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PREFACE 

Sorting is used in many important applications; consequently, there has been an 

abundance of performance analyses of sorting algorithms. However, most previous 

research does not take into account memory hierarchies present in today's computers. 

Since most computers today contain cache storage, it is important to analyze sorting 

methods based on their cache performance. Due to the increase in the cache miss penalty, 

the relative performance results we obtain on today's machines greatly differ from the 

machines often years ago. Recent research in this area has proved that caches affect the 

performance of sorting algorithms, in comparison to their non-cached architectures. 

Current research in this area concentrates mainly on mergesort, quicksort, heapsort and 

radixsort. In this thesis the effect of caches on the performance of insertion sort is 

investigated and closed form solutions for its miss rate are developed analytically. 

Simulations are used to verify these analytical solutions. Finally, its traditional theoretical 

complexity is compared to its cache based performance. 
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Chapter 1 

Introduction 

1.1 Sorting algorithms 

Sorting is a fundamental task that is performed by most computers. It is used frequently 

in a large variety of important applications. All spreadsheet programs contain some sort 

of sorting code. Database applications used by schools, banks, and other institutions all 

contain sorting code. Because of the importance of sorting in these applications, dozens 

of sorting algorithms with varying complexity have been developed over the decades. 

Varying in complexity, sorting algorithms fall into two basic categories -

a. Comparison based: A comparison-based algorithm orders an array by weighing 

the value of one element against the value of other elements. Algorithms such as 

quicksort, mergesort, heapsort, bubble sort, and insertion sort are comparison 

based. 

b. Non-comparison based : Alternatively, a non-comparison based algorithm sorts an 

array without comparing pair-wise data elements. Radix sort is a non-comparison 

based algorithm that treats the sorting elements as numbers represented in a base­

M number system, and then works with individual digits ofM. 

Comparison based sorting algorithms can be categorized based on their theoretical time 

complexity. Slow sorting methods such as bubble sort, insertion sort, and selection sort 

have a theoretical time complexity of O(N2) in average and worst case. Shellsort, which 
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is based on insertion sort, was one of the first algorithms to break the quadratic barrier. 

Even though these algorithms are very slow for sorting large arrays, each algorithm is 

logically simple, so they are not useless. If an application only needs to sort moderately 

large arrays, then it is satisfactory to use one of the simple slow sorting algorithms as 

opposed to a faster, but more complicated sorting algorithm. For these applications, the 

increase in coding time and probability of a coding mistake in using the faster sorting 

algorithm is not worth the speedup in execution time. 

1.2 Theme of this thesis 

Sorting is used in many important applications; consequently, there has been an 

abundance of performance analyses of sorting algorithms. However, most previous 

research does not take into account memory hierarchies present in today's computers. 

Since most computers today contain cache storage, it is important to analyze sorting 

methods based on their cache performance. Due to the increase in the cache miss penalty, 

the relative performance results we obtain on today's machines greatly differ from the 

machines of ten years ago. Recent research in this area has proved that caches affect the 

performance of sorting algorithms, in comparison to their non-cached architectures. 

Current research in this area by LaMarca [5,6,7] and Ladner [6,7] concentrates mainly on 

mergesort, quicksort, heapsort and radixsort. In this thesis the effect of caches on the 

performance of insertion sort is investigated and closed form solutions for its miss rate 

are developed analytically. Simulations are used to verify these analytical solutions. Finally, 

the traditional theoretical time complexity of insertion sort is compared to its cache based 

performance. 
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In this thesis we focus on insertion sort, and study the influence of cache performance on 

its time complexity. Then closed form solutions for its miss rate are proposed. These 

solutions are verified using simulations. We further compare its theoretical complexity 

with its cache-based performance giving performance curves. 

