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NOMENCLATURE

Eh3
12(1 ~ %)

s flexural rigidity

modulus of elasticity
kinetic snergy

potentlal energy

= function of x

Tunction of y
length in x and y directions !

: thickness

= length of beam

i

P

i

22
s

z coordinate to small edge of conical shell

% coordinate to large edge of conical shell

time

> meyidianal displacement at position z, 0 at time t of conical
sheall

: tangential displacement at position z, O at time t of cenical

ghall
displacement in z direction, inward displacement of conical shell

parameter in expressions for @
paraneter in expressions for ¢

: characterlstic function of a vibrating beam
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mass density of plate per unit area, mass density of shell
per unit volume
Poigson's ratio
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PART I
INTRODUCTION

It is the purpose-of this report to outline and summarize the study
that has been done in the area of vibration of plate and shell stpuc-
‘tures. This literature survey should be very beneficial in future inves-
tigations of this problem.

The contents of this report are dividgd into two areas: vibration
of plates, and vibration of shells; also, a brief deécription of vibra-
tion of grids is included in the plate section, |

The survey on vibration of plates includes réctanéular plates, cir-
cular plafes, triangulér plates, and skew plates; with various edge condi-
tions, and a simply supported isosceles traﬁezqidal plate. The shell sec-
tion includes vibraiions of cylindrical shells,_shallow spherical shells,
conical shells and paraboloidal shells of revolution. | |

This literature survey concentrates on the field of free vibration
of plate and shell structures. vThe or&inary assumptions of elastic

analysis are made in the reviewed literature.



‘PART 1T
VIBRATIONS OF PLATES
l., General.

Thin plates which consist of elasﬁic, homogéheoué isotropic mate-

rial will be taken into account in this study. The well-known plate

equation(l) is obtained as follows:
L 4 L P
o w 0w  Jdw_ _E :
ox ox @y. ay

where P, is the intensity of load.

The equation of* vibration is obtained from equation (é) by substituting

for p, the expression(a), P Q—% ’ thﬁs,
ot
L L L .2
d w 0w dw P a%w
__.E.‘..Z 2 +-’+=_D:,-2 R (101)
ox &y oy ot
or
2
<v4+§"'a'—‘2")w=03
ot
- 1l=1l. Rayleigh-Ritz Methdd(s)s ' -

The potential energy accumulated in the plate element dﬁring the

deformation-is:

' 2.2 ':2 2 2 32
v-_-%ff (gﬁ) +(—E) +2v-@-—"’a—”-2'



82w \°
+ 2(1 = v) («5—;-‘3-’5) dx dy. (1.2)

The kinetic energy of a vibrating plate is:
P rpo2
T = EnffW' dx dy. (1.3)

Expressing the deflection as:
w= Weoswt

and substituting in equations (1.2) and (1.3) and equating them

2_2 .V ___
W = & Fiwardy ° (1.4)

Let
W = Algl + Azga + A3g3 + oo‘ono + Angn (105)

Equation (1.5) is minimized to obtain

0 2 2 2
mz(ﬁvuwjjw dxdy)

JJW ax ay

= 0 (1.6)

from which

2 ﬁ)z ﬂ)2+52 3% 33
TR 2 2 .2
i ox dy 0x~ Oy
2
( %W 2P 2 - :
+ 2‘1“”)(6;:. ay) - w5 W radx dy = O. (1.7)

Equation (1.7) represents a set of n linear homogeneous equationss
for nontrivial solution, the determinant of the coefficients must be
zerc. This ylelds the approximate values of the natural frequencies in

the problem being considered,

2e Vibration of Rectangular Plates.,

2=1. Rectangular Plate Simply Supported on All Four Edges(g).




Fig. 1.

Rectangular Plate

Let

P q . MMX . Nmny
w = sin sin
mél nél q'mn a ‘ b

where Un is a time function.
Substituting into equation (1.2),
“ b 2 _2\2
T ab , 2,(m n )
nm gl n _—‘.g"l q'mn ) a2 b2
The kinetic energy is

P ab s 2
Ts= 2 1;-Eilqmn °
Consider a virtual displacement

X . nNInX

E)qmn_51n - sin == .

Thus, the differential equation of normal vibration is

2 2\ 2
o }+ m n -
(2051 + n D q (;E + ;5) =0

from which



U = cl cos Wyt + c2 sin Wyt
where
o -2, 20)\/D
mn - 2 .2l P °
a b

2-2, Vibration of a Rectangular Plate With Various Edge Cénditiénso

Rayleigh-Ritz method is employed to solve these problems. Charac-
teristic beam functions appropriate to the boundary conditions are used
for deriving closed formulas for the frequencies of vibration of platés.

The series approximation for W is taken in the form
b q o N
W(x?y) = mZ"l nEl AmnXm(x) Yn(y) . (2.1)
‘From equation (1.6)

0V _pPw? 3
Bh, 2 OA

[ Woax gy = o, | (2.2)

Following are characteristic functions for vibrating beams:

(A) Clamped - Clamped B<-:~:sv.m(5 )
£.X E_X ’ E.X €.%
' b B cos B o (sinh I - sin Do
(Pr = cosh 1 cos =5 « (sinh T sin = . (2.3)
(B) Clamped -Free Beam(5)
er £ X i er er
<Pr = cosh —— - cos -~ - &, (s:.nh -~ - sin T) (2.4)
(C) Free -Free Beam(s)
(P = 1 : (2053.)

