
   A UTILITARIAN COMPARISON OF NONLINEAR 

REGRESSION METHODS  

    

 

 

   By 

   CHETAN CHANDAK 

   Bachelor of Science in Chemical Engineering  

   Jawaharlal Nehru Technological University 

   Hyderabad, India 

   2007 

 

 

   Submitted to the Faculty of the 
   Graduate College of the 

   Oklahoma State University 
   in partial fulfillment of 
   the requirements for 

   the Degree of 
   MASTER OF SCIENCE  

   May, 2009  



 ii

   A UTILITARIAN COMPARISON OF NONLINEAR 

REGRESSION METHODS  

 

    

 

 
 
 
 

   Thesis Approved: 
 

 
Dr. R. Russell Rhinehart 

   Thesis Adviser 
 

   Dr. Karen High 
 

   Dr. Sundar Madihally 

 
  Dr. A. Gordon Emslie 

   Dean of the Graduate College 
 
 
 
 
 



 iii  

ACKNOWLEDGMENTS 
 
 

I would like to thank Dr. R. Russell Rhinehart for guiding me through the research. It 

has been a great learning experience working under him.  

It has not just been the research, but also the timely guidance he has provided for my 

course work at OSU. I appreciate his patience and confidence in my work, and his sincere 

concern towards his students to ensure a good future after their graduation. I would like 

to thank him again, and the Chemical Engineering department for providing me with the 

Graduate Assistantship during my degree. I also thank my committee members for their 

valuable inputs.  

I am grateful to all the other members of the department and my friends at OSU for 

their support.  

 



 iv

TABLE OF CONTENTS 
 

Chapter          Page 
 
List of Tables ..............................................................................................................  vi 

List of Figures ............................................................................................................  vii  

 
1. INTRODUCTION .....................................................................................................1 

    1.1. Literature Review............................................................................................... 4  

    1.1.1. Linear Regression ...................................................................................... 4 

          1.1.1.1. Least Squares Regression – Vertical distances ................................. 6  

          1.1.1.2. Least Squares Regression – Horizontal distances ............................. 7 

          1.1.1.3. Perpendicular regression ................................................................... 8 

                   1.1.1.3.1. Perpendicular offsets ............................................................. 8 

                   1.1.1.3.2. Shifting of axes ................................................................... 10 

          1.1.1.4. Geometric Mean Functional Relationship ...................................... 13 

          1.1.1.5. Maximum Likelihood Method ........................................................ 13 

    1.1.2. Nonlinear Regression ............................................................................... 14 

 1.2. Research Statement ........................................................................................ 17 

 
2. METHOD ................................................................................................................18 

 2.1. Scope of the study .......................................................................................... 19 

 2.2. Experiment ..................................................................................................... 20   

    2.2.1. Titration.................................................................................................... 20 

               2.2.1.1. Interval halving root finding technique........................................... 23 

          2.2.1.2. Data generation ............................................................................... 25 

         2.2.2. Packed bed reactor ................................................................................... 30 

                



 v

Chapter          Page 
 

               2.2.2.1. Output variable evaluation .............................................................. 32 

                   2.2.2.1.1. Newton – Raphson method ................................................. 32 

          2.2.2.2. Experimental data ........................................................................... 36 

 2.3. Regression methods ....................................................................................... 39 

    2.3.1. Vertical distance method.......................................................................... 39 

    2.3.2. Maximum likelihood method ................................................................... 40 

          2.3.2.1. Circular Contours ............................................................................ 44 

          2.3.2.2. Propagation of uncertainty .............................................................. 46 

 
3. EXPERIMENTAL ...................................................................................................50 

 3.1. Titration.......................................................................................................... 50  

    3.1.1 Data generation ......................................................................................... 50 

    3.1.2 Regression ................................................................................................. 50 

          3.1.2.1. R3 cyclic direct search ..................................................................... 52 

          3.1.2.2. Objective function evaluation ......................................................... 58 

                        3.1.2.2.1. Least squares regression – Vertical distances ..................... 58 

                        3.1.2.2.2. Maximum Likelihood and Normal distances ...................... 59 

                                    3.1.2.2.2.1. Golden Section Search ......................................... 60 

 3.2 Packed bed reactor .......................................................................................... 64 

    3.2.1 Data generation ......................................................................................... 64 

    3.2.2 Regression ................................................................................................. 64 

          3.2.2.1 Parameter Optimization ................................................................... 64 

               3.2.2.2 Objective Function Evaluation ........................................................ 67 

 3.3. Assumptions ................................................................................................... 70 

 3.4. Result Analysis Techniques ........................................................................... 72 

 
4. RESULTS AND DISCUSSION ............................................................................. 75 
 
5. MODEL VALIDATION ........................................................................................ 93 
 
6. CONCLUSIONS..................................................................................................... 95 

 



 vi

Chapter          Page 
 
REFERENCES ........................................................................................................... 97  
 

APPENDICES 

 Appendix A – Titration Simulator Code ............................................................... 99 

 Appendix B – Packed Bed Simulator Code ........................................................ 112 

 Appendix C – Results: Parameter Distributions and Probability Plots............... 127 

 



 vii

LIST OF TABLES 
 
 

Table           Page 
 

4.1.1 Comparison of regression methods for �� �  �� ............................................... 76  

4.1.2 Comparison of regression methods for �� �  ��  .............................................. 80 

4.1.3 Comparison of regression methods for �� �  ��  .............................................. 83 

4.1.4 Comparison of regression methods for approximate variances for  

         Maximum Likelihood method ........................................................................... 85 

4.1.5 Summary of Findings ..........................................................................................88 

4.2.1 Comparison of regression methods – Packed bed reactor ................................. 89 

 
 

 
 



 viii  

LIST OF FIGURES 
 

Figure           Page 
  
1. Input vs. output for an illustrative nonlinear process .............................................. 3 

2. A prototype process simulator  ............................................................................... 5 

3. Perpendicular distance – Linear regression ............................................................ 9 

4. Perpendicular regression by Akaho’s method ...................................................... 15 

5. Drawback of Akaho’s method .............................................................................. 16 

6. Interval halving method ........................................................................................ 24 

7. � 	
. �
� – Titration experiment .......................................................................... 25 

8. Normal distribution ............................................................................................... 26 

9. Apparent vs. actual data – Titration experiment ................................................... 27 

10. Data generation – Titration experiment ................................................................ 28 

11. A typical pH curve for regression ......................................................................... 29 

12. Packed bed reactor ................................................................................................ 31 

13. Newton-Raphson method...................................................................................... 33 

14. � 	
. �� – Packed bed reactor simulation ............................................................. 34 

15. Newton Raphson flowchart ................................................................................... 35 

16. A typical inlet vs. outlet concentration plot for PBR simulation .......................... 36 

17. Data generation – Packed bed reactor ................................................................... 37 

18. Normal Distribution – Standard deviation and confidence intervals .................... 38 

19. Vertical distance method....................................................................................... 39 

20. Likelihood contours - Maximum likelihood approach ......................................... 41 

21. Maximum likelihood regression ........................................................................... 42 

22. Maximum likelihood regression ........................................................................... 43 

23. Circular contours – Maximum likelihood regression ........................................... 45 

24. Error propagation .................................................................................................. 46 

25. R3 direct search – one dimensional ....................................................................... 52



 ix

Figure           Page 
 
26. R3 direct search – two dimensional ....................................................................... 54 

27. Flowchart – R3 cyclic direct search for titration parameter optimization ............. 57 

28. Flowchart – Vertical distance objective function evaluation ................................ 58 

29. Golden section search ........................................................................................... 61 

30. Flowchart – Golden section search ....................................................................... 63 

31. Flowchart - R3 cyclic direct search for PBR parameter optimization ................... 66 

32. Flowchart - R3 cyclic direct search for PBR objective function optimization  

(Normal distances and Maximum Likelihood method) ........................................ 68 

33  a. Typical ‘��’ distribution for vertical and maximum likelihood methods ......... 73   

      b. Typical ‘���’ distribution for vertical and maximum likelihood methods ...... 73 

34. Typical ‘probability of deviation from the true value’ plots for ‘��’ and ‘���’ .. 74 

35  a. ‘��’ distribution for vertical and maximum likelihood methods for  
          �� = 0.25, ��= 0.5 ............................................................................................. 78 

35  b. ‘���’ distribution for vertical and maximum likelihood methods for  
          �� = 0.25, ��= 0.5 ............................................................................................. 78 

36. Probability of deviation from the true value plots for ‘��’ and ‘���’ for  
       �� = 0.25, ��= 0.5 ................................................................................................ 79 

37  a. ‘��’ distribution for vertical and maximum likelihood methods for  
          �� = 0.25, ��= 0.25 ........................................................................................... 81 

37  b. ‘���’ distribution for vertical and maximum likelihood methods for  
          �� = 0.25, ��= 0.25 ........................................................................................... 81 

38. Probability of deviation from the true value plots for ‘��’ and ‘���’ for  
      �� = 0.25, ��= 0.25 ............................................................................................... 82 

39  a. ‘��’ distribution for vertical and maximum likelihood methods for  
          �� = 0.1, ��= 0.25 with perturbed variance values for maximum likelihood 
          objective function.............................................................................................. 85 

39  b. ‘���’ distribution for vertical and maximum likelihood methods for  
          �� = 0.1, ��= 0.25 with perturbed variance values for maximum likelihood 
          objective function.............................................................................................. 86 

40. Probability of deviation from the true value plots for ‘��’ and ‘���’ for  
      �� = 0.1, ��= 0.25 with perturbed variance values for maximum likelihood 
      objective function.................................................................................................. 86 

 



 x

41  a. Parameter ‘��’ distribution for vertical and maximum likelihood methods ..... 90 

41  b. Parameter ‘��’ distribution for vertical and maximum likelihood methods ..... 90 

41  c. Parameter ‘�’ distribution for vertical and maximum likelihood methods ...... 91 

42. Probability plots for packed bed regression parameters. ...................................... 91



 

 

 
 



1 
 

1. INTRODUCTION 

Regression techniques are widely used to model empirical data. They find varied 

applications in many fields from formulating scientific rules and laws, to extrapolating 

data, and much more. Conventionally these methods employ the classic least squares 

(vertical distance) approach to estimate the model parameter values, which, however, is 

flawed in its underlining assumption itself that there are no uncertainties in the input 

variables. Input and output uncertainties are inherent to all practical experiments, and the 

vertical least square distance (VLSD) approach can cause a model parameter bias. The 

purpose of this study is to investigate the alternate approaches tried by other researchers 

and try and develop a new regression technique to overcome the above shortcomings.  

Fig. 1 represents the output ��� vs. input ��� of an illustrative nonlinear process. Due 

to uncertainty in the input values, if �� is any nominally chosen setting or meter reading 

of the input given to the process, the actual input to the process lies anywhere between �� 

and ��. The corresponding output for �� and �� may lie between ��� and ���, ��� and ��� 

respectively. Hence for a given estimate of nominal, or target input ��, the output value 

may lie anywhere within the region bounded by min����,  ���,  ���,  ���!  and 

max����,  ���,  ���,  ���! depending upon the deviation from the true value. Similarly for a 

given input �$, the output can lie anywhere within the region bounded by 

min��%�,  �%�, �&�,  �&�! and max��%�,  �%�, �&�,  �&�!. '� and '� represent the probable 

uncertainty limits for the input and output values.
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Figure 1: Input vs. output for an illustrative nonlinear process 

Tradionally, developing an empirical model for the above process presumes that there 

are no uncertainties in the input values. Hence, if the experiment actually results in 

�X&, Y&�� as the input-output pair, it would be erroneously assumed that the measurement 

corresponds to �X*, Y&��.  And, due to uncertainty in the output values, the measured 

output could lie anywhere along the vertical line intersecting X* between Y&� and Y%�. 

This presumption might lead to the parameter values close to the actual ones when the 

slope of the curve is similar for all X-values.  However, when the slope of the curve 

makes large changes, the relative importance of data shifts.  For example, Fig. 1 shows 

that the possible ΔY deviation at X* appears very large relative to the ΔY deviation at X, 

even though the precision on Y is the same at both X-values.  Using sum-of-squared 

output deviation �ΣΔY�� as the objective function, would give too much importance to 
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the input X*, relative to X,. The truth is better indicated by revealing both � and � 

uncertainty on the data and a likelihood region around the data point. 

Hence, with the idea of sweeping all the uncertainty in the output variable being 

fundamentally incorrect, alternative approaches like the perpendicular regression through 

minimization of the perpendicular offsets [3, 7] or shifting of data points [8], the 

geometric mean functional relationship (GMFR) [4, 5, 9], the maximum likelihood 

method [1, 4, 5, 9], etc., were developed for linear regression. Nonlinear regression, 

however, hasn’t been as extensively studied as the linear regression. 

1.1 LITERATURE REVIEW  

1.1.1 L INEAR REGRESSION 

As cited in [1, 2], a model for linear regression does not just imply a straight line. A 

model is said to be linear in parameters if the second and higher order derivatives of the 

function with respect to the parameters are zero, i.e., 

.�/�0, ��.01.02 � 0  4�5 
(1) 

where ‘/’ is the function relating the model parameters 01,02 . ., with the independent 

variable �. Hence, a polynomial of the form, / �  0 6  7� 6  8�� is linear in terms of 

regression as the second derivatives with respect to 0, 7, 8 are zero. However, / is 

nonlinear in � as its second derivative with respect to � is non-zero. A few more 

examples could be /�  �  � 9 �:$ , and /�  �  ;�$. /� is nonlinear in parameters but linear 

in � while /� is nonlinear in both the parameters and �. 
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Consider a model given by 

                                                               �1 � ; 6 <�1                                                       (2) 

where ��1, �1� represent any of the ‘=’ experimental data pairs, and ;, < are the true 

process parameters. Due to uncertainty in the input and output measurements, the 

apparent experimental data pair ��1, �1�  is actually due to the true values and the error 

associated with it, i.e., 

                                                         �> �  �1 ?  @1 ,    @1~=�0, �BC�                                 (3) 

                                                         �1 �  �> ? D1 ,    D1 ~=�0, �EC�                                  (4) 

where ��> , �>� represent the true but unknowable measurements, and @1,  D1 represent the 

corresponding errors as a normal distribution with a mean of zero and variance 

�BC , �EC  respectively. Schematically this may be summarized as 

 

 

 

 

 

 

 
Figure 2: A prototype process simulator 

 

 �>    �> �> � ; 6 <�> 
Model    �1 �1  + 

  ± 
 + 
  ± 

    @1       D1  
SIMULATOR 
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The regression method employed would yield a model of the type 

                                                          �F1 � ;G 6 <F�F1                                                            (5) 

where ��F1, �F1� represent the corresponding model data pair, and ;G, <F the model parameter 

estimates. Illustrated below are a few of the most commonly used regression methods that 

could be employed to estimate ;G and <H  .  

1.1.1.1 Least Squares Regression – Vertical distances 

Regressing � on �, the square of the vertical distances between the experimental and 

model data pairs are minimized, i.e., 

min��,$!  I �  J��1 K �LH��M
1N�  

(6) 

Analytically, the model parameters can be estimated by equating the derivative of the 

objective function with respect to the parameters to zero, resulting in [3] 

;G �  O∑ �1�� Q �∑ �1R K  �∑ �1�1� Q �∑ �1�=�∑ �1�� K �∑ �1��  

(7) 

<F � =�∑ �1�1� K  �∑ �1� Q �∑ �1�=�∑ �1�� K �∑ �1��   
(8) 

In a more simplified manner [4, 5], Eq. (7) and (8) can be written as 

<F �  ∑��1 K  �S���1 K  �S�∑��1 K  �S�� � T:UT:: 

(9) 
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                                                       ;G � �S K  <�S                                                             (10) 

where �S and �S represent the mean of the experimental input and output measurements. 

However, with the availability of faster computation techniques, numerical methods to 

optimize the objective function by varying the parameter values are widely used. The 

numerical methods iteratively minimize the objective function by varying the parameter 

values through an optimization routine.  

The least squares regression is believed to provide better parameter estimates when the 

uncertainty in the input variable is minimal, or negligible, compared to the uncertainty in 

the output variable. 

1.1.1.2 Least Squares Regression – Horizontal distances  

While the conventional least squares regression minimizes the vertical distances, 

regressing � on � minimizes the horizontal distances. This method is suitable when the 

uncertainty in the input variables is much larger compared to the uncertainty in the output 

variable, as the output variable is assumed to be perfectly known. The model equation is 

transformed to the type [6] 

                                                               VG � ;G 6 <FWG                                                       (11) 

And the parameter estimates by the analytical method are obtained by interchanging x 

and y in Eq. 7 and 8 as [6] 
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;G �  O∑ �1�� Q �∑ �1R K  �∑ �1�1� Q �∑ �1�=�∑ �1�� K �∑ �1��  

(12) 

<F � =�∑ �1�1� K  �∑ �1� Q �∑ �1�=�∑ �1�� K �∑ �1��  

(13) 

1.1.1.3 Perpendicular regression  

Due to the limited applicability of the least square regression techniques, methods 

like the perpendicular regression were developed. The perpendicular distances can 

traditionally be minimized by two approaches 

1. Minimizing the perpendicular offsets [3, 7] 

2. Shifting the coordinate axis by an angle such that minimizing the vertical distances 

hence is equivalent to minimizing the perpendicular distances [8]. 

1.1.1.3.1 Perpendicular offsets  

This method involves minimizing the square of the perpendicular distances between 

the experimental and model data pairs. If ��1, �1� is an experimental data pair, then its 

perpendicular distance to the Model (Eq. 2) is given by [3, 7] 

X �  Y�1 K O;G 6 <F�1RYZ1 6 <F�  

(14) 
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Figure 3: Perpendicular distance – Linear regression 

In Fig. 3, ���\, ��] � is the foot of the perpendicular to ��1, �1�. However, minimizing the 

perpendicular distances does not necessarily require finding the foot of the perpendicular 

if the point ��1, �1� and the model coefficients are known, as can be seen from Eq.14. The 

objective function is the same as minimizing the vertical distances but with the 

denominator term, i.e. [3, 7], 

min��,$! I �  J ^�1 K  �; 6 <�1�√1 6 <� `�M
1N� � J �W1 K  WG��1 6 <�

M
1N�  

(15) 

Hence, for the experimental point��1, �1� , a point ��1, �a1� is estimated based on the model 

parameters and hence the Objective Function (Eq. 15) is evaluated. Alternatively, the 

perpendicular distance can be evaluated by determining the foot of the perpendicular 

���\, ��] �, and hence its distance from ��1, �1�. 

Y

X

Linear model

Perpendicular
��1 , �L]� 

��1 , �1� 

���\, ��] � 
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The analytical estimation of the model parameters is given by [3] 

;G �  �1 K b� Q O∑ �1�� Q �∑ �1R K  �∑ �1�1� Q �∑ �1�=�1 K b� Q �∑ �1�� K �∑ �1��  

(16) 
 

<F � =�∑ �1�1� K  �∑ �1� Q �∑ �1�=�1 K b� Q �∑ �1�� K �∑ �1��  
(17) 

where   

b �  ∑O�1 K  �aR�
�1 6 <�� Q �∑ �1�� 

(18) 

In a more simplified form the slope estimate <H , could be written as [4] 

<F �  TUU K  T:: 6 c�TUU K  T:: �� 6  4T:U�
2T:U  

(19) 

where T:: �  ∑��1 K  �S��, T:U �  ∑��1 K  �S���1 K  �S�. The estimate of the intercept can 

be obtained as ;G � �S K  <F�S. 

 

1.1.1.3.2 Shifting of axes  

Another approach of perpendicular regression is to shift the primary direction of the 

coordinate axes by an angle such that minimizing the vertical distances hence is the same 

as minimizing the perpendicular offsets with respect to the original direction. 

The method begins by initializing the parameters of the Model (Eq. 2), by minimizing 

the vertical distances. The parameters hence are denoted as ;�, <�, where the subscript ‘0’ 
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represents the initial value of the parameters before shifting the axes. If the slope <� 

equals zero, the line is horizontal, and minimizing the vertical distances hence is the same 

as minimizing the perpendicular distances. Hence the axes are continually shifted by 

certain angles until this condition is satisfied, and once this is achieved, the parameter 

values with respect to the original axes are the required estimates.  

