
STUDIES IN MACHINE LEARNING

USING GAME PLAYING

By

MICHAEL WAYNE SEALE

Bachelor of Science in

Electrical Engineering

University of Arkansas

Fayetteville, Arkansas

1985

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1990

STUDIES IN MACHINE LEARNING

USING GAME PLAYING

Thesis Approved:

Dean of the Graduate

ii

1366872

ACKNOWLEDGMENTS

I extend special thanks to Dr. John Chandler, my

principal advisor, for his advice, assistance, and

confidence that this project would be completed. I also

want to express my sincere thanks to the other members of my

committee, Dr. Huizhu Lu and Dr. George Hedrick, the

department head. Their suggestions and support were very

important to this project. My thanks is also extended to

Dr. K. M. George for his much needed assistance with the C++

Programming Language.

I am very grateful to the Air Force for giving me the

opportunity to further my education and professional

qualities. The understanding and support I have received

from the Air Force Institute of Technology has been

outstanding. Additionally, I extend my appreciation to

Colonel John Barton, commander of the 1842 Electronics

Engineering Group for his belief in my talents and his

influence on me.

Finally, and most importantly, sincere gratitude is

extended to my wife, Jeanie, and my children, Amy, Michael

Jr., and Joey for their patience and encouragement through

the difficult times. I could not have accomplished anything

without their support.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION. • 1

II. BACKGROUND. ~ •••••••••••••••••••• '. • • • • • • • • • • • • • • 3

Early Work on Computer Games............... 3
Deficiencies in Chess Playing Programs..... 4
Machine Learning , • • . . . • • . . 5
Samuel's Machine Learning Techniques....... 7
Discussion. • • . • • • . 12

III. PROJECT OBJECTIVES............................. 14

IV. MINIMAXING GAME TREE SEARCH TECHNIQUES......... 16

The Alpha-Beta Algorithm................... 18
Reducing the Tree Search Further........... 22

V. PROGRAM DESCRIPTION. • • • . . • • • • • • • • • • • . 24

Game Representation Approach............... 24
Auxiliary Files. • . . . • • • 27
Program Modules............................ 28

Driver Class........................... 29
Checker Game. • 3 o
Halma Game. • 3 4
Learn Class. • . • • • • . • . . • • • • • • • • • • • . . 3 8

Game Module Difficulties................... 39

VI • MACHINE LEARNING .•.......•••.••••.•..... -a • • • • • • 41

Program Learning Techniques................ 41
Discussion. • • . . • • • . • . . . • 44
Results. 45

VII. SUMMARY, CONCLUSIONS,
AND RECOMMENDATIONS. . . . • • . • . . • 4 8

BIBLIOGRAPHY • • • e • • • • • .. • • • • • • • • • • • • • • • • • ... • • • • • • • • • • • • • 50

APPENDIXES. • 52

iv

Chapter Page

APPENDIX A - FIGURES. • . • . • • . . • . • • • • • . • . . . • • • . • • . • • . • • 53

APPENDIX B - EVALUATION FUNCTION
PARAMETERS. • 61

APPENDIX C - TEST DATA. • • . . • . . • . . . • • . . . • . • . • . . • . • • . . . 6 6

APPENDIX D- PARTIAL PROGRAM LISTING................. 72

v

LIST OF FIGURES

Figure Page

1. Minimax Move Tree. 54

2. Alpha-Beta Algorithm............................. 55

3. Alpha-Beta Move Tree............................. 56

4. Labeled Checkerboard and Directions of
Movement•.. C> • • • • • • 57

5. Labeled Halmaboard and Directions of
Movement. • 57

6. Function Call Flow Chart for Main
Function and Driver Class...................... 58

7. Function Call Flow Chart for
Ch Search Class. 59

8. Function Call Flow Chart for
Ha Search Class................................ 60

vi

CHAPTER I

INTRODUCTION

The field of machine learning is described by Carbonell

and Langley [6] as a study of "computational methods for

acquiring new knowledge, new skills, and new ways to

organize existing knowledge." Games can provide a

convenient vehicle for a study in machine learning if they

meet certain conditions, such as having no practical

algorithms for guaranteeing a win, and having clearly

definable goals and rules of activity.

One of the first attempts to apply machine learning to

game playing was A. L. Samuel ([17], (18]). He investigated

several methods of machine learning using the game of

checkers in the late 1950s and 1960s. The basic premise

behind his first approach was to program a computer to

improve its move selection by adjusting the parameters used

to determine the relative value of a particular board

position.

This project has attempted to generalize Samuel's

parameter adjustment technique to two games, checkers and

halma. Halma is a game with the same rules as Chinese

checkers but is played on a square board similiar to a

checkerboard (8]. A computer program was written to

accomplish this task using an object oriented language and

1

2

was designed to be highly modular. The learning section of

the program is shared between the two games.

CHAPTER II

BACKGROUND

Early Work on Computer Games

Some of the early work on computer game playing theory

was done by John Von Neumann and Oscar Morgenstern [23]. In

their monumental work "The 'Theory of Games and Economic

Behavior" they presented the minimax algorithm and discussed

its application to the game of chess. They theorized that

if a player could look far enough ahead, he would be able to

decide whether his present position is win, loss, or draw.

Using this information, he could then always make the most

informed move. However, they concluded that there is "no

practically usable method to determine the best move. This

. . • difficulty necessitates the use of those incomplete,

heuristic methods of playing, which constitute good chess."

c. E. Shannon published a paper in 1950 describing a

procedure for programming a computer to play chess [19].

Shannon argued that a chess player can look at a chess board

and conclude whether the position is good or bad for one

side or the other. The better chess player probably

considers more factors and breaks each factor down into

subcategories. Shannon suggested that a computer program

score board positions in the same way using material, pawn

3

4

structure, and mobility as principal scoring factors. He

went on to describe two strategies for implementing a

look-ahead tree of moves. The type A-strategy searches to a

fixed depth while the type a-strategy searches to a variable

depth. In his opinion the type a-strategy could be further

improved by using forward pruning to eliminate undesirable
'

branches from the tree. The work done by Shannon was

independently paralleled by A. M Turing [4]. Although many

other variations on the Shannon/Turing method have been

formulated, their basic technique is still used by most game

playing programs today.

Deficiencies in Chess Playing Programs

D. Michie [13] identified the primary deficiencies of

current chess playing programs and went on to discuss the

outlook for improvement. The first defect is the horizon

effect which renders a program oblivious to all events which

may occur beyond its look-ahead search tree. The second

defect is a lack of long-range ideas. A human Master chess

player generally executes long-range plans that may include

many intermediate goals along the way. Chess programs can

flounder aimlessly with unrelated intermediate goals. The

brute-force method of examining millions of possibilities in

look-ahead analysis before selecting a move can stand up to

human Grandmasters only in purely tactical play [13]. The

human Grandmasters are superior in strategic, or positional

5

play because they have built up "associative stores of

conceptualized chess knowledge." According to Michie,

future prospects for computers to achieve Grandmaster status

will necessitate the large-scale transfer of knowledge from

humans or books to .the computer. He describes advances that

must be made under three areas to facilitate this process:

(1) The design of data structures in forms suitable for

representing conceptualized knowledge (descriptions,

patterns, and theories) which are also convenient for

the human user to modify and increment interactively.

(2) Improved facilities for inductive inference, so that

programs can acquire new knowledge both from

illustrative examples supplied by human tutors, and also

from the results of their own internal generation of

examples for self-administration.

(3) The engineering of conceptual interfaces between

program and human expert, making it easier for the

latter to •teach' the machine.

Machine Learning

Michalski ([12], ch 1) postulates that the development

of learning machines is important to the continued progress

in artificial intelligence and related fields. The basic

premise behind this point is that more and more knowledge

must be imparted to AI systems. "Such knowledge must

encompass domain-specific facts and rules, commonsense

heuristics and constraints, and general concepts and

theories about the world." With this backdrop, a brief

introduction to machine learning is presented.

6

Michalski ([12], ch 1]) classifies learning into

several "learning strategies" that are briefly identified

here. Rote learning is described as a process in which "the

information from the teacher is more or less directly

accepted and memorized by the learner." . · Learning by

instruction places the burden of learning primarily on the

teacher, with the learner responsible for "selection and

reformulation." Deductive learning allows the learner to

draw "deductive, truth preserving inferences from the

knowledge given and store useful conclusions." Learning by

induction is defined as follows: "If the transformation

process involves generalization of input information and

selection of the most plausible or desirable result, that

is, the inductive inference, then we have inductive

learning." Finally, learning by analogy is identified as

using both deductive and inductive processes.

Forsyth ([7], ch 1]) discusses a "framework for

learning" which includes the following components: The

Critic, the Learner, the Rules, and finally the Performer.

All of these components are necessary for learning to take

place. The Critic can be described as the component that

"compares the actual with the desired output. 11 The desired

output is also termed as an "ideal system." The Learner is

"the heart of the system ... and has responsibility for

7

amending the knowledge base to correct erroneous

performance." Forsyth defines the Rules as "the data

structures that encode the system's current level of

expertise •.. and are used to guide the activity of the

performance module." The last component, the Performer, "is

the part of the system that carries out the task. The

performer uses the rules in some way to ~uide its activity.

Thus when the rules are updated, the performance of the

system as a whole changes.

Samuel's Machine Learning Techniques

The work done by A. L. Samuel ([17], [18]) was one of

the early pioneering successes in the field of machine

learning. In his first article, he discussed his checker

playing program that incorporated two separate learning

procedures, rote learning and a generalized learning

procedure. Rote learning involved saving all of the board

positions encountered during play, together with their

computed scores. References were then made to this memory

record in order to save computing time and also to allow a

farther look-ahead. Rote learning was found to be minimally

successful for the opening game and to a lesser extent in

the end game. However, rote learning was found to be

somewhat ineffective in the middle game. Samuel's

generalization learning procedure consisted of having the

computer continually re-evaluate the coefficients of the

8

linear polynomial. The polynomial is used to evaluate the

terminating board positions of the look-ahead tree search.

The generalization procedure was found to be relatively

effective in the middle game. In his second article Samuel

discusses several improvements to the checker playing

program and also used a different learning procedure. One

improvement was the implementation of alpha-beta pruning of

the look-ahead tree. This process allowed for much deeper

and generally more effective look-ahead tree searches. The

second improvement, called the signature-table technique,

was implemented in order to overcome the inter-parameter

effects and their interactions upon the linear polynomial.

This method involved grouping related parameters together

into subsets called signature types. From these subsets,

for a particular board position, a value is calculated that

serves as an address into a signature table where tabulated

values are retrieved that reflect the relative worth for

these particular combinations. These improvements were used

with an improved book learning procedure. This technique

involves presenting the program with a particular board

position and allowing the program to select its best move.

The move selected is then compared with the book-recommended

move. The book-recommended move can be described as the

move that is considered best by expert human checker

players. The program then uses the difference between its

move and the book-recommended move to adjust its evaluation

procedure.

9

Of Samuel's different methods of machine learning, the

current author finds the generalized method to be the most

interesting. The rote learning method is basically a

procedure for the storage and retrieval of information that

is gradually accumulated as the program is faced with more

and more game playing decisions. Rote learning was

basically used to speed up the heuristic decision making

process and to allow for deeper searches using the time

saved [17]. The book learning method is interesting in that

if given enough input data, that is book-recommended moves,

the program can gradually improve its level of play [18].

