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PREFACE

The rapid development of information technologies and the advent of the World-
Wide Web have resulted in a tremendous increase in the amount of available mul-
timedia information. As a result, there is a need for effective mechanisms to search
large collections of multimedia data, especially images.

In order to alleviate some of the problems associated with text-based approaches
to image retrieval, content-based image retrieval (CBIR) was proposed. The idea is
to search on images directly. A set of low-level features, which can be either global or
region—based, are extracted from an image to represent its visual content. Retrieval
of images is then done by image example where a query image is given as input by
the user [130]. The relevance of a database image to the query image is proportional
to their feature-based similarity. Those feature representations deemed the most
"similar” are returned to the user as the retrieval set. Unfortunately, human notion
of similarity is usually based on high-level abstractions, such as activities, events, or
emotions displayed in an image. As a result, images with high feature-based similarity
may be completely different in terms of user-defined semantics. This discrepancy
between low-level features and high-level concepts is known as the semantic gap [114].

Relevance feedback (RF) [114] is a supervised learning technique that, by gath-
ering semantic information from user interaction, can reduce the semantic gap and
improve retrieval performance. We can distinguish two different types of information
provided by RF. The short-term learning obtained within a single query session is
intra-query learning. The long-term learning accumulated over the course of many
query sessions is inter-query learning. While intra-query learning has been widely

used in the literature, less research has been focused on exploiting inter-query learn-
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ing.

In tflis dissertation, the problem of mapping the low-level physical characterization
of images to high-level semantic concepts is addressed by focusing on inter-query
learning in CBIR with both global and region-based image representations. While
the focus is on inter-query learning, novel intra-query learning approaches and image

representations are also presented.
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Chapter 1

Introduction

A picture 18 worth a thousand words

1.1 Image Retrieval

The rapid development of information technologies and the advent of the World-Wide
Web have resulted in a tremendous increase in the amount of available multimedia
information. As a result, there is a need for effective mechanisms to search large
collections of multimedia data (e.g., image, audio, video). The management of text
information has becn studied thoroughly and there have been many successful ap-
proaches for handling text databases (see [121]). However, the progress in research
and development of multimedia database systems has been slow due to the difficulties
and challenges of the problem. Of particular interest to us are images.

The development of concise representations of images that can capture the essence
of their visual content is an important task. However, as the above saying suggests,
representing visual content is a very difficult task. The human ability to extract
semantics from an image by using knowledge of the world is remarkable, though
probably difficult to emulate.

At present, the most common way to represent the visual content of an image



is to assign a set of descriptive keywords to it. Then, image retrieval is performed
by matching the query text with the stored keywords [117]. However, there are
many problems associated with this simple keyword matching approach. First, it is
usually the case that all the information contained in an image cannot be captured
by a few keywords. Furthermore. a large amount of effort is needed to do keyword
assignments in a large image database. Also, because different people may have
different interpretations of an image’s content, there will be inconsistencies [117].
Consider the image in Figure 1.1. One might describe it as “mountains”, “trees”,
and “lake”. However, that particular description would not be able to respond to

user queries for “water”, “landscape”, “peaceful”, or “water reflection”.

Figure 1.1: Sample image.

In order to alleviate some of the problems associated with text-based approaches,
content-based image retrieval (CBIR) was proposed (see [27, 28] for examples of early
approaches). The idea is to search on the images directly. A set of low-level features
(such as color, texture, and shape) are extracted from the image to characterize its
visual content. In traditional approaches [27, 28, 45, 49, 67, 91, 105, 123, 126, 132,
133. 136, 147], a set of global features are extracted from the image. The features
are then the components of a feature vector which makes the image correspond to a
point in a feature space (See Figure 1.2). In contrast to traditional methods, which

extract global image features, region-based approaches [15, 17, 73, 75, 81, 134, 146)
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extract features from segmented regions of an image. The main objective of using
regions is to do a more meaningful retrieval that is closer to a user’s perception of an
image’s content. That is, instead of looking at the image as a whole, we look at its
objects and their relationships (See Figure 1.2).

color

- _-..__)5_\'&-__: e Dl

> rexture

(a)

color

¥ rexture

(b)

Figure 1.2: Image representations: a) global: a set of global features is extracted and
the image is represented by a single point in feature space; b) region-based: a set of
local features is extracted from each segmented region and the image is represented
by a (variable) number of points in feature space.

Retrieval of images in CBIR is done by image example where a query image is
given as input by the user [130]. Thus, the system views the query and database
images as a collection of features. The relevance of a database image to the query

image is then proportional to their feature-based similarity. The general computa-



tional framework of a CBIR system is depicted in Figure 1.3. In order to create the
image database, images are processed by a feature extraction algorithm and their
feature representations are stored in the database. The same feature extraction algo-
rithm is used to obtain the features that represent the query image. The similarity
measure compares the representation of the query image with the representation of
each database image. Those feature representations deemed the most “similar” are
returned to the user as the retrieval set. The selection of an appropriate similar-
ity measure is also an important problem. Different similarity measures will affect
retrieval performance significantly. Since visual content can be represented by dif-
ferent attributes, the combination of and importance of each set of features has to
be considered. In addition, the similarity measure should be adaptive so that it can

accommodate the preferences of different users.

Image 1 Image 2

Query Image

et

I Feature Extraction I Feature Extraction J
¥ '
Image Database Query Index '

Similarity Measurement ‘J

l Retrieval Set

Image 1 Image 2

Figure 1.3: General CBIR computational framework.

There are also problems with this general CBIR computational framework. The
human notion of similarity is usually based on high-level abstractions such as activi-

ties, events, or emotions displayed in an image. Therefore, a database image with a



high fef;mture similarity to the query image may be completely different from the query
in termis of user-defined semantics. This discrepancy between low-level features and
high—lexﬁrel concepts is known as the semantic gap [130].

Reléevance Feedback (RF), originally developed for information retrieval [114], has
been pfoposed as a learning technique aimed at reducing the semantic gap. It works
by gathzering semantic information from user interaction. Based on the user’s feedback
on the ?retrieval results, the retrieval scheme is adjusted. Thus, by providing an image
similarity measure under human perception, RF can be seen as a form of supervised
learniné. In order to learn a user’s query concept, the user labels each image returned
in the previous query round as relevant or non-relevant. Based on the feedback, the
retrieval scheme is adjusted and the next set of images is presented to the user for
labellirlég. This process iterates until the user is satisfied with the retrieved images or

stops searching. Figure 1.4 shows a typical RF process.

Query Retrieval Set 1

LEARN

LEARN

Figure 1.4: A typical RF process.

Precision and recall are common measures that are used to evaluate the perfor-
mance of an image retrieval system. Consider an image database consisting of a set of

images D. Let q be a query image and .4 C D be the subset of images in D that are



relevanjt to q. Assume that a given image retrieval strategy processes q and generates
R C D as the retrieval set. Then, Rt = RN A is the set of relevant images to g
that aﬁpear in R. Similarly, R~ = R — A is the set of non-relevant images to q that
appearéin R. Figure 1.5 illustrates these sets. The precision and recall measures are

as folloWs
1. Rrecision measures the ability to retrieve only relevant images. It is defined as

i

7 (1.1)

Precision :=

2. Recall measures the ability to retrieve all relevant images. It is defined as

RT|

Recall :=
Al

(1.2)

P

Figure 1.5: Image retrieval performance measures: D is the set of all database images;
A is the set of all images relevant to a query; R is the retrieval set in response to the
query; precision is [R*[/|R]; recall is {[R*|/[Al.

Boﬁh high recall and high precision are desirable, though not often obtainable.

That is, in many cases, improvement of one leads to the deterioration of the other.
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Note t};at perfect recall could be achieved simply by letting R = D (i.e., by retrieving
all imaées in the database in response to ). However, obviously, users would probably
not be jhappy with this approach. Thus, recall by itself is not a good measure of the
performance of an image retrieval system. Instead, users want the database images
to be r?anked according to their relevance to q and then be presented with only the
k mostg relevant images so that |R| = k£ < |D|. Therefore, in order to account for
the quaimlity of image rankings, precision at a cut-off point (e.g., k) is commonly used.
For exémple, if £ = 20 and the top 20 ranked images are all relevant to q, then R
contains only relevant images and thus precision is 1. On the other hand, if £ =
40 and only the first top 20 images are all relevant to q, then half of the images in
R are ?non—relevant to q and thus precision is only 0.5. A common way to depict
the degiradation of precision as k increases is to plot a precision-recall graph. Figure
1.6 shéws a typical precision-recall graph. This graph shows the tradeoff between
precision and recall. That is, attempting to increase recall results in the introduction
of more non-relevant images into R, thus decreasing precision. Ideally, we would
like improvements in the image retrieval system to result in the precision-recall curve

moving upwards and towards the right (i.e., both high precision and high recall).

1.2 Problem Statement

Since its introduction to CBIR by Minka [96], RF has been incorporated into a variety
of systems. However, most do not implement one of the main goals set forth by Minka
- the azbility to apply what is learned from past RF interactions to the current task.
Tn most current systems, all prior experience is lost. The retrieval strategy is refined
by usiﬁg only RF supplied by the current user and the learning process starts from
groundj up for each new query. That is, the system only takes into account the current
query éession without using any long-term learning. Thus, these systems are based

on the assumption that users are willing to patiently perform several iterations of RF
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Precision 0.5

0.0

0.0 0.

'K

1.0

Recall

Figure 1.6: A typical precision-recall graph.

for each query.

We can distinguish two different types of information provided by RF. The short-
term learning obtained within a single query session is intra-query learning. The
1ong—te?rm learning accumulated over the course of many query sessions is inter-query
leamz'ﬁg. By accumulating knowledge from users, long-term learning can be used to
enhance future retrieval performance. The fact that two images were regarded as
similar by a previous user is a cue for similarities in their semantic content. This
is beg@use, although different people may associate the same image into different
concepts, there is some common semantic agreement. While short-term learning has
been Widely used in the literature, less research has been focused on exploiting long-
term le;arning.

In t?his dissertation, the problem of mapping the low-level physical characterization

of images to high-level semantic concepts is addressed by focusing on inter-query



1earning in CBIR with both global and region-based image representations. While
the focfus is on inter-query learning, we also present some novel intra-query learning
approaches and image representations. The following are some of the key issues that

are addressed:

e What learning approaches can be used to exploit the information that is ob-
tained during the RF process? What long-term learning structures can be used

tb' represent and memorize this knowledge?
e How to handle different interpretations of the semantics of an image?

e How can we combine intra and inter-query learning in an adaptive manner?
There may be situations in which it may be advantageous to rely more heavily
o%n one type of learning. For instance, at the beginning, when only a few queries
}iave been processed, inter-query learning can be unreliable and we may want to
depend more on intra-query learning. Similarly, as more queries are processed
and experience accumulates, it may be advantageous to rely more on inter-query
learning. Thus, it is desirable to have a principled way for exploiting intra and

inter-query learning that adapts to the current situation.

) }iow can we exploit inter-query learning in an efficient manner? If the memo-
rization and exploitation of learned knowledge results in a large increase in space
and/or time requirements, we may have to question whether the advantages of
using inter-query learning justify this. Thus, we must ensure that inter-query
léarning does not result in large overhead. A compact representation with good

generalization performance is desirable.

1.3 | Organization of Dissertation

The remainder of this dissertation is organized as follows.



o ¢hapter 2. Content-Based Image Retrieval
In this chapter, we give an overview of CBIR and review the following important
issues: feature extraction (i.e., how to represent the visual content of an image),
similarity measure (i.e., how to decide the similarity of two images), indexing
téchniques (i.e., how to search images efficiently), and RF (i.e., how to reduce

the semantic gap).

. éhapter 3. Related Work in Machine Learning
The field of machine learning focuses on the study of algorithms that improve
their performance at some task automatically through experience [97]. In this
chapter, we summarize two machine learning techniques, support vector ma-

chine, and multiple instance learning, which will be used in this dissertation.

. dhapter 4. Learning with Global Image Representations
Ih this chapter, we first summarize related work on intra and inter-query learn-
ing with global image representations. Next, we present two novel techniques for
performing inter-query learning with global image representations. Both tech-
niques use support vector machines for learning the class distributions of users’
high-level query concepts from retrieval experience. They are based on a RF
framework that learns one-class support vector machines from retrieval experi-
ence to represent the set memberships of users’ high-level query concepts and
stores them in a “concept database”. The “concept database” provides a mecha-
ﬁism for accumulating inter-query learning obtained from previous queries. The
g?eometric view of one-class support vector machines allows a straightforward
interpretation of the density of past interaction in a local area of the feature
space and thus allows the decision of exploiting past information only if enough

p%ast exploration of the local area has occurred.

i

rl;‘he first approach, presented in [35, 36, 40, 42], does a fuzzy classification of

10



a} new query into the regions of support represented by the one-class support
vector machines in the “concept database”. In this way, past experience is
Ir;erged with current intra-query learning. The second approach, presented in
[39], incorporates inter-query learning into the query modification and distance
reweighing framework. One of the main advantages of these approaches is the
C;Lpability of making an intelligent initial guess on a new query when the query

is first presented to the system.

Chapter 5. Learning with Region-Based Image Representations

Iﬁ this chapter, we first summarize related work on intra-query learning with
region-based image representations. Next, we present two novel intra-query
lej:arning approaches for CBIR with region-based image representations. The
ﬁ%rst approach, probabilistic region relevance learning [38], is based on the ob-
sérvation that regions in an image have unequal importance for computing image
similarity. It automatically estimates region relevance based on user’s feedback.
It can be used to set region weights in region-based image retrieval frameworks

that use an overall image-to-image similarity measure.

T;‘he second approach, presented in [37], is based on support vector machine
léarning. Traditional approaches based on support vector machine learning
require the use of fixed-length image representations (i.e., global representa-
tions) because support vector machine kernels represent an inner product in
a feature space that is a non-linear transformation of the input space. How-
e;ver, many CBIR methods that use region-based image representations create
a§ variable-length image representation and define a similarity measure between
tWo variable-length representations. Thus, the standard support vector machine
approach cannot be applied because it violates the requirements that a support
vector machine places on the kernel. Fortunately, a generalized support vec-

tor machine [84] has been developed that allows the use of an arbitrary kernel.

11



We present a learning algorithm based on generalized support vector machines.
Since a generalized support vector machine does not place restrictions on the

kernel, any image similarity measure can be used.

Next, we present an intra/inter-query learning approach that addresses the
pfoblem of semantically-meaningful image segmentation. A large number of
image segmentation techniques have been proposed in the literature. However,
rﬁost image segmentation algorithms create regions that are homogeneous with
respect to one or more low-level features according to some similarity measure.
Unfortunately, homogeneous regions based on low-level features usually do not
correspond to meaningful objects. To the best of our knowledge, no approach
has been proposed that exploits intra/inter-query learning for automatically
improving image segmentation. We propose an algorithm based on multiple-
instance learning [25, 85, 87| that exploits both intra and inter-query learning for
automatically improving the segmentation of images in a database. The main
advantage of this approach is that it can automatically refine the segmentation

of images into semantically-meaningful objects.

Chapter 6. Other Image Representations

'fhe main idea of CBIR is to search on images directly. That is, instead of
Séarching based on assigned keywords, it is preferable to search visual content
directly. However, we still need to use a set of features to represent visual con-
tent. In this chapter, we present our initial investigation into what we believe
1s the logical continuation of the CBIR idea of searching visual content directly.
It is based on the observation that, since ultimately, the entire visual content
of an image is encoded into its raw data (i.e., the raw pixel values), in the-
dry, it should be possible to determine image similarity based on the raw data
aione. That is, everything that we need to know regarding the visual content

of the image is in the raw data itself. Humans are very good at looking at an
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image (i.e., the raw data) and extracting all the important features. Thus, all
the important features are “hidden” in the raw data. The problem of feature
e?ctraction is just that we do not entirely know yet how (we, humans) “find”
them. Thus, instead of attempting to determine image similarity based on a
(probably incomplete) set of features, why not have a similarity measure that
is based on the raw data itself (since everything is in the raw data). We present
azn initial investigation, conducted in [41], into an image dissimilarity measure
fcj)llowing from the theoretical foundation of the recently proposed normalized
information distance [74]. A very crude approximation of the Kolmogorov com-
plexity of an image is created by compression. Using this approximation, we
can calculate the normalized information distance between images and use it as

aé metric for CBIR.

Chapter 7. Conclusions and Future Work

In this chapter, we summarize the contributions of this dissertation on exploiting
both intra-query and inter-query learning to improve the performance of CBIR.
We also examine the lirﬁitations of the proposed approaches and suggest some

directions for future research.
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1.4 Notation

Throughout this dissertation, the following notational conventions will be used. A
lowercase italic roman or greek letter will refer to a scalar, for example, a, or a.
In Chapter 6, a lowercase italic roman letter will also refer to a string. A boldface
lowercase letter will refer to a vector, for example x. For a vector x, ||x|| denotes its
2-norm (i.e., Euclidean norm). An uppercase boldface letter will refer to a matrix,
for exaﬁple, M. For a matrix M, M~! denotes its inverse. The superscript T in for
example M7, stands for the transpose of matrix M. The dot product of two vectors a
and b will be denoted by a-b, or a”’b. Functions will be distinguished by always taking
in parameters, for example f(z), K(x,y), or ®(x). A calligraphic uppercase letter
will refer to a set, for example S. For a set S, |S] refers its cardinality. The subscript
i deno’ées the i-th component of a vector or the i-th element of a set, for example z;.

For a set S, the notation S = {z;}% is shorthand for § = {z,, Tay1,- .., To_1,Zs}-
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Chapter 2
Content-Based Image Retrieval

In this chapter, we give an overview of content-based image retrieval (CBIR) and
review the following important issues: feature extraction (i.e., how to represent the
visual éontent of an image), similarity measure (i.e., how to decide the similarity of
two images), indexing techniques (i.e., how to search images efficiently), and relevance

feedback (RF) (i.e., how to reduce the semantic gap).

2.1 | Introduction

As des;cribed in Chapter 1, carly approaches to image retricval were mainly text-
based techniques consisting on the manual annotation of images with descriptive
keywords. This manual annotation is very time consuming and cumbersome for large
image databases. Furthermore, it is very subjective and error-prone. Recently, some
approa?ches for automatic image labelling [100, 128, 135] have been proposed as an
attempt to improve this manual annotation process. In [100], image recognition tech-
niques ?are used for automatically assigning descriptive keywords to images. Their
approaéh uses only a limited number of keywords. Furthermore, because image recog-
nition techniques are not completely reliable, automatically assigned keywords still

have to be verified by a human. In [128], the textual context of images in a web
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page is used to automatically extract descriptive keywords. The collateral text that
usually accompanies an image (e.g., captions) is exploited in [135]. The performance
of thosg approaches is not as high as that obtained with manual annotation and their
applicébility is limited in situations where there is no textual context (e.g., a photo
albumj. In [149] a semi-automatic annotation that assigns images to keywords based
on useli“s’ RF is proposed. Their approach uses both keyword and content-based re-
trieval:strategies. A weighted sum of the keyword-based and visual feature-based
similarity measures is used to calculate the overall similarity of an image. Based on
the user’s RF, the annotation of each image in the retrieval set is updated. The ex-
periments conducted in [149] indicate that this strategy of semi-automatic annotation
outperforms manual annotation in terms of efficiency and automatic annotation in
terms éf accuracy. However, the performance of this approach depends heavily on the
performance of the particular CBIR and RF algorithms used, specially when there is
no initial annotation in the database at all [149)].

In order to overcome the above-mentioned drawbacks associated with text-based
approaches, it would be more suitable to search on the images directly based on their
visual content (in Chapter 6 we present our initial investigation on what we believe
is the logical continuation of the idea of searching on images directly). In the early
1990’8,‘ CBIR was proposed as a way of allowing a user to search target images in terms
of their content represented by visual features. Since then, many CBIR systems have
been déveloped including Blobworld[15], QBIC[27], IRM[73], NeTra[81], MARS[91],
Photobook[105], WebSEEK][133], and SIMPLIcity[146], just to name a few.

Retrieval of images in CBIR is done by image example where a query image is given
as input by the user [130]. Thus, the system views the query and database images as
a collection of features. The relevance of a database image to the query image is then
proportional to their feature-based similarity. In general, a CBIR system involves

three major issues: feature extraction, similarity measure, and indexing structure
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(See Figure 1.3).

2.2  Feature Extraction

Feature (content) extraction is the basis of CBIR. In traditional approaches [27, 28,
45, 49, 67, 91, 105, 123, 126, 132, 133, 136, 147], a CBIR system extracts a single set
of glob;al features (such as color, texture, and shape) from an image. The features
are then the components of a feature vector which makes the image correspond to a
single point in a feature space (See Figure 1.2).

Color is one of the most widely used visual features. The color histogram is a
popular image feature that has been exploited by many CBIR systems [43]. It is a
very simple description of the distribution of colors in an image. It is also usually
invariailt to translation and rotation of an image. However, histograms do not include
any spatial information so images with different layouts may have the same histogram.
Early work on color includes color indexing using histogram intersection [80]. The
representation of color is an important issue. In the RGB (Red-Green-Blue) color
space, color is labelled as relative weights of the three primary colors. In this system
(0,0,0) is black, (1,1,1) is white, and the space of all available colors is represented by
a cube “(See Figure 2.1). While this color space is the most commonly used, it does not
model human perception of color. For example, what is the RGB value of “medium
green”? Once a color has been chosen (e.g., “green”), how to make subtle changes to
it is not obvious. The HSV (Hue-Saturation-Value) color space [131] provides a better
model bf human perception of color. It is usually represented as a double cone (See
Figure j2,2) which is a non-linear transformation of the RGB cube. In order to define a
color, phe perceptually based variables Hue, Saturation, and Value are used. The axis
of the éone represents the intensity/value. Hue is represented by the angle around the
Verticai axis and saturation is given by the distance to the central axis. In this model,

varying Hue corresponds to selecting a color, decreasing Value corresponds to adding
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black, and decreasing Saturation corresponds to adding white. Making subtle changes
to a color is much easier when these perceptual variables are used. It is important to
note that the set of all colors in both the RGB and HSV color space is a subset of
the colors that can be perceived by humans. The CIE (Commission Internationale de
I'Eclairage), which stands for International Commission on Illumination, defined the
XYZ color space in 1931 [29]. This space embraces all colors that can be perceived
by humans. Every color in this space is defined by three standard primaries (X, Y,
and Z) that replace red, green, and blue. The primary Y closely matches the quality
of luminance of a color [29]. The CIE LUV color space is a derivation of this color
space in which two colors are equally distant in color space whenever they are equally

distant perceptually [29].

Blue Cyan

Magenta White

Black Greeri

7

Red ¥ Yellow

Figure 2.1: The RGB color model.

Texture is another image feature that has been intensively explored [43]. It refers
to the patterns in an image representing the homogeneity properties that do not
result from the presence of a single color. The well-known Tamura features [138]
include coarseness, contrast, directionality, line-likeness, reqularity, and roughness.

