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1. INTRODUCTION

Regression techniques are widely used to model empirical data. They find varied
applications in many fields from formulating scientific rules and laws, t@galating
data, and much more. Conventionally these methods employ the classic least squares
(vertical distance) approach to estimate the model parameter valuds, Rdwever, is
flawed in its underlining assumption itself that there are no uncertainties input
variables. Input and output uncertainties are inherent to all practical eepésjrand the
vertical least square distance (VLSD) approach can cause a model pataaset€he
purpose of this study is to investigate the alternate approaches tried byestachers

and try and develop a new regression technique to overcome the above shortcomings.

Fig. 1 represents the outpitt) vs. input(X) of an illustrative nonlinear process. Due
to uncertainty in the input values Xf, is any nominally chosen setting or meter reading
of the input given to the process, the actual input to the process lies anywhere bigtween
andX,. The corresponding output f&; andX, may lie betweeiy;; andY;,, ¥,; andY;,
respectively. Hence for a given estimate of nominal, or target ¥ypube output value
may lie anywhere within the region boundednbin{Y,,, Y;,, Y5;, Y55} and
max{Y;;, Y12, Y21, Y22} depending upon the deviation from the true value. Similarly for a
given inputX,, the output can lie anywhere within the region bounded by
min{Ys,, Ys,, Vo1, Yeo} @andmax{Ys,, Yso, Y1, Yoo} AX andAY represent the probable

uncertainty limits for the input and output values.
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Figure 1: Input vs. output for an illustrative nonlinear process
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Tradionally, developing an empirical model for the above process presumesrhat the
are no uncertainties in the input values. Hence, if the experiment actualtg resul
(X6, Yg2) as the input-output pair, it would be erroneously assumed that the measurement
corresponds tX;, Ys2). And, due to uncertainty in the output values, the measured
output could lie anywhere along the vertical line intersectijpngetweery,, andYs;.
This presumption might lead to the parameter values close to the actual ones when the
slope of the curve is similar for &tvalues. However, when the slope of the curve
makes large changes, the relative importance of data shifts. For exaigplesttows
that the possiblaY deviation a, appears very large relative to the deviation a¥,
even though the precision &ns the same at boftrvalues. Using sum-of-squared

output deviation(ZAY?) as the objective function, would give too much importance to




the inputX,, relative taX,. The truth is better indicated by revealing b&tandY
uncertainty on the data and a likelihood region around the data point.

Hence, with the idea of sweeping all the uncertainty in the output variable being
fundamentally incorrect, alternative approaches like the perpendicgiasseon through
minimization of the perpendicular offsets [3, 7] or shifting of data points [8], the
geometric mean functional relationship (GMFR) [4, 5, 9], the maximum likelihood
method [1, 4, 5, 9], etc., were developed for linear regression. Nonlinear regression,

however, hasn’t been as extensively studied as the linear regression.

1.1 LITERATURE REVIEW

1.1.1L INEAR REGRESSION

As cited in [1, 2], a model for linear regression does not just imply a straight line. A
model is said to be linear in parameters if the second and higher order desivhtive
function with respect to the parameters are zero, i.e.,

9%G(a,X)

o [l
aaiaaj

1)
where G’ is the function relating the model parameteyg;. ., with the independent
variableX. Hence, a polynomial of the forrd,= a + BX + yX? is linear in terms of
regression as the second derivatives with respegig are zero. Howevef is

nonlinear inX as its second derivative with respeckts non-zero. A few more

1+aX . . . .
examples could b&; = Ta, andG, = aX?. G, is nonlinear in parameters but linear

in X while G, is nonlinear in both the parameters anhd



Consider a model given by

where(X;,Y;) represent any of th&v* experimental data pairs, amglb are the true
process parameters. Due to uncertainty in the input and output measurements, the
apparent experimental data p@ft, Y;) is actually due to the true values and the error

associated with it, i.e.,
Xr= X;t 6;, 6;~N(0,05,) 3)
Yi=Yrte, &~N(O0) (4)

where(Xr, Yr) represent the true but unknowable measurementsy; andepresent the
corresponding errors as a normal distribution with a mean of zero and variance

s, 0¢, respectively. Schematically this may be summarized as

SIMULATOR

Xy Model
YT =a + bXT

Figure 2: A prototype process simulator



The regression method employed would yield a model of the type

where(X;, ¥;) represent the corresponding model data pairgahdhe model parameter
estimates. lllustrated below are a few of the most commonly used regressthods that

could be employed to estimaieandb .

1.1.1.1lL east Squares Regression — Vertical distances
Regressingd onX, the square of the vertical distances between the experimental and

model data pairs are minimized, i.e.,

{a,b}

N
min J = ) (% - %)’
(6)

Analytically, the model parameters can be estimated by equating thatiderof the

objective function with respect to the parameters to zero, resulting in [3]

Cx5H-CY)- Cxy)-CX)
N X — (T X)?

a=

(7)

NEXY)— X)) - CY)

b=
NE X - CX)?

(8)

In a more simplified manner [4, 5], Eq. (7) and (8) can be written as

XX — D - V) Sy

b= i =
XX — X)? Sxx

9)



a=Y— bX (10)

whereX andY represent the mean of the experimental input and output measurements.

However, with the availability of faster computation techniques, numeridhloae to
optimize the objective function by varying the parameter values are widetl The
numerical methods iteratively minimize the objective function by varyiagptrameter

values through an optimization routine.

The least squares regression is believed to provide better parameteressiihet the
uncertainty in the input variable is minimal, or negligible, compared to the uncgitaint

the output variable.

1.1.1.2L east Squares Regression — Horizontal distances

While the conventional least squares regression minimizes the vertiealceist
regressingd onY minimizes the horizontal distances. This method is suitable when the
uncertainty in the input variables is much larger compared to the uncertainty in the output
variable, as the output variable is assumed to be perfectly known. The model equation is

transformed to the type [6]

=
Il
QD
+
(=)
<

(11)

And the parameter estimates by the analytical method are obtained blgantging x

and yin Eq. 7 and 8 as [6]



v -Cx)- Cxv)-CY)
N Y - (XY)?

a =
(12)

_NEXY) - BX) - &Y
N Y?) - (EY)?

()

(13)
1.1.1.3Perpendicular regression
Due to the limited applicability of the least square regression techniques, methods
like the perpendicular regression were developed. The perpendicular distamces c
traditionally be minimized by two approaches
1. Minimizing the perpendicular offsets [3, 7]
2. Shifting the coordinate axis by an angle such that minimizing the veristahdes

hence is equivalent to minimizing the perpendicular distances [8].

1.1.1.3.1 Perpendicular offsets
This method involves minimizing the square of the perpendicular distances between
the experimental and model data pairgXlf Y;) is an experimental data pair, then its

perpendicular distance to the Model (Eqg. 2) is given by [3, 7]

_ Y — (a+ bx))|

V1 + b2

d

(14)



X2, 1)

Linear model

XY
/( iy 1) <> Perpendicular

X

Figure 3: Perpendicular distance — Linear regression

In Fig. 3,(X,, Y5) is the foot of the perpendicular &, ;). However, minimizing the
perpendicular distances does not necessarily require finding the foot of thedbeu|ze
if the point(X;, ;) and the model coefficients are known, as can be seen from Eq.14. The
objective function is the same as minimizing the vertical distances butheith
denominator term, i.e. [3, 7],
N 5\ 2
. Z<Y—(a+bX)) C i 9)
min | = ~t 77

2 2
{a,b} o V1 + b2 - 1+b

(15)

Hence, for the experimental paiit, Y;) , a point(X;, ¥;) is estimated based on the model
parameters and hence the Objective Function (Eq. 15) is evaluated. Altern#tizely
perpendicular distance can be evaluated by determining the foot of the perpendicular
(X,,Y,), and hence its distance frai;, ;).

8



The analytical estimation of the model parameters is given by [3]

1-n-Cx* -CY)- Cx¥) - CX)
N1-71)-CX* - (CX)?

a=

(16)
5= NEXY) - QX)) QY)
N1 -1)-(ZX*) — (X X,)?
17)
where
oS-y
(1+b3)-TX5)
(18)
In a more simplified form the slope estimatecould be written as [4]
o Syy— Sxx t \/(SYY — Sxx )2+ 4Syy”
b= 2500
(19)

whereSyy = Y(X; — X)?, Sxy = X(X; — X)(Y; — Y). The estimate of the intercept can

be obtained a8 = Y — bX.

1.1.1.3.2 Shifting of axes

Another approach of perpendicular regression is to shift the primary directioa of t
coordinate axes by an angle such that minimizing the vertical distancesigd¢ine same
as minimizing the perpendicular offsets with respect to the original idinect

The method begins by initializing the parameters of the Model (Eq. 2), by mingmizi

the vertical distances. The parameters hence are denatgdgswvhere the subscript ‘0’



represents the initial value of the parameters before shifting the atkesslopeb,
equals zero, the line is horizontal, and minimizing the vertical distances héhee@&ne
as minimizing the perpendicular distances. Hence the axes are contihifedly sy
certain angles until this condition is satisfied, and once this is achieved, theefsra
values with respect to the original axes are the required estimates.

The axes are shifted initially by an anglg such that vertical or the dependent
variable axis aligns itself with the perpendiculag ) to the initial model. For the

parametersa,, b, the angle is determined by the direction cosineg &fs [8]

Nyg = COSO, =

_bO
/1 + by*
1

(20)
Ny = CO0S By, =
1+ by*
(21)
wheren,, andn,,are the component vectorsigj.
The transformed experimental data gais y;) is given by [8]
B = o “cort ] G =5
(22)
Or, from the expressions for direction cosines from Egs. (20) and (21), [8]
1
X = ——= (x; + boyy)
/1 + by?
(23)

10



. 1

yi= ——— (v
/1+b02

Since the slopg, + 0, the parameter values are re-estimated by minimizing the vertical

— box;)

(24)

distances with respect to the new coordinate system and the process is repeated
until by, = 0.
If 6,0,0,1,..0,, are the angles by which the axes were rotated for each iteration, the

final transformed experimental data pair is given by [8]

{J/c\l} B [cos Oyn —cos Hxn] [cos 0y0 —cos on] {xl-} Y {xi}
9 7 lcosOy, cosBy, |7 lcosByy cosBy | Wi T Oy

(25)
And to get back to the original coordinate system, the transpose of the cumulative

rotation matrix is multiplied to unit normal vectidr 1]7, to obtain the normal vectarto

the final model. [8]

i= o} =m0}
(26)
And hence the parameter estimates, [8]
a=-m p=_%
ny ny
(27)

However this approach of perpendicular regression is a lot more complex than
minimizing the perpendicular offsets. Hence unless this method has any advafitage
faster convergence to the optimum or lesser iterations, which hasn’t been dited by

author, it may not seem reasonable to select this approach.

11



1.1.1.4Geometric Mean Functional Relationship

This method is another effort to overcome the pitfalls of the least squares mdtbod. T
method requires to first regreBon X to get the ordinary least square estimate of the
slope a$ = Syy/ Sxx [4, 5, 9]. Then regress onY and re-write the equation in the
form of Y onX to get another estimate of the slope; Syy/ Sxy [4, 5, 9]. The GMFR

estimate of the slope then is [4, 5, 9]

~ — ’S
beurr = sign(Sxy)V bl = sign(Sxy) Sﬂ
XX

(28)
The estimate of the intercept can be obtainetlay — bX.
As reported in [5], this method minimizes the sum of the geometric mean of squared
vertical and horizontal distances of each experimental point to the model line. Mghen t
uncertainty in the input and output measurements are due to the errors and not due to the
randomness in the variable itself, the parameter estimates for this medhibd same as

the one for maximum likelihood, and the method is best suited for this case [4].

1.1.1.5Maximum Likelihood

The maximum likelihood is a more generic regression technique that maxitméeze
combined likelihood probabilities of the experimental data pairs. However, the gincipl
of maximum likelihood is mostly used in estimating the unknown parameters of a
distribution and its application to regression techniques has been limited. Forehe Lin
Model (Eg. 2), the analytical estimate of the slope is determined by finditigehleood

probabilities of individual data points by the probability density function and equbgng

12



derivative of the combined probability with respect to the parameters to zeroopge sl

estimate obtained hence is given by [4]

Syy — ASxx + \/(SYY — ASxx )2 + 4ASxy”

b=
2Sxy

(29)
A detailed explanation on this method for nonlinear regression, a more genera case, i
addressed in the later part of the report.

It is important to note that when the variances in the input and output measurements
are the same, i.el,(= 0,2/ 5% ) = 1, the perpendicular regression parameter estimates
are the same as the parameter estimates for the maximum likelihoad r{feéter EQs.

19 and 29) and hence the method is best suited in this case [4]. This has also been found

true for nonlinear regression discussed later in the report.

1.1.2NONLINEAR REGRESSION

The shortcomings of the least squares regression remain the same for botathe |
and the nonlinear regression. And to overcome this, a few efforts were made by
researchers to develop methods that were computationally realizable andamuizdst
to an engineer’s intellect. One among them is the Taylors series apatiox to
evaluate perpendicular distances as cited in [10].
The author, Akaho [1Q]sed a first-order Taylor series approximation to determine a
tangent at a point on the assumed model curve, vertically above/below the ertsrime
data point, and then determine the foot of the perpendicular from the experimental point

to the tangent.

13
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For any experimental data poii;, y;) close to the assumed model cufi(e, y) as

shown in Fig. 4, the first order Taylor series approximation is given by

fGoy) = fley) + f(ayd - (e —x) + f,(y0 - (= v (30)

If (x,y) is a point on the curve,

fy)=fx)-y=0 (31)
fOoy) = fly) + fileny) - (x—x) + £, - 0 —vi) =0 (32)
Equation (32) represents a tangent to the curve at the(pgint). For the poin{x;, y;),
Akaho’s method requires finding a pofiit,, y,) along this tangent which is the foot of
the perpendicular on it froifx;, y;). This approach holds good when there are no
significant changes in the slope of the assumed curve over the uncertaintgnange

as the tangent would remain relatively the same.

14



But, for large changes in the slope of the curve as shown in Fig. 5, the Tagsr ser
approximation for the poiny;, y;) will result in a tangent at a poi(t;, y,) on the
curve, and the foot of the perpendicular evaluated along this tangent wduig 29
instead of(x, y), the actual foot of the perpendicular. This distortion of perpendicular

distances is a drawback of Akaho’'s method.

yi)

I -f(xl y) \
—> tangent AN

------- Akaho's perpendicular
-L-- Actual perpendicular

X

Figure 5: Drawback of Akaho's method
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1.2 RESEARCH STATEMENT

Based on the above literature review it was established that though seyesgion
techniques were devised for least squares regression, each method had its own
limitations. The maximum likelihood method seemed the most promising of all, but the
research was mostly restricted to linear regression.

In our study, we intended to analyze the shortcomings the least squarsioagie®ugh
Monte Carlo simulations and explore alternative regression techniques gcthdi

maximum likelihood approach for nonlinear regression.

16



2. METHOD

This work evaluates the quality of a regression method by its accuracy and
consistency in predicting the regression parameter values. The closermesparbimeter
values estimated through a regression method, to the true values, determinesrdey a
of the method. Consistency may be established through repeated estimations of the
parameter values for different sets of data realizations (A daizateat is a realistic
approximation of experimental data for computer simulatidrie.work also evaluates

the practicability of a regression method by computational load and user cdmplexi

The methods analyzed were the least squares method, the normal distance method,
and maximum likelihood method. The least squares method is the conventional method
adopted for regression. The maximum likelihood method was developed through our
research, and the normal or the perpendicular distance method is just a consequence of
the maximum likelihood method when the uncertainties in the input and the output

variables g, anda,,, are the same.

Monte Carlo simulations were run for a weak acid-strong base titratp@riment
and a packed bed reactor experiment. As cited in [9], “in Monte Carlo studies, the
investigator plays God by choosing the true values of the regression pasambtieh in
real life, can only be estimated from error-prone data. The investigatgorbgams a

computer to simulate an experiment by adding random errors to the true vatues of
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andY,” and tests the regression capabilities of different methods based on theatestim

of the parameter values.

2.1 SCOPE OF THE STUDY

The scope of this project is:

1. Number of regression parameters, input and output variablesThe titration
simulation comprised of two regression parametégspK,), with the input and
output variables being the volume of base add@dand the pH of the solution
respectively. The packed bed simulation was more complex with three regress
parameters- k,, k4, E, three input variables the inlet concentratio(C;,,), the
volumetric flowrate(v), and the reactor temperatyf®), and the outlet

concentratior{C,) as the single output variable.

2. Distribution of the errors: The input and output variables were assumed to follow

normal independent distributions with a mean of zero.

