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CHAPTER I 

INTRODUCTION 

The field of machine learning is described by Carbonell 

and Langley [6] as a study of "computational methods for 

acquiring new knowledge, new skills, and new ways to 

organize existing knowledge." Games can provide a 

convenient vehicle for a study in machine learning if they 

meet certain conditions, such as having no practical 

algorithms for guaranteeing a win, and having clearly 

definable goals and rules of activity. 

One of the first attempts to apply machine learning to 

game playing was A. L. Samuel ([17], (18]). He investigated 

several methods of machine learning using the game of 

checkers in the late 1950s and 1960s. The basic premise 

behind his first approach was to program a computer to 

improve its move selection by adjusting the parameters used 

to determine the relative value of a particular board 

position. 

This project has attempted to generalize Samuel's 

parameter adjustment technique to two games, checkers and 

halma. Halma is a game with the same rules as Chinese 

checkers but is played on a square board similiar to a 

checkerboard (8]. A computer program was written to 

accomplish this task using an object oriented language and 
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was designed to be highly modular. The learning section of 

the program is shared between the two games. 



CHAPTER II 

BACKGROUND 

Early Work on Computer Games 

Some of the early work on computer game playing theory 

was done by John Von Neumann and Oscar Morgenstern [23]. In 

their monumental work "The 'Theory of Games and Economic 

Behavior" they presented the minimax algorithm and discussed 

its application to the game of chess. They theorized that 

if a player could look far enough ahead, he would be able to 

decide whether his present position is win, loss, or draw. 

Using this information, he could then always make the most 

informed move. However, they concluded that there is "no 

practically usable method to determine the best move. This 

. . • difficulty necessitates the use of those incomplete, 

heuristic methods of playing, which constitute good chess." 

c. E. Shannon published a paper in 1950 describing a 

procedure for programming a computer to play chess [19]. 

Shannon argued that a chess player can look at a chess board 

and conclude whether the position is good or bad for one 

side or the other. The better chess player probably 

considers more factors and breaks each factor down into 

subcategories. Shannon suggested that a computer program 

score board positions in the same way using material, pawn 

3 



4 

structure, and mobility as principal scoring factors. He 

went on to describe two strategies for implementing a 

look-ahead tree of moves. The type A-strategy searches to a 

fixed depth while the type a-strategy searches to a variable 

depth. In his opinion the type a-strategy could be further 

improved by using forward pruning to eliminate undesirable 
' 

branches from the tree. The work done by Shannon was 

independently paralleled by A. M Turing [4]. Although many 

other variations on the Shannon/Turing method have been 

formulated, their basic technique is still used by most game 

playing programs today. 

Deficiencies in Chess Playing Programs 

D. Michie [13] identified the primary deficiencies of 

current chess playing programs and went on to discuss the 

outlook for improvement. The first defect is the horizon 

effect which renders a program oblivious to all events which 

may occur beyond its look-ahead search tree. The second 

defect is a lack of long-range ideas. A human Master chess 

player generally executes long-range plans that may include 

many intermediate goals along the way. Chess programs can 

flounder aimlessly with unrelated intermediate goals. The 

brute-force method of examining millions of possibilities in 

look-ahead analysis before selecting a move can stand up to 

human Grandmasters only in purely tactical play [13]. The 

human Grandmasters are superior in strategic, or positional 
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play because they have built up "associative stores of 

conceptualized chess knowledge." According to Michie, 

future prospects for computers to achieve Grandmaster status 

will necessitate the large-scale transfer of knowledge from 

humans or books to .the computer. He describes advances that 

must be made under three areas to facilitate this process: 

(1) The design of data structures in forms suitable for 

representing conceptualized knowledge (descriptions, 

patterns, and theories) which are also convenient for 

the human user to modify and increment interactively. 

(2) Improved facilities for inductive inference, so that 

programs can acquire new knowledge both from 

illustrative examples supplied by human tutors, and also 

from the results of their own internal generation of 

examples for self-administration. 

(3) The engineering of conceptual interfaces between 

program and human expert, making it easier for the 

latter to •teach' the machine. 

Machine Learning 

Michalski ([12], ch 1) postulates that the development 

of learning machines is important to the continued progress 

in artificial intelligence and related fields. The basic 

premise behind this point is that more and more knowledge 

must be imparted to AI systems. "Such knowledge must 

encompass domain-specific facts and rules, commonsense 



heuristics and constraints, and general concepts and 

theories about the world." With this backdrop, a brief 

introduction to machine learning is presented. 

6 

Michalski ([12], ch 1]) classifies learning into 

several "learning strategies" that are briefly identified 

here. Rote learning is described as a process in which "the 

information from the teacher is more or less directly 

accepted and memorized by the learner." . · Learning by 

instruction places the burden of learning primarily on the 

teacher, with the learner responsible for "selection and 

reformulation." Deductive learning allows the learner to 

draw "deductive, truth preserving inferences from the 

knowledge given and store useful conclusions." Learning by 

induction is defined as follows: "If the transformation 

process involves generalization of input information and 

selection of the most plausible or desirable result, that 

is, the inductive inference, then we have inductive 

learning." Finally, learning by analogy is identified as 

using both deductive and inductive processes. 

Forsyth ([7], ch 1]) discusses a "framework for 

learning" which includes the following components: The 

Critic, the Learner, the Rules, and finally the Performer. 

All of these components are necessary for learning to take 

place. The Critic can be described as the component that 

"compares the actual with the desired output. 11 The desired 

output is also termed as an "ideal system." The Learner is 

"the heart of the system ... and has responsibility for 
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amending the knowledge base to correct erroneous 

performance." Forsyth defines the Rules as "the data 

structures that encode the system's current level of 

expertise •.. and are used to guide the activity of the 

performance module." The last component, the Performer, "is 

the part of the system that carries out the task. The 

performer uses the rules in some way to ~uide its activity. 

Thus when the rules are updated, the performance of the 

system as a whole changes. 

Samuel's Machine Learning Techniques 

The work done by A. L. Samuel ([17], [18]) was one of 

the early pioneering successes in the field of machine 

learning. In his first article, he discussed his checker 

playing program that incorporated two separate learning 

procedures, rote learning and a generalized learning 

procedure. Rote learning involved saving all of the board 

positions encountered during play, together with their 

computed scores. References were then made to this memory 

record in order to save computing time and also to allow a 

farther look-ahead. Rote learning was found to be minimally 

successful for the opening game and to a lesser extent in 

the end game. However, rote learning was found to be 

somewhat ineffective in the middle game. Samuel's 

generalization learning procedure consisted of having the 

computer continually re-evaluate the coefficients of the 
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linear polynomial. The polynomial is used to evaluate the 

terminating board positions of the look-ahead tree search. 

The generalization procedure was found to be relatively 

effective in the middle game. In his second article Samuel 

discusses several improvements to the checker playing 

program and also used a different learning procedure. One 

improvement was the implementation of alpha-beta pruning of 

the look-ahead tree. This process allowed for much deeper 

and generally more effective look-ahead tree searches. The 

second improvement, called the signature-table technique, 

was implemented in order to overcome the inter-parameter 

effects and their interactions upon the linear polynomial. 

This method involved grouping related parameters together 

into subsets called signature types. From these subsets, 

for a particular board position, a value is calculated that 

serves as an address into a signature table where tabulated 

values are retrieved that reflect the relative worth for 

these particular combinations. These improvements were used 

with an improved book learning procedure. This technique 

involves presenting the program with a particular board 

position and allowing the program to select its best move. 

The move selected is then compared with the book-recommended 

move. The book-recommended move can be described as the 

move that is considered best by expert human checker 

players. The program then uses the difference between its 

move and the book-recommended move to adjust its evaluation 

procedure. 
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Of Samuel's different methods of machine learning, the 

current author finds the generalized method to be the most 

interesting. The rote learning method is basically a 

procedure for the storage and retrieval of information that 

is gradually accumulated as the program is faced with more 

and more game playing decisions. Rote learning was 

basically used to speed up the heuristic decision making 

process and to allow for deeper searches using the time 

saved [17]. The book learning method is interesting in that 

if given enough input data, that is book-recommended moves, 

the program can gradually improve its level of play [18]. 

The primary drawback to this method, in this author's 

opinion, is the fact that an outside source of information, 

or database, must be in existence and made available to the 

program in order for it to learn. Samuel's generalized 

learning method allows the computer to improve its level of 

play by playing against itself or a human opponent and 

continually adjusting its evaluation function based on 

perceived needed adjustments [17]. No outside instruction 

is needed. The method is advantageous because for many 

games, and real life situations for that matter, there 

simply is no large base of information from which to draw. 

Samuel's learning by generalization technique as 

applied to the game of checkers is described as follows 

[17]. The score for a board position is found by computing 

the scoring polynomial. The terms of the polynomial consist 

of measurements of the board position such as center 
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control, threat of fork, etc. Each term is multiplied by a 

coefficient which assigns a weight to the particular 

parameter in relation to all the other terms. The sum of 

these terms gives the score for the board position. The 

coefficients of the terms of the scoring polynomial are 

modified during the machine learning process. When the 

checkers program is presented a board position from which to 

pick the best move, it first invokes the objective function 

and assigns a value to the initial board position. Then it 

creates the look-ahead tree of moves and searches for the 

best move based upon each side taking his best move at each 

turn. Eventually, the best look-ahead board position is 

found and the objective function is invoked to assign a 

value to it. The fundamental assumption for the learning 

process is that the score calculated for the initial board 

position should look like the score calculated for the 

terminating board position of the look-ahead search [17]. 

If there is a difference in scores, then the evaluation of 

the initial board positiqn is assumed to be incorrect. The 

coefficients of the scoring polynomial are modified so that 

they cause the score for the initial board position to more 

closely resemble the score for the look-ahead board 

position. 

The coefficients of the terms in the scoring polynomial 

are modified indirectly by a complicated process [17]. The 

difference between the initial board score and look-ahead 

board score is called delta. If delta is positive, then the 
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coefficients of the terms of the scoring polynomial have 

been given too much weight. Conversely, if delta is 

negative, then the coefficients have been given too little 

weight. The coefficient terms are only modified if delta is 

larger than some set value and this value is adjusted 

throughout the game. The goal during the coefficient 

modification procedure is to assign the optimum weights to 

the polynomial terms in relation to each other. Polynomial 

terms that are more important in determining if a board 

position is potentially good should tend to increase 

relative to lesser important terms, or terms that are 

disadvantageous (i.e., coefficients with a negative sign). 

Instead of adjusting the coefficients directly, correlations 

between the signs of the polynomial coefficients and the 

sign of delta are calculated and used to modify the 

coefficients of the scoring polynomial. The correlations 

take into consideration the number of times that each 

polynomial term has been used and has had a nonzero value. 