The axes are shifted initially by an angle f�� such that vertical or the dependent 

variable axis aligns itself with the perpendicular �g�hhhhi � to the initial model. For the 

parameters  ;�, <� the angle is determined by the direction cosines of g�hhhhi as [8] 

g�� �  cos f�� �  K<�
c1 6 <�� 

(20) 

g�� �  cos f�� �  1
c1 6 <�� 

(21) 

where g�� and g��are the component vectors of g�hhhhi. 
The transformed experimental data pair �V1, W1� is given by [8] 

mVLnWG1o �  pcos f�� K cos f��cos f�� cos f�� q rV1W1s � t� rV1W1s 

(22) 

Or, from the expressions for direction cosines from Eqs. (20) and (21), [8] 

VG1 �  1
c1 6 <��  �V1 6  <�W1� 

(23) 
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WG1 �  1
c1 6 <��  �W1 K  <�V1� 

(24) 

Since the slope <� u 0, the parameter values are re-estimated by minimizing the vertical 

distances with respect to the new coordinate system and the process is repeated 

until  <� � 0. 

If f��, f��, . . f�v are the angles by which the axes were rotated for each iteration, the 

final transformed experimental data pair is given by [8] 

mVLnWG1o � pcos f�v K cos f�vcos f�v cos f�v q … pcos f�� K cos f��cos f�� cos f�� q  rV1W1s � t� rV1W1s 

(25) 

And to get back to the original coordinate system, the transpose of the cumulative 

rotation matrix is multiplied to unit normal vector 40 15>, to obtain the normal vector ghi to 

the final model. [8] 

ghi �  rg�g�s � tx> . r01s 

(26) 

And hence the parameter estimates, [8] 

;G � ;y g� , <F � Kg�g�  

(27) 

However this approach of perpendicular regression is a lot more complex than 

minimizing the perpendicular offsets. Hence unless this method has any advantages of 

faster convergence to the optimum or lesser iterations, which hasn’t been cited by the 

author, it may not seem reasonable to select this approach.  
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1.1.1.4 Geometric Mean Functional Relationship  

This method is another effort to overcome the pitfalls of the least squares method. The 

method requires to first regress � on � to get the ordinary least square estimate of the 

slope as <F � T:U/ T:: [4, 5, 9]. Then regress � on � and re-write the equation in the 

form of � on � to get another estimate of the slope, {| � TUU/ T:U  [4, 5, 9]. The GMFR 

estimate of the slope then is [4, 5, 9] 

<F}~�� � 
��g�T:U�Z<F{| �  
��g�T:U��TUUT:: 

(28) 

The estimate of the intercept can be obtained as ;G � �S K  <F�S. 

As reported in [5], this method minimizes the sum of the geometric mean of squared 

vertical and horizontal distances of each experimental point to the model line. When the 

uncertainty in the input and output measurements are due to the errors and not due to the 

randomness in the variable itself, the parameter estimates for this method are the same as 

the one for maximum likelihood, and the method is best suited for this case [4]. 

1.1.1.5 Maximum Likelihood 

The maximum likelihood is a more generic regression technique that maximizes the 

combined likelihood probabilities of the experimental data pairs. However, the principle 

of maximum likelihood is mostly used in estimating the unknown parameters of a 

distribution and its application to regression techniques has been limited. For the Linear 

Model (Eq. 2), the analytical estimate of the slope is determined by finding the likelihood 

probabilities of individual data points by the probability density function and equating the 



13 
 

derivative of the combined probability with respect to the parameters to zero. The slope 

estimate obtained hence is given by [4] 

<F �  TUU K �T:: 6  c�TUU K  �T:: �� 6  4�T:U�
2T:U  

(29) 

A detailed explanation on this method for nonlinear regression, a more general case, is 

addressed in the later part of the report. 

It is important to note that when the variances in the input and output measurements 

are the same, i.e., � �� �E�/ �B� � � 1, the perpendicular regression parameter estimates 

are the same as the parameter estimates for the maximum likelihood method (Refer Eqs. 

19 and 29) and hence the method is best suited in this case [4]. This has also been found 

true for nonlinear regression discussed later in the report.  

1.1.2 NONLINEAR REGRESSION 

The shortcomings of the least squares regression remain the same for both the linear 

and the nonlinear regression. And to overcome this, a few efforts were made by 

researchers to develop methods that were computationally realizable and understandable 

to an engineer’s intellect. One among them is the Taylors series approximation to 

evaluate perpendicular distances as cited in [10]. 

The author, Akaho [10] used a first-order Taylor series approximation to determine a 

tangent at a point on the assumed model curve, vertically above/below the experimental 

data point, and then determine the foot of the perpendicular from the experimental point 

to the tangent.  
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Figure 4: Perpendicular regression by Akaho's method 

For any experimental data point �V1 , W1) close to the assumed model curve ��V, W� as 

shown in Fig. 4, the first order Taylor series approximation is given by 

                   ��V, W� � ��V1, W1� 6 ���V1, W1� · �V K V1� 6  ���V1, W1� · �W K W1�              (30) 

If �V, W� is a point on the curve,  

                                                          ��V, W� � ��V� – W � 0                                         (31) 

              ��V, W� � ��V1, W1� 6 ���V1, W1� · �V K V1� 6  ���V1, W1� · �W K W1� � 0           (32)  

Equation (32) represents a tangent to the curve at the point �V1, W��. For the point �V1, W1�, 

Akaho’s method requires finding a point �V�, W�� along this tangent which is the foot of 

the perpendicular on it from �V1, W1�. This approach holds good when there are no 

significant changes in the slope of the assumed curve over the uncertainty range on ‘V1 ’, 
as the tangent would remain relatively the same.  

y

x

f(x, y)
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(xi, yi)
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 But, for large changes in the slope of the curve as shown in Fig. 5, the Taylor series 

approximation for the point �V1, W1� will result in a tangent at a point �V1, W�� on the 

curve, and the foot of the perpendicular evaluated along this tangent would be �V�, W�� 

instead of �V, W�, the actual foot of the perpendicular.  This distortion of perpendicular 

distances is a drawback of Akaho’s method. 

 
Figure 5: Drawback of Akaho's method 
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x
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1.2 RESEARCH STATEMENT 

Based on the above literature review it was established that though several regression 

techniques were devised for least squares regression, each method had its own 

limitations. The maximum likelihood method seemed the most promising of all, but the 

research was mostly restricted to linear regression.  

In our study, we intended to analyze the shortcomings the least square regression through 

Monte Carlo simulations and explore alternative regression techniques including the 

maximum likelihood approach for nonlinear regression.  
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2. METHOD 

This work evaluates the quality of a regression method by its accuracy and 

consistency in predicting the regression parameter values. The closeness of the parameter 

values estimated through a regression method, to the true values, determines the accuracy 

of the method. Consistency may be established through repeated estimations of the 

parameter values for different sets of data realizations (A data realization is a realistic 

approximation of experimental data for computer simulations). The work also evaluates 

the practicability of a regression method by computational load and user complexity.  

The methods analyzed were ― the least squares method, the normal distance method, 

and maximum likelihood method. The least squares method is the conventional method 

adopted for regression. The maximum likelihood method was developed through our 

research, and the normal or the perpendicular distance method is just a consequence of 

the maximum likelihood method when the uncertainties in the input and the output 

variables, �� and ��, are the same. 

Monte Carlo simulations were run for a weak acid-strong base titration experiment 

and a packed bed reactor experiment. As cited in [9], “in Monte Carlo studies, the 

investigator plays God by choosing the true values of the regression parameters, which in 

real life, can only be estimated from error-prone data. The investigator then programs a 

computer to simulate an experiment by adding random errors to the true values of �  
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and �,” and tests the regression capabilities of different methods based on their estimate 

of the parameter values. 

 
2.1  SCOPE OF THE STUDY 

The scope of this project is: 

1. Number of regression parameters, input and output variables: The titration 

simulation comprised of two regression parameters ���, ����, with the input and 

output variables being the volume of base added ��� and the pH of the solution 

respectively. The packed bed simulation was more complex with three regression 

parameters K ��, ��, �, three input variables K the inlet concentration ��1v�, the 

volumetric flowrate ���, and the reactor temperature ���, and the outlet 

concentration ���� as the single output variable. 

2. Distribution of the errors : The input and output variables were assumed to follow 

normal independent distributions with a mean of zero. 

 

Note: In the discussion henceforth, the input and output error variances �B, �E, are 

denoted by �� and �� respectively. 
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2.2 EXPERIMENT 

2.2.1 TITRATION  

The titration experiment chosen to test the methods is usually known for its 

nonlinearity in the pH values vs. the volume of titrant added, and hence is a good test for 

the robustness of any regression technique. The experiment was simulated in Microsoft 

Visual Basic based on the equations governing the titration process. Base was presumed 

to be added dropwise to the batch of acid, and the pH of the mixture changed instantly. 

The volume readings of the base added were the input to the process, and the 

corresponding pH values were the output. Uncertainty was included in both the input and 

output measurements to simulate reality. The theoretical equations were derived as 

follows: 

Let �� and �� be the initial acid and base concentrations. Let ‘	’ ml of the base be added 

to a liter of the acid solution. Due to increase in volume of the mixture through addition 

of base, the acid concentration decreases to ‘;’ mol/lit and base concentration to ‘<’ 
mol/lit.  

; � ���1 6 	1000� ��{{��  

(33) 

< �  �� Q 	1000�1 6  	1000�   ��{/{�� 

(34) 

Let ‘V’ moles of acid and ‘W’ moles of water dissociate upon addition of the base. Since 

it’s a dilute acid, the water content is large compared to acid and virtually remains 

unaffected despite the dissociation. 
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Under equilibrium, 

                                              �; K V�
� � V
9  6 V��                                              (35) 

                                              �∞ K W�
�0 � W
9 6  W�
�                                           (36) 

                                              �< K <���
 � <�9 6  <�
�                                        (37) 

Hence, the total hydrogen ion concentration:   4
95 � �V 6 W�                                     (38) 

Concentration of ��:                            4��5 � V         (39) 

Concentration of �
�:                4�
�5 � W 6 <        (40) 

Concentration of the undissociated acid, 
�:  4
�5  �  ; K V        (41) 

The dissociation constants for the acid and water from Eqs. (35) and (36) are 

                                                          �� � 4��54��54��5                                                           (42) 

                                                          �� � 4
954�
�5                                                  (43) 

The dissociation constant of the water has a nominal value of 10-14.  

pH of any aqueous solution is defined as 

                                                          �
 �  K log�� 4
95                                              (44) 

Substituting the variables in the above three equations gives 

                                                      �� � ��9��Q������                                                                (45) 

                                                      �� � �V 6 W��W 6 <�                                                (46) 
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                                                      �
 �  K log�� �V 6 W�                                              (47) 

Analytically, combining Eqs. (45), (46) and (47) to evaluate the pH corresponding to the 

volume of base added gives a cubic expression in either V or W. Only one of the three 

roots would be the desired value, which, may not be easy to determine.  

Alternatively, numerical root finding methods such as the interval halving method can 

be implemented by guessing a value of pH and determining the corresponding pH value 

calculated through the above equations. If the calculated pH is the same as the initial 

guess, then it is the desired root. The numerical method successively iterates with the 

calculated pH value as the new guess until both the values are the same. The method is 

implemented in the following manner: 

1. Guess a value of pH between 0 and 14: �
� 

2. Calculate the total hydrogen ion concentration corresponding to �
�, 

                                            4
95 =  �V 6  W� �  10� ���                                        (48) 

3. From (45) and (48): Vx � �Q ¡ ¡9 ���¢£�   

4. From (46) and (48): Wx � �� Q 10��� K  < 

5. Calculated total hydrogen ion concentration: �Vx 6  Wx) 

6. Calculated pH: �
x �  K log�� �Vx 6 Wx� 

The desired root would be the pH guess O�
�R that makes its difference with the 

calculated value zero, or � � �
� K  �
x = 0. However, since the calculated total 
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hydrogen ion concentration �Vx 6  Wx) can be negative at times for a bad pH guesses, and 

the logarithm of negative numbers is not defined, � is alternatively defined as the 

difference of the total acid concentration for the initial and calculated pH values, and the 

pH value O�
�R that makes � � �V 6  W� K  �Vx 6  Wx� �  0 is the desired root.  

Hence the pH of the solution for a given set of parameter values, and the volume of 

the base added can be determined through root finding techniques. The advantage of this 

method is: ��� There is a unique solution between 0 and 14. ���� Each step in the 

procedure is an explicit calculation.  

2.2.1.1 Interval halving root finding technique 

The interval halving method begins by localizing the root between two limits. For a 

function ��V� shown in Fig.6, the root a3 lies between a1 and b1. The midpoint of ;� and 

<�, <� is evaluated. Since ��;�� and ��<�� are of opposite signs, the root is now 

bracketed between these two limits. The process of midpoint calculation of the limits and 

bracketing the root continues until the interval size reduces to the desired limit. 

 

 

 

 

 

 



 

 

Figure 6: Interval Halving 

(Note: the notations, a1, a

Model (Eq. 2)). 

 For the titration process, 

search variable, and the function

between  f  vs. pHg for a given set of parameter values and volume is shown in Fig. 7.

23 
 

Figure 6: Interval Halving Method (Reproduced from [12]) 

, a2, a3, b1, b2,  do not correspond to the parameters of the Linear 

For the titration process, the interval halving method is applied with 

search variable, and the function  f defined as  f = (x + y) - (xc+ yc). A typical relation 

for a given set of parameter values and volume is shown in Fig. 7.

 

 

do not correspond to the parameters of the Linear 

the interval halving method is applied with pHg as the 

A typical relation 

for a given set of parameter values and volume is shown in Fig. 7. 
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Figure 7: ¤ ¥¦. §¨© – Titration experiment 

Since the nominal pH of any substance lies between 0 and 14, these are chosen are the 

minimum and maximum bounds. Subsequent reductions in the interval size based on the 

interval halving method were continued for twenty iterations, i.e., until the interval size 

reduces to an order of 10-5.  �ª;g�« �  �∆�� ����M � �14 K 0��0.5��� � 1.3� K 5� 

2.2.1.2 Data generation 

The experimental data were generated by adding uncertainties to the nominal values 

of the input and output variables. The uncertainties were presumed to follow Gaussian 

distributions, a standard statistical assumption [13].  

A Gaussian distribution, also called the normal distribution is a continuous 

probability distribution of random variables and depicts a bell shaped pattern, symmetric 

on either side as shown in Fig. 8. 
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Figure 

It is a plot of the random variable vs. their corresponding probability density function 

values (φ) calculated as [11]

                                              

and is characterized by the mean 

average value of the distribution and the v

distribution, the higher the variance, the more dispersed the distribution.

with µ = 0 and σ = 1 is called 

A Normal Independent Distribution (NID), that is a normal distribution where each 

individual observation is independent of the other, with a mean of zero and standard 
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Figure 8: Normal distribution (Reproduced from [11]) 

It is a plot of the random variable vs. their corresponding probability density function 

) calculated as [11] 

                                                                              

is characterized by the mean (µ) and the variance (σ2). The mean represents the 

average value of the distribution and the variance indicates the dispersion of the 

distribution, the higher the variance, the more dispersed the distribution. 

is called the standard normal distribution. 

A Normal Independent Distribution (NID), that is a normal distribution where each 

individual observation is independent of the other, with a mean of zero and standard 

 

It is a plot of the random variable vs. their corresponding probability density function 

                                (49) 

The mean represents the 

ariance indicates the dispersion of the 

  The distribution 

A Normal Independent Distribution (NID), that is a normal distribution where each 

individual observation is independent of the other, with a mean of zero and standard 
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deviation of σ, is represented as NID(0, σ), and is a practical approximation to uncertainty 

associated with experimental measurements [2]. In Microsoft Visual Basic the noise can 

be approximated to NID(0, �) through the following expression [3] 

            =��
« � � Q T¯b�K2 °  ±���ªgX����  °  T�g�2 °  3.14159 °  ªgX���          (50) 

The noise level can be varied by varying the magnitude of the � value.  

Fig. 9 shows a typical comparison of the actual data of the process with the apparent data 

known to us for  �� � �� � 0.25. 

 

Figure 9: Apparent vs. actual data – Titration experiment 

The actual data in the figure represents idealized data, the input and output values after, 

and before, the addition of their respective noises, or in other words, the true data fed 

into, and obtained from the process simulator. The apparent data represents the input and 
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output values before and after the addition of their respective noises, that is, the data 

evident to us. 

The data generation process can be summarized as shown in Fig. 10.  

 

 

 

 

 

 

 

Figure 10: Data Generation – Titration experiment 

The initial acid concentration ���� and the ��� value of the acid were chosen as the 

regression parameters to be estimated. Since ��� �  K log�� ��, a small change in ��� 

effects the dissociation constant ���� by several orders of magnitude and has a 

significant impact on the shape of the pH curve. The experimental data pairs i.e., the 

input-output readings were chosen to lie along, or close to the steep part of the curve as 

shown in Fig. 11 to ensure nonlinearly in the regression process. Heuristically, a 

minimum of three experimental data pairs are required per regression parameter. Hence, 

eight experimental data pairs were taken to determine the two model parameter values.  
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              Figure 11: A typical pH curve for regression 

For each set of experimental data, the parameter values were estimated by each of the 

three methods (vertical distance, normal distance, maximum likelihood). The process was 

repeated for different realizations of the eight-pair sets of data for a thousand trials, and 

the mean and the standard deviation of the distribution of the parameter values obtained 

by each of the method provided data for the comparison of the regression methods. The 

closer the mean to the true parameter value (accuracy) and lower the standard deviation 

(consistency), the better the method.  
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2.2.2 PACKED BED REACTOR  

To illustrate chemical engineering applications of regression techniques, a packed bed 

reactor model was chosen. Packed bed reactors are a classification of a more generic type 

of continuous tubular flow reactors, called the plug flow reactors. They find important 

applications in catalytic processes, predominant in chemical industries.  

For the simulation, a prototype chemical reaction with the kinetics defined as 

¸;� � ¹  ª 

�Kb��  �  ��«�º/�>��1 6 ����  

(51) 

was chosen, where �� ����{/±-
� denotes the pre-exponential reaction rate coefficient,         

�� �±/���{� - the mass transfer coefficient, �� ����{/{��� - the outlet concentration,     

� ��I/���{� - the activation energy of the reaction, ª ��I/���{-�� – the gas constant, 

and � ��� – the reactor temperature. The reaction was presumed to take place under 

isothermal conditions following Hougan- Watson kinetics with the deactivation rate of 

the catalyst safely ignored. The contents within the reactor were assumed to be at steady 

state, following plug flow conditions. 

The reactor model was derived through a mole balance on an elemental section of the 

reactor and integrating it over the entire length of the reactor.  
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For the reactor shown in Fig. 12, applying the mole balance about the element », 

¼                   ½�|¿ K  ¼½�|¿9À¿ K  Á�KrÃ� dV �  X=�X�       ���{«
/
«¸� 

(52) 
At steady state,  X=�X� � 0 

(53) 

Hence,        ¼½�|¿ K  ¼½�|¿9À¿ K  Æ�KrÃ� �πr�� dZ �  0         

(54) 

Differentiating w. r. t », 
 X½�X» �  �KrÃ� �πr�� 

(55) 

Substituting ½�  �  ���, where � is the volumetric flowrate, and the rate equation  

(Eq. 51)  

� X��X» �  É��«�º/�>��1 6 ���� Ê �πr�� 

(56) 

Integrating over the entire length of the reactor, ±, 

Á 1
Ë��«� º�>��1 6 ���� Ì

ÍÎ
ÍCÏ

X�� �   �πr��� Á dZÐ
�  

(57) 

½�CÏ

'»
½�Î 

Figure 12: Packed bed reactor 
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Á ^1 6 ������ ` ÍÎ
ÍCÏ

X�� �   �πr��� ���«� º�>� Á dZÐ
�  

(58) 

����1v K ��� 6 ln ^�1v�� ` � ���� «�º/�> 

(59) 

Eq. (59) was the reactor model used in the simulation. The volume of the reactor, �, was 

assigned a value of 1000 mL. The inlet concentration, �1v, the volumetric flowrate, �, and 

the reactor temperature, � were chosen as the input variables. The outlet 

concentration ���� was the output variable. Reaction kinetic coefficients ��, �� and � 

were chosen as the regression parameters.  

2.2.2.1 Output variable evaluation  

The reactor model is an implicit equation and hence, the evaluation of outlet 

concentration for given input variables and model parameter values, requires the 

application of numerical root finding techniques. The Newton Raphson method was 

chosen, for the reasons explained below.  