Note: In the discussion henceforth, the input and output error variagces, are

denoted by, ando, respectively.
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2.2 EXPERIMENT

2.2.1 TITRATION

The titration experiment chosen to test the methods is usually known for its
nonlinearity in the pH values vs. the volume of titrant added, and hence is a good test for
the robustness of any regression technique. The experiment was simulated infilicros
Visual Basic based on the equations governing the titration process. &apeasumed
to be added dropwise to the batch of acid, and the pH of the mixture changed instantly.
The volume readings of the base added were the input to the process, and the
corresponding pH values were the output. Uncertainty was included in both the input and
output measurements to simulate reality. The theoretical equations wiges cer
follows:
Let A, andB, be the initial acid and base concentrations.t’anl of the base be added
to a liter of the acid solution. Due to increase in volume of the mixture through addition

of base, the acid concentration decreasé&s tool/lit and base concentration‘td

mol/lit.
Ay mol
a= v lit
(1+ 1000)
(33)
v
- S
b= ——1000 251t
(1+ 1900
(34)

Let ‘x” moles of acid ant)’ moles of water dissociate upon addition of the base. Since
it's a dilute acid, the water content is large compared to acid and virtualljnema

unaffected despite the dissociation.
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Under equilibrium,

(a—x)HA = xHY +xA~

(0 —y)H,0 = yH* + yOH™
Y)Hy y y

(b —b)BOH = bB* + bOH™

Hence, the total hydrogen ion concentratiditi*] = (x + y)

Concentration ofl: [A7] =x

Concentration 0OH ~: [OH ]=y+b

Concentration of the undissociated aé¢id,; [HA] = a —x

The dissociation constants for the acid and water from Egs. (35) and (36) are

ky = [H'][OH]

The dissociation constant of the water has a nominal value'éf 10

pH of any aqueous solution is defined as

pH = —logy [HY]

Substituting the variables in the above three equations gives

_ (x+y)x
ka = (a-x)

ky=0x+y)(y+b)
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(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)



pH = —log;o (x +) (47)

Analytically, combining Egs. (45), (46) and (47) to evaluate the pH corresponding to the
volume of base added gives a cubic expression in eitbey. Only one of the three

roots would be the desired value, which, may not be easy to determine.

Alternatively, numerical root finding methods such as the interval halving method ca
be implemented by guessing a value of pH and determining the corresponding pH value
calculated through the above equations. If the calculated pH is the samenasathe i
guess, then it is the desired root. The numerical method successively itetiatibe wi
calculated pH value as the new guess until both the values are the same. Thegnethod i

implemented in the following manner:

1. Guess a value of pH between 0 andziH,
2. Calculate the total hydrogen ion concentration correspondipg §o

[H*]= (x + y) = 10~ PHg (48)

a-Kg
Kq+ 10 PHg

3. From (45) and (48, =
4. From (46) and (48)y, = k,, - 10PH9 — p
5. Calculated total hydrogen ion concentrati@ry + y.)

6. Calculated pHpH, = —logqo (x. + V.)

The desired root would be the pH gués# ;) that makes its difference with the

calculated value zero, ¢r= pH, — pH, = 0. However, since the calculated total
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hydrogen ion concentratiqre, + y.) can be negative at times for a bad pH guesses, and
the logarithm of negative numbers is not defined alternatively defined as the
difference of the total acid concentration for the initial and calculated ds;eand the

pH value(pH,) that makey = (x + y) — (x.+ y.) = 0 is the desired root.

Hence the pH of the solution for a given set of parameter values, and the volume of
the base added can be determined through root finding techniques. The advantage of this
method is(i) There is a unique solution between 0 and(1i4.Each step in the

procedure is an explicit calculation.

2.2.1.1 Interval halving root finding technique

The interval halving method begins by localizing the root between two limits. For a
function f (x) shown in Fig.6, the ro@; lies betweer; andb;. The midpoint ofz; and
b;, b, is evaluated. Sincg(a,) andf(b,) are of opposite signs, the root is now
bracketed between these two limits. The process of midpoint calculation of tsedlimdi

bracketing the root continues until the interval size reduces to the desired limit
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F(x)

Figure 6: Interval Halving Method (Reproduced from [12])

(Note: the notations, ay, ag, bi, by, do not correspond to the parameters of the Li
Model (Eg. 2)).

For the titration procesthe interval halving method is applied wpH, as the
search variable, and the funct f defined asf = (X + y) - (Xt Yc). A typical relation

betweenf vs. pH, for a given set of parameter values and voluméasvs in Fig. 7
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f vs. pH,

-11

PH,

Figure 7: f vs. pH , - Titration experiment
Since the nominal pH of any substance lies between 0 and 14, these are chten are t
minimum and maximum bounds. Subsequent reductions in the interval size based on the

interval halving method were continued for twenty iterations, i.e., until the intereal

N
reduces to an order of 20 (Range = (AX) G) = (14 — 0)(0.5)%° = 1.3E - 5)

2.2.1.2 Data generation
The experimental data were generated by adding uncertainties to the In@hiaa
of the input and output variables. The uncertainties were presumed to follow Gaussian

distributions, a standard statistical assumption [13].

A Gaussian distribution, also called the normal distribution is a continuous
probability distribution of random variables and depicts a bell shaped pattern, sgmmet

on either side as shown in Fig. 8.
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Figure 8: Normal distribution (Reproduced from [11])

It is a plot of the random variable vs. their cepending probability density functic

values ¢) calculated as [1

1 _(z—w)?
e 2o

r:'g#,ﬂ'? (I) - ET\/E ‘ (49)

andis characterized by the me(x) and the variance{). The mean represents t
average value of the distribution and tlariance indicates the dispersion of

distribution, the higher the variance, the morg@eised the distributioc The distribution

with x = 0 ands = 1is calledthe standard normal distribution.
A Normal Independent Distribution (NID), that isiarmal distribution where ear

individual observation is independent of the otleth a mean of zero and stand:
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deviation ofs, is represented as NID(®), and is a practical approximation to uncertainty
associated with experimental measurements [2]. In Microsoft Visuat Besnoise can

be approximated to NID(@;) through the following expression [3]
(50)

Noise = o0 -Sqr(—2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd())

The noise level can be varied by varying the magnitude of tredue.
Fig. 9 shows a typical comparison of the actual data of the process with the agptaent

known to us foro, = g, = 0.25.
Apparent vs. actual data
12
ceedpesd ApparenL data
11 +——o= t »... -
ctua a Er‘."’"._f:’
)
J
10 1
4.
J:
/2
I
! :
T 9 ¢
1
1
[
1]
8 —
1
RO N
y20 R E— "’_'%-" Y
o
6
40 40.5 41 41.5 42 42.5 43
Volume of base added (ml)
Figure 9: Apparent vs. actual data - Titration experiment

The actual data in the figure represents idealized data, the input and output vaiues aft

and before, the addition of their respective noises, or in other words, the true data fed

into, and obtained from the process simulator. The apparent data represents the input and
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output values before and after the addition of their respective noises, that isathe da

evident to us.

The data generation process can be summarized as shown in Fig. 10.

_________________________________________________________

| SIMULATOR i
i Noise (6,) Noise (6pp) i
Vere Model
i (Ao, PKo) ;

Figure 10: Data Generation — Titration experiment

The initial acid concentratiofd,) and thepK, value of the acid were chosen as the
regression parameters to be estimated. Sikge= —log,, K, a small change ipK,
effects the dissociation constdliit,) by several orders of magnitude and has a
significant impact on the shape of the pH curve. The experimental data pairs i.e., the
input-output readings were chosen to lie along, or close to the steep part of thescurve
shown in Fig. 11 to ensure nonlinearly in the regression process. Heuristically, a
minimum of three experimental data pairs are required per regressiorefaranence,

eight experimental data pairs were taken to determine the two model parzahets.

27



pH vs. vol une of base
12

----#--t Apparent data
11 ..

10 4

pH
(e}

40 40.5 41 41.5 42 42.5 43

Volume of base added (ml)

Figure 11: A typical pH curve for regression

For each set of experimental data, the parameter values were estiynateth lof the
three methods (vertical distance, normal distance, maximum likelihood). Threspnwas
repeated for different realizations of the eight-pair sets of data for a tiiburgds, and
the mean and the standard deviation of the distribution of the parameter values obtained
by each of the method provided data for the comparison of the regression methods. The
closer the mean to the true parameter value (accuracy) and lower thedsthndlation

(consistency), the better the method.
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2.2.2 ACKED BED REACTOR

To illustrate chemical engineering applications of regression technmpesked bed
reactor model was chosen. Packed bed reactors are a classification ofgenesietype
of continuous tubular flow reactors, called the plug flow reactors. They find iamport

applications in catalytic processes, predominant in chemical industries.

For the simulation, a prototype chemical reaction with the kinetics defined as

cat

(51)

was chosen, wherg, (gmol/L-s) denotes the pre-exponential reaction rate coefficient,
k; (L/gmol) - the mass transfer coefficiel}, (gmol/lit) - the outlet concentration,

E (K] /Kmol) - the activation energy of the reacti@h(KJ/Kmol-K) — the gas constant,
andT (K) — the reactor temperature. The reaction was presumed to take place under
isothermal conditions following Hougan- Watson kinetics with the deactivatierofat

the catalyst safely ignored. The contents within the reactor were assubwdttsteady

state, following plug flow conditions.

The reactor model was derived through a mole balance on an elemental section of the

reactor and integrating it over the entire length of the reactor.
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Figure 12: Packed bed reactor

For the reactor shown in Fig. 12, applying the mole balance about the efgment

dN,
Falz = Falzeaz — f(—I‘A) dv = I (moles/sec)
(52)
At steady state,
dN, 0
dt
(53)
Hence, Folz = Falzeaz — J(=1p) (mr?)dZ =0
(54)
Differentiating w. r. tZ,
dFy 5
a7z (=ra) (mr?)
(55)

SubstitutingF, = vC,4, wherev is the volumetric flowrate, and the rate equation

(Eq. 51)
dc, koe E/RTC, X
v = (mre)
dZ 1+ k,Cy
(56)
Integrating over the entire length of the reackor,
[ - [
Cin [ kye RTCy v Jo
1+ k.C,
(57)
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o1+ kyC r? E (b
f () dea = (r )(koe‘ﬁ)f dz
c Ca v 0

Cin

kl(Cin - Co) + 1n <_)
Co

Vi,
B v

o —E/RT

(59)

Eq. (59) was the reactor model used in the simulation. The volume of the réagtas
assigned a value of 1000 mL. The inlet concentratign the volumetric flowratey, and
the reactor temperaturB,were chosen as the input variables. The outlet
concentratior{C,) was the output variable. Reaction kinetic coefficiénisc; andE

were chosen as the regression parameters.

2.2.2.1 Output variable evaluation

The reactor model is an implicit equation and hence, the evaluation of outlet
concentration for given input variables and model parameter values, requires the
application of numerical root finding techniques. The Newton Raphson method was

chosen, for the reasons explained below.

2.2.2.1.1 Newton-Raphson method
The Newton-Raphson method is based on linear approximation of small segments of a

function to evaluate tangents that guide towards the root.
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Figure 13: Newton-Raphson method (Reproduced from [14])

For the function shown in Fig. 13, the method is begun by initializing a gygsosen
such that successive values ofprogressively descend towards the rootxAtthe
function is linearly approximated by a tangent through the Taylorssegansion until

the first derivative as

fOnar) = fCn) + Ctner — x) - £/ () (60)

The tangent is extended until it intersects the independent variable axis, anchtloé poi
intersection is the new guess.
Hence from Eq. 60,
f(xn41) =0 (61)
f(xn)

Xn+1 = Xn _f,(xn)
(62)
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Eqg. (62) is an iterative formula used to evaluate subsequent guesses hbiytlgonsta
updating thex, value with the previous guesses. The process is repeated until

|x,+1 — x,| reduces to the desired extent.

An analogous plot of vs. C, for the packed bed reactor simulation, wheis written as

C; VK
f= KiCon = Co) +1n (a2 = = 2e5/mT
Co v
(63)
reveals a linear nature as shown in Fig. 14
f vs. G
0.5
0 \\
o3 0.35 0/4 0.45 ol5
0.5 \

AN

X
-1.5 \

N\

G (gnmol /L)

Figure 14: f vs. C, — Packed bed reactor simulation

Hence, the Newton-Raphson method, which is based on the linear approximation of a

function, converges fast to the desired root.
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The Newton-Raphson method was applied with the inlet concentration value asdhe initi
guess and the method was continued until the absolute value of the difference of the
subsequent guesses@fwas less tham0~1°. The central finite method was applied to

evaluate the derivatives. A flowchart of the method is shown in Fig 15.

( Start )

A 4
Initialize Cy(1)

VK,

—E/RT
e
F

Cin
f(Co(1)) = K;(Ciy, — Cp) +1In (C—0> _

F(Co(1) + 0.0001) — F(Co(1) — 0.0001)

f,(CO(l)) - 0.0002
F(C(1) =
Co(2) =Co(1) —
0( ) O( ) f’(CO(l)) :
If
|Co(2) — Co(1)| < 1078 No

Fig. 15: Newton Raphson flowchart
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2.2.2.2 Experimental data

The input values to generate experimental data for the packed bed reaataticim

were chosen in accord with the standard ‘Design of Experiments’ (DOEdwnee That

is, the repeated measurements of the input and output variables under similar conditions,

to ensure accuracy. A typical plot for the inlet and outlet concentrations of the

experimental data is shown in Fig.16.

Inlet vs. Qutlet Concentration
2.5
| i
1.5

Outlet Concentration (gmol/lit)

|

05 ;

0 0.5

1

1.5

Inlet Concentration (gmol/lit)

2.5

Figure 16: A typical inlet vs. outlet concentration plot for the PBR simulation

The DOE however, with the input values not spread out over the entire range, and

confined to certain fixed values, does not provide a good data set as the data patgern alon

the unspecified region is unknown. But since practical experiments conform to the DOE

procedure for the ease of measurements, this was adopted.
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The experimental data were generated in a similar fashion as thertiggperiment.

Fig. 17 summarizes the data generation process.

i SIMULATOR

i 5Cin i

! 8y !

i o1 560 i

( Ci") Model

vV i
r ) (ko Ky, E) B

Figure 17: Data generation — Packed bed reactor

The uncertainty values for the input and output variables, for both the titration and the
packed bed reactor simulation, were decided based on practical guessetstbé wha
maximum error associated with each of the variables possibly could be.

For instance, if the maximum error in concentration measurement is presumed to be
0.5gmol/lit, and the certainty of getting this as the maximum value is 99% of the total
measurements, then from the normal distribution plot shown in the Fig.18ydd
approximately correspond {84.1 + 13.6 + 2.1) * 2 = 99.7% of the range, hence

approximating 0.gmol/lit to 3r, we getc = 0.5/3 = 0.167
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Figure 18: Normal distribution — Standard deviation and Confidence intervals
(Reproduced from [11])

The parameter values were estimated by all the tlegression methodor varying
uncertainty levels in the input and output variablBhe results were analyzed on

basis of the mean and the standard deviation gbdh@meter values for a thousand trie
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2.3REGRESSION METHODS

2.3.1 \ERTICAL DISTANCE METHOD

The vertical distance method assumes that the tamarin an experimental readi
is only through the output measurements and na exits in the input readings. That
the apparent input measurements are presumeditodbealues inputted to thaocess
(or simulator for this study) and the only uncertaithat exits through the outp
measurements are minimized through vertical digsindence, theoretically this meth

holds good only whesy is negligible compared ta,.

\
9]
\

lI
B’¢
/!
Lov
/ B
/
= /
/
I 4
,I«QA/
o/
L — — eof,
X—>

Figure 19: Vertical distance method

Fig. 19 illustrates the vertical distance methadafmonlinear process. The points A,
and C denote three experimental data pairs, andotiesponding points on the moi

curve shown by the dotted line are the model ptiedtis vertically closest tA, B, and C
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respectively.

2.3.2 MaAXIMUM LIKELIHOOD METHOD
The maximum likelihood method maximizes the combined likelihood of the

experimental data points.

Consider an experimental data pair. Due to uncertainty in the measurements, the
value inputted to the process and the output recorded for different trials would be
different. Depending upon the uncertainty associated, the experimental dateay&e
anywhere within a certain space as explained earlier (refer Fig.1pudow the
measurements are repeated several times, the probability of the avénggedse to the
true data pair increases, and the distribution of the input and output measurements, or the
uncertainty associated with the measurements, follows a normal distribution, and as
discussed earlier, a normal independent distribution where many, small, independent

effects contribute to each observation, holds good in the case of uncertainties.