1.3 Thesis Organization 

This thesis is organized in the following way: chapter II provides the literature reviews of 

the basic concepts that appear in the thesis; what other people did in the area of cache 

analysis of algorithms and an overview of caches and algorithm analysis. Chapter III 

describes in detail the cache based analysis of Insertion sort for the best, worst and 

average cases, giving closed form solutions for the number of cache misses in each case. 

Chapter IV briefly describes the simulation program and gives comparative graphs. 

Chapter V summarizes the effects of caches on the performance of insertion sort and 

describes possible future work in this area. 
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Chapter 2 

Literature Review and Basic Concepts 

2.1 Brief Review 

Most previous research is based on the algorithms' theoretical complexity using a non­

cached architecture. The performance analysis of algorithms mostly was based on the 

theory behind the algorithm. Since most computers today contain a cache, it is important 

to analyze them based on their cache performance. Donald Knuth [3] has studied many 

sorting algorithms in great detail. However, even though Knuth gives a complete analysis 

of the different algorithms, they are all based on a non-cached computer architecture. All 

of his analyses are based on the theoretical complexity of the algorithms. 

As the cached computer architecture becomes common today, it becomes desirable to 

analyze how a cached memory affects the performance of these sorting algorithms. 

Theoretical analyses are still useful because they are the fundamental analyses that are 

needed in analyzing any kind of algorithm. Even though there is an abundance of 

previous research on the performance of sorting algorithms, most of the research does not 

analyze how the sorting algorithms exploit caches. Since almost all of today's computers 

contain a cached memory architecture, this is an area that is lacking in research. In 

addition, as the increase in memory access time becomes larger than the increase in 

processor cycle time, then the cache performance of an algorithm has an increasingly 

larger impact on the overall performance. 
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Loop tiling, or blocking, has been used effectively to reduce cache miss rates. Preeti 

Ranjan Panda et al. [9] and Monica S. Lam et al. [ 4] have studied the performance of 

blocking algorithms in great detail. These fundamentals can be applied to various sorting 

algorithms to improve their overall performance by reducing their cache miss rate. 

Lately there has been an increased awareness in analyzing performance of sorting 

algorithms taking into account caches and locality rather than analyses based on 

traditional theoretical complexity. Current research on analyzing and reducing the cache 

miss rate of algorithms is attributed to LaMarca [5,6,7]. He carried out a detailed study of 

the influence of caches on sorting algorithms [5,6]. His study mainly focused on 

analyzing and improving mergesort, quicksort and heapsort by reducing their cache miss 

rates. He has also presented closed form solutions for the miss rates of these algorithms. 

Influence of caches on heaps was studied in detail by LaMarca and Ladner[7]. Recent 

research by Ying Shi and Eushiun Tran [11] has further proved that cache does affect the 

performance of these sorting algorithms. Alpha sort, which is a new cache-sensitive 

memory-intensive parallel sort algorithm, was studied by Chris Nyberg et al [8]. 
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2.2 Caches and Data Locality 

In order to speed up memory accesses, small high speed memories called caches are 

placed between the processor and the main memory. Accessing the cache is typically 

much faster than accessing main memory. Unfortunately, since caches are smaller than 

main memory they can hold only a subset of its contents. Memory accesses first consult 

the cache to see if it contains the desired data. If the data is found in the cache, the main 

memory need not be consulted and the access is considered to be a cache hit. If the data is 

not in the cache it is considered a miss, and the data must be loaded from main memory. 

On a miss, the block containing the accessed data is loaded into the cache in the hope that 

it will be used again in the future. The hit ratio is a measure of cache performance and is 

the total number of hits divided by the total number of accesses. 

The major design parameters of caches are: 

1. Capacity: which is the total number of bytes that the cache can hold. 

2. Block size: which is the number of bytes that are loaded from and written to 

memory at a time. 

