
RAY TRACING COMPLEX SCENES ON A

MULTIPLE-INS1RUCTION S1REAM

MULTIPLE-DATA STREAM

CONCURRENT

COMPUTER

By

MICHAELBRANNONCARTER
II

Bachelor of Science in Electrical Engineering

Oklahoma State University

Stillwater, Oklahoma

1987

Submitted to the Faculty of the Graduate
College of Oklahoma State University

in partial fulfillment of the
requirements for the Degree of

MASTER OF SCIENCE
December, 1989

'-fttlSr~
I q~q
t $~~,...
~;a

- •. :r- '

.. '

Oklahoma State Univ. Library

RAY TRACING COMPLEX SCENES ON A

MULTIPLE-INSTRUCTION STREAM

MULTIPLE-DATA STREAM

CONCURRENT

COMPUTER

Thesis Approved:

.d<
Thesis Advisor'

Dean of the Graduate College

ii
:l350126

PREFACE

The Ray Tracing technique generates perhaps the most realistic looking computer­

generated images. It does so at the cost of a great deal of computer time. Many algorithms

have been developed to speed up the ray tracing procedure, but it still remains the most ·

CPU-intensive realistic image synthesis method. To date, ray tracing has remained largely

in the realm of serial computers. The research in this thesis takes ray tracing strongly into

the parallel computing domain and deals effectively with all of the central issues

surrounding the parallelization of this procedure. Results from the "Hypercube Ray

Tracer" are collected and compared against other ray tracing systems. A new technique for

ray tracing Constructive Solid Geometry objects is also developed and implemented.

The inspiration for this project came from two places at once. My advisor, Dr.

Keith A. Teague, provided the spark that got me interested in the parallel processing field.

Dr. Samuel P. Uselton, then of the University of Tulsa, infected me with the computer

graphics bug. To these individuals goes my thanks for opening new horizons. Thanks are

also due Ron Daniel, Chris Schuermann, Mark V asoll, Gregg Wonderly, Roland Stolfa,

and Eric Blazek, my friends, for their constant criticism, encouragement, and "why don't

you do this" geme of questions. Many features and refmements to the Hypercube Ray

Tracer sprang from their ideas and suggestions. To Mr. Ron Daniel, especially, I owe

tremendous thanks for his experience, expertise, and constant attention. More than a few

bugs were chased out of the ray tracer with his help.

Finally, my deepest debt of gratitide and respect must go to my parents, Everett and

Murrel Carter. Without their years of patient upbringing; understanding, and wisdom, I

would never have had the chance to learn.

iii

TABLE OF CONTENTS

Chapter Page

I. IN1RODUCI10N .. 1
What is the Ultimate Goal of Computer Graphics 1
Purpose and Motivation .. 2
Overview ... 3

II. BACKGROUND · ... 6
Outline of Ray Tracing Procedure ... 6
Sl1;a~g Model ... 7
PI11llltives ... 8
The Parallel Nature of Ray Tracing .. 9
How Has The Technique Improved Since Its Conception 12

Cmnera Models ... 12
Shading Models ~ ... ; ; 12
Intersection Philosophy .. 13
Object Hierarchies and Bounding Volumes 14
Intersection .. 17
Bounding. Volumes ... 18
Primitives .. 19
Constructive Solid Geometry ... 20
Antialiasing .. 21
. Distributed Ray Tracing ... 22

Architecture of the iPSC/2 .. 23

III. DESIGN CHOICES AND IMPLEMENTATION 24
Scope of Project and Statement of Goals 24
Design Choices .. 26

Scene Description .. 26
Intersection Method .. 27
Hierarchy Generation .. 27
Pritnitives .. 28
Constructive Solid Geometry ... 29
Antialiasing and Distributed Ray Tracing 32
Parallel Decomposition .. 3 2
Summary of Design Choices .. 34

IV. COMPONENTS OF THE HYPERCUBE RAY TRACER 36
Rayd - The Scene Description Compiler 36

The Rayd Language .. , 36
Object Definitions .. 38
Light Source Definition .. 40
Scene Definition .. 41

iv

Chapter Page
Observer Definition .. 41
Pseudodefinitions and Compiler Directives 41
The Rayd Compiler .. 43
Symbol Table Traversal ... 46

Hiergen - The ODB Hierarchy Constructor 50
Elements of the Hierarchy ... 50
Organization of the Hierarchy ... 51
The Goldsmith Algoritlun ... 52
Output File Format ... 53

Ray - The Hypercube Ray Tracer ... 54
Software Architecture .. 54
The Host Program .. 56
The Node Program ... 57
The ODB Reconstruction Algorithm 58
The Modified Kay Intersection Algorithm 60

V. TIIEDISTRIBUTEDOBJECTDATABASE 64
Rationale .. 64
What Has Gone Before .. , 66
A Fresh Look at ODB Decomposition .. 67
Changes to the Hierarchy ... 68
Changes to the Ray Tracing Loop ... 70
Changes to Image.Decomposition~ ; 77

VI. RESULTS, TIMING, AND PERFORMANCE METRICS 80

VII. CONCLUSIONS .. 86
The Ray Tracing Algorithm .. 86
Scene Specification Language .. 86
Object Database Distribution ... ; 86
Constructive Solid Geometry .. 87

. VIII. FUTURE WORK ... 88

BIBLIOGRAPHY ... 90

APPENDIXES , .. 93

APPENDIX A - BNF FORM OF RAYO SCENE DESCRIPTION
LANGUAGE .. 94

APPENDIX B - SAMPLE RA YD SCENE DESCRIPTION 98

APPENDIX C - INTERSECTION OF A RAY WITH A SPHERE 101

v

UST OF TABLES

Table Page

1. Symbol Table Entry Types . 45

2. Fields in Primitive Data Structure. 48

3. Fields in CSG Node Data Structure . 49

4. Fields in Hnode Data Structure .. 51

5. Petfonnance Metrics Kept by Node Programs................................. . 56

6. Revised Fields in the Hnode Data Structure . 69

7. Fields of the Ray Data Structure . 71

8. Ray States .. 72

9. Ray State Transition Events . 73

vi

Figure

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

LIST OF FIGURES

Page

Observer, Viewplane, and Scene ;...................... 7

Flow of Data in Hypothetical Pipelined Ray Tracer . 11

Flow of Control in Hypercube Ray Tracer . 35

Sample Rayd Scene Description . 3 7

Rayd Specification for a Cluster of Six Balls.................................... 39

Local Coordinate System of an Object . 40

Internal Block Diagram of Rayd Compiler 44

File Format Example from Rayd Compiler...................................... 50

Organization of ODB Hierarchy... 52

Hiergen File Format Example . 54

Flow of Data and Control.............................. 55

Control Flow for Primary, Secondary, and Shadow Rays 75

Hypercube Ray Tracer Speed vs. ODB Branching Ratio . 80

Hypercube Ray Tracer Speed vs. Number of Objects 81

Hypercube Ray Tracer Speedup Curve . 83

Ray Tracer Speed for Similar Scenes... 83

Ray Tracer Speed vs. Node Overloading Factor..................... 84

vii

LIST OF ALGORITHMS

.Algoritlnn Page

1. Weghorst Hierarchical Intersection... 16

2. Kay Hierarchical Intersection.. 18

3. HTTM Candidate IP Membership Test... 31

4. Rayd Sumbol Table Traversal .Algoritlnn . 4 7

5. Goldsmith Hierarchy Construction .Algoritlnn . 53

6. Node Program Pseudocode .. 57

7. Hiergen File to ODB Reconstruction .Algoritlnn . 59

8 . Inner Loop of Modified Kay Intersection .Algoritlnn . 61

9. Outer Loop of Modified Kay Intersection .Algoritlnn.. 62

10. Scheduler for State Driven Node Program 77

viii

CHAPTER I

INTRODUCTION

What is the Ultimate Goal of Computer Graphics

The last ten years of computing has witnessed an ever increasing demand for higher

quality computer graphics. Computer graphics is now used not only for charts and graphs,

but for much more complex applications such as medical imaging, architectural design, and

flight simulation. In each of the latter cases, the highest possible degree of realism is

desired to achieve maximum visual and creative impact. And, at least in the flight

simulation case, real-time rendering is required. Even though not all applications for

computer graphics require such speed and realism, all could benefit from it. High speed

and realism represent the Holy Grail of computer graphics.

Computer graphics has always been computationally intensive. The additional

burden of realism makes computational cost grow by orders of magnitude. Realistic

images can now be rendered in a few minutes, rather than hours, due in large part to

algorithm improvements. If real time image synthesis speeds are to be realized, these

minutes must be compressed into milliseconds- a speedup of roughly 105. Clearly, there

is much work yet to be done.

Already, single-processor computers are approaching processing speeds which are

predominantly limited by the speed of light - not technology. From this realization has

sprung the concept of parallel processing. To date, parallel processing has been applied

only weakly to the problem of realistic image synthesis [Goldsmith 88, Carter 89]. If

realistic image synthesis is to move into the real-time realm, then new approaches are

1

2

needed. Parallel processing is one approach that promises significant performance gains in

return for a modest increase in software complexity.

Purpose and Motivation

All image synthesis techniques have several things in common. All have a set of

objects that are to be rendered. All have a point from which this "scene" is to be viewed

and a "camera model" that models the optical characteristics of the imaginary viewer.

Finally, all have an algorithm that renders an image based on the scene and some

viewpoint. This rendering algorithm is the key to the quality and speed of the image

synthesis technique. Usually, speed must be traded off against realism.

It is the pwpose of this research to take one realistic image synthesis technique,

known as ray tracing, into the parallel domain. This thesis concentrates on the

implementation of a modular ray tracer on a specific distributed-memory parallel

architecture. Much of the wisdom gamed applies equally well to other parallel

architectures, ~ well as to serial computers of all types.

111ere are many publications dealing with the fundamentals of ray tracing [Whitted

80, Phong 75, Foley 84]. These early publications, of course, do not deal with any of the

parallel aspects of ray tracing. Later publications optimize various parts of the ray tracing

process [Kay 86, Arvo 87, Fujimoto 86, Glassner 84, Goldsmith 87, Kajiya 83, Cook

84], but only a few have addressed problems specific to parallel implementation

[Goldsmith 88]. The major thrust of this research is to explore and find solutions for these

unaddressed problems. Toward this goal, many algorithms had to be modified to operate in

the parallel environment.

As with all parallel implementations, the architecture of the target machine heavily

influences the software architecture. If an inappropriate software architecture is chosen,

performance will suffer. Also, if a software architecture is too complex, then its

maintainance will be complicated. Conversely, the software architecture chosen must be

flexible enough to accommodate future expansion. If it does not, the ray tracer's

functionality will be limited. Several software architectures are considered for the ray

tracer, and each is evaluated for its suitability.

3

All this talk of custom algorithms is not lost on the ultimate goal of this project - a

fast, parallel ray tracer. In all cases, the utmost consideration has been given to the speed

and efficiency of algorithms, either borrowed or developed, in the ray tracer. In numerous

cases, special optimizations have been made, and each is described fully in the following

chapters.

Overview

Work is presented in this thesis that has been performed in constructing a fast,

usable, parallel ray tracer - the Hypercube Ray Tracer:· The scope of this work includes

such things as: using and modifying existing algorithms for the ray tracing process,

developing new algorithms where necessary to implement new features or optimize for

speed, and selecting an overall software architecture suitable for parallel implementation.

The School of Electrical and Computer Engineering at Oklahoma State University is

privileged to have been selected as a beta-test site for the Intel iPSC/2 hypercube concurrent

computer system. It is primarily upon this architecture that this work has been done, but

consideration has been made for other parallel architectures. These considerations are

noted in the subsequent chapters. The iPSC/2 is a distributed memory, medium grained

parallel computer with a hypercube interconnect, and fast message routing hardware. It is

one of the least expensive parallel computers available on a per node performance basis.

This makes it an ideal testbed for the development of parallel ray tracing.

Chapter 2 presents an indepth discussion of the ray tracing process and its evolution

to the present. Ray tracing is not the only realistic image synthesis technique, however. A

method known as radiosity also produces high quality images. It too has certain strengths

and weaknesses. Where ray tracing produces superior results on mostly specular scenes,

the radiosity approach is best at scenes involving diffuse lighting. Neither technique is

clearly superior to the other in a general sense, and implementing both techniques in a

parallel fashion is beyond the scope of this thesis.

4

The techniques differ considerably in the way they generate images. Ray tracing is a

strictly procedural technique involving many geometric calculations, and database searching

operations. Radiosity, on the other hand, uses an iterative mathematical technique

involving many matrix calculations. Also, as we shall see later, ray tracing is easily

parallelizable on the pixel level. Since ray tracing is a more irregular type of procedure not

involving the already well-studied parallel matrix methods, I chose it. Scope and limitation

related topics are discussed at length in Chapter 3.

In chapter 4, tradeoffs are discussed that involve the ray tracer's implementation,

and its major functional blocks. There are three major functional blocks in the hypercube

ray tracer; these are the scene compiler (Rayd), the object database hierarchy generator

(Hiergen), and the ray tracer itself (Ray). The scene compiler talces a human-readable

description of the scene and converts it into the low-level format suitable for the hierarchy

generator. A complete description of the scene description language is given in Appendix

A. The hierarchy generator then takes this raw, unstructured list of objects and builds an

efficient hierarchical representation of the scene that is directly read by the ray tracer.

Finally, the ray tracer itself reads the hierarchical representation of the object database and

renders a realistic image from it. The hierarchical database representation is discussed in

Chapter 4, also.

The list of objects to be rendered is called the object database. When the number of

objects to be rendered becomes too large, a single computing node can no longer hold them

all. At this point, several nodes must cooperate to store all of the objects. This so-called

object database distribution has been performed by Goldsmith, but in a different way and

on a different parallel machine [Goldsmith 88]. Major changes to the basic ray tracer were

necessary to implement the distributed object database. Chapter 5 discusses the approach

taken, and its differences from the technique of Goldsmith.

5

Chapter 6 gives performance data, and compares the Hypercube Ray Tracer against

other parallel and serial ray tracers. A number of scenes of varying complexity are used in

order to give representative data over a wide range of input parameters.

Finally, Chapter 7 concludes and chapter 8 suggests topics that should be studied

further.

CHAYIBRII

BACKGROUND

Outline of Ray Tracing Procedure

In order to go any further with the discussion of the Hypercube Ray Tracer, it is

appropriate to review the evolution of the ray tracing technique. The basic parallel

techniques thus far applied to ray tracing will also be discussed.

Ray tracing emerged as a realistic image synthesis technique in the mid 1970's

[Whitted 88]. Its milieu consists of an observer, a viewplane, and a set of objects called
-,

the scene. (See Figure 1) The observer is a point in 30 space from whose perspective the

scene is to be rendered. The viewplane is an imaginary rectangle through which the

observer sees the scene. It is divided into a number of boxes, each of which represents one

pixel in the final image. It is then the task of the ray tracing procedure to find the light

intensity present at each pixel. The scene is composed of a (potentially large) number of

three-dimensional geometric figures called "primitive objects," or just "primitives."

Primitives can be as simple as a sphere or cube to as complex as a fractal mountainside

[Kajiya 83]. One helpful realization is that any light falling on a given pixel must have

come from the direction along a ray from the observer to the pixel in question. This

direction is antiparallel to the actual direction of light propagation. If one traces backward

along this line of propagation into the scene, the surface from which the light was scattered

can be discovered.

6

8

Examples here are the reflection in a mirror, and the highlights on the shiny surface of an

apple. Transmitted (refracted) light is also modeled in most ray tracers. Ray tracer shading

started with just these basic effects [Whitted 80].

_ Reflected light and refracted light are handled by straightforward applications of the

law of reflection and Snell's law, respectively. The new ray thus formed is ray traced just

like a primary ray, and its intensity contribution added to the other components of the

shading model.

No mention, as yet, has been given as to where light comes from in a scene. Some

objects in the scene are designated as light sources. Although they are thought of as

"sources", rays are never traced outward from them, only toward them. There are an

infinite number of possible ray paths outward from each light source. Clearly, all of them

cannot be traced in a finite time. Here lay one of the major flaws in ray tracing. Light is

not allowed to propagate outward in all directions from the light sources into the scene and

interact as it does in reality. With ray tracing, such features as razor sharp shadows are

common, whereas in reality, they are not. A light source is brought into play only when

the shading model needs to know how much light is falling on the point in question. These

shading models do not, as a rule, take into account global illumination effects such as

shadow penumbrae.

A given light source may or may not be occluded by some other primitive as viewed

from the point in question. In order to determine this, the shading model will fire a ray

from the point in question toward the light source. If the ray hits any object other than the

light source, the point is not illuminated by that light source. In this case, the intersection

point being shaded is in the shadow of the occluding object.

Primitives

In order to ray trace a primitive, one must know how to do two things. First, a

way must be found to determine all of the primitive's points of intersection with a ray.

Second, the normal vector at these intersection points must be computed. These are the

only two geometrical pieces of information needed by a shading model to shade an

intersection point.

Primitives vary widely in geometrical complexity. One of the simplest useful

primitives in ray tracing is the sphere. It is described by a simple implicit equation and is

readily intersected against a ray by solving a quadratic equation. (See Appendix C) The

surface normal vector is trivially obtained by constructing a vector from the center of the

sphere to the point of intersection, and normalizing. This illustrates the simplest

intersection and normal vector calculation.