The primary drawback to this method, in this author's

opinion, is the fact that an outside source of information,

or database, must be in existence and made available to the

program in order for it to learn. Samuel's generalized

learning method allows the computer to improve its level of

play by playing against itself or a human opponent and

continually adjusting its evaluation function based on

perceived needed adjustments [17]. No outside instruction

is needed. The method is advantageous because for many

games, and real life situations for that matter, there

simply is no large base of information from which to draw.

Samuel's learning by generalization technique as

applied to the game of checkers is described as follows

[17]. The score for a board position is found by computing

the scoring polynomial. The terms of the polynomial consist

of measurements of the board position such as center

10

control, threat of fork, etc. Each term is multiplied by a

coefficient which assigns a weight to the particular

parameter in relation to all the other terms. The sum of

these terms gives the score for the board position. The

coefficients of the terms of the scoring polynomial are

modified during the machine learning process. When the

checkers program is presented a board position from which to

pick the best move, it first invokes the objective function

and assigns a value to the initial board position. Then it

creates the look-ahead tree of moves and searches for the

best move based upon each side taking his best move at each

turn. Eventually, the best look-ahead board position is

found and the objective function is invoked to assign a

value to it. The fundamental assumption for the learning

process is that the score calculated for the initial board

position should look like the score calculated for the

terminating board position of the look-ahead search [17].

If there is a difference in scores, then the evaluation of

the initial board positiqn is assumed to be incorrect. The

coefficients of the scoring polynomial are modified so that

they cause the score for the initial board position to more

closely resemble the score for the look-ahead board

position.

The coefficients of the terms in the scoring polynomial

are modified indirectly by a complicated process [17]. The

difference between the initial board score and look-ahead

board score is called delta. If delta is positive, then the

11

coefficients of the terms of the scoring polynomial have

been given too much weight. Conversely, if delta is

negative, then the coefficients have been given too little

weight. The coefficient terms are only modified if delta is

larger than some set value and this value is adjusted

throughout the game. The goal during the coefficient

modification procedure is to assign the optimum weights to

the polynomial terms in relation to each other. Polynomial

terms that are more important in determining if a board

position is potentially good should tend to increase

relative to lesser important terms, or terms that are

disadvantageous (i.e., coefficients with a negative sign).

Instead of adjusting the coefficients directly, correlations

between the signs of the polynomial coefficients and the

sign of delta are calculated and used to modify the

coefficients of the scoring polynomial. The correlations

take into consideration the number of times that each

polynomial term has been used and has had a nonzero value.

The coefficient term with the largest correlation value is

then set at a prescribed maximum value with proportionate

values determined for all of the remaining coefficients.

The scoring polynomial retains 16 terms out of a possible 38

terms at any one time. Once a particular term has been

given the minimum coefficient value over some set number of

moves, that term is dropped out of the polynomial and the

next term in the queue of waiting terms is reinserted to the

polynomial. Polynomial terms were dropped out and then

12

reintroduced later, probably as a way of speeding up the

program. In the current author's opinion, the time

necessary to calculate 38 terms andjor combinations of terms

on the machine that Samuel used would have been excessive.

The speed and power of modern day machines might allow the

polynomial to keep and adjust all of the terms during the

game.

Discussion

Samuel demonstrated that his generalized method of

learning does tend to improve the accuracy of the scoring

polynomial and thereby improve the level of the program's

move selection [17]. Intuitively speaking, why does this

occur? The current author believes that the answer lies in

the fact that the program is given a sense of direction that

is kept separate from the board scoring polynomial. In the

case of checkers, this sense of direction is the objective

of gaining material. Material credit is given for jumping

the opponent pieces (thereby removing them from the board)

and reaching the opposite end of the board so that regular

pieces can be promoted to kings. If an objective function

uses material solely to determine its moves, then it fails

to recognize tactical situations and arrangements of pieces

that may be more important than a particular gain or loss in

material. This sense of direction that the program is given

should be dominant over the other board scoring parameters,

13

but not so dominant that it fails to allow the other

parameters to affect the final move decision. In this way,

the dominant sense of direction causes the coefficients of

the scoring polynomial terms to be corrected in the right

direction. If programmed correctly, the proper weighting of

the coefficients may result as well.

The primary drawback to the scoring polynomial is its

linear nature ([1], [17]). One method that Samuel used in

order to overcome this problem was to divide the game into

six phases· and to use a different scoring polynomial for

each phase. For example, in the Qpening game the

measurement called advancement is an important parameter but

in the end game shouldn't be a factor at all. Perhaps some

method of machine learning similiar to the coefficient

modification scheme can be found that will allow the program

to decide which polynomial terms to use in the various

phases of the game. Many variations on Samuel's

generalization method might be practical and advantageous.

CHAPTER III

PROJECT OBJECTIVES

This project has been limited to two-person, zero-sum

games with perfect information. A zero-sum game means that

a gain ip material or position by one side results in an

identical loss to the other side. A game with perfect

information means that players are informed at any move of

the choices of all the previous moves in the play ([16], ch

2) •

Two games have been selected for this project, checkers

and halma. Halma, as mentioned in the introduction, is a

game with the same rules as Chinese checkers [8]. Three

halma board sizes were programmed: 6 by 6 squares, 8 by 8

squares, and 12 by 12 squares. Checkers and halma were

selected because they have relatively simple rules of play

but still contain all of the basic characteristics of an
' '

intellectual activity. The goal of this project was to

write an Object Oriented Program {OOP) that improves its

level of game playing when given the rules of the game, an

inherent drive to win the game, and a set of parameters for

evaluating play. The set of parameters may be incomplete

and the individual parameters are not orthogonal.

Samuel's generalization learning procedure was applied

to two games but his methods were modified in some important

14

15

ways. Samuel's program was written in assembly language on

an IBM 704 (a slow machine by modern standards) that had a

limited memory and used magnetic tape for secondary storage

([17], [18]). The program produced by this project was

developed using a more modern machine and was written using

the C++ high-level language. Checkers and halma were

programmed with a secondary goal of designing a highly

modular program. The rote learning technique used by Samuel

was not implemented because of its limited value as an

instrument of true machine learning. The signature-table

technique was not considered in this project because of the

amount of time that would be involved in order to replicate

the signature subsets and tables and because a large set of

book recommended moves was not available for the game of

halma.

CHAPTER IV

MINIMAXING GAME TREE SEARCH TECHNIQUES

Computer programs of games typically search very large

trees of hypothetical moves in order to determine the best

move. For example, examine the game of. chess. A board

position, contains 64 squares and an indication of what

piece occupies each square for each side. The nodes in the

search tree represent board positions. The branches in the

search tree represent the moves that would be taken from a

certain board position. Chess has an average branching

factor of 35 [11]. The branching factor is defined as the

number of branches leaving a node. The difficulty with the

brute force approach is that the game trees grow

exponentially and the time to search every branch to a

reasonable depth becomes excessive. To examine every move

in an average chess tree to a depth of five (assuming the

root is level 1) would require the evaluation of 1,071,875

board positions. Deep searches are desirable because they

usually result in more informed move selection. However,

deep searches alone will not guarantee that the best move

will be selected. Nau [14] demonstrated that if the

evaluation function is in error, "searching deeper does not

increase the probability of making a correct decision."

The look-ahead tree search for a game is typically

16

17

described as a minimaxing process because at alternate

levels of the search tree the moves that would be made by

the opposing side must be considered ([20], ch 2). The

assumption is that the active side (the side whose turn it

is to move) will choose the best move and thereby seek to

obtain the maximum score from a beginning board position.

On the .other hand, the passive side (the side whose turn it

is not to move) would select his best move which would be

the worst move for the active side. The passive side seeks

to obtain the minimum score from a beginning board position.

Thus at odd depths of the tree, the moves leading to maximum

scores for board positions are sought, and at even depths of

the tree, moves leading to 'minimum scores are sought. The

active side is called MAX and the passive side is called MIN

([20], ch 2).

A depth first search is conducted such that the

branches of immediate successors of the current node are

evaluated from the left. The successors of each node are

expanded until some criteria are used to end the search.

The current author defines a leaf node as a board position

in which the game has been won or lost by the active side.

A search down a particular branch may end with a terminating

board position when some arbitrary conditions have been met.

These conditions might be defined as reaching a quiescent

state at or below some minimum depth, also called horizon of

the search. The definition of quiescence depends upon the

game and the programmer. For example a chess program might

18

take a quiescent condition, or "dead state" [11], to be a

board position in which neither side can capture an

opponent's piece. Generally speaking, chess programs use

more complex definitions of quiescence than this. The score

for a terminal board position, or leaf as the case may be,

is backed up the tree to the root node. A score is obtained

for a board position by using an objective function to

evaluate the relative worth of the board. For example a

chess program's evaluation function might consist of the

material balance (the difference in value of pieces held by

each side) and the strategic bal~nce (a composite measure of

such things as mobility, square control, pawn formation

structure, and king safety [11]). After the final branch of

the root node has been examined, the score is backed up to

the root. The branch from the root that led to the

terminating or leaf node that produced the score is assumed

to be the best move to take for the active side.

The Alpha-Beta Algorithm

Virtually all programs of complex games like chess

incorporate some method for pruning, or eliminating useless

branches from the look-ahead search tree. The method with

the longest history [10] and the method still commonly used

today is the Alpha-beta search algorithm. In order to

illustrate the value of alpha-beta pruning, consider the

game tree of Figure 1 which is created by a minimax search

procedure that does not use pruning [2]. Board positions

for a look-ahead move by the first player are shown by

squares, while board positions for the second player are

shown by circles. To simplify the drawing, all nodes are

assumed to have a branching factor of two. Nodes are

19

created in the order that they are labeled (a-b-e-d and

so on). Since e is a terminal board position, the

evaluation function returns a value of -2 to node d. Then

node f is created and a value of +3 is returned to node d.

Since the value is being returned to a circle node the score

is minimized. That is +3 is not less than -2, so, the -2

score remains at node d. After all branches from node d

have been explored, the score -2 is returned to node c.

Next, node g is created and the minimum score from nodes h

and i returned to node g is -5. The -5 is returned to node

c, but since the score is maximized to node c, the -2 is

greater and remains there. The -2 at node c is returned to

node b and then nodes j through p are created and scores

backed up in a similar fashion. The -2 at node b is backed

up to node a and then the search continues down the right

branch from node a. The final score at node a ends with a

-2 and came from the branch that led to node b. This branch

then represents the best move from board position a.

Alpha-beta pruning can be explained simply as a

technique for not exploring those branches of a search tree

which the active player would be wise enough not to choose,

or that the passive player would not have chosen because it

20

would have been unproductive for him. The alpha value is a

lower bound that the active player must exceed before

deciding on the move as being better than the previously

selected move. The beta value is an upper bound that the

passive player must undercut before deciding on the move as

being better than the previously selected move. A ·formalism

for evaluating the alpha-beta algorithm called "negamax" was

introduced by Knuth and Moore [10]. This approach

eliminates the need to alternately maximize and minimize

backed up scores. Instead, scores for terminating board

positions are always considered from the active player's

point of view. This view was also used by Campbell and

Marsland [5]. Their recursive procedure, written using a

"C/PASCAL-like language" for_ the alpha-beta algorithm, is

reproduced in Figure 2. The functions that are called are

not described but are assumed to exist and perform as

indicated.