For an uncertainty of NI, g,) in the input, and NI0, ;) in the output values,

Fig. 20a depicts the possible Gaussian distribution of the input and output values.
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Figure 20: Likelihood contours - Maximum likelihood approach el

The central point in the figure is the combinatadrihe most probable input al
output values. The joint probability, likelihoodrtours corresponding to the input ¢
output distribution are shown in Fig. 20b. Depegdipon the standard deviationm
the central point, the contours increase in stz )drger ones corresponding to hig
multiples ofox andsy. They are shown vertically ellipsoidal indicatithge uncertainty it
the output values is greater than the uncertamtiie input valuesf the uncertainties i
the input and output values are the same, theadah#urs would be circula

Each contour has a probability value associatet Tthe closer the contour to tl
most probable point, the higher the probabilitye Thost probableoint however is
unknowable but repeated measurements of the daitago@rtains the proximity to |
The maximum likelihood approach tries to fit thevautrying to maximize the combing

probability of the all the data points as showikig. 21.
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Figure 21: Maximum likelihood regression 2l

The point origin of each concentric set of likeliisocontours shown in the figu
represents the experimental data pair. That isgxperimental data pair is considerec
the most probable point. This is necessarily true, but due to its limited numbe
repeated measurements, this is a reasonable assampte maximum likelihoo
method adjusts the model parameter values sucla haint on the model cun
maximizes the likelihood of proximity to thxperimental data set. The point on
model curve lies at the seat of the contour justiong the model curve shown by 1

dotted line, further elaborated in Fig. .
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Figure 22: Maximum likelihood regression

Point ‘A’ in the above figure represents an experimental data pair and isgimeforithe

series of ellipsoidal contours emanating from it. Any point along a contouindaaare
likelihood probability value. The contours are continuous in space, in a sense that there
exist several other contours with different probability values within the gagéettwo
illustrated contours, and depending upon the parameter values, the model curve touches
different contours with the model data pair, ‘B’ lying at the point of tangency to a

contour.

The probability values for the likelihood contours are calculated as

(5 | (64)

PO 1) = e U5

21Oy 0y

where(X;,Y;) is the experimental data pair afij, ¥;) is the model predicted data pair.
The maximum likelihood method tries to maximize the joint probability of all the

experimental data points, i.e.,
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2

XL N (Y7
max ] = HP(XL,Y) 1_[ =0

{Xm, vm Znaxay

(65)

This is the same as minimizing the negative of the index in the exponent term, i.e.,

N X._X.z y._f/.z
{Xglnpm}]_z< Ox ) +< Oy )

i=1

(66)

i—Xi

2 o0\ 2
The term( ) + <M) basically defines the shape of the contours, ¥ o, it
Oy

Ox
represents the equation of an ellipse, and hence the contours are ellipseidal.df,, it
represents circular contours, and the objective function reduces to

N

min | = Z(Xi —Xl-)z + (Y - 171)2

{ m, Ym} =1

(67)
which basically is minimizing the sum of ordinary distances.

2.3.2.1 Circular contours
Wheno, = g, the contours are a set of concentric circles. Any model prediction

would lie on a circle, distanced from the experimental pair by the radius.
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Hence whemw, =

a,, maximizing the likelihood contour probability is the same
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Figure 23: Circular contours — Maximum likelihood regression

For the contours shown in Fig. 23, for an experimental data ggithe model curve
locates a corresponding predictidi,‘along the contour. Since concentric circles do not
intersect (a fundamental property of circles), depending upon the probabiliég vtda
model pair would lie along different contours, with the radius of circle being thieshor
distance. It is also known that the tangent to any circle is perpendicular&dihe So a
tangent at the model prediction is perpendicular to the distance between theenfadri
and model data pairs, or the distance between an experimental pair and the congspondi
model prediction along the presumed model curve is the perpendicular distanckewith t

model prediction being the foot of the perpendicular to the experimental data pair.

as minimizing the perpendicular or the ordinary distances from the expé&almeints.
The point obtained by minimizing ordinary distances is the same as that obtained by
minimizing normal distances has also been cited in [4], but for linear regresken. T

same can also be extended for nonlinear models through the above discussion. This




however, is a logical argument and not a mathemlghioof
The maximum likelihood approach, however, requimésrmation on the input ar
output variances, often not available. If an estead oy is availableg, can be evaluate

through propagation of uncertainty principles ttodibws.

2.3.2.2 Propagation ofuncertainty
If Y=AX) relates the input (X) and output (Y) of a particypeocess, any error in tl
input variable will propagate a corresponding einaihe output variable depending ug

the slope of the curve at that input va

=<

X —

Figure 24: Error Propagation Bl

As shown in the curve above Ax is the maximum possible error in the input, theue:
may lie anywhere betweX; andXz, and correspondingly the output may lie betwY;

andY.. The interval range betweX; andXz, Y; andY; are denoted bjX andAY
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respectively.

If AX is small, such that the curve may be linearly approximated within thahregen,

|4Y] =

(31 )t

Eliminating the absolute values by squaring on both sides gives

(69)
Although the rigorous derivation is complicated, the variances in the input and output
value are related in a similar way as above. Hence for an uncertamntyothe input

variable, the uncertainty propagated in the output varighlés given by

dy 2
nyz - (a Xo) . sz

(70)
The slope can be approximated through the central finite difference method as
a_y _f(X0+5x)—f(X0—5x)
oxly, 2(8x)
(71)

wheredx is a small change in the input variable.

Since there also exists inherent uncertainty in the measurement of thevauigie, the
total uncertainty in the output valge,,) is the sum of the uncertainty propagated due to
error in the input measureme(at,) and uncertainty in the output measurenient,),

i.e.,
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dy
oyt = oym® + (a

2
> . axz
Xo

The total uncertainty in the output variable can be evaluated by calculatirtgritiarsl

(72)

deviation of repeated output measurements at constant input conditions. Hence the

inherent uncertainty in output measurements can be estimated as

(73)

Note:d,,, is the same as, designated earlier.

For the titration experimend,, can be estimated through the manufacturer’s tolerances
data, the maximum possible error through an equipment under normal conditions of

operation, standard for the different types and sizes of volumetric equipments used.

The procedure for determining the inherent uncertainty in the output measurements for

known uncertainty in the input measurements is outlined as follows

1. Conduct the experiment several times at constant input condiffghsto obtain a

set of output measurements. The standard deviation of the output measurements gives

Oyt

2. Repeat the experiment at different input conditions and obtain the standard deviations

for the each corresponding set of output measurements.

3. To evaluate the slope of the function at a given input condRXtigran estimate of the

model parameter value is required to define the function over the entire range of input

values. To do so, each set of output measurements is averaged and the model
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parameter values are estimated for the input vs. the averaged output meatsureme
through the vertical or the normal distance method. The slope can be then be
evaluated using the central finite difference formula given by Eq. (71)

4. Once the slopes are known, the output uncertainty for each corresponding input

measurement can be evaluated through Eq. (73)

The number of repeated output measurements required however cannot be determined.

The greater the number of repetitions, the more accurate the estimates would be
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3. EXPERIMENTAL

3.1 TITRATION

3.1.1 DrTA GENERATION
The experimental data were generated through the simulator which eddbhkapH
of a weak acid for a given volume of strong base added. The pH values were obtained

through the interval halving method based on Egs. (33) through (48).

3.1.2 REGRESSION

The parametergl, andpK, were estimated by the vertical distance method, the
normal distance method and the maximum likelihood method. The estimation process
involves optimizing the parameter values by minimizing the objective function.gTais i
two stage nested procedure. The parameters are optimized through a amsidim
search logic based on the objective function values and the ones that yield the least
objective function value are the required estimates. The objective functidre feertical
distance method is a straight forward evaluation of vertical distancesdratissl
parameter values, but is a one-dimensional line search along the input varidixe for t
normal distance and the maximum likelihood method for a given set of paramats. val

The optimization statement may hence be written as
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min = :
{Ag,pKq} J Z] '

i=1

(74)
: _ g2
rr%n Ji=d;
(75)
S.T  pH,=f(V, Ay, pKq) (76)

Eq. (74) denotes the two-dimensional search process AjpagdpK,to find the least
objective function value. The objective functigns the sum of the least individual

objective function valueg,() for each experimental data pair. Based on the parameters

A, andpK,, a line search alonig establishes thg values for the normal distance and

the maximum likelihood methods (Eqg. 75). For the vertical distance method, as discusse
earlier, the objective function evaluation does not require a line search as thanabde

the experimental input volumes are the save=( ;). The pH values for each model

data pair(pH;), for all the methods, are evaluated based on the parameter values at a
given model volumeY; (Eq. 76).

Various methods are available for optimizing the parameter values. Gradiett bas
methods like the Cauchy’s steepest descent, Newton-Raphson, Levenberg dlarquar
successive quadratic, etc. require the knowledge of function derivatidéaileat
function discontinuities. Direct search methods like theyRlic method [3], Hooke-

Jeeves, Nelder-Mead, etc., however, optimize based on function evaluations and are more
robust. The Rcyclic method was chosen for its simplicity and versatility. It, in many
cases, requires the least number of function evaluations among all the dirgltt sea

methods which adds to its advantages.
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3.1.2.1 R Cyclic Direct Search Methoc

The direct search method is an alternating sedortgdhe decision variable wi
steps of varying magnitude directed towards theaph. The steps sizes are increa
by an expansion factor when the objective functrmves towards the desired optimt
and decreased by a contraction factor when thetgefunction moves away from tl
optimum. The expansion and contraction factorauaesl for the purpose of speeding
the search process once the right direction isdo
Consider a onéimension diect search to find the minimum of the objectivevehan

Fig. 25.

~

106 9

Objective function, J

Decision variable, x

qurezs:R3dwectseamh-onedhnenﬁona“ﬂ

For a random start at point 1, a step change tdicemagnitude is made in the va
of the decision variabléx’. Since the objective function value at point 2a&er than
the value at 1, the subsequent step size is irenidasan expansion factor of 1.25. 1
process is continued until point 6 as the objedinetion value continues to decrease

further ncrease in the step size leads to point 7 wherelifeetive function value i
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greater than the previous value. The trial solution is hence returned to point 6 and then
proceeds in the opposite direction to point 8 with a decreased step size due to contraction
factor. The objective function at 8 however, is still higher than the value at 6, and so the
trial solution is again returned to the historical best value at 6 and the nextostepdsr
in the opposite direction with a further reduced step size to point 9. The step size
continues to reduce upon each reversal of the search direction and finally reduces to a
extent such that, its value, and the change in objective function due to step changes,
become insignificant and the search process is stopped.

The cyclic direct search can also be used for functions with more than onertecisi
variable. The direct search steps are cycled individually between theoda@siables
after a step change in each of the decision variables, and their respectiveantwes f
next iteration is decided. The search logic for a two-dimensional optionzatoblem is

illustrated in Fig. 26.
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Figure 26: R® direct search — two dimensional ©!

The graph in Fig. 26 is a two-dimensional contour plot of a function vs. its decision
variables. The objective is to find the minimum of the function which lies at the center
trough. The search process is begun at a random point in the space, shown by a round
marker here at around (2.75, 2). For a change in DV 1 by a magnitude of 0.5, the function
value was found to be lower and hence the subsequent change in DV 1 would be
multiplied by an expansion factor of magnitude 1.25, i.e., the subsequent change in DV 1
would be 0.5* 1.25 = 0.625. Similarly DV 2 was incremented by a magnitude of 0.5 and
the function value was found to be lower, the subsequent change would be 0.625. The
initial magnitudes for the change in the DV’s are usually a certain perttdir actual
values. The initial changes in DV 1 and 2 complete the first iteration. The snmadirdia

shaped markers shown along the DV path mark the end of each iteration. The changes in
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DV 1 and 2 for the second iteration, as can be seen from the plot, are greater tlan the fi
iteration. For the third iteration, the increment in DV 2 caused the function to be higher
than its previous value and hence the change was reversed and the subsequent change in
DV 2 would be decremented by contraction factor of 0.75. The process of alteynativel
incrementing or decrementing the decision variables continues until the stopfznig cri

on the total number of iterations is affected. Other stopping criteria likargghbld

limit on the absolute or relative change in the objective function value or the decision
variables, the Rhinehart steady state stopping criteria [15, 16] etc. can also be
implemented.

The search logic for the titration process involves optimization of the pamamet
values(4,, pK,) by minimizing the objective function corresponding to the regression
technique chosen. In order to ensure that the search logic is robust, the paraareters w
initialized with random guesses deviating around 100% from the true values. The step
increments for the parameters were begun with 10% of their initial value, and an
expansion and a contraction factor of 1.25 and 0.75 respectively were chosen. The
stopping criteria on the change in objective function and the step increments in the
decision variables to the order of favere chosen such that it does not affect the search
process. The veracity of the algorithm was verified by running the simutegenerate
data with no uncertainty to it, and the parameter estimates by either of tiedmet
should yield the actual values.

For each realization (a set of experimental data) the parameter valigesstimated
by all the three regression methods. In order to ensure the search logltoesate a

bias for any of the regression techniques, the optimization algorithm wasinednta
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exactly the same for all the three regression techniques including takzatiton and the
stopping criteria. The objective function evaluation (described in the nexirgecti
however, differs for each of the methods. The algorithm and the flowchart of the R
cyclic direct search method for the titration process are explained asdollow

Algorithm:

Initialization :

1. GuessX (%) = (pi(')a)

2. Calculate the objective functiofy. J, = J,

3. Initialize AX, expansion and contraction factor=1. i € Z, VZ =[1,2]

Search Logic
—> 4. X)) = X+ 24X
5. Calculate]; = (X1, X3)
6. If ], < Jo,then/, = J;
AX(i) = AX(i) * Exp.factor
Else,
X(@) = X —4X()

Next i
Cont. factor

AX(D) = — AX(Q) *

Exp. factor

End if

Stopping Criteria:
7. £ (U — ]| <1071 & (J(4X)| < 10719) then,

Exit Loop
Else

J2 = Jo
End if

Note:
o = the least objective function value at the time of reading
J1= the current objective function value at the time of reading

J, = the initial objective function value before starting a new iteration
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A 4

Initialize X = [Aq, pK,]7,
AX,Exp.and Cont. factor

!

Jo = f(Ao, PKy)
Iz = Jo

v

i=1
(i €Z,VZ=[12])

X)) =X0)+ 4X(@)
J1 = f(4o, 0Ko)

v

Nex

ti

No

If 1 <o

Yes

y

Jo= 1

v

AX (i) = AX(i) * Exp.factor

y

X(0) = X(0) — 4X (D)

v

AX(i) = — AX(i
@ Oh Exp. factor

Cont. factor

If (14X1,1Jo — J2I) < 10720
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Fig. 27: Flowchart - R? cyclic direct search for




3.1.2.2 Objective function evaluation

This section explains the objective function evaluation (Eqg. 75 & 76) for the three

regression methods.

3.1.2.2.1 Least squares regression — Vertical distances

The objective function for the least squares regression is evaluated bytoajdhia
output variable for a given set of parameter values, with the input variable asthas
that of the experimental data, and hence calculating the vertical distarfeesum of all
the vertical distances gives the required objective function. The algorithiefatration

process can be explained through a flowchart as shown below.

v

Input Ay, pK,

v

i=1
v

pﬁl = f(Vi, Ao, PKy)
v

Ji = (pH; — pH))?

Next i
If i>N No
Notations:
(V;, pH;) : Experimental data pair
Yes (Vi, ﬁ-ll) : Model data pair
N: # Experimental data points
/= ;]i J:Objective function

Stop 57 Fig. 28: Flow chart — Vertical distance objective
function evaluation



3.1.2.2.2 Maximum likelihood and Normal distances

The objective function evaluation for the normal distance and the maximum
likelihood method is a one-dimensional optimization problem. For a given experimental
data pair, a line search is required along the volume to find the corresponding model data
pair that best minimizes the objective function. Several methods like thessivece
guadratic, golden section, Newton-Raphson, and the marching method can be

implemented for this purpose.

For the golden section method, based on the experimental data, the minimum and
maximum bounds on the volume of base added for each model data pair can be
established as a certain percentage of the least and the highest exaérioleme, say
90 and 110% respectively, making its applicability possible. The Newton-&aphs
method and the marching method require just one initial guess to start the seagsh, proc
but the Newton-Raphson method involves evaluation of derivatives which is not always
convenient (The marching method is an exhaustive search for the optimum through small
step increments along the decision variable).The successive quadratic naetlatebde
implemented, but it requires three initial guesses. Hence, the marchimgonethe
easiest to implement. However, while conceptually simple, the marchihgdpetue to
large number of function evaluations, slows down the search process considerably. The
golden section search, alternatively, with its ability to discard about 38% airthe per
iteration, can be used for faster convergence to the desired optimum. This work uses the

golden section search.
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3.1.2.2.2.1 Golden Section Search
If a line segment is split in a way such that the ratithefsmaller segment to the larger
segment is equal to the ratio of the larger segment to théhlehthe line, then the ratio is

called the golden ratio and has a numerical value of 0.61803398...

