library applications. Retail tags can be read at ten times the distance (20-30feet) of library

tags (2-4feet). In addition, retail users of RFID will use the Electronic Product Code

(EPC), a 96-bit number designed to uniquely label individual items. EPC uses will have

access to the EPC Discovery Service, an aggregate database of tags collected from

independent readers. Anyone with access to EPC Discovery can monitor or track the

movement of a particular RFID-tagged item.

2.2 Privacy Issues

User privacy issues are considered as a big barrier to the proliferation of RFID

system applications since the data of a tag can be transmitted by an illegal interrogation

 15

without its bearer’s notification. Two privacy issues are of major concern. One is the data

leakage illegally from a tag. Another is the malicious tracking for the unique ID of a tag.

A tag bearer has various objects that they do not want others to know including what they

currently keep and what those objects are. If the tags are attached to those objects, the

private information of tag bearers can be revealed regardless of their attention. The

location privacy of tag bearers can be revealed through the response information from the

tag although it is securely protected. In a RFID-labeled society, the value for

commodities or products is mostly identified by the RFID. Thus, simple forgery such as

copying information of a tag or even more sophisticated measures will be very attractive

for malicious users and adversaries to disguise or impersonate.

2.3 Security Considerations

We consider the following as generally required security properties for RFID

systems:

2.3.1 Confidentiality:

RFID tags must not get involved in processing personal data. In addition to it,

data stored in a tag should not be gathered to trace the relationship between the tag and

the tag bearer by illegitimate readers. The private information of a tag must be kept

secure to guarantee user privacy. The tag information must be meaningless for its bearer

even though it is eavesdropped by an unauthorized reader.

2.3.2 Authenticity:

 16

The authenticity of a tag is at risk since the unique identifier of a tag can be

spoofed or manipulated. The tags in general are not tamper resistant.

2.3.3 Availability:

Any RFID system can easily be disturbed by frequency jamming. However,

denial-of-service attacks are also feasible on higher communication layers. The so called

“RFID Blocker” exploits tag singulation (anti-collision) mechanisms to interrupt the

communication of a reader with all or with specific tags.

2.3.4 Anonymity:

Although a tag’s data is encrypted, the tag’s unique identification information is

exposed since the encrypted data is constant. An attacker can identify each T with its

constant encrypted data. Therefore, it is important to make the tag’s information

anonymous.

2.3.5 Integrity:

Integrity in terms of the RFID environment as a security requirement is usually

for data integrity between entities i.e. tags, readers, and back-end servers. This is due to

the reason that the communication channel is not fault-tolerable and the data

synchronization between entities can fail. Thus, integrity among entities must be

guaranteed and data recovery mechanisms should be provided in case data loss occurs. In

addition, if a tag’s memory is rewritable, forgery is possible, so integrity for the tag’s

information also must be guaranteed.

 17

2.3.6 Indistinguishability:

The value emitted by tag should not be such that the attacker can easily identify

the tag.

2.3.7 Forward Security:

If the attacker is able to get the value from the tag, it should not give any past

details.

2.4 Risks and Threats

The main risks and threats an RFID system can suffer are described below. These

vary from system to system.

2.4.1 Physical Attacks:

In order to mount these attacks, it is necessary to manipulate tags physically,

generally in a laboratory. Some examples of physical attacks are material removal

through shaped charges or water etching, radiation imprinting, circuit disruption, etc.

RFID tags offer little or no resilience against these attacks.

2.4.2 Denial of Service (DoS Attack):

A common example of this type of attack in RFID systems is the signal jamming

of RF channels.

2.4.3 Counterfeiting:

 18

These attacks consist of modifying the identity of an item, generally by means of

tag manipulation.

2.4.4 Spoofing:

When an attacker is able to successfully impersonate a legitimate tag as, for

example, in a man-in-the-middle attack.

2.4.5 Eavesdropping:

In this type of attacks, unintended recipients are able to intercept and read

messages.

2.4.6 Database Desynchronization:

If the attacker is able to tamper with the responses from the tag and can create

desynchronization of values at both tag and backend database.

2.4.7 Traffic Analysis:

In this attack, the person intercepts the messages and examines in order to extract

information from patterns in communication. It can be performed even when the

messages are encrypted and can not be decrypted. In general, the greater the number of

messages observed, the more information can be inferred from the traffic.

2.5 RFID Standards

 19

There exists a large variety of RFID systems and their main characteristics are

defined by standards. Those standards typically describe the physical and the data link

layers, covering aspects such as the air interface (frequency, coding, and modulations),

communication protocol, bandwidth, anti-collision and security mechanisms.

 RFID is a relatively heterogeneous radio technology with a significant number of

associated standards. Figure 2.0 contains the most relevant technology standards.

Figure 2.0: RFID technology standards and frequency bands [28]

2.5.1 Contactless Integrated Circuit Cards:

Contactless integrated circuit cards are special instances of identification cards as

defined in ISO 7810. There are three types of contactless cards based on their

communication range.

• Closed-coupled cards (ISO 10536). They operate at a very short distance to

the reader (< 1cm).

 20

• Proximity cards (ISO 14443). They operate at an approximate distance of

10cm of the reader. They usually possess a microprocessor and may be

considered as high-end RFID transponders.

• Vicinity cards (ISO 15693). These cards have a range of up to 1 meter. They

usually incorporate inexpensive state machines instead of microprocessors.

2.5.2 RFID in Animals:

ISO 11784, 1SO 11785 and ISO 14223 specify tags for animal identification in

the frequency band below 135 kHz. The original standards defined only a fixed unique 64

bit identifier, but with the more recent ISO 14223 standard further read/write and write-

protected data blocks are allowed.

2.5.3 Item Management:

ISO 18000 defines the air interface, collision detection mechanisms and the

communication protocol for item tags in different frequency bands. Part 1 describes the

reference architecture and parts 2 to 7 specify the system in different frequencies bands.

Part 2, 3, 4, 5, 6, 7 specifies frequency (<134 kHz, 13.56 MHz, 2.45 GHz, 5.8 GHz, 900

MHz, 433 MHz) tags respectively.

2.5.4 Near-Field Communication (NFC):

NFC evolved from the RFID technology and is designed for interactions between

tags and electronic devices in close proximity (<10cm). NFC is not designed for full

 21

networking or transmission of large amounts of data, but should allow a convenient data

exchange between cheap tags (e.g. smart labels) and electronic devices (e.g. PDA).

• NFCIP-1: The standards ETSI TS 102.190, ISO 18092 and ECMA 340 define

identically the Near Field Communication Interface and Protocol. These

protocols describe the air interface, initialization, collision avoidance, a frame

format and a block oriented data exchange protocol with error handling. The

communication modes can be either active or passive.

• NFCIP-2: The Near Field Communication Interface and Protocol – 2 (NFCIP

– 2) specifies the communication mode selection mechanism (ECMA 352).

This protocol deals with the situation that NFCIP-1, ISO 14443 and ISO

15693 devices all operate at 13.56 MHz, but with different protocols. Its

specified that NFCIP-2 complaint devices can enter each of these three

communication modes and are designed not to disturb other RF fields at the

same frequency.

2.5.5 Electronic Product Code (EPC):

EPC was developed by the AutoID (Automatic identification) Center at MIT. The

standardization is now within the responsibility of EPCglobal which is a joint venture

between EAN International and the Uniform Code Council (UCC). The so-called EPC

network is composed of five functional elements:

• EPC: The Electronic Product Code is a 96 bit number identifying the EPC

version number, domains, object classes and individual instances.

 22

• RFID System: An identification system which consists of RFID tags and

readers. Tags can be of six different kinds (Class 0, 1, 2, 3, 4, 5) based on

there functionality.

• Savant: The savant middleware offers “Processing Modules or Services” to

reduce load and network traffic within the back-end systems.

• ONS: The Object Name Service is a networking service similar to the Domain

Name Service (DNS). With ONS, the Electronic Product Code can be linked

to detailed object information. The ONS servers return the IP address of the

EPC information service which stores the associated information.

• PML: The Physical Markup Language is XML-based and provides a

standardized representation of information from the EPC network.

 23

CHAPTER 3

LITERATURE REVIEW

3.1 Privacy Protection Approaches

In this section we will discuss some of the approaches proposed by different

scientist to protect the privacy of tag bearer.

3.1.1 Kill Command:

This solution was proposed by the Auto-ID center [18] and EPCglobal. In this

scheme, each tag has a unique password, for example of 24 bits, which is programmed at

the time of manufacture. Upon receiving the correct password, the tag will deactivate

forever.

3.1.2 Faraday Cage:

Another way of protecting privacy of objects labeled with RFID tags is by

isolating them from any kind of electromagnetic waves. This can be achieved by making

what is known as a Faraday Cage (FC), a container made of metal mesh or foil that is

impenetrable by radio signals (of certain frequencies). There are currently a number of

companies that sell this type of solution [10].

3.1.3 Active Jamming:

 24

Another way of obtaining isolation from electromagnetic waves, and an

alternative to the FC approach, is by disturbing the radio channel, a method which is

commonly known as active jamming of RF signals. This disturbance can be achieved

with a device that actively broadcasts radio signals, so as to completely disrupt the radio

channel, thus preventing the normal operation of RFID readers.

3.1.4 Blocker Tag:

 If more than one tag answers a query sent by a reader, it detects a collision. The

most, important singulation protocols are ALOHA (13.56 MHz) and the tree walking

protocol (915 MHz). Juels [9] used this feature to propose a passive jamming approach

based on the tree-walking singulation protocol, called blocker tag. A blocker tag

simulates the full spectrum of possible serial numbers for tags.

3.2 Bill of Rights

In [16], Garfinkel proposed a so-called RFID bill of Rights, which adapts the

principles of fair information practices to RFID systems deployment. This bill of rights

consists of five guiding principles for RFID system creation and deployment. Users of

RFID systems and purchasers of products containing RFID tags have:

• The right to know if a product contains an RFID tag.

• The right to have embedded RFID tags removed, deactivated, or destroyed when

a product is purchased.

 25

• The right to first-class RFID alternatives. Consumers should not lose other rights

(such as the right to return a product or travel on a particular road) if they decide

to opt-out of RFID or exercise an RFID tag’s kill feature.

• The right to know what information is stored inside their RFID tags. If this

information is incorrect, there must be means to correct or amend it.

• The right to know when, where and why an RFID tag is being read.

3.3 Security Protection Approaches

 In this section we will discuss the approaches proposed to protect the security of

the system.

3.3.1 Non-Cryptographic Primitives:

 There are some solutions which do not use true cryptographic operations.

These are purely based on primitive operations.

 3.3.1.1 Key Permutation: Vajda et al. [3] proposed several lightweight

authentication protocols for authenticating RFID tags to readers.

 It’s a challenge-response protocol (called Protocol 1), in which the tag and reader

share a secret key, k (0). The reader randomly selects a uniform bitstring x to construct a

challenge. The reader transmits a
(i)

 = x
(i)

 ⊕ k
(i) to the tag, where i is the ith transaction

between the reader and tag. k
(i) is calculated by a permutation of k (0). Since the bitstring

is selected randomly so the information passed, a
(i)

, to the tag is random too. The tag

uses its knowledge of k
(i), to extract x

(i) as follows:

 a
(i) ⊕ k

(i)
 ⊕ k

 (0) = x
(i) ⊕ k

(i) ⊕ k
(i) ⊕ k (0)

 26

 = x
(i) ⊕ k

(0)

 The tag then responds to the reader with b
(i)

 = x
(i)

 ⊕ k
(0)

. The reader verifies the

correctness of the tag’s response since it knows x
(i) and k

(0).

 The protocol is considered broken when an adversary can send a valid b
(i)

 = x
(i)

⊕ k
(0) or learn the value of k

(0) as seen in figure 3.1 below.

Figure 3.1: Steps 1 – 4 of VB Protocol 1 [13]

3.3.2 Hash Functions Schemes:

3.3.2.1 Hash-Lock Scheme: Weis et al. [2] proposed a simple hash-based protocol

which enables to implement security at low cost.

In hash-lock scheme, a back-end server stores both keys k and metaID’s as pairs

in its database for all tags, where each tag has metaID = h(k) for its key. When a reader

queries a tag, the tag transmits metaID to the reader as response. The reader sends

metaID to the back-end server. Back-end server looks up the appropriate metaID and

sends the corresponding key pair to the reader, which is transmitted to the tag. The tag

hashes the key and compares it with the stored metaID. If those two values are matched,

the tag sends its own ID to the reader.