X
®, =V3 (1L -2 -1-) (2.5b)



£ X €% € X v
CPP = cosh =3— + cos R (sin —— + sin T)
(D) Simply Supported(é)
€. X
. o
¢} = sin ——
(BE) Clamped - Simply Supported(6)
E_X £.X £.X
X . PR < ol
@r = ¢osh T~ - ¢os luw—<xr(51nh T sin = )
(I‘ = l, 29 39 Ll', e.l)
(5)(6) /

The numerical values of alnand €, can be tabulated

The characteristic functions listed are used for Xm and Yn in egqua-

(2»5@)

(2.6)

(2.7)

tion (2.1). The particular sets to be used in any problem will depend

upen the boundary conditions of the plate.

The available numerical results are summarized in Tables I to IV

(7)

using the abbreviations F = free, S = simply supported, and C = clamped.

The quantity entered in Tables I, ITI, and IV is k = w51%/r% and in

Table II is either k, or k' m(ubz/ %.

()

s Vibration of Circular Plates .

Rayleigh=~Ritz method will be used for the approximate sclution of

the vibration of a circular plate. Transforming the equations (1.2) and

(1.3)
2. 2 \2
D p2np 8 (6 w 10w, 13 w)
Vo = = 4 = s ‘2 —
2Jo Jo s T e 90t
2 2
: 0w (1 Ow 1 0w

(3.1)

9



TABLE I

k FOR MODES OF A SQUARE PLATE(7)

Edge Mode Number
Conditions | Authority 1 2 3 b 5 6
F
F F Young 03.494 | 08.547 | 021.44 | 027.46 | 031.17
c
F
c F Young 06.958 | 24,080 026.80 | O48.05 | 063.1k4
o
F
F F Ritz 14,100 | 20,550 | 023,91 | 035.96 | 061.60 | 065, 2k
F
T
S 'S Eqn(3) 19.740 | 49,240 | 078.96 | 098.69 | 128.30 | 167.80
5
S
S S Tguchi 23.650 | 51.680 | 058,65 | 086.13 | 100.30 | 113.20
Cv
5
C c Iguchi 28,950 | 54,750 | 069,32 | 09%.59 | 102.2 | 129.10
¢ Tguchi 35;980 73:400 .108.20 1%2.20 165;00
C C . . ) . . )
a Young 356990 | 73.410 | 108,30 | 131.60 | 132.30 | 165,10
e U Wi N T R S T— -




TABLE IT

k AND k' FOR FUNDAMENTAL MODES OF RECTANGULAR PLATES

(1ucaT)¢?
S ﬂf b/a 01.00 01.50 02.00 02.50 03,00 o
S 5| b
S AL k 19.74 14,26 12.24 11.45 | 10.97 09.87
b—a—t
b/a 01.00 01.50 02.00 02,50 03.00 oo
s k 23.65 18.90 17.33 16.63 16.26 15.47
o S
S a/b | 01.00 | 01.50 | 02.00 | 02.50 | 03.00 oo
k! 2%.65 15.57 | 12.92 11.75 11.14 09.87
b/a 01.00 01,50 02.00 02.50 03.00 co
S k. 28.95 25.05 23.82 23.27 22.99 22.37
C C
S a/b 01.00 01,50 02.00 02.50 03.00 )
k! 28.95 17.37 12,69 | 12.13 11.3%6 09,87
c b/a | 01.00 | 01.50 | 02.00 | 02.50 | 03.00 oo
c c
C k 35.98 27.00 2k .57 23477 23,19 22.37




TABLE III
k FOR MODES COF RECTANGULAR CANTILEVER PLATES

(BARTON)(7)

Q
k=i
—— &

j |
-©- a o
| 1

Mode Number
a/b T 5 3 n ' z
%72 2,508 | 05,372 | 21.96 | 010.26 | 024.85
1 3,404 | 08,547 | 2l.44 | 027.46 | 031.17
2 z.472 | 14.920 | 21.61 | 094.ho | 0OL8,.71
3 3,450 | 24,730 | 21.52 | 563,90 | 105.90

TABLE IV
k FOR MODES OF SKEW CANTILEVER PLATES

(zarron) 7

T P— &‘

—

Mode - 2]
Number 15° 30° _ y5e
1 3,60 03.96 04.82
2 8087 10019 130?5
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T = %ffnfc’)a o rder (32.2)

where a is the radius of the plate.

%o0le Vibration of Circular Plate Clamped at the Boundary.

For the case of the lowest mode of vibration, equations (3.1) and

(3.2) reduce to

‘ 0w 1 dw
Vanfo (——2 ;Em) rdr (3.3)
T - n‘pfa #° rdr ' (3.4)
0
Assuming
w=Wcoswt (3.5)

and substituting equation (3.5) into equations (3.3) and (3.4) and

equating them

(3.6)

The function W is taken in the form of the series
: r2 r2 2
= A P - evoe .
W= A (1 aa) + A, (1 3> + (3.7)

a

using equation (1.7)

2 2 2
-aez—uj;a (Q—g+%%§) GQ_JI_)_EWZ rdr = 0O (2.8
4 Or

Substituting equation (3.7) into equation (3.8), and setting its
determinant to zerc, the freguencies of successive modes can be obtained.

