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NOMENCLATURE 

D flexural rigidity 

E ... modulus of elasticity 

T .. kinetic en.ergy 

V '" potential energy 

X rn "" :function of x 

y 
IL 

:::: fu.nc t.iou of y 

a 
' 

b ""length in x and y directions 

h :o: thickness 

1 "'length of beam 

1 -o ~ z coordinate to small edge of conical shell 

11 ::,.; z coordinate to large edge of conical shell 

t ::: time 

.. meridianal displacememt e.t position z, e at time t of conical 

shell 

u2 -~ tangerrbial displacement at position z, e at time t of conical 

w "" displf,.cement in 3 dit•eotion, inwru·d dis:pl~.oement of conical shell 

expressi.ons 

in 

function of e, vibrating bel.;U!l 

vii 



P = mass density of plate per unit area, mass density of shell 

per unit volume 

~ - Poisson's ratio 

w = natural angular frequency 

i .. V l.l. 



PART I 

INTRODUCTION 

It is the purpose~of this report to outline and summarize the study 

that has been done in the area of vibration of plate and shell struc­

tures. This literature survey should be very beneficial in future inves­

tigations of this problem. 

The contents of this report are divided into two areas: vibration 

of plates, and vibration of shells; also, a brief description of vibra­

tion of grids is· included in the plate section. 

The survey on vibration of plates includes rectangular plates, cir­

cular plates, triangular plates, and skew plates, with various edge condi­

tions, and a simply supported isosceles trapezoidal plate •. The shell sec­

tion includes vibrations of cylindrical shells, _shallow spherical shells, 

conical shells and paraboloidal shells of revolution. 

This literature survey concentrates on the field of free vibration 

of plate and shell structures. The ordinary assumptions of elastic 

analysis are made in the reviewed literature. 

1 



. ; """.I_ . ' ' 

VIBRATIONS--OF. PLATES 

1. General. 

Thin plates which consist of elastic, nomogeneou~ isotropic mate­

rial will be taken into account :i,n this study;. The well-known plate 

equation(l) is obtained as follows: 

4 4 4 p a w + 2 a w + a w = ..! Ca) 
ax 4 a,x2 PY2 ay 4 D 

where Pz i,s the intensity of load. 

The equation of'vibrat-ion is obtained ~rom·equation (a) by substituting 

. <2> aaw for p the expression , - P - 2 ~ thus, 
z at 

4 4 4 , . aw aw aw P a2w --r. + 2 + --r. = - - -!-- (1.1) a"x 't ~-· 2 ·Mii.2 0 .... 't D ~t 2 
~ v~ Y' u 

or 

( 4. e a2 ) 'v + D 2 w = o. at . 

1-1. · '.Rayleigh-Ritz Method(,3).; 

The potential energy accumulated in the plate element during the 

deformation-is: 

2 ' 
2 aw a2w + ,, __ 

ax2 a,.2 

2 
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+ 2<1 - ,,J (a!~,/} dx ey. 

The kinetic energy of a vibrating plate is: 

T = ~Jjw2 dx dy. 

Expressing the deflection as: 

w = w cos 00 t 

and substituting in equations (1.2) and (1.3) and equating them 

002 _ g V 
- P //Wdxdy 0 

(1.4) 

Let 

Equation (1.5) is minimized to obtain 

a 
aA"': 

J. 

from which 

( ~ IT - 002 J J W2 dx dy) 
::i:: 0 

Jfw dx dy 
(1.6) 

( a2w )2 2 P 2} + 2(1 - ~> ax ay - oo n w dx dy = o. <1.7) 

Equation (1.7) represents a set of n linear homogeneous equations; 

for nontrivial solution, the determinant of the coefficients must be 

zero. This yields the approximate values of the natural frequencies in 

the problem being considered. 

2. Vibration of Rectangular Plates. 
t>"C'¥ . qc ............ ?"I. ~ . - .. .. • • ... !L •. - -· . - .. .. .. ...•. . . ··-· 



Let 

----1 

Fig. 1 .. · 

Rectangular Plate· 

w = t t a sin mattx sin nbttY 
m=l n=l -mn 

where t1mn is a time function. 

Substituting into equation (1.2), 

4 · . ( 2 2)2 
V = tt ab D ~ l . 2 _!!L + !L • 

--S- m=l n=l ~- ,. a2 b2 

The kinetic energy is 

Consider a virtual displacement 

i:.. • m1tx . nttx 
v «lum_ sin -;:- sin 1l . 

Thus, the differential equation of normal vibration is 

4 (m2 n2) 2 
pw«lum_ + 1t D ~ -. + - = 0 

q2 b2 

from which 

4 



5 ,, 

where 

2 (m2 n2)ff·· w =1t -+-.-. 
mn a2 . b2 P 

'. 

2-2. Vibration of a Rectangular Plate. With Various Egg.e, Conditions. 

Rayleigh-Ritz method is empl~yed to solve these problems. Charac­

teristic beam functions appropriate to the boundary conditions are used 

for deriving closed formulas for the frequencies of vibr~tion of plat$s. 