3. Associativity: which indicates the number of different locations in the cache 

where a particular block can be loaded. In an N -way set-associative cache, a 

particular block can be loaded in N different cache locations. Direct-mapped 

caches have an associativity of one, and can load a particular block only in a 

single location. Fully associative caches are at the other extreme and can load 

blocks anywhere in the cache. 
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High cache hit ratios depend on a program's stream of memory references exhibiting 

locality. A program exhibits temporal locality if there is a good chance that an accessed 

data item are accessed again in the near future. A program exhibits spatial locality if there 

is good chance that subsequently accessed data items are located closely together in 

memory. 

2.3 Caches and Algorithm analysis 

Since the introduction of caches, miss penalties have been increasing steadily relative to 

cycle times and have grown to the point where good performance cannot be achieved 

without good cache performance[5]. Unfortunately, many fundamental algorithms were 

developed without considering caching. Worse still, most new algorithms being written 

do not take cache performance into account. Despite the complexity that caching adds to 

the programming and performance models, cache miss penalties have grown to the point 

that algorithm designers can no longer ignore the interaction between caches and 

algorithms. 

Lamarca[ 5] has demonstrated the potential performance gains of cache-conscious design 

in his dissertation. The performance results he obtained demonstrate that memory 

optimizations significantly reduce cache misses and improve overall performance. 

A drawback of designing algorithms for cache performance is that often none of the 

cache parameters are available to the programmer. This raises a dilemma. A programmer 

might know that it is more efficient to process the data in cache size blocks but cannot do 

so when the capacity of the cache is unknown. One approach used by some is to make a 

conservative assumption and rely on the cache to be some minimum size. We take an 
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approach taken by Lamarca[5], and assume that the exact cache parameters are exported 

to the programmer by the system. That is, we assume that the capacity, block size, 

associativity and miss penalty of the caches are known by the programmer. 

This change clearly increases the complexity of the programmer's environment. Caches, 

that traditionally were transparent to the programmer, are now exposed. This change also 

raises portability issues. While correctness still is preserved, codes compiled for one 

memory system might perform poorly if executed on a machine with a different memory 

system. 

Despite these drawbacks, exporting cache parameters has the potential to aid efficient 

algorithm design greatly. Lamarca[ 5] showed in his thesis that efficient algorithms can be 

made to perform even better when specific architectural characteristics are known. 

The majority of researchers in the algorithm analysis community compare algorithm 

performance using analyses in a unit-cost model. The RAM model, discussed in 

Cormen[l] and shown also in figure 1 is used most commonly, and in this abstract 

architecture all basic operations including reads and writes to memory, have unit cost. 

Unit-cost models have the advantage that they are simple to understand, easy to use and 

produce results that are easily compared. A serious drawback is that unit-cost models do 

not adequately represent the cost of memory hierarchies present in modern computers 

shown in figure 2. In the past, they may have been fair indicators of performance, but that 

is no longer true. 
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It is also common for the analyses of algorithms in a specific area only to count particular 

expensive operations. Analyses of searching algorithms, for example, typically count 

only the number of comparisons performed. The motivation behind counting only 

expensive operations is a sound one. It allows the analyses to be simplified yet retain 

accuracy since the bulk of the costs are captured. The problem with this approach is that 

shifts in technology can render the expensive operations inexpensive and vice versa. In 

this thesis a memory reference is considered to be the most expensive operation. Thus 

throughout this thesis, the theoretical complexity is assumed to be the number of memory 

references (instead of the number of comparisons). 

Processor Processor 

. a. ... 

~ .. 1 r 

Main Memory Cache 

A I. H 

1 I, 
, ., 

Disk Memory 

,11. 

' ., 
Disk 

Figure 1. RAM Model Figure 2. Memory hierarchy of Modern computers 

9 



Chapter 3 

Cache Based Analysis of Insertion Sort 

3.1 Insertion Sort 

Insertion sort is a simple, stable, internal sorting algorithm which sorts N elements in 

O(N2 ) time in the worst case. It only is useful for sorting a small number of data items, 

but due to its simplicity and due to the fact that it sorts "in place", it is used in various 

linear sorting algorithms; such as, radix sort and bucket sort, to sort the intermediate 

buckets [ 1]. It is also used to sort small arrays in mergesort and quicksort [ 1]. The basic 

idea of insertion sort is also used in shellsort [10], though in a modified manner. Thus, its 

analysis in terms of cache miss rate can give valuable insight into other complex 

algorithms based on it or using it. Also, since it uses only constant amount of space 

outside of the original array it is very efficient in terms of memory space utilization. 