In all cases the frequency of wvibration has the pattern
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w = g. (3.9)

The constant o for a given number s, of nodal circles, and for a

given number n, of nodal diameters, is given in Table V.

TABLE V
THE VALUES OF o OF CIRCULAR PLATE CLAMPED AT BOUNDARY(B)
s ne=20 n=1 ne=2
10.21 21.22 24 8L
39,78
2 88.90

3.2, Vibration of Circular Plate With Other Kinds of Boundary
Conditions.

(A) For a Free Circular Plate (v = 1/3)

TABLE VI

THE VALUES OF & OF FREE CIRCULAR PLATE‘>)

05.251 12.23
09.076 20.52 35,240 52.91
380520__ | 59,86
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(B) PFor a Circular Plate With Its Center Fixed

TABLE VII
THE VALUES OF o OF CIRCULAR PLATE WITH ITS CENTER FIXED(B)
5 0 1 2 3
o 3,75 - 20.91 60.68 119.7

L, Vibration of Triangular Plates.

b1, Vibration of Triangular Cantilever Plate(s).

Taking the coordinates as shown in Fig. 2, the following coordinate

transformation is made:

u== , v=ki (4.1)
a X

—_—
w‘\‘ a
4 ~ /%
0
=
AL v= o X, U
Fig. 2

I1lustration of Coordinate u and v
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In the coordinates u and v, equation (1.6) becomes:

2 2
W %W 8%
BA S/ ( ) - bv azauav

+

| 2
2 2 2 oW
. [ZV + k(1 - u)] (auav)

2y A2 2
» W 3w
(v2+k2)-a-‘!.aw oy

7 5a2 av oV a2

) |
—L% [2*:2 + K21 - 'D)] oW du ' (4.2)
a |

+

Judv dv

2, 22
2v) 0w aw

(v + k
dudv a

+

'

2y 2
l}iz [2v2 + k(1 = v) (a—;-’)
u ov

2
br? ) WO (2, 422 (9—-"-’)

+

2

+

a2 2

<

- quwa _dudv”= 0

in which W is a function of u and v and

Palt
1= /T“

(A) First Case-Symmetrical Triangle

A symmetric triangle with apex at the origin and length a and base
2a/k is obtained by taking the limits
0 Lu<l, s1<vL+1l.,

For symmetric modes, let

W= DAy + Ay v (M T (u) + [y, + b, u, (W] 0 (w) - (h.3)
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for antisymmetric modes,

W= [Aal v+AL ¢h(v)] u2¢i(u) +-[A22 v+ A, ¢L(v)] uapa(u),
| ()
¢1 and 92 represent the first two modes of a cantilever beam free at
= 0 and clamped at u = 1. ¢5 and ¢A represent the firsf symmetric and
antisymmetric modes of a beam free at v = £ 1. The values of Y are

shown in Table VIII,

(B) Second Case ~ Unsymmetrical Triangle
Anynsymmetric friangle with apex at origin and of length a, and base
a/k is obtained by taking the limits

0<Lu<fl, 0 :

7AN
<

IA
'_l

Let

WA, + Ay uv+A u2¢(v)]<P(u)

+ [Ala + A22u2v + A u2¢ (v)] ¢ (w . (4.5)

The values of Y are shown in Table IX.

4=2. Vibration of Clamped Triangular Plated),

The method of collocation is employed to obtain reason=-

(18, 19, 20)
able approximate solutions. The method of collocation consists essen~
tially in satisfying a given differential equation, or set of equatiens,
at a finite number of points.

Skew coordinate axes x and y are taken in the middle surface of the

plate as shown in Fig. 3.



TABLE VIII

THE VALUES OF Y OF CANTILEVER, SYMMETRICAL TRIANGULAR PLATE

palt
Y= w5

3

mode 2 b 8 14
1st 007.149 007.122 007.080 007.068
2nd 030,803 '| 030.718 030,654 030.638
Zrd 061.131 090.105 157.700 265.980
Lth 148.800 259.400 492,400 853.600

TABLE IX

THE VALUES OF Y OF CANTILEVER, UNSYMMETRICAL TRIANGULAR PLATE

palt
V=
mode 2 4 7
1st 05.887 06.617 06.897
2nd 25.400 28.800 30.280

15



Fig. 3

Clamped Triangular Plate

The differential equation of free vibration is

I 4 4

0w . 2 0w ow
+ 2(1 + 2 sin“0) +
g;E 6x26y2 ayh

- 4 I 2
= L sinf ( 63w + 0 WB) - Be_ w
0x"0y  0xO0y

where
B = skew angle,

Boundary conditions are

(ﬂ) = (M) = O
o y=h My = (% a/nly

whers

ing
it

= median distance from the origin

B3
#

= normal direction to a boundary.