9

Other primitives whose intersections have direct solutions are cylinders, cones, and

polygons. Although a polygon is not a solid, a polyhedron may be formed from several

polygons. Any surface defined by a second degree equation or lower also has a direct

solution. This includes parabolas, hyperbolas, and all nonunifonnly scaled versions of

spheres, and cylinders. Higher-order surfaces require iterative numerical intersection

algorithms.

The Parallel Nature of Ray Tracing

The brightness of each pixel on the viewplane is completely independent of its

neighbors. That is to say, the process by which a pixel's brightness is calculated in no way

depends on the adjacent pixels. Clearly, correlation does exist between adjacent pixels, but

the calculations themselves are independent. Pixel independence gives ray tracing the fine­

grained parallelism that makes it suitable for fme-, medium-, and coarse-grained parallel

architectures. The viewplane may be broken up into some number of pixel groups, and

each group assigned to a processing element for ray tracing. This is an image

decomposition approach to parallel ray tracing [Carter 89, Orcutt 88]. This strategy has the

distinct advantage of simplicity. It is easy to visualize some number of processors, each ray

tracing a portion of an image. Once all processors have finished their portions, the

complete image is assembled from the pieces, and the ray tracing is complete.

hnage decomposition is not the only option for decomposing the ray tracing task.

10

One may break up the ray tracing algorithm into a pipeline of stages [Gaudet 88]. These

stages might be labeled as: ray initiation, ray-object intersection, shading, and pixel

storage. Each pipeline stage would be implemented on a single computing element (node),

and data would be passed between stages as needed. The ray initiation stage would be

responsible for initiating all primary, reflected, and refracted rays. Clearly, this stage must

communicate with the shading stage. The second stage's function is self-explanatory. The

shading stage would take intersection points, found by the second stage, and apply the

shading model to them. Obviously, this stage must request that reflected, refracted, and

shadow rays be initiated by the first stage. Once the third stage completes, it sends its

results on to the fourth and final stage for conversion into ROB triples and storage in the

frame buffer. This decomposition is better suited to specialized hardware rather than to

homogeneous parallel computers.

Requested
Rays

......
--1 ,

Ray
1 Initialization

1 , Rays

Intersection

I
I

lntersec ti on
s 1 , Point

Shading

1 , Pixels

Pixel I Storage

Figure 2: Flow of Data in the Hypothetical Pipelined Ray Tracer

11

Still another decomposition technique distributes the object database (ODB), and

passes rays, in various stages of completion, among the nodes [Goldsmith 88]. This might

be labeled database decomposition. During the intersection process, a ray may need to be

intersected against a primitive that does not reside on that node. In this event, the node

sends the ray off to the node that does have that primitive. When the ray arrives at the new

node, the intersection process is picked up where it left off. This "database miss" may

happen more than once during the intersection process. It is assumed, here, that it is more

efficient to move a ray between nodes than to move portions of the ODB. For finer grained

machines with smaller node memories, this is indeed the case.

These are but a few of the possible ways that the ray tracing process could be

decomposed onto a parallel architecture. But before one of these methods, or another

method entirely, is selected for the Hypercube Ray Tracer, the specific target architecture

needs to be considered further.

How The Technique Has hnproved Since Its Conception

Camera Models

12

The observer and viewplane constitute what is called a "camera model." This is the

simplest possible camera model - that of a pinhole camera. It has an infinite depth of field,

so all object viewed are in sharp focus [Foley 84]. This is neither like our eye nor like a

camera: it is unrealistic. Better camera models than the pinhole camera model have been

developed [Potmesil]. Potmesil presents a model based on a lens and aperture. The model

accurately reproduces the effects seen in a real camera such as focus and depth of field, but

is not easily adapted to ray tracing. It is much.better suited to other rendering techniques

such as Z-buffers or scanlines [Foley 84].

Shading Models

Better shading models were developed as experience in realistic image synthesis

grew and illumination engineers came onto the ray tracing scene [Whitted 80, Cook 82].

These shading models superseded the more simplistic models of [Phong 75] and [Blinn

77]. The model of [Cook 84] is particularly interesting since it includes wavelength­

dependent effects. One such effect is the color shift seen on a metallic surface as the

viewing angle with the surface becomes small. Although this model opened new vistas of

realism, it further taxed the already slow ray tracing procedure with yet more computations.

Most shading models use just three spectral bands to render images - red, green, and blue.

But since these colors are just three discrete samples along a continuous frequency

spectrum, they cannot adequately model the way light interacts with the environment.

13

Torrance's model uses many wavelengths along the visible light spectrum. In this way, the

behavior of many different wavelengths may be modeled separately. These samples can be

combined, via color-science principles, to give the classical RGB tristimulus values that our

eye perceives.

Intersection Philosophy

Discovering a ray's closest intersection point is the major consumer of time in the

ray tracing process. The simple solution is to merely intersect the ray with all objects in the

scene, and select the closest. This algorithm has the unfortunate attribute of being O(n) in

the number of objects in the scene. For example, if one wishes to render a scene composed

of 1000 primitive objects at a resolution of 512 by 512 pixels, over a quarter of a billion

ray-object intersections would be required in the worst case. This number can be greatly

reduced by organizing the object database (OOB) into some better structure and using a

more efficient intersection strategy.

Most intersection acceleration techniques go hand in hand with some specific ODB

organization philosophy. There are two broad classes of ODB philosophies; object

subdivision [Weghorst 84, Kay 86] and space subdivision ,[Glassner 84, Fujimoto 86,

Arvo 87, Uselton 89]. Each presents its own unique set of advantages and disadvantages.

To date, neither has shown itself to be clearly superior over the other. The fastest

algorithms in each class are roughly the same speed as one another. Furthermore, the

overhead for each class of algorithm in terms of time and memory is almost identical.

Space subdivision techniques attempt to divide 3D space into a number of disjoint

volumes, each of which wholly or partially contains a number of the scene primitives. To

intersect a ray against this structure involves stepping through the subvolumes along the

path of the ray intersecting against each primitive associated with that subvolume. Space is

usually divided using an adaptive, variable depth octree [Fujimoto 86, Glassner 84], or

slabs [Uselton 89]. One notable exception to this rule is the strategy developed by Arvo

14

and Kirk [Arvo 87]. They describe a technique called "ray classification" which is based

on 5-dimensional adaptive space subdivision, rather than the usual three dimensional space

subdivision. From the starting position and direction of a ray, the ray classification

algorithm derives a small set of primitives against which the ray must be checked. Position

and direction of a ray constitute the five degrees of freedom which are used as the basis for

a 5D hypercube which encompasses all possible ray origins and directions. Associated with

each subcube is a list of all possible objects which a ray in that subcube might intersect - a

candidate set. At first, this 5D hypercube is very coarsely subdivided. As rays are cast, it

is successively subdivided into smaller hypercubes which contain fewer and fewer

candidate primitives. Space subdivision techniques have the advantage that they query

primitives in the order they occur along the ray, but they also have the disadvantage of

splitting up the ODB.

Object subdivision techniques impose a structure on the ODB rather than space

itself. They organize the primitives into a structure of a more classical nature - a hierarchy

resembling a tree [Weghorst , Goldsmith 87, Kay 86]. To intersect a ray against this type

of structure involves traversing the hierarchy from the root, down to the leaves while

checking the ray against each node. The ray may sometimes intersect more than one

subtree of a given node. Therefore, more than one primitive must sometimes be tested.

Object Hierarchies md Boundin& Volwnes

Many strategies have been developed that improve the intersection performance to

O(log2 n) or better [Rubin 80, Weghorst 84, Kay 86, Arvo 87, Fujimoto 86]. The

technique in [Weghorst] suggests a hierarchical organization of the object database and

judicious use of bounding volwnes. Bounding volumes have been the topic of much

research. Their function and their advantages are discussed below.

Bounding volwnes are very simple geometric objects, such as spheres and cubes,

that may be placed around primitive objects. Since bounding volumes are simpler objects

15

than most primitives, it is much faster to intersect against a bounding volume than a

primitive. In this way, one may test a ray against a bounding volume first. If the ray

misses the bounding volume, then it must also miss the primitive. When this happens, the

ray does _not have to be intersected against the primitive at all. Since many rays do, in fact,

miss the object they are being tested against, a substantial time savings is realized. This

time savings is maximized when a primitive's bounding volume fits very tightly around it.

As the size of the enclosing bounding volume shrinks, more rays will miss it, and thus

avoid the potentially costly ray- primitive intersection.

Through the use of bounding volumes, one can speed up the intersection process

by a constant factor. However, by reorganizing the object database into a tree and

developing a new searching technique, one can realize logarithmic speedup I The hierarchy

is formed by partitioning the object database into small groups of primitives, placing a

bounding volume around each of these groups, and continuing recursively until there is a

single bounding volume enclosing the entire scene. Using the following algorithm, one

may traverse the hierarchy to find the closest primitive [Weghorst 84].

16

Given a ray
elements = children of root node
While elements is not empty

While not at end of elements
c = current element
If c has been tested

Advance to next element in elements
Else

If ray intersects element c
If element c is not a primitive

Replace c with its children in elements
Else if distance to intersection > 0.0

Advance to next element in elements
Else

Remove c from elements
Endif

Endif
Endif

Endwhile
If elements is not empty

e = element in elements with least intersection distance
If e is not a primitive

Replace e with its children in elements
Else

Return e
Endif

Endif
Endwhile
Return nil

Algorithm 1: Weghorst Hierarchical Intersection

Weghorst states that the hierarchy should be constructed carefully, but gives no objective

measures by which to judge the quality of a hierarchy. It should be fairly clear that a group

of primitives in close spatial proximity to one another will give a smaller bounding volume

that a group with even one outlier. The tightness with which bounding volumes fit is a

crucial issue in hierarchy creation. Performance of the hierarchical intersection procedure

may degrade to O(n) for a worst-case hierarchy.

Salmon and Goldsmith have developed an algorithm which generates a nearly

optimal hierarchy [Goldsmith 87]. It constructs a hierarchy one primitive at a time given a

partially shuffled list. Since there are n objects to be inserted into the hierarchy, the

algorithm complexity is O(n log n). The algorithm decides where to place an additional

17

primitive based on a simple cost function. The cost function for a node is based on the

increase in its bounding volume area if the primitive is added to that node. In other words,

the primitive is placed such that the increase in bounding volume area of all nodes is

minimized. The order in which the primitives are inserted into the hierarchy has an impact

on the optimality of the hierarchy, but practice has shown that excellent results are obtained

when partially shuffled modeler order is used. Modeler order is the spatially coherent order

in which the objects in the scene are usually modeled.

Intersection

Not only has the object database structure improved, so have the ways in which it is

traversed to find the closest ray-object intersection. A little thought will disclose the fact

that the Weghorst algorithm intersects a ray with a potentially large number of primitives

before it finally finds the closest one. Primitive intersections· are precisely the types of

intersections that bounding volumes are designed to reduce. What if we could intersect the

ray with primitives in its path in the order that they occurred? This would cut down

considerably on the number of ray-primitive intersections performed per call. Just such a

technique has been developed by [Kay 86], and is presented here.

Initialize heap to empty

Initialize t nearest = +OO { Distance to nearest primitive

Initialize p_nearest = nil { Pointer to nearest primitive
While heap is not empty and distance to top node < t_nearest

Extract candidate from heap
If the candidate is a primitive

Compute ray-primitive intersection
If ray hits candidate and distance < t nearest

t nearest distance
p_nearest = candidate

Endif
Else

For each child of the candidate
Compute· ray-bounding volume intersection
If the ray hits the bounding volume

Insert the child into the heap
Endif

Endf or
Endif

Endwhile

Algorithm 2: Kay Hierarchical Intersection

18

One interesting thing to note about the Kay algorithm is the use of a heap. The heap

always keeps the closest distance to a primitive- or bounding-volume intersection at its

root. In this way, the primitives are intersected with the ray in the order they occurred

along the ray. This idea of intersecting the ray against primitives in order along the ray is

largely responsible for the greatly-improved efficiency of the Kay algorithm over previous

hierarchy-intersection algorithms.

Bounding Volumes

Bounding volumes are another potential target for improvement. Although a sphere

is a very simple and easy to use geometrical figure, intersecting a ray against it requires a

quadratic equation be solved. If the bounding volume intersection could be simplified, then

we would benefit greatly. Note that we really don't need the exact point of intersection

with the bounding volume, rather we need only know if the ray intersects. One solution is

to use polyhedra formed by the intersection of three or more "slabs" [Kay 86]. A slab is the

19

infinite volume of space contained between two parallel planes. An arbitrarily complex

convex polyhedron can be formed by intersecting a number of slabs. For example, a right

rectangular prism is formed by intersecting three orthogonal slabs. Once certain simple

preliminary calculations are made, intersecting a ray with a slab involves only two

multiplies, two subtracts, and a comparison. Compare this with 10 additions 16

multiplications, and a square root for a sphere.

Primitives

Simple primitives have already been.mentioned, but their usefulness for

representing real scenes is limited. Seldom do we see a perfectly spherical rock, or a

perfectly smooth surface. More complex primitives are needed to make a scene look more

realistic.

Once the equation of a surface goes above second degree, it no longer has a direct

algebraic solution, and we are forced to resort to numerical techniques. Some primitives

whose intersection is handled by numerical methods are the superqµadric [Barr 86], the

generalized cylinder [Bronsvoort 85], bicubic patches [Kajiya 83], algebraic surfaces

[Hanrahan], and swept surfaces [Kajiya 83, VanWijk 84]. Swept surfaces are a class of

procedurally-defined objects. The generalized cylinder is actually a swept surface, but its

complexity warrants mention on its own.

Fractals are another type of procedural object [Mandelbrot 77, Kajiya 83]. There are

two ways of ray tracing a fractal surface. One may fully evolve the surface and instantiate

each facet with a single polygon, or one may elect to treat the surface as a single primitive.

In the first option, a database of many thousands of polygons would result. This would

waste much memory because many of the polygons would not be visible from a given

viewpoint. The second option would result in only one primitive in the object database, but

it would have an intensive, and possibly very costly, intersection procedure. Kajiya gives

a full and elegant treatment of just such an intersection scheme. The algorithm evolves the

20

sutface in tandem with the intersection, and its petformance is surprisingly good. In this

same paper, Kajiya also describes techniques for intersecting a ray with prisms and

sutfaces of revolution. A prism is a two-dimensional, closed curve swept along a straight .

path, and a surface of revolution is a two-dimensional, closed curve swept along a circular

path.

Constructive SQ1id Geometry

A crucial distinction needs to be made at this point between some of the

aforementioned primitives. Some, like the sphere and polyhedron, are solids. Others, like

a polygon or bicubic patch, are not solids. They are just a two dimensional sheet warped in

three-space and do not enclose any volume. If we turn them into solids by completing an

enclosed space somehow, then they become candidates to be used with a technique known

as constructive solid geometry (CSG) [Goldstein 71, Roth 82, Yossef 86].

CSG refers the process of applying boolean operations on the members of a set of

solid objects in order to produce a new solid object. For example, we might construct a nut

by subtracting a cylindrical hole from the middle of a square block. A CSG expression for

this operation might look like, "A and not B," where A is the square block and B is the

cylinder meant to be the hole.

CSG is one technique that can be applied to existing primitives to build new and

different objects. It is not the only one, however. Certain deformations such as tapering,

bending, and twisting may also be applied to primitives [Barr 84]. There are two

approaches to the ray-deformed primitive intersection problem. One may either intersect a

straight ray against a deformed primitive, or one may intersect a deformed ray against an

undefonned primitive [Barr 84]. Further research by Barr has led to the development of

methods suitable for intersecting a ray with any differentiable sutface [Barr 86].

Differentiable sutfaces include both parametric surfaces and implicit surfaces. This

encompasses twisting, bending, and tapering deformations, as well as the primitives

themselves. Therefore, Barr's methods may be used to intersection against arbitrarily

deformed surfaces. These methods are numerical in nature and, of course, much slower

than direct ray intersection solution.

Antialiasint:

21

All image synthesis techniques suffer from aliasing unless specific measures are

taken to eliminate it. Aliasing manifests itself as jagged edges, and moire patterns. It is a

result of sampling the image on a regular grid. Many researchers have proposed methods

to combat this problem [Lee 89, Heckbert 86, Mitchell 87, Whitted 80, Amanatides 84,

Abram 85, Dippe 85, Cook 84, Kajiya 83]. The methods proposed by Lee and Mitchell are

discussed briefly below. They represent a good cross-section of the methods proposed by

the above group of researchers.

The method of Lee is an adaptive technique based on the variance of many rays cast

through a single pixel. To start with, a number of rays are traced through a pixel. The

variance in brightness of these rays is then examined to determine if more rays should be

traced. If the variance is sufficiently low, then no more rays are traced, and the existing

samples are averaged in some way. Different theories exist for choosing the distribution

for tracing rays within the pixel, and the method for averaging them. One way is to trace

the rays in a uniform distribution, and take a uniformly weighted average of the resulting

samples. Another way is to cast the sample rays in a Gaussian distribution about the center

of the pixel, and take a uniformly-weighted average of the samples. Finally, there is the

converse of the last method - cast samples in a uniform distribution and take a Gaussian

weighted average. All of these methods are types of low-pass spatial filters, and produce

similar visual results. Since this method deals only with samples from one pixel, it

preserves ray tracing's pixel-level parallelism.