 27

This scheme requires implementing a hash function on the tag and managing keys

on the back-end. Hash-lock scheme uses metaID as the unique ID of each tag for every

read attempt. Thus, the data privacy of tag bearers is protected and the protocol can meet

confidentiality. However, metaID is always constant so that attackers can eavesdrop it,

identify each tag, and trace the tag. Therefore, location privacy of tag bearers is

compromised.

Figure 3.2: Hash-Locking: A reader unlocks a hash-locked tag [2].

Although this scheme is simple, it does not provide mutual authentication, suffers

from the tracking problem, uses a hash function in the tag, the key is sent in plain text so

forgery is possible, spoofing can be done, and is not forward secure [11].

3.3.2.2 Extended Hash-Lock Scheme: In extended hash-lock scheme [2], they

proposed another method to overcome the tracing problem.

This is an extension of the hash lock type scheme. It requires the tag to have a

hash function and a pseudo-random generator. The tag picks random number R uniformly

and calculates c = hash (IDk||R) as the tag’s unique identification for every session. The

 28

tag then sends c and R to the reader. The reader sends the data to the back-end database.

The back-end server calculates the hash function for each ID stored in the database using

the input as the received R and IDk of each tag. The back-end server then identifies the

IDk that is related to the received c and sends the IDk to the reader.

The tag output changes with each access, so this scheme deters tracking. This

scheme is also strong for the replay attack. However, the tag can be traced if the tag’s ID

is exposed. In addition, an adversary can query a tag to get a tag’s valid message pair (c,

R). Later on, the attacker can impersonate that tag to legitimate reader. The response from

the reader will identify the tag. Also, the implementation issue for the random number

generator is still an issue.

Figure 3.3: Randomized Hash-Locking: A reader unlocks a tag whose ID is k in the
randomize hash-lock scheme [2].

Although this scheme deters tracking, it suffers from a high time complexity for

tag identification. It also uses a hash function on the tag, the ID is sent in plain text so

forgery is possible, does not provide mutual authentication and is not forward secure.

 29

3.3.2.3 Hash-based Varying Identifier: This scheme was proposed by Henrici and

Muller [12]. This scheme also adopts a hash function and a random number generator,

but a pseudo random number is generated by a back-end server and transmitted to the tag

for every interrogation to make the tag’s queried identifier random and preserve location

privacy.

In this protocol, RFID-tag needs to contain fields for the following entries:

DB-ID ID TID LST

The Back-End database needs to contain a table with the following entries for

each record:

HID
(Hash of current

ID)

ID
(Current ID)

TID
(Last Trans
Number)

LST
(Last Successful

Tran Numb)

AE
(Assoc DB)

DATA
(A ref to Tag

data)

Step 1: Reader sends query to a tag.

Step 2: Tag increases its transaction number (TID) by one and sends the h (ID), h

(TID⊕ ID), and ∆TID = TID – LST back to the reader.

Step 3: Reader sends this information back to the backend database indicated in DB-ID

field.

Step 4: In the backend database, record with HID = h (ID) is selected. Calculate TID* =

LST + ∆TID. If h (TID*
⊕ ID) matches h (TID⊕ ID) and TID* > TID, then the message

is valid. A random number RND is generated. With this RND, a new ID is generated

performing ID* = RND⊕ ID and HID = h (ID*) and is stored in the new record row. The

AE-field is updated in both rows so that they can reference to each other. The TID* is

stored in the TID field and in the LST field of the new row.

 30

Step 5: Now a reply message containing RND and a hash h (RND⊕TID*
⊕ ID) is created

and send to the reader which forwards the message to the tag.

Step 6: Tag verifies by calculating h (RND⊕TID⊕ ID) and if it’s same as sent by the

database, then it updates its stored ID to the value RND⊕ ID and sets its LST to the TID

value.

Figure 3.4: Hash-based Enhancement Using Varying Identifiers [12].

This protocol can be compromised including an attack based on the non-

randomness of transmitted information, refreshment avoidance, and database

desynchronization. It uses a hash function on the tag which increases the cost. This

scheme does provide mutual authentication, but suffers from tracking and the

desynchronization problem [11].

3.3.2.4 Hash Chain-based Scheme: Another authentication protocol was proposed

by Okubo et al. [1] based on hash-chains, which renew the secret information contained

in the tag, protects the user’s location privacy and anonymity. When a tag is requested by

a reader, it sends a hash of its current identifier and then renews it using a second hash

function. Initially tag has initial information s1. In the i-th transaction with the reader, the

 31

RFID tag sends ai = G (si) to the reader and renews the secret si+1 = H (si) as determined

from the previous secret si. Where H and G are hash functions. The reader sends ai to the

back-end server. The back-end server database maintains a list of pairs (ID, s1), where s1

is the initial secret information and is different for each tag. Then the back-end database

calculates ai′ = G (Hi(s1)) for each s1 in the list, and checks if ai = ai′. If it finds, it returns

the ID, which is a pair of ai′.

Figure 3.5 Hash Chain Scheme [1]

This protocol does not provide mutual authentication, uses two hash functions on

the tag side and suffers from the scalability problem.

3.3.2.5 Mutual Authentication Scheme based on Synchronized Secret: Lee et al.

[21] proposed a mutual authentication scheme based on primitive operations and hash

functions.

The secret key (k) is shared between the tag and the back-end server. Database at

back-end server has fields IDR, K, and Klast, which saves the ID, the current k, the

preceding k (the previous secret information which is replaced by the current k),

respectively.

Step 1: Reader generates and saves a new pseudorandom number s and sends to it tag.

 32

Step 2: Tag generates a new pseudorandom number r1 and sends to reader. Then it

calculates r2= h (r1⊕ k⊕ s), and sends it to the reader.

Step 3: Reader sends r1, r2 and s back to the back-end server.

Step 4: Back-end server searches for k' from the fields K and Klast of the table, which

satisfies the following equation: h (r1⊕ k' ⊕ s) ? r2.

Step 5: If k' is found in the field K of record, then Klast= k' and K=h (k'). If k' is found in

the field Klast of record, nothing is done.

Step 6: Back-end server now calculates r3
’
 = h (r2⊕ k'⊕ s), and sends to the reader.

Reader transfers r3
’ to the tag.

Step 7: Tag test the following equation: r3
’ ? r3. If it comes out true then k = h(k).

 This protocol uses hash function and a pseudo-random number generator (PRNG)

on tag which greatly increases the price of tag. This protocol suffers from the scalability

problem too.

 From the above discussed protocols, we can see that all of them use either a

pseudo-random number generator (PRNG) or the hash function on the tag or they use

both making the tag expensive. Hence, we need another approach to reduce the cost by

making use of simple operations and less expensive alternatives so that this technology

can be widely used.

 33

CHAPTER 4

PROBLEM STATEMENT

The reason that we cannot use well-known authentication protocols comes from

the fact that such protocols do not preserve the privacy of the tag. In other words, the

reader can check whether or not the identity claimed by the tag is true, but he cannot

guess it himself: the tag must send his identity which in turn allows an adversary to track

him.

Asymmetric cryptography could easily solve this problem: the tag encrypts his

identity with the public key of the reader. Thus, no eavesdropper is able to identify the

tag. Unfortunately, asymmetric cryptography is too heavy to be implemented within a

tag.

In symmetric cryptography, the problem remains that both tag and reader need to

share a common secret-key instead of a public-key. In RFID systems, tags are not

tamper-resistant. Therefore an attacker who tampers with a tag can track its past events, if

the person had access to its previous interactions with the reader, e.g., from the readers’

log files. This is possible in those cases in which the tagged item was used for temporary

purposes for sometime and then returned back. Using a common key for all the tags

would be weak from a security standpoint: an attacker who

 34

tampers with one tag, e.g., her own tag, would also be able to attack all the other tags in

the system. Another approach consists of using a unique key for each tag, such that only

the reader knows all these keys. However, this approach suffers from an expensive time

complexity on the readers’ side. Indeed, because only symmetric cryptography functions

can be used, the system needs to explore its entire database in order to retrieve the

identity of the tag it queries. If n is the number of tags managed by the system, O (n)

cryptographic operations are required in order to identify one tag. The advantage of the

system over an attacker is that the system knows in which subset of identifiers it needs to

search while the attacker has to explore the full range of identifiers.

One of the major problems faced by current protocols today is the high cost of

tags that makes them unusable for item level tagging. This is because using cryptographic

operations on tags needs more computational power and memory. The goal of this thesis

is to present a suite of ultra-light protocols that can be used for item level tagging.

Security and performance analysis of the proposed protocol are done to see if it holds to

the major privacy and security issues. Finally the proposed approach is applied to a

supply chain system.

Instead of using cryptographic operation like hash function or block ciphers on

tags which require expensive tags, we will make use of basic bitwise operations, pseudo-

random number generator (PRNG) and pseudo-random function (PRF) to achieve the

same level of privacy and security. Hence cheap tags can be used. Table 3 shows the

number of logical gates needed for implementing various hash functions and AES

encryption.

 35

Table 3: Core Comparison [23, 24]

SOLUTIONS IMPLEMENTATION GATE COUNTING

MD5
Helion [23]

16K Gates

Fast SHA-1
Helion [23]

20K – 23K Gates HASH

Fast SHA-256
Helion [23]

23K – 26K Gates

JetAES Tiny [24] 4370 Gates

Feldhofer [25] 3595 Gates AES Unit

JetAES Standard [24] 8970 Gates

PRNG
TRNG

Certicom [30]
22K Gates

PRF SSG [31] 1435 Gates

The second problem is the high time complexity of tag identification which makes

is unusable for high end systems and gives rise to the scalability problem. This problem

can be solved by issuing each tag with a tag index number that is stored in the database as

well. Instead of going through the entire database, each tag will be identified with its tag

index number. However this tag index number will be updated on each successful mutual

authentication which will make the tag untraceable.

The third problem which is present in some protocols is the desynchronization of

databases, which will lead to the problem of denial of service. The desynchronization

problem happens when either the reader updates its values and the tag does not and vice

versa. In case, if the tag updates its values, then that tag becomes non-functional.

However if the reader updates its values and not the tag, this problem can be solved by

storing the previous secret key in the database.

 36

CHAPTER 5

PROPSED METHODOLOGY

 In this thesis, we propose five protocols. The first is an ultra-light

mutual authentication protocol between RFID readers and tags based on PRN and

primitive operations, the second and third protocols are variants of first one, the

fourth is a light mutual authentication protocol based on PRF and master keys, the

fifth is similar to fourth one with a difference of using only one master key for all

the tags instead of using a master key for each tag. We propose multiple protocols

as they provide different levels of security and costs for implementation, thus

making it easier to choose the right protocol for the right environment. The

motivation behind protocol 1 is to provide the cheapest solution without using a

random number generator on the tag side. The motivation behind protocol 2 is to

provide more security compared to the first one, but this comes with the cost of a

using random number generator on the tag side. The motivation behind protocol 3

is to achieve the same level of security as protocol 2 without the use of the

random number generator on the tag side. The motivation for protocol 4 is to

provide more security compared to the first, second and third protocols, but this

comes with the cost of using PRF on both sides. The motivation for protocol 5 is

to provide the same level of security as protocol 4 without the use of a master key

 37

for each tag. In protocol 5, we make use of one master key for the whole system,

instead of using a master key for each tag.

5.1 Protocol 1

5.1.1 Assumptions:

In the first protocol, all the costly computing operations are done by the reader.

We assume that readers are devices with enough computing power to generate random

numbers and to perform any cryptographic operations. Communication must be initiated

by readers due to the fact that low-cost tags are passive. We consider that the

communication channel between the reader and the back-end database is secure.

Therefore we consider both reader and back-end database as one entity.

All tags are supplied with tag-index number (TIN) which is the index of the table

(a row) where all the information about the tag is stored in the database. Each tag has an

associated key which is divided in two parts (K = K1|| K2). Tag identification number

(ID) which holds the information about the product to which it’s attached is also stored

permanently in it. K1 and K2 values changes during authentication.

the Tag stores the following data in it.

TIN K1 K2 ID

The Back-end database stores the following data for each tag in the database.

TIN K1 K2 K1last K2last ID

5.1.2 Authentication:

 38

In this protocol the reader generates the random number by making use of PRNG.