(4.6)
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The deflection function is

E
i}

2.2ny 2. my . 2ny
(ocly sin™ 3¢ + a,y"sin 3 sin =g
2 -
(28] =
a

o = generalized coefficient.

R
o |

<4 In
< IK.

_) (b7)

where

Differentiating equation (4.7) substituting into equation (4.6),

Po, +Qu, =0 at y = h/2

Rocl+Soc2 at y

it
(@)

2h/3

vhere

P, Q, R, and S areinterms of B and O

2. b
Pw™h
B=——-°

For various ratios of h/a and 8, values of B may be determined from

the condition

Fig. 4 gives value of Y, Y = VP , where

0 <8< 25°
X /D
w="3/7
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500

400
250 L 2/ D

I

0 05 LOL5202.53.0 55 H0y
a
Fig. &

Vibration Coefficients for Clamped

Triangular Plates(g)

the Base

4=3. Vibration of Isosceles Triangular Plate Having
Clamped end the Other Fdges Simply Supported .

The method of collocation is employed to solve this problem. Let x
and y be coordinates in the middle surface of the uniform elastic plate

as shown in Fig. 5.



( = X

Y N
©

\ i L e e e
©

L]

Figo 5

Isosceles Triangular Plate

The governing differential equation is written as

VL}W-; Z w=o0.

Boundary conditions are

(w)y en " (w)X -+ (a/n)y = 0

2
(mg+ v—“a ‘g) ‘ = 0
on 0t"/x = = (a/n)y

where
n = normal direction to the lines x = £ (a/h)y
t = tangential directicn of any line along a rectilinear edge
9% 62w

— = 0, ===0, on the boundary.

(4.8)
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The deflection function is

(

W= iocl;)rasin2 Ehx + o 2y?'s:i.n T-EEI sin 2'}11-:1
¥ léty?-(y; n)%Jpcos (E 1 5) (4.9)
% | 2ay

Differentiating equation (4.9) and substituting the proper deriva-

tive into equation (4.8),

Aa1+Ba2+Qa3=o at y= h/2
J oy +,E @, + Fay =0 at y=20/3 » (4.10)
chl + H o, + I “3 = 0 | at y = Z/3

-~

where A, B, C, D, E, F, G, H, and I are interms of h/a and B,

2. b
pmlh ]/2°
B=—F—,Y=¢8

Values of Y for various ratio of h/a may be determined from the

condition
A B c
D E F |=0
G H I

The relationship between the vibration coefficient Y, and h/a is

shown in Fig. 6.

5., Vibration of Simply Supported Iscsceles Trapezoidal Plates(ll).

The approximate solutions are obtained by using the method of
collocation. Let x and y be rectangular coordinates in the middle sur-

face of the plate as shown in Fig. 7.
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Fig. 6

Vibration Coefficients for Triangular
Plates Having the Base Clamped and
Equal Sides Simply - Supported

Fig. 7

Isosceles Trapezoidal Plate



The governing differential equation is written:

2
p

w=0.

Boundary conditions are

S
n

c’_
i}

The

W =

(w)y..a = (w)y._a1+a= (w)x—i' ytan©
= -

—é —2- =0

%" a Oy y=a, +a

1
2 2

(iLJﬂ *.1)«9—%?) =0

on ) d =ty tan 0
normal direction to lines x =% y tan 6

tangential direction of the lines

== = 0, on the boundary.

deflection function is

[a 1 s1in

+Cl3

Wy = a1) o

a

S1
a

in 3 n(y - a)

Jcos(% f;-;- cot B)) .

si

n an(y - aj)

a

22

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

Differentiating equation (5.5) and substituting the proper deriva-

tives into equation (5.1),

Aa. + Ba_+Co_ =

1

2 3

Ta, + Ea., + Fa, =

1

2 3

Ga, + Ha_+ I o, =

1

2 3

y - a
1 1
= = /3
y-& 1
a /2
=38 5
= 73

(5.6)



; o : b
| vhere A, B, C, J, E, F, G, H, and I are interms of B, 0 and .1
a
. Pwla hL*'
B = —S—,
s

Values of B for various values of bl/é and O may be determined from

the condition

A B c
dJd E F =0
G H 1

r 4
/ 0.5

¥/ (Triangle)

YN ON
\\<\;\\ \\ ;m§,¢

AN

of° 10° 20°30°40°

Fig. 8 .

. Fundamental Frequency of
Isosceles Trapezoidal
Plate vs O for V?rigus
Values of bl/ h 1l
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6. Vibration of Thin Skew Plates(l7).

Rayleigh's method will be employed to determine the upper bound to
the natural frequency and Kato's theorem is used for determining a

closer lower bound.

-
<

N
~

Figo 9

Skew Coordinates

6-1, Rayleigh Method.

The frequency equations in terms of the skew coordinate system

(u, v), as shown in Fig. 9, are

. 2 2 2 -1
d (a W %W . a"-w) 2
2 [S= 4+ 2 =~ sinB +3=) +P.“W|dudv = O (6.1)
aAiff [ du? Budv av?) R J ______
where '

pR2 = Rayleigh's ratio .