To illustrate the application of this algorithm, it is

applied to the search t~ee of Figure 1. The game search

tree of Figure 1 is altered by the alpha-beta algorithm and

is presented in Figure 3. The branches with dashed lines

can be left unexplored without influencing the final move

choice. The final alpha and beta values are shown next to

each nodes. Since the variable m is set to alpha prior to

the loop in the above algorithm, we can assume that the

changes to m are, in effect, changes to alpha. It is

important to note that the initial values of alpha and beta

21

at node a are -infinity and +infinity. Nodes b, c, and d

are created with alpha and beta values the carried down from

node a. Node e is terminal and scored at -2. The -2 is

returned and the sign is changed by the algorithm. Since +2

is greater than -infinity, the alpha value at node d is

changed to +2. Nodes f results in no change to alpha at

node d. The +2 at node d is returned to node c as -2.

Since -2 is greater than -infinity, the new alpha value at

node c is -2. Node g is created with alpha and beta values

of -infinity and +2. Node h is created and the score of -4

is returned to node g as +4. The alpha value at node g is

now 4, which is greater that the beta value of 2. This

represents a cutoff, or rather a node that will not yield

any better moves than those already discovered. Node i does

not need to be created or evaluated because eliminating it

has no effect on the final outcome of the search. The

process continues with. the final move selection at node a

being identical to the selection using the regular

minimaxing technique. The solid nodes in Figure 3 represent

board positions that do not need to be evaluated. Note that

thirteen fewer nodes have been created and that nine fewer

terminating board positions have been evaluated. This

represents a very significant decrease in time complexity.

22

Reducing the Search Further

One very important observation can be made from

examining the tree of Figure 3. The order of evaluation of

the moves may affect how many cutoffs are found by the

algorithm. In other words, if the best move happens to

occur down the leftmost branch from the root node, then more

cutoffs may be found than if the best move does not occur

down that branch. Samuel [18] tried several methods for

increasing the probability that the better paths are

explored first. The best method he found was to conduct a

preliminary plausibility survey for any given board

situation by looking ahead a fixed amount, and then

rearranging the available moves into "their apparent order

of goodness on the basis of this information and to specify

this as the order to be followed in the subsequent

analysis." The difficulty with this technique is to

determine how deep to perform the preliminary search. If

the search is not performed deep enough, then the new order

of the available moves may not in fact result in a shorter

search. On the other hand, too deep a search takes away

time from the actual search to be performed subsequently.

There is also a question as to whether or not this

plausibility analysis should be applied at all levels during

the main look-ahead or only the first few levels. Knuth and

Moore [10] demonstrated that reordering successor positions

of some nodes makes no difference in the number of nodes

23

evaluated in the search to follow. They concluded that as

much as 50 percent of the time taken for reordering

successor branches may in fact be wasted.

Other methods of reducing the tree search have been

proposed that do incur a risk with them. They fall under

the category of forward pruning algorithms. These

algorithms eliminate branches from the look-ahead search

tree in the hopes of not eliminating a branch that contains

the best move. The interval enclosed by the alpha and beta

bounds is referred to as the alpha-beta window (5]. In the

normal alpha-beta algorithm, alpha is initialized to

-infinity and beta is initialized to +infinity for the root.

This guarantees that the score backed up to the root lies

within the initial window. However, the narrower the

initial window, the smaller the tree that is grown out of

the root node and therefore the better an algorithm will

perform. Of course the danger here is that the window will

not include the best $COre. No attempts at forward pruning

methods were attempted in this project.

CHAPTER V

PROGRAM DESCRIPTION

Game Representation Approach

The checker game was programmed using Samuel's

techniques for game board representation and move generation

[17]. The program produced by this project was written on a

machine using 32-bit integers, the same number of usable

squares on a checkerboard. A board position is represented

by four unsigned integers. The first integer contains 1's

in bit positions which correspond to squares which contain

pieces for one side. The second integer contains 1's in bit

positions which correspond to pieces for the same side which

are kings. The other two integers are used in a similiar

fashion to represent pieces for the other side. Possible

moves are represented by five unsigned integers. One

integer simply contains a 0 if no moves are possible, a 1 if

the only moves available are not jumps (also called slides),

and a 2 if jump moves are available. The other four

integers are bit vectors that represent the pieces of the

side about to move that can initiate moves in the four

directions allowed in checkers. The four directions are

right-forward, left-forward, right-backward, and

left-backward (see Figure 4).

24

25

This method of board representation has several

advantages. To begin with, possible moves for all pieces in

a certain direction can be computed simultaneously [22].

For example, right forward slides are computed by first

performing an operation to place 1's into bit positions for

all squares that do not contain a piece from either side.

Then, this integer is shifted to the left an appropriate

number of bit positions to place the 1's where they would

have started from for a right-forward slide. Finally, an

AND operation is performed between this integer and the

integer representing pieces for the side about to move. The

resulting integer contains all pieces for the side about to

move that can initiate a right-forward slide. A second

advantage for this board representation is its minimum

storage requirements. An array of 16-bit integers used to

represent a checkerboard would require four times as many

bytes. The machine used by Samuel had 36-bit integers,

which was an advantage because by ignoring certain bit

positions in the integer, all bits could be shifted by equal

amounts [22]. Using 32-bit integers, additional masking

operations and staggered bit-shifting techniques were

required.

Board representation and move generation for the game

of halma was handled quite differently. Halma was required

to be played on boards of three different sizes: 6 by 6, 8

by 8, and 12 by 12. Some of the methods used to encode the

halma game were taken from an existing program written by

26

David M. Smith in Fortran (21]. The technique of

representing pieces by bits in an unsigned integer

accomplished for checkers was not possible for halma because

of the.different sized boards required and the need for up

to 144 bit positions. The halma board is represented using

a one-dimensional array of size 145 (actual number of

useable elements is 144). Thus only 32 elements are used

for a 6 by 6 board, 64 elements are used for an 8 by 8

board, and all 144 elements are used for a 12 by 12 board.

Possible moves are· generated for one piece at a time for the

side about to move and stored in another array. In halma,

because all the squares on·the board are used, slides and

jumps are allowed in all eight directions (see Figure 5).

The most general choice for board representation would

have been a two-dimensional array, sized large enough to

represent any board needed. The checker game could be

represented by an array using the first 8 by 8 elements and

ensuring that every other element must remain empty. This

board representation could have possibly allowed slides and

jumps from both games to share the same code. However,

programming the games this way might not result is much

savings in code and would have resulted in a slower program

because of an increased number of subprocedure calls. This

would happen because of the differences in legal moves

between the two games. For example, a checker piece can

only jump opposing pieces in restricted directions. On the

other hand, a halma piece can jump its own pieces and

27

opposing pieces in any direction.

Auxiliary Files

Several auxiliary files are associated with each game

and are discussed briefly below. There are four game

initialization files: ch_game, ch_open, ha_game, and

ha_open. The "**_game" files must be created prior to the

start of a game and are used to set up t~e initial board

positions and other parameters. The "**_open" files are

used to name the execution profiles and select a first move

for the checker game. There are two coefficient files:

ch coeff and ha coeff. These files do not have to be - -
present at the start of a game. However, they should not be

deleted after their creation unless the l~arning process is

started from a new initial condition. A file called

"seed_sav" is created by the learning mechanism to assist

with the initialization of the polynomial coefficients. A

file called 11 ln init" is used by the learning mechanism to

initialize parameters for the polynomial modification

procedure. If this fi+e is not present, it is created and

default values are assigned. There are four execution

profiles that are created during the execution of any game

or series of games. These files end with a number from 0 to

99. The prochgm.## and prohagm.## files record the starting

board position and all moves that take place during

execution of the program. The prochln.## and prohaln.##

28

files record data about the learning mechanism and the

polynomial coefficient modifications that take place during

execution of the program. Finally, there are two

coefficient profiles created: prochcoeff and prohacoeff.

These files are appended at the end of each game with the

final alpha coefficients.

Program Modules

A principal advantage of the C++ programming language

is the class. A class is a data type that leads to modular

design and object-oriented programming ([3], ch 3). In

regular c, a structure contains only the variable portion of

a data structure. The functions that are to be used with

the structure must be declared separately. In C++, a class

contains the variables, or storage locations for the data

structure, as well as the functions that manipulate the

variables ([3], ch 3). Access to the variables and

functions of a class can be given to or restricted from

other classes as desired. The program produced by this

project was organized into the following classes that will

be discussed:

driver
ch base

checkers (derived from ch_base)
ch_search (derived from ch_base)

ha base
halma (derived from ha_base)
ha search (derived from ha_base)

learn

29

Driver Class

The driver class drives the program and is the only

class object created in the main function. Two types of

game play are available. "Opp_play" is a game played

between the computer and a human opponent. If "opp_play" is

desired, the program is executed without passing any

arguments to the main function. During execution, the main

function prompts the human opponent for the type of game to

play, checkers or halma. "AB_play," which stands for

alpha-beta play, is a game played by the computer against

itself. One side called alpha uses a dynamic set of scoring

parameters to score a board, position. The other side, beta,

uses a static set of scoring parameters that do not change

during the game. To invoke "AB_play", execution of the

program is initiated with one argument, a string that must

be either "ch" or "ha." During "AB_play," all input and

output is between files. This allows "AB_play" to be

executed as a background process in a UNIX environment.

Once execution begins and the appropriate game has been

selected, the main function calls the appropriate publicly

accessed functions in the driver class to play the game. If

a move selected wins a game, this is reported to the driver

function and a winner is announced. The game classes, halma

and checkers, are nested within the private section of the

driver class. Figure 6 contains a function calls flow chart

for the main function and driver class.

Checkers is driven using three functions: ch_start,

ch_opp, and ch_AB. The ch_start function is invoked by

30

either "ch_opp" or "ch_AB" in order to read the appropriate

files and perform initializations prior to the start of the

checker game. The ch_opp function prompts the human player

for input moves and displays the moves and updated game

boards. Both the ch_opp and ch AB functions access the

appropriate checker class functions and variables in order

to drive the game. They also record every move during a

game to a game execution profile.

Halma is driven using four functions: ha_start,

ha store, ha opp, and ha AB. The ha start function is - -
invoked by either "ha opp" or "ha AB" in order to read the

appropriate files and perform initializations prior to the

start of the halma game. Both the ha_opp and ha AB

functions access the appropriate halma class functions and

variables in order to drive the game. They also call the

ha store function to record the move and resultant board

position after every move.

Checker Game

The checker game is represented using three classes:

ch_base, checkers, and ch_search. "Ch base" is a base class

from which the checkers and ch_search classes are derived.

The ch search class is nested within the private section of

31

the checkers class. The functions within each class will be

discussed briefly below. A function call flow chart for the

ch search class is presented in Figure 7.