The coefficient term with the largest correlation value is 

then set at a prescribed maximum value with proportionate 

values determined for all of the remaining coefficients. 

The scoring polynomial retains 16 terms out of a possible 38 

terms at any one time. Once a particular term has been 

given the minimum coefficient value over some set number of 

moves, that term is dropped out of the polynomial and the 

next term in the queue of waiting terms is reinserted to the 

polynomial. Polynomial terms were dropped out and then 
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reintroduced later, probably as a way of speeding up the 

program. In the current author's opinion, the time 

necessary to calculate 38 terms andjor combinations of terms 

on the machine that Samuel used would have been excessive. 

The speed and power of modern day machines might allow the 

polynomial to keep and adjust all of the terms during the 

game. 

Discussion 

Samuel demonstrated that his generalized method of 

learning does tend to improve the accuracy of the scoring 

polynomial and thereby improve the level of the program's 

move selection [17]. Intuitively speaking, why does this 

occur? The current author believes that the answer lies in 

the fact that the program is given a sense of direction that 

is kept separate from the board scoring polynomial. In the 

case of checkers, this sense of direction is the objective 

of gaining material. Material credit is given for jumping 

the opponent pieces (thereby removing them from the board) 

and reaching the opposite end of the board so that regular 

pieces can be promoted to kings. If an objective function 

uses material solely to determine its moves, then it fails 

to recognize tactical situations and arrangements of pieces 

that may be more important than a particular gain or loss in 

material. This sense of direction that the program is given 

should be dominant over the other board scoring parameters, 
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but not so dominant that it fails to allow the other 

parameters to affect the final move decision. In this way, 

the dominant sense of direction causes the coefficients of 

the scoring polynomial terms to be corrected in the right 

direction. If programmed correctly, the proper weighting of 

the coefficients may result as well. 

The primary drawback to the scoring polynomial is its 

linear nature ([1], [17]). One method that Samuel used in 

order to overcome this problem was to divide the game into 

six phases· and to use a different scoring polynomial for 

each phase. For example, in the Qpening game the 

measurement called advancement is an important parameter but 

in the end game shouldn't be a factor at all. Perhaps some 

method of machine learning similiar to the coefficient 

modification scheme can be found that will allow the program 

to decide which polynomial terms to use in the various 

phases of the game. Many variations on Samuel's 

generalization method might be practical and advantageous. 



CHAPTER III 

PROJECT OBJECTIVES 

This project has been limited to two-person, zero-sum 

games with perfect information. A zero-sum game means that 

a gain ip material or position by one side results in an 

identical loss to the other side. A game with perfect 

information means that players are informed at any move of 

the choices of all the previous moves in the play ([16], ch 

2) • 

Two games have been selected for this project, checkers 

and halma. Halma, as mentioned in the introduction, is a 

game with the same rules as Chinese checkers [8]. Three 

halma board sizes were programmed: 6 by 6 squares, 8 by 8 

squares, and 12 by 12 squares. Checkers and halma were 

selected because they have relatively simple rules of play 

but still contain all of the basic characteristics of an 
' ' 

intellectual activity. The goal of this project was to 

write an Object Oriented Program {OOP) that improves its 

level of game playing when given the rules of the game, an 

inherent drive to win the game, and a set of parameters for 

evaluating play. The set of parameters may be incomplete 

and the individual parameters are not orthogonal. 

Samuel's generalization learning procedure was applied 

to two games but his methods were modified in some important 

14 
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ways. Samuel's program was written in assembly language on 

an IBM 704 (a slow machine by modern standards) that had a 

limited memory and used magnetic tape for secondary storage 

([17], [18]). The program produced by this project was 

developed using a more modern machine and was written using 

the C++ high-level language. Checkers and halma were 

programmed with a secondary goal of designing a highly 

modular program. The rote learning technique used by Samuel 

was not implemented because of its limited value as an 

instrument of true machine learning. The signature-table 

technique was not considered in this project because of the 

amount of time that would be involved in order to replicate 

the signature subsets and tables and because a large set of 

book recommended moves was not available for the game of 

halma. 



CHAPTER IV 

MINIMAXING GAME TREE SEARCH TECHNIQUES 

Computer programs of games typically search very large 

trees of hypothetical moves in order to determine the best 

move. For example, examine the game of. chess. A board 

position, contains 64 squares and an indication of what 

piece occupies each square for each side. The nodes in the 

search tree represent board positions. The branches in the 

search tree represent the moves that would be taken from a 

certain board position. Chess has an average branching 

factor of 35 [11]. The branching factor is defined as the 

number of branches leaving a node. The difficulty with the 

brute force approach is that the game trees grow 

exponentially and the time to search every branch to a 

reasonable depth becomes excessive. To examine every move 

in an average chess tree to a depth of five (assuming the 

root is level 1) would require the evaluation of 1,071,875 

board positions. Deep searches are desirable because they 

usually result in more informed move selection. However, 

deep searches alone will not guarantee that the best move 

will be selected. Nau [14] demonstrated that if the 

evaluation function is in error, "searching deeper does not 

increase the probability of making a correct decision." 

The look-ahead tree search for a game is typically 

16 
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described as a minimaxing process because at alternate 

levels of the search tree the moves that would be made by 

the opposing side must be considered ([20], ch 2). The 

assumption is that the active side (the side whose turn it 

is to move) will choose the best move and thereby seek to 

obtain the maximum score from a beginning board position. 

On the .other hand, the passive side (the side whose turn it 

is not to move) would select his best move which would be 

the worst move for the active side. The passive side seeks 

to obtain the minimum score from a beginning board position. 

Thus at odd depths of the tree, the moves leading to maximum 

scores for board positions are sought, and at even depths of 

the tree, moves leading to 'minimum scores are sought. The 

active side is called MAX and the passive side is called MIN 

([20], ch 2). 

A depth first search is conducted such that the 

branches of immediate successors of the current node are 

evaluated from the left. The successors of each node are 

expanded until some criteria are used to end the search. 

The current author defines a leaf node as a board position 

in which the game has been won or lost by the active side. 

A search down a particular branch may end with a terminating 

board position when some arbitrary conditions have been met. 

These conditions might be defined as reaching a quiescent 

state at or below some minimum depth, also called horizon of 

the search. The definition of quiescence depends upon the 

game and the programmer. For example a chess program might 
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take a quiescent condition, or "dead state" [11], to be a 

board position in which neither side can capture an 

opponent's piece. Generally speaking, chess programs use 

more complex definitions of quiescence than this. The score 

for a terminal board position, or leaf as the case may be, 

is backed up the tree to the root node. A score is obtained 

for a board position by using an objective function to 

evaluate the relative worth of the board. For example a 

chess program's evaluation function might consist of the 

material balance (the difference in value of pieces held by 

each side) and the strategic bal~nce (a composite measure of 

such things as mobility, square control, pawn formation 

structure, and king safety [11]). After the final branch of 

the root node has been examined, the score is backed up to 

the root. The branch from the root that led to the 

terminating or leaf node that produced the score is assumed 

to be the best move to take for the active side. 

The Alpha-Beta Algorithm 

Virtually all programs of complex games like chess 

incorporate some method for pruning, or eliminating useless 

branches from the look-ahead search tree. The method with 

the longest history [10] and the method still commonly used 

today is the Alpha-beta search algorithm. In order to 

illustrate the value of alpha-beta pruning, consider the 

game tree of Figure 1 which is created by a minimax search 



procedure that does not use pruning [2]. Board positions 

for a look-ahead move by the first player are shown by 

squares, while board positions for the second player are 

shown by circles. To simplify the drawing, all nodes are 

assumed to have a branching factor of two. Nodes are 
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created in the order that they are labeled (a-b-e-d and 

so on). Since e is a terminal board position, the 

evaluation function returns a value of -2 to node d. Then 

node f is created and a value of +3 is returned to node d. 

Since the value is being returned to a circle node the score 

is minimized. That is +3 is not less than -2, so, the -2 

score remains at node d. After all branches from node d 

have been explored, the score -2 is returned to node c. 

Next, node g is created and the minimum score from nodes h 

and i returned to node g is -5. The -5 is returned to node 

c, but since the score is maximized to node c, the -2 is 

greater and remains there. The -2 at node c is returned to 

node b and then nodes j through p are created and scores 

backed up in a similar fashion. The -2 at node b is backed 

up to node a and then the search continues down the right 

branch from node a. The final score at node a ends with a 

-2 and came from the branch that led to node b. This branch 

then represents the best move from board position a. 

Alpha-beta pruning can be explained simply as a 

technique for not exploring those branches of a search tree 

which the active player would be wise enough not to choose, 

or that the passive player would not have chosen because it 
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would have been unproductive for him. The alpha value is a 

lower bound that the active player must exceed before 

deciding on the move as being better than the previously 

selected move. The beta value is an upper bound that the 

passive player must undercut before deciding on the move as 

being better than the previously selected move. A ·formalism 

for evaluating the alpha-beta algorithm called "negamax" was 

introduced by Knuth and Moore [10]. This approach 

eliminates the need to alternately maximize and minimize 

backed up scores. Instead, scores for terminating board 

positions are always considered from the active player's 

point of view. This view was also used by Campbell and 

Marsland [5]. Their recursive procedure, written using a 

"C/PASCAL-like language" for_ the alpha-beta algorithm, is 

reproduced in Figure 2. The functions that are called are 

not described but are assumed to exist and perform as 

indicated. 

To illustrate the application of this algorithm, it is 

applied to the search t~ee of Figure 1. The game search 

tree of Figure 1 is altered by the alpha-beta algorithm and 

is presented in Figure 3. The branches with dashed lines 

can be left unexplored without influencing the final move 

choice. The final alpha and beta values are shown next to 

each nodes. Since the variable m is set to alpha prior to 

the loop in the above algorithm, we can assume that the 

changes to m are, in effect, changes to alpha. It is 

important to note that the initial values of alpha and beta 



21 

at node a are -infinity and +infinity. Nodes b, c, and d 

are created with alpha and beta values the carried down from 

node a. Node e is terminal and scored at -2. The -2 is 

returned and the sign is changed by the algorithm. Since +2 

is greater than -infinity, the alpha value at node d is 

changed to +2. Nodes f results in no change to alpha at 

node d. The +2 at node d is returned to node c as -2. 