Taking the deflection W in the form

e B R A % 8

The normal orthogonal bar eigenfunctions are:
(A) Clamped - Clamped bar

sin [K (u - a/2)] sinh . [K (u - a/2)]]

1 gl
% =J§ sin (Km a/2) =~  sinh (K a/2) (%% =
L1 cos [ Km(u - a/2)] cosh —[Rm(u - a/2)] 2 m
Ja cos (Km a/2) ~  cosh (Km a/2) 2

where Kma is the mth positive root of the transcendental equation

tan (K a/2) = (-1)" tanh (K a/2)

m=1, 2,3, eeeo »

(B) Clamped-Simply Supported:bar

(pm(u) _1 .sin [Km(u_ - a)] sinh‘ [.Km(“ - a)]

ﬁ cos K.ma cosh Kma

where Kma is the mth root of the transcendental equation
tan K a = tanh K a .
m m
The values of PR for various edge conditions of a rombic skew

plate with different skew angle is shown in Table VII.

6-2. Kato's Method.

The equation of motion of a thin plate,in the skew coordinate sys-

tem, is

2 4
v?2 Vw-LPs:Lneaw+l+ 1nea - A% =
2 T
auav
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vhere

Ar = eigenvalue.

2
The measure of accuracy €y 18

,/;a,/;a { v2 l:V2W- L gin6
2 -
o foa _/;b we du av

In applying Katoc's theory for determining the lower bound to an

aag + 4 sin2 e aL‘w -P ZW}adudv
oud auzavz R

eigenvalue K129 for which the closer upper bound is pR12 > K127
2
B

and a lower estimate to K227

= pz is taken, where pa is the smallest eigenvalue greater than klz

2 0 2 2
(pR " g2 npz)f-)‘l < Py
R,
g2 U2
%ﬁ:(%agﬁzfpz) . Kato's lower bound.

The values of PK for a rombic skew plate with various edge condi-

tions is shown in Table X. !
\
|
()

70 Free Vibration of a Gridwork

A gridwork of beams extending in the x and y directions as shown in
Fig. 10 is considered. The portion of the total load p(x, y) carried by

the beams in the x direction and the y direction is given by

64w ahw {
D~ = p(x) 5 D = = ply) . (7.1)
ox _ oy

For a gridwork of beams, the torsicnal resistance is small in com-

parison with the bending resistance; thus, the deflection equation can be



TABLE X

LIMITING BOUNDS FOR ROMBIC SKEW PLATES

(m=1 n=1)
edge .
conditions S PK PR
o 0° | 35.33322 | 36.10868
. 15° 34.69oi1 36.66593
30° 32-95941 38.14697
450 | 30.63837 | 40.0817%
, 0° 31.46043 31.95364
. 15° | 31.46798 7 32.54105
_ 30° 30.35069 3h.09421
L5e 29.46388 26.10806
0° 26.22513 | 27.19478
15° 24.51261 27.83775
30° 21.45018 29.52310
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ST T/
L////
/////
[ ) /[ /

f‘l‘// A f7‘ -
Fig. 10
Gridwork of Beams
written as follows:
64w aqw'
D (-—-— + ——E) = plx, ¥). (7.2)
dx oy

Taking v = 0, and assuming the moment of inertia per unit length of

the gridwork is not the same in the two principal directions,

ETI al+w Eny auw
e L + e I = p(x$ y) (703>
x Ox y Oy

where ExIx and Eny represent the flexural rigidity of an individual
beam in the x and y directions, respectively; e, and e_ are the spacings
between two adjacent beams in the x and y directions, respectively.

The equation of free vibration is

ExIx 64w Eny 64w 62 0 (7.4)
Po F Pe k¥ 37 7.
XX 0x y y Oy ot




Let
EI EI ' '
=D ; ~LL - p (7.5)
ex X ey J

Solutions of the form

w = X(x) ¥(y) q(t) | (7:6)
are investigated.
Substitution of equations (7.5) and (7.6) into equation (7.4)

yields

D xiv . D Yiv Y )

X Sy | (
+ = - 7.7)
P X pyY q
Let equation (7.7) equal to a constant pa, thus
§+p%q =0 R (7.8)
p XV pyl )
PX = pyY"‘* P (7.9)

Let équation (7.9) be equal to a new constant kZ, thus
‘v | ) :
DXV - P k% = 0 (7.10)

iv 2 _ 1 2yy -
DyY:" Py(p k)Y =0 . o (7.11)

- The solutions of equations (7.8), (7.10), and (7.11) are

q(t).= A sin pt + Bcos p t (7.12)

X = C1 sin Ax + 02 cos AX + C3 sinh Ax + 04 coshAx (7.13)

Y =6 sin A'x + G, cos A'y + G sinh A'y + G coshA'y (7.14)
where e 3

L 2

A= pr /Dx

b5 2 | 22y
AT o= Py(p K )Dy .



PART III

VIBRATION OF THIN SHELLS

(2)

l. General "‘.