S

b

a— —
b a+b 7

theny = 0.61803398 ... (77)

The numerical value fgr can be obtained as follows:

Modifying Eq. (77) gives

b
(78)
Eq. (78) is a quadratic in/b and can be solved for the roots as
a -1++5
b 2
(79)
a/b represents a ratio, and can take only positive values, which gives
a
5 = y =0.61803398 ...
(80)

The golden section optimizes the objective function by successiaetgwing down the

line search range on the decision variable based on the golden ratio.
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Figure 29: Golden section search

For the objective function shown above, the optinisitnound the two limitX; and
Xn. The pointsXy, andXyy are determined using the golden ratio as showrgs B1)
and (82), and since the value of the objective tionatXu; is lower than the value

Xu, the minimum is now bound betweX, andXus.

X =X+ (Xu - X1) * (1-y) (81)

Xun = X - (Xu - X1) * (1-y) (82)

The search range is now reduced by about 38.2%X; andXun, are denoted as tl
lower and upper limitsX; andXy respectively, and the search process is again tegh

The process goes on until the range or the intetizalreduces to the desired lin
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It is important to note that the input and output variables need to be scaled while
evaluating the normal distances or the maximum likelihood objective function. This
ensures that the objective function is not biased towards any variable due tonitsideag
which is simply a result of the choice of the units, and equal weightage is giatnhte
variables. For the titration experiment the variables were scaled Inefvwaee 1 through

Egs. (83) and (84)

V' = ( V- Vmin )
Vmax - Vmin
(83)
pH, — ( pH _pHmin )
pHmax - pHmin
(84)

whereVin, Vimax, PHmin, PHmax @re the minimum and maximum experimental volumes

and pHs.

The scaled data was used for both the normal and the maximum likelihood methods.
Accordingly, to proportionate the variances in the input and output variables, these were

scaled as follows.

(85)

(86)
The flowchart for the golden section search process for the maximum likelihood

method is shown in Fig. 30. B," = ¢, then it represents the normal distance method.
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Input Ay, K,

i=1

Input V;, pH;, oy, oy,

v
VL = Vmin * 0.9
Vy = Vipar * 1.1

VML == (VH - VL) * 0.382 + VL
ﬁ‘IML = f(VML' Ay, pKy)
~ 2 — 2
V.=V’ H,' — pH,;'
dMLZ _ <( i ,ML )) n <(P i I? ML ))

x; Oy,

v

VMH == VH — (VH — VL) * 0.382
IST‘IMH = f(VMH'AO'pKa)
li (7 N 2 I} ~ NN 2
2 <(Vi — Vun )) " <(le- — PHuy ))

dyp” = o !
Vi

Xi

No

Notations:

(V;, pH;) : Experimental data pair
(Vi,pH;) : Model data pair

N: # Experimental data points
J:Objective function

Vinin, Vinax: min and max expt volume

Superscript "’ " denotes scaled variable

No

((W—E'))Z <(pHL-'— pﬁ'))z
Ji=\—— ) *|\——————

7= (Pmr + Vun)

= ML T TMH)
2

pH, = f(V, Ao, K4)

Oy, Oy,

i

V, — Vy| <107°
|y, - dyyl < 1078

Fig. 30: Flow chart — Golden
section search
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3.2 PACKED BED REACTOR

3.2.1 DATA GENERATION
The data generation process is as described in Section 2.2.2.2. For a given set of input
and the parameter values, the output values were obtained through the Newton Raphson

root finding technique.

3.2.2 REGRESSION

Like the titration experiment, the regression parameter values for thecplbet model

(Ko, K;, andE") were estimated by the vertical distance, the perpendicular distance and
the maximum likelihood method. The optimization process is a two stage nested
procedure involving the optimization of the parameter values through minimizing the

objective function. The optimization statement can be written as

N

(Ko K1} /= Z] ‘

i=1

(87)
_min__J; =d;’
{Clnlﬁi:Ti}
(88)
ST G = f(Cn,¥: T4, pKa) (89)

3.2.2.1 Parameter Optimization

Eq. (87) denotes the three-dimensional search along the pararigtéfs,andE. The

R® cyclic direct search was used for this purpose. The parameters werz &uitia}

random guesses deviating around 100% from the true values. The initial step increments

were 10% of their starting values, and an expansion factor of 1.25 and a contraction
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factor of 0.75 were chosen for the optimization algorithm. The parameter values were
constrained between their individual nominal limits to avoid impractical valules if t
search direction followed the wrong path. This was done through a ‘soft condiyaint’
adding a penalty to the objective function once the parameter values go beyond the
nominal limits, thereby reversing the search direction. The penalty chesethevsquare

of the magnitude of deviation from the nominal limits.
If X > X,,penalty = (X — X,,)?
If X <X, penalty =0 (90)
The objective function hence would bg#+ penalty (92)

If more than one parameter deviated from the constrained limits, the greteir of
deviations was added as the penalty. The penalty could be added in different ways

depending upon the choice of the programmer.

The stopping criteria for the optimization logic was to restrict the chianitpe objective
function and the decision variables beyond a magnitude §f T@e optimization logic

remained the same for all the three regression methods to avoid bias.

Fig. 31 illustrates the flowchart for the optimization routine. The penattgsgynated by

‘P’ in the flowchart.
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Fig. 31: Flowchart - R® cyclic direct search for PBR
parameter optimization
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3.2.2.2 Objective Function Evaluation

Eq. (88) represents the three-dimensional search along the input vaﬂﬁgleﬁ,
andT,, to evaluate the objective function for the normal distance and the maximum
likelihood methods. Unlike the titration experiment, the golden section search, which is a

one-dimensional search, cannot be used in this caseﬁdw;ll% direct search, as

discussed earlier, is well suited for multivariable searches, and wasmenuied again.

The objective function evaluation flowchart for the above said methods is illustiated i
Fig. 32. The input and output variables were scaled between 0 and 1. The variances were

also proportioned by scaling them.

The objective function was evaluated as

3 ~ 2 — 2
_ X' (P) — X, (P) (Co'(k) — Cy' (k)
= (Z< ) >+ ()

(92)

(93)

whereX,,' represents the scaled input variables foridftemeasurement of the

experimental data an},’ represents the corresponding scaled input variables for the
model.

X' =[G/, v'(l), T' ()] (94)
X' (D) = G'(k); X,'(2) =v'(k); X,'(3) =T'(k) (95)

Whenoy, = o¢,, the algorithm represents the normal distance method.
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Notations:

(Xk, Co(k)) : Expt data for k*" measurement
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Fig. 32: Flowchart - R’ cyclic direct search for PBR objective function optimization

(Normal distance and Maximum

likelihood method)




The objective function evaluation for the vertical distance method does not require the

nested optimization search as the model input variables are the same asriheerigle

data, i.e.[:;l = Cl'nilﬁi = vl-,'fl = Ti'
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3.3 ASSUMPTIONS

Before proceeding further it is important to understand the assumptions that wer

involved in the above methods and their possible implications.

1. Gaussian uncertainty

It was assumed that the experimental measurements, or more spgtifecal
uncertainties associated with it, could be approximated by Gaussian distridutis
would imply that the variable would have to be measured several times forptésast
a Gaussian distribution. However, the actual requirement as pointed out in [13], is the
assumption that the distribution of variable is symmetric. A Gaussian apptmamzy

be used for this purpose but is not a necessity.

2. No systematic uncertainty
Systematic errors are a characteristic of an experiment or tieensiysolved in a
process and cannot be generalized. The only possible way to account for systematic
errors is to introduce additional terms in the model function that negates itsafeviat
Since systematic errors are specific to the process, any modelgabdififor the
simulation would be unrealistic and should be dealt when dealing with the actual process.
Systematic uncertainties require a non-Gaussian distribution with zemon-
mean [2]. Hence to avoid systematic uncertainties, a Gaussian distributice nean of

zero was implemented.
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3. Independent Measurements
The experimental uncertainties were assumed to be independent, and hence the
Gaussian or the normal independent distribution. This is a standard assumption for

statistical analysis [2].

4. The model approximation

The simulator that generates the experimental data uses the same model and
procedure to calculate output values for the regression. Although it is unlikely that
engineering models ever exactly express the natural phenomena of 3 ptases
situation of functional identity between the simulator and model permits the evalohti

accuracy in regressed parameter values.
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3.4 RESULTS ANALYSIS TECHNIQUES

The regression methods were tested for different conditions of input and output
uncertaintiego, anda, ), each for a thousand realizations, and the distribution of the
parameter values including the mean and the standard deviation were evaluatgel. A lar
number of realizations ensured that the results reflected the averageavalwesre

unique to the regression method.

Bias (or mean) and standard deviation:
The relative deviation of the mean from the true value of thanpeter, also

called the bias, should be small for a regression method to be “gomda parameter

with true value, andg, its estimate from a particular method, [9]

- |B-8
bias = |——
‘ B
(96)
E in the above equation denotes the mean of parameter estimates. The standad deviat

of the distribution for the “good” method should also be lower.

Frequency Distribution:

Apart from the mean and standard deviation, the distributions of the parameters
were analyzed by creating histograms. Typical distributions of the ptaesrior the
titration experiment for the vertical and maximum likelihood methodsayith 0.25,

g, = 0.1 are shown in Fig. 33 (a and b).
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Figure 33b: Typical pK, distribution for vertical and maximum likelihood method

As can be seen from the figures, the maximum likelihood method yields a
symmetric distribution, more like the normal distribution, with a lower variance
compared to the vertical distance method. Additionally, the distributions of thegiaram

values for the vertical distance method do not specifically follow any convelntiona
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pattern. Lower variance indicates better consistency of a method in prgdicti
parameter values.
(Note: A comparison of all the three methods together in Fig. 33 obscures the distincti

of the histograms corresponding to each of the method, hence only two were plotted).

Probability of worse deviation:

A third test, the probabilities for obtaining parameter values beyond a certain
deviation from the true value were evaluated for each of the methods by counting the
number of times the parameter values exceed the required deviation limit. Théhiewe
probability, the better the method. Typical probability plots for the titrationrerpat

with g,, = 0.25, 0, = 0.1 are shown in Fig. 34.

1 1
' ——— Vertical distance —— Vertical dista’tce
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Figure 34: Typical ‘probability of deviation from true value’ plots for 4, and pK,

Fig. 34 depicts the probability of finding a parameter value at a certairtidevia
from the true value is always higher for the vertical distance methodrgsoed to the

other two methods, indicating its predictions are far worse than the other two methods.
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4. RESULTS & DISCUSSION

The vertical distance, the normal distance, and the maximum likelihood methods
were tested for varying magnitudes of uncertainty in the input and output garidibe
magnitudes were basically decided through intuitive guesses on the possitse er
associated with the variables, but were also considered beyond the typitsaiditest

the robustness of the method.

4.1 TITRATION

For the titration simulation, the apparent data range for the input variable, tineevol
of the base added, varied from 4@/50 42.5nl. Assuming a maximum error in the
volume measurement to be On7b(i.e., 37.5% of the range), with a probability of 99%
would imply 3, = 0.75nl (Refer Fig. 18), oo, = 0.75/3 = 0.25nl. Extending the
range beyond nominal limits, values were varied from Oril to 0.7nl.

Similarly, the usual pH range for the apparent data varied from 6.5 tonfds5
Assuming a maximum error of 1unit would imply,3= 1.0 org,, = 1.0/3 = 0.33units.
Hence it was reasonable to vatyvalue along the same rangesasthat is from
0.lunits to 0. 7units.

The methods were tested basically for three cases
I ox <oy, ii. oy =0y iii. o >0,

The true values fad, andpK, in all the cases were chosen as 0.5 and 5 respectively.
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4110, <o,

Theoretically, whew, <o, anda,, is significantly higher than,, the vertical
distance method which is based on the premise that all the uncertainty rests ipuhe out
measurements arg = 0, should predict parameters reasonably close to the true values.
However, the results tabulated in Table 4.1.1 suggest that this does not hold true always,

particularly for high uncertainty values.

Vertical Distance Normal Distance Maximum Likelihood
Standard Standard Standard
Bias Bias Bias

Deviation Deviation Deviation

g, =01 AO 0.000132 0.000985 0.000046 0.000806 0.000083 0.000874
o, = 0.25 K

y P, 0.002532 0.234873 0.008217 0.219850 0.009365 0.240614

g, =01 AO 0.000148 0.001170 0.000163 0.001301 0.000064 0.000999
o, = 0.5 K

y P, 0.000282 0.356470 0.020523 0.392295 0.014865 0.346681

o, = 0.25 AO 0.000754 0.002270 0.000222 0.001674 0.000236 0.001710
o, = 0.5 K

y PR, 0.016562 0.505455 0.031143 0.417657 0.029934 0.377001

Table 4.1.1 Comparison of the regression methods for o, < g,

Wheno, = 0.1,0, = 0.25, the bias for the paramefigyris the least for the normal
distance method, while f@K,,, it is the least for the vertical distance metha, is the
more dominating parameter of the two, significantly affecting the model ,camdeas
can be seen from the results, there is a considerable difference in theudegjoftbiases
and standard deviations 4§ andpK,, for all the cases, for all the methods. Hence
comparatively it is more important to get better result iy thanA,. Hence in terms

of biases, the vertical distance is the preferred method. However, the standardraeviat
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for A, andpK, estimates are the least for the normal distance method. The difference of
the standard deviations among the methods though, is not substantial. The standard
deviation actually is a more reliable test than the bias, as while evaltfaibgs, the
positive deviations of the parameter values annul the negative deviations, thereby
despoiling the very essence of the test.

Hence for the present sub-case, all the methods could be considered at paerHowe

the simplicity of the logic, and the ease of computational burden, the verticakdista

method could be chosen over the others.

Foro, = 0.1,0, = 0.5, due to the increase in the uncertainty in the pH measurements,
the predictions of each of the methods deteriorate compared to the previous case. And,
while bias forpK, is the least for the vertical distance method, there is not much
difference in the standard deviations for the vertical and the maximum likelihood
methods. Due to the decrease in the ratie ofo o, the variation in the results for the
vertical and the normal distance methods become obvious. The vertical distamoe, met
followed by the maximum likelihood and the normal distance methods, could be the

favored order of preference.

Wheno, = 0.25,0,, = 0.5, due to the rise in the uncertainty in the input measurements
the predictions further deteriorate compared to the previous case. However the norm
distance had better predictions than the vertical distance method, but the maximum
likelihood method could be ascertained the best among the three.

Typical distributions for the parameters and their probability plots,fer 0.25,5,, = 0.5

are shown in the Figs. 35 and 36 respectively.
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Figure 36: ‘Probability of deviation from true value’ plots for 4, and pK, for g, = 0.25, 6, = 0.5

As expected from the tabulated resultsdpr~ 0.25,0,, = 0.5, the parameter

distributions for the vertical distance method are more dispersed compared to the
maximum likelihood. The probability plots also indicate the better of the methdts, wi
the normal distance and the maximum likelihood curves almost overlapping each other,

clearly separated from the vertical distance curves.

Hence from the above tests whgn< g,,, the maximum likelihood predictions were

at par with the best predictions in each sub-case. Among the vertical and netaradali
methods, the vertical distance could be selected for low input uncertaintiesthit as

magnitude rises, the normal distance method could be chosen.

78



4120, =0,

Wheno, =g, the maximum likelihood method is exactly the same as the normal
distance method. The predictions of the vertical and the maximum likelihood method
were compared far values ranging from 0.1 to 0.7.

In each of the cases in Table 4.1.2, the maximum likelihood method provided better
results than the vertical distance method. The variation in the results becaee mor

obvious as the values increased due to the initial premise of the vertical distance

method.
Vertical Distance Maximum Likelihood
Standard Standard
Bias Bias

Deviation Deviation
AO 0.000113 0.000993 0.000068 0.000686

o=0.1
pKa 0.003953 0.193984 0.003967 0.119569
AO 0.000652 0.002128 0.000019 0.001396

o=0.25
pKa 0.017518 0.420125 0.017119 0.216889
Ao 0.003161 0.005154 0.000236 0.003384

o=0.5
pKa 0.058861 0.737612 0.052285 0.467059
Ao 0.012160 0.036223 0.004937 0.040177

o=0.7
pKa 0.096469 0.998426 0.066694 0.727321

Table 4.1.2 Comparison of the regression methods for g, = g,

Typical distributions and the probability plots tgr = 0.25,5,, = 0.25 are shown in the

Figs. 37 and 38 respectively.
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The nature of the distributions and the probability plots are similar to the ones shown

in Figs. 35, and 36. The maximum likelihood hence, is the better of the methods when

Ox =0y
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4130, > o,

Theoretically, whew, > o, the vertical distance method’s supposition thatan
be neglected, no longer holds good, and its predictions further deteriorate compared to
the previous two cases of < ¢, ando, = a,. The normal distance method is a better

representation of the situation than the vertical distance method. The resuttsabtai

from the simulations are presented in Table 4.1.3.