Since -2 is greater than -infinity, the new alpha value at 

node c is -2. Node g is created with alpha and beta values 

of -infinity and +2. Node h is created and the score of -4 

is returned to node g as +4. The alpha value at node g is 

now 4, which is greater that the beta value of 2. This 

represents a cutoff, or rather a node that will not yield 

any better moves than those already discovered. Node i does 

not need to be created or evaluated because eliminating it 

has no effect on the final outcome of the search. The 

process continues with. the final move selection at node a 

being identical to the selection using the regular 

minimaxing technique. The solid nodes in Figure 3 represent 

board positions that do not need to be evaluated. Note that 

thirteen fewer nodes have been created and that nine fewer 

terminating board positions have been evaluated. This 

represents a very significant decrease in time complexity. 
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Reducing the Search Further 

One very important observation can be made from 

examining the tree of Figure 3. The order of evaluation of 

the moves may affect how many cutoffs are found by the 

algorithm. In other words, if the best move happens to 

occur down the leftmost branch from the root node, then more 

cutoffs may be found than if the best move does not occur 

down that branch. Samuel [18] tried several methods for 

increasing the probability that the better paths are 

explored first. The best method he found was to conduct a 

preliminary plausibility survey for any given board 

situation by looking ahead a fixed amount, and then 

rearranging the available moves into "their apparent order 

of goodness on the basis of this information and to specify 

this as the order to be followed in the subsequent 

analysis." The difficulty with this technique is to 

determine how deep to perform the preliminary search. If 

the search is not performed deep enough, then the new order 

of the available moves may not in fact result in a shorter 

search. On the other hand, too deep a search takes away 

time from the actual search to be performed subsequently. 

There is also a question as to whether or not this 

plausibility analysis should be applied at all levels during 

the main look-ahead or only the first few levels. Knuth and 

Moore [10] demonstrated that reordering successor positions 

of some nodes makes no difference in the number of nodes 
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evaluated in the search to follow. They concluded that as 

much as 50 percent of the time taken for reordering 

successor branches may in fact be wasted. 

Other methods of reducing the tree search have been 

proposed that do incur a risk with them. They fall under 

the category of forward pruning algorithms. These 

algorithms eliminate branches from the look-ahead search 

tree in the hopes of not eliminating a branch that contains 

the best move. The interval enclosed by the alpha and beta 

bounds is referred to as the alpha-beta window (5]. In the 

normal alpha-beta algorithm, alpha is initialized to 

-infinity and beta is initialized to +infinity for the root. 

This guarantees that the score backed up to the root lies 

within the initial window. However, the narrower the 

initial window, the smaller the tree that is grown out of 

the root node and therefore the better an algorithm will 

perform. Of course the danger here is that the window will 

not include the best $COre. No attempts at forward pruning 

methods were attempted in this project. 



CHAPTER V 

PROGRAM DESCRIPTION 

Game Representation Approach 

The checker game was programmed using Samuel's 

techniques for game board representation and move generation 

[17]. The program produced by this project was written on a 

machine using 32-bit integers, the same number of usable 

squares on a checkerboard. A board position is represented 

by four unsigned integers. The first integer contains 1's 

in bit positions which correspond to squares which contain 

pieces for one side. The second integer contains 1's in bit 

positions which correspond to pieces for the same side which 

are kings. The other two integers are used in a similiar 

fashion to represent pieces for the other side. Possible 

moves are represented by five unsigned integers. One 

integer simply contains a 0 if no moves are possible, a 1 if 

the only moves available are not jumps (also called slides), 

and a 2 if jump moves are available. The other four 

integers are bit vectors that represent the pieces of the 

side about to move that can initiate moves in the four 

directions allowed in checkers. The four directions are 

right-forward, left-forward, right-backward, and 

left-backward (see Figure 4). 

24 
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This method of board representation has several 

advantages. To begin with, possible moves for all pieces in 

a certain direction can be computed simultaneously [22]. 

For example, right forward slides are computed by first 

performing an operation to place 1's into bit positions for 

all squares that do not contain a piece from either side. 

Then, this integer is shifted to the left an appropriate 

number of bit positions to place the 1's where they would 

have started from for a right-forward slide. Finally, an 

AND operation is performed between this integer and the 

integer representing pieces for the side about to move. The 

resulting integer contains all pieces for the side about to 

move that can initiate a right-forward slide. A second 

advantage for this board representation is its minimum 

storage requirements. An array of 16-bit integers used to 

represent a checkerboard would require four times as many 

bytes. The machine used by Samuel had 36-bit integers, 

which was an advantage because by ignoring certain bit 

positions in the integer, all bits could be shifted by equal 

amounts [22]. Using 32-bit integers, additional masking 

operations and staggered bit-shifting techniques were 

required. 

Board representation and move generation for the game 

of halma was handled quite differently. Halma was required 

to be played on boards of three different sizes: 6 by 6, 8 

by 8, and 12 by 12. Some of the methods used to encode the 

halma game were taken from an existing program written by 
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David M. Smith in Fortran (21]. The technique of 

representing pieces by bits in an unsigned integer 

accomplished for checkers was not possible for halma because 

of the.different sized boards required and the need for up 

to 144 bit positions. The halma board is represented using 

a one-dimensional array of size 145 (actual number of 

useable elements is 144). Thus only 32 elements are used 

for a 6 by 6 board, 64 elements are used for an 8 by 8 

board, and all 144 elements are used for a 12 by 12 board. 

Possible moves are· generated for one piece at a time for the 

side about to move and stored in another array. In halma, 

because all the squares on·the board are used, slides and 

jumps are allowed in all eight directions (see Figure 5). 

The most general choice for board representation would 

have been a two-dimensional array, sized large enough to 

represent any board needed. The checker game could be 

represented by an array using the first 8 by 8 elements and 

ensuring that every other element must remain empty. This 

board representation could have possibly allowed slides and 

jumps from both games to share the same code. However, 

programming the games this way might not result is much 

savings in code and would have resulted in a slower program 

because of an increased number of subprocedure calls. This 

would happen because of the differences in legal moves 

between the two games. For example, a checker piece can 

only jump opposing pieces in restricted directions. On the 

other hand, a halma piece can jump its own pieces and 
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opposing pieces in any direction. 

Auxiliary Files 

Several auxiliary files are associated with each game 

and are discussed briefly below. There are four game 

initialization files: ch_game, ch_open, ha_game, and 

ha_open. The "**_game" files must be created prior to the 

start of a game and are used to set up t~e initial board 

positions and other parameters. The "**_open" files are 

used to name the execution profiles and select a first move 

for the checker game. There are two coefficient files: 

ch coeff and ha coeff. These files do not have to be - -
present at the start of a game. However, they should not be 

deleted after their creation unless the l~arning process is 

started from a new initial condition. A file called 

"seed_sav" is created by the learning mechanism to assist 

with the initialization of the polynomial coefficients. A 

file called 11 ln init" is used by the learning mechanism to 

initialize parameters for the polynomial modification 

procedure. If this fi+e is not present, it is created and 

default values are assigned. There are four execution 

profiles that are created during the execution of any game 

or series of games. These files end with a number from 0 to 

99. The prochgm.## and prohagm.## files record the starting 

board position and all moves that take place during 

execution of the program. The prochln.## and prohaln.## 
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files record data about the learning mechanism and the 

polynomial coefficient modifications that take place during 

execution of the program. Finally, there are two 

coefficient profiles created: prochcoeff and prohacoeff. 

These files are appended at the end of each game with the 

final alpha coefficients. 

Program Modules 

A principal advantage of the C++ programming language 

is the class. A class is a data type that leads to modular 

design and object-oriented programming ([3], ch 3). In 

regular c, a structure contains only the variable portion of 

a data structure. The functions that are to be used with 

the structure must be declared separately. In C++, a class 

contains the variables, or storage locations for the data 

structure, as well as the functions that manipulate the 

variables ([3], ch 3). Access to the variables and 

functions of a class can be given to or restricted from 

other classes as desired. The program produced by this 

project was organized into the following classes that will 

be discussed: 

driver 
ch base 

checkers (derived from ch_base) 
ch_search (derived from ch_base) 

ha base 
halma (derived from ha_base) 
ha search (derived from ha_base) 

learn 
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Driver Class 

The driver class drives the program and is the only 

class object created in the main function. Two types of 

game play are available. "Opp_play" is a game played 

between the computer and a human opponent. If "opp_play" is 

desired, the program is executed without passing any 

arguments to the main function. During execution, the main 

function prompts the human opponent for the type of game to 

play, checkers or halma. "AB_play," which stands for 

alpha-beta play, is a game played by the computer against 

itself. One side called alpha uses a dynamic set of scoring 

parameters to score a board, position. The other side, beta, 

uses a static set of scoring parameters that do not change 

during the game. To invoke "AB_play", execution of the 

program is initiated with one argument, a string that must 

be either "ch" or "ha." During "AB_play," all input and 

output is between files. This allows "AB_play" to be 

executed as a background process in a UNIX environment. 

Once execution begins and the appropriate game has been 

selected, the main function calls the appropriate publicly 

accessed functions in the driver class to play the game. If 

a move selected wins a game, this is reported to the driver 

function and a winner is announced. The game classes, halma 

and checkers, are nested within the private section of the 

driver class. Figure 6 contains a function calls flow chart 

for the main function and driver class. 



Checkers is driven using three functions: ch_start, 

ch_opp, and ch_AB. The ch_start function is invoked by 
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either "ch_opp" or "ch_AB" in order to read the appropriate 

files and perform initializations prior to the start of the 

checker game. The ch_opp function prompts the human player 

for input moves and displays the moves and updated game 

boards. Both the ch_opp and ch AB functions access the 

appropriate checker class functions and variables in order 

to drive the game. They also record every move during a 

game to a game execution profile. 

Halma is driven using four functions: ha_start, 

ha store, ha opp, and ha AB. The ha start function is - -
invoked by either "ha opp" or "ha AB" in order to read the 

appropriate files and perform initializations prior to the 

start of the halma game. Both the ha_opp and ha AB 

functions access the appropriate halma class functions and 

variables in order to drive the game. They also call the 

ha store function to record the move and resultant board 

position after every move. 

Checker Game 

The checker game is represented using three classes: 

ch_base, checkers, and ch_search. "Ch base" is a base class 

from which the checkers and ch_search classes are derived. 

The ch search class is nested within the private section of 
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the checkers class. The functions within each class will be 

discussed briefly below. A function call flow chart for the 

ch search class is presented in Figure 7. 

The ch_base class contains eleven functions: 

initialize, generate_mvs, post_mv, revers_bd, shift_rf, 

shift_lf, shift_rb, shift_lb, revers_rf, revers_lf, 

revers_rb, and revers_lb. The learn class is nested within 

the private section of the ch base class. The initialize 

function is called from the driver class and is used to 

initialize variables in preparation for the start of the 

game. "Initialize" attempts to open a file containing the 

polynomial coefficients. If the file is not found, 
' "initialize" creates the file and writes to it a number 

containing the quantity of coefficients needed for the 

polynomial. "Initialize" then calls the data in function of 

the learn class in order to input the initial alpha and beta 

polynomial coefficients. The generate_mvs function 

generates all possible moves from the board position as 

found in the array of unsigned integers "bd" and places the 

moves into an array of unsigned integers called "gen." 