Congider a shell element bounded by curves of the curvilinear rec-

tangle oo, 00 + S, P and B + & B as shown :fii’Fig. 11,

> ¥
, ’2
NZ
o+ da
b, |
e ;/ /
WL
x 1 B+ 5P
Fig, 11
Element of Shell
The equations of vibration can be written as follow

1 ‘a(NlB)_ a(TZA)+T 94 _ 38 -QQ-l-aph a2,
AB Qe . oB 1 0B "2 0o Rl" at2

20



1 9 (T,B) . o(N,A) T T @_ﬂ_:‘ ) % b 2y 8.1)
AB| Oa 0B 1 08 20« R2 ata ‘
1 [ 9B  28(QA) N, N oy 2 2,
ABB| "oa T Top |TR YR ~ N .2
) B d ¢
where
Nl ' N‘2 = normal stress
Tl ’ 'J.“2 = tangential stress
Ql ’ Q2 = transverse shearing stress
Hl ’ Gl =" gtress couple in the same directions as 'Nl 9 Tl
H‘2 s Ga = gtress couple in the same »diréctions as I\I‘2 , 'J.“2
u,. vy w .= deflections in the x, y and z directions, respectively
A, B = function of @, B.
-1%'1— ’ 13' = curvatures in the x and y directions, respectively
' R, ‘ _

2, Free Vibration of Thin Cylindrieal Shells(la)a

Neglecting the rotatoi-y inertia, the equatioxis of vibration for an

element of a éylindrical shell can be written as

3 a3
L 0w 1 97w
Vu - . o B s
‘ f ax3 R @xasa
_,_2(l+ ) 9 l- v 0 “y 3 =y 2 an
= - B P a‘ta( E 'patz" = Vu+gax)
(9.1)
3 3
_ 9x~ 0s ds
] 2 2 2
21 + v 05 , 1 =wv 0°v 3= p,2 1l dw
= - = pata( 5 pata 5 Vv+R-5-§)

(9.2)
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lf_v8w+l 2al+w
12 RZ ax4
21+ v) o 82 {(l- v 582 _3-3 g2
E 52 L E S22
2 2 2 - 2 2
1 - °w w h L l=-1vp b p° 0w
( P P + ==+ = 7 W) + Viw + ==
E at2 R2 12 2 R2 ax2
5
1 aw]
4 = (9.3)
B asa
where
s =RY

The displacement components are assumed in' the form

u-ZAie cosm @sinwt |
i .
NTO | | |
v = ZBie gin m @ sin wt S % (9.4)
- ,
_ A X
N il '
w:ZCie cos.m ein wt |

5 i
 Substituting equation (8.4) into equations (9.1), (9.2) and (9.3),

apd assuming

'I }\32-’ R2

m212

< < l ' | (905)

the following expressions are obtained

c.A.M 2 _ (9.6)

Ai i i1

B

5 CiN ' (1=1,2y 3 °°) (9.7)

, A.R
P=(l-v)( - 1?)(-—-%-)“ \ (9.8)
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in which

29 Q@ + (1 = p)n°
M= ’+

2Q° - (3 = ) Q + (1~ vn

. -omQ + (1=~ plu
N = T

20% - (3= v)n°Q + (1 - »)m

F=20Q° - 92[2 £ (3= ) + 2km’+:|
+ £ [:(l - 13)m2(‘rn2 + 1)+ (3= v)kms] - (1= 1))km8
where
1 = length of shell
m = positive integer equal to the number of eircumferential waves

A, Bi ’ Ci = constant coefficients

2

g -1z pe2 | o
12R

The roots of hi of equation (9.8) are of the form

A, =K, A =-K,-?\3=iK,?\,+=—iK (9}.9)

where K 1is a real number,

By application of equations (9.6), (9.7), (9.8) and (9.9), the fre=
quency equations and displacement components have been obtained for the
following two cases.

(A) Shell with Both Edges Freely Supported

The frequency ecquation is

293=522 [2+ (3 = u)m2+2km4]_+. Q[(l- 1:)m2(m2+l)

+

G-vial] - (- vm® - (- o) - »DHEEE

= 0 . ' (9.10)

The displacement components are



nn R nnx )
o cosm @ sin w t

u-__-MC 1‘: cos 1
v = NC sin n:ysz ginm ¢ sin 0wt >

w = C sin nf'x cosm @ sin wt
wvhere n = 1, 2, 3y b4y ¢ «

(B) Shells With Both Edges Clamped

The frequency equation is
2523»'-» Q2 [2 + (3= v )m2 + 2km)+:]

yQ [(1 = P + 1) + (34 v )km6]

- o’ - (=) - AR <o

The displacement components are

w = 2C [((sinh NN =sinAn) =

(coshnn -~cosnmn )] -‘1[(sin_h nm: - sin n )

(cosh n]w-tx = cos 9—%}-) - (cosh nrc ~cosnm)
(sinh nIx - sin n;x)} cosm @ sinwt
ow
u = MR 5%
v = o IR 0w
B m 0s

n= 105069 20500, 3:500, 40500

3. Vibration of Shallow Spherical Shells,

(9.11)

(9.12)

(9.13).