We describe the process of our authentication as follows:

Step 1: Reader generates a random number n utilizing PRNG, and sends it to a tag.

Step 2: Tag will create three messages A, B and C as follows and sends them back to

reader:

 A = K1 ⊕ n, B = K2 ⊕ n, C = TIN ⊕ n

Step 3: Tag Identification: From message C, as reader already knows the random number

n, reader will get the tag index number (TIN) for that particular tag as follow:

 C ⊕ n ⇒TIN ⊕ n ⊕ n ⇒ TIN

Step 4: Tag Authentication: Using this TIN, reader will look up in the database to find the

record for that particular tag. Making use of values of K1, K2, K1last, K2last in the

database for that particular tag we will authenticate the tag. We got two cases here for

authentication:

 Case 1: Both values stored in K1 and K2 can be used as follows:

A ⊕ K1 ⇒K1⊕ n ⊕ K1 ⇒n, B ⊕ K2 ⇒K2⊕ n ⊕ K2 ⇒n

If the output from both messages A and B after XOR (⊕) with K1 and K2

respectively yields n, which is known to the reader, it authenticates that the message

came from a valid tag. This means that the tag exists in the database and it’s a new

authentication process.

Case 2: Or values stored in K1last and K2last can be used as follows:

A ⊕ K1last ⇒K1⊕ n ⊕ K1last ⇒n

B ⊕ K2last ⇒K2⊕ n ⊕ K2last ⇒n

 39

If the output from both messages A and B after XOR (⊕) with K1last and K2last

respectively yields n, this means that the tag exists in the database, however, back-end

database already updated its K1 and K2 values at the previous authentication process but

the tag didn’t.

Step 5: Update Reader: Back-end database updates information of tag.

 In case 1, where K1 and K2 values are used to authenticate the tag, values are

updated as follows:

 K1last = K1, K2last = K2

K1′ = K1⊕ n, K2′ = K2 ⊕ n

These values of K1′ and K2′ are stored in K1 and K2 respectively in the database.

 In case 2, where K1last and K2last values are used, we do not update the values in

the database. This means that the tag is trying to use the previous authentication values

showing either tag didn’t update its values or some adversary is trying to hack the system.

Step 6: Reader generates a new message D as follows and sends it to tag:

D = TIN ⊕ K1 ⊕ K2

Step 7: Reader Authentication: As K1 and K2 are known to tag, it will use those values to

get TIN from message D. If that TIN is same as TIN stored in tag, it validates that the

message came from a legitimate reader thus giving us mutual authentication as follows:

D ⊕ K1 ⊕ K2 ⇒TIN ⊕ K1 ⊕ K2 ⊕ K1 ⊕ K2 ⇒TIN

Step 8: Update Tag: After mutual authentication, tag also updates its values of K1 and

K2 as follows:

K1′ = K1⊕ n, K2′ = K2 ⊕ n

These values of K1′ and K2′ are stored in K1 and K2 respectively in the tag.

 40

Step 9: Tag will create a message E in which it will send its ID to the reader, releasing its

information about the product as follows:

E = TIN ⊕ ID⊕ n

Modifications to the above described protocol can be achieved by making use of

other primitive bitwise operations like AND (∧), and OR (∨) to make it more complex.

 The process of authentication is shown in figure 5.1 on the next page.

 41

 READER

(TIN, K1, K2, K1 last, K2 last, ID)

TAG

(TIN, K1, K2, ID)

PRNG → n →n

  ←
CBA ,,

Create A=K1⊕ n , B=K2⊕ n,

C=TIN⊕ n
Tag Identification:

From C; C⊕ n⇒TIN⊕ n⊕ n⇒TIN
Find the record of TIN
Tag Authentication:

Case 1: A⊕K1⇒K1⊕ n⊕K1⇒n

 B⊕K2⇒K2⊕ n⊕K2⇒n
If Both outputs n, New authentication.

Case2:A⊕K1last⇒K1⊕ n⊕K1last⇒n;
B⊕K2 last ⇒K2⊕ n⊕K2 last ⇒n

If both outputs n, Previous
Authentication.

Update Reader:

Case 1: Update the Values
K1 last=K1; K2 last=K2;

K1=K1⊕ n; K2=K2⊕ n

Case 2: No Updates

Create D; D = TIN⊕K1⊕K2 →D

Reader Authentication:

From D ; D⊕K1⊕K2
⇒TIN⊕K1⊕K2⊕K1⊕K2

⇒TIN
If this TIN is same as stored in tag.
Reader Authenticates

Update Tag:
K1=K1⊕ n; K2=K2⊕ n

 ←E

Create E; E = TIN⊕ ID⊕ n

Figure 5.1: Protocol 1 (PRNG on Reader Side)

 42

5.2 Protocol 2

5.2.1 Assumptions:

This is a variant of the first protocol with a small difference. In this protocol, we

make use of PRNG on both reader and tag side. All other assumptions made in protocol 1

apply here also.

5.2.2 Authentication:

We describe the process of authentication as follows:

Step 1: Reader generates a random number n1 utilizing PRNG, and sends it to a tag.

Step 2: Tag generates a random number n2, creates three messages A, B and C; and then

sends them back to reader as follows:

A = K1 ⊕ n2, B = K2 ⊕ n2, C = TIN ⊕ n1

Step 3: Tag Identification: From message C, as reader already knows the random number

n1, reader will get the tag index number (TIN) for that particular tag as follows:

 C ⊕ n1 ⇒TIN ⊕ n1 ⊕ n1 ⇒ TIN

Step 4: Tag Authentication: Using this TIN, reader will look up in the database to find the

record for that particular tag. Making use of values of K1, K2, K1last, K2last in the

database for that particular tag we will authenticate the tag. We get two cases here for

authentication:

 Case 1: Both values stored in K1 and K2 of record can be used as follows:

A ⊕ K1 ⇒K1⊕ n2 ⊕ K1 ⇒n2, B ⊕ K2 ⇒K2⊕ n2 ⊕ K2 ⇒n2

 43

If the output from both messages A and B after XOR (⊕) with K1 and K2

respectively yields n2, it authenticates that the message came from a valid tag. This

means that the tag exists in the database and it’s a new authentication process.

Case 2: Or values stored in K1last and K2last of record can be used as follows:

A ⊕ K1last ⇒K1⊕ n2 ⊕ K1last ⇒n2,

B ⊕ K2last ⇒K2⊕ n2 ⊕ K2last ⇒n2

If the output from both messages A and B after XOR (⊕) with K1last and K2last

respectively yields n2, this means that the tag exists in the database, however, the back-

end database had already updated its K1 and K2 values at the previous authentication

process but the tag didn’t.

Step 5: Update Reader: Back-end database updates information about the tag as follows:

 In case 1, where K1 and K2 values are used to authenticate the tag, values are

updated as follows:

K1last = K1, K2last = K2

K1′ = K1⊕ n2, K2′ = K2 ⊕ n2

These values of K1′ and K2′ are stored in K1 and K2 respectively in the database.

 In case 2, where K1last and K2last values are used, we do not update the values in

the database. This means that the tag is trying to use the previous authentication values

showing either tag didn’t update its values or some adversary is trying to hack the system.

Step 6: Reader will create a new message D as follows and sends it to tag:

D = TIN ⊕ K1 ⊕ K2 ⊕ n2

Step 7: Reader Authentication: As n2, K1 and K2 are known to tag, it will use those

values to get TIN from message D. If this TIN is same as the one stored in tag, it will

 44

validate that the message came from a legitimate reader thus giving us mutual

authentication as follows:

D ⊕ K1 ⊕ K2 ⊕ n2 ⇒TIN ⊕K1⊕ K2⊕ n2 ⊕K1⊕ K2⊕ n2 ⇒TIN

Step 8: Update Tag: After mutual authentication, the tag also updates its values of K1

and K2 as follows:

K1′ = K1⊕ n2, K2′ = K2 ⊕ n2

These values of K1′ and K2′ are stored in K1 and K2 respectively in the tag.

Step 9: Tag will create a message E in which it will send its ID to the reader, releasing its

information about the product as follows:

 E = TIN ⊕ ID⊕ n1⊕ n2

 The process of authentication is shown in figure 5.2 on the next page.

 45

 READER

(TIN, K1, K2, K1 last, K2 last, ID)

TAG

(TIN, K1, K2, ID)

PRNG → n1 → 1n

 ←

CBA ,,

PRNG → n2
Create A=K1⊕ n2 , B=K2⊕ n2,

C=TIN⊕ n1
Tag Identification:

From C;
C⊕ n1⇒TIN⊕ n1⊕ n1⇒TIN

Find the record of TIN
Tag Authentication:

Case 1: Using K1 & K2 of record.
A⊕K1⇒K1⊕ n2⊕K1⇒n2

B⊕K2⇒K2⊕ n2⊕K2⇒n2

If both outputs n2, Tag
Authenticates. New

Case 2: Using K1 last and K2 last.
A⊕K1last⇒K1⊕ n2⊕K1last⇒n2

B⊕K2 last⇒K2⊕ n2⊕K2 last⇒n2

If both outputs n2, Previous
Authentication.

Update Reader:

Case 1: Update for values.
K1 last=K1; K2 last=K2;

K1=K1⊕ n2; K2=K2⊕ n2

Case 2: No Updates.

Create D;
D = TIN⊕K1⊕K2⊕ n2 →D

Reader Authentication:

From D;
D⊕K1⊕K2⊕ n2⇒

TIN⊕K1⊕K2⊕ n2⊕K1⊕K2⊕ n2

⇒TIN
If this TIN is same as stored in tag.

Reader Authenticates

Update Tag:

K1=K1⊕ n2; K2=K2⊕ n2

 ←E

Create E; E = TIN⊕ ID⊕ n1⊕ n2

Figure 5.2: Protocol 2 (PRNG on Reader and Tag Side)

 46

5.3 Protocol 3

5.3.1 Assumptions:

This protocol uses PRNG on the reader side and updating is done after mutual

authentication. Only one previous key value is stored rather than two in this protocol. All

other assumptions made in protocol 1 apply here.

5.3.2 Authentication:

We describe the process of authentication as follows:

Step 1: Reader sends a message “hello” to the tag.

Step 2: Tag sends back its tag index number (TIN) in response.

Step 3: Tag Identification: Reader looks up the database and finds the record for that

TIN. Then it creates a random number n from PRNG. It creates messages A, B and sends

them to tag.

A = K1 ⊕ n, B = K2 ⊕ n

Step 4: Reader Authentication: From messages A and B, tag will use the stored values of

K1 and K2 to get the random number n as follows:

A ⊕ K1 = K1 ⊕ n ⊕ K1 ⇒ n, B ⊕ K2 = K2 ⊕ n ⊕ K2⇒ n

 If both n are the same, then messages A and B came from an authentic reader.

Step 5: Tag will create message C, D and send them to the reader as below:

C = K1 ⊕ n, D = ID ⊕ n

Message D will contain the ID of the product to which that tag is attached, which can be

retrieved by the reader easily.

 47

Step 6: Tag Authentication: Making use of values of K1 and K1last in the database for that

particular tag we will authenticate the tag. We can have two cases for tag authentication.

 Case 1: Value stored in K1 of record is used to authenticate as below:

C ⊕ K1 ⇒ K1 ⊕ n ⊕ K1 ⇒n

 If n is the same as that generated by the tag, it authenticates that the message

came from a valid tag. This means that the tag exists in the database and it’s a new

authentication process.

 Case 2: OR value stored in K1last of record is used to authenticate as below:

C ⊕ K1last ⇒ K1 ⊕ n ⊕ K1last ⇒n

If n is the same as that generated by the tag, this means that the tag exists in the

database, however, the back-end database has already updated its K1 value at the

previous authentication process but the tag did not.

Step 7: Update Reader: The Back-end database will update information about the tag as

follows:

 In case 1, where K1 was used to authenticate the tag, values will be updated as

follows:

K1last = K1, K1′ = K1⊕ n, K2′ = K2 ⊕ n

These values of K1′ and K2′ are stored in K1 and K2 respectively in the database.

 In case 2, where the K1last value is used, we do not update the values in the

database. This means a tag is trying to use the previous authentication values showing

either the tag didn’t’ update or some adversary is trying to hack the system.

Step 8: Reader will create message F as follows and sends it to tag:

F = TIN ⊕ K1 ⊕ K2 ⊕ n

 48

Step 9: Reader Authentication: As K1 and K2 are known to the tag; it will use those

values to get TIN from message F. If this TIN is the same as the one stored in the tag, it

will validate that the message came from a legitimate reader.