Mitchell's method is also an adaptive pixel subsampling technique, but with

different sampling criterion and a different sample averaging technique. Pixels are initially

22

sampled once each in a nonuniform "jitter" pattern. These initial samples are then

examined, and areas of high contrast are supersampled. Supersampling is also done

nonuniformly. When the whole image has been sufficiently supersampled, the samples are

combined using a four stage, ever coarser box filter. The result of this method, of course,

is a uniformly resampled antialiased image. Since the supersampling criterion is based on

information from a number of neighboring pixels, the pixel-level parallelism is destroyed.

Although initial sampling rays may be cast independently of one another, supersampling

rays depend on the results of other rays. This method in its present form, therefore, is

unsuitable for the Hypercube Ray Tracer.

Distributed Ray Tracin~

Distributed ray tracing [Cook 84] solves many basic problems with the images

generated with classical ray tracing. Distributed ray tracing (DRT) is not to be confused

with the distributed object database I have implemented. The problems of shadow

penumbrae, motion blur, depth of field, and other fuzzy phenomena are addressed by

DRT. No more rays are required than with standard antialiasing techniques. The rays used

are distributed according to various distribution functions. For example, shadow rays are

distributed across the solid angle subtended by the light source in question. Reflected rays

are distributed according to the object's specular reflectance function. A similar distribution

is performed on refracted rays. Depth of field is produced by distributing the primary ray

origins over the theoretical camera lens. Finally, motion blur is produced by distributing

the primary rays over the interval of time encompassed by the current frame. In this case,

the positions of all objects in motion must be recomputed for each ray.

When used with the antialiasing strategy outlined by Lee, the pixel-level parallelism

of ray tracing is preserved. This makes DRT an ideal candidate for the Hypercube Ray

Tracer.

23

Architecture of the iPSC/2

We will now focus our attention upon the iPSC/2 - the parallel computer on which

the Hypercube Ray Tracer was developed. The iPSC/2 system consists of two

subsystems: the system resource manager (SRM, sometimes called the "host"), and the

hypercube itself (sometimes called the "cube" or "tower"). The SRM is a standalone

microcomputer connected to one node of the hypercube. Its puipose is to act as a software

development platform, as well as the administrator of the hypercube. All user interaction

with programs running on the hypercube is handled through the SRM.

The hypercube portion of the iPSC/2 is a homogeneous array of computing nodes

connected in a binary n-cube. The hypercube interconnect is implemented by 2.8 megabyte

per second communication links and special hardware that optimizes message routing.

Each node is composed of an 80386 microprocessor, 1-16 MB of RAM, a floating point

coprocessor, and communications hardware. These features place the iPSC/2 into the

medium grained, distributed memory, MIMD {Multiple Instruction Stream, Multiple Data

Stream), hypercube interconnect class of parallel computers.

iPSC/2 programs are generally written in two parts: a host part that runs on the

SRM, and a node part that runs on each node of the cube. Although this structure is not

mandatory, it provides a convenient paradigm from which to work. Usually, the host

program handles such non-parallel functions as terminal I/O, disk 1/0, or network access.

The node program or programs, meanwhile, handle all problem specific processing. This

model has no serious drawbacks, and does not impose any severe limitations on the

Hypercube Ray Tracer as we shall s~e later.

CHAPTER Ill

DESIGN CHOICES AND IMPLEMENTATION

Scope of Project and Statement of Goals

To reiterate, the main pwpose of this research is to efficiently parallelize the ray

tracing process. This task does not stand alone; however. Certain other issues must be

addressed before one can begin to think about ray tracing, proper. The first question that

comes to mind is, "What are we going to ray trace, and more specifically, how are we

going to represent it to the computer?" Some method of scene specification is needed in

addition to the ray tracer.

A number of ray-object intersection methods have already been discussed. For the

purpose of this research, I have chosen to implement one technique. The programming task

involved in implementing one intersection model is formidable enough in itself to render

others beyond the scope of this thesis. This will become evident in subsequent discussion.

I have also chosen to implement just one relatively simple shading model. The

choice of shading models does not impact the parallelism of the ray tracing process, so the

choice is largely arbitrary. I have selected the model proposed by [Phong 75] since it is

easy to implement. The illumination equation is as follows:

24

I = Ia + Id f (ti * L.) + Is f CR. * Y.)0

i=l i=l

Where:

I = The total light intensity falling on a point.
Ia = The constant ambient illwnination.
Id = The diffuse reflection characteristic.
Is =The specular reflection characteristic.
ti = Unit normal vector at the point in question.
L = Unit vector in the direction of the i'th light source.

(1)

B. = Unit vector in the direction of maximwn specular reflection. This is
the mirror direction of L.

Y. = Unit vector in the direction of the viewer.
n ="Specularity" exponent.
m = The number of light sources.

The variable I in the above equation is, in fact, a vector quantity. Since we are modeling

light reflection in terms of the ROB tristimulus values, all illumination variables and

constants are actually triples. Ia is the light intensity that is thought of as constant and

falling on all surfaces. It is called the "ambient light" intensity. Id may be thought of as the

color of the surface in question. For purposes of simplicity, the specular reflection

characteristic is defined as Is= ks* Id, where ks is called the "specular reflection

coefficient and ranges between 0 and 1. This way, only one surface color need be

specified for each primitive.

A new, more realistic shading model can be added at a later date with relative ease,

and virtually no impact on the program structure as a whole. As the choice of shading

models does not contribute to the parallel aspects of ray tracing, it is not emphasized as a

major design choice.

The choice of primitives will have a major impact on the ray tracer's performance.

This, in tum, will influence how credible the Hypercube Ray Tracer's performance data is

in relation to that from other ray tracers. A set of primitives must be selected that is

complex enough to be useful for solid modeling. They must not be so complex that ray-

25

primitive intersection time is always large, though. A compact, but representative sample

of popular primitives is called for.

Three possible parallelization strategies have been described. Each one has its own

merits and liabilities. It is easy to see that the decomposition model chosen will have the

most wide reaching effects on the ray tracer's program structure. Each decomposition

would require a completely different program structure. For this reason, I have chosen a

single decomposition model.

Design Choices

~Description

How do we efficiently describe a scene to the computer? First, let us state the

qualities a good scene description language has. It should be easy for a user to write and

modify; a text file would be ideal. Second, the scene description should be intuitive; the

user should not have to memorize special codes, or formats. Third, the description

language should be powerful and flexible; it should not leave any feature of the Hypercube

Ray Tracer inaccessible. Fourth, it should be expandable. As new features are added to

the ray tracer, they must be made available to the user through the scene description

language.

My solution is a 'C' -like language called 'Rayd.' It satisfies all the criteria given

above. A full BNF (Backus-Naur Form) [Aho 86] description ofRAYD is given in

Appendix)f.A

The decision to construct a new scene description language was not made lightly.

There were, at the time, already existing scene description languages such as PHIGS+ and

Renderman. NFF, however was not flexible enough for the demands of the Hypercube

Ray Tracer, and Renderman was not yet publicly available. This drove me to the only

otl1er alternative available - writing my own.

26

Intersection Method

Intersection method and ODB organization is the next major design choice to

address. Several very different intersection algorithms have been presented, and all work

well. Only the methods of Fujimoto and Kay were available when this decision was made,

therefore, we shall concentrate on them. The method in Fujimoto (ARTS -- Accelerated

Ray Tracing System) is a space subdivision technique based on the octree. The octree is

traversed using a 3DDDA. (3 Dimensional Digital Differential Analyzer) ARTS claims

good results, but the octree traversal algorithm is complex, and the ODB is split up into a

large number of nondisjoint units. It would be highly desirable if the ODB could be easily

split up over the nodes of a parallel processor. This does not appear to be the case for

ARTS' ODB organization.

The method of Kay is an object subdivision technique based on a hierarchy. The

hierarchy is traversed by an efficient algorithm already given in chapter 2. Kay's method

also includes a new, and more efficient type of bounding volume. Excellent results are

obtained, and the hierarchy may be distributed by subtrees across processing nodes if need

be. Kay's algorithm 1) keeps the ODB in a form that is easily distributable, 2) has better

performance than ARTS, 3) is relatively easy to implement, and 4) gives us a more efficient

bounding volume. Any one of these reasons is enough to choose Kay's algorithm.

Hierarchy Generation

Choosing a method for generating the hierarchy to be used by the Kay algorithm

was a relatively simple task. The research presented in [Goldsmith 87] presents definitive

comparisons between three hierarchy construction methods: model order construction,

median-cut construction, and a heuristic tree search method. The heuristic tree search

method, henceforth called the Goldsmith method, yielded the best overall results. The

Goldsmith method is O(n log n) in the number of objects in the scene. For purposes of

comparison, the median cut method is also O(n log n), but produces a hierarchy inferior to

27

the Goldsmith method. The model order construction is O(n), but can produce a very poor

hierarchy. Since the Goldsmith method is O(n log n), it is in the same asymptotic

complexity class with the intersection algorithm. From this we can deduce that the

Goldsmith method is probably economical in terms of the time it will take to construct the

hierarchy. Clearly, the hierarchy construction time must not exceed the amount of time that

will be saved by using such a hierarchy, otherwise, there will be a net loss in performance.

For all of the aforementioned reasons, I chose to implement the Goldsmith method for the

Hypercube Ray Tracer. Hierarchy generation is performed as a serial preprocess,

however, not in parallel. This is because the hierarchy needs to be constructed only once,

and it is the same for every node in the hypercube. The hierarchy construction could,

conceivably, be parallelized, but it would not contribute significantly to the ray tracer's

performance. (The hierarchy constructions would be faster, but the ray tracer would not)

For this reason, I opted for the slightly easier option of a serial hierarchy constructor.

Primitives

Choice of primitives, as mentioned before, will heavily influence the relative

perfonnance of the Hypercube Ray Tracer. If the primitives are too simple, the ray tracer's

flexibility will suffer. If they are too complex, then ray-primitive intersections will

dominate rendering time, and absolute performance will suffer. I decided on a

representative mix of primitive complexities. The Hypercube Ray Tracer supports spheres,

cylinders, cubes, polygonal prisms, and convex superquadric ellipsoids. All may be scaled

.arbitrarily along each of the three coordinate axes. The sphere, cylinder, and cube provide

primitives which are easily intersected against. The prism and superquadric provide more

flexible primitives which are harder to intersect. As per the design goals of the Hypercube

Ray Tracer, the software has been structured such that new primitives may be added with a

minimum of effort.

28

Constructive S.QJid Geometry

To complement these primitives and enhance their flexibility, I decided to

implement CSG. Publications dealing with ray tracing CSG objects, however, are very

scarce. At least two have undertaken this task, with varied results [Roth 82, Y ossef 86].

Roth's CSG intersection method is O(n2) in the number of objects in the CSG construct -­

very costly indeed. Y oseef s method is O(n) in the number of objects, but the algorithm

given is complex and based on a form of space subdivision. Since I had already decided

on an object subdivision approach for the Hypercube Ray Tracer, this was a major

stumbling block. Therefore, I developed my own CSG representation and intersection

methods. My CSG intersection method is called the "truth table" method.

CSG is a boolean expression on a number of volumes. Let us consider, for a

moment, all the primitives in a CSG construct without the boolean expression applied to

them. If we now consider the path of a ray through this collection of primitives, we can

envision many intersection points along its path with the various primitives. Some of these

intersection points, however, are not a part of the CSG object; they are excluded by the

boolean expression performed on the primitive volumes. If a way could be found to detect

these "false" intersection points, they could be thrown out of the intersection process as

they were found. The resulting algorithm would then find only the intersection points

which actually lay on the surface of the CSG object.

Any 3D point may be tested for membership in the CSG volume by first

determining whether it lies within each of the primitive volumes, and then evaluating the

boolean CSG expression with these truth values substituted. As a ray passes through the

CSG primitives, it encounters the surfaces of zero or more of these primitives. The CSG

membership of each of these surface intersections must be determined. This is not quite the

same as testing an arbitrary 3D point, since the intersection point in question lies on the

surface of a primitive. The solution is to test two points, one on either side of the surface.

Evaluating the CSG expression based on the positions of these two points, we obtain two

29

answers. Either both points are inside the CSG object, both are outside, or one is inside

and one is outside. Clearly, if both points are outside the CSG object then the surface

intersection is not on the surface of the CSG object. ff one point is inside and one is

outside, then the surface intersection is on the CSG object. This, then, is a CSG

intersection point that we wish to keep. There is one other case: both points inside. This

case could only happen if a ray were being refracted through a transparent CSG construct.

Since a visible interior interface would be undesirable, we must exclude this intersection

point. Reviewing the four cases and the desired truth values of each, we find that the

exclusive OR function on the two test points yields the proper truth value of the surface

intersection point.

Nothing has yet been said about how to determine whether or not a 30 point lies

inside a primitive. Rather than evaluating a costly ~side/outside function, we m~y make

one simple observation. When a ray encounters the surface of an object, it changes its

"insidedness" state with respect to that object. When a ray in free space hits the surface of

a sphere, it goes from being outside the sphere to being inside the sphere. Since a ray may

enter an arbitrary number of objects (CSG objects or primitives), each ray has a list

associated with it specifying which objects it currently lies within. In this way, there is

very little cost associated with keeping track of which objects a ray lies within. ff the ray

has to be checked against each object in the CSG construct each time the CSG expression

were evaluated, then the CSG intersection procedure would become O(n2).

A method for representing the CSG expression must also be specified. One way to

represent a boolean function is by using a parse tree [Aho 86]. A parse tree can be easily

evaluated by intexpreting it with a recursive traversal algorithm. Although this approach is

simple, it is not very fast, nor is the representation particularly compact. Another way to

represent a boolean function is by a truth table. A truth table· associates each possible input

state with a corresponding output value. ff we assume an order for the input states, then

30

we need only store the corresponding output values. Since each of these output values is

simply a true or false, they may be stored as a bit vector.

A truth table for n possible inputs has 2° entries, so a complex expression may

require a truth table of considerable size. If we keep the number of objects participating in

a CSG expression down to a reasonable number (8 or so), then the truth table is of

reasonable size (256 bits). Note the use of the word "objects"; a CSG object may contain

other CSG objects as well as primitives. In this way, generality is maintained, and CSG

objects may encompass any number of primitives.

Extending the truth table intersection method to a hierarchy of CSG constructs is

trivial. Since each CSG node has its own CSG expression, an intersection with any of its

children may be tested for validity simply by consulting the truth table. The following

original algorithm implements the Hierarchical Truth Table Method (HTIM).

Given an intersection point IP on primitive P
Let C be the CSG node to which P belongs
While C is a CSG node

If IP is not a valid CSG intersection for C
Return FALSE

Endif
p = c
C = parent of C

Endwhile
Return TRUE

Algorithm 3: HTIM Candidate IP Membership Test

The Hierarchical Truth Table Method traverses up the CSG hierarchy checking for

CSG membership at each level. If the intersection point in question is found to be invalid

at any point in the traversal, the intersection fails. If the intersection point clears all CSG

nodes up to and including the root, it is a valid intersection for the CSG hierarchy.

31

Using HTIM, a prospective intersection point may be quickly checked for validity.

H1TM is O(n) in the number of objects in the CSG construct for purposes of intersection.

This is clearly superior to the method of [Roth 82], which is 0(n2). H1TM is at least as

fast of the method of [Y ossef 86] which is O(n). H1TM has the extra advantage of

independence from ODB organization strategy; it will work with any object or space

subdivision scheme.

Antialiasin& and Distributed Ray Tracin&

Of the two antialiasing methods presented in chapter 2, only the method of Lee is

suitable for our parallel environment. (It would work in a shared-memory parallel

computer) It is also extensible to distributed ray tracing. Since DRT does not affect the

parallelism of the Hypercube Ray Tracer in any way, it was omitted from the initial design.

The Lee antialiasing method, however was implemented since itS implementation was

trivial.

Parallel Decomposition

With all of the strictly ray tracing specific issues decided, we now tum to the

parallel issues. Of primary importance in the parallelization process is the problem

decomposition. What, in the ray tracing milieu, shall be decomposed across the nodes of

the hypercube? There are two basic decomposition methods in classical parallel processing;

domain decomposition and control decomposition. Domain decomposition focuses on

distributing an algorithm's central data structure evenly among computing nodes. It is used

whenever the type and amount of processing to be done on each datum is roughly the

same. This paradigm is used extensively in fmite element analysis and matrix methods.

Control decomposition focuses on distributing an algorithm's control structure. It is used

in programs which have irregular data structures or an unpredictable flow of control.

32

Which decomposition should be used on ray tracing? First, let us try to identify the

central data structure in ray tracing. A first guess might be the ODB. Although the ODB is

certainly the largest data structure, each node must have access to the whole database.

Therefore, if the ODB is statically decomposed, the nodes will not be able to complete the

ray tracing operation without extensive communication. In the distributed memory

environment of the iPSC/2, communication is a relatively expensive operation.

Performance, to say nothing of program simplicity, would suffer because of this

decomposition. Another data structure must be found to decompose. As discussed earlier,

each pixel in the frame buffer is independent of all other pixels. By virtue of this property

alone, the frame buffer is an ideal choice for decomposition. Each node may be set to ray

trace a portion of the final image, and the pieces later recombined to form the complete

image.