These visual texture properties were found to be important in psychological studies
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Figure 2.2: The HSV color model.

[138]. A co-occurrence matrix representation was proposed in [50]. It is based on the
construction of a co-occurrence matrix based on the orientation and distance between
image pixels and on the extraction of meaningful statistics from this matrix as a
representation of texture. VisualSeek [132] and WebSeek [133] were both developed
at Columbia university. They are web-based text/image search engines that use color
and texture features.

While color and texture are global attributes of an image, shape requires some kind
of image segmentation and region identification process. In contrast to traditional
methods, which extract global image features, region-based approaches [15, 17, 73, 75,
81, 134, 146} extract features from segmented regions of an image. The image is then
represented by a (variable) number of points in feature space (See Figure 1.2). The
main objective of using regions is to do a more meaningful retrieval that is closer to
a user’é perception of an image’s content by looking at its objects and relationships.
Fourier descriptors [106] and moment invariants [110] are well known shape repre-
sentations [118]. Shape representations can be either boundary-based (e.g., Fourier

descriptors) or region-based (e.g., moment invariants) [43]. Boundary-based represen-
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tations use the outer boundary of the shape and region-based representations use the
entire éhape of a region. It is important that the shape representation be invariant to
translation, scaling, and rotation. A modified Fourier descriptor that is translation,
scaling; and rotation invariant was proposed in [120]. Note that for region-based ap-
proaches, it is very important to be able to properly identify the objects in an image

by performing a good segmentation.

2.2.1 Image Segmentation

Many algorithms havé been proposed for image segmentation. However, robust and
accurate image Segrhentation remains a difficult problem. A review of many early
image segmentation techniques can be found in [51, 101] and a review of more recent
ones in? [78, 79]. In edge-based approaches [47, 150], segmentation is based on spatial
discont‘inﬁities. That is, by detecting sudden changes in local features, region bound-
aries can be obtained. On the other hand, segmentation in region-based approaches
[129] is based on spatial similarity among pixels. Thus, a measure of region homo-
geneity has to be defined in advance. There are two main region-based approaches:
region—growing and split-and-merge. In region-growing approaches, a number of uni-
form régions is defined in advance and surrounding pixels are merged into one of the
regions according to the homogeneity criteria. On the other hand, in split-and-merge
approaches, regions that are non-uniform according to the homogeneity criteria are
broken down into smaller regions until all regions are uniform. Then, neighboring re-
gions that are close in feature space are merged. Clustering-based approaches classify
pixels into one of several clusters. The classical k-means [90] algorithm is probably one
of the best known and most commonly used methods for clustering data. Recently,
modified versions of this algorithm (e.g., fuzzy k-means [107]) have been proposed
to impmve its robustness and efficiency. Among the many segmentation algorithms,

a Normalized Cuts framework is introduced in [129]. This framework is capable of
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detecting clusters of various shapes and is an example of a clustering-based approach
derived: from graph theory. Hopfield artificial neural networks are used in [14, 58, 62]
to solve the image segmentation problem.

A lérge number of image segmentation techniques have been proposed in the liter-
ature. jHowever, there is a lack of work on evaluating and comparing the performance
of the various techniques. The first extensive survey on image segmentation evalu-
ation Iﬁethods was presented in [159]. A more up-to-date review of recent progress
on this area was given in by the same author in [160]. In [160], a scheme for clas-
sifying evaluation methods for image segmentation is proposed. According to this
scheme, evaluation methods can be classified into three distinct groups: analytical,
empirical goodness, and empirical discrepancy methods. Analytical methods consider
characﬁeristics (e.g., complexity, requirements, etc...) of segmentation algorithms.
These fnethods can contribute only some additional information to that obtained by
other methods and thus, are seldom used in isolation [160]. The empirical goodness
methods evaluate a segmentation based on some intuitive measure of goodness (e.g.,
uniformity within regions, contrast between regions). Finally, the discrepancy meth-
ods make use of “ground truth” (i.e., ideal) segmentations to asses the performance of
a segmentation algorithm based on how different the segmentation that it generates
is fromj a “gfound truth” segmentation of the same image. Comparative experiments
indicate that these methods are better than the goodness methods [160]. Many re-
searchers believe that human assessment of segmentation results is best. In fact, [101]
indicatés that a person is the best judge for evaluating an image segmentation.

As indicated in [88, 89], the major challenge in using “ground truth” segmentations
is that: the question “What is a correct segmentation?” 1is very subtle. That is,
segmentations of an image produced by different people may not be identical (See
Figure‘2.3). Therefore, how can we make a reliable evaluation of a segmentation

algorithm when there is not a single “ground truth” set of segmentations that we can
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use to compare against?

Figure 2.3: Segmentations of an image produced by different people may not be
identical.

The thesis of [88, 89] is that, even though segmentations of an image by different
people are not identical, there is considerable consistency among them. In [88, 89],
it is demonstrated empirically that differences in segmentations are due to the fact
that, even though two observers have exactly the same perceptual organization of an
image, they may choose to segment at varying levels of granularity. This suggests
that a good segmentation error measure should penalize differences that arise from
different perceptual organizations of the image. However, if one segmentation is
simply a refinement of the other, then the error should be small [88, 89]. In [88, 89],
a “ground truth” database containing “ground truth” segmentations generated by
humans for images of a wide variety of natural scenes is obtained. Then, an error
measure which quantifies consistency (in terms of similar perceptual organization)
between segmentations of differing granularity is proposed. It is found that different

human segmentations of the same image are highly consistent (See Figure 2.4). As
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a resultj, the potential problem of not having a unique segmentation of an image is
elimina:‘ted.

Based on the assumption that all people share the same perceptual organization of
an imaée, we can model any perception of a scene as a tree, which is called the percept
tree in [88, 89] (See Figure 2.4). Thus, any two (consistent) segmentations of an image
must répresent a cut through some percept tree. Therefore, for any particular pixel
in the fmage, the regions in the two segmentations that contain the pixel must have
a subset relationship. Otherwise, if one region does not contain the other, they
cannot share a common percept tree and the segmentations are inconsistent [88, 89
(See Figure 2.5). The Local Refinement Error E(S1,So,p;) [88, 89], which tolerates
reﬁnement but not overlapping, measures the degree to which two segmentations S

and S; agree at pixel p;

|7DS1 Pi PSz \Pi
’,P51 D4

E(Sly S27pi) =

where Ps,, is the set of pixels in segmentation S which are in the same region as
pixel p;, and — denotes set difference. Note that this quantity is not symmetric. The

Local Consistency Error LCE(S1,55) [88, 89| allows refinement in both directions

n

1
LCE(S,,S,) = nzmm (51,52, p:), E(S2, S1,pi))

where n is the number of pixels in the image. Note that, for different parts of the
image, this measure allows refinement in different directions. The Global Consistency

Error (GCE) [88, 89] forces all refinements to be in the same direction

1 n n
GCE(Sla SQ) = ﬁ min (Z E(Sly S27pi)7 ZE(S% Sl:pi))
i=1

i=1

Noﬁe that GCE > LCE. Because mutual refinements are common, LCE is
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Figure 2.4: Although different, human segmentations of an image are not inconsistent
because (it is presumed that) they share the same percept tree (to the right of each
image). Variation is just due to different amounts of refinement in the segmentation
of each object in an image.
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Figure 2.5: Samples of inconsistent segmentations. In this case, there is not a common
percept tree that can explain the two different segmentations of the image on the left.
The segmentation of the shadow results in overlapping, rather than nested. regions.

preferred over GC'E in (88, 89]. However, a degenerate segmentation that has either
one region for the entire image or one region for each pixel will have a zero LC'E when
compared to any other segmentation. In [88, 89], it is found that the distribution of
LC'E over the dataset for same-image pairs is unimodal, peaked at zero, and separable
from the distribution of different-image pairs thus providing evidence that human
segmentations of an image are consistent.

The LCE measure allows refinement in both directions. Therefore, it is too lenient
for evaluating the output of a segmentation algorithm. By simply replacing the
pixelwise minimum with a maximum the Bidirectional Consistency Error (BCE) [88],

which does not tolerate refinement at all, is obtained

1 n
BCE(Sl, 32) = ;1- Z max (E(S],SQ‘P,;), E(Sg, 51.}0«;))

=1

In order to measure the consistency of a segmentation S produced by an algorithm
with all human segmentations S; of the image, the BC'E measure can be extended

as follows [88]
BCE*(S) = %Z min max (E(S, S;,pi), E(S;, S, pi))
n e :

It is important to point out that another way of evaluating a segmentation algo-

rithm, which is not mentioned in [160], would be based on the performance of the
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appliceition that uses the particular segmentation algorithm. For example, in image
retrievél, performance measures such as precision (1.1) and recall (1.2) can be used to
evaluate the goodness of a segmentation algorithm. That is, if image retrieval perfor-
mance %improves using a particular segmentation algorithm then, for that particular
appliczi_tion, the algorithm is better regardless of whether or not the segmentations
it produces are good under human evaluation. To the best of our knowledge, no
approa;ch has been proposed that exploits RF for automatically improving image
segmentation. In Chapter 5 we propose an intra/inter-query learning method for
automatically improving image segmentation.

The selection of an appropriate similarity measure is also an important problem.
Different similarity measures will affect retrieval performance significantly. Since
visual ;content can be represented by different attributes, the combination of and
importémce of each set of features has to be considered. In addition, the similarity
measure should be adaptive so that it can accommodate the preferences of different

users.

2.3  Similarity Measure

In ordér to form the retrieval set in response to a query, we need to measure simi-
larity kietween images. The similarity measure compares the feature representation
of the query image with that of each database image. Then, images whose feature
represeiitations are deemed the most similar are returned to the user as the retrieval
set. VVihen retrieving similar images based on color, most existing techniques use a
color h“istogram generated from the entire image [63]. In [80], image similarity was
based Sjolely on color. The distribution of color was represented by color histograms.
The Similarity between two images was then based on a similarity measure between
their ccg)rresponding histograms called the “normalized histogram intersection”.

Conversely, we can measure distance between images. In this case, small distances
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betweefl feature representations correspond to large similarities and large distances
correspond to small similarities. Thus, distance is a measure of dissimilarity. One
way to transform between a distance measure and a similarity measure is to take the
reciprofcal. Some commonly used distance measures are the Euclidean (also known as
the L.2-distance) and city-block distances (also known as the Manhattan distance or
L1-distance) [9]. For example, Netra [81] uses Euclidean distance on color and shape
features; MARS [91] uses Euclidean distance on texture features; Blobworld[15] uses
Euclidéan distance on texture and shape features. IBM’s QBIC [27] was the first com-
mercial system that implemented CBIR. It addressed the problems of non-Fuclidean
distance measuring and high-dimensionality of feature vectors. MIT’s Photobook
[105] implements a set of interactive tools for browsing and searching images. It con-
sists of;three subsystems: one that allows the user to search based on appearance, one
that uses 2D shape, and one that allows search based on textural properties. While
searchihg, these image features can be combined with each other and with keywords
to improve retrieval performance.

Note that with (uniformly-weighted) Euclidean distance, every feature is treated
equally. However, some features may be more important than others. Similarly, in
region-%:based approaches (where similarity between regions of two images has to be
compufed), some regions may be more important than others in determining overall
image-to-image similarity. Thus, the weight of each feature (or region) should be
based on its discriminative power between the relevant and non-relevant images for
the current query (See Figure 4.1). Then, the similarity measure of images can be
based fon a weighted distance in the feature space. For example, the (weighted)

Euclidean distance between two n-dimensional vectors x and y is defined as

de(x,y) = Jiwz(% —yi)? (2.1)

where w; is the weight of the ¢-th dimension.
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Thé querying system developed in [134] decomposes and image into regions with
characterizations pre-defined in a finite pattern library. In Blobworld [15], images
are par;tit.ioned into regions that have similar color and texture. Fach pixel is then
associated with a set of color, texture, and spatial features. The distribution of pixels
for eac?h region is calculated and the distance between two images is equal to the
distanae between their regions in terms of color and texture. In NeTra[81], regions
are segﬁlented based on color. Then, texture, shape, color, and spatial properties are
used tc; determine similarity. Both Blobworld[15] and NeTra[81] require the user to
select the region(s) of interest from the segmented query image. This information is
then used for determining similarity with database images. In [111], a system that
uses a measure of correlation to indicate similarity is used. This system works for a
varietyi of images but it requires the user to select the region(s) of interest from the
imagesj.

A rﬁajor problem with these systems is that the segmented regions they produce
usually do not correspond to actual objects in the image. For instance, an object
may be partitioned into several regions, with none of them being representative of
the object (See Figure 2.6). Thus, due to the great difficulty of accurately segmenting
an image into regions that correspond to a human’s perception of an object, several
approajches have been proposed [17, 75, 134, 146] that consider all regions in an image
for determining similarity. As a result, the problems of inaccurate segmentation are
reduce(ﬁ.

Intégrated region matching (IRM) [75] is proposed as a measure that allows a
many—fo—many region mapping relationship between two images by matching a region
of one igmage to several regions of another image. Thus, by having a similarity measure
that is a weighted sum of distances between all regions from different images, IRM
is more robust to inaccurate segmentation. The image segmentation algorithm that

is used in TRM first partitions an image into blocks of 4x4 pixels. Then, a feature
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Figure 2.6: Sample of a typical image segmentation in which segmented regions do
not correspond to semantically meaningful objects.
vector £ = [fy, fo. f3, f1, f5, fs]" representing color and texture properties is extracted
for each block. The first three features are the average color components and the
other three represent energy in high frequency bands of the wavelet transforms [22,
94]. The k-means algorithm is then used to cluster the feature vectors into several
regions. The number of regions is adaptively chosen according to a stopping criteria.
A feature vector h = [h;,hg,hg]T is then extracted for each region to describe its
shape characteristics. The shape features are normalized inertia [34] of order 1 to 3.
A region is described by R = {f' ,h}, where f is the average of the feature vectors of
all blocks assigned to the region.

Let {R;}™ and {R}}? be the region descriptors of two images, where R; = {f;, h;}
and R = {fif,hi’}. For non-textured images, the distance between two regions

d(R.R') is defined as
d(R,R') = g(ds(R,R"))d,(R,R)
where dy(R,R’) is the shape distance computed by
3
do(R,R") =Y wi(h; — h})?
i=1

where the parameter w; is chosen to adjust the effect of the i-th feature dimension
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and d;(R,R') is the color and texture distance computed by

6 “t

G(R,R) =S wi(fi — fi)?

i=1

The function g(ds(R,R’)) is used to ensure a proper influence of the shape distance

on the total distance and is defined as

1 : do(R,R)>05
g(ds(R,R)) =1 085 : 02<ds(R,R)<0.5
0.5 : dy(R,R) <02

For textured images, d(R,R') = d;(R,R’'). The IRM distance between the two region

sets is then

d[RM({R }1 ,{R/ ZZS d RZ,RI

=1 j=1

where s; ; is a significance credit indicating the importance of the matching between
regions Ri,R; in determining similarity between the images. Thus, to eﬁsure ro-
bustness against segmentation errors, each region is matched to several regions in
anothe; image and the matching is assigned with a significance credit (See Figure
2.7). Basically, the “most similar highest priority principle” is used and the smaller
the disﬁance between two regions is, the larger their significance credit.

Recently, a fuzzy logic approach, unified feature matching (UFM) [17] was pro-
posed as an improved alternative to IRM. UFM uses the same segmentation algorithm
as IRM. In UFM, an image is characterized by a fuzzy feature denoting color, tex-
ture, and shape characteristics. Because fuzzy features can characterize the gradual
transition between regions in an image, segmentation-related inaccuracies are implic-
itly coflsidered by viewing them as blurring boundaries between segmented regions.

As a result, a feature vector can belong to multiple regions with different degrees of
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Figure 2.7: Integrated region matching,.

membership as opposed to classical region representations in which a feature vector
belongs to only one region. The similarity between two images is then defined as the
overall jsimilarity between two sets of fuzzy features. A fuzzy feature is defined by a
membeiship function that measures the degree of membership of a feature vector x

to the fuzzy feature. A Cauchy function [57], C : ®™ — [0, 1], is defined as

1

where ¢ € ®" is the center point of the function, d is its width, and « determines
its shape. Accordingly, in [17], the color and texture properties of each region R; are

represeénted by a fuzzy feature with a Cauchy membership function pg, 5 : £¢ — [0, 1]

defined as
1
/"LR'mf( ) = a
lIf—fi]]
1+ (152
where |

is the average distance between region centers. The shape characteristics of each
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region Rl are also represented by a fuzzy feature with a Cauchy membership function

pr,n s R —[0,1] defined as

1+ (II dh11l>
where |
2 m—1 m
dp= ———— h; — hy|
m(m — 1) zzz:l j=i+1 | !

is the average distance between shape features.
Let {(pry.py bron) T and {(pury 5, piryn) }T be the fuzzy feature representations for
two images. The color and texture similarity between the two images is captured by

the similarity vector
c=[l, 1. .. Ly, L. )T

where

L, = S <M7zi,f7 U NR;,f)

j=1
dy + d}
. A Al
df +d + minj—1,__, £ — £ |

I = 5<Mng,f>UMRj,f)

j=1
dy +dy
dy +dj +ming_y,m | — ]

and similarly for the shape similarity, captured by similarity vector s. The UFM
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measure for the two images is then defined as

dupm({(tm,,fr bR n) 315 LR prip) 1) = (1= p)[(1 — A)wa + Awpl e+ pw,'s

where ‘Ehe normalized weight vectors w, and wy, can be set according to some region
Weighting heuristic, 0 < A < 1 adjusts the importance of w, and wy, and 0 < p <1
determines the significance of ¢ (i.e., color and texture similarity) and s (i.e., shape
similarity) :

A key factor in these types of systems that consider all the regions to perform
an overall image-to-image similarity is the weighting of regions. The weight that is
assigned to each region for determining similarity is usually based on prior assump-
tions Sgch as that larger regions, or regions that are close to the center of the image,
shouldshave larger weights. For example, in IRM, an area percentage scheme, which
is basea on the assumption that important objects in an image tend to occupy larger
areas, is used to assign weights to regions. The location of a region is also taken into
consideration. For example, higher weights are assigned to regions in the center of an
image than to those around boundaries. These region weighting heuristics are often
inconsiétent with human perception. For instance, a facial region may be the most
importi&mﬁ when the user is looking for images of people while other larger regions such
as the background may be much less relevant. Some RF approaches are motivated by
the need to have a similarity measure that is flexible to user preferences. In Chapter
5 we present our work on a learning algorithm that can be used in region-based CBIR

systems for estimating region weights in an image.

2.4 Indexing Structure

Many data structures (e.g., B-tree [4]) have been proposed for the efficient managing of

one—dirhensional data in traditional database systems. However, because of the rapid
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developzment of multimedia database systems during the past decade, the efficient
manipﬁlation of multi-dimensional data is vital [19]. In particular, there is an urgent
need for indexing techniques that support the efficient execution of similarity queries.
Therefc;re, a number of data storage and indexing techniques (such as the R-tree
[46]) have been proposed. However, most of those techniques suffer from the curse of
dimensionality 5], a phenomenon in which performance degrades as the number of
dimensions Increases.

A d;imensionality reduction technique can be used to reduce the number of fea-
tures by keeping only the most important ones (i.e., the ones that allow us to retain
as much discriminatory information as possible). That is, we should aim at keeping
features that result in large interclass distance and small intraclass variance in the
feature space. It is also desirable to remove the correlation between features so that
any redundant information can be removed. This can be achieved through principal
compoﬁent analysis (PCA) (or discrete Karhunen-Loeve transform) [66]. Suppose we
want to reduce our n dimensional data to m << n dimensions. The basic idea in
PCA is to find the m components that can explain the maximum possible amount
of variance by m linearly transformed components. It can be proven that the repre-
sentatijon given by PCA is an optimal linear reduction in the mean-square sense [66].
The b@sic procedure consists of computing m orthonormal vectors (i.e., eigenvectors)
that form a basis for the data. Those vectors are the “principal components” and the
data afe linear combinations of them. The principal components provide important
informétion about the variance in the data. It turns out that the projected data
shows *_the most variance on the first principal component, the next highest variance
on the ésecond principal component, and so on. Thus, the dimensionality of the data
can be reduced simply by eliminating the last principal components (i.e., the ones
with smallest eigenvalues that do not account for much of the variance in the data).

Therefbre, by keeping only the first principal components (i.e., the ones with largest
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eigenvalues that account for most of the variance in the data), it is possible to recon-
struct a good approximation of the original data while, at the same time, achieving

a reduction in dimensionality (See Figure 2.8).

v

Figure 2.8: Principal component analysis of two-dimensional data. The line shown
is the direction of the first principal component (i.e., the one that accounts for most
of the variance in the data). By keeping only this principal component, an optimal
linear reduction in the number of dimensions from two to one is obtained.

Metric trees are a general approach to the similarity indexing problem. In order to
organiée and partition the search space, they only consider relative distances between
objecté. They just require that the distance function is a metric (i.e., that it satisfies
the symmetry, non negativity, and triangle inequality properties) [19]. An M-tree
[19] is an example of a metric tree. It is a paged, balanced, and dynamic tree. It
provides an efficient platform for the execution of multi-dimensional similarity queries
using én arbitrary metric. The M-tree partitions objects on the basis of their relative
distanées, as measured by a particular distance function, and stores those objects
into nddes of fixed capacity, which correspond to constrained regions of the metric
space. iThe leaf nodes contain the indexed (database) objects themselves while the

routinj objects (stored in the inner nodes) represent the metric regions of the space.

35



An entry in a leaf node contains the feature vector o; of a database object, an object
identiﬁér oid(0;), and the distance d(o;, P(0;)) between the object and and its parent
routing% object. A routing object contains the feature vector o; of the routing object,
a pointér ptr(T(o;)) to a covering subtree, its covering radius r(o;), and the distance
d(oj, P{0;)) between the object and and its parent routing object (this value is zero
for thezrouting objects stored in the root). A routing object o; determines a hyper-
spherical region in the metric space where oj is the center of that region and the radius
r(0;) Sf)eciﬁes its boundary. All objects stored in leafs of the covering subtree of o;
must be spatially located inside this region (See Figure 2.9). In order to process a
similarity query, the M-tree hierarchy is traversed down. The covering subtree of oj is
relevant to the query (and is thus further processed) only if the region corresponding

to o; intersects the query region.

Figure 2.9: M-tree structure.

Th¢ retrieval efficiency of the M-tree is highly dependent on the overall ”volume”

of the ﬁegions covered by routing objects and their corresponding region overlap. That
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is, the larger the volume of a region is, the larger the amount of indexed ”dead space”
(i.e., space where no object is present). Also, the smaller the overlap between regions,
the feV\;/er the number of paths that have to be traversed for answering a query (See
Figure:2.10). These criteria lead to the development of algorithms for building the
M—tree;that specify how objects are inserted and deleted, and how node overflows and

underflows are managed. For more details, refer to [19].

Figure 2.10: Examples of M-trees with: a) large region volumes and overlap; b) small
region volumes and overlap.