2.2.2.1.1 Newton-Raphson method 

The Newton-Raphson method is based on linear approximation of small segments of a 

function to evaluate tangents that guide towards the root.  
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 Figure 13: Newton-Raphson method (Reproduced from [14]) 

For the function shown in Fig. 13, the method is begun by initializing a guess, Vv, chosen 

such that successive values of ‘V’ progressively descend towards the root. At Vv, the 

function is linearly approximated by a tangent through the Taylors series expansion until 

the first derivative as 

                                       ��Vv9�� �  ��Vv� 6  �Vv9� K  Vv� Q �Ñ�Vv�                            (60) 

The tangent is extended until it intersects the independent variable axis, and the point of 

intersection is the new guess.  

Hence from Eq. 60,  

                                                              ��Vv9�� � 0                                                      (61) 

Vv9� �  Vv K ��Vv��Ñ�Vv� 

(62) 
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Eq. (62) is an iterative formula used to evaluate subsequent guesses by constantly 

updating the Vvvalue with the previous guesses. The process is repeated until  

|Vv9� K  Vv| reduces to the desired extent. 

An analogous plot of � 	
. �� for the packed bed reactor simulation, where � is written as 

� �  ����1v K ��� 6 ln ^�1v�� ` K ���� «�º/�> 

(63) 

reveals a linear nature as shown in Fig. 14 

 

Figure 14: f vs. C0 – Packed bed reactor simulation 

Hence, the Newton-Raphson method, which is based on the linear approximation of a 

function, converges fast to the desired root. 
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The Newton-Raphson method was applied with the inlet concentration value as the initial 

guess and the method was continued until the absolute value of the difference of the 

subsequent guesses of �� was less than 10���. The central finite method was applied to 

evaluate the derivatives. A flowchart of the method is shown in Fig 15.  

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

  

Fig. 15: Newton Raphson flowchart 

�����1�� �  ����1v K ��� 6 ln ^�1v�� ` K ���½ «�º/�> 
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2.2.2.2 Experimental data  

The input values to generate experimental data for the packed bed reactor simulation 

were chosen in accord with the standard ‘Design of Experiments’ (DOE) procedure. That 

is, the repeated measurements of the input and output variables under similar conditions, 

to ensure accuracy. A typical plot for the inlet and outlet concentrations of the 

experimental data is shown in Fig.16. 

 

Figure 16: A typical inlet vs. outlet concentration plot for the PBR simulation 

The DOE however, with the input values not spread out over the entire range, and 

confined to certain fixed values, does not provide a good data set as the data pattern along 

the unspecified region is unknown. But since practical experiments conform to the DOE 

procedure for the ease of measurements, this was adopted. 
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The experimental data were generated in a similar fashion as the titration experiment. 

Fig. 17 summarizes the data generation process.  

 
 

 

 

 

 

 

Figure 17: Data generation – Packed bed reactor 

The uncertainty values for the input and output variables, for both the titration and the 

packed bed reactor simulation, were decided based on practical guesses of what the 

maximum error associated with each of the variables possibly could be. 

For instance, if the maximum error in concentration measurement is presumed to be 

0.5���{/{��, and the certainty of getting this as the maximum value is 99% of the total 

measurements, then from the normal distribution plot shown in the Fig.18, 3� would 

approximately correspond to �34.1 6  13.6 6  2.1� ° 2 � 99.7% of the range, hence 

approximating 0.5���{/{�� to 3�, we get σ = 0.5/3 = 0.167 

Model ���, ��, �� 
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Figure 18: Normal distribution 

The parameter values were estimated by all the three regression methods 

uncertainty levels in the input and output variables. The results were analyzed on the 

basis of the mean and the standard deviation of the parameter values for a thousand trials.  
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Normal distribution – Standard deviation and Confidence intervals

(Reproduced from [11]) 

 
The parameter values were estimated by all the three regression methods 

uncertainty levels in the input and output variables. The results were analyzed on the 

basis of the mean and the standard deviation of the parameter values for a thousand trials.  

 

 
Standard deviation and Confidence intervals 

The parameter values were estimated by all the three regression methods for varying 

uncertainty levels in the input and output variables. The results were analyzed on the 

basis of the mean and the standard deviation of the parameter values for a thousand trials.   



2.3.1 VERTICAL DISTANCE 

The vertical distance method assumes that the uncertainty in an experimental reading 

is only through the output measurements and no error exits in the input readings. That is, 

the apparent input measurements are presumed to be true values inputted to the p

(or simulator for this study) and the only uncertainty that exits through the output 

measurements are minimized through vertical distances. Hence, theoretically this method 

holds good only when σx 

Fig. 19 illustrates the vertical distance method for a nonlinear process. The points A, B, 

and C denote three experimental data pairs, and the corresponding points on the model 

curve shown by the dotted line are the model predictions vertically closest to 
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2.3 REGRESSION METHODS 

ERTICAL DISTANCE METHOD  

The vertical distance method assumes that the uncertainty in an experimental reading 

is only through the output measurements and no error exits in the input readings. That is, 

the apparent input measurements are presumed to be true values inputted to the p

(or simulator for this study) and the only uncertainty that exits through the output 

measurements are minimized through vertical distances. Hence, theoretically this method 

 is negligible compared to σy. 

 

              Figure 19: Vertical distance method 

Fig. 19 illustrates the vertical distance method for a nonlinear process. The points A, B, 

and C denote three experimental data pairs, and the corresponding points on the model 

curve shown by the dotted line are the model predictions vertically closest to 

The vertical distance method assumes that the uncertainty in an experimental reading 

is only through the output measurements and no error exits in the input readings. That is, 

the apparent input measurements are presumed to be true values inputted to the process 

(or simulator for this study) and the only uncertainty that exits through the output 

measurements are minimized through vertical distances. Hence, theoretically this method 

Fig. 19 illustrates the vertical distance method for a nonlinear process. The points A, B, 

and C denote three experimental data pairs, and the corresponding points on the model 

curve shown by the dotted line are the model predictions vertically closest to A, B, and C 
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respectively. 

2.3.2 MAXIMUM L IKELIHOOD METHOD  

The maximum likelihood method maximizes the combined likelihood of the 

experimental data points.  

Consider an experimental data pair. Due to uncertainty in the measurements, the 

value inputted to the process and the output recorded for different trials would be 

different. Depending upon the uncertainty associated, the experimental data pair may lie 

anywhere within a certain space as explained earlier (refer Fig.1). However if the 

measurements are repeated several times, the probability of the average being close to the 

true data pair increases, and the distribution of the input and output measurements, or the 

uncertainty associated with the measurements, follows a normal distribution, and as 

discussed earlier, a normal independent distribution where many, small, independent 

effects contribute to each observation, holds good in the case of uncertainties.  

For an uncertainty of NID �0, ��� in the input, and NID �0, ��� in the output values, 

Fig. 20a depicts the possible Gaussian distribution of the input and output values. 

 

 

 

 

 



(a) 

Figure 20: Likelihood contours 

The central point in the figure is the combination of the most probable input and 

output values.  The joint probability, likelihood contours corresponding to the input and 

output distribution are shown in Fig. 20b. Depending upon the standard deviation fro

the central point, the contours increase in size, the larger ones corresponding to higher 

multiples of σx and σy. They are shown vertically ellipsoidal indicating the uncertainty in 

the output values is greater than the uncertainty in the input values. I

the input and output values are the same, then the contours would be circular. 

Each contour has a probability value associated to it. The closer the contour to the 

most probable point, the higher the probability. The most probable p

unknowable but repeated measurements of the data pair ascertains the proximity to it. 

The maximum likelihood approach tries to fit the curve trying to maximize the combined 

probability of the all the data points as shown in Fig. 21. 
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                                                                        (b) 

Figure 20: Likelihood contours - Maximum likelihood approach 
[3]

The central point in the figure is the combination of the most probable input and 

output values.  The joint probability, likelihood contours corresponding to the input and 

output distribution are shown in Fig. 20b. Depending upon the standard deviation fro

the central point, the contours increase in size, the larger ones corresponding to higher 

. They are shown vertically ellipsoidal indicating the uncertainty in 

the output values is greater than the uncertainty in the input values. If the uncertainties in 

the input and output values are the same, then the contours would be circular. 

Each contour has a probability value associated to it. The closer the contour to the 

most probable point, the higher the probability. The most probable point however is 

unknowable but repeated measurements of the data pair ascertains the proximity to it. 

The maximum likelihood approach tries to fit the curve trying to maximize the combined 

probability of the all the data points as shown in Fig. 21.  

 

[3]
 

The central point in the figure is the combination of the most probable input and 

output values.  The joint probability, likelihood contours corresponding to the input and 

output distribution are shown in Fig. 20b. Depending upon the standard deviation from 

the central point, the contours increase in size, the larger ones corresponding to higher 

. They are shown vertically ellipsoidal indicating the uncertainty in 

f the uncertainties in 

the input and output values are the same, then the contours would be circular.  

Each contour has a probability value associated to it. The closer the contour to the 

oint however is 

unknowable but repeated measurements of the data pair ascertains the proximity to it. 

The maximum likelihood approach tries to fit the curve trying to maximize the combined 



The point origin of each concentric set of likelihood contours shown in the figure 

represents the experimental data pair. That is, the experimental data pair is considered as 

the most probable point. This is not

repeated measurements, this is a reasonable assumption. The maximum likelihood 

method adjusts the model parameter values such that a point on the model curve 

maximizes the likelihood of proximity to the e

model curve lies at the seat of the contour just touching the model curve shown by the 

dotted line, further elaborated in Fig. 22. 
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Figure 21: Maximum likelihood regression 

[3]
 

The point origin of each concentric set of likelihood contours shown in the figure 

represents the experimental data pair. That is, the experimental data pair is considered as 

the most probable point. This is not necessarily true, but due to its limited number of 

repeated measurements, this is a reasonable assumption. The maximum likelihood 

method adjusts the model parameter values such that a point on the model curve 

maximizes the likelihood of proximity to the experimental data set. The point on the 

model curve lies at the seat of the contour just touching the model curve shown by the 

dotted line, further elaborated in Fig. 22.  

The point origin of each concentric set of likelihood contours shown in the figure 

represents the experimental data pair. That is, the experimental data pair is considered as 

necessarily true, but due to its limited number of 

repeated measurements, this is a reasonable assumption. The maximum likelihood 

method adjusts the model parameter values such that a point on the model curve 

xperimental data set. The point on the 

model curve lies at the seat of the contour just touching the model curve shown by the 
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           Figure 22: Maximum likelihood regression 

Point ‘A’ in the above figure represents an experimental data pair and is the origin for the 

series of ellipsoidal contours emanating from it. Any point along a contour has the same 

likelihood probability value. The contours are continuous in space, in a sense that there 

exist several other contours with different probability values within the gap between two 

illustrated contours, and depending upon the parameter values, the model curve touches 

different contours with the model data pair, ‘B’ lying at the point of tangency to a 

contour.  

The probability values for the likelihood contours are calculated as 

                                  Û��1, �1� � ��ÜÝÞÝß «�àá4 ^âC�â] CãÞ `á 9^äC�ä]Cãß `á 5                                 (64) 

where ��1, �1� is the experimental data pair and ��a1, �a1� is the model predicted data pair.  

The maximum likelihood method tries to maximize the joint probability of all the 

experimental data points, i.e., 
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maxå:æ, äæç I �  è Û��1, �1�M
1N� �  è  12é���� «���4 ^:C�:aCÝÞ `á 9^UC�UaCÝß `á 5  M

1N�  

(65) 

This is the same as minimizing the negative of the index in the exponent term, i.e., 

minå:æ, äæç I �  J É�1 K �a1�� Ê� 6 É�1 K �a1�� Ê� M
1N�  

(66) 
 

The term, �:C�:aCÝÞ �� 6 ^UC�UaCÝß `� 
 basically defines the shape of the contours. If �� u  ��, it 

represents the equation of an ellipse, and hence the contours are ellipsoidal. If �� �  ��, it 

represents circular contours, and the objective function reduces to 

minå:æ, äæç I �  JO�1 K �a1R� 6 O�1 K �a1R� M
1N�  

(67) 
which basically is minimizing the sum of ordinary distances. 

2.3.2.1 Circular contours 

When �� �  ��, the contours are a set of concentric circles. Any model prediction 

would lie on a circle, distanced from the experimental pair by the radius. 
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Figure 23: Circular contours – Maximum likelihood regression 

For the contours shown in Fig. 23, for an experimental data pair, ‘�’, the model curve 

locates a corresponding prediction ‘�’, along the contour. Since concentric circles do not 

intersect (a fundamental property of circles), depending upon the probability values, the 

model pair would lie along different contours, with the radius of circle being the shortest 

distance. It is also known that the tangent to any circle is perpendicular to the radius. So a 

tangent at the model prediction is perpendicular to the distance between the experimental 

and model data pairs, or the distance between an experimental pair and the corresponding 

model prediction along the presumed model curve is the perpendicular distance, with the 

model prediction being the foot of the perpendicular to the experimental data pair.  

  Hence when �� �  ��, maximizing the likelihood contour probability is the same 

as minimizing the perpendicular or the ordinary distances from the experimental points. 

The point obtained by minimizing ordinary distances is the same as that obtained by 

minimizing normal distances has also been cited in [4], but for linear regression. The 

same can also be extended for nonlinear models through the above discussion. This 
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A



however, is a logical argument and not a mathematical proof.

The maximum likelihood approach, however, requires information on the input and 

output variances, often not available. If an estimate of 

through propagation of uncertainty principles that follows.

2.3.2.2 Propagation of uncertainty

If Y = f(X) relates the input (X) and output (Y) of a particular process, any error in the 

input variable will propagate a corresponding error in the output variable depending upon 

the slope of the curve at that input value.

As shown in the curve above, if 

may lie anywhere between 

and Y2. The interval range between 
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however, is a logical argument and not a mathematical proof. 

The maximum likelihood approach, however, requires information on the input and 

output variances, often not available. If an estimate of σx is available, σy can be evaluated 

through propagation of uncertainty principles that follows. 

uncertainty 

relates the input (X) and output (Y) of a particular process, any error in the 

input variable will propagate a corresponding error in the output variable depending upon 

the slope of the curve at that input value. 

 
Figure 24: Error Propagation 

[3]
 

As shown in the curve above, if ∆x is the maximum possible error in the input, the value 

may lie anywhere between X1 and X2, and correspondingly the output may lie between 

. The interval range between X1 and X2, Y1 and Y2 are denoted by ∆

The maximum likelihood approach, however, requires information on the input and 

can be evaluated 

relates the input (X) and output (Y) of a particular process, any error in the 

input variable will propagate a corresponding error in the output variable depending upon 

 

is the maximum possible error in the input, the value 

, and correspondingly the output may lie between Y1 

∆X and ∆Y 
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respectively. 

If '� is small, such that the curve may be linearly approximated within that region, then, 

                                           |'�| �  ê ¼̂ë�ë�ì:Î`ê Q |'�|                                               (68)    

Eliminating the absolute values by squaring on both sides gives      

                                       
'�� �  É¼.W.Vê:ÎÊ� Q '�� 

                                               (69)    

Although the rigorous derivation is complicated, the variances in the input and output 

value are related in a similar way as above. Hence for an uncertainty of �� in the input 

variable, the uncertainty propagated in the output variable ��� is given by 

���� �  É¼.W.Vê:ÎÊ� Q ��� 

                                               (70)    

The slope can be approximated through the central finite difference method as 

¼.W.Vê:Î �  ���� 6  @V� K  ���� K  @V�2�@V�  

                                               (71)    

where @V  is a small change in the input variable. 

Since there also exists inherent uncertainty in the measurement of the output variable, the 

total uncertainty in the output value ���³� is the sum of the uncertainty propagated due to 

error in the input measurement ���� and uncertainty in the output measurement ���y�, 

i.e., 
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��³� �  ��y�  6  É¼.W.Vê:ÎÊ� Q ��� 

                                               (72)    

The total uncertainty in the output variable can be evaluated by calculating the standard 

deviation of repeated output measurements at constant input conditions. Hence the 

inherent uncertainty in output measurements can be estimated as  

��y� �  ��³� K  É¼.W.Vê:ÎÊ� Q ��� 

                                               (73)    

Note: ��y is the same as �� designated earlier. 

For the titration experiment, �� can be estimated through the manufacturer’s tolerances 

data, the maximum possible error through an equipment under normal conditions of 

operation, standard for the different types and sizes of volumetric equipments used.  

The procedure for determining the inherent uncertainty in the output measurements for 

known uncertainty in the input measurements is outlined as follows 

1. Conduct the experiment several times at constant input conditions ����, to obtain a 

set of output measurements. The standard deviation of the output measurements gives 

��³. 
2. Repeat the experiment at different input conditions and obtain the standard deviations 

for the each corresponding set of output measurements. 

3. To evaluate the slope of the function at a given input condition, ��, an estimate of the 

model parameter value is required to define the function over the entire range of input 

values.  To do so, each set of output measurements is averaged and the model 
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parameter values are estimated for the input vs. the averaged output measurements 

through the vertical or the normal distance method. The slope can be then be 

evaluated using the central finite difference formula given by Eq. (71) 

4. Once the slopes are known, the output uncertainty for each corresponding input 

measurement can be evaluated through Eq. (73) 

The number of repeated output measurements required however cannot be determined. 

The greater the number of repetitions, the more accurate the estimates would be.  
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3. EXPERIMENTAL 

3.1 TITRATION 

3.1.1 DATA GENERATION  

The experimental data were generated through the simulator which calculates the pH 

of a weak acid for a given volume of strong base added. The pH values were obtained 

through the interval halving method based on Eqs. (33) through (48). 

3.1.2 REGRESSION  

 The parameters, �� and ��� were estimated by the vertical distance method, the 

normal distance method and the maximum likelihood method. The estimation process 

involves optimizing the parameter values by minimizing the objective function. This is a 

two stage nested procedure. The parameters are optimized through a two-dimension 

search logic based on the objective function values and the ones that yield the least 

objective function value are the required estimates. The objective function for the vertical 

distance method is a straight forward evaluation of vertical distances based on the 

parameter values, but is a one-dimensional line search along the input variable for the 

normal distance and the maximum likelihood method for a given set of parameter values. 

The optimization statement may hence be written as 
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min��Î,� ¡!  I �  J I1  M
1N�  

(74) min�íî] !  I1 � X1� 

(75) 

                                             T. �      �
L\ � ���L], �� , ����                                              (76) 

Eq. (74) denotes the two-dimensional search process along �� and ���to find the least 

objective function value. The objective function, I is the sum of the least individual 

objective function values (I1� for each experimental data pair. Based on the parameters 

�� and ���, a line search along �1 establishes the I1 values for the normal distance and 

the maximum likelihood methods (Eq. 75). For the vertical distance method, as discussed 

earlier, the objective function evaluation does not require a line search as the model and 

the experimental input volumes are the same (�1 �  �a1�. The pH values for each model 

data pair, ��
\ 1�, for all the methods, are evaluated based on the parameter values at a 

given model volume, �a1 (Eq. 76).   

Various methods are available for optimizing the parameter values. Gradient based 

methods like the Cauchy’s steepest descent, Newton-Raphson, Levenberg Marquardt, 

successive quadratic, etc. require the knowledge of function derivatives and fail at 

function discontinuities. Direct search methods like the R3 cyclic method [3], Hooke-

Jeeves, Nelder-Mead, etc., however, optimize based on function evaluations and are more 

robust. The R3 cyclic method was chosen for its simplicity and versatility. It, in many 

cases, requires the least number of function evaluations among all the direct search 

methods which adds to its advantages.  



3.1.2.1 R3 Cyclic Direct Search Method

The direct search method is an alternating search along the decision variable with 

steps of varying magnitude directed towards the optimum. The steps sizes are increased 

by an expansion factor when the objective function moves towards the desired optimum, 

and decreased by a contraction factor when the objective function moves away from the 

optimum. The expansion and contraction factors are used for the purpose of speeding up 

the search process once the right direction is found. 

Consider a one-dimension dir

Fig. 25.  