This type of image decomposition leads to several very important points of overall

program structure. If eacn node is going to ray trace a portion of the image, then it must

execute a functionally complete ray tracing program. If each node is going to function as a

complete ray tracer, then it must have access to the entire ODB. This does not necessarily

mean that each node must have a complete copy of the ODB. However, if each node did

not have a copy, then they would have to communicate with other nodes to get the data they

needed. Due to the complexity of a distributed ODB, the initial version of the Hypercube

Ray Tracer stores a complete copy of the ODB on every node. Distributed ODB extensions

to the Hypercube Ray Tracer are discussed in chapter 5.

There is a vital question about image decomposition that needs to be addressed: in

what manner will the image plane be divided? Should it be divided by pixels, rasters,

blocks, strips, or some other method? Just because nodes are assigned equal size parts of

the image does not mean that they will take the same length of time to render them! A little

thought will disclose that the time taken to render a pixel is highly variable depending on

what kind of objects the primary ray and its subsequent secondary rays intersect. A ray

33

that misses everything will take much less time to shade than a ray that hits a transparent or

reflective swface. Furthermore, if a node's share of an image is largely composed of

"hard" pixels, it will take much longer to complete than a node tracing "easy" pixels. This

can lead to a poor load balance and low efficiency. If a decomposition could be found that

allocated equal nwnbers of hard and easy pixels to all nodes, efficiency would be

maximized. One such decomposition is known as the "comb" decomposition because the

portion of an image assigned to a particular node resembles the teeth of a comb. Starting

with the first raster of an image, rasters are assigned to successive nodes until a raster has

been allocated to every node. The process continues until all rasters have been allocated.

Experimental evidence from the Hypercube Ray Tracer shows that this decomposition

gives a very good load balance, and an excellent efficiency. See chapter 6 for specifics.

Swnmazy Qf Desi&n Choices

At this point, several things about the Hypercube Ray Tracer's overall program

structure are decided. Each node in the hypercube runs a complete ray tracer with a

complete copy of the ODB. Later modifications will distribute the ODB among the nodes.

The "comb" image decomposition is used to divide the ray tracing load evenly among the

nodes. Both of these are parallel concerns, arid by no means constitute the complete

Hypercube Ray Tracer.

In addition to the node programs, a host-based program is responsible for loading

the node programs, sending the ODB to them, and reassembling the completed image when

the nodes finish. Once the final image is complete, it is written in standard HIP

(Hypercube Image Processor) format [Daniel 89]. HIP is an iPSC/2 based image

processing program authored at Oklahoma State University. Images may be viewed,

printed, or further processed easily using HIP. Figure 3 shows the overall flow of control

in the ray tracing process.

34

Textual Scene Description

, ,
Ra yd

Compiler

, , .
Hiergen

, , .
I'"

I
Ray

Ray Tracer

, ,
Rendered Image

Raw List of
Primitives

Efficient
Hierarchical

008

Figure 3: Flow of Control in Hypercube Ray Tracer

35

CHAPTERN

COMPONENTS OF THE HYPERCUBE RAY TRACER

Rayd - The Scene Description Compiler

Rayd is a language and a compiler. Both are discussed here in tum. As stated

earlier, Rayd must be intelligible, flexible, and expandable. Toward this end, the Rayd

language borrows many features from the 'C' language. Among these features are block

structure and syntax elements such as braces and semicolons. The Rayd compiler uses two

standard UNJxrM compiler building tools: lex and yacc. Once the Rayd compiler has

parsed an entire scene description, it produces a complete but unstructured list of

primitives. First, we will discuss the Rayd scene description language.

The Rayd Language

A Rayd scene description consists of three sections: object definitions, a single

scene definition, and a single observer defmition. Object defmitions may be hierarchical.

The following is a simple Rayd description.

36

/* Define two spheres by the name 'balls' */
define object balls {

} ;

/* Big green ball */
object sphere (

position = (9.0 0.2 0.2);
color = (0.4 1.0 0.1);
size = (0.9 0.9 0.9);

) ;
/* Small red
object sphere

) ;

position
color
size

ball */
(

(10. 0
(0.8
(0.5

-0.8 0.0);
0.0 0.2);
0.5 0.5);

/* (x,y,z) position */
/* RGB surface color */
/* (x,y,z) size */

/* Define a single
define light lumen

light source by the name 'lumen' */
{

light (
position = (1.0 1.0 2.0);
color (1.0 0.5 1.0);
brightness 10;
size (0.3 0.3 0.3);

) ;
} ;

/*.All objects in the scene go here. The balls and the light. */
define scene {

} ;

object balls (
position (0 0 0);

) ;
light lumen

position
) ;

(0 0 0);

/* Define the observer's position, viewing direction, etc. for */
/* rendering. */
define observer {

} ;

position= (5 0 0);
viewdir (74 -11 0);
updir = (0 0 1);
flen = 5;
vrectsize = (0.4 0.4);
recursion = 8;
resolution= (512 512);

/* Eye position. */
/* Direction we are looking. */
/* Dir. toward "top" of viewplane.*/
/* Dist. from eye to viewplane. */
/* Viewplane size in world coords.*/
/* Max. recursion depth of a ray. */
/* Pixel resolution of image. */

Figure 4: Sample Rayd Scene Specification

Each section is clearly visible in the above example. Note that a light source definition is

also an object definition. The only restrictions on the order of definitions is that to invoke

37

an object, such as in the scene definition or in another object definition, it must have

already been defined. For this reason, the scene definition is usually near the end of a Rayd

scene description.

Braces are used to enclose the bodies of all definitions, and parentheses enclose

object invocations and parameter lists. A semicolon is mandatory at the end of all brace or

parenthesis enclosed blocks. Semicolons are also mandatory following all parameters,

pseudodefinitions, and compiler directives. All of these constructs are defined in the next

section.

Object Definitions

Member objects in an object defmition have several parameters that may be set.

The number and types of these parameters vary according to what type the member object

is. Generally, these parameters take the form of a single number, a tuple, or triple. Tuples

and triples are enclosed in parentheses and elements are not comma separated. ff the

member object is not a primitive, then only its position, size, and rotation may be

manipulated. ff the member object is a primitive then these along with surface parameters

and other type dependent parameters may be changed. Standard surface parameters are

color, specular reflectance coefficient, specular reflectance exponent, reflectivity,

transmissivity, and refractive index. An example of type dependent parameters are the

shape controlling exponents for a superquadric. A full list of these parameters is given

with the Rayd BNF in Appendix A.

As far as Rayd is concerned, an object is an arbitrary collection of primitives and

previously defined objects all referred to by a single name. In the above example, we saw

the following structure:

38

define object balls {
object sphere ();
object sphere (...);

} ;

This groups the two primitives (spheres in this case) into a single object called

'balls'. This new object has its own coordinate system and may be rotated, scaled, and

translated at each future reference. For example, suppose we wanted to define an object

consisting of three 'balls'. The definition might look like this:

define object six spheres
object balls (­

position= (4 3 2);

} ;

) ;
object balls (

position= (3 6 0);
) ;
object balls (

position= (0 0 0);
size (2 1 1);
rotation= (45 30 0);

) ;

Figure 5: Rayd Specification for a Ouster of Six Balls

We now have an object, 'size_spheres' consisting of three 'balls'. The first two

invocations of 'balls' simply place two copies at (4 3 2) and (3 6 0) respectively. No

resizing or rotation is performed. Note that the position (4 3 2) is relative to the local

coordinate system of the 'six_spheres' object (Figure 5).

Formatting is arbitrary in a Rayd description; the above example is formatted as it is

for clarity. The third invocation of 'balls' is a bit different. It creates a 'balls' object scaled

twice along the X axis, and then rotated 45 degrees about the X axis, and 30 degrees about

the Y axis. Again, all scaling and rotations are done with respect to the named object's local

39

~Definition

The scene definition is very much like an object definition in form, but much

different in function. The function of the scene definition is to let the Rayd compiler know

which objects are part of the final scene to be rendered. Not all of the objects defined may

be intended to be part of the final scene. Indeed, when a high level object is constructed

from many lower level objects, one may only want to render the high level object. All of

its constituent objects are irrelevant. The scene definition provides a convenient way of

resolving this ambiguity. In general, the structure of the scene definition is as follows:

define scene {
objects and lights ...

} ;

Objects and lights are specified in the format already given. At least one object or light

source must be specified in the scene definition. There is no upper limit to the number of

lights and objects that may be specified.

Observer Definition

Once all of the objects and light sources to be rendered are defined, only the

viewpoint remains to be specified. This is the function of the observer definition. It

includes not only the position of the observer, but the viewing direction, viewplane size

and orientation, and other miscellaneous rendering information. A complete observer
·4

definition is given in Figure·'f'(All of the listed parameters are mandatory.
[

Pseudodefmitions and Compiler Directives

A number of other features are included in Rayd for convenience. One is the ability

of attach a textual label to an ROB color representation. This is done in the following

manner:

41

define color cyan= (0 11);

A color definition can appear anywhere outside other definitions. Thereafter, the label

'cyan' may be used anywhere the ROB triple (0 1 1) would otherwise have been used.

Similarly, the surface definition allows the user to attach a textual label to a set of surface

properties. The following is a hypothetical surface definition:

define surface shiny cyan {
color cyan; f* Surface color */
reflect .6; /*Amount of light reflected*/
spec .5; /* Specular reflection coeff. */
phong 20; /* Specular reflection exponent. */

} ;

After the surface has been defined, it may be invoked in· any primitive definition by using

the following form:

define object shiny ball {
object sphere (-

position= (1 2 3);
surface = shiny_cyan;

) ;
} ;

In this way, the surface properties of a large number of objects may be changed simply by

modifying one surface definition in the Rayd file. Also, the size of the scene description

file is frequently reduced since a large number of primitives usually have the same surface

characteristics.

Another convenient feature of the Rayd language is the ability to include other Rayd

files. The ability to bring in outside source ftles enables the user to construct libraries of

frequently used objects. It also lets the user logically organize a very large scene

description into multiple files. The syntax of the include directive is:

42

include "filename";

Include directives may be nested up to eight levels deep, but they may not form a loop.

The Rayd Compiler

The Rayd compiler works as a two-phase process. Phase one parses the Rayd

description and constructs an internal representation of the scene. Phase two traverses the

internal data structure and produces Ray Tracer format primitives as it goes. The exact

representation of primitives will be discussed at length later.

As mentioned earlier, the Rayd compiler is constructed using the UNIX™ tools lex

and yacc. Lex reads a file describing a number of lexicographic units, or tokens, that are to

be recognized. It produces a program which scans a stream of characters looking for the

tokens. This program is called a lexical analyzer. The particular lexical analyzer used in

the Rayd compiler recognizes all legal keywords and strings for the Rayd language. The

lexical analyzer effectively transforms a scene description into a stream of tokens which are

parsed by the next stage of the Rayd compiler - the parser. See Figure 7 for an overall

view of the Rayd compiler's internal structure.

43

Textual Scene
Description

,,
Lexical

Analyzer

Toke

' '
nized
ption Descri

Ra yd
Parser

Symb ol
e

''
Tabl

SymTab
Traversal

,,
Raw List of
Primitives

Figure 7: Internal Block Diagram ofRayd Cc;>mpiler

Just as there are grammatical rules for the English language, there are also rules of

grammar for the Rayd language. These rules can be formulated in standard BNF notation.

The full BNF description of the Ray language can be found in Appendix A. This BNF

description is read by the yacc parser generator. Yacc stands for "Yet Another Compiler

Compiler." After reading the input grammar, Yacc generates a parsing program which

must be compiled and linked against the lexical analyzer built by Lex. Actions, written in

C, may be included with each rule in the grammar. The actions are executed when the

parser recognizes the construct represented by the associated rule. For example, there is a

44

rule in the Rayd BNP description which recognizes a triple of numbers enclosed in

parentheses. The action code associated with this rule takes the three numbers in the triple

and packs them into an array for future reference by other rules.

Overall, these actions comprise the actual compiler part of the Rayd compiler. Their

ultimate goal is to construct a data structure of primitives and the relationships between

objects. This data structure is called the "symbol table," and each element comprising it is

called a "symbol." A symbol may contain one of many different things. Table 1 is a list of

the possible types of symbols.

TABLEl

SYMBOL TABLE EN1RY TYPES

·Type Description

surface The result of a surface definition, this symbol stores all of
the surface properties associated with the specified name.
This symbol is only found at the root level of the symbol
table. ·

primitive This symbol contains a full description of one primitive.
Stored here are the type and dimensions of the primitive
as well as its orientation and name as specified in the scene
description. Surface characteristics are also stored here.

macro This symbol is a link to another object. It implements the
hierarchical structure of compound objects. Stored here are
position, rotation, ·and size of the object that it points to. If
the this construct is a CSG object, the CSG expression is
also stored in this symbol.

light Points to a list of light_ elements. Similar to a macro
s~bol, except a light symbol can only point to
Iight_elements. Position and sizing information is stored in
the symbol to be applied to the component light_elements.
This symbol is only found at the root level of the symbol
table.

light_element This is a special type of primitive that is modeled as a light
emitter. It is assumed to be spherical. Position, size,
orientation, color, and intensity are stored in this symbol.

45

TABLE 1 (Continued)

Type Description

scene Similar to the light type, this type of symbol points to a list
of scene_elements. This symbol implements the scene
definition section of a Rayd scene description. This symbol
is only found at the root level of the symbol table.

scene_element This symbol is very similar to a macro symbol in that it
points to a list of primitives or other macros. Each
scene_element represents one object specified in the scene
definition section.

ambient This symbol stores the ambient light intensity specified in
the Ray scene description. This symbol is only found at
the root level of the symbol table.

observer This symbol store all of the observer specific parameters.
It corresponds with the observer definition section of a
Rayd scene description. This symbol is only found at the
root level of the symbol table.

color The result of a color definition, this symbol stores the name
of the color, and its RGB representation. This symbol is
only fowtd at the root level of the symbol table.

One important thing needs to be stressed regarding the properties of the macro and

scene_element symbols. Each of them has associated with it position, size, and rotation

(orientation) information. This information applies to the symbol's target in addition to any

such infonnation stored there, not in place of it. Note that the target may be a compow1d

object. In this case, the geometrical manipulation applies to all of the object's constituents

be they primitives or other compound objects. In this way, multiple translation, scaling,

and rotations are possible. This is the way a local coordinate system is imposed on each

primitive and hierarchical object.

Symbol~ Traversal

Once the symbol table has been constructed, it must be converted into the list of

primitives it represents. The only objects which must be converted are the ones pointed to

46

by scene_element symbols. All of these symbols are either primitives or macros. Since the

linkage among the macro symbols is acyclic, a depth first traversal is ideal [Reingold 83].

Even though a symbol may be pointed to by more than one macro symbol, the traversal

will still function correctly since the graph is acyclic.

As the graph is traversed, it is also necessary to calculate the primitives' positions,

sizes, and orientations. Such calculations are greatly simplified by using geometric

transformation matrices [Foley 84]. A theoretical discussion of geometric transformation

matrices is beyond the scope of this thesis, and the reader is referred to [Foley 84] for a

tutorial. The Hypercube Ray Tracer requires two transformation matrices associated with

each primitive. One transforms a ray or point in global coordinates into a coordinate

system centered on the unit primitive. This is called the global to local transform. The

inverse of this matrix transforms a ray or point in object local coordinates and transforms it

into global coordinates. This is called the local to global transform. These two matrices

may be calculated as the hierarchy is traversed. The following is the pseudocode

representation of the graph traversal:

Given a pointer S to a symbol
Save the aggregate transformation
Compose aggregate transformation with S
If S is a macro or scene element

For each symbol P under S
Recurse for P

Endf or
Else

Transform S by the aggregate transformation
Write out primitive S in standard format

Endif
Restore the aggregate transformation
Return

Algorithm 4: Rayd Symbol Table Traversal Algorithm

47

Now that the scene primitives can be generated from the symbol table, a suitable

format is necessary for their storage. Not only must the primitive data structures

themselves be written out, but also any CSG tree information. The following information is

kept in each primitive data structure:

TABLE2

FIELDS IN PRIMITIVE DATA STRUCTURE

Field Description

1. What type of primitive this object is. (Sphere, prism, etc.)
2. A flag which is true if this primitive is a light source.
3. Unique identifier associated with this primitive.
4. The primitive's (x,y ,z) global position.
5. The primitive's local (x,y,z) sizes.
6. ROB surface color.
7. Specular reflectance coefficient and exponent.
8. Transmittance of primitive's surface. 0 is opaque, 1 is transparent.
9. Reflectance of surface. 0 = no reflected light,l = mirrorlike reflection.

10. Primitive's refractive index, if transparent.
11. Local-to-Global transform matrix.
12. Global-to-Local transform matrix.
13. Bounding volume.
14. Optional shape parameters is primitive is a superquadric
15. Pointer to a list of 2D points if primitive is a prism.

Note that no information pertaining to CSG membership is kept with each

primitive. Since the CSG truth table is of significant size relative to that of the primitive

data structure, much memory would be wasted in non-CSG primitives. For this reason,

CSG objects are stored as a tree with a CSG node at the root, and primitives or other CSG

trees hanging below it. Just as primitives are nodes in the ODB hierarchy, so are CSG

nodes. A CSG node contains the following information:

48

TABLE3

FIELDS IN CSG NODE DATA S1RUCTURE

Type Description

1 . References to the objects in this CSG construct
2. Bounding volume around the whole CSG construct.
3. A unique ID associated with this CSG node.
4. CSG truth table.
5. Pointer to CSG ancestor, if this node is the child of a CSG node.