2.5 Relevance Feedback

The h@man notion of similarity is usually based on high-level abstractions such as
activiti:‘es, events, or emotions displayed in an image. Therefore, a database image
with a high feature similarity to the query image may be completely different from the
query 1n terms of semantics. With the exception of some constrained applications such
as facej and fingerprint recognition, low-level features do not capture the high-level

semantics of images [118]. This discrepancy between low-level features and high-level
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conceptfs is known as the semantic gap [130].

Relévance feedback (RF), originally developed for information retrieval [114], has
been proposed as a learning technique aimed at reducing the semantic gap. It works
by gathering semantic information from user interaction. Based on the user’s feedback
on the retrieval results, the retrieval scheme is adjusted. Thus, by providing an image
similarity measure under human perception, RF can be seen as a form of supervised
learning. In order to learn a user’s query concept, the user labels each image returned
in the ﬁ)revious query round as relevant or non-relevant. Based on the feedback, the
retrieval scheme is adjusted and the next set of images is presented to the user for
labelling. This process iterates until the user is satisfied with the retrieved images or
stops searching (See Figure 1.4).

The key issue in RF' is how to use the positive and negative examples to adjust the
retrievél scheme so that the number of relevant images in the next retrieval set will
increase. Two main RF strategies have been proposed in CBIR: query modification
(119, and distance reweighing [11, 61, 103, 117, 127]. Query modification changes
the representation of the user’s query in a form that is closer (hopefully) to the
semantfic intent of the user. In particular, query shifting involves moving the query
towardjs the region of the feature space containing relevant images and away from
the reéion containing non-relevant images (See Figure 2.11). Based on RF, the next

query location can be determined with the standard Rocchio formula [122]

/ 1 1
o 22) (w2

where q is the initial query, ' is the new query location, R" is the set of relevant

retrievals, and R~ is the set of non-relevant retrievals. Thus, the new query location
q’ is a linear combination of the mean feature vectors of the relevant and non-relevant

retrieved images so that g’ is close to relevant mean and far from the non-relevant

38



mean. The values for the parameters «, §, and « are usually chosen by experimental
runs. Note that the refined query vector represents an ideal query point and does not

longer correspond to any actual image.
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Figure 2.11: Query shifting. The query is moved towards the region of the feature
space containing user-labelled relevant images (squares) and away from the region
containing user-labelled non-relevant images (circles).

Disfance reweighing changes the calculation of image to image similarity to strengthen
the contribution of relevant image components in regard to the current query. Thus,
the task is to determine the features that help the most in retrieving relevant images
and increase their importance in determining similarity.

Wejcan distinguish two different types of information provided by RF. The short-
term léarning obtained within a single query session is intra-query learning. The
long-term learning obtained accumulated over the course of many query sessions is
inter-query learning. Previous work on intra and inter-query learning with global and

region-based image representations is reviewed in Chapters 4 and 5 respectively.
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Chapter 3

Related Work in Machine Learning

The field of machine learning focuses on the study of algorithms that improve their
performance at some task automatically through experience [97]. In this chapter,
we preéent two machine learning techniques, support vector machines (SVM), and

multiple instance learning (MIL), which will be applied in subsequent chapters.

3.1 Support Vector Machines

This section presents the basic concepts of support vector machines (SVM). For more
detailed gentle introductions, refer to [13, 21, 139]. A SVM is a system for training
linear learning machines in a kernel-induced feature space efficiently while at the
same time, respecting the insights provided by generalization theory and exploiting
optimijzation theory [21]. The objective of support vector classification is to create a
compu%ationally efficient method of learning “good” separating hyperplanes in a high
dimenéional feature space, where “good” corresponds to optimizing the generalization

bounds given by generalization theory [21].
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3.1.1 Risk Minimization

Suppos§e we are given training data for a classification problem as a set of n observa-
tions. Each observation is a pair (X, ¥;) where x; € $¢ and y; € R is the corresponding
class L‘;bel. We assume that the training data has been drawn independently from
some unknown cumulative probability distribution P(x,y). The goal is to find a ma-
chine (i.e., a function f : ¢ — R) that implements the optimal mapping. In order to
make léarning feasible, we have to specify a function space F from which a machine is
chosen. For example, F can be the set of hyperplanes in R¢, artificial neural networks
with a certain structure, or any other set of parameterized functions. The functions
are labelled by a set P of adjustable parameters. Thus, a learning machine is a family
of functions F and a particular choice of P results in a “trained machine” [13]. The
task is to choose a function from a set of functions defined by the construction of the
particular learning machine. For instance, in an artificial neural network, the problem
reduces to finding the optimal set of weights for a particular network architecture.
In particular, consider a binary classification task with training data {(x;,v;)}}
where x; € R¢ and y; € {1, -1} is the class label. If the training data is linearly

separable, we can let 7 be the set of linear decision boundaries of the form
f(x) = sign(wlx +b)

where w € R and b € R are the adjustable parameters (i.e., P = {w,b}). Thus,
choosing particular values for P results in a trained classifier (See Figure 3.1).

Oné way to measure the performance of a trained classifier f € F is to look at
the mean error computed from the training data. This is known as the empirical risk

(or training error) and is defined as

Q(xi,P)

1
Remp(p> = ;L‘
1

13

K4
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Figure 3.1: A simple binary classifier.

where Q(x;, P) = 1if f(x;, P) # yi and Q(x;, P) = 0if f(xi,P) = y;. Minimizing the
empiricial risk is one of the most commonly used optimization procedures. However,
even when there is no error on the training data, the classifier may not generate correct
classiﬁéations on unseen data (See Figure 3.2). This problem is known as overfitting
and it drove the initial development of SVMs [13]. The ability of a machine to
correctly classify new data that is not in the training set is known as generalization.
Having a machine with good generalization is, of course, a much harder problem. The
generafization performance of a particular trained machine f can be measured by the

expected risk (or just the risk) defined as

R(P) = [Q(xP) dP(xy)

Choosijng optimal values for P that minimize the expected risk is known as risk min-
imizatigon. However, this is not a trivial problem because P(x,y) is usually unknown.
There jis a competition of terms. As the complexity of the classifier increases, the
empirical risk tends to decrease. However, the generalization error usually increases

with increasing complexity (See Figure 3.2). Therefore, in order to control the ex-
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pectedj risk, we have to control both the empirical risk and the complexity of the
classiﬁér. Note that these two tasks are in conflict with one another. For example, an
artiﬁciél neural network with a very simple structure may not be capable of correctly
classifiing most of the training data. That is, it may have high empirical error. On
the other hand, an artificial neural network with a very complex structure may cor-
rectly 3c1assify all the training data but may not generalize well on unseen data. In
order to choose from among multiple classifiers, we can follow Ockham’s razor: prefer
the sirrjlplest classifier that is consistent with the training data. The best generaliza-
tion performance can be obtained when the complexity of the learning machine is
restricted to one that is suitable to the amount of available training data [13]. The
principle of structural risk minimization is an attempt to identify the optimal balance
betwee%n the quality of the approximation of the training data and the complexity of

|
the approximating function (See Figure 3.2).

(2) (b)

Figure§3.2: Generalization performance: a) an overly complex classifier that results
in zero error on the training data, but may not generalize well to unseen data; b) a
classifier that might represent the optimal tradeoff between error in the classification
of training data and complexity of the classifier, thus capable of generalizing well on
unseen: data.

The Vapnik Chervonenkis (VC) dimension [143] is a measure of the complexity
of a se’;c of classifiers . It is defined as the size of the largest subset of points that

can be%shattered (or arbitrarily labelled) by choosing classifiers from JF with different
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values éf P (See Figure 3.3). Any given set of classifiers F has a fixed VC dimension.
For example, an artificial neural network with a fixed structure represents a set of
classiﬁejzrs (obtained by all possible values for the weights) with a fixed complexity

(i.e., fixed VC dimension).

Figure 3.3: The VC dimension of linear decision boundaries is 3 because they can
shatter (any) 3 points in a 2-dimensional space but not (any) 4 points.

There is a number of bounds on the expected risk. Vapnik and Chervonenkis
[143] pjroved that, given a set of n training examples and a set of classifiers F, with
probability 1 —n over the choice of training set, the expected risk of a trained classifier

[ € F is bounded by

h(l+1n2)—In?
n

R(P) < Remp(P) + \/

where h is the VC dimension of F [143]. Therefore, in order to control the expected
risk, by the principle of structural risk minimization, we have to control both the
empiriéal risk (i.e., we have to minimize the error on the training data) and the VC

dimension (i.e., we have to minimize the complexity of the classifier).
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312 Maximal Margin Hyperplanes

In sup(%rvised learning, the learning machine is given a set of labelled examples. That
is, eac}; observation is a pair (x;,v;) where x; € R? and y; € R is the corresponding
class lébel. Once this training data is available, a number of functions spaces could
be choéen for the problem. Among these, linear functions are the best understood
and sirinplest to apply [21]. In particular, given training data {(x;,y;)}7 for a binary
classiﬁéation task where x; € R? and y; € {1, —1} is the class label. Assume that the

data is linearly separable and let F be the set of linear decision boundaries of the

form
f(x) = sign(wx + b)

where w € R4 and b € R are the adjustable parameters (i.e., P = (w,b)). Thus,
choosiﬁg particular values for P results in a trained classifier (See Figure 3.1). For
any trained classifier, the hyperplane corresponding to w’x + b = 0 is the decision
boundary (See Figure 3.5).

In the late 1950s, Rosenblatt [115] introduced the first iterative algorithm for
1earnin§g linear classifiers, the perceptron learning rule. After initializing w and b
randorﬁly, each training point x; is presented and the value of f(x;) is compared
against y;. If f(x;) and y; are different (i.e., x; is misclassified) the values of w and
b are a;dapted by moving them either towards or away from x;. Rosenblatt proved
that, a%suming the classes are linearly separable, the algorithm will always converge
and ﬁnjd values for w and b that solve the classification problem. The algorithm is
shown 1n Figure 3.4.

It 1é important to observe that the perceptron learning algorithm works by adding
or subtracting misclassified training points to a randomly initialized w. Without any

loss of %generality we can assume that w is initialized to the zero vector, and thus its
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1. Given training set {(x;,y;)}7 and learning rate n € R

2. ?Initialize w and b to small random values

[O\)

. jRepeat
4 Fori=1ton
- Iy f(x) <0  (if misclassification)
W — W + Ny X
b—b+ny
5. End for

6. Until no misclassifications made within the for loop

7. Return w, b

Figure 3.4: The Perceptron Learning Algorithm.

final value will be a linear combination of the training points [21]

n
W= Zaiyixi
i=1

where «; is a positive value proportional to the number of times misclassification of
x; has caused w to be updated. Intuitively, «; can also be regarded as a measure of
the information content of x;. The decision function can then be rewritten in dual

coordinates as follows [21]

f(x) = sign(wlx +b)

= sign <<Z aiiniTx> + b)
=1
= sign (Z Q5 Ys <XiTX> + b)

i=1

An important property of this dual representation of the decision function is that
only the inner products of the training data with the new test point are needed.

In Figure 3.5, the hyperplanes corresponding to wix +b= —1 and wix+b =1
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are the; bounding hyperplanes. The distance between the two bounding hyperplanes
is the fnargin and it is equal to ”72” It can be shown that, with a large margin, the
number of possible labellings of points can be dramatically less than the (basic) VC
dimensﬁion. The set of separating hyperplanes which attain margin v or better for

training data within a hypersphere of radius r has VC dimension bounded by [142]

[

h < (3.1)

\Qm|ﬁ

Thus, for given training data, maximizing the margin of separation between the two
classes has the effect of minimizing h and thus optimizing generalization performance.
It can be shown that the optimal hyperplane (i.e., the one that minimizes the general-
ization'error or the bound on the expected risk) corresponds to the one that minimizes
the emfirical risk and, at the same time, has the maximal margin of separation be-
tween ‘éhe two classes [13]. The optimal hyperplane has the smallest complexity (i.e.,
the lowest VC dimension). Figure 3.6 shows three hyperplanes that achieve a perfect
classification. That is, all of them have zero empirical risk. However, only the hyper-
plane with maximum margin of separation between the two classes achieves optimal
generalization.

In Qrder to find the optimal separating hyperplane, the following convex optimiza-

tion pfoblem is solved

1
min > w]?
with the constraints that

y(wix;+b)>1,i=1,2,...,n

Thus, the task is to maximize the margin while achieving the correct classification
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Figure 3.5: A simple linear SVM. The optimal separating hyperplane has the maximal
margin of separation between the two classes.

of all the training data. In order to allow for the possibility that the two classes are
not linearly separable, slack variables are introduced that allow for misclassifications.

The optimization problem then becomes

m1n—| |2+CZQ

with the constraints that

yu(Wixi +0)>1-¢G,i=12,...,n

where Q > (0 is a slack variable. The parameter ¢ is the soft-hard margin penalty and
it giveé the tradeoff between the size of the margin (i.e., the VC dimension) and the

number of misclassifications (i.e., the empirical risk).
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optimal
hyperplane

Figure 3.6: The optimal hyperplane is the one that minimizes the empirical risk and,
by maximizing the margin of separation between the two classes, results in the best
generalization performance.

Applying the Karush-Kuhn-Tucker conditions [21}, any w in a solution to the
above optimization problem can be written as a linear combination of the training

data

n
W= Z YitiX;

i=1

where az & R are the weights associated with each data point. Those points for which
oy > O%are called support vectors and lie closest to the hyperplane (See Figure 3.7).
All other points have «; = 0 thus the support vectors are the critical elements of the
training set [13]. The number of support vectors is usually much smaller than n. The

final decision function is of the form

f(x) =sign (i YiouXil X + b> (3.2)

i=1
where the «;’s can be found by solving the following dual optimization problem

n 1 n n
max Z &= Z Z aiajyiijiTXj (3.3)

i=1j=1
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with tHe constrains that

c>a;>0,1=1,2,...,n

mn
> oy =0
i=1

support vectors

optimal
/ hyperplane
N

Figure 3.7: The points that lie closest to the separating hyperplane are known as
support vectors and are the critical elements of the training set.

3.1.3 Non-Linear Classifiers

A line:ir decision boundary is a simple classifier that can be learned very efficiently.
However, due to its small complexity it can correctly classify data that is linearly
separaple only. On the other hand, a more complex decision boundary can correctly
classify% general data that may not be linearly separable. However, such a classifier
may be much harder to train. A SVM combines the best of both worlds. That
is, it ugses an efficient training algorithm while at the same time being capable of
represeinting complex decision boundaries.

In (Srder to generalize to the case where the decision function is not linearly sepa-
rable, SVMS first map the data into some other (possibly infinite dimensional) feature

space using a mapping ® : R¢ — R¥ | with d’ > d (see Figure 3.8). Clearly, there is
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no linee?mr separator for the data in the Figure. However, the data is linearly separable
in the ﬁew feature space. This is because data that is mapped into a sufficiently high
dimensional space will always be linearly separable. In order to avoid confusion, from
now on? when in the context of SVMs, we will refer to the original lower dimensional
featureispace (ie., R?) as the “input space” and to the higher dimensional feature
space (1e, RY) as the “feature space”. Note that both the optimization problem (3.3)
and thé final decision function (3.2) depend on the data through dot products in the

input space (i.e, x;7

x;). This implies that there is no need to evaluate ®(x;) or ®(x;)
as long as we know what the value of ®(x;)T®(x;) is. We can use a kernel function to
avoid having to perform an explicit mapping into the feature space. A kernel function
K calculates the dot product in the feature space of the image of 2 points from input
space, K(Xi,xj) = ®(x;)Td(x;). Table 3.1 shows some commonly used kernel func-
tions. %Thus, we can find a linear Separatdr in the feature space simply by replacing
X T X; 1n (3.3) with K(xi,x;) and x;7x in (3.2) with K(x;,x). The importance of
this is fhat we can learn complex decision boundaries in feature space efficiently (i.e.,
without having to work with the feature space representation of each data point).
When inapped back to the original input space, the resulting linear separators can
correspjond to arbitrary nonlinear decision boundaries between the two classes. Mer-
cer’s tﬁeorem [92] indicates that any kernel whose matrix K;; = K (x;,x;) is positive
deﬁnité corresponds to some feature space and is thus a valid kernel. Distance in the

feature space can be calculated by means of the kernel function [21]. Given x; and x;

in input space, the corresponding distance in feature space is

distp(xi, x5)° = ||<1>(Xi)—‘1>(XJ)H2

= K(xi,x5) — 2K (x3, %) + K(x3,%;)

This is?known as the kernel trick and it allows SVMs to implicitly project the original
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Table 3.1: Common Kernels.

| Kernel | Formula ’
Linear K(xi,%;) = XL
Polynomial | K (xi,x;) = (xi’x; + 1)"
Gaussian | K(x,x;) = e Tm—xl*/e”

training data to the feature space.

.oq) ® 9

Input Space Feature Space

Figure§3.8: A SVM maps the training data nonlinearly into a higher dimensional
feature space via ®. By the use of a kernel function, the optimal separating hyperplane
can be computed without explicitly carrying out the map into the feature space.

Substituting K (x;, x;) for ®(x;)T®(x;) gives the following optimization problem

n

rraaxg o —

n n
Do) gy K (i, ;)
=1 j=1

DN —

with the constrains that

Solving for the o’s in the above optimization problem results in the following final

decision function

f(x) = sign (f: v K (%, x;) + b)

i=1
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which eorresponds to a linear hyperplane in the feature space and an arbitrarily

complex decision boundary in the input space.

3.1.43 One-Class Support Vector Machines

In a oné—class classification problem, data from only one of the classes (i.e., the target
class) iés available. For instance, user-labelled relevant images give us information
about ’éhe user’s high level concept. Many terms (e.g., concept learning [64], outlier
detection [113], novelty detection [10]) have been used according to the different
applications to which one-class classification can be applied. One approach to this
problefn is to model the support of the target data distribution (i.e., to create a
function which is positive in those regions of input space where most of the target
data is:located and negative elsewhere).

The approach taken in [139] consists of mapping the training data to a feature
space and then attempting to include most of it into a hypersphere of minimum size.
Thus, fhe task is to create a boundary around the target class such that most of
the tar‘g‘et data is included while, at the same time, minimizing the risk of accepting
outliers (i.e., data that does not belong to the target class). This model can be
rewritten in a form comparable to the support vector classifier [142] and it is therefore
called the support vector data description (SVDD) [139]. Consider training data as a
set of n observations {x;}7 where x; € R If the hypersphere contains all the training
data, the empirical error is equal to zero. This is analogous to a maximum margin
hyperpilane that correctly classified all of its training data. Similarly, from (3.1),
minimi%zing the radius of the hypersphere that encloses the training data results in an
optimi?ation of generalization performance. Thus, the task is to solve the following
optimi%ation problem (See Figure 3.9)

n
minr? + ¢ Z ¢
i=1

T!Cla
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where r e R and a € R are the radius and center respectively of the hypersphere,

with constraints that (almost) all the training data are within the hypersphere
H(D(XJ _aH? S T2 +C’n Cz Z 0> i = 172,"'777’

The pzirameter 0 < ¢ <1 is the soft-hard margin penalty and it gives the tradeoff
between the size of the hypersphere and the number of training data that can be

included. By setting partial derivatives to 0 in the corresponding Lagrangian the

following expression for a is obtained

a=>Y o;P(x;)
i=1

Replacing partial derivatives into the Lagrangian and noticing that a is a linear com-
bination of the training data, which allows us to use a kernel function, the following

objective function (in dual form) is obtained

n n
n&in Z a0 K (x5, %5) — Z a; K (%, X;1)
i=j=1 i=j=1

with constraints
n
0<y <g¢ Zaizl

1=1

where K is an appropriate Mercer kernel. A quadratic programming method is used
to find the optimal o values in the objective function [139]. Given x in input space

and hypersphere center a, their corresponding distance in feature space is

distp(x,a)? = [®(x)— al?

= K(x,x) —2> aK(x, %)+ Y oy K (xi,%5)
i=1

i=j=1
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Also, x.falls inside the hypersphere when this distance is smaller than or equal to the

radius (i.e., distz(x,a)? < r?)

Figure 3.9: A hypersphere containing most of the training data.

A method for adapting the standard two-class SVM techniques to the one-class
classification problem was proposed by Scholkopf in {125]. The basic idea of their
approach is to treat the origin as the only member of the second class. That is, via
the use? of a kernel function, the training data is first mapped into a feature space and
then separated from the origin with maximum margin (See Figure 3.10). Although
this is hot a closed boundary around the data, it gives equivalent solutions to Tax’s
hypers;f)here approach [139] when the data is preprocessed to have unit norm [139]
(See Fi?gure 3.11). In the case of a Gaussian kernel, the data is implicitly rescaled to
unit norm since K(x,x) = ®(x)"®(x) = 1 and thus all vectors in the feature space
lie in aL unit hypersphere. Indeed the angles between all vectors are smaller than
/2. rI“‘helrefore, the data points are placed on a portion of the same octant on the
unit hypersphere in the feature space and thus can be more easily separated from the

origin by the hyperplane [44]. In their practical implementation, this approach and
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Figure 3.10: The decision boundary on the left is generated by Scholkopf’s hyperplane
approach; the one on the right corresponds to Tax’s hypersphere method.
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Figure 3.11: When the data is normalized to unit norm, it lies on a unit hypersphere.
The decision boundary on the left is generated by Schélkopf’s hyperplane approach;
the one on the right corresponds to Tax’s hypersphere method.

Tax’s Hypersphere method operate comparably and perform best when the Gaussian
kernel 1s used [139]. In this dissertation, we use Tax’s hypersphere approach [139]
which, %we believe, has a more intuitive description. In order to emphasize the one-
class classification task, from now on we will refer to this approach as the one-class

Supporf vector machine (1SVM).
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3.1.5 Generalized Support Vector Machines

A convientional SVM requires symmetry and positive definiteness of the kernel. A
generalized support vector machine (GSVM) [84] has been developed that allows the
use of én arbitrary kernel and it can lead to a decision function that is as satisfactory
as that of a conventional SVM. Even for negative definite kernels, a GSVM can
generafe a decision function that can correctly classify the training data whereas the
convenﬁonal SVM does not. A GSVM can be very useful in the case of variable-length
training data. Traditional classification approaches based on SVM learning require
the use of fixed-length representations for the training data because SVM kernels
represent an inner product in a feature space that is a non-linear transformation
of the input space. However, many classification problems create variable-length
represehtations of the data and define a similarity measure between two variable-
length 1representations. Thus, the standard SVM approach cannot be applied because
it violates the requirements that SVM places on the kernel. Since GSVM does not
place restrictions on the kernel, any similarity measure (i.e., not necessarily an inner
product one) can be used.

We follow the matrix notation of [84]. Let X € R™™ and B € R, The
kernel K (X,B) implements an arbitrary function mapping R7*" x R#™*! into R™*!.
In particular, given two column vectors x, b € ", K(x*,X7) is a row vector in R™,
K(x",b) € R, and K(X,B7) is an m x m matrix [84].