The ch_base class contains eleven functions:

initialize, generate_mvs, post_mv, revers_bd, shift_rf,

shift_lf, shift_rb, shift_lb, revers_rf, revers_lf,

revers_rb, and revers_lb. The learn class is nested within

the private section of the ch base class. The initialize

function is called from the driver class and is used to

initialize variables in preparation for the start of the

game. "Initialize" attempts to open a file containing the

polynomial coefficients. If the file is not found,
' "initialize" creates the file and writes to it a number

containing the quantity of coefficients needed for the

polynomial. "Initialize" then calls the data in function of

the learn class in order to input the initial alpha and beta

polynomial coefficients. The generate_mvs function

generates all possible moves from the board position as

found in the array of unsigned integers "bd" and places the

moves into an array of unsigned integers called "gen."

"Generate mvs" calls the four reverse functions necessary to

perform the shifting and masking of bits to generate moves

for a board position. A jump move placed into "mv data" is

never more than a single jump. "Generate mvs" determines if

the jump move can be continued and if so, places a flag into

an element of "mv_data" for the calling routine.

"Generate mvs" also determines if the continued jump is one

32

in which a branch exists. That is, a choice of jumps must

be made. If the continued jump does face a branch, the

right-forward jump is stored into two elements of "mv data"

for the calling routine. The post_mv function receives a

move as found in "mv data" and posts it to the board

position as found in "bd." "Post mv" calls the four shift

functions necessary to p~rform the shifting and masking of

bits to post a move to a board position. The revers bd

function reverses the board position so that all functions

in the program can analyze a board position from the forward

direction.

The checkers class contains six functions: oppon_mv,

verify_mv, open_select, comptr_mv, close_gm, and print_bd.

The oppon_mv function is called by the driver class to post

a move selected by the human opponent to the board position

as found in "bd." The move is passed to "oppon_mv" as an

argument in the character string "mv str." The verify_mv

function is called by "oppon_mv" to verify as a legal move a

single step of the move selected by the human opponent. The

open_select function is called by the driver class if the

first move selected by the computer is to be a varied move

selection. A varied first move means that the first move is

selected from one of the four following moves and and is

selected the given percentages: 11-16 (60%), 9-14 (25%),

11-16 (10%), and 10-14 (5%). The comptr_mv function is

called by the driver class in order for the computer to

select and post a move. "Comptr_mv" calls the search

33

function from the ch_search class if there is a choice of

moves to be made. A jump with no choices is posted to the

board position directly. The actual move taken is passed

back to the driver function in the argument "mv str." The

function close gm is called by the driver class in order to

terminate the game. It determines which side won the game

or declares a draw. Then it calls the coeff exch function

in the learn class to update and save the polynomial

coefficients. Finally, it closes out the learning execution

profile. The print bd function is called by the driver

class to display the board position for the human opponent.

The ch search class contains five functions: search,

recur, expand_mvs, order_mvs, and score bd. The search

function is called by the checkers class in order to search

for and select the best move for the computer. "Search"

transfers the actual board position to its own board

position array "bd." It records some data for the learning

execution profile and sets up other variables prior to a

call to the recur function. After the call to the recur

function the move selected is passed back to the calling

routine in the array "gm_mv_data." After the look-ahead

tree search is performed, "search" calls the poly_mod

function of the learn class to modify the alpha

coefficients. The recur function is an encoding of the

alpha-beta algorithm presented earlier. "Recur" builds a

look-ahead search tree of moves in order to find the best

move. "Recur" calls the three remaining functions in the

34

ch search class which are discussed below. The expand_mvs

function is called in order to transform the move masks as

found in the array "gen" into separate and distinct moves.

The moves are passed back to the calling routine in the

unsigned char array "moves." The order mvs function is

called by the recur function to reorder the available moves

from the root of the search tree. The reordering of the

moves is designed to allow the alpha-beta algorithm to find

the maximum number of cutoffs [10]. The score bd function

is called in order to assign a relative value to a board

position as found in the array "bd." It uses the alpha or

beta coefficients depending on the value of the short

integer "turn." Score bd returns the score for the board

position relative to the side whose turn it is to move.

This is the "nega-max" technique first formalized by Knuth

and Moore [10].

Halma Game

The halma game is represented using three classes:

ha_base, halma, and ha search. Ha base is a base class from

which the halma and ha search classes are derived. The

ha search class is nested within the private section of the

halma class. The functions within each class will be

discussed briefly below. A function call flow chart for the

ha search class is presented in Figure 8.

The ha base class contains eight functions:

35

initialize, revers_bd, generate_mvs, next_square,

winning_mv, jump, reorder_mvs, and recovr_mv. The actual

game playing board is kept in an array of short integers

called "gm_bd." The learn class is nested within the

private section of the ha base class. The initialize

function is called from the driver class and is used to

initialize variables in preparation for the start of the

game. "Initialize" attempts to open a file containing the

polynomial coefficients. If the file is not found,

initialize creates the file and writes to it a number

containing the quantity of coefficients needed for the

polynomial. "Initialize" then calls the data in function of

the learn class in order to input the initial alpha and beta

polynomial coefficients. The revers bd function reverses

the board position so that all functions in the program can

analyze a board position from the forward direction. The

generate_mvs function generates all possible moves from the

board position passed as an argument in the array of short

integers "bd." The best "wide" number of moves is found and

returned in an array of short integers called "moves." Jump

moves are given greater priority than slide moves. A short

integer is passed to generate_mvs as an argument called

"save mv." "Save mv" determines whether "generate_mvs"

searches for the best move, or recovers all the steps of a

previously selected move. "Generate mvs" calls the five

remaining functions in the ha base class which are discussed

below. The next_square function is called by "generate_mvs"

36

to find the next square that contains a piece for the side

whose turn it is to move. A flag is returned if no more

squares are found. The winning_mv function is called by

"generate_mvs" in order to see if the best move found by

"generate_mvs" will win the game. If so, a flag is returned

to announce that the game is won. The jump function is

called by "generate_mvs" and updates the necessary variables

prior to testing a square for the start of a new jump move.

The reorder mvs function takes the currently generated move

and tests it again.st the best moves found so far by

"generate_mvs." If the new move is found to be better than

the worst move csaved so far, the new move is placed into the

"moves" array and the elements of the array are reordered.

Thus the move reordering is implicitly performed at all

levels of play. The recovr mv function is called by

generate mvs if the "save_mv" flag is set. When "recovr mv"

finds a match between the current move generated and the

move that was selected, it saves all steps of the move into

an array of short integers called "mv_steps."

The halma class contains five functions: oppon_mv,

comptr_mv, print_bd, stall_check, and close_gm. The

oppon_mv function is called by the driver class to post a

move selected by the human opponent to the board position as

found in "gm_bd." The move is passed to "oppon_mv" as an

argument in the character string "mv_str." If the move is

invalid or if the move wins the game, a flag is returned to

the calling routine. The comptr_mv function is called by

37

the driver class in order for the computer to select and

post a move. "Comptr_mv" calls the search function of the

ha search class in order to select the best move. The

actual move taken is passed back to the driver in the

argument "mv_str." The print_bd function is called by the

driver class to display the board position for the human

opponent. The function stall_check is called by "comptr_mv"

to determine if the opposing side is attempting to force the

game to a draw by not moving a piece out of a starting

square. If this condition is detected, the opponent is

declared the looser of the game. The function close_gm is

called by the driver class in order to terminate the game.

It determines which side won the game or declares a draw.

Then it calls the coeff exch function in the learn class to

update and save the polynomial coefficients. Finally it

closes out the learni~g execution profile.

The ha search class contains three functions: search,

recur, and score_bd. The search function is called by the

halma class in order to search for and select the best move

for the computer. The board position is passed as an

argument in the short integer array "bd. 91 "Search" records

some data for the learning execution profile and sets up

other variables prior to a call to the recur function.

"Search" places the actual move selection into two short

integers called "start mv" and "stop_mv." After the

look-ahead tree search is performed, "search" calls the

poly_mod function of the learn class to modify the alpha

38

coefficients. The recur function is an encoding of the

alpha-beta algorithm presented earlier. "Recur" builds a

look-ahead search tree of moves in order to find the best

move. The score bd function is called by "search" and also

by "recur" in order to assign a relative value to a board

position passed as the argument "bd." "Score bd" uses the

alpha or beta coefficients depending on the value of the

short integer "turn." "Score bd" returns the score for the

board position relative to ~he side whose turn it is to

move. This is the "nega-max". technique first formalized by

Knuth and Moore (10].

Learn Class

The learn class contains four functions: data_in,

initialize, data_out, coeff_exch, and poly_mod. The data in

function reads in the polynom-ial coefficients from a file

and writes some data to a learning execution profile. The

calling routine passes file pointers to the proper files as

arguments to "data in." If "data in" detects that the

coefficient file contains no coefficients, it calls the

initialize function. "Initialize" creates the alpha and

beta coefficients and randomly assigns values to them. This

assures that the learning process starts from an initial

condition with no particular bias. The coeff exch function

is called at the close of each game in order update the

coefficent values. The poly_mod function is called

39

throughout the game when alpha is to move. It determines if

the alpha coefficients should be modified and if so, it

makes the modifications. The processes within the

coeff exch and poly_mod functions will be discussed in

greater detail later.

Game Module Difficulties

The checker program was found to have virtually no

drive for a.win in the latter stages of a game. It would

flounder around aimlessly and usually play to a draw.

During a game played against a human opponent, the problem

was not so acute because a human opponent usually drives for

a win forcing the program into tactical situations in which

the look-ahead tree search is highly effective. The problem

was solved by putting two different tilts to the board

evaluation function, separate from the evaluation

polynomial. The first tilt, given to regular pieces, is a

strong drive to the king row. Before this tilt was added, a

look-ahead tree search would often fail realize that just

over the horizon a regular man piece could become a king.

The second tilt was given to kings, which were given a

strong drive toward opposing pieces. By causing kings to

advance toward the enemy, still considering loss of material

to be highly detrimental, the look-ahead tree search and

board scoring strategies were drawn more fully into play.

These two tilts resulted in the checker program playing more

40

decidedly towards a win in the end game.

The halma program, on occasion, would attempt to play a

game to a draw. This difficulty was totally unexpected

because the halma game inherently contains a very strong

drive for a win. However, situations were found to occur

when a single piece was not moved out of the starting

squares,while the opponent had advanced to the point of

winning the game. If the active side forsaw that it would

lose the game by moving this piece, it would refuse. In

order to overcome this difficulty, a function was added to

detect this condition and announce a forfeit by the guilty

side.

CHAPTER VI

MACHINE LEARNING

Program Learning Techniques

To initiate the learning process, the game playing

module creats the ch_coeff or ha coeff file and records two

values: the numbe~ of polynomial terms in the evaluation

function and the maximum value that a polynomial coefficient

can obtain. The learning mechanism retrieves these two

parameters and uses them to initialize the polynomial

coefficients to random values within the proper range.

After each move by alpha, the polynomial modification

procedure determines whether or not to modify the alpha

coefficients. The alpha coefficients are modified

throughout a game while the beta coefficients remain static.

At the end of each game, the game playing module determines

which side won the game and passes this information to the

learning mechanism. If alpha won "wins_needed" number of

consecutive games, the alpha coefficients are transferred to

the beta coefficients. If alpha lost "losses_needed" number

of games in a row, the largest positive or negative alpha

coefficient is reassigned a value of o. No action is taken

when a game is declared a draw. The assumption is that the

modifications to the alpha coefficients will eventually lead

41

42

to a point at which alpha plays a better or worse game than

beta. This process allows the learning process to backtrack

if an obvious wrong direction has been taken and find new

dominant alpha terms in the evaluation polynomial. This

method is similar to the method used by Samuel [17].