"Generate mvs" calls the four reverse functions necessary to 

perform the shifting and masking of bits to generate moves 

for a board position. A jump move placed into "mv data" is 

never more than a single jump. "Generate mvs" determines if 

the jump move can be continued and if so, places a flag into 

an element of "mv_data" for the calling routine. 

"Generate mvs" also determines if the continued jump is one 
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in which a branch exists. That is, a choice of jumps must 

be made. If the continued jump does face a branch, the 

right-forward jump is stored into two elements of "mv data" 

for the calling routine. The post_mv function receives a 

move as found in "mv data" and posts it to the board 

position as found in "bd." "Post mv" calls the four shift 

functions necessary to p~rform the shifting and masking of 

bits to post a move to a board position. The revers bd 

function reverses the board position so that all functions 

in the program can analyze a board position from the forward 

direction. 

The checkers class contains six functions: oppon_mv, 

verify_mv, open_select, comptr_mv, close_gm, and print_bd. 

The oppon_mv function is called by the driver class to post 

a move selected by the human opponent to the board position 

as found in "bd." The move is passed to "oppon_mv" as an 

argument in the character string "mv str." The verify_mv 

function is called by "oppon_mv" to verify as a legal move a 

single step of the move selected by the human opponent. The 

open_select function is called by the driver class if the 

first move selected by the computer is to be a varied move 

selection. A varied first move means that the first move is 

selected from one of the four following moves and and is 

selected the given percentages: 11-16 (60%), 9-14 (25%), 

11-16 (10%), and 10-14 (5%). The comptr_mv function is 

called by the driver class in order for the computer to 

select and post a move. "Comptr_mv" calls the search 
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function from the ch_search class if there is a choice of 

moves to be made. A jump with no choices is posted to the 

board position directly. The actual move taken is passed 

back to the driver function in the argument "mv str." The 

function close gm is called by the driver class in order to 

terminate the game. It determines which side won the game 

or declares a draw. Then it calls the coeff exch function 

in the learn class to update and save the polynomial 

coefficients. Finally, it closes out the learning execution 

profile. The print bd function is called by the driver 

class to display the board position for the human opponent. 

The ch search class contains five functions: search, 

recur, expand_mvs, order_mvs, and score bd. The search 

function is called by the checkers class in order to search 

for and select the best move for the computer. "Search" 

transfers the actual board position to its own board 

position array "bd." It records some data for the learning 

execution profile and sets up other variables prior to a 

call to the recur function. After the call to the recur 

function the move selected is passed back to the calling 

routine in the array "gm_mv_data." After the look-ahead 

tree search is performed, "search" calls the poly_mod 

function of the learn class to modify the alpha 

coefficients. The recur function is an encoding of the 

alpha-beta algorithm presented earlier. "Recur" builds a 

look-ahead search tree of moves in order to find the best 

move. "Recur" calls the three remaining functions in the 
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ch search class which are discussed below. The expand_mvs 

function is called in order to transform the move masks as 

found in the array "gen" into separate and distinct moves. 

The moves are passed back to the calling routine in the 

unsigned char array "moves." The order mvs function is 

called by the recur function to reorder the available moves 

from the root of the search tree. The reordering of the 

moves is designed to allow the alpha-beta algorithm to find 

the maximum number of cutoffs [10]. The score bd function 

is called in order to assign a relative value to a board 

position as found in the array "bd." It uses the alpha or 

beta coefficients depending on the value of the short 

integer "turn." Score bd returns the score for the board 

position relative to the side whose turn it is to move. 

This is the "nega-max" technique first formalized by Knuth 

and Moore [10]. 

Halma Game 

The halma game is represented using three classes: 

ha_base, halma, and ha search. Ha base is a base class from 

which the halma and ha search classes are derived. The 

ha search class is nested within the private section of the 

halma class. The functions within each class will be 

discussed briefly below. A function call flow chart for the 

ha search class is presented in Figure 8. 

The ha base class contains eight functions: 
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initialize, revers_bd, generate_mvs, next_square, 

winning_mv, jump, reorder_mvs, and recovr_mv. The actual 

game playing board is kept in an array of short integers 

called "gm_bd." The learn class is nested within the 

private section of the ha base class. The initialize 

function is called from the driver class and is used to 

initialize variables in preparation for the start of the 

game. "Initialize" attempts to open a file containing the 

polynomial coefficients. If the file is not found, 

initialize creates the file and writes to it a number 

containing the quantity of coefficients needed for the 

polynomial. "Initialize" then calls the data in function of 

the learn class in order to input the initial alpha and beta 

polynomial coefficients. The revers bd function reverses 

the board position so that all functions in the program can 

analyze a board position from the forward direction. The 

generate_mvs function generates all possible moves from the 

board position passed as an argument in the array of short 

integers "bd." The best "wide" number of moves is found and 

returned in an array of short integers called "moves." Jump 

moves are given greater priority than slide moves. A short 

integer is passed to generate_mvs as an argument called 

"save mv." "Save mv" determines whether "generate_mvs" 

searches for the best move, or recovers all the steps of a 

previously selected move. "Generate mvs" calls the five 

remaining functions in the ha base class which are discussed 

below. The next_square function is called by "generate_mvs" 
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to find the next square that contains a piece for the side 

whose turn it is to move. A flag is returned if no more 

squares are found. The winning_mv function is called by 

"generate_mvs" in order to see if the best move found by 

"generate_mvs" will win the game. If so, a flag is returned 

to announce that the game is won. The jump function is 

called by "generate_mvs" and updates the necessary variables 

prior to testing a square for the start of a new jump move. 

The reorder mvs function takes the currently generated move 

and tests it again.st the best moves found so far by 

"generate_mvs." If the new move is found to be better than 

the worst move csaved so far, the new move is placed into the 

"moves" array and the elements of the array are reordered. 

Thus the move reordering is implicitly performed at all 

levels of play. The recovr mv function is called by 

generate mvs if the "save_mv" flag is set. When "recovr mv" 

finds a match between the current move generated and the 

move that was selected, it saves all steps of the move into 

an array of short integers called "mv_steps." 

The halma class contains five functions: oppon_mv, 

comptr_mv, print_bd, stall_check, and close_gm. The 

oppon_mv function is called by the driver class to post a 

move selected by the human opponent to the board position as 

found in "gm_bd." The move is passed to "oppon_mv" as an 

argument in the character string "mv_str." If the move is 

invalid or if the move wins the game, a flag is returned to 

the calling routine. The comptr_mv function is called by 
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the driver class in order for the computer to select and 

post a move. "Comptr_mv" calls the search function of the 

ha search class in order to select the best move. The 

actual move taken is passed back to the driver in the 

argument "mv_str." The print_bd function is called by the 

driver class to display the board position for the human 

opponent. The function stall_check is called by "comptr_mv" 

to determine if the opposing side is attempting to force the 

game to a draw by not moving a piece out of a starting 

square. If this condition is detected, the opponent is 

declared the looser of the game. The function close_gm is 

called by the driver class in order to terminate the game. 

It determines which side won the game or declares a draw. 

Then it calls the coeff exch function in the learn class to 

update and save the polynomial coefficients. Finally it 

closes out the learni~g execution profile. 

The ha search class contains three functions: search, 

recur, and score_bd. The search function is called by the 

halma class in order to search for and select the best move 

for the computer. The board position is passed as an 

argument in the short integer array "bd. 91 "Search" records 

some data for the learning execution profile and sets up 

other variables prior to a call to the recur function. 

"Search" places the actual move selection into two short 

integers called "start mv" and "stop_mv." After the 

look-ahead tree search is performed, "search" calls the 

poly_mod function of the learn class to modify the alpha 
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coefficients. The recur function is an encoding of the 

alpha-beta algorithm presented earlier. "Recur" builds a 

look-ahead search tree of moves in order to find the best 

move. The score bd function is called by "search" and also 

by "recur" in order to assign a relative value to a board 

position passed as the argument "bd." "Score bd" uses the 

alpha or beta coefficients depending on the value of the 

short integer "turn." "Score bd" returns the score for the 

board position relative to ~he side whose turn it is to 

move. This is the "nega-max". technique first formalized by 

Knuth and Moore (10]. 

Learn Class 

The learn class contains four functions: data_in, 

initialize, data_out, coeff_exch, and poly_mod. The data in 

function reads in the polynom-ial coefficients from a file 

and writes some data to a learning execution profile. The 

calling routine passes file pointers to the proper files as 

arguments to "data in." If "data in" detects that the 

coefficient file contains no coefficients, it calls the 

initialize function. "Initialize" creates the alpha and 

beta coefficients and randomly assigns values to them. This 

assures that the learning process starts from an initial 

condition with no particular bias. The coeff exch function 

is called at the close of each game in order update the 

coefficent values. The poly_mod function is called 
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throughout the game when alpha is to move. It determines if 

the alpha coefficients should be modified and if so, it 

makes the modifications. The processes within the 

coeff exch and poly_mod functions will be discussed in 

greater detail later. 

Game Module Difficulties 

The checker program was found to have virtually no 

drive for a.win in the latter stages of a game. It would 

flounder around aimlessly and usually play to a draw. 

During a game played against a human opponent, the problem 

was not so acute because a human opponent usually drives for 

a win forcing the program into tactical situations in which 

the look-ahead tree search is highly effective. The problem 

was solved by putting two different tilts to the board 

evaluation function, separate from the evaluation 

polynomial. The first tilt, given to regular pieces, is a 

strong drive to the king row. Before this tilt was added, a 

look-ahead tree search would often fail realize that just 

over the horizon a regular man piece could become a king. 

The second tilt was given to kings, which were given a 

strong drive toward opposing pieces. By causing kings to 

advance toward the enemy, still considering loss of material 

to be highly detrimental, the look-ahead tree search and 

board scoring strategies were drawn more fully into play. 

These two tilts resulted in the checker program playing more 
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decidedly towards a win in the end game. 

The halma program, on occasion, would attempt to play a 

game to a draw. This difficulty was totally unexpected 

because the halma game inherently contains a very strong 

drive for a win. However, situations were found to occur 

when a single piece was not moved out of the starting 

squares,while the opponent had advanced to the point of 

winning the game. If the active side forsaw that it would 

lose the game by moving this piece, it would refuse. In 

order to overcome this difficulty, a function was added to 

detect this condition and announce a forfeit by the guilty 

side. 