Given training data {(xi,y;)}7 for a binary classification task, where x; € R4 and
yi € {1, —1} is the class label, represent it by matrix X € R™"*% and diagonal matrix
of plus?or minus ones Y € R™*". Suppose we have a separating hyperplane induced

by K (X, XT) defined as follows

Kx', XY -u=5b (3.4)
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where u € R" and b € R. In the particular case that K is an inner product kernel

under Mercer’s condition, the separating surface becomes
dx)Te(X)TY -u=»

where ® : R% — R¥ with d’ > d. The parameters u and b in (3.4)can be obtained by

solving;the following optimization problem

min ce-¢ +6(u) (3.5)

uvb)

st. Y(K(X, X)) Yu—eb)+¢ > e

¢

v
o

where e € R" is a column vector of ones, § is some convex function, ¢ is a positive
parameter that weights the separation error e- ¢ versus suppression of the separating
surface parameter u. Suppression of u can be interpreted as minimizing the number
of constraints of (3.5) with positive multipliers (i.e., number of support vectors). In
the par;ticular case that 6 is a quadratic function induced by a positive definite kernel,
we have the standard interpretation of a maximal margin hyperplane [84]. A solution
to (3.5) with corresponding decision function is referred to as a GSVM in [84].

In the particular case that 6 in (3.5) is a convex quadratic function (i.e., f(u) =
—;—u . Hﬁ, where H € R™*" is a symmetric positive definite matrix), the Wolfe dual

[83, 151] of (3.5) is

1
min 5 YK(X, XOHYH'YK(X, XD)TYa —e -«

st. e Ya =0
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0<a <ce.

where a € R and u = H'YK(X, XD)TYa . If K(X,X7T) is assumed to be
symmefric positive definite and H = Y K(X, X?)Y, then we obtain the dual problem
for a sténdard SVM with u = « [84]. The basic idea in [84] is to choose other values
for the jmatrix H that will also suppress u. In the simplest case, choosing H =1 (i.e.,

the iderfltity matrix) with u = YK (X, X?)T« results in the following dual problem

1
min - - YAYa —e -« (3.6)
a 2

st.e-Ya = 0

0<a < ce.

where A = K(X,XT)K(X,XT)T is a positive semidefinite matrix. Thus, this is an

always solvable convex quadratic problem for any kernel K [84].

3.2 Multiple-Instance Learning

In traditional supervised learning, the training set consists of individually labelled
examples. That is, each observation is a pair (xj,%;) where x; € R and y; € R
is the corresponding class label. Multiple-instance learning (MIL) (25, 85, 87} is a
generaiization of this in which training class labels are associated with sets (or bags)
of exarpples (or instances). While every instance may have an associated true label,
individejual instances are not given a label. Instead, each bag is labelled. More formally,
the tra;ining data is {(B;,y:)}} where B; is a bag and y; € R is its corresponding class
label. jThe label y; of a bag B; = {bj1,bia,...,bim}, where b;; € R?¢ is its j-th

instanée, is determined by the instance with the highest label. In the binary case,
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a bag is labelled positive if it contains at least one instance which is positive. On
the other hand, a bag is labelled negative if all the instances in it are negative. In
standard supervised learning, we can observe the label of an instance by;. In the
multipie instance model we can only see the label of its bag B5;.

Thé MIL model was only recently formalized by [25]. Their work was motivated
by the drug activity prediction problem where a bag is a molecule (i.e., a drug) of
interest and instances in the bag correspond to possible configurations (i.e., shapes)
that the molecule is likely to take. The efficacy of a molecule (i.e., how well it binds
to a “binding site”) can be tested experimentally, but there is no way to control for
individual configurations. Thus, the objective is to determine those shapes which
will bind with a receptor molecule. There has been a significant amount of research
directed towards this problem. Several other applications of MIL, including image

classification and retrieval 12, 86, 154, 158], have also been studied.

3.2.1 Diverse Density

Maron and Lozano-Pérez [87] devised a framework called diverse density (DD) (see
also [85]) to solve the MIL problem. The main idea behind the DD algorithm is to find
areas in feature space that are close to at least one instance from every positive bag
and far from all instances in negative bags. The DD at a point in the feature space
is a measure of how many different positive bags have instances near that point, and
of how far all instances in negative bags are from that point. Note that this differs
from the more regular density concept of finding a point in the feature space with
both h?igh density of positive instances and low density of negative instances. The
algorithm searches the feature space for points with high DD (See Figures 3.12 and
3.13).

Ne><i:t, we introduce a derivation of DD from Maron and Lozano-Pérez [87] based

on a probabilistic framework. Following the same notation as in [87], denote positive
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Figure 3.12: The main idea behind diverse density is to find areas in feature space that
are close to at least one instance from every positive bag and far from all instances in
negative bags. The numbers indicate the location of instances from each of 8 different
bags. Instances from negative bags (6 through 8) are in bold.

bags as Bf,B5,..., B and the negative bags as By , By, ..., B,,. Let bef € R? be the
j-th instance in positive bag B;. Likewise, by € R4 is the j-th instance in negative
bag B;". Because not all d dimensions contribute equally for discriminating between
positive and negative instances, we also need to give a weight to each dimension in
order to maximize DD. Let w € R?¢ be a weight vector defining the relevance or
importance of each feature. Using Bayes’ rule and assuming a uniform prior, we look

for the point t € R? with highest DD value as defined by

e

DD(t,w) =[] Pr(t| B}) ﬁ Pr(t|B;)

i=1 =1

The noisy-or model (see [85] for details) is used in [87] to define the terms in the
produc?ts. This model is based on two assumptions. First, for t to be the target
concept it is caused (and thus close to) one of the instances in the bag. Second, the

probability of an instance not being the target concept is independent of any other
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instance not being the target. This yields

Pr(t | B) = 1-]J(1 - Pr(bj =t))

Pr(t|B;) = H(l — Pr(bi} =1t))

J

Finally; the probability Pr(b;; = t) of an instance being the target concept is defined

as a Géussian based on the distance from the instance to the target concept
Pr(by; = t) = exp(—|[by — t[*)
where [|b;; — t|? is weighted as follows

d
by —t)|* = > wi(biy — t,)°
=1

where b;;;, w;, and t; are the [-th entries of vectors byj, w, and t respectively. The
problem of finding the global maximum DD point is difficult because the size and
number of local maxima in the search space is large. However, according to the
deﬁnitibn of the DD function, the global maximum DD point is made of contributions
from some set of positive bags. Thus, if we start a gradient ascent from every instance
in a pésitive bag, one of them is likely to be closest to the global maximum DD
point, contribute the most to it and have a climb directly to it [87]. Therefore, a
simple heuristic is applied in [87] to search for the global maximum DD point: start
an optimization of the DD function at each instance from every positive bag with
uniform weights and record the resulting maximizer (i.e., t and w). Then, from
among‘aﬂ the maximizers that were found, select the one that resulted in the largest
DD value.

Reéently, the EM-DD algorithm [157] was developed which combines the DD

algorithm with the expectation-maximization (EM) algorithm [24]. EM-DD views
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Figure 3.13: The space defined by the Diverse Density function on the plot of Figure
3.12

the knowledge of which instance corresponds to the label of the bag as a missing
attribute and applies the EM algorithm to convert the MIL problem to a standard
supervised learning problem. In [2], SVMs are used to solve the MIL problem. The
proposed extension of the SVM learning approach leads to a mixed integer quadratic
program that can be solved heuristically. The mixed integer quadratic program is
thus a generalized soft-margin SVM in which the soft-margin criterion is maximized
jointly over possible label assignments as well as hyperplanes. Basically, the problem
reduces to finding an (optimal) linear separating discriminant such that there is at
least one instance from every positive bag in the positive halfspace, while all instances

belonging to negative bags are in the negative halfspace.
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Chapter 4

Learning with GGlobal Image

Representations

In this chapter, we first summarize related work on intra and inter-query learning with
global image representations. Next, we present two novel techniques for performing
inter—qﬁery learning with global image representations. Both techniques use support
vector machines (SVM) for learning the class distributions of users’ high-level query
concepts from retrieval experience. They are based on a relevance feedback (RF)
framework that learns one-class support vector machines (1SVM) from retrieval ex-
perienée to represent the set memberships of users’ high-level query concepts and
stores them in a “concept database”. The “concept database” provides a mechanism
for accumulating inter-query learning obtained from previous queries. The geometric
view of 1SVMs allows a straightforward interpretation of the density of past inter-
action in a local area of the feature space and thus allows the decision of exploiting
past information only if enough past exploration of the local area has occurred.

The first approach, presented in [42, 36, 35, 40|, does a fuzzy classification of a
new qﬁery into the regions of support represented by the 1SVMs in the “concept
databaée”. In this way, past experience is merged with current intra-query learning.

The second approach, presented in [39], incorporates inter-query learning into the
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query modification and distance reweighing framework. One of the main advantages
of these approaches is the capability of making an intelligent initial guess on a new

query when the query is first presented to the system.

4.1 Related Work in Intra-Query Learning

Two main RF strategies have been proposed in content-based image retrieval (CBIR):
query modification [119], and distance reweighing [11, 61, 103, 117, 127]. Query
modification changes the representation of the user’s query in a form that is closer
(hopefully) to the semantic intent of the user. In particular, query shifting involves
moving the query towards the region of the feature space containing relevant images
and awéy from the region containing non-relevant images (See Figure 2.11). Distance
reweighing changes the calculation of image to image similarity to strengthen the
contribution of relevant image components in regard to the current query. Thus, the
task is to determine the features that help the most in retrieving relevant images and
increase their importance in determining similarity.

In [117], the weight and representation of each feature is updated according to
their ability to discriminate between the set of relevant and non-relevant images in
the curi"ent query. In [103] a probabilistic feature relevance learning (PFRL) method
that automatically captures feature relevance based on RF is presented. It computes
flexible retrieval metrics for producing neighborhoods that are elongated along less
relevant feature dimensions and constricted along most influential ones (See Figure
4.1). PFRL is an application of the approach described in [31] for learning local
feature relevance. In [31], the observation is made that input variables of low relevance
can degrade the performance of nearest-neighbor classifiers if they are allowed to be
equally‘ influential with those of high relevance in defining the distance from the point
to be classified. Thus, if the relative local relevance of each input variable were

known, this information would be used to construct a distance metric that provides
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an optimal differential weighting for the input variables [31]. In PFRL, retrieved
images:with RF are used to compute local feature relevance. If we let the class label
y € {1,0} at query x € R? be treated as a random variable from a distribution with

the probabilities {Pr(1 | x), Pr(0 | x)}, we have
60 = Priy=1|x) = E(y | x)
In the absence of any variable assignments, the least-squares estimate for f(x) is
Blf] = [ Fp(xdx

where p(x) is the joint density. Now given only that x is known at dimension z; = ;.

The least-squares estimate becomes

BIf | o= a] = [ J(x)p(x | 7 = )dx

where p(x | ; = %) is the conditional density of the other input variables. In image

retrieval, f(z) = 1, where z is the query. Then

[(f(2) = 0) = (f(2) = Blf | 2 = z])] = Ef [ 2 = 2]

represents a reduction in error between the two predictions. Thus, a measure of

feature; relevance at query z can be defined as
ri(z) = E[f | i = zi]

The relative relevance can be used as a weighting scheme for a weighted k-nearest
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neighbdr search where the weight for the i-th dimension is given by

where v is a parameter that can be chosen to maximize(minimize) the influence of r;
on w;. For further details, see [103]. This technique has shown promise in a number
of image database applications.

Sorﬁe methods for incorporating both query shifting and feature relevance weight-
ing havé also been proposed [53, 61]. In [53], a retrieval method that combines feature
relevanée learning and query shifting to achieve the best of both worlds is proposed.
This method uses a linear discriminant analysis to compute the new query and exploit

the local neighborhood structure centered at the new query by using PFRL.

Y

class 1 class 2

o>

class 3 X

Figure 4.1: Features are unequal in their differential relevance for computing similar-
ity. The neighborhoods of queries b and ¢ should be elongated along the less relevant
Y and X axis respectively. For query a, features X and Y have equal discriminating
strength.

In [55], distance in the feature space associated with a kernel is used to rank rel-
evant images. An adaptive quasiconformal mapping based on RF is used to generate

successive new kernels. The kernel is constructed in such a way that the spatial reso-
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lution is contracted around relevant images and dilated around non-relevant images.
Then, the distance from the query to new images is measured in this new space. In-
stead of updating individual feature weights, we could also select from a pre-defined
set of similarity measures. For example, in [126], an approach is described that mini-
mizes mean distance between user-labelled relevant images by selecting from a set of
pre—deﬁ‘ned distance metrics.

Tn PicHunter [60], a Bayesian framework is used to associate each image with a
probability that it corresponds to the user’s query concept. The probability is updated
based on the user’s feedback at each iteration. In [140], a “boosting” algorithm is
proposed to improve RF learning. Recently, SVM learning has been applied to CBIR
systems with RF to significantly improve retrieval performance {18, 56, 141, 156]. Ba-
sically, jthe probability density of relevant images can be estimated by using SVMs.
For instance, in [18], a 1SVM is used to include as many relevant images as possible
into a hypersphere of minimum size. That is, relevant images are used to estimate the
distribution of target images by fitting a tight hypersphere in the non-linearly trans-
formed feature space. In [156], the problem is regarded as a two-class classification
problem and a maximum margin hyperplane in the non-linearly transformed feature
space is used to separate relevant images from non-relevant images. Many other ap-
proachés, such as [54, 102, 161}, have provided improved alternatives for utilizing
kernel methods in CBIR.

Other classical machine learning approaches, such as decision trees [82], nearest
neighbor classifiers [152], and artificial neural networks [71] have also been applied to
RF in CBIR. In [82], a decision tree is used to sequentially split the feature space until
all poiﬁts within a partition are of the same class. Then, images that are classified as

relevant are returned as the nearest neighbors of the query image.
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4.2 Related Work in Inter-Query Learning

Most current RF systems are based on an intra-query-learning-only approach. That
is, the system refines the query by using RF supplied by the user and the learning
process starts from ground up for each new query. A few approaches [6, 20, 52, 54,
69, 72, 75, 96, 98, 137, 144, 155, 156] attempt inter-query learning (i.e., RF from
past qﬁeries are used to improve the retrieval performance of the current query).
The initial results from those approaches for inter-query learning show a tremendous
benefit in the initial and first iteration of retrieval. Inter-query learning thus offers a
great pbtential for reducing the amount of user interaction by reducing the number
of iterations needed to satisfy a query.

The approach proposed in [72] was one of the first attempts to explicitly memorize
learned knowledge to impro{/e CBIR performance. A correlation network is used to
accumulate semantic relevance between image clusters learned from users’ RF. In
152, 54}ilatent semantic analysis (LST) [23] was used to provide a generalization of past
experience. LSIis an important technique in information retrieval. It uses the context
of a word’s usage (i.e., a document) to uncover the hidden (i.e., latent) meaning of
the Wofd. LST creates a semantic space by applying the singular value decomposition
to a tefm—by—document. matrix M. Each column of M represents a document. The
components of the column represent the relationship of the term to the document
(such as a frequency weight of the occurrences of the term in the document). The
term-by-document matrix is then approximated by using the k largest singular values

and their associated singular vectors:

<
3

M=U SViaeM=U S
N~ N N N~ N~ N N~
txd tXr rXr rxd txd txk kxk kx

i

where ¢ is the number of terms, d is the number of documents, r is the rank of M,

U and V are orthonormal, and S is diagonal. The M, U, V and S matrices are
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the approximations of the respective matrices when using just the & largest singular
values. To process a previously unknown query document, first a pseudo-document,
d, is created as a vector of its component terms. This vector is then projected into
the semantic space by q = UTd. The distance of the query to each of the documents
is then the distance of q to the corresponding column of SVT,

In [54], the images in a database are viewed as the fundamental vocabulary of
the system. The RF from each query is considered as a document composed of many
terms (images) (See Figure 4.2). Thus, assuming that the terms of a document have a

latent semantic relationship, it is possible to use LSI to capture inter-query learning.

Queryl Query2 Query3

1 0 0
1 0 0

0 I 0

' 1 0 0
E 0 0 1

Figure 4.2: LSI approach for inter-query learning. Each column in the matrix repre-
sents a query and the set of marked relevant (1) and non-relevant(0) retrieved images.
LSI can be performed on the matrix to obtain useful inter-query learning.

Both [20], [75], and [155], take the approach of complete memorization of prior
history. In PicHunter [20], the entire history of user selections contributes to the sys-
tem’s estimate of the user’s concept. To accomplish this, Bayesian learning based on

a probabilistic model of the user’s behavior is used. The predictions of this model are
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combinéd with the selections made during a query session to estimate the probability
associaﬁed with each image. These probabilities are then used to retrieve images. In
[75] the correlation between past image labelling is merged with low-level features to
rank images for retrieval. The model estimates the semantic correlation between two
images based on their co-occurrence frequency (i.e., the number of query sessions in
which both images were labelled relevant). Intuitively, the larger the co-occurrence
frequency of two images is, the more likely that they are semantically similar. Given
a query X, the semantic similarity to each image is initialized to its feature-based
similarity. Then, semantic similarities are iteratively updated based on correlation
with top—ranked images. Thus, images having strong correlations with the top-ranked
images are likely to have a high semantic similarity with x, even if their feature-based
similarity is low [75].

In [155] the extra inter-query information is efficiently encoded by adding a virtual
feature. (VF) to the feature vector of an image. Initially, the VF of each image is
empty. Given a query X, the k nearest neighbor images to it are retrieved and the
user labels each of them as relevant or non-relevant. Then, a number from a system
counter is concatenated to the VF's of all user-labelled relevant images to indicate that
they deliver the same concept as x. To determine relevance between x and database
images, the VI of x is computed as the concatenation of the VFEs of all user-labelled
relevant images in the previous RF iteration. The VF's of x and the database images
are then used in a probabilistic dissimilarity measure that dynamically adjusts the
distance between x and the database images [155]. One of the shortcomings of this
method is that it needs at least one RF iteration and thus inter-query learning cannot
be used to improve the performance in the initial retrieval set.

In [98], the log files of the Viper system are used to perform feature relevance
weighting. In [144], a Bayesian approach is presented for both intra and inter-query

learning. Self-Organizing Maps are used for inter-query learning in the PicSOM
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system: [69]. In [96], a multilayer method for image organization and searching is
presenfed. User interaction is combined with offline image processing and knowledge
from previous interactions is remembered. In [137], a framework for accumulating
RF and constructing a relevance graph for later usage is presented. A general active
learning framework is proposed in [156]. The framework is used to guide hidden
annotations in order to improve retrieval performance. In [30], a long-term similarity
learning algorithm which uses RF from previous sessions is given. The MetaSeek
system presented in [6] selects and queries its target image search engines according
to their success under similar query conditions in previous searches. For this purpose,
the system keeps a performance database in which the performance of each target

engine is kept according to the user’s RF.

4.3 Inter-Query Learning with One-Class Support
- Vector Machines

We present two novel RF approaches for performing inter-query learning in CBIR with
global image representations. By accumulating experience in the form of users’ RF,
it is possible to learn the class distributions of users’ high-level concepts. Then, this
inter-query learning (in the form of high-level concept classification) can be exploited
to improve retrieval performance. We require a long-term memory structure for the
representation of inter-query learning accumulated from queries over time. Because of
their straightforward interpretation as the density of past interaction in a local area of
the feature space, we have chosen 1SVMs as this long-term learning structure. Both
approaéhes are based on using 1SVMs for learning the class distributions of users’
query concepts from retrieval experience. They are based on a RF framework that
learns 1SVMs from retrieval experience to represent the set memberships of users’

query concepts and stores them in a “concept database”. The “concept database”
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provides a mechanism for accumulating inter-query learning obtained from previous
queries, The geometric view of 1ISVMs allows a straightforward interpretation of the
density of past interaction in a local area of the feature space and thus allows the
decision of exploiting past information only if enough past exploration of the local
area has occurred.

Let x € ¢ be the input space representation of the query image (i.e., vector of
feature?values extracted from the image), and w € R¢ be the feature weights for an
arbitrary distance/similarity measure. For simplicity, from now own for any image, we
will use its input space representation x to refer also to the image itself. Thus, when
using x, it will be clear from the context whether we are referring to the image itself
or to its representation in input space. Let R = {(xi, y;)}T be the set of all cumulative
retrievals for x, where y; is either 1 (relevant image) or 0 (non-relevant image) marked
by the user as the class label associated with x;. Let Rt = {x; | (x;,1) € R} and
R = {xi | (xi,0) € R} be the set of cumulative relevant and non-relevant retrievals,
respectively. Let ® : R — R4 with d’ > d be the mapping from input space to
feature'space. Thus, ®(x) refers to the feature space representation of x.

At the end of the search session for x, we use R* as training data for a 1SVM.
Then, we store the resulting 1SVM in the “concept database”. Let the descriptor of
the cor%responding hypersphere be H = {R,a,r}, where a and r are its center and
radius respectively. The basic idea is that a future query image that falls within the
same région of support is classified by the 1SVM as having the same semantics. Thus,
inter-query learning can provide us with a cue about the semantics of an image (See
Figure 4.3).

The M-tree [19] data structure (described in Section 2.4) is used for the efficient
search of nearest neighbor images in feature space. We use M-trees for the efficient
search of both historical information and images in the database. The image M-tree

containS all the images in the database and the history M-tree contains the learned
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Feature Space

Figure 4.3: Basic idea of first approach. The ISVM generated with R* as training
data at the end of a query session for query x;. The (feature space) representation of
a future query x; falls inside this hypersphere. The 1SVM classifies x; into the same
concept as x;j.

ISVMs (i.e., the “concept database”).

4.3.1 Overview of First Approach

By doing a fuzzy classification of a query into the regions of support represented by the
1SVMs in the “concept database”, past experience is merged with current intra-query
learning. Figure 4.4 shows a diagram of the proposed method. The approach that
is used? for selecting the images in the retrieval set is based on exploiting both intra
and int[er—query learning. After each RF iteration, R* is used as training data for a
ISVM. Then, intra-query learning is exploited by including (w;,sq )k nearest neighbor
images . to the hypersphere’s center a into the retrieval set, where 0 < winre < 1 is
the intfa—query learning weight and £ is the number of images in the retrieval set.
Initially (i.e., before any RF iterations), a = ®(x). The remaining (1—winse )k images
in the retrieval set are obtained by exploiting the accumulated inter-query learning
in the “concept database”. Thus, the ratio of intra to inter-query learning that is
used in processing a query is Wintrq : (1 — Wingra). We now explain how the remaining

(1 - wifmm)k “Inter-query learning” images are selected.
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Figure 4.4: Diagram of first approach.

In order to integrate the prior experience in the “concept database” with x, a
fuzzy classification of x into the existing regions of support (i.e., 1SVMs) is performed.
Thus, the “concept database” is searched and it is determined whether a falls into
any of the accumulated 1SVMs. Because it is very common for an image to be
ascribed into many different concepts, we expect to have queries that fall into many
hyperspheres. One possible way of exploiting inter-query learning would be to perform
a hard jclassiﬁcation by selecting (1 — Wintrq )k nearest neighbor images to the closest

hypersphere’s center (i.e., closest prototype). However, this is not a very good strategy
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since a query may be a member of several concept sets (i.e., it may fall into many
hyperspheres). Thus, it may as well be ascribed to the concept corresponding to any
one of the other 1SVMs. Furthermore, a query may be ascribed to a combination of
differeﬁt concepts.