Vertical Distance Normal Distance Maximum Likelihood
Standard Standard Standard
Bias Bias Bias
Deviation Deviation Deviation
O, = 0.25 AO 0.000915 0.002120 0.000076 0.001148 0.000517 0.001126
o, = 0.1 K
y P 0.022009 0.414877 0.015659 0.173191 0.012219 0.116610
g, =05 AO 0.003534 0.006926 0.000504 0.002300 0.002796 0.002199
o, = 0.1 K
y P, 0.061475 0.684288 0.035114 0.276258 0.051410 0.262570
g, =05 AO 0.003467 0.004671 0.000499 0.002301 0.001878 0.002305
o, = 0.25 K
y P, 0.068533 0.711066 0.035584 0.294769 0.053500 0.331088

Table 4.1.3 Comparison of the regression methods for o, > o,

From the above table, when = 0.25,5,, = 0.1, while the results for the maximum
likelihood method were better than the other two methods, there was a considerable
difference in the standard deviationspd, for the vertical distance method with the
other two methods. Increasing the uncertainty levels in the next two subtbases
predictions for the vertical distance method deteriorate, but while the resuhe f
normal distance and the maximum likelihood method are at pa, f010.5,5,, = 0.1, the

preference shifts to normal distance method for the last sub-case. The paramete
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distributions and the probability curves for a prototype casg ef0.25,5,, = 0.1 were
discussed previously through Figs. 33 and 34 respectively.
Hence while the maximum likelihood works well for lower uncertainty valueswhe

o > 0y, the normal distance could be adopted for high uncertainty values.

In all the above cases, thg andg,, values for evaluating the maximum likelihood
objective function were taken the same as the true, but practically unknowable
uncertainty values, chosen to generate the experimental data. Howeveghtys hi
improbable to get the exact estimate of the uncertainty associated witleasyrament.
Hence to test the feasibility of maximum likelihood method in realist@asans, thes,
ando, used for the maximum likelihood objective function evaluation, were
approximated by values deviating by around 50% from the true values chosen toegenerat
the experimental data.

Thea, values for all the data pairs were perturbed by the same magnitude from the
true value, assuming the uncertainty in all the input measurements would nese loe |
the same. Hence if the trag value is 0.1, the perturbed value would be a number close
to 0.05 or 0.15. The, values were perturbed by different magnitudes for each data pair
as the uncertainty level would vary depending upon the linear/nonlinear region of the
model curve. The values were generated at random through a Visual Basic ¢tt&ae wri

as

Operturbed = Otrue T (Rnd() — 0.5) * 0rye (97)

Theo, ando, values for each data pair however, were maintained the same for all

realizations. The results were tested for simulations wjtk 0.1,0,, = 0.25 and
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o, = 0.25,0, = 0.1. In both the cases the maximum likelihood and the normal distance

were equivalent and were better than the vertical distance method. The aesul

tabulated in Table 4.1.4

Vertical Distance

Normal Distance

Maximum Likelihood

Standard Standard Standard
Bias Bias Bias

Deviation Deviation Deviation

O, = 0.1 AO 0.000132 0.000985 0.000046 0.000806 0.000068 0.000827
o, = 0.25 K

y P, 0.002532 0.234873 0.008217 0.219850 0.007635 0.175719

o, = 0.25 AO 0.000915 0.002120 0.000076 0.001148 0.000200 0.001258
o, = 0.1 K

y P 0.022009 0.414877 0.015659 0.173191 0.009392 0.122903

Table 4.1.4 Comparison of the regression methods for approximate variances for Maximum likelihood

The parameter histograms and the probability plots for the simulation with the

experimental data generated throughr 0.1,0, = 0.25 are shown in Figs. 39 and 40

respectively.
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pK, distribution
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Figure 39b: pK, distribution for vertical and maximum likelihood method for o, = 0.1, o, = 0.25 with
perturbed variance values for maximum likelihood objective function
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Figure 40: ‘Probability of deviation from true value’ plots for A, and pK, for 6, = 0.1, g, = 0.25 with
perturbed variance values for maximum likelihood objective function

While the parameter distribution for the vertical distance were more dispers

than the maximum likelihood method, the probability plots were almost overlagping f
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all the three methods, but the normal distance had its tail extending till tlaae e

vertical distance curve was slightly above the two.

The normal distance method, which is the same as the maximum likelihood method, but
with o, =g, can also be considered as a case of the variances for the maximum

likelihood objective function evaluation deviating from the true values.

Hence from the above tests, the following could be concluded

1. Wheno, <o, the maximum likelihood works well for all the sub-cases, but for
lower magnitudes of uncertainty the vertical distance can be chosen to minimize
computational burden.

2. Wheno, =g, the maximum likelihood method works well for all the cases and is
significantly better than the vertical distance method

3. Wheno, > g,, the maximum likelihood method could be chosen for lower
uncertainty values, but as the uncertainty levels increases, the normaledistgthod

would be a better option.

The findings are summarized in Table 4.1.5. The roman numericals in each case indicat

the order of preference based on the results obtained.
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Vertical Normal Maximum

Distance Distance Likelihood

1. Parameter Precision and Accuracy

Ox < Oy
o, = 0.1
oy = 0.25 ' ! |
o, = 0.1
gy, =05 ' I |
o, = 0.25
g, = 0.5 1] Il I
Oy =0y
Ox > 0y
o,y = 0.25
gy, = 0.1 I ' |
o, = 0.5
g, = 0.1 1 I Il
o, = 05
- 11 I I
gy, = 0.25

2. Programming Burden I [ 1]

3. User Complexity I [ Il

Table 4.1.5 Summary of Findings
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4.2 PACKED BED SIMULATION

The packed bed simulations were more complex than the titration ones due to the
three-parameter optimization, and the three-variable search for thawebfaattion
evaluations, for the normal distance and the maximum likelihood methods. Due to the
large computational requirements, these simulations were not as comprdkiestsdied

as the titration ones.

Based on the practical inference on the maximum possible uncertainties in the input
variablesC;,,, v, T, and the output variabl&,, as 0.05mol/lit, 0.2ml/sec, 1°C and
0.05gmol/lit, the variances were assigned values of 0.0167, 0.033, 0.333, and 0.0167
respectively. The simulations were run for a two hundred and fifty realizatith the
initialization of the parameters by 30% deviation from the true values. Thésresul

obtained are tabulated as follows.

Vertical Distance Normal Distance Maximum Likelihood
Standard Standard Standard
Bias Bias Bias
Deviation Deviation Deviation
ko 0.227193 0.085813 0.284356 0.092555 0.292860 0.094249
kl 0.229042 8.185125 0.290425 8.881987 0.303765 9.068874
E 0.004754 939.021278 0.004774 943.248619 0.005304 943.193565

Table 4.2.1 Comparison of the regression methods — Packed bed reactor

From the above table, the vertical distance method for all the parameterghdty sl
better predictions than the normal and the maximum likelihood methods. But, variation in
the results is insignificant to affirm the better of the three. Hencer eittiee methods

could be chosen to regress the data. The parameter distributions and probability plots for
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the vertical distance and the maximum likelihood methods for the above results are

shown in Figs. 41 and 42
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As can be seen from the probability plots, the curves for all the methods were
overlapping, suggesting all the methods were at par. The parameter mstogeee also
inconclusive and followed similar pattern for both the regression methods.

The computational burden was found to be more or less the same for all the methods,
with the vertical distance requiring a lot more iterations than the maxirkahhdod
method. Due to the large time requirements, the simulations for the specifemteari
were only studied for two hundred and fifty realizations. Increasing the amtegrt
levels, the parameter predictions for the vertical and the normal distance methods
constrained to the extreme limits, while the maximum likelihood method predicted
reasonable values.

Hence, though the vertical distance method could be adopted for lower uncertainty
levels, the maximum likelihood may have to be chosen for higher magnitudes of

uncertainty.
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5. MODEL VALIDATION

To ascertain the veracity of the code employed for the simulations, a fevidssic

were conducted.

1. The vertical and the normal distance methods for both the titration and the packed bed
simulations were tested for data with no experimental uncertainties in the maput a
output measuremen(s, = 0, o, = 0). Both the methods yielded the exact same
parameter values used in generating the data, confirming the trueness of the
algorithm.

Since with no experimental uncertainties the maximum likelihood objective
function results with zeroes in the denominator, data generated with very small
uncertainty values were used to test the method. The maximum likelihood method
yielded parameter values close enough to the true ones, ascertaining ¢hg otra
the code.

2. Another test adopted was to repeat the regression several times for treesame
data but with different initializations for the parameters, varying upto 50% iof the
true values. All the methods yielded the same parameter values as theuprevi
estimation, but upto four decimal places #grand two decimal places fpiK,,,
suggesting that each time the same optimum was achieved. The precision of the
parameter values could be increased beyond the specified decimal placdisdry fur

reducing the tolerance limits in the stopping criteria, but this would result Easegr
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number of iterations, which did not seem necessary.

. To test if a thousand realizations was a sufficient number to conclude the, esults
few titration simulations were conducted by doubling the number of realizations. The
mean and the standard deviation of the parameter distributions for the vertical
distance method remained approximately the same, but there was considerable
variation in the results for the normal and the maximum likelihood methods. Hence
the titration simulations were run on an average for about 3000 realizations before
concluding the results for the cases discussed earlier.

. While evaluating the results, any outliers in the titration parameteragssras

negative values fad, orpK, values less than 1.0 were omitted by deleting the entire
results for that particular realization, for that particular method. The phekkd
regression parameters were constrained between their nominal limifehas dethe
problem statement.

The number of outliers for the titration simulation were usually the hidgbeste
maximum likelihood method followed by the normal distance and the vertical
distance method. However the percentage of outliers to the total number of
realizations were less than 1% in most cases for all the methods, but weyle as hi
upto 6% for certain cases with high variance values for the maximum likelihood
method ((i).0, = g, = 0.7, (ii). o, = 0.5, 0}, = 0.1, (iii). o, = 0.5, 0;, = 0.25). For
the packed bed simulation, the number of realizations with parameters congttaini
the extreme limits were highest for the vertical distance method, followedrimal

distance and the maximum likelihood methods.
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6. CONCLUSIONS

1. Based on the results of the titration and the packed bed simulation the maximum
likelihood method worked best in most cases. The vertical and the normal distance
methods have individual preferences over the other depending upon the relative
magnitude of the input and output uncertainties. The reality check for the maximum
likelihood method through approximate variance values (deviation upto 40% from the
true values) while evaluating the objective function, also yielded bettdtsrézan
the other two methods, suggesting the scope of an educated guess for thesviiriance

a close estimate cannot be determined.

2. However, the maximum likelihood and the normal distance methods are a lot more
computationally intensive than the vertical distance method. And, since for lower
uncertainty levels there isn’t a big variation in the results of either of étieoals, the
vertical distance method can be safely implemented without sacrificing much
accuracy. However, for higher uncertainty levels the need for a betteoanst

obvious.

3. Though a few researchers have investigated the possibility of the maximum
likelihood method, they have concluded in the favor the vertical distance method due
to the complexity and the computational burden [1]. However, one reason for the
computational burden could be the optimization algorithm. Most researchers seemed

to have tried the gradient based algorithms such as the Levenberg Marquardt,
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Cauchy’s steepest descent, Newton-Raphson etc. Howevet dyeliR direct search
considerably eases the search process with good consistency in the parameter
predictions for distant initializations from the true values.

The vertical distance method does take a lot lower time for the titration
simulations (approximately one —tenth of the time for the other two methods), but the
R® cyclic direct search is a good improvisation for the search process over the
gradient based methods. The time consumed for the packed bed simulation by all the
methods was more or less the same, with the vertical distance method reglaiting a
more iterations on average than the maximum likelihood method, thereby

compromising on its simpler logic.

. The parameters of the titration and the packed bed simulation were covariam, Tha
they were inter-dependent and were not individually optimized without affecting the
other. This has been cited in the view of one of the statements in [2] explaining the

necessity for covariant parameters in computer simulations.

It is important to understand that the results of either of the simulations do not
necessitate the certainty of always obtaining better predictions thtbedpest

method. It only reflects the higher probability. Hence, if an approximateastiof
parameters is known, the data could be regressed through all the three methods, and

the predicted parameters closest to the approximate estimates colkttezise

95



REFERENCES

. Johnson M. L., Frasier S. G., Nonlinear Least — Square Andl}sikodsin
Enzymology [Online] 1985 117, pp. 301 — 342.

. Johnson M. L., Use of Least-Squares Techniques in Biochenhityodsin
Enzymology [Online] 1994 240 pp. 1 — 22.

. Rhinehart R. R., Optimization Applications — Lecture notes. Oklahoma State
University, 2008.

. Leng L., Zhang T., Kleinman L., Zhu Wei., Ordinary Least Square Regression,
Orthogonal Regression, Geometric Mean Regression and their Applications in
Aerosol Science]ournal of Physics [Online] 2007, 78, pp.1-5.

. Draper N. R., Yang Y., Generalization of geometric mean functional relaipns
Computational Statics and Data Analysis [Online], 1995 23, pp. 355-372.

. Weibull.com, http://www.weibull.com/LifeDataWeb/least_squares.htm, tseck
20" February, 2009)

. Weisstein, E. W., "Least Squares Fitting-Perpendicular Offsets",
WolframMathWorld.com,
http://mathworld.wolfram.com/LeastSquaresFittingPerpendicularSffgenl,
(accessed: 2bFebruary, 2009).

. Sampaio Jr. J. H. B., An iterative procedure for perpendicular offsets linetr lea
squares fitting with extension to multiple regressigoplied Mathematics and

Computation [Online] 2006 176, pp. 91-98.
96



9. Riggs D. S., Guarnieri J. A., Addelman S., Fitting straight lines when both \eriabl
are subject to erroL,ife Sciences [Online] 1978 22, pp. 1305-1360.

10. Shotaro A., Curve fitting that minimizes the mean square of perpendicular dsstanc
from sample points;iteseerx.ist.psu.edu, (accessed: J0February, 2009).

11. Wikipedia.org, http://en.wikipedia.org/wiki/Normal_distribution, (acces@ell:
February, 2009).

12. Wikipedia.org, http://en.wikipedia.org/wiki/Interval_halving, (accessell: 20
February, 2009).

13.Griliches Z., Ringstad V., Error — in — the variables bias in nonlinear contexts,
Econometrica [Online] 197Q 38, pp.368-370.

14. Wikipedia.org, http://en.wikipedia.org/wiki/Newton's_method, (accesséell: 20
February, 2009).

15.Padmanabhan V., Rhinehart. R.R., A novel termination criterion for optimization,
American Controls Conference [Online] 2005 pp. 1042-1047

16.Cao S., Rhinehart., R.R. Critical values for a steady-state ideniiffengc. Cont.

[Online] 1997, 7, 2, pp.149-152

97



APPENDIX A — TITRATION SIMULATOR CODE

The following Visual Basic code was adopted for the titration simulation.

Code:

Option Explicit

" Author : Chetan Chandak

' Created date: 20- Dec-2007

' Description : Titration model to test regressinethods

' Declaring Gomfariables

Global A0 As Double, hl As Double ' AO, pKaodel parameters
Global pKa As Double, h2 As Double ' h1, h2 thee step increments
Global T(0 To 2) As Double ' @srthe objective function value
' J(Ceast objective function value at the time aiding
' J(turrent objective function value at the time@&ding
' J(Bbjective function value before a new set ofraes in
' the parameters.

Global Vmax As Double " maolume of base (apparent) added during the titngbimcess
Global Vmin As Double 'miolume of base (apparent) added.