Enough information is now known about the primitives' data structures and CSG

data structures to proceed. The output from the Rayd compiler begins with the ambient

light intensity and the observer. It continues with the list of primitives and CSG objects.

In this list, primitives are preceded by a special marker. This strategy facilitates easier

interpretation of the file. CSG objects, being hierarchical in nature, have a slightly different

format. They are preceded by an OPENCSG marker plus the CSG truth table. Following

these come the CSG node's children, be they primitives or other CSG trees. Closing the

CSG node is a CLOSECSG marker. See Figure 8 for an example of this structure. Note

the nested use of the OPENCSG - CLOSECSG construct in the example.

49

Object Database Structure:

prim prim

File Format: PRIM primitive OPENCSG csg-info PRIM primitive
OPENCSG csg-info PRIM primitive PRIM primitive
CLOSECSG PRIM primitive CLOSECSG

Figure 8: File Format Example From Rayd Compiler

We have now completely described the functionality of the Rayd compiler. The

scene description is tokenized by the lexical analyzer and passed to the parser. The parser

reads these tokens, determines their validity, and constructs a hierarchical symbol table

from them. This symbol table is then traversed and an unstructured list of primitives and

CSG trees is generated along with the observer parameters.

Hiergen - The ODB Hierarchy Constructor

Hiergen has one function only -- to t~ the list of primitives generated by the Rayd

compiler and organize them into an efficient hierarchy that can be used by the Hypercube

Ray Tracer. Before we launch into the functionality of Hiergen, let us first tum our

attention to the elements in such a hierarchy.

Elements Qf ~ Hierarchy

In all subsequent discussion, the word 'node' will be used to refer to any type of

node in a Ray Tracer hierarchy. This includes primitives, CSG nodes, and the yet-to-be­

introduced 'Hnode.' Leaf hierarchy nodes will always be primitives, and the body is

50

composed of CSG nodes and Hnodes. The function of Hnodes are to act as linkage nodes

in the hierarchy. Each Hnode contains the following information:

TABLE4

FIELDS IN HNODE DATA STRUCTURE

Type Description

1. Pointers to 1to8 subtrees.
2. A unique ID.
3. A bounding volume enclosing the whole subtree.

The decision was made early on for all nodes to have the same maximum branching

ratio. This greatly simplifies hierarchy traversal by eliminating special-case nodes. As the

branching factor grows, the CSG truth table size becomes very large. As the branching

factor shrinks, fewer subtrees can be culled by the Kay algorithm at each node in the

hierarchy. Experimental evidence has shown that a branching factor of 8 gives the best

balance between CSG truth table size and intersection performance. See chapter 6 for

performan~e versus branching factor data.

Organization of the Hierarchy

Figure 9 shows a very simple hierarchy. Toward its top, Hnodes give it its

structure. At the leaf level, only primitives are present. Lying between the leaves and

Hnodes are CSG nodes in certain locations. As previously discussed, the CSG nodes

organize groups of primitives into CSG trees. These CSG trees are viewed as a single

object.

51

Figure 9: Organization of ODB Hierarchy

~ Goldsmith Al&orithm

As per design choice, the Goldsmith algorithm is used to construct the hierarchy

from a list of primitives. The Goldsmith algorithm constructs the hierarchy one node at a

time basing its placement of each object on a cost-based heuristic tree search. As each new

node is considered, the existing hierarchy is searched to find the position where, if the new

node were inserted, the increase in local bounding volume area would be minimized.

Bounding volume area is used instead of volume because it is the silhouette of the

bounding volume, as viewed from the ray, that detennines how probable an intersection is.

The following pseudocode implements the Goldsmith algorithm:

52

For each object 0 in the ODB
Let N be the root hierarchy node
While N is a full Hnode

Select the child, c, of N whose bounding volume increases
least when 0 is merged with C

N = C
Endwhile
If N is an Hnode

Insert 0 below N
Merge O's BV with N's and continue to the hierarchy root

Else
/* N is a primitive or CSG tree. */
Replace N with a new Hnode, H
Insert N and O below H
Merge BV's to the hierarchy root

Endif
Endf or

Algorithm 5: Goldsmith Hierarchy Construction Algorithm

In the above code, a "full" Hnode is one in which there are the maximum number of

children allowed by the branching ratio . The concept of merging bounding volumes is

also in need of amplification. When a new child ~ inserted under an Hnode, that Hnode's

bounding could possibly grow in size. The process of recomputing a new bounding

volume that will fit around the node's new child is called "merging." All ancestors of the

Hnode in question may be affected in the same way. Therefore, the merging process must

be continued up the hierarchy until either the root is reached or an Hnode's bounding

volume does not grow. CSG objects are thought of as a single object, and are added to the

hierarchy as a single object.

Output .Eik Fonnat

Once Hiergen has constructed the hierarchy, it must be written to a file. An

extension of the format used by the Rayd compiler is used. Two new marker types are

introduced, the OPENHNODE mark, and the CLOSEHNODE mark. The Hnode is similar

to the CSG node in that it is hierarchical. Its format in the output file is also very similar.

Since this output file must contain all information about the hierarchy, all information

53

contained in the Hnode must be written along with the OPENHNODE mark. This is true

for CSG nodes as well. The following is a representation of what the Hiergen output file

looks like for the structure in Figure 9.

Hierarchy See Figure 9
Output OPENHNODE hnode-info

OPENHNODE hnode-info PRIM prim PRIM prim PRIM prim CLOSEHNODE
OPENHNODE hnode-info PRIM prim PRIM prim PRIM prim CLOSEHNODE
OPENCSG csg-info PRIM prim OPENCSG csg-info PRIM prim PRIM
prim CLOSECSG CLOSEHNODE

Figure 10: Hiergen File Format Example

This format provides the Hypercube Ray Tracer with full information about a

hierarchy. It is also a convenient form from which to build the hierarchy. Each node can

reconstruct the hierarchy from this stream quickly and easily. This will be discussed in the

next section.

Ray - The Hypercube Ray Tracer

Ray is the third and final part of the Hypercube Ray Tracer. Ray is not a single

program, but rather two pr9grams - one that runs on the SRM, and one that runs

concurrently on the nodes of the hypercube. Each program is responsible for very different

parts of the rendering process. Both programs are described in detail below, but first, an

overview of Ray is in order.

Software Architecture

The function of the host part of the Hypercube Ray Tracer is mainly that of an

administrator. When the Ray Tracer is invoked, the host program is executed. It loads the

node program onto all of the nodes, and downloads the ODB hierarchy to them. The node

programs then have all the information necessary to render their respective portions of the

final image. After the nodes have finished rendering, the host program uploads their

54

portions of the frame buffer and reassembles them into a complete image. It then writes

this image to disk, and shuts down. Figure 11 shows a schematic diagram of the flow of

data and control about the various elements of the Hypercube Ray Tracer.

,
ODB Hierarchy
from Hiergen

1 ,

Host
Program

ODB
1,

Node
Programs

Lo ads node
rams onto
cube.

prog

Ra yTraces
scene.

Image and
, statistics

Host Wri
Program dis

tes image to
k and collects
statistics.

, , , ,
'Image 'statistics

file file

Figure 11: Flow of Data and Control

The function of the node program is somewhat simpler in overall concept, though

not in execution. Its job is to accept the ODB hierarchy from the host, render its portion of

the image, and return that portion to the host. Note that even though the same program runs

on each node, they ray trace different portions of the image. Since a node program can

figure out which node it is running on, it may base which portion it ray traces on its node

nmnber. The node program, here, is of the standard SPMD (Single Program Multiple

55

Data) programming model. The difference between the MIMD and SPMD software

architectures is slight. In the MIMD model, each computing node may run a different

program. In the SPMD model, each node runs the same program. This does not mean that

SPMD programs must do exactly the same thing, only that the code is identical from node

to node.

As stated above, the host part of Ray is the administrator of the whole process. The

following is a pseudocode representation of the flow of control in the host program:

1. Allocate a hypercube of nodes
2. Download the node program to the hypercube
3. Download the ODB to the hypercube
4. Wait for the nodes to complete
5. Upload and .reassemble the frame buffer
6. Upload timing and statistics from each node
7. Write frame buffer to disk
8. Print out the timing and statistics
9. Deallocate the hypercube

The timing and statistics data is kept by each node as it is ray tracing the scene. It is

useful for determining such things as load balance, and the efficiency of the intersection

algorithm. Listed below in Table 5 are the various. counts and times that each node

accumulates.

TABLES

PERFORMANCE ME1RICS KEPT BY NODE PROGRAMS

Type Description

1. Number of floating point operations performed
2. Time taken reconstructing the ODB
3 . Total rendering time
4. Number of rays cast
5 . Number of rays that hit a primitive
6. Number of BV intersections
7. Nwnber of primitive intersections

56

It can be easily see that floating point operations per second (FLOPS) can be

computed from items 1and3 in Table 5. A "hit rate" metric can be obtained by dividing

item 7 by item 5. This gives the fraction of all rays intersected against primitives that

actually intersect. If the ray-ODB intersection algorithm performs poorly, this number will

be small. The host program also sums up these metrics to form aggregate metrics. In this

way, the performance of the whole hypercube can be measured.

Aside from the algorithms for ray intersection and shading model evaluation, the

node program control structure is rather modest in complexity. Below is the pseudocode

representation of the node program control flow:

Initialize data structures and variables
Download ODB from the host
For each responsible pixel, P

Construct a ray from the observer through P on the viewplane
Find the closest intersection point of ray with scene
Evaluate the shading model, casting reflected, refracted

and shadow rays if necessary.
Move P's intensity (color) into the local frame buffer

Endfor
Send the local frame buffer to the host
Send node timing and statistics to the host

Algorithm 6: Node Program Pseudocode

A node's responsible pixels are those that lie in the rasters assigned to that node by

the comb decomposition. These responsible pixels, once ray traced, are stored in a local

frame buffer for later transmission back to the host program. The body of the for loop

above can be thought of as the quintessential ray tracing algorithm. Note that it is a

recursive algorithm - the shading model will frequently call for reflected and refractea rays

to be traced. These rays are traced in exactly the same way as primary rays.

57

The ODB Reconstruction Algorithm

The ODB comes out of Hiergen in a special format, as discussed earlier. This data

is relayed, unchanged, to the node programs by the host program. It is up to the node

programs to reconstruct the ODB hierarchy from the Hiergen ftle format. The following

original algorithm implements this ODB reconstitution:

58

-~.

Let RootNode be a pointer to the hierarchy root node
Initialize the current "hanging location" D = address of RootNode
Initialize the "hanging location" stack, HS, to empty
Initialize the CSG stack, CS, to empty
Initialize the Hnode stack, NS, to empty
Push a NULL onto HS
Push a NULL onto CS
While top of HS is not NULL

Get a token, T, from INPUT
Switch on T

Case PRIMMARK /* Got a primitive from INPUT */
Allocate a new primitive pointed to by P
Get primitive information from INPUT
Place P at location pointed to by D
Advance D to next child pointer

Case OPENHNODE /* Build an Hnode subtree */
Allocate a new Hnode pointed to by H
Get Hnode information from INPUT
Push D onto HS
Push H onto NS
Let D =address of H's first child pointer

Case OPENCSG/* Build a CSG subtree */
Allocate a new CSG node pointed to by C
Get CSG node information from INPUT
Push D onto HS
Push C onto CS
Let D = address of C's first child pointer

Case CLOSEHNODE
Pop D from HS
Pop H from NS

/* End an Hnode */

Place H at location pointed to by D

Case CLOSECSG
Pop D from HS
Pop C from CS

/* End a CSG subtree */

Place C at location pointed to by D
Set father pointer of C to top item on CS

Endswitch
Endwhile

Algorithm 7: Hiergen File to ODB Reconstruction Algorithm

This algorithm reconstructs the ODB hierarchy one node at a time in the same order

that it was traversed. Any subtree of the ODB may be packaged in the above format. This

property will be useful when distributing the ODB. Furthermore, this packing method does

59

not rely on information which cannot be transferred from one node to another, such as

pointer values. lhis unpacking algorithm also has the advantage of being fast; since it is a

simple tree copying operation, it is 0(1) in the number of objects to be unpacked.

The Modified Ki!J. Intersection Algorithm

The Kay algorithm for intersecting a ray with a homogeneous hierarchy was

presented in Chapter 2, Algorithm 2. Now, it must be modified to work with the CSG

subtrees found in the Hypercube Ray Tracer's hierarchy. lhis involves the addition of the

Hierarchical Truth Table Method (HTTM) loop.around the Kay intersection algorithm. In

addition, CSG nodes must now be traversed as well as Hnodes. Given in pseudocode

format below is the standard Kay algorithm with three modifications: it traverses both ·

CSG nodes and Hnodes, it is able to intersect a ray with the ODB starting from some

arbitrary point to along the ray, and it returns a pointer to the father node of an object if it

was part of a CSG construct. The second and third modifications are critical to the HTTM

intersection algorithm which will be presented after the modified Kay algorithm. Only

intersection points along the ray beyond the point to will be reported by the modified Kay

algorithm. The variable to is used as a sliding starting point for primitive intersections.

Initially, to is 0, and the Kay intersection algorithm behaves normally. If the first

intersection point found by the Kay algorithm is a false CSG intersection point, then the

next intersection point beyond it must be checked, etc.

60

Given to, the minimum allowable intersection distance
Initialize heap to empty
Initialize Pnear = nil { Pointer to nearest primitive
Initialize Pfather = nil { Pointer to father of primitive
Initialize tnaar to infinity { Distance to closest primitive
Insert hierarchy root node into heap
If recursion level of ray > MAX RECURSION

Return nil
Endif

While heap is not empty and distance to top node < tnear
Extract candidate with closest int. distance from heap
If the candidate is a primitive

Compute ray-primitive intersection
Endif
If ray hits candidate and distance < tnear and distance > to

tnear = distance
Pnaar = candidate
Pfath•r = father of candidate

Endif
Else if candidate is an Hnode

For each child of the candidate
Compute ray-bounding volume intersection
If the ray hits the bounding volume

Insert the child and distance into the heap
Endif

Endf or
Else { It must be a CSG node }

For each child of the candidate
Compute ray-bounding volume intersection
If the ray hits the bounding volume

Insert the child, distance, and father ot child node
(candidate) into the heap

Endif
Endfor

Endif
Endwhile
Return Pnearr tnearr Pfather

Algorithm 8: Inner Loop of the Modified Kay Intersection Algorithm

The outer loop of the modified Kay algorithm is not as tidy as the inner one. The

inner loop's job is to find the closest primitive intersection point with a ray past some point

to on the ray. This does not involve any CSG membership evaluation. This is the outer

loop's function. Prospective primitive intersection points found by the inner loop are

examined by the outer loop for CSG membership. If the intersection point is found to be

part of the CSG construct, then the point is accepted and the outer loop terminates with

61

success. Otherwise, the point is discarded, and the inner loop is called again with a larger

to. In this way, the outer loop slides the minimum intersection distance, to, outward from

the ray origin until the first "real" intersection point is found. Algorithm 9 shows the outer

loop of the modified Kay algorithm.

Given a ray
Let to = 0
Let Foundint
Do

FALSE

tnear= to
{ Find the next primitive intersection point.}
Call Kay inner loop for closest intersection past tnear

(Returns tnear' Pnear>

If ray missed everything, then return failure.
If Pnear = nil

Return nil
Endif

{ If it is a non-CSG primitive, then return success. }
If Pnear is not part of a CSG construct

Return Pnear' tnear
Endif

{ Otherwise, we must traverse up the CSG hierarchy checking }
{ for validity at each CSG node. }
Let 0 Pnear
Do

If O is not valid for the CSG object
Let Hitcsgobj FALSE

Else
Let Hitcsgobj TRUE
O = father of O

Endif
While not at top of CSG hierarchy and Hitcsgobj = TRUE

If we made it all the way to the top of the CSG hierarchy
and the intersection point was a member of every CSG }
object, then the primitive intersection point is valid. }

If at top of CSG hierarchy and Hitcsgobj = TRUE
Foundint = TRUE

Else
to = tnear

Endif
While Foundint = FALSE
Return Pnear' tnear

Algorithm 9: Outer Loop of Modified Kay Algorithm

62

The Ray Tracer uses many algorithms to perform its function: the modified Kay

intersection algorithm, primitive intersection algorithms, the Phong shading model,

geometrical transformations, the Goldsmith hierarchy construction algorithm, the HITM

CSG intersection algorithm, as well as others. Most of these algorithms have already been

discussed in preceding sections. The algorithms presented in this chapter tie the basic ones

together into a complete ray tracing system.

63

CHAYI'ER V

THE DIS1RIBUTED OBJECT DATABASE

Rationale

In the preceding chapters, the development of a functionally complete parallel ray

tracing system is docwnented. It has one key shortcoming, however. Each computing

node must be able to hold the entire ODB no matter how large or small it is. In a hypercube

with n nodes, n copies of the ODB are stored - a gross waste of precious memory. A way

needs to be found to drastically reduce this waste of memory if large numbers of objects are

to be ray traced.