F ⊕ K1 ⊕ K2 ⊕ n ⇒ TIN ⊕ K1 ⊕ K2 ⊕ n ⊕ K1 ⊕ K2 ⊕ n ⇒TIN

This protocol has an advantage in that it authenticates the reader twice.

Step 10: Tag Update: and tag will update its values too as follows:

K1′ = K1⊕ n, K2′ = K2 ⊕ n

These values of K1′ and K2′ are stored in K1 and K2 respectively in the tag.

 The process of the authentication is shown in figure 5.3 on the next page.

 49

READER

(TIN, K1, K1 last ,K2, ID)

TAG

(TIN, K1, K2, ID)

 →hello

 ←
TIN

Tag Identification:

Find the record with TIN
PRNG → n

Create A=K1⊕ n, B=K2⊕ n → BA,

←
DC,

Reader Authentication:

From A, A⊕K1=K1⊕ n⊕K1⇒n
From B, B⊕K2=K2⊕ n⊕K2⇒n

If ‘n’ are same, Reader is Authentic.
Create C = K1⊕ n and

D = ID⊕ n

Tag Authentication:

Case 1: From C, C⊕K1⇒

K1⊕ n⊕K1⇒n
If ‘n’ is same as generated, Tag

is Authentic. New
Case 2: From C , C⊕K1last ⇒

K1⊕ n⊕ K1last⇒n

If ‘n’ is same as generated,
Previous Authentication

Update Reader:

Case 1: Update Values.
K1 last=K1

K1=K1⊕ n; K2=K2⊕ n;
Case 2: No Updates.

Create F; F=TIN⊕K1⊕K2⊕ n →F

Update Tag:

From F, F⊕K1⊕K2⊕ n⇒
TIN⊕K1⊕K2⊕ n⊕K1⊕K2⊕ n

⇒TIN
If ‘TIN’ is same as stored in tag,

Update the tag.
K1=K1⊕ n; K2=K2⊕ n

Figure 5.3: Protocol 3 (PRNG on Reader Side and Updating after Authentication)

 50

5.4 Protocol 4

5.4.1 Assumptions:

All tags are supplied with a Master Key (K) and ID. The master Key (K)

generates the seed (k) for all PRF as shown in the figure below. The PRF has two inputs,

one is a secret seed (k) and other is a variable x. We can create different values from a

PRF by chaining either k or x. When we use variable value as 1, we use it to update the

master key. When we use variable values 2 and 3, we use it as pseudo-random numbers.

Figure 5.4 Pseudo Random Seed production from Master Key

The Tag stores the following data.

K ID

The Back-end database stores the following data for each tag in the database.

K K last ID

5.4.2 Authentication:

We describe the process of authentication as follows:

Step 1: Reader sends a message “hello” to tag.

K

Kupdate = fK (1)

Kprand = fK (2)

Kmsg = fK (3)

 51

Step 2: Tag generates pseudorandom numbers n1 and n2 using PRF with master Key as

one of the inputs. Then it creates message α using PRF with n1 and n2 as input as shown

in figure 5.5 and sends this message to reader as follows:

n1 = fk (x)⇒ fk (3) = F (K, 3)

 n2 = fk (x)⇒ fk (2) = F (K, 2)

α = F (n1, n2)

Figure 5.5: Creating Message α from PRF

 Step 3: Tag Authentication: Reader will use the values of K and Klast in the database to

carry out an exhaustive search to find that tag whose response is the same as the message

received. We have two cases for tag authentication.

 Case 1: K is used to authenticate the tag as below:

F (fk (3), fk (2)) ? α

Reader will apply the PRF on the stored value of master key along with variables

and compare it with the message received. If the PRF value comes out to be the same,

that means that tag exits in the database and it’s a new authentication.

F α X = 2

K=K

F

F X = 3

K=K

X = n2

K = n1

 52

 Case 2: OR Klast is used to authenticate the tag as below:

F (fklast (3), fklast (2)) ? α

This means that the back-end database already updated its K value at the previous

authentication but the tag did not. This will catch the replay attack and will prevent the

attacker from desynchronizing the database.

Step 4: Update Reader: The Back-end database will update information about the tag as

follows:

 In case 1, where K was used to authenticate the tag, values will be updated as

follows:

Klast = K; K = fk (x)⇒ fk (1) = F (K, 1)

 In case 2, where Klast was used, we do not update the values in the database. This

means a tag is trying to use the previous authentication value showing either the tag did

not update last time or some adversary is trying to hack the system.

Step 5: Reader generates pseudo-random numbers n3 and n4 using PRF and newly

generated master key K as one of the inputs. Then it creates message β using PRF as

shown in figure 5.6 with n3 and n4 as input and sends this message to the tag as follows:

n3 = fk (x)⇒ fk (3) = F (K, 3)

 n4 = fk (x)⇒ fk (2) = F (K, 2)

β = F (n3, n4)

Step 6: Reader Authentication: The Tag will compute the new value for the master key

and will use this value to check if the message is the same as that sent by the reader as

shown below:

K' = fk (x)⇒ fk (1) = F (K, 1)

 53

F (fk' (3), fk' (2)) ? β

If the value comes out the same as the message received, this means the reader is

legitimate, thus giving mutual authentication.

Figure 5.6: Creating Message β from PRF

Step 7: Update Tag: Tag will update its values as below:

K = fk (x)⇒ fk (1) = F (K, 1)

Step 8: Tag will create message γ using the values of n1, n2 and ID as below:

γ = ID⊕ n1⊕ n2

The process of authentication is shown in figure 5.7 on the next page.

F β X = 2

K=K

F

F X = 3

K=K

X = n4

K = n3

 54

READER

(K, K last , ID)

TAG

(K, ID)

 →hello

←
α

Generate n1, n2 using PRF.
n1 = fk (x)⇒ fk (3) = F (K, 3)
n2 = fk (x) ⇒ fk (2) = F (K, 2)

Create α:
Α = F (n1, n2)

Tag Authentication:

Find the tag ε D s.t. ∀ tags,
We Check

Case 1: F (fk (3), fk (2)) ? α

Case 2: F (fklast (3), fklast (2)) ? α

Update Reader:
Case1: Klast = K;

K = fk (x)⇒ fk (1) = F (K,1)
Case 2: No update.

Generate n3, n4 using PRF.
n3 = fk (x) ⇒ fk (3) = F (K, 3)
n4 = fk (x) ⇒ fk (2) = F (K, 2)

Create β:
β = F (n3, n4) →β

Reader Authentication:

Compute K':
K' = fk (x)⇒ fk (1) = F (K,1)

and Check

 F (fk' (3), fk' (2)) ? β

Update Tag:
K = fk (x)⇒ fk (1) = F (K,1)

 ←
γ

Create γ : γ = ID⊕ n1⊕ n2

Figure 5.7: Protocol 4 (Using Tag Master Key)

 55

5.5 Protocol 5

5.5.1 Assumptions:

In this protocol, instead of using one master key for each tag, we use one master

key for the whole system. This protocol is similar to the last one. Each tag is supplied

with its tag number (TN), counter value (C), master key (K) and product ID.

A Tag has to store the following data.

K TN C ID

The Back-end database has to store the following data for each tag in the database, where

Clast is the value of C used last time.

K TN C Clast ID

5.5.2 Authentication:

We describe the process of authentication as follows:

Step 1: Reader sends a message “hello” to tag.

Step 2: Tag generates pseudorandom numbers n1 using PRF with tag number TN as X

and master Key as K in the input. Then it creates a message α as shown in figure 5.8

using PRF with n1, previously generated, and C as input and sends this message to the

reader as follows:

n1 = fk (x)⇒ fk (TN) = F (K, TN)

 α = F (n1, C)

 56

Figure 5.8: Creating Message α from PRF

 Step 3: Tag Authentication: Reader will use the values of K, TN, C and Clast in the

database to carry out an exhaustive search to find that tag whose response is the same as

the message received. We have two cases for tag authentication.

 Case 1: K, TN and C are used to authenticate the tag as below:

F (fk (TN), C) ? α

This means that tag exits in the database and it’s a new authentication.

 Case 2: OR K, TN and Clast are used to authenticate the tag as below:

F (fklast (TN), Cklast)? α

This means that the back-end database already updated its C value at the previous

authentication but the tag did not. This will catch the replay attack and will prevent the

attacker from desynchronizing the database.

Step 4: Update Reader: The Back-end database will update information about the tag as

follows:

α F

F X = TN

K=K

X = C

K = n1

 57

 In case 1, where K, TN and C were used to authenticate the tag, values will be

updated as follows:

Clast = C; C = C + 1

 In case 2, where K, TN and Clast were used, we do not update the values in the

database. This means a tag is trying to use the previous authentication values, showing

either tag did not update last time or some adversary is trying to hack the system.

Step 5: Reader generates pseudo-random numbers n2 using PRF with master key K and

tag number TN. Then it creates message β as shown in figure 5.9 using PRF with n2 and

C as input and sends this message to tag as follows:

n2 = fk (x)⇒ fk (TN) = F (K, TN)

β = F (n3, C)

Figure 5.9: Creating Message β from PRF

Step 6: Reader Authentication: Tag will compute the new value for counter and will use

this value to check if the message is the same as sent by the reader as shown below:

C' = C + 1

β F

F X = TN

K=K

X = C

K = n2

 58

F (fk (TN), C') ? β

If the value comes out the same as the message received, that means the reader is

legitimate, thus giving mutual authentication.

Step 7: Update Tag: Tag will update its values as below:

C = C + 1

Step 8: Tag will create the message γ using the values of n1, n2 and ID as below:

γ = ID⊕ n1

The process of authentication is shown in figure 5.10 on next page.

 59

READER

(K, TN, C, C last, ID)

TAG

(K, TN,C, ID)

 →hello

←
α

Generate n1 using PRF.
n1 = fk (x)⇒ fk (TN) = F (K, TN)

Create α:
Α = F (n1, C)

Tag Authentication:

Find the tag ε D s.t. ∀ tags,
We Check

Case 1: F(fk (TN), C) ? α

Case 2: F(fk (TN), Clast)? α

Update Reader:
Case1: Clast = C;

C = C+1;
Case 2: No update.

Generate n2
n2 = fk (x) ⇒ fk (TN) = F (K, TN)

Create β:
β = F(n2, C) →β

Reader Authentication:

Compute C': C' = C+1
and Check

 F(fk (TN), C') ? β

Update Tag:
C = C+1.

 ←
γ

Create γ : γ = ID⊕ n1

Figure 5.10: Protocol 5 (Using Universal Master Key)

 60

CHAPTER 6

SECURITY ANALYSIS

6.1 Security Analysis of Protocol 1

Data Integrity: A part of the tag memory is rewritable, modifications are possible. In this

part of the memory, the tag stores the Tag-Index Number (TIN), and shared secret keys

(K1 and K2) associated with itself. If an attacker does succeed in modifying this part of

the memory, then the reader would not recognize the tag and would lead to database

desynchronization problem.

 An attacker can obtain the random nonce n created by legitimate reader. Then, he

creates its own random nonce n' and sends it to the tag impersonating as a legitimate

reader. The tag sends the messages A', B', and C' to the reader which is intercepted by the

attacker. From this, the attacker retrieves TIN, K1 and K2. Then using the random nonce

n created by the legitimate reader, it will create messages A, B, and C and send them to

the reader. The reader authenticates the tag and creates a message D and sends it to the

tag which is intercepted by the attacker. Instead of sending this message D created by the

legitimate reader, the attacker instead sends D' to the tag which does not authenticates the

reader. In this case only the tag is authenticated and Keys are updated at the reader side

only and not on the tag side giving rise to database desynchronization problems.

 61

 Another scenario is in which the attacker eavesdrops the messages and at the end

can suppress the message D from being sent to the tag. In this case, values at the reader

side will update and not on the tag side which can give rise to the database

desynchronization problem.

 Another scenario is in which the attacker instead of sending messages A, B, C to

the reader, retrieves the values of K1, K2, TIN and n and use them to create message D.

Then attacker sends this message to the tag, which authenticates it, updates the values on

the tag side. In this case, tag side values are updated and not the reader side values,

leading to the desynchronization problem. In this case, this tag will become useless. This

case is however not possible due to the reason that the channel from tag to reader is much

harder to eavesdrop than the channel from reader to tag.