Global pHmax As Double ' mEtx (apparent) attained during the titration praces
Global pHmin As Double " mikl fapparent) attained during the titration process
Global z As Integer ' #liegtions (variable)

Global N As Integer " #sbef N trials

Global w As Integer ' # bebN trials (variable)

Global p As Integer "grétions in the optimization process (variable)

Global rand(1 To 100) As Double ' randbffior initial guesses to start the prediction o0& kA0

Experimetia Generation Module

Sub Regression()

Dim vn As Double ' noisethe apparent volume

Dim v As Double ' trbat unknowable volume

Dim pHun As Double ' tret unknowable pH corresponding to v
Dim pH As Double ' appat pH

Dim i As Integer ' # expmental data points

Dimr As Integer ' talieations

Dim sig(1 To 2) As Double ' slelv (noise) in the pH and volume readings

Initialize Variables

N = Sheet4.Cells(13, 8).Value
r = Sheet4.Cells(10, 8).Value
sig(1) = Sheet4.Cells(11, 8).Value
sig(2) = Sheet4.Cells(12, 8).Value

Vmin = Sheet4.Cells(15, 1).Value

Vmax = Sheet4.Cells(16, 1).Value
pHmax = Sheet4.Cells(16, 2).Value
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pHmin = Sheet4.Cells(15, 2).Value

' Data Generation

Forz=1Tor Step 1
AO = Sheet4.Cells(3, 8).Value
pKa = Sheet4.Cells(2, 8).Value

Randomize

Fori=1ToN Step 1

rand(i) = (1 + (3 * (Rnd() - 0.5) *0.2)) ‘'range from 0.7 to 1.3
Next i

Fori=1To8
vn = sig(1) * Sqr(-2 * Log(Rnd())) * Sin(23.14159 * Rnd())
v = Sheet4.Cells(6 + i, 1).Value + vn

pHun = pHpredict(v)
pH = pHun + sig(2) * Sqr(-2 * Log(Rnd())Bin(2 * 3.14159 * Rnd())
Sheet4.Cells(6 + i, 2) = pH

Sheet4.Cells(6 +i,4) = v
Sheet4.Cells(6 + i, 5) = pHun

Next i

Call data_substitution ' psiexpt. data in the vertical, normal distance aad.rikelihood
' worksheets

Sheet5.Activate nisuhe vertical distance module

Call vertical

Sheetl.Activate rsuhe normal distance module

Call Normal

Sheet6.Activate nsuhe Maximum likelihood module

Call Max_Likelihood

Next z

End Sub

pH Evaluation

Function pHpredict(v As Double)

' Predicts pH for a given volume of base added
' Code taken from Dr. Rhinehart’s excel file

Dim pHmin As Double, pHmax As Double, pHmid As Ddeib
Dim fmin As Double, fmax As Double, fmid As Double
Dim j As Integer

pHmax = 14
pHmMin =0
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Forj=1To 20 " Interval Halving Method
fmax = func(pHmax, v)
fmin = func(pHmin, v)
pHmid = (pHmMax + pHmin) / 2
fmid = func(pHmid, v)

If (fmax * fmid < 0) Then
pHmMin = pHmid
fmin = fmid

Else
pHmax = pHmid
fmax = fmid

End If

Next |

If pHmid < pHmMin Then pHmMid = pHmMIn
If pHmid > pHmMax Then pHmid = pHmax

pHpredict = pHmid

End Function

Function func(pH As Double, v As Double)
'Code taken from Dr. Rhinehart’s excel file

Dim x As Double

Dim y As Double

Dim a As Double

Dim b As Double

Dim ka As Double
Dim Hconc As Double

Dim b0 As Double
Dim kw As Double

b0 = Sheet4.Cells(4, 8).Value
kw = 0.0000000000001

ka =10 " (-pKa)
a=A0/(1+ (v/1000))
b = (b0 *(v/1000)) /(1 + (v/1000))

x=a*ka/ (ka+ (10~ -pH))
y=(kw* (10" pH)) - b
Hconc =x+y

func = (10 ~ -pH) - Hconc

End Function
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Sub data_substitution()

'Substitutes the experimental data in the normaatjcal and max_likelihood sheets
' data_substitution Macro

' Macro recorded 3/12/2008 by chetan

Sheets("data generation").Select

Sheet4.Range("A7:B14").Select

Application.CutCopyMode = False

Selection.Copy

Sheets("Vertical_dist").Select

Sheet5.Range("'B12").Select

Selection.PasteSpecial Paste:=xIPasteValuesa@pn:=xINone, SkipBlanks _
:=False, Transpose:=False

Sheets("Normal_dist").Select

Sheetl.Range("'B12").Select

Selection.PasteSpecial Paste:=xIPasteValuesa@®pn:=xINone, SkipBlanks _
:=False, Transpose:=False

Sheets("Max_Likelihood").Select

Sheet6.Range("'B12").Select

Selection.PasteSpecial Paste:=xIPasteValuesa@pn:=xINone, SkipBlanks _
:=False, Transpose:=False

End Sub

' Vertical Distdlodule

Parameter Optimization

Sub vertical()
Dim best As Double ' bestamiive function value from N trials
Dim g As Integer ' stotbe iteration corresponding to the best objedtinetion value

Sheet5.Range(Cells(4, 9), Cells(1000, 15)).Clearsiua
best = 10000

R?Cyclic Direct Search

Forw=1ToN Step 1

A0 = Sheet4.Cells(3, 8).Value * rand(w)
pKa = Sheet4.Cells(2, 8).Value * rand(w)

Sheet5.Cells(8, 6) = pKa
Sheet5.Cells(9, 6) = A0

Sheet5.Cells(3 +w, 9) =w
Sheet5.Cells(3 + w, 10) = A0
Sheet5.Cells(3 + w, 11) = pKa

T(0) = sumvert
Sheet5.Cells(9, 2) = T(0)
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T(2) =T(0)

hl=A0%*0.1
h2 = pKa *0.1

Forp=1To 200 Step 1

A0 = A0 +hl
Sheet5.Cells(9, 6) = A0
Sheet5.Cells(9, 7) = hl
T(1) = sumvert
Sheet5.Cells(9, 2) = T(1)

If (T(1) < T(0)) Then
T0)=T(1)
hl=h1*1.25

Else
A0 =A0 - hl
hl=-hl*(0.75/1.25)
Sheet5.Cells(9, 6) = A0
Sheet5.Cells(9, 7) = hl

End If

pKa = pKa + h2
Sheet5.Cells(8, 6) = pKa
Sheet5.Cells(8, 7) = h2
T(1) = sumvert
Sheet5.Cells(9, 2) = T(1)

If (T(1) < T(0)) Then
TO) =T()
h2 =h2 *1.25
Else
pKa = pKa - h2
h2 =-h2 * (0.75 / 1.25)

Sheet5.Cells(8, 6) = pKa

Sheet5.Cells(8, 7) = h2
T(1) = sumvert

Sheet5.Cells(9, 2) = T(1)

End If

Sheet5.Cells(8, 2) = p

'storitige initial objective fn value in T(2)

'Initizing step increments

"T(0) =$t possible value till now

'‘Expamsfactor

'Contiantfactor

'Expamsfactor

'‘Contriantfactor

If Abs(hl) < (10 ~ -10) And Abs(h2) < (1610) And Abs(T(2) - T(0)) < (10 ~ -10) Then ExibF

T(2) =T(0)

Next p

Sheet5.Cells(9, 7) = Abs(hl)
Sheet5.Cells(8, 7) = Abs(h2)

Sheet5.Cells(3 + w, 12) = A0
Sheet5.Cells(3 + w, 13) = pKa
Sheet5.Cells(3 + w, 14) = T(0)

Sheet5.Cells(3 +w, 15) =p

102



If T(0) < best Then ' Best of N check
best = T(0)
g=w+3

End If

Next w

AO = Sheet5.Cells(g, 12)
pKa = Sheet5.Cells(g, 13)
p = Sheet5.Cells(g, 15)
T(0) = sumvert

Sheet5.Cells(z + 24,1) =z
Sheet5.Cells(z + 24, 2) = AO
Sheet5.Cells(z + 24, 3) = pKa
Sheet5.Cells(z + 24, 4) = T(0)
Sheet5.Cells(z + 24, 5) =p

End Sub

Objective function calculation

Function sumvert() As Double

Dim Vi As Double ' Subscript i refers toperimental terms
Dim pHi As Double ' Subscript r refers egressed terms
Dim pHr As Double

Dim d As Double
Dim sum As Double

Dim q As Integer ' # experimental datanp®i

sum =20
Forq=1To8Step 1

Vi = Sheet5.Cells(q + 11, 2).Value
pHi = Sheet5.Cells(q + 11, 3).Value

pHr = pHpredict(Vi)

d = (pHi - pHr) ~ 2
sum=sum+d
Sheet5.Cells(q + 11, 4) = Vi

Sheet5.Cells(q + 11, 5) = pHr
Sheet5.Cells(q + 11, 6) =d

Next g

Sheet5.Cells(20, 6) = sum
sumvert = sum

'‘Worksheets("Vertical_dist").Calculate

End Function
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Normal Distitarule

Parameter Optimization
Sub normal()

Dim best As Double ' besteditive function value from N trials

Dim g As Integer ' stotle iteration corresponding to the best objedtinetion value
Sheetl.Range(Cells(4, 9), Cells(1000, 15)).Clear€iia

best = 10000

R®Cyclic Direct Search

Forw=1ToN Step 1

A0 = Sheet4.Cells(3, 8).Value * rand(w)
pKa = Sheet4.Cells(2, 8).Value * rand(w)

Sheetl.Cells(8, 6) = pKa
Sheetl.Cells(9, 6) = A0
Sheetl.Cells(3 +w, 9) =w
Sheetl.Cells(3 + w, 10) = A0
Sheetl.Cells(3 + w, 11) = pKa

T(0) = norm

Sheetl.Cells(9, 2) = T(0)

T(2) =T(0) 'storintgetinitial objective fn value in T(2)
hl1=A0%*0.1 'Initialimy step increments

h2 = pKa *0.1

Forp=1To 200 Step 1

A0 =A0 +hl
Sheetl.Cells(9, 6) = A0
Sheetl.Cells(9, 7) = hl
T(1) = norm
Sheetl.Cells(9, 2) = T(1)

If (T(1) <T(0)) Then

T(O)=T(1) 'T(0) =sigpossible value till now
hl1=hl1*1.25 'Expansfantor

Else
A0 =A0-hl

hl=-h1*(0.75/1.25) '‘Contractifactor
Sheetl.Cells(9, 6) = A0
Sheetl.Cells(9, 7) = hl

End If

pKa = pKa + h2
Sheetl.Cells(8, 6) = pKa
Sheetl.Cells(8, 7) = h2
T(1) = norm
Sheetl.Cells(9, 2) = T(1)
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If (T(1) < T(0)) Then
T)=T(1)
h2 =h2 *1.25 'Expansfantor
Else
pKa = pKa - h2
h2 =-h2 *(0.75/ 1.25) ‘Contractifactor
Sheetl.Cells(8, 6) = pKa
Sheetl.Cells(8, 7) = h2
T(1) = norm
Sheetl.Cells(9, 2) = T(1)
End If

Sheetl.Cells(8, 2) = p

If Abs(hl1) < (10 ~ -10) And Abs(h2) < (1610) And Abs(T(2) - T(0)) < (10 ~ -10) Then ExibF
T(2) =T(0)

Next p

Sheetl.Cells(9, 7) = Abs(hl)
Sheetl.Cells(8, 7) = Abs(h2)

Sheetl.Cells(3 + w, 12) = A0
Sheetl.Cells(3 + w, 13) = pKa
Sheetl.Cells(3 + w, 14) = T(0)
Sheetl.Cells(3 +w, 15) =p

If T(0) < best Then ' Best of N check
best = T(0)
g=w+3

End If

Next w

A0 = Sheetl.Cells(g, 12)
pKa = Sheetl.Cells(g, 13)
p = Sheetl.Cells(g, 15)
T(0) = norm

Sheetl.Cells(z +24,1) =z
Sheetl.Cells(z + 24, 2) = AO
Sheetl.Cells(z + 24, 3) = pKa
Sheetl.Cells(z + 24, 4) = T(0)
Sheetl.Cells(z + 24,5) =p

End Sub

Objective function calculation

Function norm() As Double

Dim Vi As Double ' Subscriptefers to experimental terms
Dim pHi As Double ' Subscripefers to regressed terms
Dim Vr As Double

Dim pHr As Double
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Dim Va As Double 'Va, Vb: lom@nd higher limits of the golden section line sbar
Dim Vb As Double

Dim VI As Double 'VI, Vh: intmediate lower and higher limits of golden sectearch
Dim Vh As Double

Dim pH As Double

Dim | As Double 'I=Vb-Va

Dim q As Integer

Dim sum As Double

Dim d(1 To 2) As Double

Golden Section Search

sum =20
Forq=1To8Step 1

Vi = Sheetl.Cells(q + 11, 2).Value
pHi = Sheetl.Cells(q + 11, 3).Value

Va =Vmin *0.9 " Initializinthe golden section boundary limits
Vb =Vmax *1.1

Do
I=Vb-Va
VI =Va + (0.382 * )
Vh =Vb - (0.382 * )

pH = pHpredict(VI)
d(1) = dist(Vi, pHi, VI, pH, 1, 1)

pH = pHpredict(Vh)
d(2) = dist(Vi, pHi, Vh, pH, 1, 1)

If d(2) <d(1) Then
Va = VI
Vr =Vh
Else
Vb =Vh
Vr = VI
End If

Loop Until Abs(d(2) - d(1)) < 0.00001 And | <00001 ' Stopping criteria

pHr = pHpredict(Vr)
d(2) = dist(Vi, pHi, Vr, pHr, 1, 1)

Sheetl.Cells(q + 11, 4) = Vr
Sheetl.Cells(q + 11, 5) = pHr
Sheetl.Cells(q + 11, 6) =d(2)
sum = sum + d(2)

Next g

Sheetl.Cells(20, 6) = sum
norm = sum

End Function
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'Objective function
Function dist(vl As Double, pH1 As Double, v2 Asubte, pH2 As Double, sigx As Double, sigy As
Double) As Double

dist = ((v2 - v1) / (sigx * (Vmax - Vmin))) * 2 {§H2 - pH1) / (sigy * (pHmax - pHmin))) " 2

End Function

Maximum lhikeli Module

Parameter Optimization

Sub Max_Likelihood()
Dim best As Double ' besteitive function value from N trials
Dim g As Integer ' stotle iteration corresponding to the best objedtinetion value

Sheet6.Range(Cells(4, 9), Cells(1000, 15)).Clear€iia
best = 10000

R®Cyclic Direct Search
Forw=1ToN Step 1

A0 = Sheet4.Cells(3, 8).Value * rand(w)
pKa = Sheet4.Cells(2, 8).Value * rand(w)

Sheet6.Cells(8, 6) = pKa
Sheet6.Cells(9, 6) = A0

Sheet6.Cells(3 +w, 9) =w
Sheet6.Cells(3 + w, 10) = A0
Sheet6.Cells(3 + w, 11) = pKa

T(0) = MaxP

Sheet6.Cells(9, 2) = T(0)

T(2) =T(0) 'storingetinitial objective fn value in T(2)
hl1=A0%*0.1 'Initialimy step increments

h2 = pKa *0.1

Forp=1To 200 Step 1

A0 =A0 +hl
Sheet6.Cells(9, 6) = A0
Sheet6.Cells(9, 7) = hl
T(1) = MaxP
Sheet6.Cells(9, 2) = T(1)

If (T(1) <T(0)) Then

T(O)=T(1) 'T(0) =sigpossible value till now
hl=hl1*1.25 '‘Expansfantor

Else
A0 =A0-hl

hl=-h1*(0.75/1.25) '‘Contractifactor
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Sheet6.Cells(9, 6) = A0
Sheet6.Cells(9, 7) = hl
End If

pKa = pKa + h2
Sheet6.Cells(8, 6) = pKa
Sheet6.Cells(8, 7) = h2
T(1) = MaxP
Sheet6.Cells(9, 2) = T(1)

If (T(1) < T(0)) Then
T0)=T(1)
h2 =h2 *1.25 'Expansfantor
Else
pKa = pKa - h2
h2 =-h2 *(0.75/ 1.25) ‘Contractifactor
Sheet6.Cells(8, 6) = pKa
Sheet6.Cells(8, 7) = h2
T(1) = MaxP
Sheet6.Cells(9, 2) = T(1)
End If

Sheet6.Cells(8, 2) = p
If Abs(hl) < (10 ~ -10) And Abs(h2) < (1610) And Abs(T(2) - T(0)) < (10 ~ -10) Then ExibF
T(2) =T(0)

Next p

Sheet6.Cells(9, 7) = Abs(hl)
Sheet6.Cells(8, 7) = Abs(h2)

Sheet6.Cells(3 + w, 12) = A0
Sheet6.Cells(3 + w, 13) = pKa
Sheet6.Cells(3 + w, 14) = T(0)
Sheet6.Cells(3 + w, 15) = p

If T(0) < best Then ' Best of N check
best = T(0)
g=w+3

End If

Next w

AO = Sheet6.Cells(g, 12)
pKa = Sheet6.Cells(g, 13)
p = Sheet6.Cells(g, 15)
T(0) = MaxP

Sheet6.Cells(z + 24, 1) =z
Sheet6.Cells(z + 24, 2) = AO
Sheet6.Cells(z + 24, 3) = pKa
Sheet6.Cells(z + 24, 4) = T(0)
Sheet6.Cells(z + 24, 5) =p

End Sub
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Function MaxP() As Double