Thé results of experiments conducted in [3] for learning users’ text preferences
suggest that, for simple queries (i.e., queries that can be ascribed to one concept), a
purely exploitative strategy delivers good performance. However, for complex queries
(i.e., q:ueries that can be ascribed to more than one concept), there is a tradeoff
between faster learning of the user’s query concept and the delivery of more relevant
documénts. Therefore, instead, we use the ideas from possibilistic cluster analysis [57]
and aséign a degree of membership to each one of the 1SVMs (i.e., to each cluster)
according to the degree by which x can be ascribed to its particular concept.

Given a set of points, the fuzzy c-means algorithm [57] searches for an optimal
set of clusters. The clusters are represented by their corresponding centers and each
point has a degree of membership in each cluster, which models the degree of the
point belonging to the cluster [57]. In our case, the set of clusters (in the form of
1SVMs) is formed by the historical interaction of users with the system. Let {H;}7
where Hl = {R;,a;,7;}, be the set of hyperspheres into which a falls. We then use
the following function to assign a membership of x into each hypersphere

1

Zm dlStF )
J=1 distp(a,a;)

IU’(X7H1')

where distp refers to the feature space distance. Therefore, the degree of membership
of x into a 1ISVM is based on the relative distances between a and the centers of all
hypersf)heres into which a falls. If U(H;) denotes the concept that is embodied by
hypersphere H,; then the belief (or our degree of confidence) that x is delivering

concept W(H;) is equal to pu(x, H).
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To form the retrieval set, sample representative images from each hypersphere into
which é falls are included. The number of representatives that a particular concept
WU(H;) has in the retrieval set is proportional to p(x, H;). Thus, the number of images
of concept W(H;) that appear in the retrieval set will be greater than the number of
images of concept W(H;) whenever u(x,H;) > p(x,H;). Because a may fall into
many hyperspheres but only (1 — winrq)k “inter-query-learning” images are to be
included in the retrieval set, priority is given to hyperspheres with higher u value.
Thus, after (1 —winq )k images are selected, the remaining hyperspheres with smaller
7 values are ignored.

The retrieval set is thus formed by exploiting both intra and inter-query learning.
Then, the user evaluates the relevance of images in the retrieval set and R* is used
as training data for a 1ISVM. The center a of the resulting hypersphere becomes the
new quéry location for the second round of RF and this process continues until the
user is satisfied with the results or quits. When the session is over, the final 1ISVM is
stored in the “concept database”. The algorithm for the first approach is summarized
in Figure 4.5.

One of the weaknesses of this approach is that inter-query learning is represented
by a cdnstantly growing number of (possibly overlapping) 1SVMs (i.e., regions) in
the feature space. Thus, as previously mentioned in Chapter 1, summarization may
be desirable when the amount of inter-query learning (i.e., the size of the “concept

database”) is very large.

4.3.1.1 Summarizing Inter-Query Learning

In the proposed approach, inter-query learning is accumulated in the form of 1SVMs.
However, this way of storing inter-query learning results in a constantly increasing
number of (possibly overlapping) clusters (i.e., ISVMs) in the feature space. In this

section, we alleviate this problem by incorporating an implicit cluster-merging pro-
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1. Initialize H = {R « 0, a «— ®(x),r « 0}
2. Search the concept database; find hyperspheres {H;}7* into which a falls

3. Do a fuzzy classification of x

M — {ILL(X7 Hl)}gn

4. Form retrieval set by including
(Wingre )k nearest neighbor images to a in feature space

(1 — Wingra )k representative images based on M

5. User marks images as relevant, or non-relevant
R R U{(x,u)}
Use Rt to compute 1SVM
6. While more RF iterations Do
a « center of resulting 1SVM
r « radius of resulting 1SVM
go to 2

7. Insert resulting 1SVM H into concept database

Figure 4.5: Algorithm of First Approach.

cess to incrementally summarize the derived inter-query learning. The similarity
measure that is used for clustering 1SVMs and classifying the query takes both dis-
tance in feature space and a probabilistic perceptual closeness (based on users’ RF)
into consideration. The main advantage of doing this is that the system becomes
scalable and query processing can be accelerated by considering only a small number
of cluster representatives, rather than the entire set of accumulated 1SVMs.

Fig@re 4.6 shows a diagram of the modified approach. The difference is that the
(1— wi;mm)k "inter-query learning” images in the retrieval set are nearest neighbor
images to the cluster representative that is closest to H. Also, when the query ses-
sion is over, the resulting 1SVM H is not directly added to the “concept database”.
Instead, an implicit cluster-merging process takes place. This process determines,

from a fixed number of cluster representatives, the most similar one to H and com-
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bines bbth. Thus, inter-query learning is summarized by a small number of cluster

representatives.

H

l

Query
............. Classification

closest cluster representative

Concept

Database
(cluster repre
sentatives)

Form
----1 Retrieval Set

|

retrieval set

Image

Database

Feedback
lteration

|

relevance feedback

UV U U0 U U

Cluster 1SVM
Merging Computation

|

hypersphere description hypersphere description

More RF
Iterations?

N

No Yes

Figure 4.6: Diagram of Modified First Approach.

The accumulated intra-query learning at the end of the RF iterations for x is

given by R. The center a of H is

a= Z a; P(x;)

x;€ERT

where 04Z € R is calculated by the 1SVM computation. Instead of storing in the
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“concef)t database” each hypersphere H that results from each query x, let the ac-
cumulated inter-query learning £ be summarized by a fixed number of cluster repre-

sentatives. A cluster representative C € £ is defined as follows

c = {p7W}

W = {(thhwi)}T

where p € R¢ is the pre-image of C’s center in feature space, which is computed as
explained later. Thus, the center of C in feature space is ¢ = ®(p). The m images
(each with corresponding “semantic weight” w; € R) in W contribute to ¥(C) (ie.,
C’s high-level concept). Intuitively, W describes the high-level semantics (i.e., the

concept) associated with C. For each x;, let the set Ay, be defined as follows

A = D {w | (xi,1,w) € W}

Ce&

That is, A,; is the sum of all “semantic weights” of x; from all cluster representatives
in which x; appears as a relevant image. Given that the user has labelled x; as a
relevant image and given &, we define the single-image probability that the user’s

concept: is U(C) as follows

p(¥(C) | x;,E) = Zl if x; € W, 0 otherwise

1

Thus, émong all C € £ in which x; is relevant, the C in which x; has the largest
“semantic weight” has the highest probability of matching the user’s concept. The
total probability for each C € £ is obtained by summing the single-image probabilities
of images that are co-occurring and relevant in both YW and R. Therefore, the C € £
that has the largest semantic overlap will have the highest probability of coinciding

with the user’s concept. Thus, given R and £, we define the overall probability that
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the user’s concept is U(C) as follows

Sxies P(V(C) [ %3, €)

P(\I](C) ‘ R7S) = ‘g’

where

S = {xj]|x;€R" and (x;,1, %) € W}
G = {x](xi,% %) € Rand (xj,,%) € W

and not(x; € R~ and (x3,0,%) € W)}

where * is a “don’t-care” symbol indicating that the corresponding tuple element
is ignored when determining set membership. For each cluster representative C, we

compuﬁe its distance to H with the following measure
Dist(C,H) = (1 — 2P(¥(C) | R, E)A + ||c — a|?

where 0 < A < 1 is a distance adjustment. Thus, the distance between c¢ and
a in feature space is adjusted based on the probability that the user’s concept is
v (C). :Therefore, the proposed measure adjusts the distance between the resulting
hypersphere and the cluster representatives based on an estimate of their conceptual
similarity, which is derived from both the current intra-query and accumulated inter-
query Iéarning.

As f)reviously shown, the center of a hypersphere (i.e., ISVM) is expressed as an
expansi%on in terms of its corresponding support vector images. The center of a cluster
represeﬁtative C € £ is the mean of the centers of all the hyperspheres that have been
mergedi with C. Therefore, its location in feature space would have to be expressed
in termjs of the support vector images of all of those hyperspheres’ centers. However,

the complexity of distance computations scales with the number of support vectors.
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Thus, this would result in a system that is both considerably slower and not scalable
since t}ie memory needed for storing cluster representatives’ centers would continually
increase as more queries are processed. This fact motivated us to use pre-images for
approximating the centers of cluster representatives.

Thé pre-image problem is to find a point x € R? in input space such that, for
a given ¥ € RY in feature space, ¥ = ®(x). However, since the map ® into the
feature‘ space is nonlinear, this is often impossible (i.e., the pre-image x may not
exist). ;Therefore, instead, we can find an approximate pre-image p € R¢ such that

9 —@(p)||* is minimized [124] (See Figure 4.7).

A

/\\\‘. ?

v

Feature Space Input Space

Figure 4.7: The pre-image problem is to find a point x in input space such that, for
a given point ¥ in feature space, ¥ = ®(x). Not every point in the feature space is
necessarily the image of some point in the input space. Therefore, finding an exact
pre-image point is not always possible.

Traditional methods {12, 95] solve this optimization problem by performing itera-
tion and gradient descent. The disadvantage of those methods is that the optimization
procedélre can be expensive and may result in finding a local optimum [124]. The
basic i(?iea of the approach presented in [70] is to use distance constraints in the fea-
ture Spiace to approximate the location of the pre-image. That is, distances between
¥ and its neighbors in feature space are found. Then, the corresponding input-space
distanc;es are computed and used to constraint the location of the pre-image [70] (See

Figure 48) We apply this method to our problem.
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Figure 4.8: Method for Estimating Location of Pre-Image. The distances between
¥ and neighboring points can be used to constraint the location of the pre-image in
input space.

Let d be the feature space distance between a cluster representative’s center ¢
and anjimage x;. Using the Gaussian kernel K (x;,%;) = e P=%1*/7* we solve for the

corresponding input-space distance d.; between ¢ and x;

. d.
dci = —02 1Og(1 - "f)

Let {x1,Xg,...,Xk} be the k nearest neighbor images to ¢ in feature space. Each
image x; is represented by a d-dimensional feature vector, x; = [Zi1, Tigy - - -, Tig)©
Then, the problem is to find the least-squares solution ¢ = lc1,¢,-..,cq)” to the

system: of equations

le—x|2=du, i=1,...,k

After expanding, grouping like terms, and subtracting the k-th equation from the rest
we obtain a system of the form Ax = b, where A is a (k-1) by d matrix with row

vectors

2(zk —za1), 2(Tke — Ti2), -y 2(Tha —Tag)], i=1,...,k
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and b is a (k-1) by 1 vector with rows

and x : [c1, ¢, ..., cq)t. We then use the singular value decomposition of A to solve
this le@st—squares problem.

Thej merging of clusters (i.e., hyperspheres) is the core of our modified first ap-
proach.% It is used to accelerate query processing by considering only a small number
of clusfer representatives rather than the entire set of hyperspheres. The c-means
[90] algorithm is one of the simplest and most commonly used clustering algorithms.
It starts with a random partitioning of patterns to clusters and keeps reassigning
patterns to clusters based on their similarity to cluster centers until there is no reas-
signme:nt of any pattern from one cluster to another or a convergence criterion is met
[90]. We use a modified ¢-means algorithm in which training is done incrementally
one paﬁtern (i.e., one hypersphere) at a time as successive queries are processed. The
modified algorithm is summarized in Figure 4.9. The proposed method for merging a
hypersphere with the closest cluster representative is composed of two stages. First,
move t?he cluster’s center in feature space towards the hypersphere’s center. Then,
updatej the cluster’s concept so that it is more similar to the hypersphere’s semantics.
At the;ﬁrst stage, a weighted average between the support vector images that make
up the hypersphere’s center and the cluster’s pre-image is taken. Then, the pre-image
of the c;luster center’s new location in feature space is computed. At the second stage,
the unijon between images in ‘H and WY is taken. Then, the “semantic weight” of
co-occ@rring relevant images is increased. Similarly, the “semantic weight” of images
with oﬁ)posite RF is decreased. For any cluster representative C, only a fixed number
of images is kept in W. Thus, when the number of images in W is too large, images

with lowest “semantic weight” are deleted.
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. Initialize H = {R « 0, a « ®(x),r « 0}
. For all cluster representatives C € &, compute Dist(C, H)
. Set Cwinmer — argmingeg Dist(C, H)

. Form retrieval set by including
(Wingre )k nearest neighbor images to a in feature space

winner

(1 — Wintra)k nearest neighbor images to ¢ in feature space

. User marks images as relevant or non-relevant

R—R U{(xiu)}¥
Use R* to compute 1SVM

. While more RF' iterations Do

a « center of resulting 1ISVM
r « radius of resulting 1SVM
go to 2

CIf |El < ¢, add H to £ as a cluster representative

. Else

For all cluster representatives C € &, compute Dist(C, H)
Set CVm"e” = argmingeg Dist(C, H)

Move C¥e" towards H |

Move cVI"R€r towards a

Update U(C¥mer) towards U(H)

Figure 4.9: Algorithm of Modified First Approach.

4.3.2° Overview of Second Approach

The Sejcond approach incorporates inter-query learning into the query modification
and diétance reweighing framework. For example, a local initial distance metric is
created that is more informed than the commonly used default of Euclidean distance.

The semantic similarity of the current query with a set of past queries is used to

control the exploitation of inter-query learning from historical data.

Suppose that we have a retrieval method that performs query modification and
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distancée reweighing. Then, after each RF iteration, x and w are modified according
to the particular query modification and/or distance reweighing approach (See Figure

4.10).

-

©)
©

\4

v
\ 4

(a) (b) (©

Figure 4.10: Query modification and distance reweighing framework: a) initial (input
space) location of query x and feature weights w (the circle indicates an equal weight-
ing of évery feature dimension); b) new query location x’ and new feature weights w’
after 1;iteration of RF; ¢) new query location x” and feature weights w” after two
RF iterations.

For example, PFRL [103] (described in Section 4.1) combined with query shift-
ing coﬁld be used. PFRL becomes less appealing in situations where all the input
variablés have the same local relevance and yet retrieval performance might still be
improvied by simple query shifting towards u, = 72—1+ Yxert+ X. A PFRL algorithm
combiried with query shifting (PFRL+4,) is summarized in Figure 4.11.

Note that training data in PFRL+p,. (for computing the relative feature relevances
used to determine the k nearest neighbors in the next iteration) consists of all previous
(cumulative) retrieved images. This is an improvement over the original PFRL (as
present;ed in [103]) where training data consists only of images retrieved at the current
RF itels"ation.

At jthe end of the search session for x, intra-query learning is given by R and by
the ﬁngl values for x and w. In general, this intra-query learning is lost when the

search session is over. We now describe our proposed method for accumulating and
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1. %Initialize w o {1/d}4, R « 0
2. ;%Find k nearest neighbor images to x using w
3. *jUser marks the £ images

4. ;Whﬂe More RF' Iterations Do
R — R U{(x,5:)}1
Update w using PFRL with R
Compute p,; X «— p,
Find k£ nearest images to x using w

User marks the k images

Figure 4.11: PFRL with Query Shifting (PFRL+pu,).

incorporating inter-query learning into this query modification and distance reweigh-
ing fra@ework. As in the first approach, at the end of the search session for x, we
use R+ as training data for a 1SVM. Then, we associate the final values for x and
w Wit}fl the resulting region of support (i.e., hypersphere) H in feature space. The
basic iéiea is that future query images that fall within the same region of support can
take advantage of inter-query learning. Thus, instead of “starting from scratch”, the

previously learned final values for x and w can be exploited (See Figure 4.12).

87



v
\4
\4

(a) (b) (©)

Feature Space

r 3

(d)

\4

\4

(e) ®

Figure 4.12: Basic idea of second approach: a) initial (input space) location x; and
feature weights w; for the i-th query image; b) new query location of x;' and new
feature weights wy’ after one iteration of RF; ¢) new query location x;” and new feature
weights w;” after two RF iterations; d) 1SVM is computed based on R* and {x;”, w;"}
is associated with resulting hypersphere; e) the (feature space) representation of future
query xJ falls inside this hypersphere. The 1SVM classifies x; into the same query

concept as x;; f) more informed initial value for x; and wj is obtained based on stored
7" ‘1
{x;", wy"}.
I
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It 1s common for an image to be ascribed into different concepts by different users
or to ble a combination of different concepts. Therefore, we expect to have overlap-
ping reéions of support and thus queries that fall into more than one hypersphere (See
Figure 413) Thus, in order to identify the regions of support that are most likely to
contaiﬁ relevant images, we have to determine semantic similarity between the query
image’s; concept (i.e., U(x)) and the concepts associated with the hyperspheres into
which (I)(X) falls. By storing the user’s RF about each retrieved image on a partic-
ular search session (i.e., R) along with the resulting hypersphere H, we are able to
capturé the semantics of the retrieval concept associated with H (i.e,. W(H)). This
information can then be used as a basis for determining semantic similarity. There-
fore, in addition to 1SVM parameters, other information is stored in a hypersphere
descripior, which is extended as follows

1

H={x,w,R,a,r}

where x is the final (input space) query location, w are the final feature weights, and

a, and 7 are the center and radius of the resulting hypersphere respectively.

4321 Semantic Similarity

For eveiry query image X, there is a corresponding hypersphere H (obtained by training
a 1SVM on the user’s cumulative RF) Thus, we only need to be able to determine
semantiic similarity between concepts associated with hyperspheres. That is, if ®(x)
falls in‘;co more than one hypersphere, we compute the semantic similarity between
every flypersphere into which ®(x) falls and x’s own hypersphere. The intuition
for det(:ermining semantic similarity between W(H;) and V(H;) is that if images are
jointly ilabelled as relevant in both R, and R, it is likely that ¥(H;) and ¥(H;) have
similar %semantic content. Also, the larger the number of overlapping relevant images,

the higher the semantic similarity between them can be expected. The number of
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Feature Space

<

Figure 4.13: The (feature space) representation of a query x may fall into more than
one hypersphere. All the 1SVMs into which x falls classify x into their corresponding
query éoncepts. The semantic similarity between x’s concept and the concepts of
those hyperspheres should be approximated in order to decide what previous knowl-
edge to exploit.
overlapbing images for which there is RF disagreement should also have an important
negativje effect on the semantic similarity. We now explain how the semantic similarity
measure is derived.

The basic idea is based on the observation that semantic similarity between W(7;)

and W(H;) should be based on similarity between their corresponding RF distribu-

tions (i.e., R; and R;). Let X be a random variable with sample space

S ={(xi, %) | (x1,%:) € R}

(ie., an event is the labelling of an image as relevant or non-relevant). Let P((xi,v;) | R)
be the iprobabﬂity that a user assigns label y; to x; when searching for images be-
longing to W(H). Thus, V(x;, %) € S, P((xi,%:) | R) = 1. Let’s assume that
U(H,;) : U(H;). Then, let X;; be a random variable with sample space

Sy = {(xaw) | 3 € (R NRF) U (RS NR;)U(RT NR)U(R; NR;)}
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(ie., e\i/ents involving images that appear in both R; and R;). Similarly, P;;((x;,y;) |
Ri, Rj) is the probability that a user assigns label y; to x; when searching for images
belongijng to W(H;) = U(H;). Thus, Py((x5,y;) | Ri,Ry) = 1if x5 € Rf N RS
O X; E Ry NR;. Otherwise, Py((x5,y;) | Ri,R;) = 0.5 if x5 € RF NRj or
X5 € ’R; N Rj We can use the entropy impurity [26] of X;;’s distribution to measure
the dis’fcance between the distributions of X; and X;. The entropy impurity (or just

entropy), i(X ), of random variable X with sample space S is defined as

(X)) =—>_ P(z) log; P(z)

€S

where P(x) is the probability of event z. Observe that i(Xy;) = [Rf NR; [+|Ry NR]|
(ie., milmber of mismatches). Notice that quantifying semantic distance in this way
makes intuitive sense. As the number of mismatches increases, their corresponding
event p;robabilities decrease, entropy (impurity) increases, and support for our initial
assumﬁtion (i.e., that U(H;) = U(H;)) decreases.

Note that 0 <i(X;;) < |[S;;|. The normalized distance function

dist(U(H;), V(Hy)) =

could be used as a measure of semantic distance between W(H;) and U(H;). For
convenience, we convert to the normalized similarity measure

|Siz] — 2i(Xyy)

sim(W(H;), U(H;)) = Sy

Note that —1 < sim(¥(H,), ¥(H;)) < 1. The reason for rescaling to the range [-1,1]
is that ;it allows semantic disagreement to have an effect on the voting scheme that

we use for combining evidence. This does not affect the ranking based on semantic
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similari%cy. Thus, the semantic similarity between U(H;) and ¥(H;) is defined as

sim(U(H,), (M) = LSJTTS%TL)"
_ ISyl —i(Xy) i(Xy)
|31 1S3
_ RENRIRINRG |+ RO ORY
- = |Sij

Notice that, intuitively, the first and second term in the formula are the maximum

possible semantic agreement and disagreement respectively.

4.3.2.2 Query Modification and Distance Reweighing

Let £ = {H;}7 be the set of hyperspheres into which ®(x) falls. In the following,
we ass&me that n > 0 and go through the main stages of our proposed method. In
the Casje that n = 0, inter-query learning is not exploited. At the beginning of the
search éession, the system does not have any knowledge about the semantics of x (i.e.,
R = 0). Nevertheless, we can still identify the set of H; € Z that are most likely to
contai@ relevant images. The basic assumption is that if a majority of U(H;),H, € Z
are semantically similar, their concept has a higher density in that particular region of
the fea*éure space and thus there is more evidence that x belongs to that concept. In
other Words, each H; € Z classifies x as belonging to U(H;). Therefore, the semantic
similarity between every (U(H,;), ¥V(H,)) pair determines the degree to which H, and
H,; are% “voting” for the same concept. Thus, the set of H; € Z whose U(H;) has
highesﬂ semantic agreement are the most likely to contain relevant images.

Thé first stage of the algorithm sets w = {1/d}¢ and computes an n by n “concept

similarity” matrix Y whose (7, j)-th entry is sim(¥(H,;), W(H;)). Intuitively,

Y, = isz'm(\v(m), U(H,)
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is the degree by which W(H;),VH; € Z agree with (or are semantically similar to)

U(H,;). %Then, x and w are updated as follows

X — (g;%xi> +(1—a)x
W — (zn: %wi> +(1-a)w

i=1

where

v = max(O,Yi)/Zmax(O,Yj)
j=1

a = zn: max(0,Y;)/n?

i=1

where X‘ and w! are respectively the final query location and feature weights asso-
ciated with hypersphere H;. Thus o« adapts based on the density of homogeneous
semantic concepts. For instance, if there is complete semantic agreement among
\I'(Hi),VHi € Z, then @ = 1 and inter-query learning is completely exploited by

setting

Xi

NE

X
=1

s
|

Wi

1
n
1
W — —
mn -

I

7

On the. other hand, when there is complete semantic disagreement, o = 0 and inter-
query léaarning is not used.