This shows that by manipulating message D, this protocol can give rise to a

problem. However any change to messages A, B or C does not have any effect because if

those messages are changed, it will not authenticate the tag.

Mutual Authentication: This protocol is designed to provide both tag-to-reader

authentication, which is achieved by message A, B, C and reader-to-tag authentication,

obtained by message D.

Forward Security: This protocol provides Forward Security. Its the property that security

of message sent today will be valid tomorrow i.e. data transmitted today will still be

secure even if the secret tag information is revealed by tampering in the future. A future

security compromise on an RFID tag will not reveal data previously transmitted. If the

attacker is able to get the data from the tag, he cannot trace the data back through past

 62

events in which the tag was involved. The adversary, who only eavesdrops on the tag

output, cannot associate the current output with past output. Forward security requires

that old keys be unpredictable from new keys i.e. it’s unfeasible to compute previous

keys and outputs from the current key.

Since Key updating is done during the mutual authentication process using

random numbers, it makes it impossible for the attacker to guess the values in future.

Hence a future security compromise on an RFID tag will not reveal previous values of

the shared secret key.

Replay Attack: The key (K1 & K2) freshness for each successful read attempt prevents

reply attacks.

An eavesdropper could store the messages interchanged between the reader and

the tag during different protocol runs. Then, he could try to impersonate as a tag,

replaying the message A, B, C to the reader seen in any of the protocol runs. He could try

to impersonate as a reader too, by replaying the message D to the tag. It seems that this

could cause the loss of synchronization between the database and the tag, but this is not

the case because after the successful read attempt in this mutual authentication protocol,

the Key (K) is updated, which makes the previously used messages invalid.

Replay attack is also prevented because the K1last and K2last store the previous last

successful Keys. If the attacker tries to replay the messages A, B and C, using the Keys

K1 and K2, it will be detected and no action will be taken by the reader. If the attacker

tries to replay the message D to the tag, it will not authenticate the tag and no update will

be done.

 63

Man-in-the-middle Attack: A man-in-the-middle attack is possible. An attacker can

impersonate as a legitimate reader and get the information from the tag, so he can

impersonate as the legitimate tag responding to the reader. Thus, the attacker easily can

be authenticated by the legitimate reader before the next session. As the attacker can

easily make messages A, B and C; hence the man-in-the-middle attack is possible.

However we assume a restriction on the ability of an attacker to perform man-in-

the-middle attack as the attacker would run the risk of being discovered since the attack

would have to take place in a monitored environment.

Data Confidentiality: All the information about the item to which the tag is attached is

stored in TagID. This Tag ID is kept secure which guarantees user privacy. The tag ID is

send to the reader in secure form. The tag sends it in the message E, where the ID is

exclusive-ORed with the TIN, then the result is exclusive-ORed with the random number

n, created by the reader. This ID can be retrieved by an eavesdropper from message E

easily, therefore this protocol do not provide us with data confidentiality.

Tag Anonymity: This protocol does not provide tag anonymity. As the TIN is sent back to

the reader in message C, which will always be constant. If we modify TIN on each

successful read attempt, then in case of man-in-the-middle attack, that tag cannot be

identified.

Indistinguishability: The values emitted by the tag should not be such that the attacker

can easily identify the tag. The operations used in this protocol makes the data

transmitted between tag and reader indistinguishable. All the messages passed to and fro

between tag and reader looks identical to the eavesdropper.

 64

Forgery Resistance: This protocol does not prevent forgery. If an attacker is able to

retrieve the values of TIN, K1, K2 and ID from a legitimate tag, then he can simply copy

the information to make a clone tag.

However we assume a restriction on the ability of an attacker to record those

values as he would run the risk of being discovered since the attack would have to take

place in a controlled environment.

Data Recovery: This protocol does not provide data recovery. In case where the messages

A, B and C are blocked from the tag, that data cannot be retrieved. In such case, the

reader will not update the values. In case the message D is blocked or modified, the

reader would have updated the values and not the tag. When the reader queries the tag

next time, it will send the same message D, which will update the values on the tag side

too.

6.2 Security Analysis of Protocol 2

Data Integrity: In this protocol, the attacker has to send a random nonce n1 to the tag.

The tag will generate a random nonce n2, then create messages A, B, C and send them to

the attacker. This way attacker can retrieve the TIN from message C. Since messages A

and B are using the values of K1, K2 and the random number generated by the tag, the

attacker cannot retrieve the values of K1, K2 and n2 at this point. If the attacker

intercepts the message D from the reader, he can obtain n2 by exclusive-ORing of

message D with TIN, A and B.

 65

If the message D is suppressed or altered, then the tag will not know or will not

authenticate the reader respectively. Since message D is created after the reader updates

its values, the values on the tag side will be different causing data integrity compromise.

If messages A and B from the tag are suppressed or altered by the attacker, then

the reader will not authenticate the tag and it will not generate message D from which the

attacker retrieves n2. This means that the attacker has no control over updating the values

on the reader side.

The effect of changing the values at the reader side, do nothing as this protocol

catches such ambiguity thus providing us data integrity.

Mutual Authentication: Mutual authentication is achieved by messages A, B, C, and D.

Tag-to-reader authentication is achieved from messages A, B, and C. whereas reader-to-

tag authentication is achieved from message D.

Forward Security: This protocol provides forward security i.e. data transmitted today will

still be secure even if secret tag information is revealed by tampering in the future.

Forward security requires that old keys be unpredictable from new keys. As Key updating

is done during mutual authentication using the random number generated by the tag, it is

impossible for an attacker to guess the values or to make an association between the

current and past outputs. Thus the contents of memory in the tag do not give any hint to

detecting past outputs.

Replay Attack: The key (K1 & K2) freshness for each successful read attempt prevents

reply attacks. Replaying messages A, B, C to the reader will cause no harm as these

messages will be unable to authenticate the attacker as a legitimate tag because once the

messages were used, the values of K1, K2 are updated at the reader end making these

 66

messages invalid. Replaying message D to the tag will have no effect either as the

message will be unable to authenticate the attacker as a legitimate reader.

Man-in-the-middle Attack: A man-in-the-middle attack is possible. If the attacker is able

to create messages A, B and C, then he can impersonate as a legitimate tag and make the

legitimate reader to authenticate it. An attacker can retrieve random nonce n2, from

message D and then use it to make those messages.

However we assume a restriction on the ability of an attacker to perform a man-

in-the-middle attack as the attacker would run the risk of being discovered since the

attack would have to take place in a monitored environment.

Data Confidentiality: This protocol does not provide user data confidentiality. Tag sends

its ID in the message E, where the ID is exclusive-ORed with the TIN, and then the result

is exclusive-ORed with the random number n1 and n2. This hides the tag ID from a

nearby eavesdropper equipped with an RFID reader who listens to the message E. An

attacker who already knows the values of TIN, n1 and n2, will get the ID from the

message E.

Tag Anonymity: This protocol does not provide Tag anonymity. The TIN is sent back to

the reader in message C, which will always be constant. If we modify the TIN on each

successful read attempt, then in case of man-in-the-middle, that tag cannot be identified.

Indistinguishability: The operations used in this protocol makes the data transmitted

between tag and reader indistinguishable. All the messages passed to and fro between tag

and reader looks identical to the eavesdropper.

 67

Forgery Resistance: This protocol does not prevent forgery. If an attacker is able to

retrieve the values of TIN, K1, K2 and ID from a legitimate tag, then he can simply copy

the information to make a clone tag.

We also assume a restriction on the ability of an attacker to record those values as

he would run the risk of being discovered since the attack would have to take place in a

monitored environment.

Data Recovery: This protocol provides data recovery. If the attacker blocks the messages

A, B, and C from the tag, he cannot create message D. The message D can only be

created using random nonce n2, which can be retrieved only from message D from the

reader. Thus changing the values on the tag side only is not possible. In case the message

D is blocked or modified, the reader would have updated the values and not the tag.

When the reader queries the tag next time, it will send the same message D, which will

update the values on the tag side too.

6.3 Security Analysis of Protocol 3

Data Integrity: This protocol provides data integrity (information related to tag) i.e. TIN,

K1 and K2.

Modifying the values only at the reader end is possible. After mutual

authentication, the reader updates its values first. Hence, if the message F from reader is

blocked or modified, then the tag will not know or will not validate the message

respectively causing data integrity compromise which can lead to database

desynchronization. However this ambiguity will be caught by this protocol in the next run

 68

as it will fall under case 2, which will not update the values on the reader side and just

replay the previous message F.

Modifying the values on the tag side only is not possible. If the attacker blocks or

modifies the message C to the reader, then the reader will not know or validate the tag

respectively. An attacker cannot create message F on its own, as it needs a random

number n generated by a legitimate reader, which he can not retrieve.

Mutual Authentication: This protocol provides mutual authentication in which messages

A and B provides reader-to-tag authentication, and message C provides tag-to-reader

authentication.

Forward Security: This protocol provides forward security i.e. data transmitted today will

still be secure even if the secret tag information is revealed by tampering in the future.

Since forward security requires that old keys be unpredictable from new keys i.e. it is

unfeasible to compute previous keys and outputs from the current key. As Key updating

is done using the random number generated by the reader, after mutual authentication it’s

impossible for an attacker to guess the values or to make an association between the

current and past outputs. Thus contents of memory in the tag do not provide any hint on

detecting past outputs.

Replay Attack: This protocol prevents replay attacks because key (K1 & K2) refreshing

takes place after mutual authentication.

An attacker could store the messages interchanged between the reader and the tag

(different protocol runs). Then he could try to impersonate a reader, by replaying the

messages A, B and F to the tag. It may appear that the tag will authenticate the attacker as

a legitimate reader, however, this is not possible as the values of K1, K2 would have to

 69

be updated in the last mutual authentication run, which makes the previously used

messages invalid.

An attacker could try to impersonate as a tag too, replaying the message C to the

reader seen in any of the protocol runs. This attack is prevented because the K1last stores

the previous last successful value of K1. If the attacker tries to replay the messages C, it

will be detected and no action will be taken by the reader.

Man-in-the-middle Attack: A man-in-the-middle attack is possible. An attacker can

impersonate as a legitimate reader and get the information from the tag, so that he can

impersonate as the legitimate tag responding to the reader. Thus, the attacker can easily

be authenticated by the legitimate reader before the next session. The attacker can

retrieve random nonce n, from message F and then he can make a message C. Thus, the

man-in-the-middle attack is possible.

 We assume a restriction on the ability of an attacker to perform MITM attack by

blocking the messages, as the attacker would run the risk of being discovered since the

attack would have to take place in a monitored environment.

Data Confidentiality: This protocol does not provide user data confidentiality. The tag

sends its ID in the message D, where the ID is exclusive-ORed with the random number

n generated by a legitimate reader. This hides the tag ID from a nearby eavesdropper

equipped with an RFID reader who listens to the message D. An attacker, who wants to

retrieve the ID from message D will have to wait till message F is created so that he can

get n.

Tag Anonymity: This protocol does not provide Tag anonymity. As the TIN is sent back

to the reader in response to a reader’s message ‘hello’, which will always be constant. If

 70

we modify TIN on each successful read attempt, then in case of MIMA, that tag cannot

be identified.

Indistinguishability: The operations used in this protocol makes the data transmitted

between tag and reader indistinguishable. All the messages passed to and fro between tag

and reader looks identical to the eavesdropper.

Forgery Resistance: This protocol does not prevent forgery. If an attacker is able to

retrieve the values of TIN, K1, K2 and ID from a legitimate tag, then he can simply copy

the information to make a clone tag.

We also assume a restriction on the ability of an attacker to record those values as

he would run the risk of being discovered since the attack would have to take place in a

monitored environment.

Data Recovery: This protocol provides data recovery. In case the message F is blocked or

modified, the reader would have updated the values and not the tag. When the reader

queries tag next time, it will send the same message F, which will update the values on

the tag side too. Changing the values on the tag side alone is not possible as message C

cannot be created without knowing the random nonce n.

6.4 Security Analysis of Protocol 4

Data Integrity: This protocol provides data integrity for both the tag as well as the item to

which that tag is attached. In this protocol an attacker is unable to modify any values

either on the tag or the reader side making the tag data secure.

 71

If the attacker blocks message α, then he cannot create β on its own. The attacker

may intercept the message α from the tag, modify it and send α' to the reader. This will

have no effect because this message will not authenticate the tag to the reader.