Insertion sort is mainly useful in sorting a relatively small number of data elements, 

therefore the study of its cache miss rate is very important. Even a small number of 

misses cause large miss overhead since the sorted set is small. Therefore we predict the 

cache misses exactly, since even a small number of misses can affect insertion sort's 

performance drastically. 
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3.2 Cache based Analysis of Insertion sort 

The first look at the algorithm gives an impression that it has good data locality of 

reference since it accesses the adjacent data element in the following access, which is an 

indication of good spatial locality. 

3.2.1 Insertion Sort Source Code 

void sort ( double A[] , int n ) 

{ 

double temp; 

inti, j; 

for ( i = 1; i < n; i++ 

{ 

1. temp= A[i]; // 1 reference 

2. j = i - 1; 

3. while ( j >= 0 && A[j] >temp) // 1 reference 

{ 

4. A[j+1] = A[j]; // 2 references 

5. j--; 

} 

6. A[j+1] = temp; // 1 reference 

} 

Figure 3. 

We are not concerned about the internal variables used by the algorithm. This is because 

they can be represented in registers and never be written to any part of memory. This, in 
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effect, means that the internal variables do not have a memory address and thus do not 

have any memory references. The main concern is the array elements we are trying to 

sort. 

As shown in the algorithm above we have the following memory references: 

1. Line # 1 : 1 reference 

2. Line# 3: 1 reference 

3. Line # 4 : 2 references 

4. line # 6 : 1 reference 

Our first task is to determine the exact number of memory references the algorithm 

makes to sort a given set of numbers. 

Let us consider the following data cache model for the rest of the analysis: 

Replacement Algorithm: LRU (Least Recently Used) 

Cache Type : Fully associative 

Cache size (number of elements cache can hold): C 

Block size (number of elements in one block): B 

Number of blocks in cache: R 

Total number of Data elements to sort: N 

Note: On a miss the entire block containing the missed element is brought into the cache. 
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3.2.2 Best Case Analysis: 

Insertion sort has its best performance when the array is sorted already and it runs in 

O(N) or linear time. The number of references is 3N-3, from passes P=2 to N. The 

number of moves per element is zero, thus we just get only one compulsory miss per 

block. This fact is shown in figure 4, in which a block size B=4, is assumed. It is 

assumed, without loss of generality, that the array elements are same as their array index 

since this gives a simpler view of the sorted array. Due to this, the actual data elements 

have not been shown separately from the array indices. 

B=4 

I 1 I 2 1
3 

1
4 15 

1
6 I 1 1

8 
1

9 I 1° I 11 , . l I · I · I · I · [ N I 
pLJ 

Figure 4. 

We start the passes from P=2, which causes a compulsory miss in element 2. Due to this 

miss the whole block; i.e., elements 1 through 4 are brought into the cache, and we don't 

get a miss until the 5th element. Thus, we get misses every B elements accessed until the 

Nth element giving a total of IN I Bl compulsory misses. Therefore the miss rate is 

approximately 1/3B. 
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3.2.3 Worst Case Analysis: 

The worst case performance of insertion sort O(N2 ) is very poor compared to its best 

case O(N ). Thus we concentrate heavily on its worst case cache performance since it 

would give a true idea of its data locality. 

Given the above cache model the worst case analysis is based on the fact that the array is 

reverse sorted, therefore each element must be brought back to index 1 from its current 

position in the array at each pass. This means that in pass number P we must go back P-1 

indices in the array to reach the first element. 