CHAPTER VI 

MACHINE LEARNING 

Program Learning Techniques 

To initiate the learning process, the game playing 

module creats the ch_coeff or ha coeff file and records two 

values: the numbe~ of polynomial terms in the evaluation 

function and the maximum value that a polynomial coefficient 

can obtain. The learning mechanism retrieves these two 

parameters and uses them to initialize the polynomial 

coefficients to random values within the proper range. 

After each move by alpha, the polynomial modification 

procedure determines whether or not to modify the alpha 

coefficients. The alpha coefficients are modified 

throughout a game while the beta coefficients remain static. 

At the end of each game, the game playing module determines 

which side won the game and passes this information to the 

learning mechanism. If alpha won "wins_needed" number of 

consecutive games, the alpha coefficients are transferred to 

the beta coefficients. If alpha lost "losses_needed" number 

of games in a row, the largest positive or negative alpha 

coefficient is reassigned a value of o. No action is taken 

when a game is declared a draw. The assumption is that the 

modifications to the alpha coefficients will eventually lead 

41 



42 

to a point at which alpha plays a better or worse game than 

beta. This process allows the learning process to backtrack 

if an obvious wrong direction has been taken and find new 

dominant alpha terms in the evaluation polynomial. This 

method is similar to the method used by Samuel [17]. 

Perhaps the learning mechanism should be allowed to 

backtrack on its own without resetting any coefficient to 

zero. Because of time constraints, however, no attempts at 

such an approach were taken in this project. 

Prior to actually modifying the alpha coefficients, the 

game module performs some preliminary processing. Whenever 

the computer selects a move for alpha, the initial board 

position is scored and the individual scoring parameters are 

saved. Then the look-ahead board position is scored and 

compared to the initial board position score, with the 

difference assigned ~o the variable "delta." Then the 

scoring parameters and delta are passed to the coefficient 

modification procedure. 

The learning process takes over and uses the parameter 

values passed to it to compute the individual terms of the 

scoring polynomial. A record of whether the parameter 

measurement was present or not in the initial board position 

is saved for the previous 30 initial board positions. The 

oldest record is overwritten by the new values. Next, the 

average of the absolute values of the last five delta values 

is found. The size of the current delta is compared with 

the size of the average delta. If the current delta is 
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larger than the average delta divided by "delta_cut11 , a 

decision is made to modify the alpha coefficients. A 

decision not to modify the alpha coefficients simply means 

that the error detected in the evaluation function is not 

great enough, based on the recent past, to warrant any 

modification of the alpha coefficients. 

The polynomial modification procedure is accomplished 

by first calculating correlation values for each term of the 

polynomial and then using the correlation values to modify 

the alpha coefficients. Actually, the correlation values 

are not true correlations, as they are allowed to range 

beyond positive and negative one. The following equation is 

applied to each correlation term where i is an index, corr 

is the correlation term, and poly is a polynomial term: 

corr[i] = (poly[i] - avg_poly) * (delta - avg_delta) 

The average delta is found over the five previous delta 

values, while the average polynomial term is the average of 

all the terms from the current board evaluation. 

The final step of the modification procedure is to 

actually modify the polynomial coefficients. Preceding the 

actual modifications, cutoff values are calculated. Cutoff 

values are used to determine the amount by which to modify 

the coefficients and are based on the average size of the 

correlation terms. Two cutoffs are used: the first being 

the correlation average multiplied by a value called "cutl" 
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and the second being the correlation average multiplied by a 

value called 1'cut2." The coefficients are incremented or 

decremented by either "mod_amt1" or "mod_amt2" based on the 

sign of the correlation and the size of the correlation in 

reference to the cutoff values. 

Discussion 

Some departures from Samuel's techniques were taken 

[17]. Samuel modified the coefficients by finding the ratio 

of the largest correlation value to the other correlation 

values and fixing the coefficient terms at integral powers 

of two based on this ratio. The current author abandoned 

this approach for two reasons. First of all, the integer 

size in the machine used contained only 32 bits as opposed 

to 36 bits for the machine used by Samuel [18]. Thus, 

fixing the coefficients at powers of two would result in a 

smaller range of coefficient values. Secondly, this author 

discovered that setting the coefficients based upon the 

largest correlation value resulted in an extreme amount of 

fluxuation and instability of the coefficient terms. The 

method incorporated into the final version of the program 

allows the coefficient values to range between a 

predetermined range of values called plus and minus 

"max coeff." Coefficient terms are incremented or 

decremented a small amount from their previous values based 

on the size and sign of their correlation terms. 
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Samuel's machine learning technique [17] apparently 

modified all coefficient values whether or not the measured 

parameter for that term was present in the initial board 

evaluation. The current author limited modifications to 

coefficient terms that actually contained the measured 

param~ter in the board evaluation. This slows down the rate 

of change for those parameters that occur infrequently. 

However, the current author believes that if the parameter 

was not present when the board was initially scored, then it 

could not have led to an error in the evaluation function. 

Therefore, the coefficient of that term should not be 

modified. 

The current author attempted to apply a weighting 

factor to the correlation t~rms which would give more weight 

to those polynomial terms that occur more frequently. The 

intention was to allow those parameters that occur more 

frequently to be changed more rapidly. However, this method 

caused those terms to migrate towards the maximum or minimum 

coefficient values while the infrequently occuring terms 

tended to change very little. Therefore, no weighting 

factor was applied to the correlation values. 

Results 

Test data using the method described above is presented 

in Appendix B. Several different methods of actually 

adjusting the coefficients were attempted, most with 



46 

less-than-desirable results as discussed above. The test 

data accumulated indicates that the coefficients never 

really did stabilize, but rather continued to vary. This 

was to be expected and was experienced by Samuel as well 

([17], [2]). From the data presented, no claim is made that 

the program markedly improves its level of play. However, 

some level of improvement in move selection probably does 

occur. Just precisely how to quantify such a statement is 

unclear. Perhaps this points to an area of further 

research. 

One possible way to test the effectiveness of the 

learning mechanism was briefly attempted and is described 

below. The underlying assumption was that the program plays 

a relatively good game when the polynomial coefficients are 

preset to zero and not changed during the game. When this 

is done, the move selection is based totally on the 

program's inherent drive to win. For the checker game, the 

drive to win consists of material gain and the board tilts 

discussed earlier. For the halma game, the drive to win 

consists of the weighting mechanism applied to the board 

position. The procedure was tryed on 

the checker game only. The beta coefficients were set to 

zero and the alpha coefficients were set to the values 

obtained after five games (see Appendix C). The learning 

mechanism was disabled, and "AB_play" was invoked. The 

procedure was repeated for the alpha coefficients after 10, 

15, and 20 games. Using alpha coefficients from games 5 and 



47 

20, beta was declared the winner. Using alpha coefficients 

from games 10 and 15, the games were declared drawn. These 

results are not totally unexpected because the 

initialization process assigns random values to the 

polynomial coefficients at the start of the learning 

process. This means that alpha should initially lose games, 

but after some period of time, alpha should begin to win 

games. The fact that alpha lost using the game 20 

coefficients may indicate that the learning process 

regressed somewhat after game 15. 

Most of the design goals of the program were achieved. 

The final version is highly modular, and to the degree 

tested, has demonstrated itsel,f to be reliable. The 

learning section of the program is shared between the two 

games and is general enou9h that it could be applied to any 

similar type of game. An att~mpt was made to write the 

driver class such that it could drive either game. However, 

no practical method could be found using the C++ programming 

language to implement such a procedure. The alpha-beta tree 

search methods implemented by the program were highly 

effective, although difficult to perfect. 



CHAPTER VII 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

The purpose of this study was to attempt to generalize 

Samuel's parameter adjustment learning procedure to two 

games, checkers and halma. Checkers and halma were selected 

because they are relatively simple games, but still contain 

all of the processes necessary for learning to occur. The 

primary goal of the project was to write an Object Oriented 

Program (OOP) that improves its level of game playing when 

given only the rules of the game, a sense of direction, and 

a set of parameters for evaluating play. The C++ 

programming language was chosen because it is a high-level, 

object-oriented language, and facilitates modular 

programming. 

The machine learning mechanism was extremely difficult 

to program effectively. The learn class was one of the 

smaller classes in the program, and yet it took by far the 

longest to write. In spite of these remarks, one can safely. 

conclude that the resultant learning mechanism was extremely 

crude. Much more work should be done in order to perfect 

the implementation of learning attempted by this project. 

Samuel's description of the exact parameter adjustment 

procedure [17] was somewhat vague, and by at least one other 

account [2], the results were far from optimal. 
j 
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Machine learning is an important and active area of 

research today. This author concludes by encouraging more 

research in the field. In particular, this author 

encourages anyone interested, to attempt to perfect the 

learning method described by Samuel [17] and in this 

article. The program written in this report is available 

free of charge to anyone, for research purposes (only). 
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Figure 1. Minimax Move Tree 
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NOTATION 

> greater than 
>= greater than or equal to 
< less than 

FUNCTIONS 

(1) terminal - determine if node 
p is terminal 

(2) staticvalue - evaluate board position 
and assign a value 

(3) generate - determine successor board 
positions p(1) ••• p(w) 

C/PASCAL-LIKE PSEUDOCODE 

1. alphabeta(p: position; alpha, beta: integer) 
2. { 
3. m, i, t, w: integer; 
4. if(terminal(p)) 
5. return(staticvalue(p)); 
6. w = generate(p); 
7. m =alpha; 
8. for i = 1 to w do 
9. { 

10. t = -alphabeta(p(i), -beta, -m); 
11. if(t > m) 
12. m = t; 
13. if(m >= beta) 
14. return(m); 
15. } 
16. return(m); 
17. } 

REFERENCE: Campbell, M. S. and Marsland, T. A., "A 
Comparison of Minimax Tree Search 
Algorithms," Artificial Intelligence 
20 (1983) 347-367. 

Figure 2. Alpha-Beta Algorithm 
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Figure 3. Alpha-Beta Move Tree V1 
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Figure 4. Labeled Checkerboard and Directions 
of Movement 
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Figure 5. Labeled Halmaboard and Directions 
of ~1overnent 
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ch.opp_mv 

ch. canptr mv 

h.close~ 
LEGEND 

gm is a driver object 
ch is a checkers object 
ha is a halma object 

g)ll.ha r -g)lllha_opp 

gm.ha_start gm.ha_store 

h8..initialize 

ha.close~ 

ha.opp_mv 

Figure 6. Function Call Flow Chart for Main 
Function and Driver Class 
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tree. recur 

u~ 
tree.order mvs 

tree.score bd 

tree. search 

\ ----------ln.poly_mod 

tree.score bd 

tree.generat~ 

tree.post_mv 

tree.revers bd 

LEGEND 
tree is a ch_search object 
ln is a learn object 

Figure 7. Function Call Flow Chart 
for Ch Search Class 
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tree. search 

tree.revers bel 

LEGEND 

tree is a ha_search object 
ln is a learn object 

Figure 8. Function Call Flow Chart 
for Ha Search Class 
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Checker Game Parameters 

The definitions for the checkergame parameters are taken 
from Samuel ([17], Appendix C). 
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1. Advancement: The parameter is credited with 1 for each 
passive man in the 5th and 6th rows (counting in passive's 
direction). In the current author's program, advancement is 
turned off after the first "early_game11 moves. 