If the attacker blocks the message β from going to the tag, then the reader would

have updated and not the tag. On the next authentication step, the reader would recognize

this because it has stored the last value of K.

If the attacker intercepts the message β from the reader, modifies it, and sends β'

to the tag, it will not authenticate the reader to the tag as the values have to be the same.

In this case, the tag will not update the values and will not send the message γ to the

attacker. On the next authentication step, this tag will update its values.

If the attacker intercepts the message γ, then the attacker has to guess random

numbers n1 and n2 created by the tag. Since n1and n2 are created from PRF using master

key K, those values have changed during the last run since it was updated and so the

value is of no use to the attacker.

If the attacker sends the message ‘hello’ to the tag, it will generate its random

number n1 and n2 from the PRF making use of master key as the secret hidden seed. The

tag will then create a message α, which is sent back to the attacker. From this message,

the attacker cannot retrieve anything. At this point the attacker has to guess three things,

first he has to guess the master key K, second, the PRF used by the tag to generate n1 and

n2, and thirdly, guess the PRF used to generate the message α.

Similarly, the message β generated by the reader makes no sense to the attacker.

To retrieve anything from this message, the attacker has to guess the new master key K,

 72

guess the PRF used to generate n3, n4 and then guess the PRF used to generate the

message β.

If the attacker is able to guess those PRFs, then he has to guess the master key K

at a certain point in time too because they are updated at each successful authentication.

Mutual Authentication: This protocol is designed to provide both tag-to-reader

authentication, which is achieved by message α and reader-to-tag authentication, obtained

by message β.

Forward Security: This protocol is forward secure. Since the tags do not store any

historic data, even if the attacker succeeds in guessing the PRF, he will not be able to

retrieve any past information about the tag because the master key K value is updated on

each authentication. It will be unfeasible to compute previous keys and outputs from the

current key.

Replay Attack: The master key K freshness for each successful authentication prevents

from reply attacks.

An eavesdropper could store the messages α and β between the reader and the tag

during different protocol runs. Then he could try to impersonate a tag, replaying the

message α to the reader. He could try to impersonate a reader too, by replaying the

message β to the tag. It may appear that this could cause the loss of synchronization

between the database and the tag, but this is not possible because the master key K value

is updated after each successful authentication making the previously used messages

invalid.

Man-in-the-middle Attack: A man-in-the-middle attack is not possible. An attacker can

impersonate as a legitimate reader and get the information from the tag, so he can

 73

impersonate as the legitimate tag responding to the reader. Thus, the attacker can easily

be authenticated by the legitimate reader before the next session. As the attacker cannot

create message α, the man-in-the-middle attack is not possible.

Data Confidentiality: All the information about the item to which the tag is attached is

stored in the ID. This ID is kept secure which guarantees user privacy. This ID is sent to

the reader in secure form. The tag sends it in the message γ in which the ID is exclusive-

ORed with n1, then the result exclusive-ORed with n2 making the data more secure and

meaningless to the attacker.

Tag Anonymity: During each successful mutual authentication, the master key is updated.

This makes the tag partially anonymous.

If the attacker sends the message ‘hello’ at time t1 to get the message α, and then

tries again at time t2 to get the same message α, this way the attacker can track the tag.

However if the legitimate reader reads between time t1 and t2, then the attacker cannot

track the tag because the master key value would have changed by that time.

Indistinguishability: The operations used in this protocol makes the data transmitted

between the tag and the reader indistinguishable. All the messages passed to and fro

between the tag and the reader looks identical to the eavesdropper.

Forgery Resistance: If an attacker is able to retrieve the value of K from a legitimate tag,

then he can simply copy the information to make a clone tag. For an attacker to retrieve

ID from message γ, he has to retrieve random number n1 and n2 created by the tag using

PRF making use of master key K. He cannot retrieve those numbers from message α.

Thus the real value of tag i.e. the ID can not be retrieved by the attacker; this makes

 74

copying the values to the clone tag useless. This protocol provides protection against

forgery.

Data Recovery: This protocol provides data recovery. In case the message β is blocked or

modified, the reader would have updated the values and not the tag. When the reader

queries tag next time, it will send the same message β, which will update the values on

the tag side too.

6.5 Security Analysis of Protocol 5

Data Integrity: This protocol provides data integrity for both tag as well as the item to

which that tag is attached. In this protocol the attacker is unable to modify any values

either on the tag or the reader side making the tag data secure. Data integrity of the item

to which the tag is attached is not compromised either, because the information about the

item is stored in the ID, which is sent in the secure form.

If the attacker blocks the message α, then he cannot create β on its own. If the

attacker intercepts the message α from the tag, modifies it and sends α' to the reader, then

this message will not authenticate the tag to the reader.

If the attacker blocks the message β from reaching the tag, then only in this case

the reader side will have updated the values for that particular tag, but not the tag side

giving rise to desynchronization of the database. However, this is not the case as the last

value of C is stored in the database and for the next authentication; it can recognize that

tag easily making use of case 2.

 75

If the attacker intercepts message β from the reader, modifies it, and sends β' to

the tag, it will not authenticate the reader to the tag. In this case, the tag will not update

the values and will not send the message γ to the attacker.

If the attacker sends the message ‘hello’ to the tag, it will generate its random

number n from the PRF making use of the master key as the secret hidden seed. The tag

will then create a message α, which is sent back to the attacker. From this message, the

attacker cannot retrieve anything. At this point attacker has to guess four things, first he

has to guess the master key K, second, the TN of the tag, third, the PRF used by the tag

to generate n1, and fourth, the value of counter C to get anything out of message α.

Similarly, the message β generated by the reader, makes no sense to the attacker.

To retrieve anything from this message, the attacker has to guess the master key K, guess

the PRF used to generate n2 and guess the counter C used to create message β.

If the attacker intercepts the message γ, then the attacker has to guess the random

number n1 created by the tag. Since n1 is generated using the PRF with master key K, n1

cannot be retrieved.

Mutual Authentication: This protocol is designed to provide both tag-to-reader

authentication, which is achieved by message α and reader-to-tag authentication, obtained

by message β.

Forward Security: Since the tags do not store any historic data, even if the attacker

succeeds in guessing the PRF, he will not be able to retrieve any past information about

the tag because the counter C value is updated on each mutual authentication. An attacker

cannot guess the previous outputs from the tag as the counter values C changes on each

 76

mutual authentication. Thus it is hard for an attacker to guess what the output was back in

time.

Replay Attack: The counter value C freshness for each successful authentication prevents

from reply attacks. An eavesdropper could store the messages α and β between the reader

and the tag during different protocol runs. Then, he could try to impersonate a tag,

replaying the message α to the reader. If that happens it will fall under case 2 of reader

authentication in which no update will be done and the reader will create the same

message β again.

An eavesdropper could try to impersonate a reader too, by replaying the message

β to the tag. If that happens, the tag is not going to authenticate that response as the value

of the counter was changed on the last authentication making this message invalid.

Man-in-the-middle Attack: A man-in-the-middle attack is not possible. An attacker can

impersonate as a legitimate reader and get the information from tag, so he can

impersonate as the legitimate tag responding to the reader. Thus, the attacker easily can

be authenticated by the legitimate reader before the next session. As the attacker can not

create message α, so man-in-the-middle attack is not possible.

Data Confidentiality: All the information about the item to which the tag is attached is

stored in the ID. This ID is kept secure which guarantees user privacy. This ID is sent to

the reader in secure form. The tag sends it in the message γ in which the ID is exclusive-

ORed with n1 making the data more secure and meaningless to the attacker.

Tag Anonymity: During each successful mutual authentication, counter value C is

updated which makes the tag partially anonymous.

 77

If the attacker sends the message ‘hello’ at time t1 to get the message α, and then

tries again at time t2 to get the same message α in this manner the attacker can track the

tag. However if the legitimate reader reads between times t1 and t2, then the attacker

cannot track the tag because the counter value would have changed by that time.

Indistinguishability: The operations used in this protocol makes the data transmitted

between tag and reader indistinguishable. All the messages passed to and fro between the

tag and the reader looks identical to the eavesdropper.

Forgery Resistance: If an attacker is able to retrieve the value of K, TN and C from a

legitimate tag, then he can simply copy the information to make a clone tag. For an

attacker to retrieve the ID from message γ, he has to retrieve random number n1

generated by the tag using PRF making use of master key K. He cannot retrieve that

number from message α. Thus the real value of the tag i.e. the ID can not be retrieved by

the attacker. This makes copying the values to the clone tag useless. This protocol

provides protection against forgery.

Data Recovery: This protocol provides data recovery. In case the message β is blocked or

modified, the reader would have updated the values and not the tag. When the reader

queries the tag next time, it will send the same message β, which will update the values

on the tag side too.

 All the proposed protocols in this thesis are compared with each other in table 4

for security analysis.

Table 4: Comparison of Security Requirements between Proposed Protocols

Protocol P 1 P 2 P 3 P 4 P 5

User Data confidentiality Χ Χ Χ Ο Ο

Tag Anonymity Χ Χ Χ ∆ ∆

 78

Data Integrity Χ Ο Ο Ο Ο

Mutual Authentication Ο Ο Ο Ο Ο

Forward Security Ο Ο Ο Ο Ο

Man-in-the-middle Attack Χ Χ Χ Ο Ο

Replay Attack Ο Ο Ο Ο Ο

Forgery Resistance Χ Χ Χ Ο Ο

Indistinguishability Ο Ο Ο Ο Ο

Data Recovery Χ Ο Ο Ο Ο

†† Notation: Ο Satisfied ∆ Partially Satisfied Χ Not Satisfied

 All the proposed protocols in this thesis are compared with other protocols in

table 5.

Table 5: Comparison of Security Requirements with Other Protocols

Protocol HLS EHLS HBIV MAP P 1 P 2 P 3 P 4 P 5

User Data
confidentiality

Χ ∆ ∆ Ο Χ Χ Χ Ο Ο

Tag Anonymity Χ ∆ ∆ Ο Χ Χ Χ ∆ ∆

Data Integrity ∆ ∆ Ο Ο Χ Ο Ο Ο Ο

Mutual
Authentication

∆ ∆ ∆ Ο Ο Ο Ο Ο Ο

Forward Security ∆ ∆ Ο Ο Ο Ο Ο Ο Ο

Man-in-the-middle
Attack

∆ ∆ Χ Ο Χ Χ Χ Ο Ο

Replay Attack ∆ ∆ Ο Ο Ο Ο Ο Ο Ο

Forgery Resistance Χ Χ Χ Ο Χ Χ Χ Ο Ο

Indistinguishability Χ Χ Χ Ο Ο Ο Ο Ο Ο

Data Recovery Χ Χ Ο Ο Χ Ο Ο Ο Ο

†† Notation: Ο Satisfied ∆ Partially Satisfied Χ Not Satisfied

 From the table 5, we can see that the Mutual authentication protocol proposed by

Yang [26] satisfies all the security requirements. However, that protocol uses a hash

function on the tag which makes them much more expensive as compared to our

proposed protocols. We have tried to come up with the same level of security without

using expensive hash functions and making use of primitive operations and pseudo-

random-functions(PRF).

 79

CHAPTER 7

PERFORMANCE ANALYSIS

 It is important to carefully analyze the performance of the proposed scheme, to

show that it can be safely implemented even in low-cost tags. It is assumed that the

connection between the reader and the database is secure. Moreover, the readers and

databases are devices with non-limited computing and storing capabilities. Due to these

reasons we can collapse the notion of the reader and the back-end database into single

entity (R+B). Therefore, in the performance analysis of our protocol, we consider the

reader and database form a single entity.

7.1 Performance Analysis of Protocol 1

Computation Overhead: In this protocol, the tag only needs XOR operation whereas the

reader needs XOR operation and PRNG. This protocol provides the minimal computation

load on both the tag and reader side. Low-cost RFID tags are very limited devices, with

only a small amounts of memory, and very constrained computationally (only between

200 and 2000 logic gates can be devoted to security-based tasks). Additionally, one of the

main drawbacks that hash-based solutions have is that the load on the server-side (R+B)

is proportional to the number of tags. Our proposal have completely solved this problem

by using Tag-Index Number (TIN) that allows a tag to be univocally identified.