This gives the number of references per pass as: 

1 +3*(P-1)+1 ........................................................................ (1) 

Referring to figure 5, the first term in the above equation represents the memory 

reference on line 1. The second term is the sum of all memory references on lines 3 and 4 

over (P-1) moves. Finally, the last term is the memory reference on line 6. 

The total number of references is the summation of (1) over all the N-1 passes (from 

P=2 to P=N). 

Thus we get the total number of references 

N 

= L)2+3*(P-1)] 
P=2 
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= 2*(N-1) + 3*[ N*(N+ 1)/2 -N] ................................................... (2) 

In order to find the total number of misses following two cases are considered: 

Case I: N<=C 

This is trivial since all the elements are in the cache there are only IN I Bl compulsory 

misses which is same as the best case. 

Case II: N>C 

Array indices 

~ 1 2 3 4 5 6 7 8 9 10 11 N 

rr-> Actual data elements 

100 99 98 97 95 94 93 92 91 90 89 .. 

Figure 5. 

Figure 5 shows a view of the reverse sorted array. For further analysis in this case only 

the indices of the array are given and it will be assumed that the data contained in them is 

in reverse sorted order. 

Until the pass P= C, all passes cause only a total of IC I Bl compulsory misses since all 

the C elements can be stored in the cache. 
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C 

I 1 I 2 13 14 15 16 I 1 18 19 I 1° I 11 I · I · I · I · I · I · I N I 

~ ~ 1} 

P-1 moves p 

Figure 6. 

For all passes P>C the roll-in/roll-out of blocks leads to capacity misses. 

C 

l
1

l
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10 !11 !· 1· 1· 1· 1· 1· IN 

1} 

p:.1 moves p 

Figure 7. 

In the pth pass we try to place the pth element into the correct position in the array and in 

the worst case it is placed in the first position. 

This current element is referenced only once in that pass and then is copied into the temp 

variable (which is internally a register) on line 1. Thus by the time we reference the first 
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element in the array, the current block; i.e. the block containing the ph element, becomes 

the LR U block and is replaced. 

This is a very undesirable replacement since all elements after P>C lead to misses, 

because they are in LRU blocks and are replaced continuously. These misses are either 

capacity misses due to replacement of the current block or compulsory misses. Thus all 

the N-C elements that are sorted in the passes C <P < N cause misses since they will have 

already been replaced. 

Also. all the blocks before the current block cause misses since they are replaced just 

before they are accessed again; i.e., there are LP! BJ misses for the pth pass for all 

previous (i.e. blocks to the left of the current block) blocks. The total number of capacity 

misses in previous blocks is the summation over all passes from C to N. 

Thus total misses in the previous blocks are 

N 

Il(P-1)/Bj 
P~C+I 

Total misses are the sum of all the misses discussed above, 

N 

jC!Bl+N-C+ Il(P-1)/Bj. ...................................................... (3) 
P~C+I 

The first term is the compulsory misses until the pass P=C since the pth element moves 

(P-1) indices back and all the accessed elements can be stored in the cache. 

The second term indicates the fact that after P=C every element causes a miss. 
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The third term is for misses in the blocks to the left of the current block. 

Contrary to one's first impression about locality, the cascade affect of replacing the 

current block destroys the locality of reference of the algorithm, and it keeps generating 

cache misses from passes P=C through and including P= N. 

Note that if both C and B are chosen to be powers of 2, as has been done by LaMarca 

[5,6,7], the first term reduces to C/B and equation (3) reduces to 

N 

N-(C/ B)(B-1)+ ~J(P-1)/ Bj .................................................... (3a) 
P:C+I 

IfN>>C then the miss rate is approximately 1/3B. 

3.2.4 Average Case analysis: 

The average case can be analyzed in a way similar to the worst case analysis except that 

the number of moves for the pth pass is (P-1 )/3 instead of P-1 as in the worst case. This 

means that we expect an element to move one-third the way back in the array on an 

average. 