Dim Vi As Double
Dim pHi As Double
Dim Vr As Double
Dim pHr As Double

Dim Va As Double
Dim Vb As Double
Dim VI As Double

Dim Vh As Double
Dim pH As Double
Dim | As Double

Dim q As Integer
Dim sum As Double
Dim d(1 To 2) As Double

Dim sigx As Double
Dim sigy(1 To 8) As Double

Objective function calculation

' Subscriptefers to experimental terms
' Subscripefers to regressed terms

'Va, Vb: lom@nd higher limits of the golden section line sbar

'VI, Vh: intmediate lower and higher limits of golden sectearch

‘I=Vb-Va

' std dev Iretexperimental volume
' std dev Iretexperimental pH

Golden Section Search

sigx = Sheet6.Cells(12, 7).Value / (Vmax - Vmin)

sum =20
Forq=1To8Step 1

sigy(q) = Sheet6.Cells(11 + g, 8).Value / (pEtm@HmIn)

Vi = Sheet6.Cells(q + 11, 2).Value
pHi = Sheet6.Cells(q + 11, 3).Value

Va=Vmin*0.9
Vb =Vmax*1.1

Do
I=Vb-Va
VI =Va + (0.382 * )
Vh =Vb - (0.382 * )

pH = pHpredict(VI)

" Initializinthe golden section boundary limits

d(1) = dist(Vi, pHi, VI, pH, sigx, sigy(q))

pH = pHpredict(Vh)

d(2) = dist(Vi, pHi, Vh, pH, sigx, sigy(q))

If d(2) <d(1) Then

Va = VI

Vr=Vh
Else

Vb =Vh

Vr=ViI
End If
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Loop Until Abs(d(2) - d(1)) < 0.00001 And | <0D001
Vr=(VI+Vh)/2

pHr = pHpredict(Vr)

d(2) = dist(Vi, pHi, Vr, pHr, sigx, sigy(q))
Sheet6.Cells(q + 11, 4) = Vr

Sheet6.Cells(q + 11, 5) = pHr

Sheet6.Cells(q + 11, 6) =d(2)

sum = sum + d(2)

Next g

Sheet6.Cells(20, 6) = sum
MaxP = sum

'‘Worksheets("Max_Likelihood").Calculate

End Function

' Stopping criteria for Golden section skar
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APPENDIX B — PACKED BED SIMULATOR CODE

The following Visual Basic code was adopted for the packed bed simulation.
Code:

Option Explicit

" Author : Chetan Chandak

' Created date: 02- Feb-2009

' Description : Packed bed model to test regressietinods

' Declaring Comraoiables

Global Ci As Double ' Experimental variebl
Global CO As Double

Global F As Double

Global T As Double

Global Cir As Double ' Regression or mogwiables
Global COr As Double

Global Fr As Double

Global Tr As Double

Global kO As Double ' Model parameters
Global k1 As Double
Global E As Double

Global R As Double ' Gas constant
Global V As Double ' volume of the reacto
Global Cimin As Double " min and max input andput experimental values

Global Cimax As Double
Global COmin As Double
Global COmax As Double
Global Tmin As Double
Global Tmax As Double
Global Fmin As Double
Global Fmax As Double

Global z As Integer ' # realizationariable

Global I As Integer ' # BON realipats, variable

Global chk As Integer ' checks if tlwac predicted by Newtons / Succesive substitutiethod
' goes negative

Global i As Integer ' common variables

Global j As Integer
Global g As Integer

Global rand As Double
Global sig(1 To 4) As Double

Global G(0 To 2) As Double ' T(0): least possiblgective function value at the time of reading

" T(1): curreriijective function value at the time of reading

' T(2): objectifunction value before a new set of changes ip#rameters
Global d(0 To 2) As Double
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Experimetia Generation Module

Sub Regression()

Dim N As Integer ' # realizationgjue
Dim p As Integer ' # realizatidos BON, value

N = Sheet3.Cells(2, 12).Value
p = Sheet3.Cells(3, 12).Value

R =8.314
V =1000

Cimin = Sheet2.Cells(36, 2).Value
Cimax = Sheet2.Cells(37, 2).Value
COmin = Sheet2.Cells(36, 5).Value
COmax = Sheet2.Cells(37, 5).Value
Tmin = Sheet2.Cells(36, 4).Value
Tmax = Sheet2.Cells(37, 4).Value
Fmin = Sheet2.Cells(36, 3).Value
Fmax = Sheet2.Cells(37, 3).Value

Forz=1ToN
kO = Sheet3.Cells(3, 6).Value

k1 = Sheet3.Cells(2, 6).Value
E = Sheet3.Cells(4, 6).Value

Fori=1To4 Step 1

sig(i) = Sheet3.Cells(i + 1, 2).Value

Next i
Randomize

Fori=1To 27 Step 1

Data Generation

I1: Ci= Sheet3.Cells(i + 10, 2).Value + sigt13qr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd())
F = Sheet3.Cells(i + 10, 3).Value + sig{&qr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd())
T = Sheet3.Cells(i + 10, 4).Value + sig{3qr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd())

If Ci< 0 Then GoTo I1

CO = Newton(Ci, F, T)
If chk =1 Then GoTo I1

Sheet3.Cells(i + 10, 5) = CO + sig(4) * &ar Log(Rnd())) * Sin(2 * 3.14159 * Rnd())
If Sheet3.Cells(i + 10, 5) < 0 Then GoTo I1

Sheet3.Cells(i + 10, 7) = Ci
Sheet3.Cells(i + 10, 8) = F
Sheet3.Cells(i +10,9) =T
Sheet3.Cells(i + 10, 10) = CO

Next i

rinfing actual values
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Call data_substitution ' prints the experitakdata in the regression method sheets

Forl=1Top
rand = (1 + (2 * (Rnd() - 0.5) * 0.2))

Sheetl.Activate ' runs the vertical disemmodule
Call Regression_vertical

Sheet2.Activate ' runs the normal distamodule
Call Regression_normal

Sheet5.Activate ' runs the maximum likebd module
Call Regression_max
Next |

Next z

End Sub
' Newton Raphson method

Function Newton(Ci As Double, F As Double, T As &) As Double
Dim C(1 To 2) As Double
Dim i As Integer

C(1)=Ci*0.9
Fori=1To 100 Step 1
C(2) = C(1) - (func(Ci, F, T, C(1)) / fder(G, T, C(1)))

If C(2) < 0 Then C(2) = Ci * (1 + Rnd())
If Abs(C(2) - C(1)) < 0.00000001 Then Exit For

C(1) =C(2)
Next i
Ifi > 100 Then

chk=1
Else

chk=0
End If

Newton = (C(2) + C(1))/ 2

End Function

Function func(Ci As Double, F As Double, T As DoethC As Double) As Double

If C <0 Then GoTo 2

func = k1 *(Ci-C) + Log(Ci/ C) - (V*kOF) *Exp(-E/ (R *T))
2
End Function
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Function fder(Ci As Double, F As Double, T As DoethC As Double) As Double
fder = (func(Ci, F, T, C + 0.001) - func(Ci, F, C - 0.001)) / 0.002

End Function

Sub data_substitution()

' data_substitution Macro

Sheets("Sheet3").Select
Range("A11:E37").Select
Selection.Copy
Sheets("Sheetl1").Select
Range("A8").Select
Selection.PasteSpecial Paste:=xIPasteValuema@pn:=xINone, SkipBlanks _

:=False, Transpose:=False
Sheets("Sheet3").Select
Range("A11:E37").Select
Application.CutCopyMode = False
Selection.Copy
Sheets("Sheet2").Select
Range("A8").Select
Selection.PasteSpecial Paste:=xIPasteValuesa@®pn:=xINone, SkipBlanks _

:=False, Transpose:=False
Sheets("Sheet3").Select
Range("A11:E37").Select
Application.CutCopyMode = False
Selection.Copy
Sheets("Sheet5").Select
Range("A8").Select
Selection.PasteSpecial Paste:=xIPasteValues;a@pn:=xINone, SkipBlanks _

:=False, Transpose:=False

End Sub

' Verticalmist®dodule

Parameter Optimization

Sub Regression_vertical()

Dim a As Double
Dim b As Double
Dim C As Double
: R®Cyclic Direct Search

kO = Sheet3.Cells(3, 6).Value * rand 'imizing
k1l = Sheet3.Cells(2, 6).Value * rand
E = Sheet3.Cells(4, 6).Value * rand

Sheetl.Cells(3, 9) = kO

Sheetl.Cells(4, 9) = k1
Sheetl.Cells(5, 9) = E
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G(0) = Obj_vertical() + constraint()
Sheetl.Cells(4, 14) = G(0)

G(2) = G(0)

a=k0*0.5
b=k1*0.5
C=E*0.5

Fori=1To 5000 Step 1

kO =kO +a

Sheetl.Cells(3, 9) = kO
Sheetl.Cells(3, 10) = a

G(1) = Obj_vertical() + constraint()
Sheetl.Cells(4, 14) = G(1)

If (G(1) < G(0)) Then
G(0) =G(1)
a=a*1l.25

Else
kO=k0-a
a=-a*(0.75/1.25)
Sheetl.Cells(3, 9) = kO
Sheetl.Cells(3, 10) = a

End If

ki1=kl+b

Sheetl.Cells(4, 9) = k1
Sheetl.Cells(4, 10) = b

G(1) = Obj_vertical() + constraint()
Sheetl.Cells(4, 14) = G(1)

If (G(1) < G(0)) Then
G(0) = G(1)
b=b*1.25
Else
ki=kl-b
b=-b*(0.75/1.25)
Sheetl.Cells(4, 9) = k1
Sheetl.Cells(4, 10) = b
G(1) = Obj_vertical() + constraint()
Sheetl.Cells(4, 14) = G(1)
End If

E=E+C
Sheetl.Cells(5, 9) = E
Sheetl.Cells(5, 10) = C
G(1) = Obj_vertical() + constraint()
Sheetl.Cells(4, 14) = G(1)

If (G(1) < G(0)) Then
G(0) = G(1)
C=C*125

Else

'ghg the initial objective fn value in G(2)

' GEObest possible value till now
' Bxgion factor

' @@ction factor

' Bxpsion factor

' Gaaction factor

' BExysion factor
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E=E-C
C=-C*(0.75/1.25)
Sheetl.Cells(5, 9) = E
Sheetl.Cells(5, 10) =C

G(1) = Obj_vertical() + constraint()

Sheetl.Cells(4, 14) = G(1)
End If

Sheetl.Cells(5, 14) =i

' Gaction factor

If Abs((G(2) - G(0)) / G(2)) <10~ -6 And Abs((E) < 10" -6 _
And Abs(a / kO) < 10 ~ -6 And Abd(kl) < 10~ -6 Then ' Stopping criteria

Exit For
Else

G(2) = G(0)
End If
Next i

Sheetl.Cells(3, 10) = Abs(a)
Sheetl.Cells(4, 10) = Abs(b)
Sheetl.Cells(5, 10) = Abs(C)
Sheetl.Cells(4, 14) = G(0)

'Sheet4.Cells(l + 4, 11) = kO
'Sheet4.Cells(l + 4, 12) = Abs(a)
'‘Sheet4.Cells(l + 4, 13) = k1
‘Sheet4.Cells(l + 4, 14) = Abs(b)
'‘Sheet4.Cells(l + 4, 15) = E
'‘Sheet4.Cells(l + 4, 16) = Abs(C)
'‘Sheet4.Cells(l + 4, 17) = G(0)
'‘Sheet4.Cells(l + 4, 18) =i

Sheetl.Cells(z + 40, 1) =z
Sheetl.Cells(z + 40, 2) = k0O
Sheetl.Cells(z + 40, 3) = k1
Sheetl.Cells(z + 40, 4) = E
Sheetl.Cells(z + 40, 5) =i
Sheetl.Cells(z + 40, 7) = Abs(a)
Sheetl.Cells(z + 40, 8) = Abs(b)
Sheetl.Cells(z + 40, 9) = Abs(C)

End Sub

' repthe magnitude of the last change in parametieles

'Fimalue of the objective function

Function Obj_vertical() As Double

Dim sum As Double

Forqg=1To 27 Step 1

Ci = Sheetl.Cells(7 + g, 2).Value
F = Sheetl.Cells(7 + g, 3).Value
T = Sheetl.Cells(7 + g, 4).Value
CO = Sheetl.Cells(7 + q, 5).Value

COr = Newton(Ci, F, T)

Objective Function Evaluation
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d(0) = (CO - COr) ~ 2

Sheetl.Cells(7 + g, 10).Value = COr
Sheetl.Cells(7 + g, 11).Value = d(0)

sum = sum + d(0)
Next q

Obj_vertical = sum ' @tive function value
Sheetl.Cells(35, 11) = sum

End Function

Constraint check
Function constraint() As Double
Dim del(1 To 2) As Double

If k1 <5 Then del(1) = Abs((k1 - 5) / k1)
If del(1) > del(2) Then del(2) = del(1)

If k1 > 100 Then del(1) = Abs((k1 - 100) / k1)
If del(1) > del(2) Then del(2) = del(1)

If kO < 0.0001 Then del(1) = Abs((kO - 0.0001) Jk0
If del(1) > del(2) Then del(2) = del(1)

If kO > 1 Then del(1) = Abs((kO - 1) / k0)
If del(1) > del(2) Then del(2) = del(1)

If E <5000 Then del(1) = Abs((E - 5000) / E)
If del(1) > del(2) Then del(2) = del(1)

If E > 40000 Then del(1) = Abs((E - 40000) / E)
If del(1) > del(2) Then del(2) = del(1)

constraint = del(2)
End Function

Normal dististoziule

Parameter Optimization

Sub Regression_normal()
Dim a As Double
Dim b As Double
Dim C As Double
' R®Cyclic Direct Search

kO = Sheet3.Cells(3, 6).Value * rand "idizing
k1 = Sheet3.Cells(2, 6).Value * rand
E = Sheet3.Cells(4, 6).Value * rand

Sheet2.Cells(3, 9) = kO

Sheet2.Cells(4, 9) = k1
Sheet2.Cells(5, 9) = E
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G(0) = Obj_normal() + constraint()
Sheet2.Cells(4, 14) = G(0)

G(2) = G(0)

a=k0*0.5
b=k1*0.5
C=E*0.5

Fori=1To 5000 Step 1

kO =kO +a

Sheet2.Cells(3, 9) = kO
Sheet2.Cells(3, 10) = a

G(1) = Obj_normal() + constraint()
Sheet2.Cells(4, 14) = G(1)

If (G(1) < G(0)) Then
G(0) =G(1)
a=a*1l.25

Else
kO=k0-a
a=-a*(0.75/1.25)
Sheet2.Cells(3, 9) = kO
Sheet2.Cells(3, 10) = a

End If

ki=kl+b

Sheet2.Cells(4, 9) = k1
Sheet2.Cells(4, 10) = b

G(1) = Obj_normal() + constraint()
Sheet2.Cells(4, 14) = G(1)

If (G(1) < G(0)) Then
G(0) = G(1)
b=b*1.25
Else
ki1=kl-b
b=-b*(0.75/1.25)
Sheet2.Cells(4, 9) = k1
Sheet2.Cells(4, 10) = b
G(1) = Obj_normal() + constraint()
Sheet2.Cells(4, 14) = G(1)
End If

E=E+C
Sheet2.Cells(5, 9) = E
Sheet2.Cells(5, 10) = C
G(1) = Obj_normal() + constraint()
Sheet2.Cells(4, 14) = G(1)

If (G(1) < G(0)) Then
G(0) = G(1)
C=C*125

Else

'8y the initial objective fn value in G(2)

' GEObest possible value till now

' Bxgion factor

' @@ction factor

' Bxpsion factor

' Gaaction factor

' BExgsion factor
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E=E-C
C=-C*(0.75/1.25) ' Gaaction factor
Sheet2.Cells(5, 9) = E
Sheet2.Cells(5, 10) = C
G(1) = Obj_normal() + constraint()
Sheet2.Cells(4, 14) = G(1)
End If

Sheet2.Cells(5, 14) =i

If Abs((G(2) - G(0)) / G(2)) <10~ -6 And Abs((E) < 10" -6 _
And Abs(a / kO) < 10 ~ -6 And Abd(kl) < 10~ -6 Then ' Stopping criteria
Exit For
Else
G(2) = G(0)
End If

Next i
Sheet2.Cells(3, 10) = Abs(a) ' reports thgmitade of the last change in parameter values

Sheet2.Cells(4, 10) = Abs(b)
Sheet2.Cells(5, 10) = Abs(C)
Sheet2.Cells(4, 14) = G(0) ' Final Objeetiunction value