The equations of vibration feor a shallow spherical shell can be

(13)

written as

2 2
3%y 0v v r 0w hPwW _
r-é*;év+ arw;+(l+ ”)R ar+ = rv =0

(10.1)
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Fig. 12

Section of Spherical Shell

JaroB]ll-gevoz]- @800 o

where

Expre551ng equations (10.1) and (10, 2) in terms of Bessel funct:.ons9

the solutions of whlch turn out teo be (lk)

ByJq (By7) . BaJl( W) . By, (B r)ﬁ
2_ 2 T2 2 T 2 |
T L - 93 -

<
"
[]
l—'am

10 S B _ -
L -2 2 RN
m JQ( ulr) +‘L2 Je( uzr) .+.u3 Jo<v93r)

For a given frequency w,
ol 2
= (p,a)

which are the roots of the following cubic equation:



o s - 2k
[(1u v_) Pa wE_X} [x2-12(l- va)p.(.f)..@_i

E n
Eh2
s 2 52
+ 96 = (1+v)}| +48(1L+ )" =x=0
2 2
h h
where
a = half the base chord
s = rise of are
r = radial distance from point on sphere to axis of symmetry
2
2 pklwn
o = K

oLl v 20+ vs

1 R R
Jo(x) = Bessel function of order zero
Jl(x) = Bessel function of order one

Boundary conditions are:

Case A, Clamped Edge
= 1 - .
wn(a) = wn(a) = Vn(a) =0

The possible frequencies follow from the determinantal equation

Jo(xl) Jo(xz) » JO(XB)
X %, x3‘
Jl(Xl) Jl(xa) Jl(XB) = 0
Jl(xl) ;l(xz) Jl(XB)_
(Oca)‘2 - xi (wa)? - xg (a a)2 - xg |

and also
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2 2 2 2
. X3 = X (o a)” = X5 Jl(xl) 5
2° 2 2 2 2 J.(x,) "1
X5 - Xg (v a)" = x] 172
2 - x° ( OLa)2 -x2| 4 (x,)
B, = = | 1+ —2—2 2 7o B
3 = 2 2" 22| 3. (%) 1
X5 - Xy (aa)” = Xy 173
Case B. Simply Supported Edge
wn(a) = vn(a) =Mga) =0
and so
Jo(xl) JO<X2) qo§x3)
3 X, X3

RERIC NS I A CHICIERYY B EACRICEES

=0
- leO(xl) - x2J0<x2) - X3J0<x3)
Jl(xl‘) ,,Jl(x?,), Jl(§c§)
(aa)? - xi (qa)® - xg (aa)® - x§
and
(ea)® - g(x) xJ(x)
X 1 1) Xioe
52 T
By= _ (@8 =% 50m) ®Hite) L
@o_-x hep mhly
(o a)z - xé Jl(xl) x3J0<x1)
= xiJO(xz) XlJO(XB)
By = ' anO(xl) * A xBJO(xlj B

The functions Jo(x)A and Jl(x) are evaluated with the aid of stan-~
dard taSleso
The frequenecies of vibration for both two cases are evaluated

(Table 11) by assuming



b

_1 B _ 1 E_20x 10°
=% » RT8 ' p~ 0.28%
TABLE XTI
FREQUENCIES OF VIBRATION
Frequencies for Clamped Edge in rps
S/a o.5 l'o 106
Mode © % 6 6
1st 4, 400 9,000 16,000 22,000
2nd 17,160 19,000 22,000 29,000
3rd 38,390 39,000 40,000 432,000
Frequencies for Simply Supported Edge in rps
S/a O° l.o 1.6
Mode 0 s % 6
1st 2,100 9,000 16,000 21,000
2nd 12,760 15,000 20,000 29,000
3rd 31,850 32,000 34,000 38,000

Vibratipn Qf Conical Shells(lS),

The Rayleigh-Ritz method is used to determine the natural frequency

of the conical shell,

Eae¢h displacement

W(.Zg :

ul(z,

ua(z9

B, t) = w(z, 0) sin Wt

8, t)

i}

8, t)

ul(z, ) sin wt

ué(Za 0) sin wt .

is assumed in the form
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P - >

/ \
4

Fig. 13

Béction of Conical Shell

The middle surface strains €y 82 and 83 , and the changes of

: A - _(21)
curvature kl N k2 and kle are given by Love °
'aul
€ 1 = T? cos ¢
£ __auz Cos o +Ecosa=y’cos2a
2" 00 z sin o Z z sin o



‘ 9 2
€1, = Z COBQ -5-—5-.(2) +

ho

2
cosS O C€O8 O
z sin o sin o

K 32w 2
= cos o
1 3 2
z
K = auz cos o cos® a aa.w . cos® o dw
2 96 z.2 sinaa 2‘2 sin2 o 3‘92 Z 0z '
K = a“a cos® _ cos>_q w. * cos” o _ 3w
12~ 0z =z sin o 2, 27 zsin g 0z00
2 s1n o
_ cms2 o 0w
2. 00
z sin o

The potential energy and kinetic energy are

V= s:Ln Wt
(l - v )
_lo

[(K +K)2—2(l-— v)(KK - K

2
+(el+ 52)

‘sin

= T cos2
max

wt -

Ph w2 cos?

wt

12 12)
m2(1-p)eE, g, - g2\ 2EB & 4 49
12 12
cos o

(11.2)

N .