The ODB is largest data structure in the Ray Tracer for all but the most trivial

scenes. It, therefore, needs to be considered for parallel decomposition. On an iPSC/2

with 4 megabyte (MB) nodes, about 3.3 MB is available for ODB storage. The balance of

memory is taken up in operating system (400 KB), the Ray Tracer node program (200

KB), and overhead data structures (100 KB). A primitive takes 240 bytes to store, an

Hnode 80 bytes, and a CSG node 116 bytes. In an 8-ary tree, each subsequent level has

8n nodes where n is the number of nodes on the Wgher level. In a b-ary tree with L levels,

there are

(2)

total nodes above the leaf level. Knowing that there are b1- total nodes in a complete b-ary

tree, we can compute P, the fraction of nodes above the leaf level as

64

(3)

By substituting b=8 into (3), we find that P = 14.3% for a general ODB hierarchy. We

may now formulate an expression for the total memory, M, taken by a hierarchy of n

primitives.

M =Sp n + P n (f Sb+ (1-t) Sc)

Where:
Sp = size of a primitive
sh = size of an Hnode
Sc = size of a CSG node
P = fraction of nodes above the leaf leyel
f = fraction of hierarchical nodes which are Hnodes
n = number of primitives
M = total memory taken by the hierarchy

(4)

If we now solve for n, we have an expression in M, the available node memory, that gives

how many primitives that node may store.

M n - =----=-..,..-,,--=----~,....--

- Sp + P (f Sb+ (1-f) Sc) (5)

Evaluating (5) for M=3.3 MB and f=0.9, we obtain n = 13733. (Using f=.9 is an

empirical estimate from the scenes rendered so far, and in any case, makes little difference

in the final answer due to the closeness of Sh and Sc and the small magnitude of P) This

means that each 4 MB node can hold an ODB of 13733 primitives - only a moderately

complex image by today's standards. Moreover, if p processors could each hold n different

objects, then a 16 node hypercube could hold an ODB ofn p = 219728 primitives! Note

that this figure.does take into account any overhead for the hierarchy infrastructure. As will

become apparent in Chapter 6, a significant number of duplicate primitives must be stored

across the hypercube for performance reasons. This duplication, though not nearly as

65

severe as duplicating the entire ODB, reduces the total effective number of primitives that

can be stored in the hypercube ensemble.

As more processors are added, the maximum number of primitives in the ODB

would increase rather than stay the same. Thus, the computer's parallelism could be used

to increase the number of primitives as well as the speed at which they are rendered. This

is precisely the goal of ODB distribution.

What Has Gone Before

Salmon and Goldsmith [Goldsmith 88] decomposed their ODB in a static manner

across processing nodes. Parts of it were unable to move from one processor to another.

As their ray tracer was implemented on a fmer grained machine than the iPSC/2, this was

the most attractive arrangement for them. However, this decomposition has a number of

highly undesirable features. The most serious of these is the issue of intersection. What

happens when the intersection process can no longer proceed on a given processor? When

this happens, the intersection state and the ray must be shipped off to a processor that

contains the correct part of the ODB. The ray may be shuttled between many processors

before it finally completes the intersection process. All of this intemode communication is

costly and greatly slows down the ray tracing process. Furthermore, nodes which contain

frequently queried primitives will constantly be swamped with rays from other nodes. This

leads to a potentially poor load balance unless care is taken to distribute the ODB in such a

manner that the "popular primitives" are evenly distributed. If these popular primitives are

in close spatial proximity to one another and they are split up onto different nodes, then

more ray swapping traffic will result. This springs directly from the searching nature of the

intersection process.

Salmon and Goldsmith chose a static ODB decomposition with swappable rays.

Their method takes no natural advantage of the coherence with which the ODB is queried

by the intersection process. As a result, performance suffers [Goldsmith 88].

66

A Fresh Look at ODB Decomposition

With the coarser grained architecture of the iPSC/2 comes the freedom to

experiment with a different decomposition method. I have chosen a dynamic ODB

decomposition where primitives are traded between nodes rather than rays. Initially, the

ODB is split evenly across the nodes, just as with Salmon and Goldsmith's method. This

is where the similarity ends. The node to which a primitive is initially assigned is called its

"home node," and that node will always store a copy of the primitive. Once a node

discovers that it does not have a part of the ODB it needs, it requests that part from its home

node. This is called an "ODB miss."

When the primitive is checked for intersection, it is not thrown away; it is kept on

that node until memory is exhausted and space is needed for another primitive. In this

way, a node stores its share of the ODB plus some number of transitory primitives.

Transitory primitives are thrown away as needed to accommodate new transitory primitives

needed in intersection. Since the transitory primitives are essentially a primitive-cache, it is

appropriate to use the least-recently-used (LRU) cache replacement method to select which

transitory primitives are no longer needed. Since only the least recently used transitory

primitives are thrown away, the more heavily used ones remain on the node. This greatly

reduces the message traffic between nodes, and more closely approaches the ideal condition

of having the whole ODB resident on each node.

This method of ODB decomposition has the best of both worlds. It has the ability

to distribute a very large number of primitives across a number of nodes, and the load

balance is kept much mor~ even. What's more, the ODB distribution adjusts itself to give

much better performance than a static decomposition.

67

Changes to the Hierarchy

Sending messages from one hypercube node to another is a costly process. There is

a heavy overhead time penalty to set up a message route plus a modest penalty for each byte

transferred. In order to defray the high startup cost, large messages are preferred over

short ones. A single primitive, the result of an ODB miss, would make a very short

message. It is desirable to send several primitives at once when swapping is required. But

which primitives should be picked? It would be most helpful to send additional primitives

which are likely to be intersected against. Indeed, the Kay algorithm usually tests all of the

children of a given Hnode. It, therefore, makes sense to send all siblings of the requested

primitive as they will likely be tested. Thus, we move from the concept of swapping

individual primitives to swapping all primitives associated with a certain Hnode.

A number of changes to the structure. and content of the hierarchy is required to

support this ODB decomposition and the swapping scheme. The hierarchy is composed of

two basic entities: the group of Hnodes which comprise the infrastructure of the hierarchy,

and the primitives. As demonstrated above, the Hnode infrastructure is only responsible

for 14.3% of the total number of nodes in the ODB. And since an Hnode takes only one

third the memory space to store as a primitive, the .Hnode infrastructure effectively is only

responsible for about 5% of the total size of the ODB. Thus, it is economical for each node

to store the ODB infrastructure, and just swap groups of primitives. This also allows the

Kay algorithm to go all the way to the leaf level before an ODB miss is possible. Thus,

each Hnode must contain information about whether or not its child primitives are resident.

Hnodes must also keep track of the LR U reference word for cache replacement

purposes. The new Hnode structure contains the following information. Note the addition

of the two new fields to the previous structure of an Hnode.

68

TABLE6

REVISED FIELDS IN THE HNODE DATA S1RUCTURE

Type Description

1 . Pointers to 1 to 8 subtrees.
2. A unique ID.
3. A bow1ding volwne enclosing the whole subtree.
4. LRU reference word.
5. A flag which is true if this Hnode's child primitives are not resident.

One thing to note is that not all Hnodes have child primitives. Some Hnodes will

have only other Hnodes as children. These interior Hnodes are WISwappable, and do not

take part in the ODB distribution process. The balance of the Hnodes are called

"swappable Hnodes," and do take part in the distribution process. Stated another way, an

Hnode is a swappable Hnode if and only if at least one of its children is a primitive or CSG

tree.

As stated above, a certain portion ofthe ODB must remain resident on each

computing node. Rather than thinking of this portion as a set of primitives, we shall think

of it as a set of swappable Hnodes. The swappable Hnodes are divided evenly among the

processors rather than the primitives directly. In this way, the child primitives of a

swappable Hnode are never split between two computing nodes. In a scene with a large

number of primitives, the unevenness in the distribution of primitives caused by this

method is negligible.

As primitives are swapped in from other nodes as groups, so are they swapped out

as groups. When a node's memory is exhausted and it needs more primitives to complete

an intersection, space must be made for the new primitives. The LRU replacement

algorithm targets the Hnode whose LRU reference word is smallest for replacement. All

child primitives of the target Hnode are freed, and the Hnode is marked as "swapped." The

69

targeting and freeing operations are repeated until enough space is available for the

incoming primitives. Note that a CSG subtree is considered as a single primitive, and is

treated as such. Thus, many Hnodes could possibly be freed just to make room for one

CSG subtree. Although the CSG nodes could be swapped just as Hnodes are,

experimental evidence has shown this to be unnecessary. cso·trees are sufficiently small

in comparison to the whole ODB that they do not make a great impact on the swapping

action.

Changes to the Ray Tracing Loop

Now that ODB distribution has been addressed, we must now address the problems

this causes in the ray tracing loop. Since parts of the ODB can be missing on each node,

the Kay intersection algorithm may fail. When it does fail, a request for the missing

primitive must be formulated and sent to the primitive's home node. (A primitive's home

node is based on the unique ID number assigned to the Hnode parent of the primitive.) The

interruption in the intersection process raises a number of questions. One may be stated as

follows, "what happens when the requested primitive comes back and is inserted into the

ODB?" Should the Kay algorithm be restarted from the beginning, or from where it

stopped? The first option is unacceptable for two reasons. First, it is grossly inefficient to

repeat the hierarchy traversal done before the ODB miss: Second, a different ODB miss

may cause thrashing. The intersection might never complete. The option of restarting the

intersection process is clearly desirable, but it cannot be done without paying a considerable

cost in terms of program complexity.

Once an ODB miss occurs, what happens while the node is waiting for primitives

from another node? It may do one of two things: wait, or work on another ray.

Considering the cost of sending a message to another node, and waiting for it to reply,

waiting is clearly out of the question. The time to send a 2 KB message from one node to

another is about 1.2 ms [Intel]. Doubling this and adding another 2 ms latency at the other

70

end yields up a round-trip time of about 4.4 ms per ODB miss. Experiments show that a

ray takes 10 - 20 ms to ray trace if no ODB miss occurs. Clearly a 4.4 ms delay per ODB

miss would cripple the performance of the Ray Tracer. Therefore, it must occupy this time

doing something constructive; processing another ray is an ideal choice. This means that

the entire state of the ray tracing process must be saved when an ODB miss occurs. The

ideal place to save this information is in the same data structure as the offending ray.

Below is the new structure for a ray. Many of the fields in this data structure have not yet

been explained, but will be shortly.

TABLE7

FIELDSOF1HERAYDATAS1RUCfURE

Type Description

1. Origin of ray.
2. Direction of ray.
3. Recursion level.
4. Total distance ray has traveled.
5. List of objects ray is currently inside. (For HTIM)
6. Kay intersection heap.
7. List of objects ray has intersected. (For coincident intersection point

disambiguation.) .
8 . Space for temporary variable used in Kay algorithm.
9. Ray type. (Shadow ray or shading ray)

10. Ray state (See Table 8).
11. Pointer to parent ray if spawned by another ray.
12. Pointer to child ray is one has been spawned.
13. Pixel coordinates if primary ray.
14. Intensity of pixel if primary ray.
15. Unique ID number.
16. Temporary variables used by shading model.

Now that it has been decided that intersection may be stopped and restarted, we

must consider the other steps in the ray tracing process, namely the shading step. The

71

shading model casts shadow rays every time it is evaluated, and optionally casts reflected

and refracted rays. These secondary rays must also be ray traced. Since they may also

cause ODB misses, the shading model evaluation must be made interruptible, too! To

complicate matters further, the shading model may be intermpted in no less than three

different locations: once for each light source when casting a shadow ray, once for the

reflected ray, and once for the refracted ray! Now, the ray tracing loop has become a very

complex choreography of intermptible states, spawning of subrays, and resumption of

control. The following FSA (Finite State Automaton) is the solution to this control

problem. In Table 8, we see that rays are divided into a number of different types: primary

rays, secondary rays, and shadow rays. The only difference between the types is the way

in which the shading model operates. For primary rays, the full shading model is

evaluated, and the result is stored at the appropriate pixel coordinates in the local frame

buffer. Secondary rays execute the full shading model, but pass their intensity to their

parent ray rather than the frame buffer. Shadow rays need not be shaded at all, only

intersected with the ODB.

TABLES

RAY STATES

Type Description

1. Ready to intersect - This state means that a ray is set up and ready be be
intersected against the ODB.

2. Pending object .from another node - Here, the ray has failed the
intersection process due to an ODB miss, and is waiting for the required
primitives to be sent from elsewhere. This state has no action fWiction.

3 . Shadow ray setup - This is the first step of the shading model. Shadow
rays are set up and spawned from this state, A shadow ray to a different
light source is spawned each time this state is entered Wltil all shadow rays
have been cast.

72

TABLE 8 (Continued)

Type Description

4. Pending on shadow ray - Once a shadow ray has been spawned, the
parent ray must wait for it to complete. 11tls state has no action function
as there is nothing to do but wait.

5. Process shadow ray - When a shadow ray has completed, control comes
to this state. The result of the shadow ray intersection are stored and
control is passed back to the "shadow ray setup" state to cast more
shadow rays.

6. Shading - This step in the shading model performs all operations that
depend only on the results of the shadow rays. i.e. ambient, diffuse, and
specular components.

7. Reflective shading - If the surface of the primitive in question is
reflective, this state spawns a reflected ray.

8. Pending reflected ray - Control comes here to wait on a reflected ray to be
traced. 11tls state has no action function.

9. Process reflected ray - The contribution of the reflected ray is added into
the overall shading in this state.

10. Transmissive shading - If the surface of the primitive in question is
transmissive, this state spawns a refracted ray.

11. Pending transmitted ray - Control comes here to wait on a refracted ray to
be traced. This state has no action function.

12. Process transmitted ray - The contribution of the refracted ray is added
into the overall shading in this state.

13. Forward results - The ray has been fully evolved, and the results are
ready to be passed on. Depending on the ray type, the results are either
put in the local frame buffer (primary ray), or forwarded to the parent ray
(shadow or secondary ray).

TABLE9

RAY STATE 1RANSmON EVENTS

Type Description

1. ODB miss-This event is posted by the "ready to intersect" state when an
ODB miss occurs.

2. Object received - This event is posted when primitives arrive from another
node as the result of an ODB miss.

73

TABLE 9 (Continued)

Type Description

3. Spawn - Posted whenever a state had to spawn a subray. This happens
when shadow rays, reflected rays, and refracted rays are spawned.

4. Complete - This event is posted to a parent ray when a child ray has
completed.

5. Done - Posted by state action functions, this event signals that the state
completed successfully, and the ray is ready to move on to the next state.

6. Backtrack - If a shadow ray intersects a transparent object, it is not
necessarily occluded. This event is used to restart the intersection process
to find the next intersection point along the shadow ray.

7. Missed-If the intersection process misses all objects in the ODB, this
event is posted to initiate a shortcut straight to the "Ray done" state.

74

Done

ODBmiss

Obj received

Pending
Object

Done
(Shadow) (Primary or Secondary Ray)

Shadow
Ray Setup

Done

Diffuse
Shading

Done

Reflective
Shading

Process
Refl. Ray

Done

Refractive
Shading

Process
Refr. Ray

Done

Forward
Results

Spawn

Spawn

Spawn

Pending
Shdw Ray

Complete

Pending
Refl. Ray

Pending
Refr. Ray

{
Primary Ray: Store pixel in frame buffer.
Secondary Ray: Forward intensity to parent ray.
Shadow Ray: Forward intersection status to parent ray.

Figure 12: Control Flow for Primary Rays

Transitions between ray states are caused by "events." (See Table 9) These events

are based on the result of the "action" associated with each state. These actions perform the

75

various steps in the ray tracing process. For example, the action associated with the first

state in the FSA is to try to intersect the ray with the ODB. lithe intersection fails, the

action function posts an "ODB miss" event for the ray, and terminates. The result of this

event is to place the ray in the "pending object from another node" state. H the intersection

succeeds, the action function posts a "function complete" event and terminates. The result

of this event is to place the ray into the "shadow ray setup" state. The concept of state

driven ray tracing complicates the classical ray tracing loop, but beautifully modularizes it

into an interruptible series of atomic operations. Although some of the states presented

above could be merged, they are left separate for clarity. Performance is affected negligibly

because of this.

As stated earlier, multiple rays must be allowed so time is not wasted waiting for

ODB misses to be resolved. Indeed, multiple rays are already allowed by virtue of the state

driven structure of the ray tracing loop. Since there can be a number of pending rays equal

to the maximum recursion depth, a way is needed to keep track of all of these rays. A way

is also required to keep track of events destined for a particular ray. The solution is a "ray

queue" to keep the rays, and an "event queue" to keep track of the events. As an event is

intended for a specific ray, it is necessary to store a pointer to the target ray as well.

As new rays are created, they are pushed onto the ray queue to begin their journey

through the states that will ray trace them. Similarly, ray-event tuples are pushed onto the

event queue for evaluation. A scheduler is responsible for driving the FSA from the rays

and events. The scheduler sits at the top of the control structure for the new node ray

tracing loop. Below is the pseudocode representation for the new node program.

76

Initialize data structures and variables
Initialize ray and event queues
Download ODB from the host
While there are still pixels to ray trace and ray queue not empty

/* Service all events in the event queue. */
While the event queue is not empty

Pop the event queue and determine the next state of the ray
Endwhile

/* Service any requests for primitives from other nodes. */
If there is a ODB request from another node

Pack up the requested portion and send it
Endif

/* If another node has responded to an ODB request sent */
/* by this node, add the new primitives to the ODB.*/
If there is an ODB request reply

Receive the message
Unpack it into the local ODB
Notify all rays pending on this reply by posting events

Endif

/* Add a new primary ray if the.re is room. *I
If there is room for another ray on the ray queue

Construct and initialize a new primary ray
Push it onto the ray queue

Endif

/* Execute a ray's state function. */
Pop a ray from the ray queue
Execute its state function

Endwhile

Send the local frame buff er to the host
Send node timing and statistics to the host

Algorithm 10: Scheduler for State Driven Node Program

One will notice the striking resemblance between the above algorithm and any standard

round-robin task scheduler. In the ray tracer's case, the analog for a process is the ray.