The series approximation for w is taken in the f'o:rm 

p q . 
W(x,y) = I: E A X (x) Y (y) • 

, m=l n=l mnm n 

From equation (1.6) 

av Pw 2 a · .. :> 
-aA .. - - 2 ~A Jfrdx dy = o. 

i"k u ik 
(2~2) 

Following a.re characteristic functions for vibrating beams: 

(A) Clamped- Clamped Beam(5) 

(B) Clamped-Free Beam(5) 

<Pr = cosh e:~x - cos e:~x - cx.r (sinh e:~x - sin e:~x) (2.4) 

(C) Free-Free Beam(5) 

(I) 2 = fl (1 - 2 f > 



(D) 

(E) 

E X EX r r 
<.pr = cosh - 1 + cos 1 - cxr 

,(6) 
S:lmply Supportea. 

(6) 
Clamped - Simply Supported 

(r = 1, 2, 3, 4, .•• ) 

E X E X 
( . r . r ) sin -y-- + sin -y-

Th • 1 al d c.,,,., be tabulated(5) (6) •. · · e nu.merica v. ue s of ex an E =• 
!' l' 

6 

The characteristic functions listed are used for Xm and Yn in equa­

tion (2.1). The particular sets to be used in any problem will depend 

upon the boundary conditions of the plate. 

The available numerical results are summarized in Tables I to IV(?), 

using the abbreviations F = free, S = simply supported, and C = clamped. 

The quant:lty entered in Tables I, III, and IV is k = w a 2 / ~· and in 

Table II is either k, or k 1 :::: w b2Jt. 
~ VJ.b.r..£:,tioD; .:?f Circular Plates (3). 

Ra.yleigh-Ritz method will be used for the approximate solution of 

the vibration of a circular plate. Transforming the equations (1.2) and 

(1.3) 

... '"'(l .,. ,.,, 9 .. ~.'.~, (l . .QJ! + .l. .. £~~w.·) ~ ..... .'I ? · OX' "> 2 or~ r ···· :r.,;. oe·· 

r:a ( 1 aw)112} + 2 ( 1 ... ,, ) Lai= ; 00 ~ rd8dr 1 
(3.1) 
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TABLE I 

k FOR MODES OF A SQUARE PLATE(?) 

Edge Mode Number 
Conditions Authoritv l 2 3 lf 5 6 

D Yo_ung 03.494 08.547 ,021.44 027.46 031.17 " 

D F Young 06.958 24.080 026.80 048.05 063.14 ·i:tJ 

. 

-· 

D Ritz 14.100 20.550 023.91 035.96 061.60 065.24 

D Eqn(3) 19.74o 49.340 078.96 098.69 128.30 167.80 

. - - ... 

D Iguchi 23.650 51.680 058.65 086.13 100.30 113.20 

D Iguchi 28.950 54.750 069.32 094.59 102.2 129.10 

·---·-- - .. -

D 
,. 0 ' 

Iguohi 35.980 73.4oo 108.20 132.20 165.00 
' .. 

' ' ' 

Young 3;:;.990 73.410 108 • .:;o 131.60 132.30 165.10 
. -- - ·-------· ·-- -·-· ···-· -· - . -- ·- ·····--·-···· ------ . --- -- ---- ·--- -·-·· .. --



TABLE II 

k AND k 9 FOR FUNDAMENTAL MODES OF RECTANGULAR PLATES 

(IGUCHI)( 7) 

c:Jt b/a 01 .. 00 01.50 02.00 02.50 03.00 
b 

+-:-++ k 19.74 14 .. 26 12.34 11.45 10 .. 97 

b/a 01 .. 00 01.50 02.00 02.50 03.00 

CJ k 23.65 18.90 17.33 16.63 16.26 
·--~--~ 

a/b 01.00 01.50 02.00 02.50 03.00 

k' 23.65 15.57 . 12 .. 92 11.75 11.14 

b/a 01.00 01.50 02.00 02.50 03.00 

CJ 
k 28.95 25.05 23.82 23.27 22.99 

a/b 01.00 01.50 02.00 02.50 03 .. 00 

k~ 28.95 17 .. 37 13.69 12 .. 13 11.36 

CJ b/a 01 .. 00 01.50 02.00 02 .. 50 03.00 

C 
C 

k 35.98 27 .. 00 24.57 23.77 23.19 

8 

00 

09.87 

00 

15.4j 

00 

09.87 

00 

22.37 

00 

09.87 

00 

22.37 



TABLE III 

k FOR MODES OF RECTANGULAR CANTILEVER PLATES 

(BARTON)(?) 

a/b 

72 
1 

2 
3 

Mode 

F t 
C F b 

,.._______,;:__F ___.,,.+ a---,r 
Mode Number 

1 2 3 4 5 

30508 05.372 21.96 010.26 024.85 
3.494 . 08.547 21.44 OZ"? .46 031.17 
3.472 14.930 21.61 094.49 048.71 
3.450 34.730 21.52 563.90 105.90 

TABLE IV 

k FOR MODES OF SKEW CANTILEVER PLATES 

(BARTON)(?) 

a 
C 

F 

e 
Number 15° 30° 45° 

1 3.60 03.96 04 .. 82 

2 8.87 10.19 13 .. 75 

9 



p r2rcra .2 
T = 2.Jo Jo w rd8dr 

where a is the radius of the plate. 

3olo Vibration of Circular Plate Clamped at the Boundary. 