                        

For a random start at point 1, a step change of certain magnitude is made in the value 

of the decision variable, ‘

the value at 1, the subsequent step size is increased by an expansion factor of 1.25. The 

process is continued until point 6 as the objective function value continues to decrease. A 

further increase in the step size leads to point 7 where the objective function value is 
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Cyclic Direct Search Method 

The direct search method is an alternating search along the decision variable with 

steps of varying magnitude directed towards the optimum. The steps sizes are increased 

by an expansion factor when the objective function moves towards the desired optimum, 

and decreased by a contraction factor when the objective function moves away from the 

optimum. The expansion and contraction factors are used for the purpose of speeding up 

the search process once the right direction is found.  

dimension direct search to find the minimum of the objective shown in 

                        Figure 25: R
3
 direct search – one dimensional 

[3]
 

For a random start at point 1, a step change of certain magnitude is made in the value 

‘x’. Since the objective function value at point 2 is lower than 

the value at 1, the subsequent step size is increased by an expansion factor of 1.25. The 

process is continued until point 6 as the objective function value continues to decrease. A 

ncrease in the step size leads to point 7 where the objective function value is 

Decision variable, x

2
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4
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8 910
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The direct search method is an alternating search along the decision variable with 

steps of varying magnitude directed towards the optimum. The steps sizes are increased 

by an expansion factor when the objective function moves towards the desired optimum, 

and decreased by a contraction factor when the objective function moves away from the 

optimum. The expansion and contraction factors are used for the purpose of speeding up 

ect search to find the minimum of the objective shown in 

 

For a random start at point 1, a step change of certain magnitude is made in the value 

’. Since the objective function value at point 2 is lower than 

the value at 1, the subsequent step size is increased by an expansion factor of 1.25. The 

process is continued until point 6 as the objective function value continues to decrease. A 

ncrease in the step size leads to point 7 where the objective function value is 
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greater than the previous value. The trial solution is hence returned to point 6 and then 

proceeds in the opposite direction to point 8 with a decreased step size due to contraction 

factor. The objective function at 8 however, is still higher than the value at 6, and so the 

trial solution is again returned to the historical best value at 6 and the next step proceeds 

in the opposite direction with a further reduced step size to point 9. The step size 

continues to reduce upon each reversal of the search direction and finally reduces to an 

extent such that, its value, and the change in objective function due to step changes, 

become insignificant and the search process is stopped.  

The cyclic direct search can also be used for functions with more than one decision 

variable. The direct search steps are cycled individually between the decision variables 

after a step change in each of the decision variables, and their respective moves for the 

next iteration is decided. The search logic for a two-dimensional optimization problem is 

illustrated in Fig. 26. 
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Figure 26: R

3
 direct search – two dimensional 

[3]
 

The graph in Fig. 26 is a two-dimensional contour plot of a function vs. its decision 

variables. The objective is to find the minimum of the function which lies at the center 

trough. The search process is begun at a random point in the space, shown by a round 

marker here at around (2.75, 2). For a change in DV 1 by a magnitude of 0.5, the function 

value was found to be lower and hence the subsequent change in DV 1 would be 

multiplied by an expansion factor of magnitude 1.25, i.e., the subsequent change in DV 1 

would be  0.5 * 1.25 = 0.625. Similarly DV 2 was incremented by a magnitude of 0.5 and 

the function value was found to be lower, the subsequent change would be 0.625. The 

initial magnitudes for the change in the DV’s are usually a certain percent of their actual 

values. The initial changes in DV 1 and 2 complete the first iteration. The small diamond 

shaped markers shown along the DV path mark the end of each iteration. The changes in 
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DV 1 and 2 for the second iteration, as can be seen from the plot, are greater than the first 

iteration. For the third iteration, the increment in DV 2 caused the function to be higher 

than its previous value and hence the change was reversed and the subsequent change in 

DV 2 would be decremented by contraction factor of 0.75. The process of alternatively 

incrementing or decrementing the decision variables continues until the stopping criteria 

on the total number of iterations is affected. Other stopping criteria like the threshold 

limit on the absolute or relative change in the objective function value or the decision 

variables, the Rhinehart steady state stopping criteria [15, 16] etc. can also be 

implemented. 

The search logic for the titration process involves optimization of the parameter 

values ���, ���� by minimizing the objective function corresponding to the regression 

technique chosen. In order to ensure that the search logic is robust, the parameters were 

initialized with random guesses deviating around 100% from the true values. The step 

increments for the parameters were begun with 10% of their initial value, and an 

expansion and a contraction factor of 1.25 and 0.75 respectively were chosen. The 

stopping criteria on the change in objective function and the step increments in the 

decision variables to the order of 10-10 were chosen such that it does not affect the search 

process. The veracity of the algorithm was verified by running the simulator to generate 

data with no uncertainty to it, and the parameter estimates by either of the methods 

should yield the actual values. 

For each realization (a set of experimental data) the parameter values were estimated 

by all the three regression methods. In order to ensure the search logic does not create a 

bias for any of the regression techniques, the optimization algorithm was maintained 
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exactly the same for all the three regression techniques including the initialization and the 

stopping criteria. The objective function evaluation (described in the next section), 

however, differs for each of the methods. The algorithm and the flowchart of the R3 

cyclic direct search method for the titration process are explained as follows. 

Algorithm : 

Initialization :  

1. Guess � �12� �  ^ �����` 

2. Calculate the objective function, I�.  I�  �  I� 

3. Initialize ∆X, expansion and contraction factor, � � 1.  � ï », ð » � 41, 25   
Search Logic: 

4. ���� �  ���� 6  '���� 

5. Calculate I� � ����, ��� 

6. If I�  �  I�, then I� �  I� 

  '����  �  '����  °  �V�. �;¸��b 

 Else, 

  ���� �  ����  K '���� 

  '���� �  K '���� °  Íñv³.  ò�x³ñ´º��.  ò�x³ñ´  

 End if 

Stopping Criteria: 

7. If �|�I� K  I��| � 10���� & �|�'��| � 10���� �ô«g,  
  Exit Loop 

     Else 

  I�  �  I� 

     End if 

Note:  I� = the least objective function value at the time of reading I�= the current objective function value at the time of reading I� = the initial objective function value before starting a new iteration 

=«V� � 
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Fig. 27: Flowchart - R
3
 cyclic direct search for 

titration parameter optimization 
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3.1.2.2 Objective function evaluation 

This section explains the objective function evaluation (Eq. 75 & 76) for the three 

regression methods. 

3.1.2.2.1 Least squares regression – Vertical distances 

The objective function for the least squares regression is evaluated by calculating the 

output variable for a given set of parameter values, with the input variable as the same as 

that of the experimental data, and hence calculating the vertical distances.  The sum of all 

the vertical distances gives the required objective function. The algorithm for the titration 

process can be explained through a flowchart as shown below. 

  

Fig. 28: Flow chart – Vertical distance objective 

function evaluation 
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3.1.2.2.2 Maximum likelihood and Normal distances 

The objective function evaluation for the normal distance and the maximum 

likelihood method is a one-dimensional optimization problem. For a given experimental 

data pair, a line search is required along the volume to find the corresponding model data 

pair that best minimizes the objective function. Several methods like the successive 

quadratic, golden section, Newton-Raphson, and the marching method can be 

implemented for this purpose.  

For the golden section method, based on the experimental data, the minimum and 

maximum bounds on the volume of base added for each model data pair can be 

established as a certain percentage of the least and the highest experimental volume, say 

90 and 110% respectively, making its applicability possible. The Newton-Raphson 

method and the marching method require just one initial guess to start the search process, 

but the Newton-Raphson method involves evaluation of derivatives which is not always 

convenient (The marching method is an exhaustive search for the optimum through small 

step increments along the decision variable).The successive quadratic method can also be 

implemented, but it requires three initial guesses. Hence, the marching method is the 

easiest to implement. However, while conceptually simple, the marching method, due to 

large number of function evaluations, slows down the search process considerably. The 

golden section search, alternatively, with its ability to discard about 38% of the range per 

iteration, can be used for faster convergence to the desired optimum. This work uses the 

golden section search.  
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3.1.2.2.2.1 Golden Section Search 

 If a line segment is split in a way such that the ratio of the smaller segment to the larger 

segment is equal to the ratio of the larger segment to the length of the line, then the ratio is 

called the golden ratio and has a numerical value of 0.61803398... 

 

;<  � <; 6 <  �  8 

                                                     �ô«g 8 � 0.61803398 …                                          (77) 

The numerical value for 8 can be obtained as follows: 

Modifying Eq. (77) gives 

�;<�� 6 ;< K 1 � 0 

(78) 

Eq. (78) is a quadratic in ;/< and can be solved for the roots as 

;<  � K1 ?  √5 2   
(79) ;/< represents a ratio, and can take only positive values, which gives 

;< �  8 � 0.61803398 … 

(80) 

The golden section optimizes the objective function by successively narrowing down the 

line search range on the decision variable based on the golden ratio.  

 

 ;  < 



For the objective function shown above, the optimum is bound the two limits 

XH. The points XML and XMH

and (82), and since the value of the objective function at 

XMH, the minimum is now bound between 

                                         

                                  

The search range is now reduced by about 38.2%, and 

lower and upper limits, X

The process goes on until the range or the interval size reduces to the desired limit. 
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Figure 29: Golden section search 

For the objective function shown above, the optimum is bound the two limits 

MH are determined using the golden ratio as shown in Eqs. (81) 

and (82), and since the value of the objective function at XML is lower than the value at

, the minimum is now bound between XL and XMH.  

                                              XML = XL + (XH - XL) * (1- γ)                         

                                              XMH = XH - (XH - XL) * (1- γ)                          

The search range is now reduced by about 38.2%, and XL and XMH, are denoted as the 

XL and XH respectively, and the search process is again repeated. 

The process goes on until the range or the interval size reduces to the desired limit. 

Decision variable, X

XMHXML
XH

(XH - XL)*0.382H - XL)*0.382

 

For the objective function shown above, the optimum is bound the two limits XL and 

are determined using the golden ratio as shown in Eqs. (81) 

is lower than the value at 

                                     (81) 

                           (82) 

, are denoted as the 

respectively, and the search process is again repeated. 

The process goes on until the range or the interval size reduces to the desired limit.  

H
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It is important to note that the input and output variables need to be scaled while 

evaluating the normal distances or the maximum likelihood objective function. This 

ensures that the objective function is not biased towards any variable due to its magnitude 

which is simply a result of the choice of the units, and equal weightage is given to all the 

variables. For the titration experiment the variables were scaled between 0 and 1 through 

Eqs. (83) and (84) 

�Ò � ^ � K �y1v�y�� K  �y1v` 

(83) �
Ñ � ^ �
 K �
y1v�
y�� K  �
y1v` 

(84) 

where �y1v, �y��, �
y1v, �
y�� are the minimum and maximum experimental volumes 

and pHs.  

The scaled data was used for both the normal and the maximum likelihood methods. 

Accordingly, to proportionate the variances in the input and output variables, these were 

scaled as follows. 

 ��Ò � ^  ���y�� K  �y1v` 

(85) ��Ñ � ^ ���
y�� K  �
y1v` 

(86) 

The flowchart for the golden section search process for the maximum likelihood 

method is shown in Fig. 30. If  ��Ñ �  ��Ñ  then it represents the normal distance method. 
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Fig. 30:  Flow chart – Golden 

section search 
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3.2 PACKED BED REACTOR 

3.2.1 DATA GENERATION  

The data generation process is as described in Section 2.2.2.2. For a given set of input 

and the parameter values, the output values were obtained through the Newton Raphson 

root finding technique.   

3.2.2 REGRESSION  

Like the titration experiment, the regression parameter values for the packed bed model 

(��, ��, and �� were estimated by the vertical distance, the perpendicular distance and 

the maximum likelihood method. The optimization process is a two stage nested 

procedure involving the optimization of the parameter values through minimizing the 

objective function. The optimization statement can be written as 

min� Î, à,º!  I �  J I1  M
1N�  

 (87) minåÍîÏî�,·�C,>aCç I1 � X1� 

(88) 

                                             T. �        �L] � ���Lvî\ , ��1 , �a1, �� , ��;�                            (89) 

3.2.2.1 Parameter Optimization 

Eq. (87) denotes the three-dimensional search along the parameters, ��, ��, and �. The 

R3 cyclic direct search was used for this purpose. The parameters were initialized by 

random guesses deviating around 100% from the true values. The initial step increments 

were 10% of their starting values, and an expansion factor of 1.25 and a contraction 
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factor of 0.75 were chosen for the optimization algorithm. The parameter values were 

constrained between their individual nominal limits to avoid impractical values if the 

search direction followed the wrong path. This was done through a ‘soft constraint’ by 

adding a penalty to the objective function once the parameter values go beyond the 

nominal limits, thereby reversing the search direction. The penalty chosen was the square 

of the magnitude of deviation from the nominal limits. 

Ô� � � �v, �«g;{�W �  �� K �v�� 

                                               Ô� � � �v, �«g;{�W � 0                                          (90) 

The objective function hence would be:  I 6 �«g;{�W         (91) 

If more than one parameter deviated from the constrained limits, the greater of their 

deviations was added as the penalty. The penalty could be added in different ways 

depending upon the choice of the programmer.  

The stopping criteria for the optimization logic was to restrict the change in the objective 

function and the decision variables beyond a magnitude of 10-10. The optimization logic 

remained the same for all the three regression methods to avoid bias. 

Fig. 31 illustrates the flowchart for the optimization routine. The penalty is designated by 

‘Û’ in the flowchart.  
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Fig. 31: Flowchart - R
3
 cyclic direct search for PBR 

parameter optimization 
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3.2.2.2 Objective Function Evaluation 

Eq. (88) represents the three-dimensional search along the input variables, �LvL\ , �L� , 

and �L] , to evaluate the objective function for the normal distance and the maximum 

likelihood methods. Unlike the titration experiment, the golden section search, which is a 

one-dimensional search, cannot be used in this case. The R3 cyclic direct search, as 

discussed earlier, is well suited for multivariable searches, and was implemented again. 

The objective function evaluation flowchart for the above said methods is illustrated in 

Fig. 32. The input and output variables were scaled between 0 and 1. The variances were 

also proportioned by scaling them.  

The objective function was evaluated as   

I� � ËJ É���Ñ�Û� K �a�Ñ�Û���Ò �Û� Ê��

�N� Ì 6  É���Ñ��� K  ��\Ñ����ÍÎÒ ��� Ê�
 

(92) 

I �  J I�M
�N�  

(93) 

where ��Ñ represents the scaled input variables for the �³� measurement of the 

experimental data and �a�Ñ represents the corresponding scaled input variables for the 

model.  

��Ñ � 4�1Ñ���, �Ñ���, �Ñ���5>       (94) 

   ��Ñ�1� � �1Ñ���;   ��Ñ�2� � �Ñ���;   ��Ñ�3� � �Ñ���                 (95) 

When ��Ò �  �ÍÎÒ , the algorithm represents the normal distance method.
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Fig. 32: Flowchart - R
3
 cyclic direct search for PBR objective function optimization 

(Normal distance and Maximum likelihood method) 
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The objective function evaluation for the vertical distance method does not require the 

nested optimization search as the model input variables are the same as the experimental 

data, i.e., �Lvî\ � �1vC , ��1 � �1, �L] �  �1.  
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3.3 ASSUMPTIONS 

 Before proceeding further it is important to understand the assumptions that were 

involved in the above methods and their possible implications.  

1. Gaussian uncertainty 

 It was assumed that the experimental measurements, or more specifically the 

uncertainties associated with it, could be approximated by Gaussian distribution. This 

would imply that the variable would have to be measured several times for it to represent 

a Gaussian distribution. However, the actual requirement as pointed out in [13], is the 

assumption that the distribution of variable is symmetric. A Gaussian approximation may 

be used for this purpose but is not a necessity. 

 
2. No systematic uncertainty 

 Systematic errors are a characteristic of an experiment or the system involved in a 

process and cannot be generalized. The only possible way to account for systematic 

errors is to introduce additional terms in the model function that negates its deviation. 

Since systematic errors are specific to the process, any model modification for the 

simulation would be unrealistic and should be dealt when dealing with the actual process.  

 Systematic uncertainties require a non-Gaussian distribution with a non-zero 

mean [2]. Hence to avoid systematic uncertainties, a Gaussian distribution with a mean of 

zero was implemented.  
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3. Independent Measurements 

 The experimental uncertainties were assumed to be independent, and hence the 

Gaussian or the normal independent distribution. This is a standard assumption for 

statistical analysis [2]. 

 
4. The model approximation 

 The simulator that generates the experimental data uses the same model and 

procedure to calculate output values for the regression. Although it is unlikely that 

engineering models ever exactly express the natural phenomena of a process, this 

situation of functional identity between the simulator and model permits the evaluation of 

accuracy in regressed parameter values. 
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3.4 RESULTS ANALYSIS TECHNIQUES 

 The regression methods were tested for different conditions of input and output 

uncertainties ��� and ���, each for a thousand realizations, and the distribution of the 

parameter values including the mean and the standard deviation were evaluated. A large 

number of realizations ensured that the results reflected the average values and were 

unique to the regression method.  

 
Bias (or mean) and standard deviation: 

 The relative deviation of the mean from the true value of the parameter, also 

called the bias, should be small for a regression method to be “good”. For a parameter 

with true value 7, and 7|, its estimate from a particular method, [9] 

<�;
 �  
7| � K  77 
 
(96) 

7| � in the above equation denotes the mean of parameter estimates. The standard deviation 

of the distribution for the “good” method should also be lower. 

 
Frequency Distribution: 

Apart from the mean and standard deviation, the distributions of the parameters 

were analyzed by creating histograms. Typical distributions of the parameters for the 

titration experiment for the vertical and maximum likelihood methods with �� � 0.25,  

�� � 0.1 are shown in Fig. 33 (a and b).  
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Figure 33a: Typical �
 distribution for vertical and maximum likelihood method 

 
Figure 33b: Typical §�� distribution for vertical and maximum likelihood method 

 As can be seen from the figures, the maximum likelihood method yields a 

symmetric distribution, more like the normal distribution, with a lower variance 

compared to the vertical distance method. Additionally, the distributions of the parameter 

values for the vertical distance method do not specifically follow any conventional 
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pattern. Lower variance indicates better consistency of a method in predicting the 

parameter values.  

(Note: A comparison of all the three methods together in Fig. 33 obscures the distinction 

of the histograms corresponding to each of the method, hence only two were plotted). 

 
Probability of worse deviation: 

 A third test, the probabilities for obtaining parameter values beyond a certain 

deviation from the true value were evaluated for each of the methods by counting the 

number of times the parameter values exceed the required deviation limit. The lower the 

probability, the better the method. Typical probability plots for the titration experiment 

with �� � 0.25,  �� � 0.1 are shown in Fig. 34. 

 
Figure 34: Typical ‘probability of deviation from true value’ plots for �
 and §�� 

Fig. 34 depicts the probability of finding a parameter value at a certain deviation 

from the true value is always higher for the vertical distance method as compared to the 

other two methods, indicating its predictions are far worse than the other two methods. 

0

0.2

0.4

0.6

0.8

1

0 0.002 0.004 0.006 0.008 0.01

P
ro

b
a

b
il

it
y

A0 deviation from the true value

Vertical distance

Normal distance

Maximum likelihood

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

P
ro

b
a

b
il

it
y

pKa deviation from the true value

Vertical distance

Normal distance

Maximum Likelihood



74 
 

4. RESULTS & DISCUSSION 

The vertical distance, the normal distance, and the maximum likelihood methods 

were tested for varying magnitudes of uncertainty in the input and output variables. The 

magnitudes were basically decided through intuitive guesses on the possible errors 

associated with the variables, but were also considered beyond the typical limits to test 

the robustness of the method. 

4.1 TITRATION 

For the titration simulation, the apparent data range for the input variable, the volume 

of the base added, varied from 40.5�{ to 42.5�{. Assuming a maximum error in the 

volume measurement to be 0.75�{ (i.e., 37.5% of the range), with a probability of 99% 

would imply 3�� � 0.75�{ (Refer Fig. 18), or �� � 0.75/3 � 0.25�{. Extending the 

range beyond nominal limits, �� values were varied from 0.1�{ to 0.7�{. 
Similarly, the usual pH range for the apparent data varied from 6.5 to 11.5ùg��
. 

Assuming a maximum error of 1unit would imply 3�� � 1.0 or �� � 1.0/3 � 0.33ùg��
. 

Hence it was reasonable to vary �� value along the same range as ��, that is from 

0.1ùg��
 to 0.7ùg��
. 

The methods were tested basically for three cases 

i. �� < �� ii. �� = �� iii. �� > �� 

The true values for �� and ��� in all the cases were chosen as 0.5 and 5 respectively. 
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4.1.1 �� < �� 

Theoretically, when �� < ��, and �� is significantly higher than ��, the vertical 

distance method which is based on the premise that all the uncertainty rests in the output 

measurements and �� = 0, should predict parameters reasonably close to the true values. 