2. Apex: The parameter is debited with 1 if there are no 
kings on the board, if either square 7 or 26 is occupied by 
an active man, and ~f neither of these squares is occupied 
by a passive man. 

3. Back Row Bridge: The parameter is credited with 1 if 
there are no active kings on the board and if the two bridge 
squares (1 and 3, or 30 and 32) in the back row are occupied 
by passive pieces. 

4. Center Control I: The parameter is credited with 1 for 
each of the following squares: 11, 12, 15, 16, 20, 21, 24, 
and 25 which is occupied by a passive man. 

5. Center Control II: The parameter is credited with 1 
for each of the following squares: 11, 12, 15, 16, 20, 21, 
24, and 25 that is either currently occupied by an active 
piece or to which an active piece can move. 

6. Double-Corner Credit: The parameter is credited with 1 
if the material credit value for the active side is 3 (1 for 
men and 2 for kings) or less, if the passive side is ahead 
in material credit, and if the active side can move into one 
of the double-corner squares. 

7. cramp: The parameter is credited with 2 if the passive 
side occupies the cramping square (13 for Black, and 20 for 
White) and at least one other nearby square (9 or 14 for 
Black, and 19 or 24 for White), while certain squares (17, 
21, 22, and 25 for Black, and 6, 11, 12 and 16 for White) 
are all occupied by the active side. 

8. Diagonal Moment Value: The parameter is credited with 
"diag_mom_1" for each passive piece located on squares 2 
removed from the double corner diagonal files, with 1 for 
each passive piece located on squares 1 removed from the 
double-corner files and with "diag_mom_2" for each passive 
piece in the double-corner files. 
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9. Dyke: The parameter is credi':ed with 1 for each string 
of passive pieces that occupy three adjacent diagonal 
squares. 

10. Exposure: The parameter is credited with 1 for each 
passive piece that is flanked along one or the other 
diagonal by two empty squares. 

11. Pole: The parameter is credited with 1 for each 
passive man that is completely surrounded by empty squares. 

12. King Center Control: The parameter is credited with 1 
for each of the following squares: 11, 12, 15, 16, 20, 21, 
24, a~d 25 which is occupied by a passive king. 

13. Back Row Control: The parameter is credited with 1 if 
there are no active kings and if either the Bridge or the 
Triangle of Oreo is occupied by passive pieces. 

14. Triangle of Oreo: The parameter is credited with 1 if 
there are no passive kings and if the Triangle of Oreo 
(squares 2, 3, and 7 for Black, and squares 26, 30 and 31 
for White) is occupied by passive pieces. 

15. Node: The parameter is credited with 1 for each 
passive piece that is surrounded by at least three empty 
squares. 

16. Gap: The parameter is credited with 1 for each single 
empty square that separates two passive pieces along a 
diagonal, or tha~ separates a passive piece from the edge of 
the board. 

17. Hole: The parameter is credited with 1 for each empty 
square that is surrounded by three or more passive pieces. 

18. Threat: The parameter is credited with 1 for each 
square to which an active piece may be moved and in so doing 
threaten the capture of a passive piece on a subsequent 
move. 

19. Double Diagonal File: The parameter is credited with 1 
for each passive piece located in the diagonal files 
terminating in the double-corner squares. 

20. Total Mobility: The parameter is credited with 1 for 
each square to which the active side could move one or more 
pieces in the normal fashion, disregarding the fact that 
jump moves may or may not be available. 

21. Deny: The parameter is credited with 1 for each square 
defined in Total Mobility if on the next move a piece 
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occupying this square could be captured without an exchange. 

22. Undenied Mobility: The parameter is credited with the 
difference between Total Mobility and Deny. 

23. Exchange: The parameter is credited with 1 for each 
square to which the active side may advance a piece and, in 
so doing, force an exchange. 

24. Move: The parameter is credited with 1 if pieces are 
even with a total piece count (1 for men and 2 for kings) of 
less than 12, and if an odd number of pieces are in the move 
system, defined as those vertical files starting with 
squares 1, 2, 3, and 4. 

25. Threat of Fork: The parameter is credited with 1 for 
each situation in which passive pieces occupy two adjacent 
squares in one row and in which there are three empty 
squares so disposed that the active side could, by occupying 
one of them threaten a sure capture of one or the other of 
the two pieces. 

Halma Game Parameters 

1. Stragglers: Pieces from the active side that have 
lagged behind the rest of the pieces of the active side 
considering movement in the forward direction. The greatest 
number of rows or columns of separation between the 
straggler and the nearest active piece is added for each 
straggler found. 

2. Diagonal Pairs: The parameter is credited 1 for each 
pair of active pieces that are adjacent to each other and 
lined up in the forward direction. 

3. Column Pairs: The parameter is credited 1 for each 
pair of active pieces that are adjacent to each other and 
lined up vertically. 

4. Row Pairs: The parameter is credited 1 for each pair 
of active pieces that are adjacent to each other and lined 
up horizontally. 

5. Difference: The parameter is credited 1 for the 
difference (if greater than one) between the number of 
active pieces above and below the main diagonal in the 
forward direction. 

6. Southwest Jumps: The parameter is credited 1 for each 
active piece that could on the next turn be jumped from the 
Southwest direction. 
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7. South Jumps: The parameter is credited 1 for each 
active piece that could on the next turn be jumped from the 
South direction. 

8. West Jumps: The parameter is credited 1 for each 
active piece that could on the next turn be jumped from the 
West direction. 

9. Southeast Jumps: The parameter is credited 1 for each 
active piece that could on the next turn be jumped from the 
Southeast direction. 

10. Northwest Jumps: The parameter is credited 1 for each 
active piece that could on the next turn be jumped from the 
Northwest direction. 

11. Southwest Blockage: The parameter is credited 1 for 
each passive piece that is blocked by active pieces from 
initiating a move in the Southwest direction. 

12. South Blockage: The parameter is credited 1 for each 
passive piece that is blocked by active pieces from 
initiating a move in the South direction. 

13. West Blockage: The parameter is credited 1 for each 
passive piece that is blocked by active pieces from 
initiating a move in the West direction. 

14. Northeast Blockage: The parameter is credited 1 for 
each passive piece that is blocked by active pieces from 
initiating a move in the Northeast direction. 

15. Southeast Blockage: The parameter is credited 1 for 
each passive piece that is blocked by active pieces from 
initiating a move in the Southeast direction. 
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Checkers Coefficients 

Initial Coefficients: 
-17 -34 15 25 11 

11 3 -12 14 -23 
-5 0 0 37 2 

7 28 -20 -3 -18 
-25 28 -27 -12 -15 

Games 1 through 20: 
1. -16 -32 16 24 10 

11 2 -16 16 -22 
-7 0 1 37 -2 

5 26 -19 -6 -14 
-19 32 -28 -14 -13 

2. -15 ~29 16 19 10 
11 5 -18 20 -21 
-1 3 1 36 2 

8 29 -15 -2 -24 
-17 26 -27 -16 -11 

3. -14 -27 18 18 13 
11 5 -25 21 -18 

5 2 3 36 3 
10 31 -12 3 -35 

-18 23 -28 -16 -11 

4. -14 -26 19 10 11 
8 6 -28 28 -15 
1 2 6 39 3 

11 31 -11 0 -24 
-20 25 -28 -17 -13 

5. -13 -24 22 16 14 
8 6 -39 29 -9 
7 2 9 40 6 

14 34 -9 6 -34 
-21 21 -30 -17 -13 

6. -15 -23 23 10 12 
5 7 -36 34 -13 
1 2 10 39 4 

18 34 -8 1 -24 
-23 24 -30 -18 -14 

7. -14 -23 30 17 16 
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2 7 -34 0 -10 
4 2 17 40 6 

23 37 -5 5 -33 
-18 20 -29 -21 -20 

8. -15 -24 33 18 17 
2 8 -38 3 -13 
1 2 20 39 6 

27 38 -7 4 -29 
-16 19 -29 -21 -17 

9. -16 -20 36 15 22 
2 9 -40 11 -7 
7 4 23 39 10 

31 39 -3 12 -40 
-14 12 -27 -21 -22 

10. -18 -22 37 20 17 
2 10 -30 10 -12 

-5 4 24 39 1 
39 40 -5 2 -21 

-13 21 -29 -23 -17 

11. -17 -22 38 18 19 
2 9 -29 15 -10 

-4 4 30 0 0 
36 34 -3 3 -22 

-12 25 -27 -23 -26 

12. -16 -22 40 17 23 
1 10 -36 20 -10 

-4 4' 35 5 0 
40 34 -5 5 -22 

-11 22 -27 -23 -29 

13. -15 -22 0 24 32 
0 10 -37 26 -3 
3 4 39 8 4 

39 38 -2 12 -36 
-4 14 -24 -24 -38 

14. -17 -27 2 27 27 
0 11 -34 24 -7 

-1 4 39 10 -2 
39 38 -5 7 -35 
-4 19 -26 -22 -32 

15. -19 -27 3 20 29 
-1 12 -33 26 -7 
-3 4 39 11 -4 
40 39 -6 6 -33 
-4 15 -25 -22 -32 
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16. -21 -27 4 15 31 
-2 13 -35 29 -7 
-5 4 39 12 -6 

0 39 -7 5 -31 
-4 11 -24 -22 -32 

17. -23 -27 5 12 26 
-7 14 -32 32 -8 
-8 3 39 13 -11 
-1 40 -6 1 -26 
-2 10 -20 -22 -29 

18. -25 -26 8 13 25 
-10 15 -37 34 -8 

-8 2 39 16 -11 
-1 0 -5 2 -26 

1 13 -17 -22 -31 

19. -25 -26 12 16 23 
-10 18 -40 36 -2 
-2 2 40 21 -7 

6 6 -2 9 -38 
5 13 -10 -22 -39 

20. -27 -29 13 13 26 
-15 19 -31 36 -10 
-10 2 39 22 -12 

6 7 -2 2 -25 
6 18 -8 -21 -31 

H?tlma Coefficients 

New Coefficients: 
-17 -34 15 25 11 

11 3 -12 14 -23 
-5 0 0 37 2 

Games 1 through 30: 
1. -:17 -32 12 27 10 

11 4 -13 16 -26 
-5 2 1 37 2 

2. -15 -29 9 30 11 
11 3 -14 16 -28 
-5 3 2 37 2 

3. -18 -23 5 36 9 
9 2 -14 16 -33 

-6 4 2 37 2 

4. -20 -19 2 38 6 
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7 0 -13 15 -38 
-7 5 2 37 2 