For the case of the lowest mode of vibration, equations (3.1) and 

(3.2) reduce to 

Assuming 

V = TtD (a ( o2w + ! fil:! )2 rdr 
'Jo ar2 r or 

w = w cos (1) t 

and _substituting equation (3o5) into equations (3.3) and (3.4) and 

equating them 

2 D 
w = p 

!c -( a2w 1 aw )2 
a-+-- rdr 

0 ar2 r_,~11~! 

Tha function Wis taken in the form of the series 

using equation (1.7) 

10 

a r a{(a2w 1 aw )2 
oA1 Jo or2 + r° a'r 

- w2p 2} - ~ W rdr = 0 (3.8) 

Substituting equation (3.7) into equation (3.8), and setting its 

determinant to zero, the frequencies of successive modes can be obtained. 

In all cases the frequency of vibration has the pattern 



The constant a for a given numbers, of nodal circles, and for a 

given number n, of nodal diameters, is given in Table V. 

TABLE V 

THE VALUES OF a OF CIRCULAR PLATE CLAMPED AT BOUNDARY(3) 

s n = 0 n = 1 n = 2 

0 l0o2l 21.22 34 .. 84 
1 39.78 
2 88.90 

zo2• Vibration of Circular Plate With Other Kinds of Bound~ 
Conditions. 

(A) For a Free Circular Plate (,, = ¥3) 

TABLE VI 

THE VALUES OF a OF FREE CIRCULAR PLATE(3) 

~-
s n = 0 n = 1 n:::: 2 n = 3 

0 05.251 12.23 
1 09.076 20 .. 52 35.240 52.91 

2 38.520 59 .. 86 

11 
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(B) For a Circular Plate With Its Center Fixed 

TABLE VII 

THE VALUES OF a OF CIRCULAR PLATE WITH ITS CENTER FIXED(3) 

1 2 3 

60.68 119.7 

4o Vibration of Triangular Plates. 

4~1. Vibration of Triangular Cantilever Plate(B). 

Ta.king the coordinates as shown in Fig. 2, the following coordinate 

transformation is made: 

X 
u = -a V = k "3:. 

X 

Figo 2 

Illustration of Coordinate u and v 

(4.1) 



In the coordinates u and v, equation (1.6) becomes: 

+ (v3 + k2v) a2w a2w} 
auav av2 

+) {2 [2v2 + k2(1 - u) (~~r 
+ 4(v3 + k2v) ~ a2w + (v2 + k2)2 (a2w)2} 

. av av2 .av2 

- r2uw2 l dudv ;.~ o 

in which Wis a function of u and v and 

(A) First Case-Symmetrical Triangle 

13 

(4.2) 

A symmetric triangle with apex at the origin and length a and base 

2a/k is obtained by taking the limits 

O ~u ~ 1, -1 .$_ V ~ + 1 • 

For symmetric modes, let 
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for antisymmetric modes, 

W = [A21 v + A41 fa\1-(v)] u2<t>1 (u) + [A~2 v + A42 ¢4(v)] u2c.i>/u). 

(4o4) 

<P1 and q,2 represent the first two modes of a cantilever beam free at 

u = 0 and clamped at u = 1. ¢3 and ¢4 represent the first symmetric and 

antisymmetric modes of a beam free at v = ± 1.. The values of Y are 

shown in Table VIIIo 

(B) Second Case - Unsymmetrical Triangle 

A.n.t,1:t1,symmetri¢ ;t'riarigle id.th apex at origin and of length a, and base 

a/k is obtained by taking the limits 

0 < u ,:S 1, O<v,:Sl. 

Let 

The values of Y are shown in Table IXo 

4-2 .. Vibration of Clamped Triapgular Plate(9). 

The method of collocation(lB, 19, zo) is employed to obtain reason-

able approximate solutions. The method of collocation consists essen-

tially in satisfying a given differential equation, or set of equations, 

at a finite number of points. 

Skew coordinate axes x and y are taken in the middle surface of the 

plate as shown in Fig. 3o 



TABLE VIII 

THE VALUES OF Y OF CANTILEVER, SYMMETRICAL TRIANGULAR PLATE 

~ 2 

1st 007.149 
2nd 030.803 · 
3rd 061.131 
4th 148.800 

~ 
y =Win 

4 

007.122 
030.718 
090.105 
259.400 

TABLE IX 

8 14 

007.080 007.068 
030.654 030.638 
157.700 265.980 
493.400 853.600 

THE VALUES OF Y OF CANTILEVER, UNSYMMETRICAL TRIANGULAR PLATE 

~ 
1st 

2nd 

r;;;;;­
'Y = wl n 

2 4 

05.887 06.617 
25.400 28.800 

7 

06.897 
30.289 

15 



Fig. 3 

Clamped Triangular Plate 

The differential equation of free vibration is 

· ( a4 a4 ) - 4 sinS 3w + w3 ax ay axay--
Pw 2 

= '"T w 

where 

e = skew angle. 

Boundary condi ti.ens are 

where 

(w) h. = (w) . (+ /h) = O y,: .. X::: - a y 

(aw) 0 = y y ;; h 
(aw) 

'ijii X: (t a/h)y = O 

h = median distance from the origin 

n ~ normal direetion to a boundary. 

16 

(4.6) 



l? 

The deflection function is 

w = ( a y2sin2 '?lI + a y2sin !Z sin .£!.L) 1 . h · 2 h ,, .h · 

1 - . - - ;. cos k - - -[ ( h X ) 2] .. ( 1t h x·) 
a y 2 a y. (4.?) 

where 

a= generalized coefficient. 