Thus the total number of references per pass is 

1 +3*(P-1)/3 + l ............................ 11 •••••••••••••••••••••••••••••••••••••••••••••••••• (4) 

and the total number of references in the average case are: 

N 

= ~)2+(P-1)] 
P:2 
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=2*(N-1) + [ N*(N+ 1 )/2 -NJ ....................................................... ... (5) 

In order to find the total number of misses following two cases are considered 

Case I : N<=3C 

Since each element only moves one-third way back we get just f N /(3 * B) l compulsory 

misses. 

3*C 

I 1 I 2 13 14 15 16 I 1 18 19 I 1° I 11 I · I · I · I · I · I · l N 

--D 

(P-1)/3 moves P 

Figure 8. 

Case II: N>3C 

3*C 

11 12 13 14 15 [ 6 17 18 19 110 111 I · I · I · I · I · I · I N 

----D 

(P-1 )/3 moves p 

Figure 9. 
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With the same argument as the worst case analysis the total number of misses in the 

average case are expected to be: 

N 

j3*C!Bl+N-3*C+ Il(P-1)/(3*B)j ............................................ (6) 
P=3*C+J 

The first term is the compulsory misses until the P=3*C pass is reached since it will 

move only one-third the distance back, and all the accessed elements can be stored in the 

cache. 

The second term indicates the fact that after P=3*C every element causes a miss. 

The third term is for cache misses in the blocks to the left of the current block. 

Again if both C and Bare chosen to be powers of 2, the first term reduces to 3*C/B and 

equation ( 6) reduces to 

N 

N-3*C/ B(B-l)+ Il(P-1)/(3* B)j. .............................................. (6a) 
P=3*C+l 

As in the best and worst cases described above ifN>>C then the miss rate is again 1/3B 
approximately. 
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Chapter 4 

Simulation and Comp.arative Graphs 

4.1 Simulation 

A simulation program was written to analyze the cache performance of insertion sort. The 

listing of the program is given in the Appendix. 

The general idea of the simulation is given below: 

~ The Simulation checks all the instructions that reference the array indices; i.e., 

lines 1,3,4 and 6, incrementing the number of references for each pass. 

~ Each reference is time stamped so that the most recent reference time is recorded. 

~ For each of these references, the simulation it checks if they are a hit or miss. 

~ On a miss the number of misses are incremented and the whole block containing 

the missed index is brought into cache and time stamped. 

~ LRU is used for block replacement. This is done by checking the time stamps of 

the blocks and finding the block with the oldest time stamp. 
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4.2 Graphs 

All the graphs assume the fo llowing cache parameters: 

Cache size C = 512 words, Block size B= 8 words, Miss penalty = 100 cycles (According 
to Lamarca[ 5] cache miss penalty is 100-1 20 cycles.) 

4.2.1 Best Case Graphs 

1. Cache Based VS Theoretical Time (#of memory references) Complexity 
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2. Cache Miss Rate 

Cache Miss Rate 
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4.2.2 Worst case 

1. Cache Based VS Theoretical Time Complexity 

Cache Based Vs Theoretical Performance 
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2. Cache Miss Rate 
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4.2.3. Average case Graphs 
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2. Cache Miss Rate 
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5. Observations: 

The following observations can made from the above graphs: 

• There is a remarkable difference between the cached and non-cached performance 

of insertion sort and this difference increases as the number of sorted element's 

mcreases. 

• The miss rate saturates to a constant level (=1/3b approx.)and is inversely 

proportional to the cache block size as the number of elements sorted increase. 

• The number of misses increase linearly in the best case while both in the Average 

and Worst case it is a quadratic curve. 
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Chapter 5 

Conclusion and Future Work 

The main aim of this thesis is to analyze the cache based performance of insertion sort 

and compare its cache based performance with its theoretical complexity. Closed form 

solutions are developed for the number of cache misses and verified using simulations. 