However, the results tabulated in Table 4.1.1 suggest that this does not hold true always, 

particularly for high uncertainty values. 

  Vertical Distance Normal Distance Maximum Likelihood  

 
 Bias 

Standard 

Deviation 
Bias 

Standard 

Deviation 
Bias 

Standard 

Deviation 

��  =  0.1 
��  =  0.25 

�
 0.000132 0.000985 0.000046 0.000806 0.000083 0.000874 

§�� 0.002532 0.234873 0.008217 0.219850 0.009365 0.240614 

��  =  0.1 
��  =  0.5 

�
 0.000148 0.001170 0.000163 0.001301 0.000064 0.000999 

§�� 0.000282 0.356470 0.020523 0.392295 0.014865 0.346681 

��  =  0.25 
��  =  0.5 

�
 0.000754 0.002270 0.000222 0.001674 0.000236 0.001710 

§�� 0.016562 0.505455 0.031143 0.417657 0.029934 0.377001 

Table 4.1.1 Comparison of the regression methods for �� < �� 

When �� = 0.1, �� = 0.25, the bias for the parameter �� is the least for the normal 

distance method, while for ���, it is the least for the vertical distance method. ��� is the 

more dominating parameter of the two, significantly affecting the model curve, and as 

can be seen from the results, there is a considerable difference in the magnitudes of biases 

and standard deviations of �� and ���, for all the cases, for all the methods. Hence 

comparatively it is more important to get better results for ��� than ��. Hence in terms 

of biases, the vertical distance is the preferred method. However, the standard deviations 
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for �� and ��� estimates are the least for the normal distance method. The difference of 

the standard deviations among the methods though, is not substantial. The standard 

deviation actually is a more reliable test than the bias, as while evaluating the bias, the 

positive deviations of the parameter values annul the negative deviations, thereby 

despoiling the very essence of the test.  

Hence for the present sub-case, all the methods could be considered at par. However, for 

the simplicity of the logic, and the ease of computational burden, the vertical distance 

method could be chosen over the others. 

For �� = 0.1, �� � 0.5, due to the increase in the uncertainty in the pH measurements, 

the predictions of each of the methods deteriorate compared to the previous case. And, 

while bias for ��� is the least for the vertical distance method, there is not much 

difference in the standard deviations for the vertical and the maximum likelihood 

methods. Due to the decrease in the ratio of  �� to ��, the variation in the results for the 

vertical and the normal distance methods become obvious. The vertical distance method, 

followed by the maximum likelihood and the normal distance methods, could be the 

favored order of preference. 

When �� = 0.25, �� = 0.5, due to the rise in the uncertainty in the input measurements 

the predictions further deteriorate compared to the previous case. However the normal 

distance had better predictions than the vertical distance method, but the maximum 

likelihood method could be ascertained the best among the three.  

Typical distributions for the parameters and their probability plots for �� = 0.25, �� � 0.5 

are shown in the Figs. 35 and 36 respectively. 



77 
 

 

 
Figure 35a: �
 distribution for vertical and maximum likelihood method for �� = 0.25, �� � 0.5 

 
Figure 35b: §�� distribution for vertical and maximum likelihood method for �� = 0.25, �� � 0.5 
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Figure 36: ‘Probability of deviation from true value’ plots for �
 and §�� for �� = 0.25, �� � 0.5 

As expected from the tabulated results for �� = 0.25, �� � 0.5, the parameter 

distributions for the vertical distance method are more dispersed compared to the 

maximum likelihood. The probability plots also indicate the better of the methods, with 

the normal distance and the maximum likelihood curves almost overlapping each other, 

clearly separated from the vertical distance curves. 

Hence from the above tests when �� < ��,  the maximum likelihood predictions were 

at par with the best predictions in each sub-case. Among the vertical and normal distance 

methods, the vertical distance could be selected for low input uncertainties, but as the 

magnitude rises, the normal distance method could be chosen. 
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4.1.2  �� = �� 

When �� = ��, the maximum likelihood method is exactly the same as the normal 

distance method. The predictions of the vertical and the maximum likelihood method 

were compared for � values ranging from 0.1 to 0.7. 

In each of the cases in Table 4.1.2, the maximum likelihood method provided better 

results than the vertical distance method. The variation in the results became more 

obvious as the � values increased due to the initial premise of the vertical distance 

method. 

   Vertical Distance Maximum Likelihood 

 
 Bias 

Standard 

Deviation 
Bias 

Standard 

Deviation 

� � 
.� 

�
 0.000113 0.000993 0.000068 0.000686 

§�� 0.003953 0.193984 0.003967 0.119569 

� � 
.�� 

�
 0.000652 0.002128 0.000019 0.001396 

§�� 0.017518 0.420125 0.017119 0.216889 

� � 
.� 

�
 0.003161 0.005154 0.000236 0.003384 

§�� 0.058861 0.737612 0.052285 0.467059 

� � 
.� 

�
 0.012160 0.036223 0.004937 0.040177 

§�� 0.096469 0.998426 0.066694 0.727321 

Table 4.1.2 Comparison of the regression methods for �� = �� 

Typical distributions and the probability plots for �� = 0.25, �� � 0.25 are shown in the 

Figs. 37 and 38 respectively. 

 



80 
 

 
Figure 37a: �
 distribution for vertical and maximum likelihood method for �� = 0.25, �� � 0.25 

 
Figure 37b: §�� distribution for vertical and maximum likelihood method for �� = 0.25, �� � 0.25 
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Figure 38: ‘Probability of deviation from true value’ plots for �
 and §�� for �� = 0.25, �� � 0.25 

The nature of the distributions and the probability plots are similar to the ones shown 

in Figs. 35, and 36. The maximum likelihood hence, is the better of the methods when  

�� = �� 
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4.1.3  �� >  �� 

Theoretically, when �� >  ��, the vertical distance method’s supposition that �� can 

be neglected, no longer holds good, and its predictions further deteriorate compared to 

the previous two cases of �� <  �� and �� =  ��. The normal distance method is a better 

representation of the situation than the vertical distance method. The results obtained 

from the simulations are presented in Table 4.1.3. 

  Vertical Distance Normal Distance Maximum Likelihood 

 
 Bias 

Standard 

Deviation 
Bias 

Standard 

Deviation 
Bias 

Standard 

Deviation 

��  =  0.25 
��  =  0.1 

�
 0.000915 0.002120 0.000076 0.001148 0.000517 0.001126 

§�� 0.022009 0.414877 0.015659 0.173191 0.012219 0.116610 

��  =  0.5 
��  =  0.1 

�
 0.003534 0.006926 0.000504 0.002300 0.002796 0.002199 

§�� 0.061475 0.684288 0.035114 0.276258 0.051410 0.262570 

��  =  0.5 
��  =  0.25 

�
 0.003467 0.004671 0.000499 0.002301 0.001878 0.002305 

§�� 0.068533 0.711066 0.035584 0.294769 0.053500 0.331088 

Table 4.1.3 Comparison of the regression methods for �� > �� 

From the above table, when �� = 0.25, �� = 0.1, while the results for the maximum 

likelihood method were better than the other two methods, there was a considerable 

difference in the standard deviations of ��� for the vertical distance method with the 

other two methods. Increasing the uncertainty levels in the next two sub-cases, the 

predictions for the vertical distance method deteriorate, but while the results for the 

normal distance and the maximum likelihood method are at par for �� = 0.5, �� = 0.1, the 

preference shifts to normal distance method for the last sub-case. The parameter 
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distributions and the probability curves for a prototype case of �� = 0.25, �� = 0.1 were 

discussed previously through Figs. 33 and 34 respectively. 

Hence while the maximum likelihood works well for lower uncertainty values when  

�� >  ��, the normal distance could be adopted for high uncertainty values. 

In all the above cases, the �� and �� values for evaluating the maximum likelihood 

objective function were taken the same as the true, but practically unknowable 

uncertainty values, chosen to generate the experimental data. However, it is highly 

improbable to get the exact estimate of the uncertainty associated with any measurement. 

Hence to test the feasibility of maximum likelihood method in realistic situations, the �� 

and �� used for the maximum likelihood objective function evaluation, were 

approximated by values deviating by around 50% from the true values chosen to generate 

the experimental data.  

The �� values for all the data pairs were perturbed by the same magnitude from the 

true value, assuming the uncertainty in all the input measurements would more or less be 

the same. Hence if the true �� value is 0.1, the perturbed value would be a number close 

to 0.05 or 0.15. The �� values were perturbed by different magnitudes for each data pair 

as the uncertainty level would vary depending upon the linear/nonlinear region of the 

model curve. The values were generated at random through a Visual Basic code written 

as 

                                ��¶´³µ´$¶� �  �³´µ¶ 6  �ªgX��  K 0.5� ° �³´µ¶                         (97) 

The �� and �� values for each data pair however, were maintained the same for all 

realizations. The results were tested for simulations with  �� = 0.1, �� = 0.25 and           
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�� = 0.25, �� = 0.1. In both the cases the maximum likelihood and the normal distance 

were equivalent and were better than the vertical distance method. The results are 

tabulated in Table 4.1.4 

  Vertical Distance Normal Distance Maximum Likelihood  

 
 Bias 

Standard 

Deviation 
Bias 

Standard 

Deviation 
Bias 

Standard 

Deviation 

��  =  0.1 
��  =  0.25 

�
 0.000132 0.000985 0.000046 0.000806 0.000068 0.000827 

§�� 0.002532 0.234873 0.008217 0.219850 0.007635 0.175719 

��  =  0.25 
��  =  0.1 

�
 0.000915 0.002120 0.000076 0.001148 0.000200 0.001258 

§�� 0.022009 0.414877 0.015659 0.173191 0.009392 0.122903 

Table 4.1.4 Comparison of the regression methods for approximate variances for Maximum likelihood 

The parameter histograms and the probability plots for the simulation with the 

experimental data generated through �� = 0.1, �� = 0.25 are shown in Figs. 39 and 40 

respectively.  

 
Figure 39a: �
 distribution for vertical and maximum likelihood method for �� = 0.1, �� � 0.25 with 

perturbed variance values for maximum likelihood objective function 
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Figure 39b: §�� distribution for vertical and maximum likelihood method for �� = 0.1, �� � 0.25 with 

perturbed variance values for maximum likelihood objective function 

 
Figure 40: ‘Probability of deviation from true value’ plots for �
 and §�� for �� = 0.1, �� � 0.25 with 

perturbed variance values for maximum likelihood objective function 
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all the three methods, but the normal distance had its tail extending till the end and the 

vertical distance curve was slightly above the two. 

The normal distance method, which is the same as the maximum likelihood method, but 

with  �� = ��, can also be considered as a case of the variances for the maximum 

likelihood objective function evaluation deviating from the true values.  

Hence from the above tests, the following could be concluded 

1. When �� < ��, the maximum likelihood works well for all the sub-cases, but for 

lower magnitudes of uncertainty the vertical distance can be chosen to minimize 

computational burden. 

2. When �� = ��, the maximum likelihood method works well for all the cases and is 

significantly better than the vertical distance method 

3. When �� > ��, the maximum likelihood method could be chosen for lower 

uncertainty values, but as the uncertainty levels increases, the normal distance method 

would be a better option. 

The findings are summarized in Table 4.1.5. The roman numericals in each case indicate 

the order of preference based on the results obtained.  
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  Vertical 

Distance 

Normal 

Distance 

Maximum 

Likelihood 

1. Parameter Precision and Accuracy �� < ��     

 ��  =  0.1 ��  =  0.25 I I I 

 ��  =  0.1 ��  =  0.5 I II I 

 ��  =  0.25 ��  =  0.5 III II I 

�� = ��     

 �  =  0.1 II I I 

 �  =  0.25 II I I 

 �  =  0.5 II I I 

 �  =  0.7 II I I 

�� > ��     

 ��  =  0.25 ��  =  0.1 II I I 

 ��  =  0.5 ��  =  0.1 III I II 

 ��  =  0.5 ��  =  0.25 III I II 

2. Programming Burden I II II 

3. User Complexity I I II 

Table 4.1.5 Summary of Findings 
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4.2 PACKED BED SIMULATION 

 The packed bed simulations were more complex than the titration ones due to the 

three-parameter optimization, and the three-variable search for the objective function 

evaluations, for the normal distance and the maximum likelihood methods. Due to the 

large computational requirements, these simulations were not as comprehensively studied 

as the titration ones. 

Based on the practical inference on the maximum possible uncertainties in the input 

variables �1v, �, �, and the output variable ��, as 0.05���{/{��, 0.1�{/
«¸, 1�� and 

0.05���{/{��, the variances were assigned values of 0.0167, 0.033, 0.333, and 0.0167 

respectively. The simulations were run for a two hundred and fifty realizations, with the 

initialization of the parameters by 30% deviation from the true values. The results 

obtained are tabulated as follows.  

 Vertical Distance Normal Distance Maximum Likelihood  

 Bias 
Standard 

Deviation 
Bias 

Standard 

Deviation 
Bias 

Standard 

Deviation 

�
 0.227193 0.085813 0.284356 0.092555 0.292860 0.094249 

�� 0.229042 8.185125 0.290425 8.881987 0.303765 9.068874 

� 0.004754 939.021278 0.004774 943.248619 0.005304 943.193565 

Table 4.2.1 Comparison of the regression methods – Packed bed reactor  

From the above table, the vertical distance method for all the parameters had slightly 

better predictions than the normal and the maximum likelihood methods. But, variation in 

the results is insignificant to affirm the better of the three. Hence, either of the methods 

could be chosen to regress the data.  The parameter distributions and probability plots for 
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the vertical distance and the maximum likelihood methods for the above results are 

shown in Figs. 41 and 42 

 
Figure 41a: Parameter ‘k0’ distribution for vertical distance and maximum likelihood methods 

 
Figure 41b: Parameter ‘k1’ distribution for vertical distance and maximum likelihood methods 
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Figure 41c: Parameter ‘E’ distribution for vertical distance and maximum likelihood methods 

 

  
Figure 42 (a and b): Probability plots for packed bed regression parameters, k0 and k1 
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Figure 42c: Probability plots for packed bed regression parameter, E 

As can be seen from the probability plots, the curves for all the methods were 

overlapping, suggesting all the methods were at par. The parameter histograms were also 

inconclusive and followed similar pattern for both the regression methods. 

The computational burden was found to be more or less the same for all the methods, 

with the vertical distance requiring a lot more iterations than the maximum likelihood 

method. Due to the large time requirements, the simulations for the specified variances 

were only studied for two hundred and fifty realizations. Increasing the uncertainty 

levels, the parameter predictions for the vertical and the normal distance methods, 

constrained to the extreme limits, while the maximum likelihood method predicted 

reasonable values. 

Hence, though the vertical distance method could be adopted for lower uncertainty 

levels, the maximum likelihood may have to be chosen for higher magnitudes of 

uncertainty.   
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5. MODEL VALIDATION 

To ascertain the veracity of the code employed for the simulations, a few basic tests 

were conducted.  

1. The vertical and the normal distance methods for both the titration and the packed bed 

simulations were tested for data with no experimental uncertainties in the input and 

output measurements ��� � 0, �� � 0�. Both the methods yielded the exact same 

parameter values used in generating the data, confirming the trueness of the 

algorithm.  

Since with no experimental uncertainties the maximum likelihood objective 

function results with zeroes in the denominator, data generated with very small 

uncertainty values were used to test the method. The maximum likelihood method 

yielded parameter values close enough to the true ones, ascertaining the veracity of 

the code. 

2. Another test adopted was to repeat the regression several times for the same set of 

data but with different initializations for the parameters, varying upto 50% of their 

true values. All the methods yielded the same parameter values as their previous 

estimation, but upto four decimal places for �� and two decimal places for ���, 

suggesting that each time the same optimum was achieved. The precision of the 

parameter values could be increased beyond the specified decimal places by further 

reducing the tolerance limits in the stopping criteria, but this would result in a greater 
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number of iterations, which did not seem necessary. 

3. To test if a thousand realizations was a sufficient number to conclude the results, a 

few titration simulations were conducted by doubling the number of realizations. The 

mean and the standard deviation of the parameter distributions for the vertical 

distance method remained approximately the same, but there was considerable 

variation in the results for the normal and the maximum likelihood methods. Hence 

the titration simulations were run on an average for about 3000 realizations before 

concluding the results for the cases discussed earlier.  

4. While evaluating the results, any outliers in the titration parameter estimates as 

negative values for ��, or ��� values less than 1.0 were omitted by deleting the entire 

results for that particular realization, for that particular method. The packed bed 

regression parameters were constrained between their nominal limits as defined in the 

problem statement.  

The number of outliers for the titration simulation were usually the highest for the 

maximum likelihood method followed by the normal distance and the vertical 

distance method. However the percentage of outliers to the total number of 

realizations were less than 1% in most cases for all the methods, but were as high as 

upto 6% for certain cases with high variance values for the maximum likelihood 

method ((i). �� � �� � 0.7, (ii). �� � 0.5, �� � 0.1, (iii).  �� � 0.5, �� � 0.25). For 

the packed bed simulation, the number of realizations with parameters constraining to 

the extreme limits were highest for the vertical distance method, followed by normal 

distance and the maximum likelihood methods. 
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6. CONCLUSIONS 

1. Based on the results of the titration and the packed bed simulation the maximum 

likelihood method worked best in most cases. The vertical and the normal distance 

methods have individual preferences over the other depending upon the relative 

magnitude of the input and output uncertainties. The reality check for the maximum 

likelihood method through approximate variance values (deviation upto 40% from the 

true values) while evaluating the objective function, also yielded better results than 

the other two methods, suggesting the scope of an educated guess for the variances if 

a close estimate cannot be determined.  

2. However, the maximum likelihood and the normal distance methods are a lot more 

computationally intensive than the vertical distance method. And, since for lower 

uncertainty levels there isn’t a big variation in the results of either of the methods, the 

vertical distance method can be safely implemented without sacrificing much 

accuracy. However, for higher uncertainty levels the need for a better method is 

obvious.  

3. Though a few researchers have investigated the possibility of the maximum 

likelihood method, they have concluded in the favor the vertical distance method due 

to the complexity and the computational burden [1]. However, one reason for the 

computational burden could be the optimization algorithm. Most researchers seemed 

to have tried the gradient based algorithms such as the Levenberg Marquardt,  
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Cauchy’s steepest descent, Newton-Raphson etc. However the R3 cyclic direct search 

considerably eases the search process with good consistency in the parameter 

predictions for distant initializations from the true values.  

The vertical distance method does take a lot lower time for the titration 

simulations (approximately one –tenth of the time for the other two methods), but the 

R3 cyclic direct search is a good improvisation for the search process over the 

gradient based methods. The time consumed for the packed bed simulation by all the 

methods was more or less the same, with the vertical distance method requiring a lot 

more iterations on average than the maximum likelihood method, thereby 

compromising on its simpler logic.  

4. The parameters of the titration and the packed bed simulation were covariant. That is, 

they were inter-dependent and were not individually optimized without affecting the 

other. This has been cited in the view of one of the statements in [2] explaining the 

necessity for covariant parameters in computer simulations.  

5. It is important to understand that the results of either of the simulations do not 

necessitate the certainty of always obtaining better predictions through the best 

method. It only reflects the higher probability. Hence, if an approximate estimate of 

parameters is known, the data could be regressed through all the three methods, and 

the predicted parameters closest to the approximate estimates could be selected.  
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APPENDIX A – TITRATION SIMULATOR CODE 

The following Visual Basic code was adopted for the titration simulation. 

Code:  

Option Explicit 
' Author :  Chetan Chandak 
' Created date: 20- Dec-2007  
' Description : Titration model to test regression methods 
'______________________________________________________________________________________ 

' ___________________________________Declaring Common Variables__________________________ 

Global A0 As Double, h1 As Double       ' A0, pKa: model parameters 
Global pKa As Double, h2 As Double     ' h1, h2 are the step increments 
Global T(0 To 2) As Double                   ' stores the objective function value 
                                              ' T(0): least objective function value at the time of reading 
                                              ' T(1): current objective function value at the time of reading 
                                              ' T(2): objective function value before a new set of changes in  
            ' the parameters. 
 