Perhaps the learning mechanism should be allowed to

backtrack on its own without resetting any coefficient to

zero. Because of time constraints, however, no attempts at

such an approach were taken in this project.

Prior to actually modifying the alpha coefficients, the

game module performs some preliminary processing. Whenever

the computer selects a move for alpha, the initial board

position is scored and the individual scoring parameters are

saved. Then the look-ahead board position is scored and

compared to the initial board position score, with the

difference assigned ~o the variable "delta." Then the

scoring parameters and delta are passed to the coefficient

modification procedure.

The learning process takes over and uses the parameter

values passed to it to compute the individual terms of the

scoring polynomial. A record of whether the parameter

measurement was present or not in the initial board position

is saved for the previous 30 initial board positions. The

oldest record is overwritten by the new values. Next, the

average of the absolute values of the last five delta values

is found. The size of the current delta is compared with

the size of the average delta. If the current delta is

43

larger than the average delta divided by "delta_cut11 , a

decision is made to modify the alpha coefficients. A

decision not to modify the alpha coefficients simply means

that the error detected in the evaluation function is not

great enough, based on the recent past, to warrant any

modification of the alpha coefficients.

The polynomial modification procedure is accomplished

by first calculating correlation values for each term of the

polynomial and then using the correlation values to modify

the alpha coefficients. Actually, the correlation values

are not true correlations, as they are allowed to range

beyond positive and negative one. The following equation is

applied to each correlation term where i is an index, corr

is the correlation term, and poly is a polynomial term:

corr[i] = (poly[i] - avg_poly) * (delta - avg_delta)

The average delta is found over the five previous delta

values, while the average polynomial term is the average of

all the terms from the current board evaluation.

The final step of the modification procedure is to

actually modify the polynomial coefficients. Preceding the

actual modifications, cutoff values are calculated. Cutoff

values are used to determine the amount by which to modify

the coefficients and are based on the average size of the

correlation terms. Two cutoffs are used: the first being

the correlation average multiplied by a value called "cutl"

44

and the second being the correlation average multiplied by a

value called 1'cut2." The coefficients are incremented or

decremented by either "mod_amt1" or "mod_amt2" based on the

sign of the correlation and the size of the correlation in

reference to the cutoff values.

Discussion

Some departures from Samuel's techniques were taken

[17]. Samuel modified the coefficients by finding the ratio

of the largest correlation value to the other correlation

values and fixing the coefficient terms at integral powers

of two based on this ratio. The current author abandoned

this approach for two reasons. First of all, the integer

size in the machine used contained only 32 bits as opposed

to 36 bits for the machine used by Samuel [18]. Thus,

fixing the coefficients at powers of two would result in a

smaller range of coefficient values. Secondly, this author

discovered that setting the coefficients based upon the

largest correlation value resulted in an extreme amount of

fluxuation and instability of the coefficient terms. The

method incorporated into the final version of the program

allows the coefficient values to range between a

predetermined range of values called plus and minus

"max coeff." Coefficient terms are incremented or

decremented a small amount from their previous values based

on the size and sign of their correlation terms.

45

Samuel's machine learning technique [17] apparently

modified all coefficient values whether or not the measured

parameter for that term was present in the initial board

evaluation. The current author limited modifications to

coefficient terms that actually contained the measured

param~ter in the board evaluation. This slows down the rate

of change for those parameters that occur infrequently.

However, the current author believes that if the parameter

was not present when the board was initially scored, then it

could not have led to an error in the evaluation function.

Therefore, the coefficient of that term should not be

modified.

The current author attempted to apply a weighting

factor to the correlation t~rms which would give more weight

to those polynomial terms that occur more frequently. The

intention was to allow those parameters that occur more

frequently to be changed more rapidly. However, this method

caused those terms to migrate towards the maximum or minimum

coefficient values while the infrequently occuring terms

tended to change very little. Therefore, no weighting

factor was applied to the correlation values.

Results

Test data using the method described above is presented

in Appendix B. Several different methods of actually

adjusting the coefficients were attempted, most with

46

less-than-desirable results as discussed above. The test

data accumulated indicates that the coefficients never

really did stabilize, but rather continued to vary. This

was to be expected and was experienced by Samuel as well

([17], [2]). From the data presented, no claim is made that

the program markedly improves its level of play. However,

some level of improvement in move selection probably does

occur. Just precisely how to quantify such a statement is

unclear. Perhaps this points to an area of further

research.

One possible way to test the effectiveness of the

learning mechanism was briefly attempted and is described

below. The underlying assumption was that the program plays

a relatively good game when the polynomial coefficients are

preset to zero and not changed during the game. When this

is done, the move selection is based totally on the

program's inherent drive to win. For the checker game, the

drive to win consists of material gain and the board tilts

discussed earlier. For the halma game, the drive to win

consists of the weighting mechanism applied to the board

position. The procedure was tryed on

the checker game only. The beta coefficients were set to

zero and the alpha coefficients were set to the values

obtained after five games (see Appendix C). The learning

mechanism was disabled, and "AB_play" was invoked. The

procedure was repeated for the alpha coefficients after 10,

15, and 20 games. Using alpha coefficients from games 5 and

47

20, beta was declared the winner. Using alpha coefficients

from games 10 and 15, the games were declared drawn. These

results are not totally unexpected because the

initialization process assigns random values to the

polynomial coefficients at the start of the learning

process. This means that alpha should initially lose games,

but after some period of time, alpha should begin to win

games. The fact that alpha lost using the game 20

coefficients may indicate that the learning process

regressed somewhat after game 15.

Most of the design goals of the program were achieved.

The final version is highly modular, and to the degree

tested, has demonstrated itsel,f to be reliable. The

learning section of the program is shared between the two

games and is general enou9h that it could be applied to any

similar type of game. An att~mpt was made to write the

driver class such that it could drive either game. However,

no practical method could be found using the C++ programming

language to implement such a procedure. The alpha-beta tree

search methods implemented by the program were highly

effective, although difficult to perfect.

CHAPTER VII

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The purpose of this study was to attempt to generalize

Samuel's parameter adjustment learning procedure to two

games, checkers and halma. Checkers and halma were selected

because they are relatively simple games, but still contain

all of the processes necessary for learning to occur. The

primary goal of the project was to write an Object Oriented

Program (OOP) that improves its level of game playing when

given only the rules of the game, a sense of direction, and

a set of parameters for evaluating play. The C++

programming language was chosen because it is a high-level,

object-oriented language, and facilitates modular

programming.

The machine learning mechanism was extremely difficult

to program effectively. The learn class was one of the

smaller classes in the program, and yet it took by far the

longest to write. In spite of these remarks, one can safely.

conclude that the resultant learning mechanism was extremely

crude. Much more work should be done in order to perfect

the implementation of learning attempted by this project.

Samuel's description of the exact parameter adjustment

procedure [17] was somewhat vague, and by at least one other

account [2], the results were far from optimal.
j

48

49

Machine learning is an important and active area of

research today. This author concludes by encouraging more

research in the field. In particular, this author

encourages anyone interested, to attempt to perfect the

learning method described by Samuel [17] and in this

article. The program written in this report is available

free of charge to anyone, for research purposes (only).

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

BIBLIOGRAPHY

Akl, S. G., "Checkers-Playing Programs," Encyclopedia
of Artificial Intelligence-Volume 1, Wiley &
Sons, New York, 1987.

Banerji, R. B., "Game Playing," Encyclopedia of
of Artificial Intelligence-Volume 1, Wiley &
Sons, New York, 1987.

Berry, J. T., C++ Programming, Howard W. Sams &
Company, Berkeley, Cal., 1988.

Bowden, B. V. {ed.), Faster than Thought, Chapter 25,
Pitman, London, 1953. i

Campbell, M. s. and Marsland, T. A., "A comparison of
Minimax Tree Search Algorithms," Artificilal
Intelligence 20 (1983) 347-367. I

Carbonell, J. and Langley, P., "Machine Learn~ng,"
Encyclopedia of Artificial Intelligence-Volume 1,
Wiley & Sons, New-York, 1987.

Forsyth, R. and Rada, R., Machine Learning:
Applications in Expert Systems and Information
Retrieval, Ellis Horwood Limited, Chichester,
United Kingdom, 1986.

Gardner, M., "Hathematical Games," Scientific American,
225 {Oct 1971) 104-107.

Griffith, A. K., "A Comparison and Evaluation of Three
Machine Learning Procedures as Applied to the Game
of Checkers," Artificial Intelligence, 5 {1974)
137-148.

Knuth, D. E. and Moore, R. w., "An Analysis of
Alpha-Beta Pruning," Artificial Intelligence
6 (1975) 293-326.

Marsland, T. A., "Computer Chess Methods," Encyclopedia
of Artificial Intelligence-Volume 1, W1ley & Sons,
New York, 1987.

Michalski, R., Carbonell, J., and Mitchell, T., Machine
Learning-Volume 2, Morgan Kaufmann, Los Altos,
Cal. , 1986.

50

51

13. Michie, D., On Machine Intelligence, Second Edition,
Ellis Horwood Limited, Chichester, United Kingdom,
1986.

14. Nau, D. s., "Decision Quality as a Function of Search
Depth on Game Trees," J. Asses. Comp. Mach., 30,
687 (1983).

15. Newborn, M., Computer Chess, Academic Press, New York,
1975.

16. Parthasarathy, T. and Raghavan, T.E.S., Some Topics in
Two-Person Games, American Elsevier, New York,
1971.

17. Samuel, A. L., "Some Studies in Machine Learning Using
the Game_of Checkers," IBM Journal, 3, 210
(July 1959).

18. Samuel, A. L., "Some Studies in Machine Learning Using
the Game of Checkers II -Recent Progress," IBM
Journal, 11, 601 (November 1967).

19. Shannon, c. E., "Programming a Computer for playing
Chess," Philosophical Magazine 41, 256
(March' 1950).

20. Slagle, J. R, Artificial Intelligence: The Heuristic
Programming Approach, McGraw-Hill, New York, 1971.

21. Smith, D., "Unpublished Term Paper (COMSC 4343),"
Oklahoma State University, 1973.

22. Struble, G., Assembler Language Programming-The IBM
System/370 Family, Addison-Wesley, Reading, Mass.,
1984.

23. Von Neumann, J., and Morgenstern, 0., Theory of Games
and Economic Behavior, Princeton Univ. Press,
Princeton, New Jersey, 1944.

APPENDIXES

52

APPENDIX A

FIGURES

53

e

-2 3 -5 2 -5 -3 -2 -5 -1 -2

Reference: Banerji, R. B., "Game Playing," Encyclopedia of Artificial
Intelligence-Volume 1, Wiley & Sons, New York, 1987.