Finally, comparative graphs are plotted to visualize the behavior of insertion sort in the 

presence of caches. 

From the above analysis and graphs, it can be concluded that cache heavily affects the 

performance of insertion sort. The main conclusion that can be drawn from this work is 

that the influence of caching needs to be taken into account in the design and analysis of 

algorithms. 

Future work in this area can be divided broadly into two parts. First is to make 

modifications to insertion sort in order to improve its cache behavior. This would involve 

locating the parts of the algorithm that cause the bulk of cache misses and improving on 

them. Second is to extend the above analysis to various other algorithms. These 

algorithms could either be ones that are based on insertion sort, such as shellsort, or 

variants of algorithms, like quicksort and mergesort, which use insertion sort. 
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APPENDIX A 

Glossary of Terms 

Cache: In order to speed up memory accesses, small high speed memories called caches 

are placed between the processor and the main memory. Accessing the cache is typically 

much faster than accessing main memory 

Fully Associative Cache: This type of cache can load blocks anywhere in the cache. 

Internal Sorting: Internal Sorting means that the entire data structure to be sorted can be 

held in the computer's main memory [12]. 

In-place Sorting: In-place means that the amount of storage space we need for our data 

during the execution of the algorithm is constant [1]. 

Least Recently Used: A Replacement algorithm in which the cache block that was least 

recently used is replaced. 

Miss rate: This is the ratio of the number of cache misses to the total number of memory 

references. 

Stable Sorting: A sorting algorithm is stable if the elements with equal keys are left in 

the same order as they occur in the input [ 1]. 
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APPENDIXB 

Simulation Program Source Code 

/******************************************************************* 
Simulation Program for analyzing the Cache Based Performance of Insertion Sort and 
compare the simulated results with the ones Developed theoretically . 
This simulation compares the theoretical results obtained for the worst case performance 
of insertion sort with the simulated results of the same. It was observed that the 
theoretically obtained closed form solutions exactly matched the simulated results. 

*******************************************************************/ 

#include <fstream.h> 
#include <string.h> 
#include<iomanip.h> 
#include<stdio.h> 
#include<math.h> 
#include <ctype.h> 

II Total number of elements 
const long N =2000; 
II block size 
const long B=4 ; 
II# of blocks 
const long R=l28 

IIC=B*R = 512 

long temp, A[N]; 
long last_ref[R] ; 
long cache[R] [B]; 
long clock =0 ; 
long miss_no=O; 

I********************************************************** 
********* 

This funtion returns if the reference passed to it was a 
hit or miss 

*********************************************************** 
*********I 
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bool miss(long ref) 
{ 

//check all blocks to find ref 

for(int i=O ; i<R; i++) 
{ 
if(cache[i] [O]==B*int (ref/B)) // check first element 

in block 
return false ; //hit , assumes that the ref is ther 

if one elem of its block is ther 
} 
return true; // miss 

} 
/********************************************************** 
********* 

This function returns the Block number of the address 
passed to it 

*********************************************************** 
*********/ 
long get_block(int address) 
{ 

for(int r=O ; r<R; r++) 
{ 

for(int b = 0 ; b < B; b++) 

} 
} 

{ 

} 

if (cache [r] [b] ==address) 
return r; // find block 

/********************************************************** 
********* 

This function returns the LRU block 
*********************************************************** 
*********/ 
long LRU () 
{ 
long min= 
long lru =0 

for(int 
{ 

last_ref[O] 
; // block num of lru 

i =1 ; i<R; i++) 

if(last ref[i] < min) 
{ 

lru =i ; 
min=last_ref[i] 
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} 

} 

} 
return lru 

/*********************~************************************ 
This Function inserts the array index in cache, actually 

a full block 

**********************************************************/ 

void insert(int address, long & block_no) 
{ 

block_no =LRU() ; // returns lru block 
//only putting address since just a simulation 

int add =B* int(address/B) ; // first address of the 
block in array 

for(int i=O ; i< B; i++) // put whole block in 
{ 

cache[block_no] [i] = add+i ; // putting in all 
address in the block in the cache 