Differentiating equation (4.7) substituting into equation (4.6), 

at y = h/2 

at y = 2h/3 

where 

P, Q, R, and S are ih terms of f3 and 8 

For various ratios of h/a and 8, values of f3 may be determined from 

the condition 

= 0 
R S 

Fig. 4 gives value of Y, Y = ,n , wnere 

o i e :s 25° 

Y./f 
w = -;J.j p 



500 .,.._..._.. ______ ,__ __ ...,_ __ __ 

400 i-----1---....1-......+,,--1 --+-t-----+---1 

350 
300 2.50 ___ ,______,,___, 

200 t---t,,..-, ........ -+---+---,f--+-,,<~-t 

175 
1.50 
12.5 
100 

r a8 
70 
60 

ig 
40 
3.5 ,o 
2' r---·~·--=---·-·~----·~-----~Kl!t-~ 

Fig. 4 

Vibration Coeffioients for Clamped 
(9) . 

Triangular Plates · 

4 .... Vibration of Isosceles 1'ria .ular Plat, Havi_ the Base 
·· c·-·-1- --d - · d- t,.:- 0th-- - ~)I - · Sim._l ·-s ... ·t· -~ 10 · · 

_ !'MliEL al'L . ae. _ _. • er ,!;!M,ses _ -12 -l _- Ulll!.,,r el,/,_ • 

18 

The method of oollooation is employed to solve this problem. Let x 

and y be coordinates in the middle surface of the uniform elastic plate 

as shown in Fig.,. 



----t=11------- X 

h 

Fig. 5 

Isosceles Triangular Plate 

The governing differential equation is written as 

Pc.i "4 .. n 
V W - -ir- W : Q. 

Boundary conditions are 

where 

(w)y = h = (w)x = ± (a/h)y = 0 

2 2 
( aw+ ,,~) = 0 

on2 ot2 X = ± (a/h)y 

n = normal direction to the lines x ~ ± (a/h)y 

t = tangential direction of any line along a rectilinear edge 

2 
U=o 
on2 ' 

on the boundary. 

19 

(4.8) 
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The deflection function is 

w = 
r 
< 2 • 2 !Sl 2 . U 21tY l a 1 y sin h + a 2 y sin h sin h 

+ "3 ~ [ ;,2(y - h)2+os ( ~ ! i) (4.9) 

Differentiating equation (4.9) and substituting the proper deriva­

tive into equation (4.8), 

A a 1 + B °2 + C a3 = 0 at y = h/2 

J oc.1 + E . ~ + F oc.3 = 0 at y = 2h/3 (4.10) 

G a 1 + H °'2 + I cx3 = 0 at y = 3h/3 

where A, B, c, D, E, F, G, H, and I are interms ofh/a and f3, 

f3 = 

Values of Y for various ratio of h/a may be determin.ed from the 

condition 

A B C 

D E F = 0 

G H I 

The relationship between the vibration coefficient Y, and h/a is 

shown in Fig. 6. 

5. Vibration of Simply Supported Isosceles Trapezoidal Plates(ll). 

The approximate solutions are obtained by using the method of 

collocation. Let x and y be rectangular coordinates in the middle su:.r-

face of the plate as shown in Fig. 7. 
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1 

2.5 
or 
sg 
7':. 
6r 5: 

y 

r ·~ 
4c 
3: 
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2c 

I I 
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', 

/ 
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V 

I 
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/ 
/ 

I/ 
./ 

/ 
/ ,, 

/ 
/ 

ffih ,-,-
t8°1l Y-1 1 

0 Oo5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 h 
a 

Figo 6 

Vibration Coefficients for Triangular 
Plates Having the Base Clamped and 
Equal Sides Simply - Supported 

X 

. ·. :.:~. 

al I 

·: ....... 

________ a ·----------t-

' -=t 
Fig. 7 

Isosceles Trapezoidal Plate 
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The governing differential equation is written: 

4 Peon2 
'vw- D w=O. 

Boundary conditions are 

( w) = ( w) = ( w) + t e = 0 y=a1 Y=~ + a x=- y an 

where 

n = normal direction to lines x = ± y tan 8 · 

t = tangential direction of the lines 

o2w 2 = o, on the boundary. 
at 

The defiection function is 

w = a. sin · " - + a. sin ---.=e.. ~ 1t(v a1) 2n(y - a1) 
1 a 2 a 

+ a. sin 3 n (y - a1)J cos ( ! ! cot e)\ • (5.5) 
3 a 2 y ) 

Differentiating equation (5.5) and substituting the proper· deriva­

tives into equation (5.1), 

Y - a 
at a 1 = 73 

Y - al l 
at a = '12 

y - ~ 2, 
at = 73 a 



where A, B, c, J, E, F, G, H, 

.Poo12h4 

= D 

b 
and I are interms of ~ , 8 and ..! 

a 
... 

Values of~ for various values of b1/a and 6 may be determined from 

the condition 

A B C 

J E F = 0 

G H I 

Fig. 8 shows the relationship between bl/hand the values of~. 

3i---;--t,,-;,..,....t-,,~"-'-./ 

~ . t---+r---+--r-+-i-++--

2 f--t-?"-t-~t--,,<-;,<---

Fig. 8 

· Fundamental Frequency of 
Isosceles Trapezoidal 
Plate VS e for V~ious 
Values of biJ h lll) 
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6. Vibration of Thin Skew Plates(l7). 