Figure 1. Minimax Move Tree

MIN

5 1

Vl
+--

NOTATION

> greater than
>= greater than or equal to
< less than

FUNCTIONS

(1) terminal - determine if node
p is terminal

(2) staticvalue - evaluate board position
and assign a value

(3) generate - determine successor board
positions p(1) ••• p(w)

C/PASCAL-LIKE PSEUDOCODE

1. alphabeta(p: position; alpha, beta: integer)
2. {
3. m, i, t, w: integer;
4. if(terminal(p))
5. return(staticvalue(p));
6. w = generate(p);
7. m =alpha;
8. for i = 1 to w do
9. {

10. t = -alphabeta(p(i), -beta, -m);
11. if(t > m)
12. m = t;
13. if(m >= beta)
14. return(m);
15. }
16. return(m);
17. }

REFERENCE: Campbell, M. S. and Marsland, T. A., "A
Comparison of Minimax Tree Search
Algorithms," Artificial Intelligence
20 (1983) 347-367.

Figure 2. Alpha-Beta Algorithm

55

e

NOTE: I indicates infinity

-2
-2

' nR
I \

I '
-2

\

iii
-5

I \

t~ oil Pill
2 -5 -3 -3

-2
+I

\
\ u.
-2

w
-5

+2
+2

' ' ' ' ' MIN

I

I

z9

'
y~

I

I ' \ MAX

' \
a~

I \ I \
I \ 1 \ MIN

\ \ I

xiJ aall abll ad II ae ~~
-1 -2 -1 5 1

Reference: Banerji, R. B., "Game Playing," Encyclopedia of Artificial
Intelligence-Volun~ 1, Wiley & Sons, New York, 1987.

Figure 3. Alpha-Beta Move Tree V1
(j\

1 2 3 4
Right Forward

5 6 7 8

9 10 11 12
Left Forward ~

13 14 15 16

17 18 19 20
Right Backward /

21 22 23 24

25 26 27 28
Left Backward

29 30 31 32

Figure 4. Labeled Checkerboard and Directions
of Movement

8 57 58 59 60 61 62 63 64

7 49 50 51 52 53 54 55 56

6 41 42 43 44 45 46 47 48

5 33 34 35 36 37 38 39 40

4 25 26 27 28 29 30 31 32

3 17 18 19 20 21 22 23 24 -

NW

sw

N NE

SE
s

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

2

1

Forward / Direction

a b c d e f g h

Figure 5. Labeled Halmaboard and Directions
of ~1overnent

57

ch.opp_mv

ch. canptr mv

h.close~
LEGEND

gm is a driver object
ch is a checkers object
ha is a halma object

g)ll.ha r -g)lllha_opp

gm.ha_start gm.ha_store

h8..initialize

ha.close~

ha.opp_mv

Figure 6. Function Call Flow Chart for Main
Function and Driver Class

lJl
00

tree. recur

u~
tree.order mvs

tree.score bd

tree. search

\ ----------ln.poly_mod

tree.score bd

tree.generat~

tree.post_mv

tree.revers bd

LEGEND
tree is a ch_search object
ln is a learn object

Figure 7. Function Call Flow Chart
for Ch Search Class

l.Jl
\.0

(}ee.r~

tree. search

tree.revers bel

LEGEND

tree is a ha_search object
ln is a learn object

Figure 8. Function Call Flow Chart
for Ha Search Class

ln:paly mod

0'1
0

APPENDIX B

EVALUATION FUNCTION PARAMETERS

61

Checker Game Parameters

The definitions for the checkergame parameters are taken
from Samuel ([17], Appendix C).

62

1. Advancement: The parameter is credited with 1 for each
passive man in the 5th and 6th rows (counting in passive's
direction). In the current author's program, advancement is
turned off after the first "early_game11 moves.

2. Apex: The parameter is debited with 1 if there are no
kings on the board, if either square 7 or 26 is occupied by
an active man, and ~f neither of these squares is occupied
by a passive man.

3. Back Row Bridge: The parameter is credited with 1 if
there are no active kings on the board and if the two bridge
squares (1 and 3, or 30 and 32) in the back row are occupied
by passive pieces.

4. Center Control I: The parameter is credited with 1 for
each of the following squares: 11, 12, 15, 16, 20, 21, 24,
and 25 which is occupied by a passive man.

5. Center Control II: The parameter is credited with 1
for each of the following squares: 11, 12, 15, 16, 20, 21,
24, and 25 that is either currently occupied by an active
piece or to which an active piece can move.

6. Double-Corner Credit: The parameter is credited with 1
if the material credit value for the active side is 3 (1 for
men and 2 for kings) or less, if the passive side is ahead
in material credit, and if the active side can move into one
of the double-corner squares.

7. cramp: The parameter is credited with 2 if the passive
side occupies the cramping square (13 for Black, and 20 for
White) and at least one other nearby square (9 or 14 for
Black, and 19 or 24 for White), while certain squares (17,
21, 22, and 25 for Black, and 6, 11, 12 and 16 for White)
are all occupied by the active side.

8. Diagonal Moment Value: The parameter is credited with
"diag_mom_1" for each passive piece located on squares 2
removed from the double corner diagonal files, with 1 for
each passive piece located on squares 1 removed from the
double-corner files and with "diag_mom_2" for each passive
piece in the double-corner files.

63

9. Dyke: The parameter is credi':ed with 1 for each string
of passive pieces that occupy three adjacent diagonal
squares.

10. Exposure: The parameter is credited with 1 for each
passive piece that is flanked along one or the other
diagonal by two empty squares.

11. Pole: The parameter is credited with 1 for each
passive man that is completely surrounded by empty squares.

12. King Center Control: The parameter is credited with 1
for each of the following squares: 11, 12, 15, 16, 20, 21,
24, a~d 25 which is occupied by a passive king.

13. Back Row Control: The parameter is credited with 1 if
there are no active kings and if either the Bridge or the
Triangle of Oreo is occupied by passive pieces.

14. Triangle of Oreo: The parameter is credited with 1 if
there are no passive kings and if the Triangle of Oreo
(squares 2, 3, and 7 for Black, and squares 26, 30 and 31
for White) is occupied by passive pieces.

15. Node: The parameter is credited with 1 for each
passive piece that is surrounded by at least three empty
squares.

16. Gap: The parameter is credited with 1 for each single
empty square that separates two passive pieces along a
diagonal, or tha~ separates a passive piece from the edge of
the board.

17. Hole: The parameter is credited with 1 for each empty
square that is surrounded by three or more passive pieces.

18. Threat: The parameter is credited with 1 for each
square to which an active piece may be moved and in so doing
threaten the capture of a passive piece on a subsequent
move.

19. Double Diagonal File: The parameter is credited with 1
for each passive piece located in the diagonal files
terminating in the double-corner squares.

20. Total Mobility: The parameter is credited with 1 for
each square to which the active side could move one or more
pieces in the normal fashion, disregarding the fact that
jump moves may or may not be available.

21. Deny: The parameter is credited with 1 for each square
defined in Total Mobility if on the next move a piece

64

occupying this square could be captured without an exchange.

22. Undenied Mobility: The parameter is credited with the
difference between Total Mobility and Deny.

23. Exchange: The parameter is credited with 1 for each
square to which the active side may advance a piece and, in
so doing, force an exchange.

24. Move: The parameter is credited with 1 if pieces are
even with a total piece count (1 for men and 2 for kings) of
less than 12, and if an odd number of pieces are in the move
system, defined as those vertical files starting with
squares 1, 2, 3, and 4.

25. Threat of Fork: The parameter is credited with 1 for
each situation in which passive pieces occupy two adjacent
squares in one row and in which there are three empty
squares so disposed that the active side could, by occupying
one of them threaten a sure capture of one or the other of
the two pieces.

Halma Game Parameters

1. Stragglers: Pieces from the active side that have
lagged behind the rest of the pieces of the active side
considering movement in the forward direction. The greatest
number of rows or columns of separation between the
straggler and the nearest active piece is added for each
straggler found.

2. Diagonal Pairs: The parameter is credited 1 for each
pair of active pieces that are adjacent to each other and
lined up in the forward direction.

3. Column Pairs: The parameter is credited 1 for each
pair of active pieces that are adjacent to each other and
lined up vertically.

4. Row Pairs: The parameter is credited 1 for each pair
of active pieces that are adjacent to each other and lined
up horizontally.

5. Difference: The parameter is credited 1 for the
difference (if greater than one) between the number of
active pieces above and below the main diagonal in the
forward direction.

6. Southwest Jumps: The parameter is credited 1 for each
active piece that could on the next turn be jumped from the
Southwest direction.

65

7. South Jumps: The parameter is credited 1 for each
active piece that could on the next turn be jumped from the
South direction.

8. West Jumps: The parameter is credited 1 for each
active piece that could on the next turn be jumped from the
West direction.

9. Southeast Jumps: The parameter is credited 1 for each
active piece that could on the next turn be jumped from the
Southeast direction.

10. Northwest Jumps: The parameter is credited 1 for each
active piece that could on the next turn be jumped from the
Northwest direction.

11. Southwest Blockage: The parameter is credited 1 for
each passive piece that is blocked by active pieces from
initiating a move in the Southwest direction.

12. South Blockage: The parameter is credited 1 for each
passive piece that is blocked by active pieces from
initiating a move in the South direction.

13. West Blockage: The parameter is credited 1 for each
passive piece that is blocked by active pieces from
initiating a move in the West direction.

14. Northeast Blockage: The parameter is credited 1 for
each passive piece that is blocked by active pieces from
initiating a move in the Northeast direction.

15. Southeast Blockage: The parameter is credited 1 for
each passive piece that is blocked by active pieces from
initiating a move in the Southeast direction.

APPENDIX C

TEST DATA

66

67

Checkers Coefficients

Initial Coefficients:
-17 -34 15 25 11

11 3 -12 14 -23
-5 0 0 37 2

7 28 -20 -3 -18
-25 28 -27 -12 -15

Games 1 through 20:
1. -16 -32 16 24 10

11 2 -16 16 -22
-7 0 1 37 -2

5 26 -19 -6 -14
-19 32 -28 -14 -13

2. -15 ~29 16 19 10
11 5 -18 20 -21
-1 3 1 36 2

8 29 -15 -2 -24
-17 26 -27 -16 -11

3. -14 -27 18 18 13
11 5 -25 21 -18

5 2 3 36 3
10 31 -12 3 -35

-18 23 -28 -16 -11

4. -14 -26 19 10 11
8 6 -28 28 -15
1 2 6 39 3

11 31 -11 0 -24
-20 25 -28 -17 -13

5. -13 -24 22 16 14
8 6 -39 29 -9
7 2 9 40 6

14 34 -9 6 -34
-21 21 -30 -17 -13

6. -15 -23 23 10 12
5 7 -36 34 -13
1 2 10 39 4

18 34 -8 1 -24
-23 24 -30 -18 -14

7. -14 -23 30 17 16

68

2 7 -34 0 -10
4 2 17 40 6

23 37 -5 5 -33
-18 20 -29 -21 -20

8. -15 -24 33 18 17
2 8 -38 3 -13
1 2 20 39 6

27 38 -7 4 -29
-16 19 -29 -21 -17

9. -16 -20 36 15 22
2 9 -40 11 -7
7 4 23 39 10

31 39 -3 12 -40
-14 12 -27 -21 -22

10. -18 -22 37 20 17
2 10 -30 10 -12

-5 4 24 39 1
39 40 -5 2 -21

-13 21 -29 -23 -17

11. -17 -22 38 18 19
2 9 -29 15 -10

-4 4 30 0 0
36 34 -3 3 -22

-12 25 -27 -23 -26

12. -16 -22 40 17 23
1 10 -36 20 -10

-4 4' 35 5 0
40 34 -5 5 -22

-11 22 -27 -23 -29

13. -15 -22 0 24 32
0 10 -37 26 -3
3 4 39 8 4

39 38 -2 12 -36
-4 14 -24 -24 -38

14. -17 -27 2 27 27
0 11 -34 24 -7

-1 4 39 10 -2
39 38 -5 7 -35
-4 19 -26 -22 -32

15. -19 -27 3 20 29
-1 12 -33 26 -7
-3 4 39 11 -4
40 39 -6 6 -33
-4 15 -25 -22 -32