(w‘2 + u’i + ug) ___g_z 532.11 dz 40

=1 . - cos o L
z=1, _ :

2n
wt;’~v
8=0

(11.3)

The Rayleigh=Ritz procedure applied to Hamilton's principle leads to

0A,
i

max

The values of w2

(T =V )=

0, (11.4)

max

can be obtained from equation (1l.4).
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'S5, Vibration of Thin Paraboleidal Shells of Revolution

><

r N
e//

Fig, 14

Paraboloidal Shell

The governing équations for normal modes of vibration are

<= =-w=0

du
0g

dv. .. u
26t sin @

~wsgin g =0

tan ¢-%—;—’Z+sec3¢ —g—ell—vsecaﬁ =0

The solutions of equations (11.1) are the following

n
u =a sin @ tan- & cosnb
v =a tann+l¢ gin n 6

n n

wo=a, tan® @ (cos # + n sec @)cos nb

by

(12.1)

where n is an integer representing the number of circumferential waves
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for the corresponding mode shape.
By equating the maximum kinetic and potential energies of the vibra-

ting system, the natural frequencies of vibration can be obtained as

fellows:
~ n"'?(n2 - 1)2 E
w, = "2 b
12(1 = pl2m'e
[ » :
Wtan"""> g sec’ @ (cos”f +pec” B +2 -4 agl® (12.2)

fgoh tantt '] sec” ] [2n + (n‘:_2 + 1)sec? ¢] ag
0 v

where
N = focal length of shell ,

Fig, 15 shows the relationship between the frequency parameter

w2u'mp
A = P — — N
n D '

and the limlt angle @, (or 1/fv ratio) at the boundary for uniform parab-

oloidal shells of revolutio;; made of aluminum or steel ( v = 0.3)

0
o

[oxy

¥, in Degrees.. ...
(e} =

Figs 15

Relation Between the Frequency Parameter and the Boundary Coordinate 9'0



PART IV

SUMMARY AND CONCLUSIONS

1. Summary.

In this report, a literature survey was made in the area of vibra-
tion of plate and shell structures. This will be of considerable value
in future investigations in this area.

An exact solution for the natural frequencies of a simply supported
rectangular plate has been obtained. The Rayleigh-Ritz method is em-
ployed to determine the approximate solution for the rectangular plate
with other kinds of edge condit?ions° Characteristic functions of a
vibrating beam are used for representing the deformations which lead to
the solution.

In circular plates, the Rayleigh-Ritz method is also employed;

(3)

Timoshenko found that in all cases the frequencies of vibration of

circular plates has the pattern
W = (G/éa) V?$7me

For the vibration of triangular plates, invegtigations have been
conducted for the three kinds of boundary conditions: cantilever, all
edges clamped, and the triangular plate with the base clamped and other
edges simply supported. The method of collocation is employed for the
latter two cases. This method is also extended to solving the simply
supported isosceles trapezoidal plate.

The Rayleigh-Ritz method, with the aid of characteristic bar functions,

b3
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is employed to solve for the natural frequencies of a skew plate with
various edge conditions. Kato's methed is also used for determining
closer lower bounds for which upper bounds are provided by the Rayleigh-
Ritz method,

In the shell section, four types of shells: cylindrical, spherical,
conical, and paraboloidal shells of revolution, are observed. The vi=-
bration of a c¢ylindrical shell has been ihvestigated on the basis of a
set of three different equations. Direct solutions of determinantal
frequency equations for shallow spherical shells with clamped and simply
supported edges are given. For the conical shell, a Rayleigh-Ritz pro-
cedure is used for determining the natural freqﬁencies. The same method
is also employed to obtain the approximate solution for frequencies of
vibration of paraboloidal shells.

In this report, many numerical results are drawn from many investi=-

gators.. They will be useful for further investigations.

2e GConclusions,

Extremely accurate solutions for the natural frequencies of vibra-
tion of thin elastic plates and shells may be difficult and laborious to
obtain. Usually the Rayleigh-Ritzvmethod is considered to be the most
useful method for finding a reasonable approximate solution. But the
results and the practicability of the computation depend to a great ex-
tent upon the set of functions that are chosen to represent the deforma-
tion, It is generally known that the Rayleigh-Ritz method yields fre-
quencies.-that are higher tham the actual frequencies, however, it is
considered to be of sufficient accuracy for most design purposes.

In addition to the Rayleigh=Ritz method, the method of collocation

is also one of the several possible procedures for obtaining approximate



s
solutions for vibrating plates, especially for triangular plates and trape-
zoldal plates,

For determining a closer lower bound»tafthe natural frequehcies of
thin skew plates for which an upper bound is provided by the Rayleigh=
Ritz principle, Kato's method has been employed. The mean value of these
two bounds give‘more reasonable results,

Fer shell structures, the differential equations of vibration are
complicated; Bessel functions are introduced to simplify the evaluation,

In this report, the literature survey is conducted in the area of
free vibrations. This will be the first step toward the complete com=
prehension of the vibration problems in shell and plate structures. Also
more literature.survey on the free and forced vibrations of plate and

shell structures is needed.
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