Rayleigh's method will be employed to determine the upper bound to 

the natural frequency and Kato's theorem is used for determining a 

closer lower bound. 

1 

Y. 
V 

I 
o _______ __, _.._. ....... ____ x, u 

--il>/--a---+/ 
Fig. 9 

Skew Coordinates 

6-1. Rayleigh Method. 

The frequency equations in terms of the skew ooordinate system 

(u, v), as shown in Fig. 9, are 

where 

PR2 = Rayleigh's ratio. 

(6.1) 



Taking the deflection Win the form 

p 
w = :E 

. m= 1 

q . . 

:E A cp ( u) ¢ (v) 
n=l mn m n .. 

The normal orthogonal bar eigenfunctions are: 

(A) Clamped - Clamped bar 

cp 1 {sin~[Km ( u - a/2~ sinh -(Km ( u - a/2~1· 2 mn 
m = F sin (Km a/2) - sinh (Km a/2) cos 2 

l {cos l Km ( u - a/2)T- cosh 1km ( u - a/2)]t . 2 m 
+- - sin~ r::- cos (K a/2) cosh (K a/2) · 2 1~ m m 

where Ka is the mth positive root of the transcendental equation 
m 

tan (K a/2) = (-l)m tanh (K a/2) m m . 

m = 1, 2, 3, ••• ~ 

(B) Clamped-Simply ,Supported:.,bar 

1 { sin [ K ( u - a)] 
cp (u) = - . m . 

m 'a cos K a 
.J... . m 

_ sinh. [ Km(u - a)]} 
cosh Ka m 

where Kma is the mth root of the transcendental. equation 

tan Ka= tanh K a o m m 

The values of PR for various edge conditions of a rombic skew 

plate with different skew angle is shown in Table VII. 

6-2. Kato's Method. 
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The equation of motion of a thin plat.El, in the skew e,oordinate sys-

te1JJ, is 

sin e a2w }+ 4 
dudv 



where 

A. = eigenvalue. r 

The measure of accuracy E02 is 

'oa lob Jr w2 du dv 

4 }2 . 2 . a w 2 
+ 4 sin 8 2 2 - PR W dudv 

OU av 

In applying Kato's theory for determining the lower bound to an 

eigenvalue A_i2~ for which the closer upper bound is PR12 ~ ~2~ 

~2 = µ.2 is taken, where µ2 is the smallest· eigenvalue greater than \ 2 

an.d a lower estimate to A.22, 

2 72 
PK " ( P/ - ~ 2 ~~ P/) • Kato's lower bound. 

The values of PK for a rombic skew plate with various edge condi= 

tions is shown in Table Xe 

! 

7. Free Vibration of a Gridwork(~)o 

A gridwork of beams extending in the x and y directions as shown. in 

Fig. 10 is considered. The portion of the total load p(x? y) car'ried 

the beams in the x di.rection and the y direction is given by 

4 
D o w _ ( ) 

OX4 - p X 

!~ a w 
D ~ = p(y) o 

oy 
For a gridwork of beams~ the torsional resistance is small in com= 

parison with the bending resistance; thus~ the deflection equation can.be 



TABLE X 

LIMITING BOUNDS FOR ROMBIC SKEW PLATES 

(m = l , n = 1) 

edge 
conditions e PK PR 

oo 35.33322 36.10868 

f C c/ 15° 34.69011 36.66593 
·-~--~----

C 30° 32.95941 38.14697 

45° 30.63837 40.08173 

oo 31.46043 31.95364 

f f C 
15° 31.46798 32.54105 

C 30° 30.35069 34.09421 

45° 29.46388 36.10806 

oo 26.22513 27.19478 

f 
C f 

. 

15° 24.91261 27.83775 

s 30° 21.45018 29.52310 



Fig. 10 

Gridwork of Beams 

written as follows:· 

( a4 a4 ) D ~+:-it :;: p(x, y). 
ox oy 

(7.2) 

~a.king~~ O, and asswning the moment of inertia per unit length of 

the gridwork is not the same in the two principal directions, 

E I 4 E I 4 
X X cl W + ....I..,l O W ( v) a'* :-,:j'.' e :-,:j'.' :;: p X' ., 

X OX y oy 

where Exix and E1Iy represent the flexural rigidity of an individual 

beam in the x and y directions, respectively; ex and e1 are the spacings 

between two adjaoent beams in the x and y directions, respectively. 

The equation of free vibration is 

(?.4) 



Let 

Solutions of the form 

w = X(x) Y(y)-q(t) 

are investigated. 

Substitution of equations (7.5) and (7.6) into equation (7.4) 

yields 

D xiv. D ,yiv 
X .· Y ' . ._ S 
p X + p y = ... 

X y q 

Let equation (7.7) equal to a constant p2, thus 

... 2 0 q + p q = 

D xiv D ytv 
X Y' 2 
p X = - p y + p 

X y 

Let equation (7.9). be equal to a new constant k2, thus. 

n . .rv - P k2x = o 
X X 

D yiv ·- p (p2 - k2)y = 0 • y y 

The solutions of equations (7.8), (7.10), and (7.n) are 

q ( t ),.,. = A sin p t + B cos p t 

X = c1 sin AX + C 2 cos AX + c3 siilh AX + c4 cos h AX 

(7.6) 

(7.8) 

(7.10) 

(7.11) 

(? .12) 

(7.13) 

where 
Y = G1 sin A.•x + G2 cos A.,~y + o3 sinh: .A'y + G4 c'°'shA.'y (7.14) 

)..4 = p K2/D 
X X 

i.l4 = p (p2 _ K2)D 0 
y ·y 



PART III 

VIBRATION OF THIN SHELLS 

l. Genera1<2>. 