5. -16 -16 0 36 4 
4 -2 -11 14 -36 

-9 2 3 37 2 

6. -17 -16 -5 37 2 
2 -5 -10 9 -37 

-12 0 7 37 2 

7. -16 -20 -9 37 0 
0 -9 -9 6 -36 

-18 -2 10 37 2 

8. -15 -15 -12 31 -2 
-2 -7 -7 2 -40 

-17 -1 10 37 2 

9. -14 -15 -9 30 -1 
-3 -5 -11 5 -40 

-20 1 9 37 2 

10. -12 -19 -13 35 1 
-4 -4 -14 8 0 

-26 0 7 37 0 

11. -18 -18 -16 40 -2 
-4 -5 -16 10 1 

-28 2 6 37 -1 

12. -23 -15 -16 0 -3 
-4 -6 -18 12 2 

-29 4 5 37 -2 

13. -23 -23 -22 3 -2 
-4 -9 -18 14 0 

-23 2 6 37 -2 
I 

14. -21 -20 -20 0 -5 
-5 -13 -19 16 -4 

-19 -2 6 0 -2 

15. -21 -18 -19 -2 -9 
-6 -17 -19 19 -7 

-16 -6 8 0 -2 

16. -17 -12 0 1 -4 
-8 -16 -24 18 -9 

-19 -3 7 0 -2 

17. -17 -16 3 3 -1 
-10 -17 -25 18 -11 
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-17 -1 6 0 -2 

18. -17 -18 5 2 -2 
-13 -18 0 17 -13 
-14 -2 7 0 -2 

19. -19 -15 3 -1 -1 
-13 -18 2 16 -14 
-15 -1 7 0 -2 

20. -20 -9 -1 -5 0 
-13 -18 3 16 -16 
-13 -1 8 0 -2 

21. -23 -3 -1 -3 2 
-14 -20 4 14 -19 
-11 -1 9 0 -2 

22. -15 -8 -6 -7 3 
-13 -19 2 15 -17 
-9 -1 6 0 -2 

23. -11 -5 -4 -10 1 
-15 -19 -2 18 -16 
-9 -2 2 0 -2 

24. -5 -4 0 -9 0 
-19 -21 -3 20 -14 

-8 -2 1 0 -2 

25. -2 -3 -2 -1 1 
-20 -22 -1 15 -11 
-14 0 2 0 -2 

26. -1 -4 -5 -5 1 
-18 -22 0 17 -12 
-11 2 2 0 -2 

27. -5 -4 -3 -3 -3 
-18 -22 -1 18 -12 
-10 1 1 0 -2 

28. -4 -13 -2 -2 -4 
-17 -23 -1 13 -12 
-8 6 0 0 -2 

29. -3 -12 2 -6 -2 
-17 -26 1 16 -13 
-12 9 -1 0 -2 

30. 0 -12 4 -2 3 
-18 -25 3 10 -16 
-16 9 0 0 -2 
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II' File: LEARN.C 
#include <stream.h> 
#include <string.h> 
#define delta terms 5 
#define items:Per_line 5 
#define past_counts 30 
#define max_num_pars 25 
#define arbitr_neg 12000 
#define delta cut 2 
#define mod amt1 1 
#define mod-amt2 2 
#define cuti .2 
#define cut2 2 
/* CONSTANT DEFINITIONS: 

delta terms - number of 
items:Per_line - number 

before 

past delta terms saved 
of items to save to file 
a newline 

*I 

past counts - number of 
to save 

past sets of parameter counts 

max_num_pars - maximum number of parameters 
arbitr_neg - value returned from rand used to make a 

number negative 
delta cut - divisor of delta average to establish a 

cutoff for the decision to modify or not 
modify the alpha coeffs 

mod amt1 - increment/decrement alpha coefficient 
mod amt2 - increment/decrement alpha coefficient 
cut1 - cutoff multiplier for modifying alpha coeffs 
cut2 - cutoff multiplier for modifying alpha .coeffs 

/*********************************************************** 
************************************************************ 
Class: LEARN 

The learn class implements the machine learning mechanism. 
It is used by both the checker and halma games. It consists 
of five functions: data in, data out, initialize, poly mod, 
and coeff exch. The alpha coefficients are contained In the 
integer array a[]. The beta coefficients are contained in 
the integer array b[]. The five last delta terms are saved 
in the integer array d[]. Counts of the occurances of board 
evaluation parameters are saved in the integer array c[][]. 
*********************************************************** 
***********************************************************/ 
class learn 
{ 

static 
static 

static 
static 
static 

int 
int 

int 
int 
int 

num_pars; //size of array of coeff terms 
c[past_counts](max_num_pars]; //past 

II occurances of parameter 
d[delta_terms]; //delta values 
c indx; //index for next c term to overwrite 
d=indx; jjindx for next d term to overwrite 



} ; 

static int wins; //consecutive wins in recent games 
static int losses; //consecutive losses 
static int wins_needed; //wins needed to assign new 

II beta coeffs 
static int losses_needed; //losses needed to assign 
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II an alpha coeff to o 
static int max coeff; //largest size of a poly coeff 
void initialize(); //function to initiate learn process 

public: 
int a[max_num_pars]; //alpha polynomial coefficients 
int b[max_num_pars]; //beta polynomial coefficients 
FILE *poly; //file pointer for the coefficient file 
FILE *pro_ln; //file pointer for the learn profile 
FILE *pro_coeff; //file pointer for the coeff profile 
int ln_switch; //switch to turn learning on or off 
int ratio; //ratio of drive to win to polynomial 
void poly_mod{int, short*); /jcoeff modification 
void coeff_exch(short); ;;overwrite beta coeffs, 

II or reset alpha 
void data_in(); ;;read data in 
void data out(); //store data 

/*********************************************************** 
Function: LEARN:: P 0 L Y M 0 D 

The poly_mod function performs the modification of the alpha 
coefficients. It uses the parameters passed to it to 
calculate the individual polynomial terms. From each term, 
using delta passed to it, the correlation between each 
polynomial term and delta is calculated. These correlations 
are used to actually perform the coefficient modification 
and are stored in the integer array carr[]. 
***********************************************************/ 

void learn::poly_mod(int delta, short par[]) 
{ 

short i, j = 0; //indexing variables 
int sum = O; //temporary for calculating averages 
int avg; //temporary for calculating averages 
short count= 1; //count of c[](] items 
int abs_delta; //for decision to modify 
int p(max_num_pars); //polynomial terms 
int corr[max_num_pars]; //correlations 
int p_avg; //polynomial average 
int d_avg; //delta average 
int coeff cutl, coeff cut2; //modify coefficients 
short mod-flag = O; //flag to output to profile 
int abs(int); //function declaration 

for(i = O; i < num_pars; ++i) 
{ p[i] = abs(par[i] * a[i]); ;;calculate poly term 

if(p[i) > 0) //poly term nonzero 
{ sum+= p[i); 



++count; 
} 
if(par[i] > 0) //if measured par present 

c[c_indx][i] = 1; ;;overwrite count term 
else c(c_indx][i] = O; II "" 

} 
p_avg = sum I count; //poly term average 
fprintf(pro_ln, "p_avg: %d\n", p_avg); 
sum = O; 
for(i = o: i < delta_terms; ++i) 

sum+= abs(d[i]); 
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avg = sum I delta terms; ;;average abs of delta terms 
abs_delta = abs(delta); 
fprintf(pro_ln, "abs_delta: %d abs_delta_avg: %d\n", 

abs_delta, avg); 
if(abs_delta >= (avg 1 delta_cut)) //modify coeffs 
{ mod_flag = 1; //set flag for profile 

sum = O; 
for(i = O; i < delta terms; ++i) 

sum+= d[i]; jjsum up delta terms 
d_avg = sum j delta_terms; jjavg of delta terms 
fprintf(pro_ln, "delta: %d delta_avg: %d 

d term: %d\n", delta, d_avg, (delta- d_avg)); 
sum = O; 
count = O; 
for(i = 0; i < num_pars; ++i) 
{ if(par(i] > 0) //find correlation 

} 

{ corr[i] = (p[i] - p_avg) * (delta- d_avg); 
sum+= abs(corr(i]); ;;sum of correlations 
++count; 

} 
else corr[i] = O; 

if (count > 0) · 
avg = sum 1 count; ;;average abs of carrels 

//modify the coefficients: 
coeff cutl = (int) (cutl * (float)avg); II " " 
coeff=cut2 = cut2 * avg; ;;size of modification 
fprintf(pro_ln, "avg_corr: %d cuts: %d %d\n", 

avg, coeff_cut2, coeff_cutl); 
for(i = 0,; i < num_pars; ++i) 

if(par[i] > 0) //measured parameter was present 
{ if(corr[i] >= coeff_cut2) 

a[L] += mod_amt2; //increment alpha 
else if(corr[i] >= coeff_cutl) 

a[i] += mod_amtl; //increment alpha 
else if(corr[i] <= -coeff_cut2) 

a[i] -= mod_amt2; //decrement alpha 
else if(corr[i] <= -coeff_cutl) 

a[i] -= mod_amtl; //decrement alpha 
if(a[i] > max_coeff) 

a(i] = max_coeff; //limit of +max coeff 
else if(a[i] < -max_coeff) 
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a[i] = -max_coeff; //limit of -max_coeff 

} 

} 
} 
d[d_indx] =delta; ;;overwrite new delta term 
d_indx = (d_indx + 1) % delta_terms; //next d term 
c_indx = (c_indx + 1) % past_counts; //next count 
//write to the learn profile: 
if(mod_flag == 1) jjcoeffs were modified 
{ fprintf(pro_ln, "Correlations: \n"); 

' for(i = O; i < num_pars; ++i) 

} 

{ fprintf(pro_ln, " %12d", corr[i]); 
if(((i + 1) % items_per_line) == 0) 

fprintf(pro_ln, "\n11 ); 

} 
fprintf(pro_ln, "Coefficients: \n"); 
for(i = O; i < num_pars; ++i) 
{ fprintf(pro_ln, " %12d", a[i]); 

if(((i + 1) % items_per_line) == 0) 
fprintf(pro_ln, "\n"); 

} 
fprintf(pro_ln, "Parameters: \n 11 ); 

for(i = O; i < num_pars; ++i) 
{ fprintf(pro_ln, " %12d", par[i]); 

if(((i + 1) % items_per_line) == 0) 
fprintf(pro_ln, "\n"); 

} 

/*********************************************************** 
Function: L E A R N : : C 0 E F F E X C H 