} 

} 

void main () 
{ 

case 

for(int r=O ; r<R; r++) 
{ last ref [r] = -1 ; 

for(int b = O ; b < B; b++) 
{ 

cache [r] [b] = -1 / / empty cache 
} 

} 

long k, block_no, ref=O; 
// put distinct numbers in reverse order for worst 

for(k=O k++) 
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A[N-k-1) = k 

inti, j; 
/*********Insertion Sort*************/ 

for i = 1; i <N; i++) 
{ 

temp= A[i] ;// 1 refrence 
ref++; 
if(miss(i)} 
{ 

insert(i ,block_no) ; // this will insert 
whole block of sixe B 

last ref[block_no] =clock; //put in the 
reference 

reference 

miss no++; 

} 
else 

last_ref[get_block(i)] = clock 

clock++; 
j = 1 - 1; 

//put in the 

while j >= O &&A[j] >temp) //1 refernce 
{ 
/*********************/ 

ref++ ; 
if (miss ( j ) ) 
{ 

insert(j, block_no) ; // this will insert 
whole block of size B 

last_ref[block_no] =clock; //put in the 
reference 

miss no++ 

} 
else 

last_ref[get_block(j)] = clock 
reference 

clock++ 
/*********************/ 

A[j+l] A[j]; // 2 references 
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/*********************/ 
ref+=2 ; 
if (miss (j +1)) 
{ 

insert(j+l, block no) ; // this will insert 
whole block of sixe B 

last_ref[block_no] =clock; //put in the 
reference 

reference 

miss no++; 

} 
else 
last ref[get_block(j+l)] = clock 

clock++ ; 
/*****~***************/ 

if(miss(j)) 
{ 

//put in the 

insert(j , block_no) ; // this will insert 
whole block of sixe B 

last_ref[block_no] =clock; //put in the 
reference 

miss no++; 

} 
else 

last_ref[get_block(j)] =clock; //put in the 
reference 

} 

clock++ ; 
/*********************/ 

j--; 

A[j+l] = temp; // 1 reference same as above 
/*********************/ 
ref++ ; 

if (miss (j +1)) 
{ 

insert(j+l , block_no) ; // this will insert 
whole block of sixe B 

last_ref[block_no] =clock; //put in the 
reference 

miss no++ 
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} 
else 
last_ref[get_block(j+l)] =clock, //put in the 

reference 
clock++; 
/*********************/ 

} 

/*********Insertion Sort Code Ends here*************/ 

// Results 

long C=B*R , nc= long(N-C >0? N-C :0) , ncb = 
ceil(nc/B); 

double REF= 2*(N-1) + 3*(N*(N+l)/2 - (N)) ; 
if (N>C) 
{ 

long X= (N>C? (l.O*C)/B : (l.O*N)/B ) ; 
long y = x + (N-C) ; // const part when N>C 
cout<<"\n Const Part="<< y << endl; 
long sum= O ; 
for(int p=C; p<N ;p++) 
{ 

sum+=int(p/B) ; 

} 
cout<<"\n Expected# of refs :"<<REF; 
cout<<"\n Expected number of misses :"<< y+sum; 

cout<<"\n Expected miss rate :"<<100*(1.0*(y+sum))/REF; 
} 

else 
{ 

} 

cout<<"\n Expected# of refs :"<<REF; 
cout<<"\n Expected number of misses :"<< 
ceil((l.O*N)/B) ; 
cout<<"\n Expected miss rate :"<< 100* 
double(ceil((l.O*N)/B)) /REF; //(N*N) ; 

cout<<"\n\n Actual# of refs : "<<ref 
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cout<<"\n Actual number of misses :"<< miss no; 
cout<<"\n Actual miss rate :"<<100* 
(miss_no*l.0)/ref<<endl ; 

} 
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