Global Vmax As Double                        ' max volume of base (apparent) added during the titration process 
Global Vmin As Double                          ' min volume of base (apparent) added.  
Global pHmax As Double                        ' max pH (apparent) attained during the titration process 
Global pHmin As Double                      ' min pH (apparent) attained during the titration process 
 
Global z As Integer                         ' # realizations (variable) 
Global N As Integer                          ' # best of N trials 
Global w As Integer                         ' # best of N trials (variable) 
Global p As Integer                          ' # iterations in the optimization process (variable) 
Global rand(1 To 100) As Double           ' random # for initial guesses to start the prediction of pka & A0 
'______________________________________________________________________________________ 

' ___________________________________Experimental Data Generation Module___________________ 

Sub Regression() 
Dim vn As Double                            ' noise to the apparent volume 
Dim v As Double                              ' true but unknowable volume 
Dim pHun As Double                           ' true but unknowable pH corresponding to v 
Dim pH As Double                             ' apparent pH 
 
Dim i As Integer                            ' # experimental data points 
Dim r As Integer                             ' # realizations 
Dim sig(1 To 2) As Double                    ' std dev (noise) in the pH and volume readings 
 
'-------------------------------------------------------Initialize Variables--------------------------------------------------- 

N = Sheet4.Cells(13, 8).Value 
r = Sheet4.Cells(10, 8).Value 
sig(1) = Sheet4.Cells(11, 8).Value 
sig(2) = Sheet4.Cells(12, 8).Value 
 
Vmin = Sheet4.Cells(15, 1).Value 
Vmax = Sheet4.Cells(16, 1).Value 
pHmax = Sheet4.Cells(16, 2).Value 
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pHmin = Sheet4.Cells(15, 2).Value 
 
'-------------------------------------------------------Data Generation------------------------------------------------------ 

 
For z = 1 To r Step 1 
        A0 = Sheet4.Cells(3, 8).Value 

 pKa = Sheet4.Cells(2, 8).Value 
     

 Randomize 
     For i = 1 To N Step 1 
         rand(i) = (1 + (3 * (Rnd() - 0.5) * 0.2))       'range from 0.7 to 1.3 

 Next i 
 
        For i = 1 To 8 
         vn = sig(1) * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd()) 
         v = Sheet4.Cells(6 + i, 1).Value + vn 
 
         pHun = pHpredict(v) 
         pH = pHun + sig(2) * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd()) 
         Sheet4.Cells(6 + i, 2) = pH 
 
         Sheet4.Cells(6 + i, 4) = v 
         Sheet4.Cells(6 + i, 5) = pHun 
       Next i 
 
       Call data_substitution               ' prints expt. data in the vertical, normal distance and max. likelihood 
                                                         ' worksheets     
 
        Sheet5.Activate                        ' runs the vertical distance module 
        Call vertical 
 
        Sheet1.Activate                        ' runs the normal distance module 
        Call Normal 
 
        Sheet6.Activate                        ' runs the Maximum likelihood module 
        Call Max_Likelihood 
     
Next z 

End Sub 
'-------------------------------------------------------pH Evaluation-------------------------------------------------------- 

Function pHpredict(v As Double) 
 
' Predicts pH for a given volume of base added 
' Code taken from Dr. Rhinehart’s excel file 
 
Dim pHmin As Double, pHmax As Double, pHmid As Double 
Dim fmin As Double, fmax As Double, fmid As Double 
Dim j As Integer 
 
pHmax = 14 
pHmin = 0 
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For j = 1 To 20   ' Interval Halving Method 
    fmax = func(pHmax, v) 
    fmin = func(pHmin, v) 
    pHmid = (pHmax + pHmin) / 2 
    fmid = func(pHmid, v) 
 
    If (fmax * fmid < 0) Then 
           pHmin = pHmid 
           fmin = fmid 
    Else 
           pHmax = pHmid 
           fmax = fmid 
    End If 
Next j 
 
If pHmid < pHmin Then pHmid = pHmin 
If pHmid > pHmax Then pHmid = pHmax 
 
pHpredict = pHmid 
 
End Function 

' -------------------------------------------------------------------------------------------------------------------------------- 

Function func(pH As Double, v As Double) 
'Code taken from Dr. Rhinehart’s excel file 
 
Dim x As Double 
Dim y As Double 
Dim a As Double 
Dim b As Double 
Dim ka As Double 
Dim Hconc As Double 
 
Dim b0 As Double 
Dim kw As Double 
 
b0 = Sheet4.Cells(4, 8).Value 
kw = 0.0000000000001 
     
ka = 10 ^ (-pKa) 
a = A0 / (1 + (v / 1000)) 
b = (b0 * (v / 1000)) / (1 + (v / 1000)) 
 
x = a * ka / (ka + (10 ^ -pH)) 
y = (kw * (10 ^ pH)) - b 
Hconc = x + y 
func = (10 ^ -pH) - Hconc 
 
End Function 

' -------------------------------------------------------------------------------------------------------------------------------- 
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' -------------------------------------------------------------------------------------------------------------------------------- 

Sub data_substitution() 
'Substitutes the experimental data in the normal, vertical and max_likelihood sheets 
' 
' data_substitution Macro 
' Macro recorded 3/12/2008 by chetan 
' 
    Sheets("data  generation").Select 
    Sheet4.Range("A7:B14").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
    Sheets("Vertical_dist").Select 
    Sheet5.Range("B12").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
    Sheets("Normal_dist").Select 
    Sheet1.Range("B12").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
    Sheets("Max_Likelihood").Select 
    Sheet6.Range("B12").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
     
End Sub 
 
'______________________________________________________________________________________ 

' ___________________________________Vertical Distance Module_____________________________ 

'-------------------------------------------------------Parameter Optimization--------------------------------------------- 

Sub vertical() 
Dim best As Double                       ' best objective function value from N trials 
Dim g As Integer                            ' stores the iteration corresponding to the best objective function value 
 
Sheet5.Range(Cells(4, 9), Cells(1000, 15)).ClearContents 
 
best = 10000 
 
'-------------------------------------------------------R3 Cyclic Direct Search--------------------------------------------- 

For w = 1 To N Step 1 
     
    A0 = Sheet4.Cells(3, 8).Value * rand(w) 
    pKa = Sheet4.Cells(2, 8).Value * rand(w) 
 
    Sheet5.Cells(8, 6) = pKa 
    Sheet5.Cells(9, 6) = A0 
     
    Sheet5.Cells(3 + w, 9) = w 
    Sheet5.Cells(3 + w, 10) = A0 
    Sheet5.Cells(3 + w, 11) = pKa 
 
    T(0) = sumvert 
    Sheet5.Cells(9, 2) = T(0) 
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    T(2) = T(0)                            'storing the initial objective fn value in T(2) 
 

    h1 = A0 * 0.1                          'Initializing step increments 
    h2 = pKa * 0.1 
 
    For p = 1 To 200 Step 1 
         

 A0 = A0 + h1 
        Sheet5.Cells(9, 6) = A0 
        Sheet5.Cells(9, 7) = h1 
        T(1) = sumvert 
        Sheet5.Cells(9, 2) = T(1) 
     
        If (T(1) < T(0)) Then 
            T(0) = T(1)                   'T(0) = best possible value till now 
            h1 = h1 * 1.25                'Expansion factor 
        Else 
            A0 = A0 - h1 
            h1 = -h1 * (0.75 / 1.25)      'Contraction factor 
            Sheet5.Cells(9, 6) = A0 
            Sheet5.Cells(9, 7) = h1 
        End If 
 
        pKa = pKa + h2 
        Sheet5.Cells(8, 6) = pKa 
        Sheet5.Cells(8, 7) = h2 
        T(1) = sumvert 
        Sheet5.Cells(9, 2) = T(1) 
 
        If (T(1) < T(0)) Then 
            T(0) = T(1) 
            h2 = h2 * 1.25                'Expansion factor 
        Else 
            pKa = pKa - h2 
            h2 = -h2 * (0.75 / 1.25)      'Contraction factor 
            Sheet5.Cells(8, 6) = pKa 
            Sheet5.Cells(8, 7) = h2 
            T(1) = sumvert 
            Sheet5.Cells(9, 2) = T(1) 
        End If 
 
        Sheet5.Cells(8, 2) = p 
 
        If Abs(h1) < (10 ^ -10) And Abs(h2) < (10 ^ -10) And Abs(T(2) - T(0)) < (10 ^ -10) Then Exit For 
        T(2) = T(0) 
 
    Next p 
 
    Sheet5.Cells(9, 7) = Abs(h1) 
    Sheet5.Cells(8, 7) = Abs(h2) 
 
    Sheet5.Cells(3 + w, 12) = A0 
    Sheet5.Cells(3 + w, 13) = pKa 
    Sheet5.Cells(3 + w, 14) = T(0) 
    Sheet5.Cells(3 + w, 15) = p 
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    If T(0) < best Then  ' Best of N check 
        best = T(0) 
        g = w + 3 
    End If 
 
Next w 
 
A0 = Sheet5.Cells(g, 12) 
pKa = Sheet5.Cells(g, 13) 
p = Sheet5.Cells(g, 15) 
T(0) = sumvert 
     
Sheet5.Cells(z + 24, 1) = z 
Sheet5.Cells(z + 24, 2) = A0 
Sheet5.Cells(z + 24, 3) = pKa 
Sheet5.Cells(z + 24, 4) = T(0) 
Sheet5.Cells(z + 24, 5) = p 
 
End Sub 
 
'-------------------------------------------------------Objective function calculation------------------------------------- 

Function sumvert() As Double 
 
Dim Vi As Double          ' Subscript i refers to experimental terms 
Dim pHi As Double         ' Subscript r refers to regressed terms 
Dim pHr As Double 
 
Dim d As Double 
Dim sum As Double 
 
Dim q As Integer          ' # experimental data points 
 
sum = 0 
For q = 1 To 8 Step 1 
 
    Vi = Sheet5.Cells(q + 11, 2).Value 
    pHi = Sheet5.Cells(q + 11, 3).Value 
          
    pHr = pHpredict(Vi) 
    d = (pHi - pHr) ^ 2 
    sum = sum + d 
 
    Sheet5.Cells(q + 11, 4) = Vi 
    Sheet5.Cells(q + 11, 5) = pHr 
    Sheet5.Cells(q + 11, 6) = d 
 
Next q 
 
Sheet5.Cells(20, 6) = sum 
sumvert = sum 
 
'Worksheets("Vertical_dist").Calculate 
 
End Function 
' -------------------------------------------------------------------------------------------------------------------------------- 
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'______________________________________________________________________________________ 

' ___________________________________Normal Distance Module______________________________ 

'-------------------------------------------------------Parameter Optimization--------------------------------------------- 

Sub normal() 
Dim best As Double                       ' best objective function value from N trials 
Dim g As Integer                            ' stores the iteration corresponding to the best objective function value 
 
Sheet1.Range(Cells(4, 9), Cells(1000, 15)).ClearContents 
 
best = 10000 
 
'-------------------------------------------------------R3 Cyclic Direct Search--------------------------------------------- 

For w = 1 To N Step 1 
     
    A0 = Sheet4.Cells(3, 8).Value * rand(w) 
    pKa = Sheet4.Cells(2, 8).Value * rand(w) 
 
    Sheet1.Cells(8, 6) = pKa 
    Sheet1.Cells(9, 6) = A0 
    Sheet1.Cells(3 + w, 9) = w 
    Sheet1.Cells(3 + w, 10) = A0 
    Sheet1.Cells(3 + w, 11) = pKa 
 
    T(0) = norm 
    Sheet1.Cells(9, 2) = T(0) 
 
    T(2) = T(0)                          'storing the initial objective fn value in T(2) 
 
    h1 = A0 * 0.1                        'Initializing step increments 
    h2 = pKa * 0.1 
 
    For p = 1 To 200 Step 1 
         

A0 = A0 + h1 
        Sheet1.Cells(9, 6) = A0 
        Sheet1.Cells(9, 7) = h1 
        T(1) = norm 
        Sheet1.Cells(9, 2) = T(1) 
     
        If (T(1) < T(0)) Then 
            T(0) = T(1)                  'T(0) = best possible value till now 
            h1 = h1 * 1.25               'Expansion factor 
        Else 
            A0 = A0 - h1 
            h1 = -h1 * (0.75 / 1.25)     'Contraction factor 
            Sheet1.Cells(9, 6) = A0 
            Sheet1.Cells(9, 7) = h1 
        End If 
 
        pKa = pKa + h2 
        Sheet1.Cells(8, 6) = pKa 
        Sheet1.Cells(8, 7) = h2 
        T(1) = norm 
        Sheet1.Cells(9, 2) = T(1) 
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        If (T(1) < T(0)) Then 
            T(0) = T(1) 
            h2 = h2 * 1.25               'Expansion factor 
        Else 
            pKa = pKa - h2 
            h2 = -h2 * (0.75 / 1.25)     'Contraction factor 
            Sheet1.Cells(8, 6) = pKa 
            Sheet1.Cells(8, 7) = h2 
            T(1) = norm 
            Sheet1.Cells(9, 2) = T(1) 
        End If 
 
        Sheet1.Cells(8, 2) = p 
 
        If Abs(h1) < (10 ^ -10) And Abs(h2) < (10 ^ -10) And Abs(T(2) - T(0)) < (10 ^ -10) Then Exit For 
        T(2) = T(0) 
 
    Next p 
 
    Sheet1.Cells(9, 7) = Abs(h1) 
    Sheet1.Cells(8, 7) = Abs(h2) 
 
    Sheet1.Cells(3 + w, 12) = A0 
    Sheet1.Cells(3 + w, 13) = pKa 
    Sheet1.Cells(3 + w, 14) = T(0) 
    Sheet1.Cells(3 + w, 15) = p 
 
    If T(0) < best Then  ' Best of N check 
        best = T(0) 
        g = w + 3 
    End If 
 
Next w 
 
A0 = Sheet1.Cells(g, 12) 
pKa = Sheet1.Cells(g, 13) 
p = Sheet1.Cells(g, 15) 
T(0) = norm 
     
Sheet1.Cells(z + 24, 1) = z 
Sheet1.Cells(z + 24, 2) = A0 
Sheet1.Cells(z + 24, 3) = pKa 
Sheet1.Cells(z + 24, 4) = T(0) 
Sheet1.Cells(z + 24, 5) = p 
 
End Sub 
 
'-------------------------------------------------------Objective function calculation------------------------------------- 

Function norm() As Double 
 
Dim Vi As Double                     ' Subscript i refers to experimental terms 
Dim pHi As Double                    ' Subscript r refers to regressed terms 
Dim Vr As Double 
Dim pHr As Double 
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Dim Va As Double                     ' Va, Vb: lower and higher limits of the golden section line search 
Dim Vb As Double 
Dim Vl As Double                     ' Vl, Vh: intermediate lower and higher limits of golden section search 
Dim Vh As Double 
Dim pH As Double 
Dim l As Double                      ' l = Vb - Va 
Dim q As Integer 
Dim sum As Double 
Dim d(1 To 2) As Double 

'-------------------------------------------------------Golden Section Search---------------------------------------------- 

sum = 0 
For q = 1 To 8 Step 1 
 
   Vi = Sheet1.Cells(q + 11, 2).Value 
    pHi = Sheet1.Cells(q + 11, 3).Value 
     
    Va = Vmin * 0.9                  ' Initializing the golden section boundary limits 
    Vb = Vmax * 1.1 
         
    Do                                 
        l = Vb - Va 
        Vl = Va + (0.382 * l) 
        Vh = Vb - (0.382 * l) 
     
        pH = pHpredict(Vl) 
        d(1) = dist(Vi, pHi, Vl, pH, 1, 1) 
         
        pH = pHpredict(Vh) 
        d(2) = dist(Vi, pHi, Vh, pH, 1, 1) 
         
        If d(2) < d(1) Then 
            Va = Vl 
            Vr = Vh 
        Else 
            Vb = Vh 
            Vr = Vl 
        End If 
         
    Loop Until Abs(d(2) - d(1)) < 0.00001 And l < 0.00001  ' Stopping criteria  
     
    pHr = pHpredict(Vr) 
    d(2) = dist(Vi, pHi, Vr, pHr, 1, 1) 
     
    Sheet1.Cells(q + 11, 4) = Vr 
    Sheet1.Cells(q + 11, 5) = pHr 
    Sheet1.Cells(q + 11, 6) = d(2) 
    sum = sum + d(2) 
     
Next q 
 
Sheet1.Cells(20, 6) = sum 
norm = sum 
 
End Function 
' -------------------------------------------------------------------------------------------------------------------------------- 
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' -------------------------------------------------------------------------------------------------------------------------------- 

'Objective function 
Function dist(v1 As Double, pH1 As Double, v2 As Double, pH2 As Double, sigx As Double, sigy As 
Double) As Double 

dist = ((v2 - v1) / (sigx * (Vmax - Vmin))) ^ 2 + ((pH2 - pH1) / (sigy * (pHmax - pHmin))) ^ 2 
 

End Function 
'______________________________________________________________________________________ 

' ___________________________________Maximum Likelihood Module__________________________ 

'-------------------------------------------------------Parameter Optimization--------------------------------------------- 

Sub Max_Likelihood() 
Dim best As Double                       ' best objective function value from N trials 
Dim g As Integer                            ' stores the iteration corresponding to the best objective function value 
 
Sheet6.Range(Cells(4, 9), Cells(1000, 15)).ClearContents 
best = 10000 
 
'-------------------------------------------------------R3 Cyclic Direct Search--------------------------------------------- 

For w = 1 To N Step 1 
     
    A0 = Sheet4.Cells(3, 8).Value * rand(w) 
    pKa = Sheet4.Cells(2, 8).Value * rand(w) 
 
    Sheet6.Cells(8, 6) = pKa 
    Sheet6.Cells(9, 6) = A0 
     
    Sheet6.Cells(3 + w, 9) = w 
    Sheet6.Cells(3 + w, 10) = A0 
    Sheet6.Cells(3 + w, 11) = pKa 
 
    T(0) = MaxP 
    Sheet6.Cells(9, 2) = T(0) 
 
    T(2) = T(0)                          'storing the initial objective fn value in T(2) 
 
    h1 = A0 * 0.1                        'Initializing step increments 
    h2 = pKa * 0.1 
 
    For p = 1 To 200 Step 1 
         

A0 = A0 + h1 
        Sheet6.Cells(9, 6) = A0 
        Sheet6.Cells(9, 7) = h1 
        T(1) = MaxP 
        Sheet6.Cells(9, 2) = T(1) 
     
        If (T(1) < T(0)) Then 
            T(0) = T(1)                  'T(0) = best possible value till now 
            h1 = h1 * 1.25               'Expansion factor 
        Else 
            A0 = A0 - h1 
            h1 = -h1 * (0.75 / 1.25)     'Contraction factor 
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            Sheet6.Cells(9, 6) = A0 
            Sheet6.Cells(9, 7) = h1 
        End If 
 
        pKa = pKa + h2 
        Sheet6.Cells(8, 6) = pKa 
        Sheet6.Cells(8, 7) = h2 
        T(1) = MaxP 
        Sheet6.Cells(9, 2) = T(1) 
 
        If (T(1) < T(0)) Then 
            T(0) = T(1) 
            h2 = h2 * 1.25               'Expansion factor 
        Else 
            pKa = pKa - h2 
            h2 = -h2 * (0.75 / 1.25)     'Contraction factor 
            Sheet6.Cells(8, 6) = pKa 
            Sheet6.Cells(8, 7) = h2 
            T(1) = MaxP 
            Sheet6.Cells(9, 2) = T(1) 
        End If 
 
        Sheet6.Cells(8, 2) = p 
        If Abs(h1) < (10 ^ -10) And Abs(h2) < (10 ^ -10) And Abs(T(2) - T(0)) < (10 ^ -10) Then Exit For 
        T(2) = T(0) 
 
    Next p 
 
    Sheet6.Cells(9, 7) = Abs(h1) 
    Sheet6.Cells(8, 7) = Abs(h2) 
 
    Sheet6.Cells(3 + w, 12) = A0 
    Sheet6.Cells(3 + w, 13) = pKa 
    Sheet6.Cells(3 + w, 14) = T(0) 
    Sheet6.Cells(3 + w, 15) = p 
 
    If T(0) < best Then  ' Best of N check 
        best = T(0) 
        g = w + 3 
    End If 
 
Next w 
 
A0 = Sheet6.Cells(g, 12) 
pKa = Sheet6.Cells(g, 13) 
p = Sheet6.Cells(g, 15) 
T(0) = MaxP 
     
Sheet6.Cells(z + 24, 1) = z 
Sheet6.Cells(z + 24, 2) = A0 
Sheet6.Cells(z + 24, 3) = pKa 
Sheet6.Cells(z + 24, 4) = T(0) 
Sheet6.Cells(z + 24, 5) = p 
 
End Sub 
' -------------------------------------------------------------------------------------------------------------------------------- 
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'-------------------------------------------------------Objective function calculation------------------------------------- 

Function MaxP() As Double 
 
Dim Vi As Double                     ' Subscript i refers to experimental terms 
Dim pHi As Double                     ' Subscript r refers to regressed terms 
Dim Vr As Double 
Dim pHr As Double 
 
Dim Va As Double                     ' Va, Vb: lower and higher limits of the golden section line search 
Dim Vb As Double 
Dim Vl As Double                     ' Vl, Vh: intermediate lower and higher limits of golden section search 
Dim Vh As Double 
Dim pH As Double 
Dim l As Double                      ' l = Vb - Va 
 
Dim q As Integer 
Dim sum As Double 
Dim d(1 To 2) As Double 
 
Dim sigx As Double                   ' std dev in the experimental volume 
Dim sigy(1 To 8) As Double           ' std dev in the experimental pH 
 
'-------------------------------------------------------Golden Section Search---------------------------------------------- 

sigx = Sheet6.Cells(12, 7).Value / (Vmax - Vmin) 
 
sum = 0 
For q = 1 To 8 Step 1 
     
    sigy(q) = Sheet6.Cells(11 + q, 8).Value / (pHmax - pHmin) 
     
    Vi = Sheet6.Cells(q + 11, 2).Value 
    pHi = Sheet6.Cells(q + 11, 3).Value 
             
    Va = Vmin * 0.9                  ' Initializing the golden section boundary limits 
    Vb = Vmax * 1.1 
         
    Do                                 
        l = Vb - Va 
        Vl = Va + (0.382 * l) 
        Vh = Vb - (0.382 * l) 
     
        pH = pHpredict(Vl) 
        d(1) = dist(Vi, pHi, Vl, pH, sigx, sigy(q)) 
         
        pH = pHpredict(Vh) 
        d(2) = dist(Vi, pHi, Vh, pH, sigx, sigy(q)) 
         
        If d(2) < d(1) Then 
            Va = Vl 
            Vr = Vh 
        Else 
            Vb = Vh 
            Vr = Vl 
        End If 
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    Loop Until Abs(d(2) - d(1)) < 0.00001 And l < 0.00001  ' Stopping criteria for Golden section search 
     
    Vr = (Vl + Vh) / 2 
    pHr = pHpredict(Vr) 
    d(2) = dist(Vi, pHi, Vr, pHr, sigx, sigy(q)) 
     
    Sheet6.Cells(q + 11, 4) = Vr 
    Sheet6.Cells(q + 11, 5) = pHr 
    Sheet6.Cells(q + 11, 6) = d(2) 
     
    sum = sum + d(2) 
  
Next q 
 
Sheet6.Cells(20, 6) = sum 
MaxP = sum 
 
'Worksheets("Max_Likelihood").Calculate 
 
End Function 
'--------------------------------------------------------------------------------------------------------------------------------- 
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APPENDIX B – PACKED BED SIMULATOR CODE 

The following Visual Basic code was adopted for the packed bed simulation. 