Changes to Image Decomposition

When the leap is made from a duplicated ODB to a distributed ODB, many things

change. The structure of the ODB changes from a fully intact hierarchy to a hierarchy

missing some or most of its leaves. The hierarchy nodes themselves become more

complex. Ray-ODB intersection becomes an interuptable, re-entrant process rather than

77

classical straight-line code. Even the ray tracing loop itself changes from a regimented and

easy to understand loop into a complex scheduler driving a thirteen state FSA.

After such a drastic change to the basic ray tracing loop, the suitability of the comb

image decomposition needs to be reassessed. There is one basic problem associated with

the comb decomposition - that of locality. The pixels ray traced by a single node using the

comb decomposition are fairly evenly scattered over the entire image plane. This is just the

effect we want with a copied ODB to give a good load balance. It is disastrous to a

distributed ODB. If the DODB is to perform well, then the rays tested against it should be

fairly localized with respect to their positions and directions within the scene. This locality

of reference keeps the number of ODB misses down, and the performance up. If widely

varying rays are intersected against the DODB, then there will be a much higher miss rate,

and correspondingly lower performance. Experiments verify not only the lower

performance of the comb decomposition, but also show a very poor load balance. It is

therefore desirable to invent a new image decomposition to solve the load balance and

locality problems simultaneously.

The solution used by the Hypercube Ray Tracer is what is generally called the

"block" decomposition. The image plane is divided into a large (usually 1024 in this case)

number of rectangular blocks which are handed out dynamically to processors. Each block

encloses a number of pixels that one node will be responsible for ray tracing. When a

processor finishes ray tracjng all of the pixels in its block, it is assigned a new block

spatially close to the previous one. In this method, the dynamic block assignment solves

the load balancing problem, and new blocks are chosen close to old blocks to give

heightened locality.

Block assignments are kept track of by the host program running on the SRM. As

compute nodes complete their blocks, they send the block's frame buffer to the host _where

is is copied into the global frame buffer. After this is done, the host assigns a new block to

78

the node as close to the old one as possible. This continues until all blocks have been

rendered.

79

CHAPTER VI

RESULTS, TIMING, AND PERFORMANCE METRICS

Many things impact the ultimate performance of the Hypercube Ray Tracer. One of

the most important of these is the suitability of the object database hierarchy. Its branching

ratio is critical to the speed of the modified Kay intersection algorithm. Shown below is a

graph of rays cast per second versus the maximum branching ratio of the ODB hierarchy.

The term 'maximum branching ratio' is used advisedly here since not all hierarchy nodes

are guaranteed to have the maximum number of children. The Hiergen hierarchy generator

often constructs hierarchy nodes of less than maximum branching ratio due to efficiency

considerations.

Rays
per

Second

Rays per Second vs. Branching Rat I o
(32 Nodes)

3000· .. --~~-........---~1 --.......... 1
2500r---~==~=========~~========t
2000•~"--~~__.-:~~;..,;--~~--~~-+-~~~~--i

1500~~~~~-'-~~~~--i;........~~~__.....i

0+---------...... ----------1~--------~
2 4 6 8

Branching Ratio

..._ 1381 Objects

·O- 359 Objects

Figure 13: Hypercube Ray Tracer Speed vs. ODB Branching Ratio

80

Figure 13 show us that branching ratios of eight and six provide better performance than

that of lower branching ratios. Branching ratios below six start to degrade performance

significantly. Performance on an ODB with a branching ratio of two is approximately 25%

less than that of an ODB with a branching ratio of six for the test cases shown in figure 13.

In all subsequent data, the branching ratio is eight. No data of this type is available against

which to compare these figures.

Shown below in figure 14 is a graph that profiles the performance of the Hypercube

Ray Tracer over a wide range of ODB sizes. The scenes used to gather the following data

consisted of a nwnber of randomly placed constant sized spheres with no specular

reflection. A random spatial distribution was chosen so that each object contributes a

constant amount to the rendering time of the image. Ha high degree of spatial coherence

exists between a group of objects, then they tend to contribute less to overall rendering time

than the same objects placed farther apart.

Rays per Second vs. Number of Objects
(16 nodes)

100.,_ __ ,._ __ ,._ __, __ ,... __, __ ... __ ... __ _., __ _,. __ ...,.

16 32 64 128 256 512 1024 048 4096 819216384

Number of Objects

Figure 14: Hypercube Ray Tracer Speed vs. Nwnber of Objects

81

The shape of the performance curve in figure 14 is classical in nature. The Hypercube Ray

Tracer exhibits relatively constant performance up to approximately 1000 objects. At that

point, performance drops off in a logarithmic manner. The performance dropoff is just as

expected for the modified Kay algorithm searching the hierarchical ODB. Logarithmic

search time is expected from the Kay algorithm. The flat area from 32 objects to 1024

objects is due to constant overhead in the ray tracer. There are two types of overhead

associated with the ray tracing procedure: constant overhead for the whole process, and

constant overhead per ray. The former overhead is responsible for the general flat shape of

the performance curve from 32 to 1024 objects, and the latter overhead is responsible for

the slight increase in speed at 512 objects.

Figure 15 shows speedup plotted against number of processing nodes for a scene

consisting of 1024 randomly scattered spheres. Speedup is defined here as:

S _ N tslow
P - tbost

where Sp is speedup, N is the number of nodes, ts1ow is the longest single node running

time, and lbost is the time taken by the host. Of prime importance in figure 15 is the very

nearly linear speedup of the Hypercube Ray Tracer.

82

Speedup vs. Number of Nodes
(1024 Objects Randomly Scattered)

~ 1 ... IOiio. ____ _.. ________ ,._ ______ ..,. ________ ,._ ______

1 2 4 8 16 32
Nuni>er of Nodes

Figure 15: Hypercube Ray Tracer Speedup Curve

Although the above performance metrics are useful for general characterization of

the Hypercube Ray Tracer, they vary greatly from scene to scene. To illustrate this fact,

data is presented below for three different scenes with roughly the same number of objects

all run on 32 nodes.

~
1
2
3

Objects
1024
1381
1310

Total Time
2112

17093
11837

Rays/Sec.
1492
2595
2170

Figure 16: Ray Tracer Speed for Similar Scenes

The major differences between these scenes is the placement, and surface properties of the

various objects. Scenes 2 and 3 are more representative of a realistic scene than 1. Kay's

ray tracer, run on an IBM 4381 minicomputer, logs 40 to 50 rays per second (for rays that

hit something). A 4381 is approximately equivalent performance to one iPSC/2 computing

node. Arvo's ray tracer, run on an Apollo DN570 microcomputer, logs 60 to 100 rays per

83

second on scenes of roughly the same complexity. A DN570 is roughly 30% the

performance of one iPSC/2 node. Recall that Arvo is using a different intersection

algoritlnn that that of Kay and the Hypercube Ray Tracer. The Hypercube Ray Tracer logs

60 to 100 rays per second per node on scenes of this complexity. Goldsmith's ray tracer,

implemented on the NCUBE hypercube, logs about 45 rays per second per node. Each

NCUBE node is approximately 75% the performance of an iPSC/2 node.

Another metric of the Hypercube Ray Tracer's performance is how well it tolerates

large distributed ODB's. How does performance suffer as the ODB become much larger

than the nodes' local memory? This can be shown by plotting rays per second versus the

largest fraction of the ODB that a node may store.

Rays I Sec.