 80

Storage Overhead: We assume that the sizes of all components are L bits. Our protocol is

based on pseudonyms, concretely on an L-bit TIN, so each tag has to store it. For the

implementation of our protocol, each tag should have an associated key of length 2L,

which is used for mutual authentication. Moreover, the tag has to store a unique

identification number (ID) of length L. Thus the tag needs a memory size of 4L bits.

However the reader needs memory size of 6L due to additional storage cost of K1last and

K2 last.

Communication Overhead: The proposed protocol accomplishes mutual authentication

between tag (T) and reader (R+B), requiring only three rounds. Taking into account that

low cost tags are passive, and that the communication can only be initiated by a reader,

three rounds may be considered as a reasonable number for mutual authentication in

RFID environments. Therefore the proposed protocol is feasible and practical for a low-

cost RFID environment.

7.2 Performance analysis for Protocol 2

Computation Overhead: In this protocol, the tag needs a PRNG and XOR operation

whereas the reader needs XOR operation and PRNG. This protocol has an extra overhead

of generating PRNG on the tag side. However the tag is identified easily making use of

TIN in the database.

Storage Overhead: We assume that the sizes of all components are L bits. This protocol

needs L-bit TIN, each tag should have an associated key of length 2L and it has to store a

unique identification number (ID) of length L. Thus the tag needs the memory size of 4L

 81

bits. However the reader needs memory size of 6L bits due to additional storage cost of

K1last and K2 last.

 Communication Overhead: The proposed protocol accomplishes mutual authentication

between tag (T) and reader (R), requiring only three rounds. Therefore the proposed

protocol is feasible and practical for low-cost RFID environment.

7.3 Performance analysis for Protocol 3

Computation Overhead: In this protocol tag only needs XOR operation whereas the

reader needs XOR operation and a PRNG. Since the tag is identified in the database using

TIN, we don’t have to go through the whole database to find the tag and compute its

identity as done in other protocols.

Storage Overhead: We assume that the sizes of all components are L bits. This protocol

needs L-bit TIN, each tag should have an associated key of length 2L and it has to store a

unique identification number (ID) of length L. Thus the tag needs a memory size of 4L

bits. However the reader needs memory size of 5L bits due to additional storage cost of

K1last.

Communication Overhead: The proposed protocol accomplishes mutual authentication

between tag (T) and reader (R), requiring only four rounds. Therefore the proposed

protocol is feasible and practical for low-cost RFID environment.

7.4 Performance analysis for Protocol 4

Computation Overhead: In this protocol, tag needs PRF operation whereas the reader

needs PRF operation too.

 82

 When a reader sends a message ‘hello’ to the tag, it will generate two random

numbers n1 and n2 from the PRF making use of the master Key and will respond with

message α to the reader. Then the system has to carry out an exhaustive search to find

that tag whose response is same as the message received. Therefore the system’s

workload is linear to the number of tags. If such a tag is found, then updating the reader

side values takes place. The Reader will generate new random number n3 and n4 from

the PRF, which it uses to make message β. The tag will then authenticate the reader.

Storage Overhead: We assume that the sizes of all components are L bits. For each tag,

this protocol needs master key of length L and it has to store a unique identification

number (ID) of length L. Thus the tag needs a memory size of 2L bits. Reader needs a

memory size of 3L bits because of added K last.

Communication Overhead: The proposed protocol accomplishes mutual authentication

between tag (T) and reader (R), requiring only three rounds making it feasible and

practical for low-cost RFID environment.

7.5 Performance analysis for Protocol 5

Computation Overhead: In this protocol, tag and reader both needs PRF operations.

 When a reader sends a message ‘hello’ to the tag, it will generate a random

numbers n1 from the PRF making use of the master Key and the tag number TN, and will

respond with message α to the reader. Then the system has to carry out an exhaustive

search to find that tag whose response is the same as the message received. Therefore the

system’s workload is linear to the number of tags. If such tag is found, then updating the

 83

reader side values takes place. The Reader will generate a new random number n2 from

the PRF, create message β and send it to the tag. The tag will then authenticate the reader.

Storage Overhead: We assume that the sizes of all components are L bits. For each tag,

this protocol needs master key of length L, tag number TN, counter value C, and it has to

store a unique identification number (ID) of length L. Thus the tag needs a memory size

of 4L bits. The Reader needs the memory size of 5L bits because of added C last.

Communication Overhead: The proposed protocol accomplishes mutual authentication

between tag (T) and reader (R), requiring only three rounds making it feasible and

practical for low-cost RFID environment.

 All the proposed protocols in this thesis are compared with each other for their

computational loads and memory requirements in table 6 as shown below.

Table 6: Computational Loads and Memory Requirement for Proposed Protocols

Protocol Entity P 1 P 2 P 3 P 4 P 5

T ¬ 1 ¬ ¬ ¬
PRNG Operation

R 1 1 1 ¬ ¬

T ¬ ¬ ¬ 6 2
PRF Operation

R ¬ ¬ ¬ 2 n + 4 2 n + 1

T 11 13 9 2 3
Exclusive-OR Operations

R 8 12 9 ¬ 2 n + 1

Authentication Steps 3 3 4 3 3

T 4L 4L 4L 2L 4L
Required Memory

R 6L 6L 5L 3L 5L

Identification
Computation

R O(1) O(1) O(1) O(n) O(n)

†† Notation: ¬ Not Required n Number of Tags L Size of Memory

Table 7 shows a comparison made by Yang [26] of the security requirements of

different proposals. Our protocols are added to that table.

 84

Table 7: Comparison of Computational Load and Memory Requirement with Other

Protocols

Protocols Entity HLS EHLS HBVI MAP P 1 P 2 P 3 P 4 P 5

T 1 2 3 2 ¬ ¬ ¬ ¬ ¬ Hash
Operations B ¬ N 3 2n ¬ ¬ ¬ ¬ ¬

R ¬ ¬ ¬ 1 ¬ ¬ ¬ ¬ ¬ Keyed Hash
Operation B ¬ ¬ ¬ 1 ¬ ¬ ¬ ¬ ¬

T ¬ 1 ¬ ¬ ¬ 1 ¬ ¬ ¬

R ¬ ¬ ¬ 1 1 1 1 ¬ ¬
PRNG

Operation
B ¬ ¬ 1 ¬ ¬ ¬ ¬ ¬ ¬

T ¬ ¬ ¬ 4 11 13 9 2 3
Basic

Operations R+B ¬ ¬ ¬
2(n
+1)

8 12 9 ¬
2 n+

1

Number of
Encryption

B ¬ ¬ ¬ 1 ¬ ¬ ¬ ¬ ¬

Number of
Decryption

R ¬ ¬ ¬ 1 ¬ ¬ ¬ ¬ ¬

Authentication Steps 6 5 5 5 3 3 4 3 3

T L
2

1
1 1L 3L L

2

1
2 4L 4L 4L 2L 4L

Required
Memory

R+B L
2

1
2 L

2

1
1 9L L

2

1
9 6L 6L 5L 3L 5L

Identification
Computation

R O(n) O(n) O(n) O(n) O(1) O(1) O(1) O(n) O(n)

†† Notation: ¬ Not Required n Number of Tags L Size of Memory

 85

CHAPTER 8

APPLICATION OF PROPOSOD SECURO RFID PROTOCOLS

 To reduce the cost of RFID tags, bulky data about products is stored in backend

databases and accessible through the internet. Only a minimum amount of information

such as product IDs and light-weight security primitives are stored in the RFID tags.

These tags are attached to containers, pallets, and/or items. A networked RFID system

proposed by EPCGlobal including Tag, Reader, Savant, Electronic Product Code

Information System (EPCIS) and Object Name Service (ONS) is shown in the figure 8.1.

TAG

Reader Savant Application

ONS

EPCIS

EPCIS

EPC URL

Remote

Local

EPC

Fig 8.1 Networked RFID

 86

8.1 Supply Chain Application

In supply chain systems, a supply chain partner uses RFID readers to collect

product information from RFID tags. The collected information is then sent to savant

system for further interpretation and process. Meanwhile, a supply chain information

flow can take place between supply chain partners through internet connections as shown

in the figure 8.2.

Fig 8.2 Networked RFID Systems in Supply Chain

ONS

ONS Cache

EPCIS

Savant

Reader

Enterprise
Application

Enterprise
Application

Pi

Business
Transaction

T T T T T T T T

Material Flow

Pi+1

 87

8.1.1 System Model:

Yingjiu [29] proposed a protocol that is applied on a supply chain system. In that

protocol they used a hash function on the tag. They have shown how to implement their

protocol when a number of partners are engaged for a particular batch of tags. We have

used the same strategy and have applied our protocol to that situation. We have also

proved that the security requirements as proposed by them for supply chain are satisfied

by our protocol. In our model, instead of using hash functions on tags, we have used PRF,

which makes the tags much cheaper. We have proposed that the tag information should

be transmitted to the next partner instead of the previous partner as proposed in their

protocol.

We consider a supply chain consisting of N partners denoted by P1, P2 … PN.

Material flow of items between the partners is equipped with RFID tags. It originates

from P1 and is shipped along the supply chain in the sequence of P1, P2…Pi, Pi+1 … PN.

When the flow arrives at P1, it has to read and update all RFID tags.

We assume that every partner has limited knowledge of its local neighborhood in

the whole supply chain. Namely, for all 1≤ i ≤N, partner Pi is aware of its subsequent peer

Pi+1 and for all 1 ≤i ≤N, Pi is aware of its preceding peer Pi-1.

We do not consider physical attacks on legitimate readers, tags or tag-item

attachment and denial of service attacks in this supply chain.

8.1.2 System Setup:

We consider using protocol 4 with some modifications for this application as its

more secure than the other proposed protocols. Master keys transmission between the

 88

partners is done using public key encryption. Let l be the maximum length of RFID tag’s

ID. If partner Pi is the first to start the supply chain then master keys for all the tags are

generated and stored. When the tags leave Pi facility, all the updated master keys and

other data are transmitted to Pi+1.

8.1.2.1 Tag Initialization: P1 is responsible for RFID tag initialization. The data

pertaining to tag includes master key K and ID. If P1 is the starting point in the supply

chain then P1 will generate a master key and assign this value to K in the tag. P1 will store

the item serial number or EPC, to which the tag is supposed to attach, in the ID field.

8.1.2.2 Database Initialization: Using protocol 4 for this application, we modify

the database by adding field S in the database which is a binary bit. ‘s=1’ to mean that the

corresponding RFID tag has been processed. Otherwise we set it to 0.

K Klast ID S

Since P1 is the originator of the supply chain, it initializes D1 after setting up

RFID tags. It will assign the value of the master key generated for that tag to field K, Klast

will have the same value, EPC or serial number of item to field ID and s=0 and will do it

for all the tags.

Each partner Pi maintains a database Di in its local system. Di contains all RFID

information with respect to that shipment. Each tuple in the database corresponds to a tag.

For convenience, the j-th entry in the database, (kj, klastj , idj, sj), is denoted by dj. Di is

represented by {d1, d2… dn}, where n is the number of tags for the current shipment.

Initially, Di is empty.

 89

To process the incoming material flow, Pi either receives or downloads all

updated master Keys and ID of Di-1 from Pi-1 through a secure communication channel. Pi

will set all the sj = 0, (1≤ j≤ n).

8.1.2.3 RFID Read/Write Protocol: Our Protocol 4 works as follows in this case.

Reader Protocol: The ultimate goal of this protocol for Pi‘s reader is to extract the

tag’s ID and retrieve its corresponding record from the database. Our protocol described

below shows the interaction between one tag and a reader.

Step 1: Reader → Tag: The reader sends message ‘hello’ to the tag.

Step 2: Tag → Reader: Tag generates n1, n2, then create message α using master key and

sends α to the reader.

Step 3: Tag Authentication: Using the master key K and Klast, the reader computes all

possible responses for all unmarked tags in the database Di. Then the reader searches

from the computation results. If match is found, it sets s=1, which means it’s a legitimate

tag being present in the database and it’s being processed.

Step 4: Used in Write Protocol.(see below)

Step 5: Used in Write Protocol.

Step 6: Reader Authentication: Using the new master key, the tag computes the response.

If the response is the same as the message β, it authenticates the reader.

Step 7: Used in Write Protocol.

Step 8: Tag → Reader: Tag creates message γ and sends it to reader, which includes the

ID of the item.

 90

Write Protocol: The write process is to update the tag’s master key so that it can

be accessed securely by the authorized readers of the next partner Pi+1. In essence, the

reader of Pi writes Ki+1 to an RFID tag. The protocol is as follows:

Step 4: Update Reader: New master key is generated using the old master key.