Code:  

Option Explicit 
' Author :  Chetan Chandak 
' Created date: 02- Feb-2009  
' Description : Packed bed model to test regression methods 
'______________________________________________________________________________________ 

' __________________________________Declaring Common Variables___________________________ 

Global Ci As Double          ' Experimental variables 
Global C0 As Double 
Global F As Double 
Global T As Double 
 
Global Cir As Double         ' Regression or model variables 
Global C0r As Double 
Global Fr As Double 
Global Tr As Double 
 
Global k0 As Double          ' Model parameters 
Global k1 As Double 
Global E As Double 
Global R As Double           ' Gas constant 
Global V As Double           ' volume of the reactor 
 
Global Cimin As Double    ' min and max input and output experimental values 
Global Cimax As Double 
Global C0min As Double 
Global C0max As Double 
Global Tmin As Double 
Global Tmax As Double 
Global Fmin As Double 
Global Fmax As Double 
 
Global z As Integer               ' # realizations, variable 
Global l As Integer                ' # BON realizations, variable 
Global chk As Integer             ' checks if the conc predicted by Newtons / Succesive substitution method  

      '  goes negative 
Global i As Integer          ' common variables 
Global j As Integer 
Global q As Integer 
 
Global rand As Double 
Global sig(1 To 4) As Double 
 
Global G(0 To 2) As Double   ' T(0): least possible objective function value at the time of reading 
                                    ' T(1): current objective function value at the time of reading 
                                   ' T(2): objective function value before a new set of changes in the parameters 
Global d(0 To 2) As Double 
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'______________________________________________________________________________________ 

' ___________________________________Experimental Data Generation Module___________________ 

Sub Regression() 
 
Dim N As Integer                  ' # realizations, value 
Dim p As Integer                  ' # realizations for BON, value 
 
N = Sheet3.Cells(2, 12).Value 
p = Sheet3.Cells(3, 12).Value 
 
R = 8.314 
V = 1000 
 
Cimin = Sheet2.Cells(36, 2).Value 
Cimax = Sheet2.Cells(37, 2).Value 
C0min = Sheet2.Cells(36, 5).Value 
C0max = Sheet2.Cells(37, 5).Value 
Tmin = Sheet2.Cells(36, 4).Value 
Tmax = Sheet2.Cells(37, 4).Value 
Fmin = Sheet2.Cells(36, 3).Value 
Fmax = Sheet2.Cells(37, 3).Value 
 
For z = 1 To N 
     
    k0 = Sheet3.Cells(3, 6).Value 
    k1 = Sheet3.Cells(2, 6).Value 
    E = Sheet3.Cells(4, 6).Value 
'-------------------------------------------------------Data Generation------------------------------------------------------ 

    For i = 1 To 4 Step 1 
        sig(i) = Sheet3.Cells(i + 1, 2).Value 
    Next i 
     
    Randomize 
     
    For i = 1 To 27 Step 1 
l1:     Ci = Sheet3.Cells(i + 10, 2).Value + sig(1) * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd()) 
        F = Sheet3.Cells(i + 10, 3).Value + sig(2) * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd()) 
        T = Sheet3.Cells(i + 10, 4).Value + sig(3) * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd()) 
 
        If Ci < 0 Then GoTo l1 
         
        C0 = Newton(Ci, F, T) 
        If chk = 1 Then GoTo l1 
         
        Sheet3.Cells(i + 10, 5) = C0 + sig(4) * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd()) 
        If Sheet3.Cells(i + 10, 5) < 0 Then GoTo l1 
         
        Sheet3.Cells(i + 10, 7) = Ci            ' Printing actual values 
        Sheet3.Cells(i + 10, 8) = F 
        Sheet3.Cells(i + 10, 9) = T 
        Sheet3.Cells(i + 10, 10) = C0 
     
    Next i 
 '-------------------------------------------------------------------------------------------------------------------------------- 
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    Call data_substitution   ' prints the experimental data in the regression method sheets 
 
    For l = 1 To p 
        rand = (1 + (2 * (Rnd() - 0.5) * 0.2)) 
 
        Sheet1.Activate   ' runs the vertical distance module   
        Call Regression_vertical 
 
        Sheet2.Activate   ' runs the normal distance module  
        Call Regression_normal 
 
        Sheet5.Activate   ' runs the maximum likelihood module  
        Call Regression_max 
    Next l 
 
Next z 
 
End Sub 

'------------------------------------------------Newton Raphson method-------------------------------------------------- 

Function Newton(Ci As Double, F As Double, T As Double) As Double 
Dim C(1 To 2) As Double 
Dim i As Integer 
 
C(1) = Ci * 0.9 
 
For i = 1 To 100 Step 1 
 
    C(2) = C(1) - (func(Ci, F, T, C(1)) / fder(Ci, F, T, C(1))) 
    If C(2) < 0 Then C(2) = Ci * (1 + Rnd()) 
    If Abs(C(2) - C(1)) < 0.00000001 Then Exit For 
    C(1) = C(2) 
 
Next i 
 
If i > 100 Then 
    chk = 1 
Else 
    chk = 0 
End If 
 
Newton = (C(2) + C(1)) / 2 
 
End Function 
'--------------------------------------------------------------------------------------------------------------------------------- 

Function func(Ci As Double, F As Double, T As Double, C As Double) As Double 
 
    If C < 0 Then GoTo 2 
    func = k1 * (Ci - C) + Log(Ci / C) - (V * k0 / F) * Exp(-E / (R * T)) 
2 
End Function 

'--------------------------------------------------------------------------------------------------------------------------------- 
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'--------------------------------------------------------------------------------------------------------------------------------- 

Function fder(Ci As Double, F As Double, T As Double, C As Double) As Double 
 
    fder = (func(Ci, F, T, C + 0.001) - func(Ci, F, T, C - 0.001)) / 0.002 
 
End Function 

'--------------------------------------------------------------------------------------------------------------------------------- 

Sub data_substitution() 
' 
' data_substitution Macro 
' 
' 
    Sheets("Sheet3").Select 
    Range("A11:E37").Select 
    Selection.Copy 
    Sheets("Sheet1").Select 
    Range("A8").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
    Sheets("Sheet3").Select 
    Range("A11:E37").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
    Sheets("Sheet2").Select 
    Range("A8").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
    Sheets("Sheet3").Select 
    Range("A11:E37").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
    Sheets("Sheet5").Select 
    Range("A8").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
End Sub 

'______________________________________________________________________________________ 

' ___________________________________Vertical distance Module______________________________ 

'-------------------------------------------------------Parameter Optimization--------------------------------------------- 

Sub Regression_vertical() 
 
Dim a As Double 
Dim b As Double 
Dim C As Double 
'-------------------------------------------------------R3 Cyclic Direct Search--------------------------------------------- 

k0 = Sheet3.Cells(3, 6).Value * rand         ' Initializing 
k1 = Sheet3.Cells(2, 6).Value * rand 
E = Sheet3.Cells(4, 6).Value * rand 
 
Sheet1.Cells(3, 9) = k0 
Sheet1.Cells(4, 9) = k1 
Sheet1.Cells(5, 9) = E 
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G(0) = Obj_vertical() + constraint() 
Sheet1.Cells(4, 14) = G(0) 
 
G(2) = G(0)                                   ' storing the initial objective fn value in G(2) 
 
a = k0 * 0.5 
b = k1 * 0.5 
C = E * 0.5 
 
For i = 1 To 5000 Step 1 
 
    k0 = k0 + a 
    Sheet1.Cells(3, 9) = k0 
    Sheet1.Cells(3, 10) = a 
    G(1) = Obj_vertical() + constraint() 
    Sheet1.Cells(4, 14) = G(1) 
     
If (G(1) < G(0)) Then 
    G(0) = G(1)                               ' G(0) = best possible value till now 
    a = a * 1.25                              ' Expansion factor 
Else 
    k0 = k0 - a 
    a = -a * (0.75 / 1.25)                    ' Contraction factor 
    Sheet1.Cells(3, 9) = k0 
    Sheet1.Cells(3, 10) = a 
End If 
 
    k1 = k1 + b 
    Sheet1.Cells(4, 9) = k1 
    Sheet1.Cells(4, 10) = b 
    G(1) = Obj_vertical() + constraint() 
    Sheet1.Cells(4, 14) = G(1) 
 
If (G(1) < G(0)) Then 
    G(0) = G(1) 
    b = b * 1.25                              ' Expansion factor 
Else 
    k1 = k1 - b 
    b = -b * (0.75 / 1.25)                    ' Contraction factor 
    Sheet1.Cells(4, 9) = k1 
    Sheet1.Cells(4, 10) = b 
    G(1) = Obj_vertical() + constraint() 
    Sheet1.Cells(4, 14) = G(1) 
End If 
 
E = E + C 
    Sheet1.Cells(5, 9) = E 
    Sheet1.Cells(5, 10) = C 
    G(1) = Obj_vertical() + constraint() 
    Sheet1.Cells(4, 14) = G(1) 
 
If (G(1) < G(0)) Then 
    G(0) = G(1) 
    C = C * 1.25                              ' Expansion factor 
Else 
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    E = E - C 
    C = -C * (0.75 / 1.25)                    ' Contraction factor 
    Sheet1.Cells(5, 9) = E 
    Sheet1.Cells(5, 10) = C 
    G(1) = Obj_vertical() + constraint() 
    Sheet1.Cells(4, 14) = G(1) 
End If 
 
Sheet1.Cells(5, 14) = i 
 
If Abs((G(2) - G(0)) / G(2)) < 10 ^ -6 And Abs(C / E) < 10 ^ -6 _ 
                And Abs(a / k0) < 10 ^ -6 And Abs(b / k1) < 10 ^ -6 Then  ' Stopping criteria 
    Exit For 
Else 
    G(2) = G(0) 
End If 
 
Next i 
 
Sheet1.Cells(3, 10) = Abs(a)                 ' reports the magnitude of the last change in parameter values 
Sheet1.Cells(4, 10) = Abs(b) 
Sheet1.Cells(5, 10) = Abs(C) 
Sheet1.Cells(4, 14) = G(0)                   ' final value of the objective function 
 
'Sheet4.Cells(l + 4, 11) = k0 
'Sheet4.Cells(l + 4, 12) = Abs(a) 
'Sheet4.Cells(l + 4, 13) = k1 
'Sheet4.Cells(l + 4, 14) = Abs(b) 
'Sheet4.Cells(l + 4, 15) = E 
'Sheet4.Cells(l + 4, 16) = Abs(C) 
'Sheet4.Cells(l + 4, 17) = G(0) 
'Sheet4.Cells(l + 4, 18) = i 
 
Sheet1.Cells(z + 40, 1) = z 
Sheet1.Cells(z + 40, 2) = k0 
Sheet1.Cells(z + 40, 3) = k1 
Sheet1.Cells(z + 40, 4) = E 
Sheet1.Cells(z + 40, 5) = i 
Sheet1.Cells(z + 40, 7) = Abs(a) 
Sheet1.Cells(z + 40, 8) = Abs(b) 
Sheet1.Cells(z + 40, 9) = Abs(C) 
 
End Sub 

'--------------------------------------------------Objective Function Evaluation------------------------------------------ 

Function Obj_vertical() As Double 
 
Dim sum As Double 
 
For q = 1 To 27 Step 1 
    Ci = Sheet1.Cells(7 + q, 2).Value 
    F = Sheet1.Cells(7 + q, 3).Value 
    T = Sheet1.Cells(7 + q, 4).Value 
    C0 = Sheet1.Cells(7 + q, 5).Value 
       
    C0r = Newton(Ci, F, T) 
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    d(0) = (C0 - C0r) ^ 2 
        
    Sheet1.Cells(7 + q, 10).Value = C0r 
    Sheet1.Cells(7 + q, 11).Value = d(0) 
     
    sum = sum + d(0) 
 
Next q 
 
    Obj_vertical = sum                        ' Objective function value 
    Sheet1.Cells(35, 11) = sum 
     
End Function 

'--------------------------------------------------------Constraint check---------------------------------------------------- 

Function constraint() As Double 
Dim del(1 To 2) As Double 
 
If k1 < 5 Then del(1) = Abs((k1 - 5) / k1) 
If del(1) > del(2) Then del(2) = del(1) 
 
If k1 > 100 Then del(1) = Abs((k1 - 100) / k1) 
If del(1) > del(2) Then del(2) = del(1) 
 
If k0 < 0.0001 Then del(1) = Abs((k0 - 0.0001) / k0) 
If del(1) > del(2) Then del(2) = del(1) 
 
If k0 > 1 Then del(1) = Abs((k0 - 1) / k0) 
If del(1) > del(2) Then del(2) = del(1) 
 
If E < 5000 Then del(1) = Abs((E - 5000) / E) 
If del(1) > del(2) Then del(2) = del(1) 
 
If E > 40000 Then del(1) = Abs((E - 40000) / E) 
If del(1) > del(2) Then del(2) = del(1) 
 
constraint = del(2) 
End Function 

'______________________________________________________________________________________ 

' ___________________________________Normal distance Module______________________________ 

'-------------------------------------------------------Parameter Optimization--------------------------------------------- 

Sub Regression_normal() 
Dim a As Double 
Dim b As Double 
Dim C As Double 
'-------------------------------------------------------R3 Cyclic Direct Search--------------------------------------------- 

k0 = Sheet3.Cells(3, 6).Value * rand         ' Initializing 
k1 = Sheet3.Cells(2, 6).Value * rand 
E = Sheet3.Cells(4, 6).Value * rand 
 
Sheet2.Cells(3, 9) = k0 
Sheet2.Cells(4, 9) = k1 
Sheet2.Cells(5, 9) = E 
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G(0) = Obj_normal() + constraint() 
Sheet2.Cells(4, 14) = G(0) 
 
G(2) = G(0)                                   ' storing the initial objective fn value in G(2) 
 
a = k0 * 0.5 
b = k1 * 0.5 
C = E * 0.5 
 
For i = 1 To 5000 Step 1 
 
    k0 = k0 + a 
    Sheet2.Cells(3, 9) = k0 
    Sheet2.Cells(3, 10) = a 
    G(1) = Obj_normal() + constraint() 
    Sheet2.Cells(4, 14) = G(1) 
     
If (G(1) < G(0)) Then 
    G(0) = G(1)                               ' G(0) = best possible value till now 
    a = a * 1.25                              ' Expansion factor 
Else 
    k0 = k0 - a 
    a = -a * (0.75 / 1.25)                    ' Contraction factor 
    Sheet2.Cells(3, 9) = k0 
    Sheet2.Cells(3, 10) = a 
End If 
 
    k1 = k1 + b 
    Sheet2.Cells(4, 9) = k1 
    Sheet2.Cells(4, 10) = b 
    G(1) = Obj_normal() + constraint() 
    Sheet2.Cells(4, 14) = G(1) 
 
If (G(1) < G(0)) Then 
    G(0) = G(1) 
    b = b * 1.25                              ' Expansion factor 
Else 
    k1 = k1 - b 
    b = -b * (0.75 / 1.25)                    ' Contraction factor 
    Sheet2.Cells(4, 9) = k1 
    Sheet2.Cells(4, 10) = b 
    G(1) = Obj_normal() + constraint() 
    Sheet2.Cells(4, 14) = G(1) 
End If 
 
E = E + C 
    Sheet2.Cells(5, 9) = E 
    Sheet2.Cells(5, 10) = C 
    G(1) = Obj_normal() + constraint() 
    Sheet2.Cells(4, 14) = G(1) 
 
If (G(1) < G(0)) Then 
    G(0) = G(1) 
    C = C * 1.25                              ' Expansion factor 
Else 
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    E = E - C 
    C = -C * (0.75 / 1.25)                    ' Contraction factor 
    Sheet2.Cells(5, 9) = E 
    Sheet2.Cells(5, 10) = C 
    G(1) = Obj_normal() + constraint() 
    Sheet2.Cells(4, 14) = G(1) 
End If 
 
Sheet2.Cells(5, 14) = i 
 
If Abs((G(2) - G(0)) / G(2)) < 10 ^ -6 And Abs(C / E) < 10 ^ -6 _ 
                And Abs(a / k0) < 10 ^ -6 And Abs(b / k1) < 10 ^ -6 Then  ' Stopping criteria 
    Exit For 
Else 
    G(2) = G(0) 
End If 
 
Next i 
 
Sheet2.Cells(3, 10) = Abs(a)       ' reports the magnitude of the last change in parameter values 
 
Sheet2.Cells(4, 10) = Abs(b) 
Sheet2.Cells(5, 10) = Abs(C) 
Sheet2.Cells(4, 14) = G(0)         ' Final Objective function value 
 
'Sheet4.Cells(l + 4, 2) = k0 
'Sheet4.Cells(l + 4, 3) = Abs(a) 
'Sheet4.Cells(l + 4, 4) = k1 
'Sheet4.Cells(l + 4, 5) = Abs(b) 
'Sheet4.Cells(l + 4, 6) = E 
'Sheet4.Cells(l + 4, 7) = Abs(C) 
'Sheet4.Cells(l + 4, 8) = G(0) 
'Sheet4.Cells(l + 4, 9) = i 
 
Sheet2.Cells(z + 40, 1) = z 
Sheet2.Cells(z + 40, 2) = k0 
Sheet2.Cells(z + 40, 3) = k1 
Sheet2.Cells(z + 40, 4) = E 
Sheet2.Cells(z + 40, 5) = i 
Sheet2.Cells(z + 40, 7) = Abs(a) 
Sheet2.Cells(z + 40, 8) = Abs(b) 
Sheet2.Cells(z + 40, 9) = Abs(C) 
 