69

16. -21 -27 4 15 31
-2 13 -35 29 -7
-5 4 39 12 -6

0 39 -7 5 -31
-4 11 -24 -22 -32

17. -23 -27 5 12 26
-7 14 -32 32 -8
-8 3 39 13 -11
-1 40 -6 1 -26
-2 10 -20 -22 -29

18. -25 -26 8 13 25
-10 15 -37 34 -8

-8 2 39 16 -11
-1 0 -5 2 -26

1 13 -17 -22 -31

19. -25 -26 12 16 23
-10 18 -40 36 -2
-2 2 40 21 -7

6 6 -2 9 -38
5 13 -10 -22 -39

20. -27 -29 13 13 26
-15 19 -31 36 -10
-10 2 39 22 -12

6 7 -2 2 -25
6 18 -8 -21 -31

H?tlma Coefficients

New Coefficients:
-17 -34 15 25 11

11 3 -12 14 -23
-5 0 0 37 2

Games 1 through 30:
1. -:17 -32 12 27 10

11 4 -13 16 -26
-5 2 1 37 2

2. -15 -29 9 30 11
11 3 -14 16 -28
-5 3 2 37 2

3. -18 -23 5 36 9
9 2 -14 16 -33

-6 4 2 37 2

4. -20 -19 2 38 6

70

7 0 -13 15 -38
-7 5 2 37 2

5. -16 -16 0 36 4
4 -2 -11 14 -36

-9 2 3 37 2

6. -17 -16 -5 37 2
2 -5 -10 9 -37

-12 0 7 37 2

7. -16 -20 -9 37 0
0 -9 -9 6 -36

-18 -2 10 37 2

8. -15 -15 -12 31 -2
-2 -7 -7 2 -40

-17 -1 10 37 2

9. -14 -15 -9 30 -1
-3 -5 -11 5 -40

-20 1 9 37 2

10. -12 -19 -13 35 1
-4 -4 -14 8 0

-26 0 7 37 0

11. -18 -18 -16 40 -2
-4 -5 -16 10 1

-28 2 6 37 -1

12. -23 -15 -16 0 -3
-4 -6 -18 12 2

-29 4 5 37 -2

13. -23 -23 -22 3 -2
-4 -9 -18 14 0

-23 2 6 37 -2
I

14. -21 -20 -20 0 -5
-5 -13 -19 16 -4

-19 -2 6 0 -2

15. -21 -18 -19 -2 -9
-6 -17 -19 19 -7

-16 -6 8 0 -2

16. -17 -12 0 1 -4
-8 -16 -24 18 -9

-19 -3 7 0 -2

17. -17 -16 3 3 -1
-10 -17 -25 18 -11

71

-17 -1 6 0 -2

18. -17 -18 5 2 -2
-13 -18 0 17 -13
-14 -2 7 0 -2

19. -19 -15 3 -1 -1
-13 -18 2 16 -14
-15 -1 7 0 -2

20. -20 -9 -1 -5 0
-13 -18 3 16 -16
-13 -1 8 0 -2

21. -23 -3 -1 -3 2
-14 -20 4 14 -19
-11 -1 9 0 -2

22. -15 -8 -6 -7 3
-13 -19 2 15 -17
-9 -1 6 0 -2

23. -11 -5 -4 -10 1
-15 -19 -2 18 -16
-9 -2 2 0 -2

24. -5 -4 0 -9 0
-19 -21 -3 20 -14

-8 -2 1 0 -2

25. -2 -3 -2 -1 1
-20 -22 -1 15 -11
-14 0 2 0 -2

26. -1 -4 -5 -5 1
-18 -22 0 17 -12
-11 2 2 0 -2

27. -5 -4 -3 -3 -3
-18 -22 -1 18 -12
-10 1 1 0 -2

28. -4 -13 -2 -2 -4
-17 -23 -1 13 -12
-8 6 0 0 -2

29. -3 -12 2 -6 -2
-17 -26 1 16 -13
-12 9 -1 0 -2

30. 0 -12 4 -2 3
-18 -25 3 10 -16
-16 9 0 0 -2

APPENDIX D

PARTIAL PROGRAM LISTING

72

73

II' File: LEARN.C
#include <stream.h>
#include <string.h>
#define delta terms 5
#define items:Per_line 5
#define past_counts 30
#define max_num_pars 25
#define arbitr_neg 12000
#define delta cut 2
#define mod amt1 1
#define mod-amt2 2
#define cuti .2
#define cut2 2
/* CONSTANT DEFINITIONS:

delta terms - number of
items:Per_line - number

before

past delta terms saved
of items to save to file
a newline

*I

past counts - number of
to save

past sets of parameter counts

max_num_pars - maximum number of parameters
arbitr_neg - value returned from rand used to make a

number negative
delta cut - divisor of delta average to establish a

cutoff for the decision to modify or not
modify the alpha coeffs

mod amt1 - increment/decrement alpha coefficient
mod amt2 - increment/decrement alpha coefficient
cut1 - cutoff multiplier for modifying alpha coeffs
cut2 - cutoff multiplier for modifying alpha .coeffs

/***
**
Class: LEARN

The learn class implements the machine learning mechanism.
It is used by both the checker and halma games. It consists
of five functions: data in, data out, initialize, poly mod,
and coeff exch. The alpha coefficients are contained In the
integer array a[]. The beta coefficients are contained in
the integer array b[]. The five last delta terms are saved
in the integer array d[]. Counts of the occurances of board
evaluation parameters are saved in the integer array c[][].

***/
class learn
{

static
static

static
static
static

int
int

int
int
int

num_pars; //size of array of coeff terms
c[past_counts](max_num_pars]; //past

II occurances of parameter
d[delta_terms]; //delta values
c indx; //index for next c term to overwrite
d=indx; jjindx for next d term to overwrite

} ;

static int wins; //consecutive wins in recent games
static int losses; //consecutive losses
static int wins_needed; //wins needed to assign new

II beta coeffs
static int losses_needed; //losses needed to assign

74

II an alpha coeff to o
static int max coeff; //largest size of a poly coeff
void initialize(); //function to initiate learn process

public:
int a[max_num_pars]; //alpha polynomial coefficients
int b[max_num_pars]; //beta polynomial coefficients
FILE *poly; //file pointer for the coefficient file
FILE *pro_ln; //file pointer for the learn profile
FILE *pro_coeff; //file pointer for the coeff profile
int ln_switch; //switch to turn learning on or off
int ratio; //ratio of drive to win to polynomial
void poly_mod{int, short*); /jcoeff modification
void coeff_exch(short); ;;overwrite beta coeffs,

II or reset alpha
void data_in(); ;;read data in
void data out(); //store data

/***
Function: LEARN:: P 0 L Y M 0 D

The poly_mod function performs the modification of the alpha
coefficients. It uses the parameters passed to it to
calculate the individual polynomial terms. From each term,
using delta passed to it, the correlation between each
polynomial term and delta is calculated. These correlations
are used to actually perform the coefficient modification
and are stored in the integer array carr[].
***/

void learn::poly_mod(int delta, short par[])
{

short i, j = 0; //indexing variables
int sum = O; //temporary for calculating averages
int avg; //temporary for calculating averages
short count= 1; //count of c[](] items
int abs_delta; //for decision to modify
int p(max_num_pars); //polynomial terms
int corr[max_num_pars]; //correlations
int p_avg; //polynomial average
int d_avg; //delta average
int coeff cutl, coeff cut2; //modify coefficients
short mod-flag = O; //flag to output to profile
int abs(int); //function declaration

for(i = O; i < num_pars; ++i)
{ p[i] = abs(par[i] * a[i]); ;;calculate poly term

if(p[i) > 0) //poly term nonzero
{ sum+= p[i);

++count;
}
if(par[i] > 0) //if measured par present

c[c_indx][i] = 1; ;;overwrite count term
else c(c_indx][i] = O; II ""

}
p_avg = sum I count; //poly term average
fprintf(pro_ln, "p_avg: %d\n", p_avg);
sum = O;
for(i = o: i < delta_terms; ++i)

sum+= abs(d[i]);

75

avg = sum I delta terms; ;;average abs of delta terms
abs_delta = abs(delta);
fprintf(pro_ln, "abs_delta: %d abs_delta_avg: %d\n",

abs_delta, avg);
if(abs_delta >= (avg 1 delta_cut)) //modify coeffs
{ mod_flag = 1; //set flag for profile

sum = O;
for(i = O; i < delta terms; ++i)

sum+= d[i]; jjsum up delta terms
d_avg = sum j delta_terms; jjavg of delta terms
fprintf(pro_ln, "delta: %d delta_avg: %d

d term: %d\n", delta, d_avg, (delta- d_avg));
sum = O;
count = O;
for(i = 0; i < num_pars; ++i)
{ if(par(i] > 0) //find correlation

}

{ corr[i] = (p[i] - p_avg) * (delta- d_avg);
sum+= abs(corr(i]); ;;sum of correlations
++count;

}
else corr[i] = O;

if (count > 0) ·
avg = sum 1 count; ;;average abs of carrels

//modify the coefficients:
coeff cutl = (int) (cutl * (float)avg); II " "
coeff=cut2 = cut2 * avg; ;;size of modification
fprintf(pro_ln, "avg_corr: %d cuts: %d %d\n",

avg, coeff_cut2, coeff_cutl);
for(i = 0,; i < num_pars; ++i)

if(par[i] > 0) //measured parameter was present
{ if(corr[i] >= coeff_cut2)

a[L] += mod_amt2; //increment alpha
else if(corr[i] >= coeff_cutl)

a[i] += mod_amtl; //increment alpha
else if(corr[i] <= -coeff_cut2)

a[i] -= mod_amt2; //decrement alpha
else if(corr[i] <= -coeff_cutl)

a[i] -= mod_amtl; //decrement alpha
if(a[i] > max_coeff)

a(i] = max_coeff; //limit of +max coeff
else if(a[i] < -max_coeff)

76

a[i] = -max_coeff; //limit of -max_coeff

}

}
}
d[d_indx] =delta; ;;overwrite new delta term
d_indx = (d_indx + 1) % delta_terms; //next d term
c_indx = (c_indx + 1) % past_counts; //next count
//write to the learn profile:
if(mod_flag == 1) jjcoeffs were modified
{ fprintf(pro_ln, "Correlations: \n");

' for(i = O; i < num_pars; ++i)

}

{ fprintf(pro_ln, " %12d", corr[i]);
if(((i + 1) % items_per_line) == 0)

fprintf(pro_ln, "\n11);