Witjh each RF iteration, R grows. In the second stage, the system uses this
new information to revise its previous choices. Thus, after each RF iteration, the

{

semantic similarity between U(x) and U(H;),VH; € Z is determined. Then, based
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on this information, past inter-query learning choices are revised

X — o (Z ﬁixi> + (1 . a)XinitiaI
i=1

‘} W — <Z ﬁiwi> + (1 — o)winitial
| i=1

where |

By = max(0, sim(U(H), U(H,)))/ 3 max(0, sim (¥ (H), U(H,)))
i=1
o= max(0,sim(¥U(H), ¥ (H,)))/n
i=1
where x™ital and winitial refer to the initial (i.e., before any RF iterations) values of
x and W respectively. In the third stage, o decreases so that, as the number of RF
i
iterations increases, we rely more on intra-query learning. Then, intra and inter-query

learning are combined

X «— ax + (1 — a)x™mre

W aw + (1 — o)wintra

where jxi““a and wi™® are the modified query location and distance weights com-
puted by the particular query modification and reweighing method (e.g., PFRL+u,),
based én intra-query learning R. Thus, in this case, o determines the ratio of intra
to inter-query learning to be used in processing the query. It adapts based on the
density of homogeneous semantic concepts and the number of RF iterations. The
second ‘and third stages are repeated after each RF iteration.

Thi$ approach can be implemented using PFRL+,. as the method for the intra-
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query (iistance reweighing and query modification. This implementation of our ap-
proach (PFRL4-p,+1SVM) is summarized in Figure 4.14. In the Figure, wP™ refers

to the feature weights as computed by PFRL.

1. Initialize w — {1/d}% R — 0, @ — 1

o

. Form Z «— {H;}7
3. SIf |Z| =0gotob
4. %Exploit Inter-Query Learning
4.1. Compute {v;}7, o
42 x— (Z?:l 'yixi) + (1 —a)x
43. W q (Z?:l 'yiwi) +(1—a)w
d. jCom-pute k nearest images to x using w

6. User marks the k images

7. While More RF Iterations Do

TR = RU {09}
72. If|Z] =0goto 7.4
7.3. Revise Inter-Query Learning
7.3.1. Compute {G;}7,
732, x a0, fxt) + (1 — a)xmitie!
733 W+« (Z?sl ﬁiwi) + (1 — q)winitial
'7.4. Compute wPTl 1+ decrease «
75 x —ax+ (1 —a)y,
7.6. W+ aw + (1 — a)wPT!
77 Compute k nearest images to x using w

7.8. User marks the k images

8. Use R as training data for a 1SVM

9. fSave H={x,w,R,a,r}

Figure 4.14: PFRL with Query Shifting and Inter-Query Learning
(PFRL+pu,+1SVM)
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4.3.3 Experimental Results

In this section we present experimental results obtained with the approaches described
in Sections 4.3.1 and 4.3.2. The retrieval performance is measured by precision (1.1)

and recall (1.2). The following data sets were used for evaluation:

1. Texture - the texture data set, obtained from MIT Media Lab [108]. There are
40 different texture images that are manually classified into 15 classes. Each
of those images is then cut into 16 non-overlapping images of size 128x128.
Thus, there are 640 images in the database. The images are represented by
16-dimensional feature vectors. We use 16 Gabor filters (2 scales and 4 orien-

tations). Sample images are shown in Figure 4.15.

2. Letter - the letter data set, obtained from the UCI repository of machine learn-
ing databases [93]. It consists of 20,000 character images, each represented by a
16-dimensional feature vector. There are 26 classes of the 2 capital letters “O”
and “Q”. The images are based on 20 different fonts with randomly distorted

letters. Sample images are shown in Figure 4.16.

Figure 4.15: Sample images from Tezture data set.

Because the images in the data sets are labelled according to their category. it
is known whether an image in a retrieval set would be labelled as relevant or non-

relevant by a user. To determine the free parameters, a ten-fold cross-validation
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Figure
letter “

was pet

ten par

4.16: Sample images from Letter data set. First row contains images of the
O”; images on the second row are of the letter “Q”.

formed for the Texture and Letter data sets. Each data set was divided into

titions. Each partition in turn was left out and the other nine were used to

determine values for the free parameters. The left out partition was then used to test

the alg

claim o

orithms. The values reported are the average of the ten tests. We make no

n using optimal values for Letter as the parameters were selected after a very

coarse sampling.

Ino

virtual

(both d

rder to compare the performance of our first method, we have implemented the
feature (VF) approach [155], and the statistical correlation technique (SC) [75]

escribed in Section 4.2). Those approaches and our first method exploit inter-

query learning. Their response with respect to different amounts of experience (data

level) is

investigated. The data level is the amount of accumulated inter-query learning

(i.e., number of queries processed) relative to the number of images in the data set.

We also

compare the performance of our first method against that of traditional intra-

query-learning-only RF approaches. For that purpose, we have also implemented the

probabi
4.1).

listic feature relevance learning (PFRL) [103] method (described in Section

Figures 4.17 and 4.18 show the precision in the initial retrieval set (i.e., with no

iterations of RF) with respect to different data levels. In the Figures, 1SVM refers
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set, the
precisio
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query.
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based o

first method. In order to create the initial retrieval set, a traditional intra-
sarning-only RE approach performs a k nearest neighbor (knn) search. Both
| PFRL require at least one iteration of RF. Thus, for the initial retrieval
y have the same performance as knn. As we can observe from those Figures,
n in the initial retrieval set can be drastically improved by integrating inter-
carning. Also, precision keeps improving as the data level increases. This
in a reduction on the number of RF iterations that are needed to satisfy a
Thus, from the user’s point of view, it is very beneficial since users cannot
po many RF iterations. On the other hand, if we use solely a knn search, there
in on the initial retrieval precision along the number of processed queries.

n those Figures, we can also observe that, with low data levels, there may be
sl decrease in precision. This is due to the fact that the retrieval set is formed

n a fixed ratio of intra to inter-query learning. Both VF and SC use a similar

concept,, the “maximal distance adjustment” and the “semantic weight” respectively,

which 1

we wou

5 also based on a fixed weighting of inter-query learning. Intuitively, initially

Id like to rely heavily on current intra-query learning since, at the beginning,

there i not much historical information. Similarly, we would like to increase the

exploitation of inter-query learning as more queries are processed and experience

accumau

lates. Thus, we could adaptively change the ratio of intra to inter-query

learning so that at the beginning, when there is little historical information, w;nsrq

is large

and, as experience accumulates, it becomes increasingly smaller (i.e., we

rely more on inter-query learning). We plan to investigate the possibility of using a

maching¢ learning approach such as artificial neural networks or reinforcement learning

to have

current

a principled way of exploiting intra and inter-query learning that adapts to the

situation. In our approach, the optimal ratio of intra to inter-query learning

was defined as the one resulting in highest precision with large data levels and was

determi

ned to be 0.25:0.75. Note that choosing 1:0 as the ratio of intra to inter-query
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learning |is the same as using an intra-query-learning-only 1SVM learning approach.

Thus, our method outperforms 1SVM approaches that do not exploit inter-query
learning|
Texture Data
Initial Retrieval Set, k = 20
1 T T v T T ¥ T
09 |
g 0.8 r‘ /,” b
] \ .7
§ \\ ’//
o \ .7
07 |\ / -
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Data Level
Figure 4.17: Retrieval performance in initial retrieval set with first approach and on

other methods on Texture data.

Figyres 4.19 and 4.20 show the precision after one iteration of RF with respect

to different data levels. As we can observe from those Figures, precision increases

after ore RF iteration. The amount of improvement obtained when going from one

to two

RF iterations is much smaller. This is a desirable property since users do

not want to perform many RF iterations. We can also observe that, with at least

one RF|iteration, 1SVM and VF have similar performance. On the other hand, our

approa
as the
improvs

retrievy

h can provide improvement in the initial retrieval set. It can also be seen that,
data level increases, both methods result in a very significant performance
\ment over PFRL. On the other hand, with PFRL, there is no gain on the

| precision along the number of processed queries. As a result, the precision

stays at a fixed value. This demonstrates that methods which exploit both short and
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1.18: Retrieval performance in initial retrieval set with first approach and
ethods on Letter data.
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1.19: Retrieval performance after one RF iteration with first approach and
other methods on Texture data.
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Figure 4.20: Retrieval performance after one RF iteration with first approach and

other m

cthods on Letter data.

long-term information perform better than intra-query-learning-only techniques.

Figu

re 4.21 shows the precision-recall graph of our approach for different data

levels. Both high recall and high precision is desired, though not often obtainable.

The valyies are the average over 64 random queries from Texture. From that Figure

we caln

observe that increasing the data level has the desirable effect of pulling the

precision-recall curve towards the upper right. As a last illustration, Figure 4.22

shows a

particular retrieval result obtained by performing a nearest neighbor search

in feature space on a random query from the Texture data set. A retrieval precision of

0.25 18 3
similarit

approag

improve

wchieved. This shows the inconsistency between content-based and semantic
y. In contrast, Figure 4.23 shows the retrieval results obtained with our
h. In this case, a retrieval precision of 0.95 is achieved. This illustrates that
1g inter-query learning can dramatically help to reduce the semantic gap and

exploitiz

retrieval performance.
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Figure 4.21: Retrieval performance at different data levels with first approach and
other methods on Texture data.

Figure 4.22: Retrieval results after performing a nearest neighbor search in feature
space on a random query from the Texture data set. The top leftmost image represents
the query image. The images are sorted based on their similarity to the query. The
ranks descend from left to right and from top to bottom. Retrieval precision is 0.25.

Next, we compare the performance of our original approach (i.e., with no merging
of 1ISVMs) against that of the modified approach (i.e., with merging of 1ISVMs), which

summarizes inter-query learning. The goal is to determine whether high retrieval per-
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Figure 4.23: Retrieval results with our method on a random query from the Texture
database. The top leftmost image represents the query image. The images are sorted
based on their similarity to the query. The ranks descend from left to right and from
top to bottom. Retrieval precision is 0.95.

formance can still be obtained when summarizing inter-query learning. Figures 4.24
and 4.25 show the precision of the initial retrieval set with respect to different data
levels. These Figures also show the performance obtained by running the modified
approach without using pre-images to approximate cluster representatives’s centers
(i.e., by keeping their full expansions). Based on those Figures, we can observe that
the performance loss that results from using pre-images to approximate cluster rep-
resentative’s centers is small. We also make the observation that with the proposed
cluster-merging approach precision does not degrade with low data levels. It is higher
on low data levels and slightly smaller with high levels of data.

In order to evaluate the performance of our second approach, we have implemented
it using PFRL combined with query shifting (PFRL+y,) (described in Section 4.3.2).
This implementation of our approach (PFRL+u,+1SVM) is summarized in Figure
4.14. In PFRL and PFRL+,, all information collected during a search session is lost
at the end of the session. We compare the retrieval performance of PFRL, PFRL+ ..,
and PFRL+1,+1SVM. Figures 4.26 and 4.28 show precision in the initial retrieval

set with respect to different data levels. An intra-query-learning-only RF approach
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forms the initial retrieval set by doing a knn search. The VF approach requires at

least on

e RF iteration. Thus, on initial retrieval, VF, PFRL and PFRL+p, have the

same pearformance as a knn search. Again, as we can observe from those Figures,

precision in the initial retrieval set can be drastically improved by exploiting inter-

query learning and keeps improving as the data level increases. This results in a

reduction on the number of RF iterations that are needed to satisfy a query. Thus,

from th

e user’s perspective, it is very beneficial since users cannot stand too many

RF iterations.

Figures 4.27 and 4.29 show precision after one RF iteration with respect to differ-

ent data levels. As we can observe, precision increases after one RF iteration. The

amount

smaller.

of improvement obtained when going from one to two RF iterations is much

This is a desired property since users do not want to perform many RE

iterations. We can observe that, with low data levels, there is an initial decrease in

precision in both VF and SC. This is due to the fact that those methods use a fixed

ratio of

intra to inter-query learning to form the retrieval set. Our second approach

is based on an adaptive weighting of inter-query learning and thus, does not suffer

from th

S problem.

We ¢an learn from these results that the image retrieval performance is constantly

improved by the integration of inter-query learning. Furthermore, performance can

be improved in the initial retrieval set where a traditional intra-query-learning-only

approach would require at least one iteration of RF to provide some improvement.

Thus, u

needed

ser interaction can be reduced by reducing the number of iterations that are

to satisfy a query.
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Figure 4.26: Retrieval performance in initial retrieval set with PFRL+p,+1SVM and
other methods on Texture data.
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Figure 4.27: Retrieval performance after one RF iteration with PFRL+u,+1SVM
and other methods on Texture data.
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Chapter 5

Learning with Region-Based Image

Representations

In this chapter, we first summarize related work on intra-query learning with region-

based image representations. Next, we present two novel intra-query learning ap-

proaches for content-based image retrieval (CBIR) with region-based image repre-

sentatio

is based

ns. The first approach, probabilistic region relevance learning (PRRL) [38],

on the observation that regions in an image have unequal importance for

computing image similarity. It automatically estimates region relevance based on

user’s feedback. It can be used to set region weights in region-based image retrieval

framewc

The

learning,

length i
feature
CBIR n
image r
represen

violates

rks that use an overall image-to-image similarity measure.

second approach, presented in [37], is based on support vector machine (SVM)
Traditional approaches based on SVM learning require the use of fixed-
mage representations because SVM kernels represent an inner product in a
space that is a non-linear transformation of the input space. However, many
1ethods that use region-based image representations create a variable-length
epresentation and define a similarity measure between two variable-length
tations. Thus, the standard SVM approach cannot be applied because it

the requirements that a SVM places on the kernel. Fortunately, a generalized
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support

vector machine (GSVM) [84] (described in Section 3.1.5) has been developed

that allgws the use of an arbitrary kernel. We present a learning algorithm based on

GSVMs,
measure

Next
lem of s
mentati
segment

or more

Since a GSVM does not place restrictions on the kernel, any image similarity
can be used.
, we present an intra/inter-query learning approach that addresses the prob-
emantically-meaningful image segmentation. A large number of image seg-
n techniques have been proposed in the literature. However, most image
ation algorithms create regions that are homogeneous with respect to one

low-level features according to some similarity measure. Unfortunately, ho-

mogeneous regions based on low-level features usually do not correspond to mean-

ingful objects. We propose an algorithm based on multiple-instance learning (MIL)

(25, 85, ¢

37] (described in Section 3.2.1) that exploits both intra and inter-query learn-

ing for automatically improving the segmentation of images in a database. The main

advanta

images i

5.1

ve of this approach is that it can automatically refine the segmentation of

nto semantically-meaningful objects.

Related Work in Intra-Query Learning

Although relevance feedback (RF) learning has been successfully applied to CBIR,

systems
on RF ¢
Byr
has beer
density
Basically
many in
bags. Su

matches

that use global image representations, not much research has been conducted
rarning methods for region-based CBIR.

oferring to an image as a bag and a region in the image as an instance, MIL
1 applied to image classification and retrieval [2, 86, 154, 158]. The diverse
DD) technique [87] (described in Section 3.2.1) is applied in [86, 154, 158].
7, an objective function is used that looks for a feature vector that is close to
stances from different positive bags and far from all instances from negative
ich a vector is likely to represent the concept (i.e., object in the image) that

the concept the user has in mind.
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In [8

of image

6], MIL was applied to the task of learning to recognize a person from a set

s that are labelled positive if they contain the person and negative otherwise.

They also used this model to learn descriptions of natural images (such as a sunsets

or mountains) and then used the learned concept to retrieve similar images from

an imag

e database. Their system uses the set of cumulative user-labelled relevant

and non-relevant images to learn a scene concept which is used to retrieve similar

images.

This is done by using the DD algorithm to find out what regions are in

common between the relevant images and the differences between those and the non-

relevant

can be

images. The confidence that an image is relevant to the user’s query concept

measured by the distance from the ideal point (as computed by the DD

algorithm) to the closest region in the image. However, not all region features are

equally important. Thus, in this approach, the distance measure is not restricted to

a norma
(such as
is also ¢
number

This
the ima,
regions.
different
EM-DD

image p

| Buclidean distance, but may be defined as a weighted Euclidean distance
(2.1)) where important features have larger weights. The DD algorithm
apable of determining these weights. However, by introducing weights, the
of dimensions over which DD has to be maximized is doubled.
method is improved in {154] by allowing a broader range of images. In [154],
re similarity measure is defined as the correlation coefficient of corresponding
This similarity measure is further refined by allowing different weights for
locations. In [158], a comparison of pefformance obtained with the DD and
[157] (described in Section 3.2.1) algorithms when using a wide variety of

rocessing techniques and a broader range of images is presented.

Based on the assumption that important regions should appear more often in

relevant

images than unimportant regions, a RF = IIF (region frequency * inverse

image frequency) weighting scheme is proposed in [65]. Let D = {x;}7* be the set

of all images in the database, x be the query image, {R;}} be the set of all regions

in x, and R™ be the set of cumulative relevant retrieved images for x. The region
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frequeng

where s

y (RF') of a region R; is defined as

RF(R;) = > s(Ryxj)

XJER"’

R;,x;) = 1 if at least one region of x; is similar to R; and 0 otherwise. Two

regions are deemed similar if their L1-distance (also known as the Manhattan distance

or city-h

lock distance) is smaller than a predefined threshold. The inverse frequency

(ITF) of R; is defined as

The reg

Trad
improve
[18, 56,
because
linear t1
region-b

define a

[IF(R;) = log <Z GDZER X')>
Xj () ]

on importance (RI) (i.e., weight) of R; is then

RF(R,) % [TF(R,)
T (RE(Ry)  ITF(R;))

RI(R;) =

itional RF schemes based on SVM learning have been applied to significantly
retrieval performance in CBIR systems that use global image representations
156]. Those approaches require the use of fixed-length image representations
SVM kernels represent an inner product in a feature space that is a non-
ansformation of the input space. However, many CBIR methods that use
ased image representations create a variable-length image representation and

similarity measure between two variable-length representations. Thus, the

standard SVM approach cannot be applied because it violates the requirements that a

SVM places on the kernel. To resolve the issue of common SVM kernels not allowing

variable;

in [65]

length representations, a generalization of the Gaussian kernel is introduced

—d(xy)

KGGaussian (X>y) =e 2? (51)
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where d
represen
mover’s

between

X,Yy) is a distance measure in the input space between the two variable-length
tations of images x and y. A particular form of (5.1) in which d is the earth
distance (EMD) [116] is proposed in [65]. The EMD computes the distance

two distributions represented by sets of weighted features. It is the minimal

cost of ¢changing one distribution into the other. The cost is defined in terms of a

user-def]

ned ground distance that measures the distance between two features. A

distribution can have any number of features. Thus, EMD can operate on variable-

length representations of distributions. An image can be seen as a distribution with

a variab

where K

tions of
must be
is set to

image si

5.2

A key fi
form an

that is

le number of regions. The kernel proposed in [65] is

—EMD(x,y)
Kapup(x,y) =€~ 272

MD(x,y) is the EMD distance between the two variable-length representa-
images x and y. In order for EMD to be a true metric, the ground distance
a metric [116]. For example, in [65], the ground distance between two regions
the Fuclidean distance. Therefore, this approach does not allow for arbitrary

milarity measures.

Probabilistic Region Relevance Learning

wctor in region-based CBIR, approaches that consider all the regions to per-
overall image-to-image similarity is the weighting of regions. The weight

assigned to each region for determining similarity is usually based on prior

assumptions such as that larger regions, or regions that are close to the center of the

image, s

hould have larger weights. For example, in integrated region matching (IRM)

[75] (described in Section 2.3), an area percentage scheme, which is based on the as-

sumptio

assign w

n that important objects in an image tend to occupy larger areas, is used to

reights to regions. The location of a region is also taken into consideration.
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For exa
to those
with hu
when th
backgro

Base

mple, higher weights are assigned to regions in the center of an image than
around boundaries. These region weighting heuristics are often inconsistent
man perception. For instance, a facial region may be the most important
e user is looking for images of people while other larger regions such as the
und may be much less relevant.

d on the observation that regions in an image have unequal importance for

computing image similarity (See Figure 5.1), we propose a probabilistic method in-

spired by probabilistic feature relevance learning (PFRL) [103] (described in Section

4.1), pr

babilistic region relevance learning (PRRL), for automatically capturing re-

gion relevance based on user’s feedback. PRRL can be used to set region weights in

region-based image retrieval frameworks that use an overall image-to-image similarity

measure.

5.2.1

Inspired

of each

Region Relevance Measure

by PFRL, we learn the differential region relevance by estimating the strength

region in predicting the class of a given query. Given a query image x. Let

x be represented by a set of regions {R;}7, where R; = {r;} is the descriptor of the

i-th region and r; € R? is a feature vector extracted from the i-th region. Let the

class label y € {1,0} at x (i.e., relevant or non-relevant) be treated as a random

variable

from a distribution with the probabilities {Pr(1 | x), Pr(0 | x)}. Consider

the function f of n arguments

f(x)=Pr(1|x)=Pr(y=1|x)=FE(y|x)
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Query Image

Figure 5.1: Regions are unequal in their differential relevance for computing similar-
ity. Given that the user is looking for images of people, region R, may be the most
important, perhaps followed by R, and Rj3. Thus, the neighborhood of the similar-
ity metric should be elongated along the direction of R, and constricted along the
direction of Rs.

In the absence of any argument assignments, the least-squares estimate for f(x) is

simply its expected (average) value

Elf) = [ f(xp(x)dx

where p(x) is the joint probability density. Now, suppose that we know the value of

x at a particular r;. The least-squares estimate becomes

EIf Ini = [ fxp(x | ri)dx
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where p

(x | r;) is the conditional density of the other regions. Because f(x) =1 (i.e.,

the query image is always relevant), (f(x) — 0) is the maximum error that can be

made w

fact 1.
Elf | ri]

hen assigning 0 to the probability that x is relevant when the probability is in
On the other hand, (f(x) — F[f | ri]) is the error that is made by predicting

to be the probability that x is relevant. Therefore,

[(f(x) = 0) = (f(x) = E[f | ri)] = E[f | ri]

represents a reduction in error between the two predictions. Therefore, a measure of

the relevance of the i-th region for x can be defined as

Thus 7;

ri(x) = E[f | ri] (5.2)

x) = 0 when f(x) is independent of r; (at x) and 7;(x) = 1 when f(x)

depends only on r; (at x). Values in between these extremes indicate varying degrees

of relevance for r;. Also, it can be viewed as a measure of local relevance in the sense

that its

value depends on the particular x at which it is evaluated [31]. We can then

use a weighted similarity measure where the weight of the i-th region is given by

where a

T; O W;

5.2.2

(5.3)

is a parameter that can be chosen to maximize (minimize) the influence of

103].