Consider a shell element bounded by curves of.the curvilinear rec-
1 )i 1;\·,, 

tangle ex, ex. + 6 ex., (3 and 1:3 + 6 f3 as ~own 'in.' Fig. 11. 

z 

Fig. 11 

Element of Shell 

The equations of vibration can pe ·Written as follow . ' 
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(8.1) 

where 

N1 , N2 = normal stress 

T1 , T2 = tangential stress 

~, Q2 = transverse shearing stress 

Hl '. Gl = stress couple in the same directions as N l 9 T l 
,. 

H2 ' G 2 = stress couple in the ea.me directions as N2 ' T2 

Ut .. V; w "- deflections in the x, y and z directions, respectively 

A , B = function of a , 13 • 

l l. 
~ r ~ = 

curvatures in the x and y directions, respectively 

2. Free Vibration of Thin Cylindrical Shells<12>. 

Neglfeting the rotatory inertia, the equations of vibration for an 

element of a cylindrical sh,~11 can be written as 

2 '< • 2 2 · - ... . 
' 2(1 + ,, ) p L_ ( l - p p ~ ... 3 ... p· 

= '"' E 6 t2 E O t2 2 . 
" 2 'I!.· aw ) 
v u+ROx 

(9.1) 

"4 2+,, 
V V.. R 

2 2 2 = - 2(1 + 1') p ..!_ ( l - ,, p ..L! m 3 - p v2v + ! aw ) 
E a_t2 E 2 ·····2 ROs "' at 

(9.2) 



where 

/ 

2 · 2 4 :n a 1 - ,, a w 
12 V w + 2 -;:-,; 

R ax 
2 · 2 • 2 

• _ 2Cl + u) p ..!._ [cl_ -E· ,, p J_ _ 3 .;. ,a V 2) 
E at2 .. at·2 2 

2 
Cl - I 

E 

s = Rfl 

2 2 
V ~w + .!... ..!...!. 

2 2 
R ox 

The displacement components are assumed in· the form 

. A. x: 
~" 'ii' "in t w = "-' "'i e ' ,' COS, m 'P s ' (1) 

:t 
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Subetitut~ equati~n (8.4) into equations C9ol) 9 (~o2) and (9o3) 9 

8',d a~sumi1l$ 

i A: I R2 
m212 

< < l 

' , 
~he following expressions·are obtained 

13 = C N 
i i 

Ci= l, 2, 3, •• 0) 

C9o5) 



in which 

M _ 2,, Q + (l - ,, )m2 
- 2 2 4 

2 Q - (3 - ,, )m Q + (l - i,)m 

N _ .rm 2m Q + (l - p )m3 
- 2 2 4 

2 '2 - (3 - ,, )m Q + (l - i,)m 

F = 2 '23 - '2 2 [2 + (3.- i,)m2 + 2km4J 
+ Q 81 - ,,)m2(m2 + l) + (3 ... i,)km6] 

where 

l = length of shell 

8 - (l ... i,)km 
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m = positive integer equal to the number of circumferential waves 

' 
. h.2 

k=-· 
12:a2 

The re>ots of A. of equation (9.8) are of the form 
l. 

A 1 = K , A 2 = - K ,; A 3 = iK , A 4 = .. iK 

where K is a real number. 

By application of equations (9.6), (9.7), (9.8) and (9.9), the fre-

quency equations and displacement components have been obtained for the 

following two cases. 

(A) Shell with Both Edges Freely Supported 

The frequency equation is 

3 2 [ 2 4] r; 2 2 2 Q ... '2 2 + (3 - u )m + 2km · . + Q ~l - " )m (m + l) 

+(3- ,,)km6] ... (1- i,)km8-(l- i,)(1 ... v2)(n~R)4 

= 0 (9.10) 

The displacement components are 



nn R . nnx " u =MC~ cos -y-· cos m >" sin cot 
• 

v = NC sin n ~ x sin m · ¢ sin oo t 

"' i n TtX ¢· • ,,., t oo = .., s n -y- cos m s1n w 

where n = l, 2, 3, 4:, • • • 

(B) Shells With Both Edges Clamped 

The frequency equat:lion is 

2c 3,:.. Q2 [ 2 + (3 • ,, )rl + 21tm4J 
+ Q [<1 - t> )m2(m2 + l) + (3 1; ,, )km6J 

8 ( 2 n 1t R)4 . ... (l ... 1' )km - (l ... i, ) l - i, ) ( ·· 1 ... = O 

The disple.cement componen.te are 

w = 20 [( sinh n n ... sin u 1t ) ·-

( cosh n 1t .. CO$ n n >] ~1 [ ( sinh n 1t ; .:. sin n n ) 

( n nx n -n;x) ( " . ) eo1;1h 1 .... ~~s '"T· - cosh n .. 'It /.ia cos n n 

(sinh n nx - sin n nx)J cos m "'sin oot l . l )U 

aw u:MR-0 · 
.· X 

2• _Vibration. ef Shallow S12heX?,eal Shell~s. 