Step 5: Reader → Tag: Reader generates n3, n4, then creates message β using the master

key and sends β to the tag.

Step 7: Update Tag: New master key is generated using the old master key.

8.1.3 Security Requirements in Supply Chain:

8.1.3.1 Visibility: In a supply chain, tracking of RFID tags should be provided. It

should also provide the information about the last partner who has processed it. It allows

the partners to track and monitor the progress of material flow without inefficient bar

code scanning. While the supply chain partners are trusted and should be provided with

supply chain visibility, however unauthorized readers should be prevented from

understanding any tag’s content and from tracking the movement of material flow. The

following can be concluded from the above protocol.

• Without knowledge of the master key, no reader is able to obtain the tag’s

identity.

• Without knowledge of the master key, no reader is able to determine whether two

tags belong to the same material flow.

8.1.3.2 Authoritative Access: RFID tags are only accessible by authorized readers of

partners Pi. Only authorized readers are able to interpret the responses and extract their

 91

identities, whereas a malicious reader obtains no meaningful information from its

interrogation. We summarize the security with respect to authoritative access in the

following statement.

• Consider an RFID tag delivered by partner Pi-1 to partner Pi. Only Pi’s reader is

able to read the tag’s ID. Furthermore, only Pi’s reader is able to write to this tag.

8.1.3.2 Authenticity of Tags: Only legitimate RFID tags delivered by Pi-1 will be

accepted by Pi readers eliminating the replay and cloning attacks. Note that the supply

chain reader is unable to distinguish between the original tag and a cloned malicious tag.

The authenticity of tags in our protocol is summarized in the following statement.

• It is computationally infeasible for an attacker, without the knowledge of a master

key, to find out a pair n1 and n2 to make a valid message α.

8.1.3.4 Unlinkablility: It should be unfeasible for the rouge reader to determine

whether its interrogations are upon the same tag in inbound and outbound flow. In supply

chain, a correlation of inbound flow and outbound flow reveals critical information about

the company. Following can be concluded from the above protocol.

• Given a response t1 from a tag prior to being processed by partner Pi and a

response t2 from a tag after being processed by Pi, it is unfeasible for a rouge

reader to determine whether t1 and t2 are from the same tag. In other words, the

tags are unlinkable for unauthorized readers.

 92

CHAPTER 8

CONCLUSION AND FUTURE WORK

 In this thesis we have investigated the security issues and requirements of RFID

systems, and have proposed Ultra-Light weight (Protocol 1, Protocol 2, and Protocol 3)

and Light weight (Protocol 4, Protocol5) protocols. From the security and performance

analysis done in the previous chapters we come up with the following conclusions.

1. Ultra-Light weight protocols using primitive operations and pseudo-random

number generator (PRNG) can provide the same level of security and

performance without the use of expensive hash functions, symmetric encryption,

and at much reduced cost.

2. Ultra-Light weight protocols are highly robust. In ultra-light weight protocols, use

of tag-index number (TIN) reduces the time complexity for identifying the tags in

the database.

3. In Light weight protocols, storing the previous value of shared key prevents the

desynchronization problem.

4. Light weight protocols using pseudo-random functions (PRF) can provide the

same level of security with the exception of total tag anonymity and data recovery

at much reduced cost.

 93

The protocol suite proposed in this thesis can work as efficiently and it’s as secure

as proposed by other people and fits the low-cost RFID system environment.

These protocols can be used for item level tagging depending on the environment.

Ultra-Lightweight protocols can easily work in a controlled environment without the

presence of an active attacker. Since these protocols are cheap to implement and they

don’t suffer from the scalability problem, they are best in such environment. These

protocols can easily prevent eavesdropper and other attacks as shown. Light-weight

protocols can be used in an environment where an active attacker is present. They can

provide security for the item, however anonymity is partially fulfilled.

In the proposed protocols, we were only able to provide partial anonymity. Total

anonymity can be added to these protocols at the cost of a random number generator on

the tag side, as the response from tag is always the same in our case, which can increase

the price of a tag. Total anonymity is left for future work.

 94

REFERENCES

[1] Miyako Ohkubo, Koutarou Suzuki, and Shingo Kinoshita., “Cryptographic
approach to “privacy-friendly” tags”, In RFID Privacy Workshop, MIT,
Massachusetts, USA, November 2003.

[2] Stephen A. Weis., Sanjay E. Sarma., Ronald L. Rivest., and Daniel W. Eengels.,

“Security and Privacy Aspects of Low-Cost Radio Frequency Identification
Systems”, Internationl Conference on Security in Pervasive Computin - SPC,
pp.454-469, March 2003.

[3] Istvan Vajda and Leevente Buttyan. “Lightweight authentication protocols for low-
cost RFID tags”. In Second Workshop on Security in Ubiquitous Computing –

Ubicomp 2003, USA, October 2003.

[4] Ari Juels., “RFID Security and Privacy: A Research Survey”. IEEE Journal on

Selected Areas in Communications, 24(2), pp 381-394, Feb. 2006.

[5] Gildas Avoine., Etienne Dysli. And Phillippe Oechslin., “Reducing Time

Complexity in RFID Systems”. In B. Preneel and S. Taavares, editors, Selected

Areas in Cryptography – SAC 2005.

[6] Mikko Lehtonen., Thorsten Staaake., Florian Michaheelles., and Elgar Fleisch.

“From Identification to Authentication – A Review of RFID Product Authentication
Techniques” Workshop on RFID Security, July 2006.

[7] Tasssos Dimitriou. “A Lightweight RFID Protocol to protect against Traceability

and Cloning attacks”. Conference on Security and Privacy for Emerging Areas in

Communication Networks – SecureComm, September 2005.

[8] Auto-ID Center, “860MHz–960MHz Class I Radio Frequency Identification Tag

Radio Frequency& Logical Communication Interface Specification Recommended
Standard, Version 1.0.0”, Technical Report, MIT-AUTOID-TR-007, November
2002.

[9] Ari Juels., Ronald Rivest., and Michaeel Szydlo., “The blocker tag: selective

blocking of RFID tags for consumer privacy”, ACM Conference on Computer and

Communications Security – ACM CCS, pp. 103 -111, October 2003.

[10] mCloak for RFID tags, http://www.mobilecloak.com/mobilecloak/index.html [last

accessed – April 22, 2007]

 95

[11] Gildas Avoine., “Radio frequency identification: adversary model and attacks on
existing protocols”, Technical Report LASEC – REPORT – 2005 – 001, EPFL,
Lusanne, Switzerland, September 2005.

[12] Dirk Henrici., and Paul Muller., “Hash-based Enhancement of Location Privacy for

Radio-Frequency Identification Devices using Varying Identifiers”, Workshop on

Pervasive Computing and Communications Security, 2004

[13] Benessa Defend., Kevin fu., and Ari Juels, “Cryptanalysis of Two Lightweight

RFID Authentication Schemes” , PERCOMW , pg 211-216. March 2007

[14] Ari Juels., “Minimalist cryptography for low-cost RFID tags”. Security of

Communication Networks, volume 3352 of LNCS, pp 149 – 164. Springer-Verlag,
2004.

[15] David Molnar., and David Wagner, “Privacy and security in library RFID: issues,

practices, and architectures”, Conference on Computer and Communication

Security – ACM CCS, pp. 210 – 219, October 2004.

[16] Simson L. Garfinkel, Ari Juels, Ravi Pappu, "RFID Privacy: An Overview of

Problems and Proposed Solutions," IEEE Security and Privacy, vol. 03, no. 3, pp.
34-43, May/Jun, 2005.

[17] S. Shepard., RFID Radio Frequency Identification, MacGraw-Hill, 2005.

[18] Auto-ID Center. 900 MHz class 0 radio frequency (RF) identification tag

specification. Draft, March 2003.

[19] P. Peris-Lopez., J. C. Hernandez-Castro., J. M. Estevez-Tapiador., and A.

Ribagorda. “LMAP: A Real Lightweight Mutual Authentication Protocol for Low-
Cost RFID tags”. Proc. Of 2

nd
 Workshop on RFID Security, July 2006.

[20] Tieyan Li., and Guilin Wang. “Security Analysis of Two Ultra-Lightweight RFID

Authentication Protocols”. IFIP SEC 2007, May 2007.

[21] Sangshin Lee., Tomoyuki Asano., and Kwangjo Kim. “RFID Mutual

Authentication Scheme based on Synchronized Secret Information”. Symposium on

Cryptography and Information Security, January 2006

[22] K. Yksel., J.P. Kaps., and B. Sunar. “Universal hash functions for emerging ultra-

low-power networks”. In Proc. Of CNDS’ 04, 2004.

[23] Datasheet Helion Technology. High Performance MD5. Fast SHA-1. Fast SHA-

256. Hash core for ASIC, 2005.

 96

[24] JetStream Media Technologies. JetAES Tiny, Standard : Low Gate Count Low Data
Rate AES Cores, October 2006.

[25] M. Feldhofer., S.Dominikus., and J. Wolkerstorfer. “Strong authentication for RFID

systems using the AES algorithm”. In Proc. Of CHES’ 04, volume 3156 of LNCS,
pg 357- 370, 2004.

[26] J. Yang., J. Park., H. Lee., K. Ren., and K. Kim. “Mutual authentication protocol

for low-cost RFID”. Encrypt Workshop on RFID and Lightweight Crypto, July

2005.

[27] M.R. Rieback., B. Crispo., and A. S. Tanenbaum. “The Evolution of RFID

Security”. IEEE Pervasive Computing, Volume 5, Issue 1, page 62-69 , 2006.

[28] H. Knospe., and H. Pohl. “RFID Security”. Information Secuirty Technical Report,

Volume 9, pg 39-50, Nov-Dec 2004.

[29] Yingjiu Li., and Xuhua Ding. “Protecting RFID Communications in Supply

Chains”. ACM Symposium on InformAtion, Computer, and Communication

Secuirty, pages 234 – 241, Singapore, March 20-22, 2007.

[30] Certicom Suite B TRNG IP Core, http://www.certicom.com/download/aid-

690/Suite%20B%20TRNG%20IP%20Core.pdf [last accessed – Nov 20, 2007]

[31] HangRok Lee., and DoWon Hong. “The tag authentication scheme using self-

shrinking generator on RFID system”. Transactions on Engineering, Computing,

and Technology, Vol 18, pages 52 – 57, 2006.

VITA

Asrar Ahmed Omer

Candidate for the Degree of

Master of Science

Thesis: MUTUAL AUTHENTICATION PROTOCOLS FOR RFID SYSTEMS

Major Field: Computer Science

Biographical:

Personal Data: Born in Sialkot, Pakistan, September 1974 to Mr. and Mrs.
 Mehboob Ahmed

Education: Received my Matriculation degree from Crescent Model School,

Lahore, Pakistan, in 1990. Received my Pre-Engineering from
Government College, Lahore, Pakistan, in 1992. Received my Bs.
Chemical Engineering from Punjab University, Lahore, Pakistan, in
1999. Completed the requirements for the Master of Science in
Computer Science at Oklahoma State University, Tulsa, Oklahoma in
December, 2007.

Professional Memberships: Member of American Computer Society (ACM).

ADVISER’S APPROVAL: Dr. Johnson Thomas

Name: Asrar Ahmed Omer Date of Degree: December, 2007

Institution: Oklahoma State University Location: Tulsa, Oklahoma

Title of Study: MUTUAL AUTHENTICATION PROTOCOLS FOR RFID SYSTEMS

Pages in Study: 96 Candidate for the Degree of Master of Science

Major Field: Computer Science

Radio-Frequency Identification Devices (RFID) is emerging as a pervasive
computing technology with numerous applications. Current low-cost RFID tags are
highly resource-constrained and cannot support complex security mechanisms. Hence
they have potential risks and may violate the privacy of their bearers. The challenge in
providing security for low-cost RFID tags lies in that they are computationally weak
devices, unable to perform even basic symmetric-key cryptographic operations as
proposed in currently available protocols.

In this thesis we have analyzed the security issues and requirements for a RFID
system. We have proposed a suite of lightweight mutual authentication protocols for low-
cost RFID tags which offer an adequate level of security at much reduced cost. We also
compare our proposed protocols with those proposed by others. Furthermore we apply
our proposed protocol to secure a supply chain management system.