The coeff exch function is called at the conclusion of each 
game. If-alpha wins two.games in a row, the beta 
coefficients are overwritten with the alpha coefficients. 
If alpha looses two games in a row, the largest alpha 
coefficient is reset to zero. Finally, the alpha 
coefficients are written to the coefficient profile. 
***********************************************************/ 

void learn::coeff_exch(short win_side) 
{ ' 

short i, j; //indexing variables 
short sum, suml; //sums of counts of parameters 
short largest = O; //largest abs of any coefficient 
short lar_indx = -1; //index into a[) 

if(win side == 0) //a draw recorded 
{ wins = o; ;;reset counts 

losses = o; II " " 
} 
else if(win_side == 1) //a win recorded 
{ ++wins; 

if(wins == wins_needed) //consecutive wins 



} 

} 

{ for(i = O; i < num_pars; ++i) 
b[i] = a(i]; ;;transfer a to b coeffs 

fprintf(pro_ln, "New beta coefficients\n"); 
wins = O; //reset count of consecutive wins 

} 
losses = O; //reset count of consecutive losses 
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else //a loss recorded 
{ ++losses; 

if(losses == losses_needed) ;;enough losses 
{ for(i = O; i < num_pars; ++i) //locate largest 

{ if(abs(a(i]) > largest) //new largest coeff 
{ largest= abs(a(i]); 

} 

} 

lar_indx = i; 
} 
else if(abs(a[i]) == largest) //tiebreaker 
{ sum = O; 

} 

s~ml = o; 
for(j = o; j < past counts; ++j) 
{ sum+= c(j][i]; -//sum of new counts 

suml += c[j][lar_indx]; //sum of cnts 
} 
if(sum > suml) //new counts larger 
{ largest= abs(a(i]); 

lar_indx = i; 
} 

a(lar_indx.] = O; jjset largest coeff to 0 
losses = O; //reset count of losses to o 
fprintf(pro ln, "Coefficient %d goes to 0\n", 

lar indx); 

wins = O; //reset count of consecutive wins 
} 
for(i = O; i < num_pars; ++i) //store coeffs 
{ fprintf(pro_coeff, 11 %12d", a(i]); 

} 

if(((i + 1) % items_per_line) == O) 
fprintf(pro_coeff, "\n"); 

fprintf(pro coeff, "\n"); 

/*********************************************************** 
Function: LEARN:: DATA IN 

The data in function is called at the start of every game. 
It determines if the coefficients are present or not. If 
the coefficients are present, the alpha, beta, delta, and 
count terms are all read in. If the coefficients are not 
present, the initialize function is called to initialize 
these variables. 
***********************************************************/ 
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void learn::data_in(void) 
{ 

} 

inti, j; //indexing variables 
FILE *ln_init; //file pointer for learn variables 

ln_init = fopen("ln_init", "r"); //open file to read 
if(ln_init == 0) //file not found 
{ ln_init = fopen("ln_init", "w"); ;;create file 

ln_switch = 1; //set defaults 

} 

wins needed= 2; 
losses needed = 2; 
fprintf(ln_init, "%d %d %d\n", ln_switch, 

wins_needed, losses_needed); //default values 

else //file"was found 
fscanf(1n init, "%d %d %d", &1n switch, 

&wins_needed, &losses_needed); 
fclose(ln_init); 
fscanf(poly, "%d %d", &num_pars, &max_coeff); 
j = fscanf(poly, "%d", &d_indx); //necessary values 
if(j == -1) //new coeff file detected 

initialize(); //randomly assign values 
else //read in needed values 
{ fscanf(po1y, "%d", &c_indx); 

fscanf(poly, "%d %d", &wins, ~losses); 
for(i = 0; i < num_pars; ++i) 

fscanf(poly, "%d", &a[i]); //read in alpha 
for(i = 0; i·< num_pars; ++i) 

fscanf(poly, "%d", &b[i)); ;;read in beta 
for(i = 0; i < delta_terms; ++i) 

fscanf(poly, "%d", &d[i]); //read in delta 
for(i = O; i < past_counts; ++i) 

for(j ~ O; j < num_pars; ++j) 
fscanf(poly, 11 %d", &c[i][j]); //counts 

} 
fprintf(pro_ln, "Initial Coefficients:\n"); 
for(i = O; i < num_pars; ++i) 
{ fprintf(pro_ln, "%12d", a[i]); 

if(((i + 1) % items_per_line) == 0) 
fprintf(pro_ln, "\n"); 

} 
fprintf(pro_ln, "\n"); 

/*********************************************************** 
Function: LEARN:: DATA 0 U T 

The data out function writes the data to the coefficient 
file. The alpha and beta coefficients, past delta values, 
and counts of previous parameters are saved. 
***********************************************************/ 

void learn::data out() 
{ 



} 

short i, j; //indexing variables 

fseek(poly, O, 0); //reset read, write pointer 
fprintf(poly, "%d %d\n", num_pars, max_coeff); 
fprintf(poly, "%d %d\n", d_indx, c_indx); 
fprintf(poly, "%d %d\n", wins, losses); 
for(i = O; i < num_pars; ++i) 
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{ fprintf(poly, "%12d", a[i]); ;;write alpha values 
if(((i + 1) % items_per_line) == 0) 

fprintf(poly, "\n"); 
} 
fprintf(poly, "\n"); 
for(i = O; i < num_pars; ++i) 
{ fprintf(poly, "%12d", b[i]); 

if(((i + 1) % items_per_line) 
fprintf(poly, "\n"); 

} 
fprintf(poly, "\n"); 
for(i = O; i < delta_terms; ++i) 

;;write beta values 
== 0) 

fprintf(poly, "%12d", d[i]); ;;write delta values 
fprintf(poly, "\n"); 
for(i = O; i < past counts; ++i) 
{ fprintf(poly, "\n"); 

} 

for(j = O; j < num_pars; ++j) 
{ fprintf(poly, "%12d", c[i][j]); ;;write counts 

if(((j + 1) % i:tems_per~line) -- 0) 
fprintf(poly, "\n"); 

} 

fclose(poly); //close all files 
fclose(pro_ln); 
fclose(pro coeff); 

/*********************************************************** 
Function: LEARN :: INITIALIZE 

The initialize function randomly assigns values to the 
alpha, beta, and delta terms. It uses a file called 
"seed sav" in order to seed the rand function. If the 
seed_sav file is not present, it is created. All other 
terms are initialized to zero. Finally, the coefficient 
profile is written to. 
***********************************************************/ 

void learn::initialize(void) 
{ 

inti, j, x, y, z; //indexing and temporary variables 
unsigned int seed; ;;seed for rand function 
FILE *start; //file pointer for seed file 
int rand(); //randomizing function 
void srand(unsigned int); ;;seeding function 

start= fopen("seed_sav", "r+"); //open seed file 



} 
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if(start == 0) //file not found 
{ start= fopen("seed_sav", "w"); ;;open seed file 

seed= 2: //initialize seed 
} 
else //read in seed value 
{ fscanf(start, "%d", &seed); 

fseek(start, 0, 0); 
} 
fprintf(start, "%d\n", seed+1); ;;write new seed 
fclose(start); //close file 
srand(seed); //seed random function 
d indx = o; 
c-indx = O; 
losses = o; 
wins = O; 
for(i = O; i <= 2; ++i) 

for(j = O; j < num_pars; ++j) 
{ x = rand(); ;;call random function 

} 

if(x < arbitr_neg) ;;make value negative 
y = -1; 

else y = 1; 
z = (y *rand()) % max_coeff; //make coeff 
if(i == 0) 

a[j] = z; ;;save alpha value 
else b[j] = z; ;;save beta value 

for(i = O; i < delta_terms; ++i) 
d[i] = a(i*2]; ;;initialize delta terms 

for(i = O; i < past_counts; ++i) 
for(j = O; j < num_pars; ++j) 

c[i][j] = O; //initialize count terms 
fprintf(pro_coeff, "NEW COEFFICIENTS:\n"); //profile 
for(i = o; i < num_pars; ++i) 
{ fprintf(pro_coeff, "%12d", a[i]); 

if(((i + 1) % items_per_line) == 0) 
fprintf(pro coeff, "\n"); 

} 
fprintf(pro_coeff, "\n"); 

II ----- File: CH SEARCH.C -----
/*********************************************************** 
Function: C H S E A ~ C H : : R E C U R 

The recur function performs the recursive look-ahead tree 
search. This function is essentially an implementation of 
the alpha-beta algorithm presented by Knuth, D. E. and More, 
R. W., "An Analysis of Alpha-Beta Pruning," ARTIFICIAL 
INTELLIGENCE, 6 (1975) 137-148. 
***********************************************************/ 

int ch_search::recur(int alpha, int beta) 
{ 

short i; //indexing variable 



} 

unsigned char moves(20][2]; ;;used to expand moves 
int static_value; ;;score of board 
int new_alpha; //better alpha value 
short br_count; //number of move branches 
short br_indx; //current move branch index 
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unsigned int bd_sav(4]; //save original bd position 

generate_mvs(O); //generate moves or jumps 
//quiescence decision: 
if(gen(4] == 0 I I {gen(4] == 1 && ply>= depth)) 
{ static_value = score_bd(); //score the board 

return static_value; ;;return the score 
} 
for(i = O; i < 4; ++i) 

bd_sav(i] = bd[i]; ;;save the original board 
if(ply == 1 && gen(4] == 1) //root node, no jumps 
{ br_count = order_mvs(moves); ;;arrange moves 

for(i = O; i < 4; ++i) // into best order 
bd[i] = bd_sav(i]; //restore the original bd 

} 
else br_count = expand_mvs(moves); 
//basic recursive loop: 
for(br indx = O; br indx < br count; ++br_indx) 
{ for(i = O; i < 47 ++i) -

} 

bd[i] = bd_sav(i]; //restore the original bd 
mv_data[O] = m1[moves(br_indx][O)]; ;;retrieve mv 
mv_data(1] = moves[br_indx][1]; // 
post_mv(); //post,the move to bd 

II II 

while(mv_data[3] > 0) //post multiple jumps 
post_mv(); 

++ply; //prepare for recursive call 
revers_bd(); 11 11 11 

new alpha = -recur(-beta, -alpha); //recursve call 
--ply; //return from recursive call, reset ply 
if(new_alpha '> alpha) ;;a better alpha was found 
{ alpha = new_alpha; //reassign alpha 

} 

if(ply == 1) //initial branch that lead to 
{ mv sav1 = m1[moves(br indx][O]]; // best 

mv=sav2 = moves(br_indx][1]; // move 
} 

if(alpha >= beta) //a cutoff was found 
return(alpha); 

return(alpha); //no cutoff was found 
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