}
fprintf(pro_ln, "Coefficients: \n");
for(i = O; i < num_pars; ++i)
{ fprintf(pro_ln, " %12d", a[i]);

if(((i + 1) % items_per_line) == 0)
fprintf(pro_ln, "\n");

}
fprintf(pro_ln, "Parameters: \n 11);

for(i = O; i < num_pars; ++i)
{ fprintf(pro_ln, " %12d", par[i]);

if(((i + 1) % items_per_line) == 0)
fprintf(pro_ln, "\n");

}

/***
Function: L E A R N : : C 0 E F F E X C H

The coeff exch function is called at the conclusion of each
game. If-alpha wins two.games in a row, the beta
coefficients are overwritten with the alpha coefficients.
If alpha looses two games in a row, the largest alpha
coefficient is reset to zero. Finally, the alpha
coefficients are written to the coefficient profile.
***/

void learn::coeff_exch(short win_side)
{ '

short i, j; //indexing variables
short sum, suml; //sums of counts of parameters
short largest = O; //largest abs of any coefficient
short lar_indx = -1; //index into a[)

if(win side == 0) //a draw recorded
{ wins = o; ;;reset counts

losses = o; II " "
}
else if(win_side == 1) //a win recorded
{ ++wins;

if(wins == wins_needed) //consecutive wins

}

}

{ for(i = O; i < num_pars; ++i)
b[i] = a(i]; ;;transfer a to b coeffs

fprintf(pro_ln, "New beta coefficients\n");
wins = O; //reset count of consecutive wins

}
losses = O; //reset count of consecutive losses

77

else //a loss recorded
{ ++losses;

if(losses == losses_needed) ;;enough losses
{ for(i = O; i < num_pars; ++i) //locate largest

{ if(abs(a(i]) > largest) //new largest coeff
{ largest= abs(a(i]);

}

}

lar_indx = i;
}
else if(abs(a[i]) == largest) //tiebreaker
{ sum = O;

}

s~ml = o;
for(j = o; j < past counts; ++j)
{ sum+= c(j][i]; -//sum of new counts

suml += c[j][lar_indx]; //sum of cnts
}
if(sum > suml) //new counts larger
{ largest= abs(a(i]);

lar_indx = i;
}

a(lar_indx.] = O; jjset largest coeff to 0
losses = O; //reset count of losses to o
fprintf(pro ln, "Coefficient %d goes to 0\n",

lar indx);

wins = O; //reset count of consecutive wins
}
for(i = O; i < num_pars; ++i) //store coeffs
{ fprintf(pro_coeff, 11 %12d", a(i]);

}

if(((i + 1) % items_per_line) == O)
fprintf(pro_coeff, "\n");

fprintf(pro coeff, "\n");

/***
Function: LEARN:: DATA IN

The data in function is called at the start of every game.
It determines if the coefficients are present or not. If
the coefficients are present, the alpha, beta, delta, and
count terms are all read in. If the coefficients are not
present, the initialize function is called to initialize
these variables.
***/

78

void learn::data_in(void)
{

}

inti, j; //indexing variables
FILE *ln_init; //file pointer for learn variables

ln_init = fopen("ln_init", "r"); //open file to read
if(ln_init == 0) //file not found
{ ln_init = fopen("ln_init", "w"); ;;create file

ln_switch = 1; //set defaults

}

wins needed= 2;
losses needed = 2;
fprintf(ln_init, "%d %d %d\n", ln_switch,

wins_needed, losses_needed); //default values

else //file"was found
fscanf(1n init, "%d %d %d", &1n switch,

&wins_needed, &losses_needed);
fclose(ln_init);
fscanf(poly, "%d %d", &num_pars, &max_coeff);
j = fscanf(poly, "%d", &d_indx); //necessary values
if(j == -1) //new coeff file detected

initialize(); //randomly assign values
else //read in needed values
{ fscanf(po1y, "%d", &c_indx);

fscanf(poly, "%d %d", &wins, ~losses);
for(i = 0; i < num_pars; ++i)

fscanf(poly, "%d", &a[i]); //read in alpha
for(i = 0; i·< num_pars; ++i)

fscanf(poly, "%d", &b[i)); ;;read in beta
for(i = 0; i < delta_terms; ++i)

fscanf(poly, "%d", &d[i]); //read in delta
for(i = O; i < past_counts; ++i)

for(j ~ O; j < num_pars; ++j)
fscanf(poly, 11 %d", &c[i][j]); //counts

}
fprintf(pro_ln, "Initial Coefficients:\n");
for(i = O; i < num_pars; ++i)
{ fprintf(pro_ln, "%12d", a[i]);

if(((i + 1) % items_per_line) == 0)
fprintf(pro_ln, "\n");

}
fprintf(pro_ln, "\n");

/***
Function: LEARN:: DATA 0 U T

The data out function writes the data to the coefficient
file. The alpha and beta coefficients, past delta values,
and counts of previous parameters are saved.
***/

void learn::data out()
{

}

short i, j; //indexing variables

fseek(poly, O, 0); //reset read, write pointer
fprintf(poly, "%d %d\n", num_pars, max_coeff);
fprintf(poly, "%d %d\n", d_indx, c_indx);
fprintf(poly, "%d %d\n", wins, losses);
for(i = O; i < num_pars; ++i)

79

{ fprintf(poly, "%12d", a[i]); ;;write alpha values
if(((i + 1) % items_per_line) == 0)

fprintf(poly, "\n");
}
fprintf(poly, "\n");
for(i = O; i < num_pars; ++i)
{ fprintf(poly, "%12d", b[i]);

if(((i + 1) % items_per_line)
fprintf(poly, "\n");

}
fprintf(poly, "\n");
for(i = O; i < delta_terms; ++i)

;;write beta values
== 0)

fprintf(poly, "%12d", d[i]); ;;write delta values
fprintf(poly, "\n");
for(i = O; i < past counts; ++i)
{ fprintf(poly, "\n");

}

for(j = O; j < num_pars; ++j)
{ fprintf(poly, "%12d", c[i][j]); ;;write counts

if(((j + 1) % i:tems_per~line) -- 0)
fprintf(poly, "\n");

}

fclose(poly); //close all files
fclose(pro_ln);
fclose(pro coeff);

/***
Function: LEARN :: INITIALIZE

The initialize function randomly assigns values to the
alpha, beta, and delta terms. It uses a file called
"seed sav" in order to seed the rand function. If the
seed_sav file is not present, it is created. All other
terms are initialized to zero. Finally, the coefficient
profile is written to.
***/

void learn::initialize(void)
{

inti, j, x, y, z; //indexing and temporary variables
unsigned int seed; ;;seed for rand function
FILE *start; //file pointer for seed file
int rand(); //randomizing function
void srand(unsigned int); ;;seeding function

start= fopen("seed_sav", "r+"); //open seed file

}

80

if(start == 0) //file not found
{ start= fopen("seed_sav", "w"); ;;open seed file

seed= 2: //initialize seed
}
else //read in seed value
{ fscanf(start, "%d", &seed);

fseek(start, 0, 0);
}
fprintf(start, "%d\n", seed+1); ;;write new seed
fclose(start); //close file
srand(seed); //seed random function
d indx = o;
c-indx = O;
losses = o;
wins = O;
for(i = O; i <= 2; ++i)

for(j = O; j < num_pars; ++j)
{ x = rand(); ;;call random function

}

if(x < arbitr_neg) ;;make value negative
y = -1;

else y = 1;
z = (y *rand()) % max_coeff; //make coeff
if(i == 0)

a[j] = z; ;;save alpha value
else b[j] = z; ;;save beta value

for(i = O; i < delta_terms; ++i)
d[i] = a(i*2]; ;;initialize delta terms

for(i = O; i < past_counts; ++i)
for(j = O; j < num_pars; ++j)

c[i][j] = O; //initialize count terms
fprintf(pro_coeff, "NEW COEFFICIENTS:\n"); //profile
for(i = o; i < num_pars; ++i)
{ fprintf(pro_coeff, "%12d", a[i]);

if(((i + 1) % items_per_line) == 0)
fprintf(pro coeff, "\n");

}
fprintf(pro_coeff, "\n");

II ----- File: CH SEARCH.C -----
/***
Function: C H S E A ~ C H : : R E C U R

The recur function performs the recursive look-ahead tree
search. This function is essentially an implementation of
the alpha-beta algorithm presented by Knuth, D. E. and More,
R. W., "An Analysis of Alpha-Beta Pruning," ARTIFICIAL
INTELLIGENCE, 6 (1975) 137-148.
***/

int ch_search::recur(int alpha, int beta)
{

short i; //indexing variable

}

unsigned char moves(20][2]; ;;used to expand moves
int static_value; ;;score of board
int new_alpha; //better alpha value
short br_count; //number of move branches
short br_indx; //current move branch index

81

unsigned int bd_sav(4]; //save original bd position

generate_mvs(O); //generate moves or jumps
//quiescence decision:
if(gen(4] == 0 I I {gen(4] == 1 && ply>= depth))
{ static_value = score_bd(); //score the board

return static_value; ;;return the score
}
for(i = O; i < 4; ++i)

bd_sav(i] = bd[i]; ;;save the original board
if(ply == 1 && gen(4] == 1) //root node, no jumps
{ br_count = order_mvs(moves); ;;arrange moves

for(i = O; i < 4; ++i) // into best order
bd[i] = bd_sav(i]; //restore the original bd

}
else br_count = expand_mvs(moves);
//basic recursive loop:
for(br indx = O; br indx < br count; ++br_indx)
{ for(i = O; i < 47 ++i) -

}

bd[i] = bd_sav(i]; //restore the original bd
mv_data[O] = m1[moves(br_indx][O)]; ;;retrieve mv
mv_data(1] = moves[br_indx][1]; //
post_mv(); //post,the move to bd

II II

while(mv_data[3] > 0) //post multiple jumps
post_mv();

++ply; //prepare for recursive call
revers_bd(); 11 11 11

new alpha = -recur(-beta, -alpha); //recursve call
--ply; //return from recursive call, reset ply
if(new_alpha '> alpha) ;;a better alpha was found
{ alpha = new_alpha; //reassign alpha

}

if(ply == 1) //initial branch that lead to
{ mv sav1 = m1[moves(br indx][O]]; // best

mv=sav2 = moves(br_indx][1]; // move
}

if(alpha >= beta) //a cutoff was found
return(alpha);

return(alpha); //no cutoff was found

VITA

MICHAEL WAYNE SEALE

Candidate for the Degree of

Master of Science

Thesis: STUDIES IN MACHINE LEARNING USING GAME PLAYING

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Clarksville, Arkansas, August
28, 1952, the son of James J. and Bess E. Seale.

Education: Graduated from Hall High School, Little
Rock, Arkansas in May 1971; received Bachelor of
Science Degree in Electrical Engineering from
the University of Arkansas at Fayetteville, in
May 1985; completed requirements for the Master
of Science degree at Oklahoma State University in
May, 1990.

Professional Experience: U.S. Air Force, January, 1975
to Present. Microwave Systems Engineer for the
1842 Electronics Engineering Group at Scott Air
Force Base, Illinois, from October, 1985 to July,
1988. current rank: Captain.