'Sheet4.Cells(l + 4, 2) = kO
'‘Sheet4.Cells(l + 4, 3) = Abs(a)
'‘Sheet4.Cells(l + 4, 4) = k1
'‘Sheet4.Cells(l + 4, 5) = Abs(b)
'‘Sheet4.Cells(l + 4, 6) = E
'‘Sheet4.Cells(l + 4, 7) = Abs(C)
'‘Sheet4.Cells(l + 4, 8) = G(0)
'Sheet4.Cells(l + 4, 9) =i

Sheet2.Cells(z + 40, 1) =z
Sheet2.Cells(z + 40, 2) = kO
Sheet2.Cells(z + 40, 3) = k1
Sheet2.Cells(z + 40, 4) = E
Sheet2.Cells(z + 40, 5) =i
Sheet2.Cells(z + 40, 7) = Abs(a)
Sheet2.Cells(z + 40, 8) = Abs(b)
Sheet2.Cells(z + 40, 9) = Abs(C)

End Sub

Objective Function Evaluation

Function Obj_normal() As Double

Dim al As Double
Dim b1l As Double
Dim C1 As Double
Dim sum As Double
' R?Cyclic Direct Search

Forq=1To 27 Step 1
Ci = Sheet2.Cells(7 + g, 2).Value
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F = Sheet2.Cells(7 + q, 3).Value
T = Sheet2.Cells(7 + q, 4).Value
CO = Sheet2.Cells(7 + q, 5).Value

Cir = Cimin * 0.9 ' Initializing
Tr=Tmin *0.9
Fr = Fmin * 0.9

al=Cir*0.1
bl1=Tr*0.1
Cl=Fr*0.1

COr = Newton(Cir, Fr, Tr)
d(0) = dist(Ci, F, T, CO, Cir, Fr, Tr, COr,1,,1, 1) + chk * 1000

d(2) =d(0)
Forj=1To 2000 Step 1

Cir=Cir+al
If Cir < 0 Then GoTo 5

COr = Newton(Cir, Fr, Tr)
d(1) = dist(Ci, F, T, CO, Cir, Fr, Tr, CQr, 1, 1, 1) + chk * 1000

If d(1) < d(0) Then

d(0) =d(2)

al=al*1.25 ' Expansion factor
Else

Cir=Cir-al

al=-al*0.75/1.25 ' Contractiantbr
End If

Tr=Tr+bl
If Tr <0 Then GoTo 6

COr = Newton(Cir, Fr, Tr)
d(1) = dist(Ci, F, T, CO, Cir, Fr, Tr, CQr, 1, 1, 1) + chk * 1000

If d(1) < d(0) Then

d(0) =d(1)

bl=Dbl*1.25 ' Expansion factor
Else

Tr=Tr-bl

bl=-b1*0.75/1.25 ' Contracti@ctor
End If

Fr=Fr+C1
If Fr <0 Then GoTo 7

COr = Newton(Cir, Fr, Tr)
d(1) = dist(Ci, F, T, CO, Cir, Fr, Tr, CQr, 1, 1, 1) + chk * 1000

If d(1) < d(0) Then

d(0) = d(1)
Cl=C1*1.25 ' Expansion factor
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Else
7 Fr=Fr-C1
Cl1=-C1*0.75/1.25 ' Contracti@ctor
End If

If Abs((d(2) - d(0)) / d(2)) <10 ~-10 Arbs(C1 / Fr) <10 ~ -10 And Abs(al / Cir) < 10¥9-And
Abs(bl/Tr) <10~ -10 Then toping criteria
Exit For
Else
d(2) = d(0)
End If

Next j

Sheet2.Cells(7 + q, 7).Value = Cir
Sheet2.Cells(7 + g, 8).Value = Fr
Sheet2.Cells(7 + q, 9).Value = Tr
Sheet2.Cells(7 + g, 10).Value = COr
Sheet2.Cells(7 + g, 11).Value = d(0)
sum = sum + d(0)

Next g

Obj_normal = sum Objective function value
Sheet2.Cells(35, 11) = sum

End Function

Function dist(Ci As Double, F As Double, T As DoapCO As Double, Cir As Double, Fr As Double, Tr
As Double, COr As Double, sigl As Double, sig2 Amuble, sig3 As Double, sig4d As Double) As Double

dist = ((Ci - Cir) / ((Cimax - Cimin) * sig1)) ~ 2 ((F - Fr) / ((Fmax - Fmin) * sig2)) ~ 2 + ((T 1)/
((Tmax - Tmin) * sig3)) * 2 + ((CO - COr) / ((COmaxC0Omin) * sig4)) » 2

End Function

' Maximum lhkelil Module

' Parameter Optimization

Sub Regression_max ()
Dim a As Double
Dim b As Double
Dim C As Double
' R?Cyclic Direct Search

kO = Sheet3.Cells(3, 6).Value * rand 'imizing
k1 = Sheet3.Cells(2, 6).Value * rand
E = Sheet3.Cells(4, 6).Value * rand

Sheet5.Cells(3, 9) = k0
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Sheet5.Cells(4, 9

k1l
Sheet5.Cells(5, 9) = E

) =
) =
G(0) = ObjML() + constraint()
Sheet5.Cells(4, 14) = G(0)

G(2) = G(0) '8y the initial objective fn value in G(2)

a=k0*0.5
b=k1*0.5
C=E*05

Fori=1To 5000 Step 1

kO =kO +a

Sheet5.Cells(3, 9) = kO
Sheet5.Cells(3, 10) = a

G(1) = ObjML() + constraint()
Sheet5.Cells(4, 14) = G(1)

If (G(1) < G(0)) Then

G(0) =G(1) ' GEbest possible value till now
a=a*1.25 ' Bxgion factor
Else
kO=k0-a
a=-a*(0.75/1.25) ' @@ction factor

Sheet5.Cells(3, 9) = kO
Sheet5.Cells(3, 10) = a
End If

ki=kl+b

Sheet5.Cells(4, 9) = k1
Sheet5.Cells(4, 10) = b

G(1) = ObjML() + constraint()
Sheet5.Cells(4, 14) = G(1)

If (G(1) < G(0)) Then

G(0) = G(1)

b=b*1.25 ' BExgsion factor
Else

ki1=kl-b

b=-b*(0.75/1.25) ' Gaaction factor

Sheet5.Cells(4, 9) = k1

Sheet5.Cells(4, 10) = b

G(1) = ObjML() + constraint()

Sheet5.Cells(4, 14) = G(1)
End If

E=E+C
Sheet5.Cells(5, 9) = E
Sheet5.Cells(5, 10) = C
G(1) = ObjML() + constraint()
Sheet5.Cells(4, 14) = G(1)

If (G(1) < G(0)) Then
G(0) = G(1)
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C=C*1.25 ' Exysion factor

Else
E=E-C
C=-C*(0.75/1.25) ' Gaaction factor

Sheet5.Cells(5, 9) = E

Sheet5.Cells(5, 10) = C

G(1) = ObjML() + constraint()

Sheet5.Cells(4, 14) = G(1)
End If

Sheet5.Cells(5, 14) =i

If Abs((G(2) - G(0)) / G(2)) <10 -6 And Abs((E) < 10" -6 _
And Abs(a / kO) < 10 ~ -6 And Abd(kl) < 10~ -6 Then ' Stopping criteria
Exit For
Else
G(2) = G(0)
End If

Next i

Sheet5.Cells(3, 10) = Abs(a) ' reports thgmitade of the last change in parameter values
Sheet5.Cells(4, 10) = Abs(b)

Sheet5.Cells(5, 10) = Abs(C)

Sheet5.Cells(4, 14) = G(0) ' Final Objeetiunction value

'‘Sheet4.Cells(l + 4, 20) = kO
‘Sheet4.Cells(l + 4, 21) = Abs(a)
'‘Sheet4.Cells(l + 4, 22) = k1
'‘Sheet4.Cells(l + 4, 23) = Abs(b)
'‘Sheet4.Cells(l + 4, 24) = E
'‘Sheet4.Cells(l + 4, 25) = Abs(C)
'Sheet4.Cells(l + 4, 26) = G(0)
'Sheet4.Cells(l + 4, 27) =i

Sheet5.Cells(z + 40, 1) =z
Sheet5.Cells(z + 40, 2) = k0O
Sheet5.Cells(z + 40, 3) = k1
Sheet5.Cells(z + 40, 4) = E
Sheet5.Cells(z + 40, 5) =i
Sheet5.Cells(z + 40, 7) = Abs(a)
Sheet5.Cells(z + 40, 8) = Abs(b)
Sheet5.Cells(z + 40, 9) = Abs(C)

End Sub

Objective Function Evaluation
Function ObjML() As Double

Dim al As Double

Dim bl As Double

Dim C1 As Double

Dim sigma(1 To 4) As Double
Dim sum As Double
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sigma(1) = sig(1) / (Cimax - Cimin)
sigma(2) = sig(2) / (Fmax - Fmin)
sigma(3) = sig(3) / (Tmax - Tmin)
sigma(4) = sig(4) / (COmax - COmin)

R®Cyclic Direct Search

Forqg=1To 27 Step 1

Ci = Sheet5.Cells(7 + g, 2).Value
F = Sheet5.Cells(7 + q, 3).Value
T = Sheet5.Cells(7 + q, 4).Value
CO = Sheet5.Cells(7 + q, 5).Value

Cir=Cimin * 0.9 ' Initializing
Tr=Tmin * 0.9
Fr=Fmin*0.9

al=Cir*0.1
bl1=Tr*0.1
Cl=Fr*0.1

COr = Newton(Cir, Fr, Tr)
d(0) = dist(Ci, F, T, CO, Cir, Fr, Tr, COr, gig(1), sigma(2), sigma(3), sigma(4)) + chk * 1000

d(2) = d(0)
Forj=1To 2000 Step 1

Cir=Cir+al
If Cir < 0 Then GoTo 1

COr = Newton(Cir, Fr, Tr)
d(1) = dist(Ci, F, T, CO, Cir, Fr, Tr, C&igma(1), sigma(2), sigma(3), sigma(4)) + chk 620

If d(1) < d(0) Then
d(0) =d(2)
al=al*1.25 ' Expansion factor
Else
1 Cir=Cir-al
al=-al*0.75/1.25 ' Contractiantbr
End If

Tr=Tr+bl
If Tr <0 Then GoTo 3

COr = Newton(Cir, Fr, Tr)
d(1) = dist(Ci, F, T, CO, Cir, Fr, Tr, C&igma(1), sigma(2), sigma(3), sigma(4)) + chk 620

If d(1) < d(0) Then

d(0) =d(2)
bl=Dbl*1.25 ' Expansion factor
Else
3 Tr=Tr-bl
bl=-b1*0.75/1.25 ' Contracti@ctor
End If
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Fr=Fr+C1
If Fr <0 Then GoTo 4

COr = Newton(Cir, Fr, Tr)
d(1) = dist(Ci, F, T, CO, Cir, Fr, Tr, C&igma(1), sigma(2), sigma(3), sigma(4)) + chk 6Q0

If d(1) < d(0) Then

d(0) =d(2)
Cl=C1*1.25 ' Expansion factor
Else
4 Fr=Fr-C1
Cl1=-C1*0.75/1.25 ' Contracti@ctor
End If
If Abs((d(2) - d(0)) / d(2)) < 10 ~-10 Arsbs(C1 / Fr) < 10 ~ -10 And Abs(al / Cir) < 10¥0-And
Abs(bl /Tr) <10~ -10 Then toping criteria
Exit For
Else
d(2) = d(0)
End If
Next j

Sheet5.Cells(7 + q, 7).Value = Cir
Sheet5.Cells(7 + q, 8).Value = Fr
Sheet5.Cells(7 + g, 9).Value = Tr
Sheet5.Cells(7 + g, 10).Value = COr
Sheet5.Cells(7 + g, 11).Value = d(0)

sum = sum + d(0)
Next g

ObjML = sum ' @btive function value
Sheet5.Cells(35, 11) = sum

End Function
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APPENDIX C — RESULTS: PARAMETER DISTRIBUTIONS

AND PROBABILITY PLOTS

The following Visual Basic code was used to generate the parametgrauistoand the
probability plots

Code:

Option Explicit
" Author : Chetan Chandak
' Created date: 20- Dec-2007

' Description : Result analysis through parameigridution and probability plots
' ParameteibDtgins
Public r As Integer " numbérealizations

Sub count()

Dim i As Integer

Dim j As Integer

Dim N As Integer ' numbéiirgervals, taken as 50 here

Dim X As Double
Dim Xmax As Double
Dim Xmin As Double

Dim R1 As Double "intengdite
Dim P(0 To 200) As Double ' for intenggacing
Dim C(1 To 200) As Integer ' counts thamber of values within an interval

Dim Y As Double
Dim Ymax As Double
Dim Ymin As Double

Dim R2 As Double "intensite
Dim Q(0 To 200) As Double ' for intensgdacing
Dim D(1 To 200) As Integer ' counts thamber of values within an interval

Sheetl.Range(Cells(25, 6), Cells(125, 10)).Clearsiia

r = Sheetl.Cells(1, 9).Value
N = Sheetl.Cells(2, 9).Value
Xmin = Sheetl.Cells(2, 4).Value
Xmax = Sheetl.Cells(3, 4).Value
Ymin = Sheetl.Cells(2, 5).Value
Ymax = Sheetl.Cells(3, 5).Value

' Since the regression methods would have difesges depending upon each of its min and max salue
"a common min and max for AO and pka is chosdadilitate plotting the distribution on the sameyjn

R1 = (Xmax - Xmin) / N
R2 = (Ymax - Ymin) / N

126



Fori=0ToN Step 1
P@) = (i * R1) + Xmin
Q@) = (i*R2) + Ymin

Next i

Fori=1ToN Step 1
C@i=0
D@i)=0
Next i
Fori=1Tor
X = Sheetl.Cells(24 + i, 2).Value
Y = Sheetl.Cells(24 + i, 3).Value

If X = Xmax Then C(N) = C(N) + 1
If Y = Ymax Then D(N) = D(N) + 1

Forj=1ToN Step 1

If (X>P(-1)Or X=P(-1)) And X < And X < Xmax Then

ClH=C@+1
End If

fF(Y>Q(-1)0OrY=Q(-1)And Y <@ And Y < Ymax Then

D() =D() +1
End If
Next j

Next i

Fori=1ToN
Sheetl.Cells(24 +i,6) =P(i-1) &" -
Sheetl.Cells(24 + i, 7) = C(i)
Sheetl.Cells(24 +i,9)=Q(i-1) &" -
Sheetl.Cells(24 + i, 10) = D(i)

Next i

Call probability

End Sub

Probabilitig P|

Sub probability()

Dim i As Integer
Dim j As Integer

Dim N As Integer

Dim X As Double
Dim Y As Double

Dim Xact As Double
Dim Yact As Double

Dim d1 As Double
Dim d2 As Double

" number of intals, taken as 100 here

'X=A0
'Y = pKa

' true value of AO
' true value of K

" deviation of arficular AO value from the true value
" deviation of arficular pKa value from the true value
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Dim R1 As Double "interval or st@pe of d1

Dim R2 As Double "interval orsteize of d2

Dim C1 As Double ' count of # Alwes beyond a particular deviation
Dim C2 As Double ' count of # pKalwes beyond a particular deviation
Dim dmax1 As Double ' max deviationAdf value from the true value

Dim dmax2 As Double ' max deviatiorpéfa value from the true value
Dim count As Integer ' counts the totamber of realizations

Sheetl.Range(Cells(25, 12), Cells(225, 15)).Cleat€us

count=0

r = Sheetl.Cells(1, 9).Value

N = Sheetl.Cells(3, 9).Value
Xact = Sheetl.Cells(3, 2).Value
Yact = Sheetl.Cells(4, 2).Value

Fori=1TorStep 1

X = Sheetl.Cells(24 + i, 2).Value
Y = Sheetl.Cells(24 + i, 3).Value

If X=00rY=0Then GoTo I1
dl = Abs(X - Xact)
d2 = Abs(Y - Yact)

If d1 > dmax1 Then dmaxl = d1
If d2 > dmax2 Then dmax2 = d2
count=count + 1

I1: Next i

R1 =dmax1/N
R2 =dmax2 /N

j=0
While (d1 <= dmax1) Or (d2 <= dmax2)

dl=j*R1
d2 =j*R2
C1=0
C2=0

Fori=1To 1000 Step 1
X = Sheetl.Cells(24 + i, 2).Value
Y = Sheetl.Cells(24 + i, 3).Value

IfX=00rY=0Then GoTo I2

If Abs(X - Xact) > d1 Then
Cl=Ci1+1

End If

If Abs(Y - Yact) > d2 Then
C2=C2+1
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End If
[2: Next i

Sheetl.Cells(25 + |, 12).Value = d1
Sheetl.Cells(25 + j, 13).Value = C1/ count
Sheetl.Cells(25 + j, 14).Value = d2
Sheetl.Cells(25 + j, 15).Value = C2 / count
j=j+1

Wend

End Sub
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