(9.11) 

(9.12) 

The equations of vibration for a sha.llQW spherical shell can be 

written a$(l)) 

a2v ov v (l + )!: aw+ ll.P.w 2 
r a 2 + .. o r ... r + 1' R -a:i .· -N • . rv = 0 

.. r 
(10.1) 
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r 

Figo 12 

Section of Spherical Shell 

o [ o 3w o 2w l o w ] 
a r r cl r3 + a r2 - r Or 

[ ][ ] 
' 2 

. ( ) NV .·· · . . o v 2rw . ·(h PD W )rw -- O·· 
+ l + ,, RD : \r or + V + T •. - {l0o2) 

where 

Eh 
N' = . 2 

1 - 11) 

Expressing equations (lOol) and (10o2) in terms of Bessel functions 9 

the solutions of which turn out to be (1.4) 

+ :~1 ( ~t) + B!~l (µ ~)}: 

.. - . 2 . - µ.3 . · 

+ ~ Jo(µ3r>} 

For a given frequen©y oon 

x. = (p..a.)2 
::L J. 

which are the roots of the following cubic equatiom 



+ 96 ~ (l + U ) ] + 48(1 + ·u >2 ~ X = 0 

where 

a= half the base chord 

s = rise of are 

r = radial distance from point on sphere to axis of symmetry 

P h 2 oon 
N' 

2 l + ,, 
ml= R = 2(1 + i,)s 

R 

J 0 (x) = Bessel function of order zero 

J1 (x) = Bessel function of order one_ 

Boundary conditions are: 

Case Ao Clamped Edge 

w (a)= w•(a) = v (a)= 0 
n n n 

The possible frequencies follow from the determinantal e~uation 

Jo<x1) Jo(x2) Jo(xl) 

xl x2 X3 

Jl(xl) Jl(x2) Jl(x3) = 0 

Jl(xl) Jl(x2) J1<x3) 
.. 2 2 

( ex.a) - x1 
· - 2 - 2 

( ex.a) .. x2 
.. 2 - -- 2 

(a a) - x3 

and also 

.. 



2 2 
(ex a) - x2. 

2 2 
(ex a) - ~ 

Case B. Simply Supported Edge 

and so 

and 

,F,· 

w (a)=· v (a)= M ¢(a)= 0 
n n 

...... 2 .. 2 
(exa) - ''i 

fl (x2) (l - ,,)] 

l ... x2JO(x2) 

Jl(x2) 

Jo(_x3) 

X3 

f 1 (x3lC1 - . ,,)] 

l -x3JO(x3) 

Jl(x?) 
... 2 . 2. 

( aa) - x3 
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= 0 

The functions J 0(x). and J1(x) are evaluated with the aid of stan­

dard tables. 

'.rhe frequencies of vibration for both two eases are evaluated 

(Table 11) by assuming 



1 h 1 E 30 X 106 
ti= 3 ' R = bC5' ' p = 0.2836 

TABLE XI 

FREQUENCIES OF VIBRATION 

Frequencies for Clamped Edge in rps 

~ 0 ¥ 1.0 1.6 
T T e 

1st 4,4oo 9,000 16,000 22,000 

2nd 17,160 19,000 22,000 29,000 

3rd 38,390 39,000 40,ooo 43,000 

Frequencies f0r Simply Supported Edge in rps 

~ 0 ~ 1.0 1.6 
6 T T 

1st 2,100 9,000 16,000 21,000 
' 

2nd 12,760 15,000 20,000 29,000 

3rd 31,850 32,000 34,000 38,000 

4. Vibration of Conical Shells(l5) • 
. . . - -·-. 

The Rayleigh-Ritz method is used to determine the natural frequency 

of the conical shello 

Eaeh displacement is assµmed. in the form 

w(z,, e , t) = w(z, 6) sin' wt 

ul (z, 6 , t) = ul (z, 6 ) sin. 00 t 
r., 

, (11.1) 
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1 

F:i.go 13 

Section of Conical Shell 

The middle surface strains e:1 , e: 2 and e: 3 , and the changes of 

· (21) curvature k 1 9 k2 and k1.2 are given by Love o 

·oul .• 

e: l = Oz cos ex. 

ou 
2 cos ex. 

62=~ ' oozsincx. 
u1 2 

w cos ex. 
+ z cos ex. - z sin ex. 



and 

a u2 2 
( ) + cos a. cos. a. 

Oz.z ·zsina.sina. 

ou 3 
K = __g cos a. 
12 az z sin a. 

2 cos a. 
+ 

z2 sin2 ex 

2 2 a .w -=-co_s __ a.___ a w 
-+- -a.e2 z a z 

Cos3 :a. 

z2sin a. 

2 cos a. 
u2 ."" i sin a. 

2 
'cos ex aw 
2 TI z sin a. 

The potential energy and kinetic energy are 

V = i Eh 2 sin2 w{ 211t· •ll{h 
(1 - ,, ) 

· . 9=0.z=lo 

[ (K1 + K2 )2 - 2(1.,;. u)(K1K2 _: K~) J 
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&i2>} z sin a. dz dB 
2 cos a. 