1400

1200

1000

800

600

...... --~ ---·

/
400

200

0

.~""
I -~~u ~·

Hypercube Ray Tracer Speed
vs. Node 008 Loading Factor

--' ~- .--l
__ J··-~· ~

v ___
~

v .--- !
---~· ·-~ ~-U•

~~~ 

. 

~--

0.181 0.217 0.253 0.29 0.326 0.362 0.398 0.434 0.471 0.507 0.543 0.579 

Figure 17: Ray Tracer Speed vs. Node Overloading Factor 

From this graph, we can see that performance is reduced substantially when each node can 

store less than 36% of the total ODB. This would not seem to bode well for the scalability 

of ray tracing on a distributed memory machine. However, we have only to notice that in 

Figure 15, we see over 16000 objects ray traced without this catastrophic performance 

84 



degradation. The data for Figure 17 was collected from a scene of about 1300 objects by 

reducting the total number of objects each node may store. More testing is necessary, but it 

would seem reasonable to conclude that the distribution of objects in the ODB influences 

distributed ODB ray tracing performance. This has already been shown to be true for a 

non-distributed database. 

From these comparisons, we can see that the Hypercube Ray Tracer is on an even 

par with other ray tracers on a per node basis. When we consider it parallelism, however, 

it far outperforms most serial rays tracers. When compared against the hypercube ray 

tracer of Goldsmith, it is about equal or slightly superior when run on the same number of 

nodes. 

85 



CHAPTER VII 

CONCLUSIONS 

The Ray Tracing Algorithm 

We have seen the development of a parallel ray tracing system in preceding 

chapters. Results show that performance scales· excellently with the number of computing 

nodes attacking the problem on a medium grained distributed memory parallel computer. 

This is to be expected since the ray tracing process itself exhibits fine grained parallelism on 

the pixel level. Furthermore, little or no performance penalty is incurred by decomposing 

the image plane for parallel rendering. All measures of parallel program performance 

(speedup, efficiency, effectiveness) show the Hypercube Ray Tracer to be nearly ideal. 

Scene Specification Language 

The Rayd language and compiler have proven themselves to be effective scene 

description and development tools in practice. Many scenes have been developed using 

Rayd and no serious conceptual flaws have been uncovered. It has fulfilled all of its 

original design goals. This is easily verified since each of them have been extensively 

exercised over the Hypercube Ray Tracer's development cycle. Although no replacement 

for RenderMan, Rayd does provide a simple and easy-to-use front-end for the Hypercube 

Ray Tracer. 

Object Database Distribution 

Problems associated with large object database size must be confronted in the 

distributed memory computing environment when one wishes to render very large scenes. 

86 



These problems include: how to decompose the ODB across multiple computing nodes, 

how to allow all nodes access to the distributed ODB, and how to keep intemode 

communications low. 

The Hypercube Ray Tracer deals effectively with each of these problems with a 

novel ODB decomposition method and cacheing strategy, dynamic load balancing, and 

spatially coherent load assignment. The unfortunate side-effect of a much more complex 

ray tracing loop and interruptable ray-ODB intersection is a complicated program structure. 

This imposes little performance penalty, however. Near ideal parallel performance is 

maintained until the object database size exceeds about five times the ~umber of primitives 

that one computing node can store. At this point, intemode communications brought about 

by a decreased hit ratio starts to dominate the time spent doing useful work. This effect 

would seem to indicate a performance plateau dictated not by the computing pow~r or 

number of nodes, but rather by the amount of memory contained on each. This 

phenomenon is highly variable with the type and properties of the objects modeled in the 

scene and is evident from the graphs in Chapter 6. 

Constructive Solid Geometry 

Constructive Solid Geometry (CSG) is incorporated into the Hypercube Ray Tracer 

with the aid of special nodes in the object database hierarchy and a novel intersection 

scheme (HTI'M). Although the cost of CSG intersection is high, it is much less than 

previous methods. Furthermore, the HTfM intersection method is independent of object 

database organization -- it may be used in space subdivision ray tracers as well as other 

object subdivision ray tracers. Although CSG was not ostensibly a design goal, its 

inclusion greatly enhanced the flexibility of the Hypercube Ray Tracer. 

87 



CHAPTER VIII 

FUTURE WORK 

There are many new directions in which the Hypercube Ray Tracer could be 

expanded. The most interesting of these changes, as far as the Hypercube Ray Tracer is 

concerned, involve enhancements to parallel operation. Other enhancements are more 

generic in nature. Such generic enhancements might include a Render Man user interface, 

more primitive types, and a more efficient antialiasing method. All of these problems, . 

however, are only superficially influenced by Hypercube Ray Tracer's parallelism. 

A more interesting problem to tackle deals with the efficiency of the distributed 

ODB. Although experimental evidence shows that it works well, much inefficiency still 

exists. Some nodes are burdened with considerably more ODB requests than others. 

Although this does not create a load imbalance, it does slow that node's response time to 

the ODB request. H a method could be found to predict which objects are likely to be 

requested more than others, then they could be spread out. This would improve the overall 

response time by more evenly distributing the ODB requests. 

Mentioned in Chapter 7 is the apparent relationship of absolute maximum ODB size 

to a single node's memory size rather than total distributed memory size. This 

phenomenon is not well behaved, and has neither been characterized nor rigorously 

studied. An understanding of the causes and consequences of this phenomenon might give 

insight into the question of whether ray tracing is best attacked by coarse grained or fine 

grained parallel computers. Even though ray tracing has been done on all three classes of 

parallel computers, not enough information is available to make a judgement about which 

type of architecture is best suited to ray tracing. 

88 



111e Hypercube Ray Tracer shuttles objects about the hypercube. This is in contrast 

to Salmon and Goldsmith's method. Even though shuttling objects works well, this does 

not preclude the swapping of rays among nodes in certain circumstances. If it could be 

determined that another node contained a preponderance of primitives likely to be needed in 

the intersection process and not present on the current node, then it might be more 

economical to transfer the ray rather than the primitives. This type of hybrid swapping 

arrangement might provide a modest gain in performance. 

Presently, the scene specification parsing and ODB hierarchy generation are 

implemented as serial processes, and as such, suffer from poor performance. Even though 

the ODB hierarchy needs to be generated only once, it takes a rather large amount of time in 

comparison to the rendering process. Most of this poor performance can be attributed to 

relatively slow disk I/O. If this process were ported to the hypercube where the entire ODB 

could be kept in distributed memory, a dramatic speedup would be realized. 

89 



BIBLIOGRAPHY 

[Abram 85] Abram, Greg, Lee Westover, and Turner Whitted, "Efficient Alias-free 
Rendering using Bit-masks and Look-up Table," Computer Graphics, Vol. 19, No. 
3, July 1985, p. 57. 

[Aho 86] Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman, Compilers. Principles. 
Techniques. and Tools, Addison-Wesley Publishing Co., Reading, Mass., pp. 
215-217. 

[Amanatides 84] Amanatides, John, "Ray Tracing with Cones", Computer Grmhics, Vol. 
18, No. 3, July 1984, pp. 129-135. 

[Arvo 87] Arvo, James, and David Kirk, "Fast Ray Tracing by Ray Classification," 
Computer Graphics, Vol. 21, No. 4, July 1987, pp. 55-64. 

[Barr 84] Barr, Alan H., "Global and Local Deformations of Solid Primitives," Computer 
Graphics, Vol. 18, No. 3, July 1984, pp. 21-30. 

[Barr 86] Barr, Alan H., "Ray Tracing Deformed Surfaces," SIGGRAPH '86. Vol. 20. 
No. 4. Au1rnst 1986. Pl>· 287-296. 

[Blinn 77] Blinn, Jim, "Models of Light Reflection for Computer Synthesized Pictures," 
Computer Graphics, Vol. 11, No. 2, Summer 1977, pp. 192-198. 

[Bronsvoort 85] Bronsvoort, William F., and Popke K.lok, "Ray Tracing Generalized 
Cylinders," ACM Transactions on Graphics, Vol. 4, No. 4, October 1985, pp. 
291-303. 

J [Carter 89] Carter, Michael B., and Keith Teague, "The Hypercube Ray Tracer", to appear 
in Proceedin&s of the Fourth Conference on Hypercube Concurrent Computers and 
A,Uplications <HCCA4), March 6-8, 1989, Monterey, CA. 

[Cook 82] Cook, Robert L., and Kenneth E. Torrance, "A Reflectance Model for 
Computer Graphics," ACM Transactions on Graphics, Vol. 1, No. 1, January 
1982, pp. 7-24. 

J [Cook 84] Cook, Robert L., Thomas Porter, and Loren Ca.ipenter, "Distributed Ray 
Tracing", Computer Graphics, Vol. 18, No. 3, July 1984, pp. 137-145. 

[Daniel 89] Daniel, Ronald E., Michael B. Carter, and Keith A. Teague, "A Parallel Image 
Processing System for the iPSC/2", to appear in Proceedings of the Fourth 
Conference on Hypercube Concurrent Computers and A12plications (HCCA4), 
March 6-8, 1989, Monterey, CA. 

90 



91 

J [Deguchi 86] Deguchi, Hiroshi et. al., "A Tree-Structured Parallel Processing System for 
Image Generation by Ray Tracing", Systems and Computers in Japan, Vol. 17, 
No. 12, February 1986, pp. 51-62. 

[Dippe 85] Dippe, Mark A. Z., and Erling Henry Wold, "Antialiasing Through Stochastic 
Sampling," Computer Graphics, Vol. 19, No. 3, July 1985, pp. 69-78. 

[Foley 84] Foley, J. D., and A. Van Dam, Fundamentals of Interactive Computer 
Graphics, Addison-Wesley Publishing Company, Reading, Mass., pp. 255-261. 

[Fujimoto 86] Fujimoto, Aldra, T. Tanaka, and K. Iwata, "ARTS: Accelerated Ray 
Tracing System," IEEE Computer Graphics and Applications, Vol. 6, No. 4, April 
1986, pp. 16-26. 

v' [Gaudet 88] Gaudet, Severin, Richard Hobson, Pradeep Chilka, and Thomas Calvert, 
"Multiprocessor Experiments for High-Speed Ray Tracing," ACM Transactions on 
Graphics, Vol. 7, No. 3, July 1988, pp. 151-179. 

[Glassner 84] Glassner, Andrew S., "Space Subdivision for Fast Ray Tracing,"~ 
Computer Graphics and Awlications, Vol. 4, No. 10, Oct. 1984, pp. 15-22. 

[Goldsmith 87] Goldsmith, Jeff, and John Salmon, "Automatic Creation of Object 
Hierarchies for Ray Tracing", IEEE Computer Graphics and Applications, Vol. 7, 
No. 5, May 1987, pp. 14-20. 

,/ [Goldsmith 88] Goldsmith, Jeff, and John Salmon, "A Hypercube Ray-tracer", 
Proceedings of the Third Conference on Hypercube Concu.rrent Computers and 
Applications (HCCA3), Vol. II, Jan. 1988, pp. 1194-1206. 

[Goldstein 71] Goldstein, E. and R. Nagle, "3D Visual Simulation," Simulation, Vol. 16, 
Jan. 1971, pp. 25-31. · 

[Greenberg 89] Greenberg, Donald P., "Light Reflection Models for Computer Graphics", 
Science, Vol. 255, April 1989, pp. 166-173. 

\j [Hanrahan 83] Hanrahan, P., "Ray Tracing Algebraic Surfaces," Computer Graphics, 
Vol. 17, No. 3, 1983, pp. 83-90. 

[Heckbert 86] HeckBert, Paul S., "Survey of Texture Mapping," IEEE Computer 
Graphics and Applications, Vol. 6, No. 11, November 1986, pp. 56-67. 

[Intel 88] iPSC/2 User's Guide. 

v [Kajiya 83] Kajiya, James T., "New Techniques for Procedurally Defined Objects," 
Computer Graphics, Vol. 17, No. 3, July 1983, pp. 91-102. 

[Kay 86] Kay, Timothy L., and James T. Kajiya, "Ray Tracing Complex Scenes," ACM 
SIGGRAPH 1986, Vol. 20, No. 4, August 1986, pp. 269-278 . 

..; [Lee 85] Lee, Mark, Richard A. Redner, Samuel P. Uselton, "Statistically Optimized 
Sampling for Distributed Ray Tracing," Computer Graphics, Vol. 19, No. 3, July 
1985, pp. 61-67. 

[Lee 89] Lee, Mark, Personal Communication. 



[Mandelbrot 77] Mandelbrot, Benoit, Fractals; Form. Chance. and Dimension, W. H. 
Freeman, San Francisco, 1977. 

[Mitchell 87] Michell, Don P., "Generating Antialiased Images at Low Sampling 
Densities," Computer Graphics, Vol. 21, No. 4, pp. 65-72 . 

.J [Orcutt 88] Orcutt, David E., "Implementation of Ray Tracing on the Hypercube", 
Proceeclin&s of the Third Conference on Hnzercube Concurrent Computers and 
Ap_plications <HCCA3), Vol. II, Jan. 1988, pp. 1207-1210. 

[Phong 75] Phong, B. T., "Illumination for Computer Generated Pictures," 
Communications of the ACM, Vol. 18, No. 6, June 1975, pp. 311-317. 

92 

[Potmesil 82] Potmesil, Michael, and lndranil Chakravarty, "Synthetic Image Generation 
with a Lens and Aperture Camera Model," ACM Transactions on Graphics, Vol. 1, 
No. 2, pp. 85-108, April 1982. 

[Reingold 83] Reingold, Edward M., and Wilfred J. Hansen, Data Structures, Little, 
Brown and Company, Boston, MA., pp. 181-185. 

-/[Roth 82] Roth, S. D., "Ray Casting for Modeling Solids," Computer Grgphics and 
lma&e Processin&, Vol. 18, No. 2, Feb. 1982, pp. 109-144 

J[Rubin 80] Rubin, S., and T. Whitted, "A Three-Dimensional Representation for Fast 
Rendering of Complex scenes," Computer Graphics, Vol. 14, No. 3, July 1980, 
pp. 110-116. 

[Uselton 89] Uselton, Samuel P., Personal Communication. 

v [VanWijk 84] van Wijk, Jarke J., "Ray Tracing Objects Defined By Sweeping Planar 
Cubic Splines," ACM Transactions on Grq.phics, Vol. 3, No. 3, July 1984, pp. 
223-237. 

[Weghorst 84] Weghorst, Hank, Gary Hooper, and Donald P. Greenberg, "Improved 
Computational Methods for Ray Tracing," ACM Transactions on Graphics, Vol. 3, 
No. 1, January 1984, pp. 52-69. 

[Whitt(fd 80] Whitted, Turner, "An improved Illumination Model for Shaded Display," 
Communications of the ACM, Vol. 23, No. 6, June 1980, pp. 343-349. 

-/ [Yossef 86] Youssef, Saul, "A New Algorithm for Object Oriented Ray Tracing," 
Computer Vision. Graphics. and lma&e Processin&, No. 34, 1986, pp. 125-137. 



APPENDIXES 

93 



APPENDIX A 

BNF FORM OF RA YD SCENE DESCRIPTION 

LANGUAGE 

/* Top level syntax of a Rayd scene description */ 

infile infile include 
include 
infile define 
define 
infile ambient 
ambient 

/* Include format */ 

include INCLUDE qstring SEMI 
error 

/* Define format */ 

define DEFINE COLOR word EQUAL triple SEMI 
DEFINE SURFACE word surf block 
DEFINE PLANECURVE word pcur_block 
DEFINE OBJECT word obj_block 
DEFINE SCENE sen block 
DEFINE OBSERVER obs block 
DEFINE LIGHT word lite block 

/* Ambient format */ 

ambient AMBIENT EQUAL triple SEMI 

/* Planar curve definition syntax for prisms */ 

pcur_block pcur_lb pcur_elem_list RBRACE SEMI 
I error 

pcur_lb LBRACE 

pour elem list: pcur_elem list pcur_element 
I pcur_element 

pcur_element CURVE pcur_spec LPAREN pcur_parm_list RPAREN 
SEMI 

94 



pcur_spec word 

pcur_parm_list: pcur_parm_list pcur_parm SEMI 
pcur_parm SEMI 

pcur_parm POINTS EQUAL double list 

/* Object definition syntax */ 

obj_ block 
I 
I 

obj_ lb 

obj lb obj elem list RBRACE csg expr SEMI 
obj_lb-obj_el;m_list RBRACE SEMI 
error 

LB RACE 

obj_elem_list: obj_elem_list obj_element 
I obj_element 

obj_element : OBJECT obj_spec LPAREN obj_parm_list RPAREN SEMI 

95 

I OBJECT obj_spec LPAREN obj_parm_list RPAREN word SEMI 
I error 

obj_ spec word 

obj_parm_list: obj_parm_list obj_parm SEMI 
I obj_parm SEMI 

obj_parm POSITION EQUAL triple 
ROTATION EQUAL triple 
COLOR EQUAL triple 
SIZE EQUAL triple 
COLOR EQUAL word 
SURFACE EQUAL word 
REFLECT EQUAL NUMBER 
TRANSMIT EQUAL NUMBER 
RINDEX EQUAL NUMBER 
SPEC EQUAL NUMBER 
PHONG EQUAL NUMBER 
El EQUAL NUMBER 
E2 EQUAL NUMBER 
SQR EQUAL NUMBER 
CURVE EQUAL word 
error 

/* Scene definition syntax */ 

sen block sen lb sen elem list RBRACE SEMI 
I error 

sen lb LBRACE 

sen elem list: sen elem list sen element 
I sen element 

sen element : OBJECT scn_spec LPAREN scn_parm_list RPAREN SEMI 
I LIGHT scn_spec LPAREN scn_parm_list RPAREN SEMI 
I error 



scn_spec word 

scn_parm_list: scn__parm_list scn_parm SEMI 
I scn__parm SEMI 

scn_parm POSITION EQUAL triple 
ROTATION EQUAL triple 
SIZE EQUAL triple 
error 

/* Light source definition syntax */ 

lite block lite lb lite elem list RBRACE SEMI 
I error 

lite lb LBRACE 

lite elem list: lite elem list lite elem 
T lite elem 

lite elem LIGHT lite_spec LPAREN lite_parm_list RPAREN SEMI 

lite_spec word 

lite parm list: lite_parm_list lite_parm SEMI 
I lite_parm SEMI 

lite_parm 
I 
I 
I 
I 
I 
I 
I 
I 

POSITION EQUAL triple 
ROTATION EQUAL triple 
COLOR EQUAL triple 
COLOR EQUAL word 
SIZE EQUAL triple 
BRIGHT EQUAL NUMBER 
TYPE EQUAL word 
ANGLE EQUAL NUMBER 
error 

/* Observer definition syntax */ 

obs block obs lb obs __parm _ li.st RBRACE SEMI 
I error 

obs lb LBRACE 

obs__parm_list: obs_parm_list obs__parm SEMI 
obs__parm SEMI 

obs_parm POSITION EQUAL triple 
VIEWDIR EQUAL triple 
FLEN EQUAL NUMBER 
UPDIR EQUAL triple 
RESOLUTION EQUAL double 
RECURSION EQUAL NUMBER 
VRECTSIZE EQUAL double 
error 

/* Surface definition syntax */ 

96 



surf block surf lb surf_parm_list RBRACE SEMI 
I error 

surf lb LBRACE 

surf parm list: surf_parm_list surf_parm SEMI 
I surf_parm SEMI 

surf_parm 
I 
I 
I 
I 
I 
I 
I 

COLOR EQUAL triple 
COLOR EQUAL word 
REFLECT EQUAL NUMBER 
TRANSMIT EQUAL NUMBER 
RINDEX EQUAL NUMBER 
SPEC EQUAL NUMBER 
PHONG EQUAL NUMBER 
error 

/* Syntax for ordered pairs and triples */ 

triple LPAREN NUMBER NUMBER NUMBER RPAREN 

double list double list double 
I double 

double LPAREN NUMBER NUMBER RPAREN 

/* Syntax for a CSG expression */ 

csg_expr 

csg_and 

object 

csg_and OR csg_expr 
csg_and 

csg_and AND object 
object 

: word 
NOT object 
LPAREN csg_expr RPAREN 
error 

/* Miscellaneous syntax elements */ 

word WORD 

qstring : QSTRING 

97 



APPENDIXB 

SAMPLE RAYO SCENE DESCRIPTION 

/* This is the Rayd scene description for a scene containing */ 
/* a variety of objects. A number of Rayd's features are */ 
/* used in constructing this scene. Most notably the color */ 
/* definition. Reflectivity, transmissivity, and specularity */ 
/* illustrate the use of shading model parameters. */ 

/* Specify the ambient light intensity. */ 
ambient= (1 1 1); 

/* Define some colors to be used in object 
define color lite red (0.3 0 0) ; 
define color med blue (0 0 0. 6) ; 
define color red (1. 0 0 0); 
define color green (0 1.0 0) ; 
define color blue (0 0 1. 0); 
define color black (0 0 0) ; 

/* Define the main body 
define object balls { 

of the scene. */ 

/* Background cube */ 
object box ( 

position 
color 
size 

) ; 

(20 0 0); 
lite_red; 
(1 20 20); 

/* Tabletop cube */ 
object box ( 

) ; 

position 
color 
size 
rotation 

/* Sky cube */ 
object box ( 

) ; 

position 
color 
size 

I* Right side 
object box ( 

position 
color 

(10 0 -1.5 ); 
(.8 .8 .6); 
(30 5 1); 
(0 -1.5 0); 

(10 0 10.1); 
med_blue; 
(20 20 1); 

cube */ 

(10 -10.1 0); 
lite_red; 

98 

definitions. */ 



} ; 

size = (20 1 20); 
) ; 
/* Left side cube */ 
object box ( 

) ; 

position 
color 
size 

(10 10.1 0); 
lite_red; 
(20 1 20); 

/* Background 
object box ( 

cube */ 

) ; 

position 
color 
size 

(-1 0 0); 
lite_red; 
(1 20 20); 

/* Big green ball */ 
object Sphere ( 

position (9 .2 .2); 
color green; 
size (. 9 . 9 . 9) ; 

) ; 
/* Small red ball */ 
object sphere ( 

position (10 -.8 0); 
color red; 
size (.5 .5 .5); 

) ; 
/* Background 
object sphere 

mirrored ball */ 
( 

) ; 

position 
color 
size 
reflect 

(10 -1.1 1.1); 
black; 
(.5 .5 .5); 
l; 

/* Yellow specular ball in green ball */ 
object sphere ( 

position= (8.3 .4 .4); 
color ( . 7 . 7 . 2) ; 
size (.5 .5 .5); 
spec .5; 
phong 10; 

) ; 
/* Blue cylinder */ 
object cylinder ( 

position (8 -.5 -.4); 
color blue; 
size (.3 .3 .8); 
rotation (0 -15 0); 

) ; 
/* Clear ball 
object sphere 

on top of cylinder */ 
( 

) ; 

position 
color 
size 
transmit 
rindex 

(7.9 -.5 .18); 
black; 
(.3 .3 .3); 
1; 
2; 

99 



/* Light sources */ 
define light lumen { 

} ; 

light 11 ( 
position= (1 1 2); 
color (1 .5 l); 
brightness = 10; 
size (.3 .3 .3); 

) ; 
light 12 

position 
color 
brightness 
size 

) ; 

(1 -2 2); 
(1 .s .5); 
= 10; 
(.3 .3 .3); 

/* Put all of the elements of the scene together. */ 
define scene { 

} ; 

object balls ( 
position (0 0 0); 

) ; 
light lumen 

position 
) ; 

(0 0 0); 

/* Specify a front view. */ 
define observer { 

} ; 

position (5 0 0); 
viewdir (1 -.05 .05); 
updir (0 0 l); 
fl en 5; 
vrectsize (3.7 3.7); 
recursion 
resolution 

8; 
(512 512); 

100 



APPENDIXC 

INTERSECTION OF A RAY WITH A SPHERE 

We are given a ray, the vector equation for which is expressed by: 

r=o+t·d 

where r. 
0 
,.. 
d 
t 

= Any position along the ray in question. 
= The origin of the ray. 

= TI1e unit vector in the direction of the ray. 
= The parametric distance along the ray. 

(1) 

This vector equation may be broken up into three simultaneous scalar equations, one for 
each of the three coordinate axes: 

Ix= Ox+ t dx 
ry = <>y + t dy 
Iz =Oz+ tdz 

(2) 

These three equations can now be substituted into the implicit equation for a sphere, 

x2 + y2 + z2 = rs2, (3) 

Note that this equation is that of a sphere positioned about the origin. All intersection 
calculations in the Hypercube Ray Tracer assume that the primitive being intersected lies at 
the origin, is of unit dimensions, and has no rotation. All three of these assumptions are 
made valid by transforming the ray in global coordinates into the primitive's local 
coordinate system. This transformation removes all scaling, translational, and rotational 
components from the primitive thereby allowing a simplified intersection procedure at the 
expense of doing two geometrical transfonnations. The equation resulting from the 
substitution into (3) is second degree in terms oft, therefore the quadratic equation can be 
used to solve for t. 

-B±-JB2 -4·A·C 
t=-------

2·A 

where A= rx2 + ry2 + rz2 
B = 2(0x Ix+ Oy ry +Oz Iz) 
C = ox2 + 0y2 + Oz2 - rs2 

(4) 

101 



102 

This yields to and ti, which represent the distance to the two intersection points referenced 
from the ray's origin. If the ray misses the sphere, then the values of to and ti will be 
complex. To obtain the exact points of intersection from real values oft, we simply 
evaluate equation (1) with t =to and t =ti. Usually, the closer intersection point will be 
chosen. This corresponds to the lesser of to or ti which is greater than 0. Calculating the 
points of intersection with other second degree surfaces is just as easy since it involves 
only using a different equation in place of equation (3 ). 



o/ 
VITA 

Michael Brannon Carter 

Candidate for the Degree of 

Master of Science 

Thesis: RAY TRACING COMPLEX SCENES ON A MULTIPLE-INS1RUCTION 
STREAM MULTIPLE-DATA STREAM CONCURRENT COMPUTER 

Major Field: Electrical Engineering 

Biographical: 

Personal Data: Born in Sulphur, Oklahoma, April 3, 1965, son of Everett and 
Murrel Carter. 

Education: Graduated from Davis High School, Davis, Oklahoma, June 1983; 
received Bachelor of Science Degree in Electrical Engineering (Computer 
Option) from OklahomaStateUniversity, Stillwater, Oklahoma; completed 
requirements for the Degree of Master of Science at Oklahoma State 
University, December, 1989. 

Professional Experience: Graduate Research Assistant, Department of Electrical 
and Computer Engineering, December 1987 to date; Teaching Assistant, 
Department of Electrical and Computer Engineering, July 1988 to August 
1988; Junior Research Engineer, Amoco Tulsa Research Center, June 1987 
to August 1987; System Software Engineer, M.A.N. Systems, September 
1985 to August 1986. 