End Sub 

'--------------------------------------------------Objective Function Evaluation------------------------------------------ 

Function Obj_normal() As Double 
 
Dim a1 As Double 
Dim b1 As Double 
Dim C1 As Double 
Dim sum As Double 
'-------------------------------------------------------R3 Cyclic Direct Search--------------------------------------------- 

For q = 1 To 27 Step 1 
    Ci = Sheet2.Cells(7 + q, 2).Value 
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    F = Sheet2.Cells(7 + q, 3).Value 
    T = Sheet2.Cells(7 + q, 4).Value 
    C0 = Sheet2.Cells(7 + q, 5).Value 
         
    Cir = Cimin * 0.9   '  Initializing 
    Tr = Tmin * 0.9 
    Fr = Fmin * 0.9 
         
    a1 = Cir * 0.1 
    b1 = Tr * 0.1 
    C1 = Fr * 0.1 
     
    C0r = Newton(Cir, Fr, Tr) 
    d(0) = dist(Ci, F, T, C0, Cir, Fr, Tr, C0r, 1, 1, 1, 1) + chk * 1000 
     
    d(2) = d(0) 
 
    For j = 1 To 2000 Step 1 
     
        Cir = Cir + a1 
        If Cir < 0 Then GoTo 5 
         
        C0r = Newton(Cir, Fr, Tr) 
        d(1) = dist(Ci, F, T, C0, Cir, Fr, Tr, C0r, 1, 1, 1, 1) + chk * 1000 
 
        If d(1) < d(0) Then 
            d(0) = d(1) 
            a1 = a1 * 1.25   ' Expansion factor 
        Else 
5           Cir = Cir - a1 
            a1 = -a1 * 0.75 / 1.25  ' Contraction factor 
        End If 
         
        Tr = Tr + b1 
        If Tr < 0 Then GoTo 6 
         
        C0r = Newton(Cir, Fr, Tr) 
        d(1) = dist(Ci, F, T, C0, Cir, Fr, Tr, C0r, 1, 1, 1, 1) + chk * 1000 
 
        If d(1) < d(0) Then 
            d(0) = d(1) 
            b1 = b1 * 1.25   ' Expansion factor 
        Else 
6           Tr = Tr - b1 
            b1 = -b1 * 0.75 / 1.25  ' Contraction factor 
        End If 
         
        Fr = Fr + C1 
        If Fr < 0 Then GoTo 7 
         
        C0r = Newton(Cir, Fr, Tr) 
        d(1) = dist(Ci, F, T, C0, Cir, Fr, Tr, C0r, 1, 1, 1, 1) + chk * 1000 
 
        If d(1) < d(0) Then 
            d(0) = d(1) 
            C1 = C1 * 1.25   ' Expansion factor 
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        Else 
7           Fr = Fr - C1 
            C1 = -C1 * 0.75 / 1.25  ' Contraction factor 
        End If 
              
        If Abs((d(2) - d(0)) / d(2)) < 10 ^ -10 And Abs(C1 / Fr) < 10 ^ -10 And Abs(a1 / Cir) < 10 ^ -10 And  
        Abs(b1 / Tr) < 10 ^ -10 Then            ' Stopping criteria 
            Exit For 
        Else 
            d(2) = d(0) 
        End If 
 
    Next j 
     
    Sheet2.Cells(7 + q, 7).Value = Cir 
    Sheet2.Cells(7 + q, 8).Value = Fr 
    Sheet2.Cells(7 + q, 9).Value = Tr 
    Sheet2.Cells(7 + q, 10).Value = C0r 
    Sheet2.Cells(7 + q, 11).Value = d(0) 
     
    sum = sum + d(0) 
 
Next q 
 
    Obj_normal = sum                              ' Objective function value 
    Sheet2.Cells(35, 11) = sum 
     
End Function 

'--------------------------------------------------------------------------------------------------------------------------------- 

Function dist(Ci As Double, F As Double, T As Double, C0 As Double, Cir As Double, Fr As Double, Tr 

As Double, C0r As Double, sig1 As Double, sig2 As Double, sig3 As Double, sig4 As Double) As Double 

 

dist = ((Ci - Cir) / ((Cimax - Cimin) * sig1)) ^ 2 + ((F - Fr) / ((Fmax - Fmin) * sig2)) ^ 2 + ((T - Tr) / 

((Tmax - Tmin) * sig3)) ^ 2 + ((C0 - C0r) / ((C0max - C0min) * sig4)) ^ 2 

  

End Function 

'______________________________________________________________________________________ 

' ___________________________________Maximum Likelihood Module__________________________ 

'-------------------------------------------------------Parameter Optimization--------------------------------------------- 

Sub Regression_max () 
Dim a As Double 
Dim b As Double 
Dim C As Double 
'-------------------------------------------------------R3 Cyclic Direct Search--------------------------------------------- 

k0 = Sheet3.Cells(3, 6).Value * rand         ' Initializing 
k1 = Sheet3.Cells(2, 6).Value * rand 
E = Sheet3.Cells(4, 6).Value * rand 
 
Sheet5.Cells(3, 9) = k0 
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Sheet5.Cells(4, 9) = k1 
Sheet5.Cells(5, 9) = E 
 
G(0) = ObjML() + constraint() 
Sheet5.Cells(4, 14) = G(0) 
 
G(2) = G(0)                                   ' storing the initial objective fn value in G(2) 
 
a = k0 * 0.5 
b = k1 * 0.5 
C = E * 0.5 
 
For i = 1 To 5000 Step 1 
 
    k0 = k0 + a 
    Sheet5.Cells(3, 9) = k0 
    Sheet5.Cells(3, 10) = a 
    G(1) = ObjML() + constraint() 
    Sheet5.Cells(4, 14) = G(1) 
     
If (G(1) < G(0)) Then 
    G(0) = G(1)                               ' G(0) = best possible value till now 
    a = a * 1.25                              ' Expansion factor 
Else 
    k0 = k0 - a 
    a = -a * (0.75 / 1.25)                    ' Contraction factor 
    Sheet5.Cells(3, 9) = k0 
    Sheet5.Cells(3, 10) = a 
End If 
 
    k1 = k1 + b 
    Sheet5.Cells(4, 9) = k1 
    Sheet5.Cells(4, 10) = b 
    G(1) = ObjML() + constraint() 
    Sheet5.Cells(4, 14) = G(1) 
 
If (G(1) < G(0)) Then 
    G(0) = G(1) 
    b = b * 1.25                              ' Expansion factor 
Else 
    k1 = k1 - b 
    b = -b * (0.75 / 1.25)                    ' Contraction factor 
    Sheet5.Cells(4, 9) = k1 
    Sheet5.Cells(4, 10) = b 
    G(1) = ObjML() + constraint() 
    Sheet5.Cells(4, 14) = G(1) 
End If 
 
E = E + C 
    Sheet5.Cells(5, 9) = E 
    Sheet5.Cells(5, 10) = C 
    G(1) = ObjML() + constraint() 
    Sheet5.Cells(4, 14) = G(1) 
 
If (G(1) < G(0)) Then 
    G(0) = G(1) 
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    C = C * 1.25                              ' Expansion factor 
Else 
    E = E - C 
    C = -C * (0.75 / 1.25)                    ' Contraction factor 
    Sheet5.Cells(5, 9) = E 
    Sheet5.Cells(5, 10) = C 
    G(1) = ObjML() + constraint() 
    Sheet5.Cells(4, 14) = G(1) 
End If 
 
Sheet5.Cells(5, 14) = i 
 
If Abs((G(2) - G(0)) / G(2)) < 10 ^ -6 And Abs(C / E) < 10 ^ -6 _ 
                And Abs(a / k0) < 10 ^ -6 And Abs(b / k1) < 10 ^ -6 Then  ' Stopping criteria 
    Exit For 
Else 
    G(2) = G(0) 
End If 
 
Next i 
 
Sheet5.Cells(3, 10) = Abs(a)       ' reports the magnitude of the last change in parameter values 
Sheet5.Cells(4, 10) = Abs(b) 
Sheet5.Cells(5, 10) = Abs(C) 
Sheet5.Cells(4, 14) = G(0)         ' Final Objective function value 
 
'Sheet4.Cells(l + 4, 20) = k0 
'Sheet4.Cells(l + 4, 21) = Abs(a) 
'Sheet4.Cells(l + 4, 22) = k1 
'Sheet4.Cells(l + 4, 23) = Abs(b) 
'Sheet4.Cells(l + 4, 24) = E 
'Sheet4.Cells(l + 4, 25) = Abs(C) 
'Sheet4.Cells(l + 4, 26) = G(0) 
'Sheet4.Cells(l + 4, 27) = i 
 
Sheet5.Cells(z + 40, 1) = z 
Sheet5.Cells(z + 40, 2) = k0 
Sheet5.Cells(z + 40, 3) = k1 
Sheet5.Cells(z + 40, 4) = E 
Sheet5.Cells(z + 40, 5) = i 
Sheet5.Cells(z + 40, 7) = Abs(a) 
Sheet5.Cells(z + 40, 8) = Abs(b) 
Sheet5.Cells(z + 40, 9) = Abs(C) 
 
End Sub 
'--------------------------------------------------Objective Function Evaluation------------------------------------------ 

Function ObjML() As Double 
 
Dim a1 As Double 
Dim b1 As Double 
Dim C1 As Double 
Dim sigma(1 To 4) As Double 
Dim sum As Double 
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sigma(1) = sig(1) / (Cimax - Cimin) 
sigma(2) = sig(2) / (Fmax - Fmin) 
sigma(3) = sig(3) / (Tmax - Tmin) 
sigma(4) = sig(4) / (C0max - C0min) 
 
'-------------------------------------------------------R3 Cyclic Direct Search--------------------------------------------- 

For q = 1 To 27 Step 1 
 
    Ci = Sheet5.Cells(7 + q, 2).Value 
    F = Sheet5.Cells(7 + q, 3).Value 
    T = Sheet5.Cells(7 + q, 4).Value 
    C0 = Sheet5.Cells(7 + q, 5).Value 
         
    Cir = Cimin * 0.9   '  Initializing 
    Tr = Tmin * 0.9 
    Fr = Fmin * 0.9 
         
    a1 = Cir * 0.1 
    b1 = Tr * 0.1 
    C1 = Fr * 0.1 
     
    C0r = Newton(Cir, Fr, Tr) 
    d(0) = dist(Ci, F, T, C0, Cir, Fr, Tr, C0r, sigma(1), sigma(2), sigma(3), sigma(4)) + chk * 1000 
     
    d(2) = d(0) 
 
    For j = 1 To 2000 Step 1 
     
        Cir = Cir + a1 
        If Cir < 0 Then GoTo 1 
         
        C0r = Newton(Cir, Fr, Tr) 
        d(1) = dist(Ci, F, T, C0, Cir, Fr, Tr, C0r, sigma(1), sigma(2), sigma(3), sigma(4)) + chk * 1000 
 
        If d(1) < d(0) Then 
            d(0) = d(1) 
            a1 = a1 * 1.25   ' Expansion factor 
        Else 
1           Cir = Cir - a1 
            a1 = -a1 * 0.75 / 1.25  ' Contraction factor 
        End If 
         
        Tr = Tr + b1     
        If Tr < 0 Then GoTo 3 
         
        C0r = Newton(Cir, Fr, Tr) 
        d(1) = dist(Ci, F, T, C0, Cir, Fr, Tr, C0r, sigma(1), sigma(2), sigma(3), sigma(4)) + chk * 1000 
 
        If d(1) < d(0) Then 
            d(0) = d(1) 
            b1 = b1 * 1.25   ' Expansion factor 
        Else 
3           Tr = Tr - b1 
            b1 = -b1 * 0.75 / 1.25  ' Contraction factor 
        End If 
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        Fr = Fr + C1 
        If Fr < 0 Then GoTo 4 
         
        C0r = Newton(Cir, Fr, Tr) 
        d(1) = dist(Ci, F, T, C0, Cir, Fr, Tr, C0r, sigma(1), sigma(2), sigma(3), sigma(4)) + chk * 1000 
 
        If d(1) < d(0) Then 
            d(0) = d(1) 
            C1 = C1 * 1.25   ' Expansion factor 
        Else 
4           Fr = Fr - C1 
            C1 = -C1 * 0.75 / 1.25  ' Contraction factor 
        End If 
              
        If Abs((d(2) - d(0)) / d(2)) < 10 ^ -10 And Abs(C1 / Fr) < 10 ^ -10 And Abs(a1 / Cir) < 10 ^ -10 And  
        Abs(b1 / Tr) < 10 ^ -10 Then            ' Stopping criteria 
            Exit For 
        Else 
            d(2) = d(0) 
        End If 
 
    Next j 
     
    Sheet5.Cells(7 + q, 7).Value = Cir 
     Sheet5.Cells(7 + q, 8).Value = Fr 
    Sheet5.Cells(7 + q, 9).Value = Tr 
    Sheet5.Cells(7 + q, 10).Value = C0r 
    Sheet5.Cells(7 + q, 11).Value = d(0) 
     
    sum = sum + d(0) 
 
Next q 
 
    ObjML = sum                               ' Objective function value 
    Sheet5.Cells(35, 11) = sum 
     
End Function 

'--------------------------------------------------------------------------------------------------------------------------------- 
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APPENDIX C – RESULTS: PARAMETER DISTRIBUTIONS 

AND PROBABILITY PLOTS 

The following Visual Basic code was used to generate the parameter histograms and the 

probability plots 

Code:  

Option Explicit 
' Author :  Chetan Chandak 
' Created date: 20- Dec-2007  
' Description : Result analysis through parameter distribution and probability plots 
'______________________________________________________________________________________ 

' ___________________________________Parameter Distributions_______________________________ 

Public r As Integer                      ' number of realizations 
 
Sub count() 
Dim i As Integer 
Dim j As Integer 
Dim N As Integer                         ' number of intervals, taken as 50 here 
 
Dim X As Double 
Dim Xmax As Double 
Dim Xmin As Double 
Dim R1 As Double                         ' interval size 
Dim P(0 To 200) As Double            ' for interval spacing 
Dim C(1 To 200) As Integer             ' counts the number of values within an interval 
 
Dim Y As Double 
Dim Ymax As Double 
Dim Ymin As Double 
Dim R2 As Double                         ' interval size 
Dim Q(0 To 200) As Double            ' for interval spacing 
Dim D(1 To 200) As Integer            ' counts the number of values within an interval 
 
Sheet1.Range(Cells(25, 6), Cells(125, 10)).ClearContents 
 
r = Sheet1.Cells(1, 9).Value 
N = Sheet1.Cells(2, 9).Value 
Xmin = Sheet1.Cells(2, 4).Value 
Xmax = Sheet1.Cells(3, 4).Value 
Ymin = Sheet1.Cells(2, 5).Value 
Ymax = Sheet1.Cells(3, 5).Value 
 
' Since the regression methods would have diferent ranges depending upon each of its min and max values, 
' a common min and max for A0 and pka is chosen to facilitate plotting the distribution on the same graph 
 
R1 = (Xmax - Xmin) / N 
R2 = (Ymax - Ymin) / N 
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For i = 0 To N Step 1 
 P(i) = (i * R1) + Xmin 
 Q(i) = (i * R2) + Ymin 
Next i 
 
For i = 1 To N Step 1 
    C(i) = 0 
    D(i) = 0 
Next i 
 
For i = 1 To r 
    X = Sheet1.Cells(24 + i, 2).Value 
    Y = Sheet1.Cells(24 + i, 3).Value 
     
    If X = Xmax Then C(N) = C(N) + 1 
    If Y = Ymax Then D(N) = D(N) + 1 
      
    For j = 1 To N Step 1 
        If (X > P(j - 1) Or X = P(j - 1)) And X < P(j) And X < Xmax Then 
        C(j) = C(j) + 1 
        End If 
         
        If (Y > Q(j - 1) Or Y = Q(j - 1)) And Y < Q(j) And Y < Ymax Then 
        D(j) = D(j) + 1 
        End If 
    Next j 
 
Next i 
 
For i = 1 To N 
    Sheet1.Cells(24 + i, 6) = P(i - 1) & " - " & P(i)  
    Sheet1.Cells(24 + i, 7) = C(i) 
    Sheet1.Cells(24 + i, 9) = Q(i - 1) & " - " & Q(i) 
    Sheet1.Cells(24 + i, 10) = D(i) 
Next i 
 
Call probability 
 
End Sub 
'______________________________________________________________________________________ 

' ___________________________________Probability Plots_____________________________________ 

Sub probability() 
 
Dim i As Integer 
Dim j As Integer 
Dim N As Integer                  ' number of intervals, taken as 100 here 
 
Dim X As Double                  ' X = A0 
Dim Y As Double                  ' Y = pKa 
 
Dim Xact As Double               ' true value of A0 
Dim Yact As Double               ' true value of pKa 
 
Dim d1 As Double                 ' deviation of a particular A0 value from the true value 
Dim d2 As Double                 ' deviation of a particular pKa value from the true value 
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Dim R1 As Double                 ' interval or step size of d1 
Dim R2 As Double                  ' interval or step size of d2 
 
Dim C1 As Double                 ' count of # A0 values beyond a particular deviation 
Dim C2 As Double                 ' count of # pKa values beyond a particular deviation 
 
Dim dmax1 As Double              ' max deviation of A0 value from the true value 
Dim dmax2 As Double              ' max deviation of pKa value from the true value 
Dim count As Integer             ' counts the total number of realizations 
 
Sheet1.Range(Cells(25, 12), Cells(225, 15)).ClearContents 
 
count = 0 
r = Sheet1.Cells(1, 9).Value 
N = Sheet1.Cells(3, 9).Value 
Xact = Sheet1.Cells(3, 2).Value 
Yact = Sheet1.Cells(4, 2).Value 
 
For i = 1 To r Step 1 
     
    X = Sheet1.Cells(24 + i, 2).Value 
    Y = Sheet1.Cells(24 + i, 3).Value 
     
    If X = 0 Or Y = 0 Then GoTo l1 
    d1 = Abs(X - Xact) 
    d2 = Abs(Y - Yact) 
     
    If d1 > dmax1 Then dmax1 = d1 
    If d2 > dmax2 Then dmax2 = d2 
    count = count + 1 
     
l1: Next i 
 
R1 = dmax1 / N 
R2 = dmax2 / N 
 
j = 0 
While (d1 <= dmax1) Or (d2 <= dmax2) 
 
    d1 = j * R1 
    d2 = j * R2 
    C1 = 0 
    C2 = 0 
 
    For i = 1 To 1000 Step 1 
        X = Sheet1.Cells(24 + i, 2).Value 
        Y = Sheet1.Cells(24 + i, 3).Value 
         
        If X = 0 Or Y = 0 Then GoTo l2 
        If Abs(X - Xact) > d1 Then 
            C1 = C1 + 1 
        End If 
         
        If Abs(Y - Yact) > d2 Then 
            C2 = C2 + 1 
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        End If 
l2: Next i 
 
    Sheet1.Cells(25 + j, 12).Value = d1 
    Sheet1.Cells(25 + j, 13).Value = C1 / count 
    Sheet1.Cells(25 + j, 14).Value = d2 
    Sheet1.Cells(25 + j, 15).Value = C2 / count 
 
    j = j + 1 
 
Wend 
 
End Sub 

'--------------------------------------------------------------------------------------------------------------------------------- 
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Findings and Conclusions:   
 

To overcome the shortcomings of the least squares regression method, two 
methods – the normal distance, and the maximum likelihood, were developed. The 
maximum likelihood is a more generic method, with the normal distance being a 
consequence of it when error variances in the input and output measurements are equal. 
The methods were compared with the least squares method through Monte Carlo 
simulations for Titration and Packed Bed Reactor models. The methods were tested for 
varying magnitudes of uncertainty, for a sufficient number of realizations to ensure the 
results reflected the average parameter estimates, and were unique to the regression 
method.   

The results for the maximum likelihood method were found to be at par with the 
best method in most cases. The vertical and the normal distance method had individual 
preferences depending upon the relative magnitudes of uncertainty. However the 
programming burden for the maximum likelihood and the normal distance method, apart 
from the estimate of uncertainty variances for the maximum likelihood method, were the 
drawbacks. But, approximate estimate of the variances for the maximum likelihood 
method also yielded good results, as tested for a few cases. Hence for a more accurate 
estimate of regression parameters, the maximum likelihood method could be adopted 
with a higher probability of getting the desired results as compared to the other two 
methods.  
 
 
 
 
 
 