Estimation of Region Relevance

Similarly to PFRL for estimating feature relevance, we use the retrieved images with

RF to estimate region relevance. Let R = {(xj,y;)}7* be the set of cumulative

retrievals for x, where x; is the j-th retrieved image and y; € {1,0} is its class label
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(i.e., relevant or non-relevant). Let x; be represented by a set of regions {R;}{ where

R; =

} is the descriptor of the j-th region and rj € R is a feature vector extracted

from the j-th region. Let 0 < s(rj,rj) < 1 denote the similarity between r; from x

and r3 f

We can

(5.2) cal

where 1

om X;j in a region-based CBIR system. Also, let

A _ . /'
) = gy e

use R to estimate (5.2), hence (5.3). Note that E[f | ri] = E[y | ri]. Thus,

n be estimated by

é(rl’XJ) - 1)
(thJ) == 1)

By ) - S

1 I

-) returns 1 if its argument is true, and 0 otherwise. However, (5.2) cannot

be diredtly estimated in this manner since there may be no (or at most a few) r

such that s(rj,rj) = 1 (i.e,, no rj such that r; = r}). Therefore, instead, we follow

J

an strategy suggested in [31] and look for data in the vicinity of r; (i.e., we allow

s(ri, 15) |< 1). Thus, (5.2) is estimated by
a y;1(8(r1,%x5) > €)
Ely |ri] = ] —ry (5.4)
1 1(8(rs, %x5) > €)
where ) < ¢ < 1 is an adaptive similarity threshold that changes so that there is

sufficien

where ¢

t data for the estimation of (5.2). The value of ¢ is chosen so that

S 16 xy) > &) = g

j=1

< m. The PRRL algorithm is summarized in Figure 5.2.
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1. Initialize region weights, R « 0
2. Retrieve the £ most similar images to query image x

3. While More RF Iterations Do

(a)
(b)
(c)

)

(d) Retrieve the £ most similar images to x

User marks the k£ images as relevant or non-relevant
R <R U{x;,y)}}
Update weights of regions in x with (5.4) and (5.3) using R

Fi

5.2.3

In this

rure 5.2: The probabilistic region relevance learning (PRRL) algorithm.
Experimental Results

section we present experimental results obtained with PRRI. The retrieval

performance is measured by precision (1.1) and recall (1.2). The following data set

was use

1. C

1 for evaluation:

orel - A subset of 2000 labelled images from the general purpose COREL image

database. There are 20 image categories, each containing 100 pictures. The

re

sSe

sion-based feature vectors of those images are obtained with the IRM/UFM

omentation algorithm described in Section 2.3 !. Sample images are shown in

Figure 5.3.

We tested the performance of unified feature matching (UFM) [17] (described in

Section

2.3), UFM with PRRL (UFM+PRRL), and UFM with the RF*IIF method

65] (described in Section 5.1) (UFM+RFIIF). Every image is used as a query image.
b

A unifo

rm weighting scheme is used to set the region weights of each query and

target images. For UFM+PRRL, and UFM+RFIIF, user’s feedback was simulated

by carrying out 3 RF iterations for each query. Because the images in the data set

are labelled according to their category, it is known whether an image in a retrieval

set would be labelled as relevant or non-relevant by a user.

"'We would like to thank Yixin Chen for providing us with this data

117




Figure 5.3: Sample images from Corel data set.

The average precision of the 2000 queries with respect to different number of RF
iterations is shown in Figure 5.4. The size of the retrieval set is 20. Figures 5.5
through 5.8 show the precision recall curves after each RF iteration. We can observe
that UFM+PRRL has the best performance. It can be seen that, even after only 1 RF
iteration, the region weights learned by PRRL result in a very significant performance
improvement.

Figure 5.9 shows the retrieval results obtained on a random query image. It
is difficult to make objective comparisons with other region-based image retrieval
systems such as Netra [81] or Blobworld [15] which require additional information
from the user (i.e., important regions and/or features) during the retrieval process.

Currently, PRRL only performs intra-query learning. That is, for each given query,
the user’s feedback is used to learn the relevance of the regions in the query and the

learning process starts from ground up for each new query. However, it is also possible

118



Corel Images

0.65 ; ‘ I
— UFM
—EUFM+PRRL
SO—S UFM+RFIIF
0.6 .
1
o
ie)
£ 055 | :
o
o
05 )
K‘l//—e/(/
0.45 ] : l
0 1 2 3

Number of RF lterations

Figure 5.4: Retrieval performance at different number of RF iterations with PRRL
and other methods on Corel data.
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Figure 5.5: Retrieval performance in initial retrieval set with PRRL and other meth-
ods on Clorel data.

to explait inter-query learning to enhance the retrieval performance of future queries.

Thus, for a new query, instead of starting the learning process from ground up, we
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Figure 5.6: Retrieval performance after one RF iteration with PRRL and other meth-
ods on Corel data.
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Figure 5.7: Retrieval performance after two RF iterations with PRRL and other
methods on Corel data.

could exploit the previously learned region importances of similar queries. This would

be very |beneficial specially in the initial retrieval set since, instead of using uniform
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Corel Images — 3 RF lterations
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Figure 5.8: Retrieval performance after three RF iterations with PRRL and other
methods on Corel data.
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1g or some other weighting heuristic, we could make a more informed initial
e of the relevance of regions in the new query. We plan to investigate the
ity of incorporating inter-query learning into the PRRL framework as part of

ire work.

Intra-Query Learning with Generalized Sup-
port Vector Machines

RF schemes based on SVM learning [18, 56, 156] have been applied to signif-
improve retrieval performance in CBIR systems that use fixed-length global
epresentations. In [18], relevant images are used to estimate the distribution
t images by fitting a tight hypersphere in the non-linearly transformed feature
[n [156], the problem is regarded as a two-class classification problem and a

im margin hyperplane in the non-linearly transformed feature space is used
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Retrieval Set with UFM+PRRL after 2 RF iterations, precision = 0.75
Figure 5.9: Retrieval results on random query image (top leftmost). The images are

sorted based on their similarity to the query image. The ranks descend from left to
right and from top to bottom.
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to separate relevant images from non-relevant images. Other approaches, such as
(54, 161], have provided improved approaches for utilizing kernel methods and SVMs
in CBIR.

In contrast to traditional methods, which use fixed-length global image repre-
sentations, region-based approaches segment an image into a set of regions and use
variable-length image representations. Thus, since a kernel corresponds to an inner
product in a feature space that is a non-linear transformation of the input space, how
to use SVMs with variable-length vectors is less obvious. Note that a kernel (i.c.,
an inner product) can be seen as similarity measure. However, not every similarity
measure corresponds to an inner product in some feature space. Thus, if we were to

use an arbitrary similarity measure between variable-length vectors as a kernel, the

requirements that a SVM places on the kernel (i.e., the Mercer conditions [92])) may
be violated. As a result, there would be no guarantees on the validity or optimality

of the resulting classifier (See Figure 5.10).

Chapas Thys ° Clags ' Sove  Logd 111001 9 1 43 ¢ iiia

Shange i | Clege! Seve  Lpag 11119l 47 clBng

(a) (b)

Figure 5.10: SVM decision boundaries for the classical exclusive-OR (XOR) problem
using: a) a (valid) positive definite kernel K (x;,x;) = (x;7x; + 1)% b) an (invalid)
negative definite kernel K(x;,x;) = (—x;'x; — 1)®. The decision boundaries were

obtained with the libsum package [16].
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unately, a GSVM [84] (described in Section 3.1.5) allows the use of an arbitrary
and it can lead to a decision function that is as satisfactory as that of a
ional SVM. Because GSVM does not place restrictions on the kernel, any
ty measure (i.e., not necessarily an inner product one) can be used.

now describe our GSVM-based learning approach. Let an image x be rep-
| by a set of regions {R;}?, where R; = {r;} is the descriptor of the i-th
ind r; € R? is a feature vector extracted from the i-th region. Let S(xi,x;)
rbitrary similarity measure between two images. During the RF process for a
ar query image, the user marks each retrieved image x; as relevant (y; = 1)
relevant (y; = 0). We use the set of cumulative retrievals R = {(x;,y:)}7" as

r data in (3.6). Set K(x;,x;) = S(x3,X;) and let

Sx, = [S(x1,%1), S(x1,%X2), - - -, S(Xi, Xm)] "

Sx; 1 the vector of similarities of x; to all training images. Then, the (%, j)-

th entry of matrix A in (3.6) is sy, - sy, (i.e., the dot product of s, and sy;). The

equivalent (non-matrix) notation for (3.6) is then as follows

Let

that th

1 m m m
min LS5 s 5 S
o erm 2 i=1

s.t. Z a;y; =0
=1

OSO@SC

Kr(Xi,Xj) = 8x; + 8x,; {1.€., identity kernel over this new representation). Note

e above optimization problem is that of a standard SVM with an identity
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kernel over this new representation

O eRm™m

1m m
min 522 oYy KR (X1, X5) — Zai (5.5)
1:

Thus, by representing each image as a vector of its similarity (as given by the

arbitrary region-based similarity measure S) to all training images, we can use an

ordinar

y SVM. The proposed learning algorithm is summarized in Figure 5.11.

1.
2.

Retrieve the k most similar images to query image x

While More RF Iterations Do

(a) User marks the k images as relevant or non-relevant

(b) R =R U{(xq,u)1

(c) Compute standard SVM by solving (5.5) on training data R

(d) Compute the score f(x) of each database image x using resulting SVM
decision function f(x) = SR iy KR (%, %1) + b

(e) Retrieve the k highest-score database images

5.3.1

In this

Figure 5.11: GSVM-based RF Learning Algorithm.

Experimental Results

section we present experimental results obtained with the proposed GSVM-

based learning approach. The retrieval performance is measured by precision (1.1) and

recall (

We

1.2). The Corel data set (described in Section 5.2.3) was used for evaluation.

tested the performance of UFM, UFM with the proposed GSVM-based learn-
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ing method (UFM+GSVM), UFM with PRRL (UFM+PRRL), UFM with RFIIF
(UFM+RFIIF), IRM, IRM with the proposed GSVM-based learning approach (IRM+GSVM),
EMD, and GEMD (the method that uses a generalized Gaussian kernel with EMD
described in Section 5.1). Every image is used as a query image. The size of the re-
trieval set is 20. A uniform weighting scheme is used to set the region weights of each
query and target images. For UFM+GSVM, UFM+PRRL, UFM+RFIIF, GEMD,
and IRM+GSVM, user’s feedback was simulated by carrying out 3 RF iterations for
each query. Because the images in the data set are labelled according to their cate-
gory, it|is known whether an image in the retrieval set would be labelled as relevant
or non-relevant by the user. After each RF iteration in UFM+GSVM, GEMD, and
IRM+GSVM, the set of labelled cumulative retrieved images is used as training data
for a SVM and the resulting decision function is used to rank database images. We
used the libsum [16] package for computing the SVM. Similarly, the set of cumulative
retrieved images is used as training data in UFM+PRRL and UFM+RFIIF.

The average precision of the 2000 queries with respect to different number of RF
iterations is shown in Figure 5.12. Figures 5.13 through 5.16 showithe precision re-
call curves after each RF iteration. We can observe that UFM+GSVM has the best
performance. Also, both UFM+GSVM and IRM+GSVM continue to have a signif-
icant improvement in performance after the first RF iteration. The initial decrease
in performance with IRM+GSVM may be due to the initial lack of relevant training
data because of the low initial retrieval precision of IRM.

The|experimental results on general-purpose images show convincingly the efficacy
of the proposed method in improving image retrieval performance. Currently, for each
query, the user’'s RF is used as training data and the learning process starts from
ground |up for each new query. waever, it is also possible to exploit the long term

learning accumulated over the course of many query sessions. This would be very

D

beneficlal specially in the initial retrieval set since, instead of ranking images based
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Figure 5.12: Retrieval performance at different number of RF iterations with the
proposed GSVM-based approach and other methods on Corel data.
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Figure p.13: Retrieval performance in initial retrieval set with the proposed GSVM-
based approach and other methods on Corel data.

only on|the similarity measure, we could make a more informed initial estimate of the

relevance of images to the user’s query concept. We plan to investigate the possibility
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Figure 5.14: Retrieval performance after one RF iteration with the proposed GSVM-
based approach and other methods on Corel data.
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Figure 5.15: Retrieval performance after two RF iterations with the proposed GSVM-
based approach and other methods on Corel data.

of incorporating long-term learning into this GSVM-based learning framework as part

of our future work.
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Figure

Corel Images — 3 RF lterations
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5.16: Retrieval performance after three RF iterations with the proposed

GSVM-based approach and other methods on Corel data.

5.4

A large

ature.

Improving Image Segmentation

number of image segmentation techniques have been proposed in the liter-

However, semantically meaningful image segmentation still remains an open

and difficult problem. This is mainly due to the fact that most image segmentation

algorithms create regions that are homogeneous with respect to one or more low-level

features. Unfortunately, homogeneous regions based on low-level features usually do

not correspond to meaningful objects. Because what an object is ultimately depends

on high-level human knowledge, it is very difficult to design segmentation algorithms

that can extract semantic objects from images. To the best of our knowledge, no ap-

proach

has been proposed that exploits intra/inter-query learning for automatically

improving image segmentation. We propose an algorithm that exploits both intra

and int
a datab

We

er-query learning for automatically improving the segmentation of images in
ase.

assume the existence of a region-based CBIR system with a set of database
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images

images

that have been segmented. Thus, there is an initial segmentation of the

in the database. Then, through the use of intra and inter-query learning,

this initial segmentation (and subsequent ones) is improved. We use a generic and

simple clustering-based image segmentation algorithm based on k-means clustering.

Because the focus of our approach is on improving an initial segmentation through

the use

good” g

of intra and inter-query learning, this algorithm (which produces a “not so

egmentation) serves our purpose. The major advantage of this segmentation

procedure is its low computational cost.

The
first pal
from ea
into sev
Each cl
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as

segmentation algorithm is shown in Figure 5.17. To segment an image, it is
titioned into blocks of nxn pixels. Then, a feature vector b € R% is extracted
ch block. The k-means algorithm is used to cluster the set of feature vectors
eral classes with every class corresponding to a region in the segmented image.
uster is represented by cluster center ¢ € R¢ and a weight vector w € R¢. The
vector specifies the weight/importance of each feature dimension in a cluster.
rees with our intuition that the weight/importance of each feature may be
t in each image region. We assume the use of a weighted distance measure
,¢) that can be used for classifying blocks into clusters. In order to determine
nber of clusters £ to use, the segmentation algorithm is run with incfeasing
f k up to a maximum number mazxy. For each value of k, after running the
tation algorithm, a clustering validity measure is used to asses the goodness
esulting clustering. For example, the Xie-Bene (XB) validity measure [153]

e used. It is a measure of the compactness-to-separation ratio and is defined

k2
120

XB=
k Dmin

where D, is the smallest distance between two cluster centers (i.e., separation),

and o; is the sum of variances for the i-th cluster (i.e., compactness). Thus, a smaller
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value o

fl X B indicates a better clustering.

1.
2.
3.
4.

5.

Partition the image into blocks of nxn pixels
Extract feature vector b € R¢ from each block
Initialize number of clusters k «— 2

Initialize center ¢ € R? and feature weights w € R¢ of each cluster

WHILE (k < maxy)
REPEAT
Compute disty (b, c) for each b and each cluster center c
Classify each block according to nearest cluster center
Recompute each center ¢ as average of all blocks assigned to cluster
UNTIL no change in cluster centers
Compute clustering validity measure for k
ke—k+1

END WHILE

Dutput best clustering according to clustering validity measure

Figure 5.17: Simple Segmentation Algorithm.

The|learning framework that we use in our approach is multiple-instance learning

(MIL)

[25, 85, 87] (described in Section 3.2.1). We view a segmented image as a bag

consisting of a collection of instances (i.e., regions). For a given query, we assume

that the user’s decision to label an image in the retrieval set as relevant is based

on the

presence of at least one particular object in the image. Similarly, a user

labels an image as non-relevant if none of the objects in the image correlate with

the user’s concept. At the end of the query session, given the set of cumulative

user-labelled images (i.e., intra-query learning), we use MIL to find commonalities

among
commo

value a

the relevant images that do not appear in the non-relevant images. Such
nalities can be captured by the DD function. Intuitively, the larger the DD

t a point (t,w’), the more likely that image regions whose center c is close to

t (measured by disty/(c,t)) appear in relevant images. Thus, if DD(t,w’) is large,
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t is the prototypical feature vector of a region that is common among the relevant

images

and uncommon among the non-relevant images. Also, w' gives the relative

importance of the different features in discriminating that particular region. This

information can be used to improve the segmentation of the relevant images. For

exampl
make a

The (p

e, in the simple segmentation algorithm described in Figure 5.17, we could
more informed decision on the initialization of (one or more) (c,w) pairs.

ossibly improved) segmentation of those images can then be stored in the

database so that future queries can benefit from it (i.e, inter-query learning). That

is, bett

er segmentations will result in both future better retrieval performance and

future improved updating of image segmentations. This basic idea is illustrated in

Figure
The

5.18.

DD function may have multiple local maxima (See Figure 5.19). A low

value for DD(t,w’) means that this point is not particularly useful in discriminating

between relevant and non-relevant images. Thus, points with low DD value are not

useful.

We can use a threshold to discriminate between points. Thus, only points

whose DD value is above the threshold are considered for further exploitation (See

Figure

5.20).

A segmented image x consists of a set of regions, with each region represented by

a (c, w)) pair. Given the set of cumulative retrieved images R = {(xi, y:)}7, where

y; € {1
The

(c,w) o

0} is the class label (i.e., relevant or non-relevant). Let Rt = {x; | (x;,1) €

first step in our approach is to start an optimization of the DD function at the

f each region from every x € R* and find the corresponding maximizer (t,w’).

Let 7 be the set of all such maximizers. Thus, we follow the heuristic applied in [87]

to search for maxima of the DD function. That is, start an optimization of the DD

functior

of the ]|

1 at each instance from every positive bag. Since, according to the definition

DD function, a maximum DD point is made of contributions from some set of
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Figure 5.18: Basic idea of MIL-based approach: a) set of images in a database along
with their initial segmentations/region-based representations; b) query image and cor-

respond

ing retrieval set; ¢) MIL is performed on set of user-labelled relevant images to

improve and update the segmentation/region-based representation of those images in
the database; d) query image and corresponding retrieval set; e) MIL is performed on
set of user-labelled relevant images to improve and update the segmentation/region-
based representation of those images in the database.

positive
from pq

The

bags, each maximum DD point is likely to be close to one or more instances
sitive bags. The optimization can be solved by Powell’s method [109].

next step is to determine which maximizers in 7 are useful and thus we want
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Figure 5.19: The space defined by the DD function may have multiple maximizers.

Figure 5.20: A threshold can be used to discriminate between useful and not-useful
maximizers of the DD function.

to keep (See Figure 5.20). For example, we could use an adaptive threshold which is
equal to the average of the maximum and minimum DD value of all the maximizers.
Thus, after this filtering step, maximizers with low DD value have been removed from
7. In order to avoid having maximizers that are duplicates (or slight variations) of
one another, for every pair of maximizers in 7 that are very similar, we can remove
the one with lowest DD value from 7.

Next, based on 7', we consider possible updates to the segmentation of each x €
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R*. That is, instead of completely re-segmenting an image, we consider possible
changes that could improve the existing segmentation. This is desirable because an
image may be relevant under different query concepts. For example, the image in
Figure 5.21 is relevant under both the “balloons™ and the “cars” query concepts.
Thus, the segmentation of the “balloons” object(s) in the image can be improved at
the end of a query session for which the user’s concept was “balloons”. Similarly, the
segmentation of the “cars” object(s) in the image can be improved at the end of a

query session for which the user’'s concept was “cars” (See Figure 5.18).

Figure 5.21: An example of an image that is relevant under different user’s concepts
(e.g., “balloons”, and “cars”).

Therefore, for each x € R, the segmentation of only those regions/objects in x
that resulted in the user labelling x as relevant is considered for updating. Thus, we
first have to determine the mapping between maximizers in 7 and regions in x. This
could be done by computing the distance from every maximizer (t,w’) € 7 to the
(¢, w) of every region in x. If the distance is smaller than some threshold, we say
that (t.w') maps to (c,w) (i.e., (t,w’) is a “prototype” of that region) (See Figure
5.22).

The proposed updates to the segmentation of x vary according to the type of

mapping between maximizers in 7 and regions in x, The following are the different
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Figure 5.22: Regions in the segmented image can be associated with the closest
maximizer of the DD function.

types of possible mappings along with their corresponding proposed segmentation

update:

1. A maximizer (t,w’) € 7 does not map to the (¢, w) of any region in x. Intu-
itively, this means that the important/common region whose prototype is given
by (t, w') either does not appear as an independent region in the segmentation
of x or does not appear in x at all. The proposed change is to add (t, w’)
as a new cluster center (See Figure 5.23). Then, after re-clustering all the b
in x, we can determine the validity of the proposed change. For instance, if
after re-clustering, the value of the newly inserted cluster center is far from its
original value of (t,w’) or only a few (or none) of the b have been assigned
to the new cluster, we may conclude that x in fact does not contain that im-
portant/common region. In such case, the proposed change can be undone
sii‘nply by removing the newly inserted cluster center and keeping the original

segmentation.

2. A maximizer (t,w’) € 7 maps to the (¢, w) of exactly one region in x (See

Figures 5.24 and 5.25). Intuitively, this means that the important/common
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gion whose prototype is given by (t, w’) does appear as an independent region

the segmentation of x. However, since (t, w’) is a prototype for such region,

the segmentation of that region in x may still be improved by moving (c, w)

wards (t, w’) (and re-clustering). We assume that this is always a good update

the segmentation of x.

maximizer (t,w') € 7 maps to the (¢, w) of more than one region in x (See

Figures 5.26 and 5.27). Intuitively, this means that the important/common

gion whose prototype is given by (t, w’) appears as more than one independent

gions in the segmentation of x. The proposed change is to merge those regions

by removing the (¢, w) of each and adding a new (c,w) that is the average of

the all the (¢, w) that were removed. Then, after re-clustering all the b in x,

e can determine the validity of the proposed change.

4. More than one maximizer (t,w’) € 7 maps to the (¢, w) of one or more regions

cl

H

in x (See Figures 5.28 and 5.29). Intuitively, if more than one maximizer maps
ta the (¢, w) of exactly one region in x, this means that the important/common
regions whose prototype are given by the maximizers appear as a single region
in the segmentation of x. The proposed change is to split that region in x by

removing its corresponding (¢, w) and adding the maximizers. Then, after re-

ustering all the b in x, we can determine the validity of the proposed change.

owever, if more than one maximizer maps to the (c,w) of more than one

region in x, there is no intuitive update to the segmentation of x (i.e., both a
merge and a split operation would have to be done at the same time). This case

should not occur very often. We do not make any update to the segmentation

of x in this case.