= V · sin2 wt max 

T = ! Ph w2 co,s2 
2 

2 • T cos Wt max 

(11.2) 

i 21t 11 
et>t . (w2 

e = o z =10 

The Rayleigh~R:ttz procedure applied to Hamilton's principle leads to 

+A (T . - V ) = 0 , 
u 1 max max (11.4) 

The values of Cl> 2 can be obtained, from equation (11.4). 



s. Vibration of Thin Paraboloidal Shells of Revolution (l6) • 

_,,.·· 

Fig .. 14 

Paraboloid.al Shell 

Tlle governing equations fo~ normal modes·of vibration are 

. 11 av °3 " au 2 · 11 tan 'P '11 + see 'P as - V Sec . 'P = P 

· The solutions of equations (ll.l) are the following 

u = a sin ¢ tann ¢ cos n 9 n n 

V = a tann+l f1 Sin n 9 
n n 

w = a tann ¢ (cos ¢ + n see ¢)cos ne 
n n 
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where n is an integer representing the number of circumferential waves 



for the correspondtng mode shape. 

B;y equating the maximum ldnetic and potential energies of the vibra­

ting system, the natural f:r:-equencies of vibration can be obtained as 

follows: 

where 

(I) = n {
n2 (n2 - 1>2 E 

2 i; 
12(1 -i ,, )(2 T\) P 

l 

fl sec3 fl ~cos2 fl + sec2 fl . + 2 - 4 t,)d f_} 2 
¢ sec3 ¢ [2n + (n2 + l)see2 ¢] dfiJ · 

1l a focal .length of shell o 
. . . : . 

Fig. 1,5 shows the relationship between the frequency pa:ramete:r 

\ 

w 2 114hP···. 
,~+·'"··e··>·--,- .. 

~n • l) ' 

. . 

olo:LdAl ehell1;1 of revolution made of alum:Lnum or $teel C ·,, == o.,). 

(!)21\4h p 
• • ' ~ D ;(;;ewww i) zs_ .. . ) 

n.s, 1, 

0 

(12.2) 

Relation :SetwHn the J'req,uene;y Parameter and the :Senmdaey Coordinate ¢0 



PART IV 

SUMMARY AND CONCLUSIONS 

1 .. Summary. 

In this report., a literature survey wa.s made in the area of vibra-

tion of plate and shell structures. This will be of considerable value 

in future investigations in this areao 

An exact solution for the natural frequencies of a simply supported 

rectangular plate has been obtained. The Rayleigh~Ritz method is em-

ployed to determine the approximate solution for the rectangular plate 

with other kinds of edge conditionso Characteristic functions of a 

vibrating beam are used for representing the deformations which lead to 

the solution. 

In circular plates~ the Rayleigh-Ritz method is also employed; 
(3) Timoshenko found that in all cases the frequencies of vibration o:f 

circular plates has the pattern 

For the vibration of triangular plates~ investigations have been 

conducted for the three kinds of boundary conditions~ cantilever~ all 

edges clamped, and the triangular plate with the base clamped and other 

edges simply supported. The method of collocation is employed for the 

latter two caseso T'his method is al.so extended to solving the simply 

supported isosceles trapezoidal plate. 

The Rayleigh-Ritz method~ with ·the aid of characteristic bar functions~ 
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is employed to solve for the natural frequencies of a skew plate with 

various edge conditions. Kato•s method is also used for determining 

closer lower bounds for which upper bounds are provided by the Rayleigh­

Bitz method. 

In the shell section, four types of shells: cylindrical, spherical, 

conical, and paraboloidal shells of revolution, are observed. The vi­

bration of a cylindrical shell has been investigated on the basis of a 

set of three different equations. Direct solutions of determinantal 

frequency equations for shallow spherical shells with clamped and simply 

supported edges are given. For the conical shell, a Rayleigh-Ritz pro­

cedure is used for determining the natural frequencies. The same method 

is also employed to obtain the approximate solution for frequencies of 

vibration of paraboloidal shells. 

In this report, many numerical results are drawn from many investi­

gators.,, They will be useful for further investigations. 

2. Conclusions. 

Ext~emely accurate solutions for the natural frequencies of vibra­

tion of thin elastic plates and shells may be difficult and laborious to 

obtain. Usually the Rayleigh-Ritz method is considered to be the most 

useful method for finding a reasonable approximate solution. But the 

results and the practicability of the computation depend to a great ex­

tent upon the set of functions that are chosen to represent the deforma­

tion. It is generally known that the. Rayleigh-Ritz method yields fre­

quencies-that are higher than the actual frequencies, however, it is 

considered to be of sufficient accuracy for most design purposes. 

In addition to the Rayleigh-Ritz method, the method of collocation 

is also one of the several possible procedures for obtaining approximate 
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solutions for vibrating plates, especially for triangular plates and trape-

zoidal plates. 
,-, 

For determining a closer lower bound to, the natural frequencies of 

thin skew plates for which an upper bound is provided by the Rayleigh-

Ritz principle, Kato•s method has been employed. The mean value of these 

two bounds give more reasonable results. 

For shell structures, the differential equations of vibration are 

complicated; Bessel functions are introduced to simplify the evaluation. 

In this report, the literature survey is conducted in the area of 

free vibrationso This will be the first step toward the complete com= 

prehension of the vibration problems in shell and plate structureso Also 

more literature survey on the free and forced vibrations of plate ~nd 

shell structures is needed. 
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