After all mappings between maximizers in 7 and regions in x are obtained, the

proposed updates to the segmentation of x are carried out all at once. Then, after
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Figure 5.23: Sample of under-segmentation: a) an important object (i.e., the balloon)
does not appear as an independent region in the original image segmentation; b) the
important object appears as an independent region after adding a new cluster with
(t,w’) that is prototypical of the important object, and re-clustering.
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Figure 5.24: There is a one-to-one mapping between a maximizer and a region. The
proposed change is to update (¢, w) by moving it towards the maximizer (t,w’).
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Figure 5.25: Sample of poor segmentation: a) an important object (i.e., the balloon)
is not well segmented in the original image segmentation; b) the segmentation of
the important object improves after moving the corresponding (¢, w) towards the
prototypical (t, w’) of the important object, and re-clustering.
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Figure 5.26: There is a one-to-many mapping between a maximizer and more than
one region classifiers. The proposed change is to merge the regions by removing their
(c,w) and adding the maximizer as the cluster prototype of a new region.
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Figure 5.27: Sample of over-segmentation: a) an important object (i.e., the balloon)
appears as more than one independent regions in the original image segmentation; b)
the segmentation of the important object improves after merging the corresponding
(c, w) by removing them, adding the prototypical (t, w’) of the important object, and
re-clustering.

re-clustering all the b in x, the updates are evaluated in an incremental fashion and,

if necessary, undone. Figure 5.30 shows the proposed algorithm for improving image

segmentation.

The description of the proposed approach is very generic since there are still many
important open questions that need to be addressed. For instance, informed ways
of determining the thresholds that are used are needed. We will develop an specific

implementation of this approach as part of our future work.
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Figure 5.28: There is a many-to-many mapping between more than one maximizer
and the (c,w) of at least one region. If the maximizers map to just one region,
the proposed change is to split the region by removing its (c,w) and adding the

prototypical maximizers as new regions.
|

Figure 5.29: Sample of under-segmentation: a) important objects (i.e., the balloon
and the cloud) appear as a single region in the original image segmentation; b) the
segmentation of the important objects improves after splitting them by removing
the (c,w) of their original single region, adding the prototypical maximizers of the
important object, and re-clustering.
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1. T is set of maximizers of the DD function. Initialize 7 « @

o

"OR (every (c,w) of each region from every x € R*)
Find maximizer (t,w’) of DD function from starting point (c, w)
T —TU((t,w)
. Remove duplicated maximizers and maximizers with low DD value from 7
. FOR (every x € RY)
FOR (every maximizer (t,w’) in 7)
FOR (each (c,w) from every region in x)
Compute disty(t,c)
T(1—nun is set of maximizers in 7 that do not map to any region in x
7(1-1) is set of maximizers in 7 with one-to-one mappings
T is set of maximizers in 7 with one-to-many mappings
T(nr—1) is set of maximizers in 7" with many-to-one mappings
FOR (every maximizer (t,w’) in T_1))
UPDATE corresponding (¢, w) by moving it towards (t, w’)
FOR (every maximizer (t,w’) in T1_nun))
ADD (t,w’) as a new cluster prototype to segmentation of x
FOR (every maximizer (t,w’) in Z(1-pp)
MERGE corresponding regions in x
FOR (every maximizer (t,w’) in Z(y—1))
SPLIT corresponding region in x
REPEAT
FOR (every b in x)
Compute disty (b, c) for the (c, w) of every region in x and classify b
FOR (every maximizer (t,w’) € 7(1_nui))
IF ADD not valid, UNDO and remove (t,w’) from 7(1_nun)
FOR (every maximizer (t,w’) in 71 7))
IF MERGE not valid, UNDO and remove (t,w’) from 71_y)
FOR (every maximizer (t,w’) in Z(a-1))
IF SPLIT not valid, UNDO and remove (t, w’) from Z(s—1)
UNTIL (no change to segmentation of x)

Figure 5.30: Algorithm for MIL-based Segmentation.
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Chapter 6

Other Image Representations

The main idea of content-based image retrieval (CBIR) is to search on images directly.

That is
directly.
In this

continu
observa

its raw

instead of searching based on assigned keywords, we search visual content
However, we still need to use a set of features to represent visual content.
chapter, we present an initial investigation into what we believe is the logical
ation of the CBIR idea of searching visual content directly. It is based on the
tion that, since ultimately, the entire visual content of an image is encoded into

data (i.e., the raw pixel values), in theory, it should be possible to determine

image similarity based on the raw data alone. That is, everything that we need to

know r

sgarding the visual content of the image is in the raw data itself. Humans

are very good at looking at an image (i.e., the raw data) and extracting all the

important features from it. Thus, all the important features are “hidden” in the raw

data so

mewhere. The problem of feature extraction is just that we do not entirely

know yet how (we, humans) “find” them. Thus, instead of attempting to determine

image similarity based on a small set of (probably incomplete) set of features, why

not have a similarity measure that is based on the raw data itself (since everything

is in th
image d

PropOse

e raw data). We present an initial investigation, conducted in 41}, into an
issimilarity measure following from the theoretical foundation of the recently

d normalized information distance (NID) [74]. A very crude approximation
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of the Kolmogorov complexity of an image is created by compression. Using this

approximation, we can calculate the NID between images and use it as a metric

for CBIR. The compression-based approximation to Kolmogorov complexity, though

very rough, is shown to be valid by proving that it creates a statistically significant

dissimilarity measure by testing it against a null hypothesis of random retrieval.

Although the approximations used in this initial investigation may not currently be

practical for CBIR, the results are encouraging that additional research into methods

guided by the NID approach may be fruitful.

6.1

Image Similarity with Normalized Information

Distance

We attempt to bypass the feature selection step (and the distance metric in the

COITESP

nding feature space) by taking the normalized information distance (NID)

[74] approach. The NID approach is based on the notion of Kolmogorov complexity

[68, 77].

The information distance between two strings a and b is the complexity of the

transformations of @ into b and b into a. The information distance is normalized by the

individual complexities of a and b. In theory, the complexity of a is measured by the

length

f the shortest program that can compute a from scratch. The complexity of

the transformation of a into b is the length of the shortest program that can compute

b given

a as an auxiliary input.

Kolmogorov complexity is not computable, but it has been used as the founda-

tion for

the minimum description length (MDL) principle {26, 112] and the minimum

message length (MML) principle [145]. In [74], NID was successfully applied to the

problems of determining whole mitochondrial genome phylogenies and classifying nat-

ural languages when using a compression-based approximation of complexity. It has

also be

:n shown to be applicable to chain letters [8].
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6.1.1

The Normalized Information Distance

The NID presented in [74] is based on the incomputable notion of Kolmogorov com-

plexity.

The Kolmogorov complexity of a string z, K(z), is defined as the length of

the shortest effective binary description of z. Broadly speaking, K (z) may be thought

of as th

has bee

o length of the shortest program that, when run with no input, outputs z. It

n shown that, although there are many universal Turing machines (and thus

many ppssible shortest programs), the corresponding complexities differ by at most

an additive constant [33]. Thus, K(z) is the smallest amount of information that is

needed by an algorithm to generate z. Let z* be the smallest program that generates

z. Then, K(z) = |z*|. Similarly, the conditional Kolmogorov complexity of z relative

to another string y, K(z | y), is the length of the shortest program that, when run

with input y, outputs z. Also, K(z,y) is the length of the smallest program that

generates = and y along with a description of how to tell them apart. The theory and

develop

ment of the notion of Kolmogorov complexity are described in detail in [77].

The information in y about z is defined as [68, 74]

I(z:y)=K(z) - Kz |y")

A result from [32] shows that, up to additive constants, I(z : y) = I(y : z). Thus

[74],

The

K(z)+ K(y|z") = K(y) + K(z | v") (6.1)

information distance E(z,y) is defined as the length of a smallest program

that generates z from y and y from z [74]. A result from [7] indicates that, up to an

additive logarithmic term,

E(z,y) = max{K(y | z), K(z | y)} (6-2)
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Because it is not normalized, (6.2) may not be an appropriate distance measure.

For inst

only in

ance, according to (6.2), the distance between two very long strings that differ

s, few positions would be the same as the distance between two short strings

that differ by the same amount. In [74], the NID d(z,y) is proposed

The

metric,

~ max{K(z |y*), K(y | z")}
Hery) = (K (a), K ()

(6.3)

function d(z,y) is a normalized information distance (i.e., it is a distance

takes values in [0,1], and satisfies the normalization condition). It is also

universal because it includes every computable type of similarity in the sense that,

whenever two objects are similar in normalized information in some computable sense,

then they are at least that similar in d(z,y) sense [74]. For proofs and more details,

refer to

6.1.2

74].

Image Similarity Measure

Let z and y be two raw images (i.e., strings containing byte streams describing color

information). In order to be able to use (6.3) for determining distance between

and y, we need to estimate K (z), K(y) and their conditional complexities K(z | y),

K(y | #). For the conditional complexities, by (6.1), K(z | y) = K(z,y) — K(y)

(up to an additive constant) [74]. Also, K (z,y) = K(zy) (up to additive logarithmic

precisio

The

n) [74].

size of the compressed « is used to approximate K (z), similarly for K (y). The

compressed size of concatenation of z with y is used to estimate K (xy), similarly for

K(yx).

We justify this by the observation that compression algorithms take advantage

of redundancy (i.e., spatial, color coherence) in an image to shrink the representation.

Therefore, intuitively, if z is a more complex image than y, the size of the compressed

z would be larger than that of y. Thus, this corresponds to the intuition that K(y)
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should be smaller than K (z). Similarly, when z and y are very different, the size of

the compressed zy should be larger than when = and y are very similar. Thus, using

(6.3), the distance between two raw images z and y can be defined as

max{(|c(zy)| — le(y)]), l(!C(ﬂuﬂi)l — le(@)D} (6.4)

d(z,y) = max{|c(z)], |c(y)|}

where c(i) is the compressed version of input ¢ and |c(i)| is its corresponding size.

Note that |c(z)|, |c(zy)| are very rough approximations to K (x) and K(z,y). Thus,

we do 1ot expect (6.4) to result in a performance that is high enough for (6.4) to

be used| as a practical tool. The purpose of this preliminary investigation was just

to obtain some preliminary evidence to whether or not the NID could be applied to

the problem of determining image similarity. Depending on the preliminary results

obtaine

1 with (6.4), we will then decide whether to investigate implementations of

the NID based on better approximations to the true Kolmogorov complexities (more

about t

6.1.3

In this

his on the next section).

Experimental Results

section we present some preliminary experimental results obtained with the

NID approach. The retrieval performance is measured by precision (1.1) and recall

(1.2). The following data sets were used for evaluation:

1.

2.

T

T

he Terture data set (described in Section 4.3.3).

GroundTruth - the University of Washington GroundTruth image database [1].

he images are photographs of different regions and topics. Sample images are

shown in Figure 6.1. We use the set of 675 annotated images. Each image

contains multiple annotations (i.e., keywords).

. IAPR-12 - the benchmark database and standard queries from technical com-

mittee 12 of TAPR[59]. The data consists of 1000 images and 30 standard
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queries. Sample images from the queries can be found in Figure 6.2.

4. The Corel data set (described in Section 5.2.3).

Figure 6.1: Sample images from GroundTruth data set.

The objective of our experiments was to obtain some preliminary evidence as
to whether a crude approximation to the normalized information distance actually
creates a statistically significant image similarity measurement. Therefore, we tested
the performance against an uninformed method that used uniform random retrieval
to select images. The Texture data set was used first. For this experiment, libucl [99]
was used as the compressor. The image concatenation was a sequential placement
of the raw bytes of the second image at the end of the first image. Each image was
used as a query and the precision of a retrieval set of the twenty nearest images was
measured. The results are presented in Table 6.1. The NID performed surprisingly
well and is obviously statistically different than the random approach. It performs
almost as well as 16-dimensional feature vector extracted using Gabor filters. Since
the texture images contain the repeating patterns of the texture, they are probably

the best case situation for approximation based on compression.

Table 6.1: Texture Data Set Performance
‘ Random | NID ‘ Gabor

Precision at 20 images ‘ 0.079 ‘ 0.80 ‘ 0.81

The GroundTruth data set was used next. We define y as being relevant to x when

xr and y share at least one common annotation. For this experiment, gzip [48] was
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(c) Query 25

Figure 6.2: Sample query images from [APR-12 data set.

used as the compressor. The image concatenation was a sequential placement of the
raw bytes of the second image at the end of the first image. Each image was used as a
query and the precision of a retrieval set of the 20 nearest images was measured and
presented in Table 6.2. The NID method had a precision of 0.578 and the random
method has a precision of 0.414. To determine if the NID method is statistically
different from the random method, McNemar's test [148] was used. In McNemar's

test for two classifiers, A and B, the z statistic is

|nor — nyo| — 1

V1o -+ Noy

-
4

where ng, is the number of samples misclassified by A but not by B and n,q is the
number of samples misclassified by B but not by A. In this case, ng = 2358 and
np = 4572 out of a total of 13500 classified samples (twenty for each of the 675
images) and z = 26.58. The quantity 2% is distributed approximately as y? with one
degree of freedom. Thus we can reject the null hypothesis that the classifiers have
the same error rate and assert that the NID is expressing a statistically significant

similarity measure.
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Table 6.2: GroundTruth Data Set Performance
' Random | NID

Precision at 20 images ‘ 0.414 \ 0.578

The|IAPR-12 data set was used next. We used the queries that contained two im-

ages (queries 5, 18, 20, 21, 25, 26, and 28). Each image was used as a query image and

the ran

k of the other image was determined by sorting the images based on distance

from the query. For this experiment, libucl [99] was used as the compressor. Two

methods of image concatenation were tried. In addition to the previous sequential

concatenation, an interleaving of the two images was done by alternating the bytes

from the two images. The sequential concatenation performed well on query 18 (Fig-

ure 6.2

6.2.(c))

(b)) with the desired retrieval image ranking first, but on query 25 (Figure

the desired image had rank 926. Over all of the queries, the average rank

of the desired image was 501 and not different than random retrieval (which would

average| 499.5). Switching the concatenation to an interleaving approach improved

the average rank to 395 but actually pushed the worst result from query 25 out to

rank 981. Though the approach worked very well on some of the individual queries,

further

queries.

investigation of the JAPR data set is needed due to the difficulty of some the

The| Corel data set was used next. For this experiment, we used JPEG compres-

sion [104]. JPEG is a lossy compression algorithm that uses transform coding. First,

the image is subdivided into blocks of 8x8 pixels. Then, a conversion to the frequency

domain|is performed by applying a two-dimensional discrete cosine transform (DCT)

to each
is not s

mation

block. The results of psychophysical experiments suggest that the human eye
o sensitive to high frequency brightness variation. Thus, the amount of infor-

contained in the high frequency components can be greatly reduced without

humans being able to perceive any significant difference in the image. Therefore, the

next step is a quantization step in which each component in the frequency domain is
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divided
This is
then en

encodin

by a constant for that component and then rounded to the nearest integer.
the main lossy step in the algorithm. The results of this quantization are
coded by using a special form of lossless data compression known as entropy

g. This involves arranging the quantized coefficients in a zig-zag order that

groups similar frequencies together and then using Huffman coding [104]. Figure 6.3

shows t

Image

he main steps of JPEG compression.

. DCT . Quantization . Entropy . Compressed
Transform Encoding Image

The

Figure 6.3: JPEG compression.

image concatenation was a sequential placement of the quantized coefficients

(resulting from the quantization step) of the second image at the end of the quantized

coefficients of the first image. Then, the entropy encoding step was performed on the

concate

nated coefficients. Note that, in the quantization step, frequency components

from both images that are close enough will be rounded to the same nearest integer

(ie., to

the same quantized coefficient). Thus, the entropy encoder step will exploit

not only redundancies between the two images but also implicitly, similarities between

them. Fach image was used as a query and the precision of a retrieval set of twenty

nearest

images was measured. The results are presented in Table 6.3. Once again,

the NIID performed surprisingly well and is obviously statistically different than the

random approach. It does not perform much worse than unified feature matching

(UFM)

[17] (described in Section 2.3) using 9-dimensional feature vectors.

Table 6.3: Corel Data Set Performance
' Random | NID | UFM

Precision at 20 images | 0.05 | 0.331 | 0.466
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Although the NID measure is not computable and not even effectively approx-

imable

76], it does provide insight into what we would want to do in the ideal case.

This insight can be used to guide our attempts at simulating the NID measure at

various

levels of precision. We determined that even the very crude approximation to

Kolmogorov complexity that compression generates was able to generate statistically

significant dissimilarity measure for images when the NID approach was followed.

This is

an encouraging result that indicates that other attempts at simulating NID

may yield good results.

We
images,

nature

plan on exploring other methods of concatenating images and of compressing
such as fractal and wavelet compression, that may better exploit the 2D

of images. Another area where it may be useful to try the NID approach is

in the matching of variable-length feature vectors. The NID approach may create a

very pr
require

Anothe

actical method that goes beyond the individual region matching but does not
the expense of determining the higher level relationships among the regions.

r area of future research is the exploration of the NID approach as a feature-

independent method of structuring an image data set.
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Chapter 7

Conclusions and Future Work

In this

dissertation, the problem of mapping the low-level physical characterization

of images to high-level semantic concepts was addressed by focusing on inter-query

learning in content-based image retrieval (CBIR) with both global and region-based

image r

epresentations. While the focus was on inter-query learning, novel intra-query

learning approaches as well as a novel image representation and similarity measure

were also proposed.

We presented two novel techniques for performing inter-query learning with global

image r

ing the

epresentations. Both techniques use support vector machines (SVM) for learn-

class distributions of users’ high-level query concepts from retrieval experience.

They are based on a relevance feedback (RF) framework that learns one-class support

vector machines (1SVM) from retrieval experience to represent the set memberships

of users’ high-level query concepts and stores them in a “concept database”. The

“concept database” provides a mechanism for accumulating inter-query learning ob-

tained from previous queries. The geometric view of 1SVMs allows a straightforward

interpretation of the density of past interaction in a local area of the feature space and

thus all
of the 1
The

ows the decision of exploiting past information only if enough past exploration
ocal area has occurred.

first approach does a fuzzy classification of a new query into the regions of
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support|represented by the 1SVMs in the “concept database”. In this way, past expe-
rience i§ merged with current intra-query learning. The second approach incorporates
inter-query learning into the query modification and distance reweighing framework.
One of the main advantages of these approaches is the capability of making an intel-
ligent initial guess on a new query when the query is first presented to the system.

We demonstrated the superior performance of the proposed approaches over other
methods and confirmed that image retrieval performance can be improved by the
integration of inter-query learning. Furthermore, performance increases in the initial
retrieval set where a traditional intra-query-learning-only approach would require at
least one iteration of RF to provide some improvement. Thus, user interaction can
be reduced by decreasing the number of iterations that are needed to satisfy a query.
We plan to investigate the possibility of using a machine learning approach such as
artificial neural networks or reinforcement learning to have a more principled way of
exploiting intra and inter-query learning that adapts to the current situation.

We also presented two novel intra-query learning approaches for CBIR with region-
based image representations. The first method, probabilistic region relevance learning
(PRRL), is based on the observation that regions in an image have unequal impor-
tance for computing image similarity. It automatically estimates region relevance
based on user’s feedback. It can be used to set region weights in region-based image
retrieval frameworks that use an overall image-to-image similarity measure. Cur-
rently, PRRL only performs intra-query learning. That is, for each given query, the
user’s feedback is used to learn the relevance of the regions in the query and the learn-
ing progess starts from ground up for each new query. However, it is also possible
to exploit inter-query learning to enhance the retrieval performance of future queries.
Thus, for a new query, instead of starting the learning process from ground up, we
could exploit the previously learned region importances of similar queries. This would

be very| beneficial specially in the initial retrieval set since, instead of using uniform
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weighting or some other weighting heuristic, we could make a more informed initial
estimate of the relevance of regions in the new query. We plan to investigate the
possibility of incorporating inter-query learning into the PRRL framework as part of
our future work.

The |second approach is based on SVM learning. Traditional approaches based
on SVM learning require the use of fixed-length image representations because SVM
kernels represent an inner product in a feature space that is a non-linear transforma-
tion of the input space. However, many CBIR methods that use region-based image
representations create a variable-length image representation and define an arbitrary
similarity measure between two variable-length representations. Thus, the standard
SVM approach cannot be applied because the similarity measure may violate the
requirements that a SVM places on the kernel. Fortunately, a generalized SVM has
been developed that allows the use of an arbitrary kernel. We presented a learning
algorithm based on generalized support vector machines (GSVM). Since a GSVM
does not place restrictions on the kernel, any image similarity measure can be used.
The experimental results on general-purpose images show convincingly the efficacy of
the proposed method in improving image retrieval performance. Currently, for each
query, the user’s RF is used as training data and the learning process starts from
ground [up for each new query. However, it is also possible to exploit the long term
learning accumulated over the course of many query sessions. This would be very
beneficial specially in the initial retrieval set since, instead of ranking images based
only on|the similarity measure, we could make a more informed initial estimate of the
relevance of images to the user’s query concept. We plan to investigate the possibility
of incorporating long-term learning into this GSVM-based learning framework as part
of our future work.

A generic intra/inter-query learning approach that addresses the problem of se-

mantically meaningful image segmentation was also proposed. A large number of
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image s

image s

comentation techniques have been proposed in the literature. However, most

egmentation algorithms create regions that are homogeneous with respect to

one or more low-level features according to some similarity measure. Unfortunately,

homoge

ingful o

neous regions based on low-level features usually do not correspond to mean-

bjects. We proposed an algorithm based on multiple-instance learning (MIL)

that exploits both intra and inter-query learning for automatically improving the seg-

mentati

on of images in a database. The main advantage of this approach is that

it can automatically refine the segmentation of images into semantically-meaningful

objects.

Finally, we presented an initial investigation into what we believe is the logical

continu
observa
its raw
image s
into an
recently;

tion of

ation of the CBIR idea of searching visual content directly. It is based on the
tion that, since ultimately, the entire visual content of an image is encoded into
data (i.e., the raw pixel values), in theory, it should be possible to determine
imilarity based on the raw data alone. We presented an initial investigation
image dissimilarity measure following from the theoretical foundation of the
proposed normalized information distance (NID). A very crude approxima-

the Kolmogorov complexity of an image was created by compression. Using

this approximation, we calculated the NID between images and used it as a metric

for CBI

R. The compression-based approximation to Kolmogorov complexity, though

very roligh, was shown to be valid by proving that it creates a statistically signifi-

cant dis
Althoug
practics
guided

of concg
pressior

may be

similarity measure by testing it against a null hypothesis of random retrieval.
'h the approximations used in this initial investigation may not currently be
1l for CBIR, the results are encouraging that additional research into methods
by the NID approach may be fruitful. We plan on exploring other methods
vtenating images and of compressing images, such as fractal and wavelet com-
1, that may better exploit the 2D nature of images. Another area where it

useful to try the NID approach is in the matching of variable-length feature
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vectors.| The NID approach may create a very practical method that goes beyond
the individual region matching but does not require the expense of determining the
higher level relationships among the regions. Another area of future research is the
exploration of the NID approach as a feature-independent method of structuring an

image data set.
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