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Abstract

This study will describe the MRMS reanalysis precipitation dataset created for

the time period from 2001 to 2011. This high resolution 1-km2 5-minute dataset is

ideal for simulating flash floods with a distributed hydrologic model. The Ensemble

Framework For Flash Flood Forecasting (EF5) is created for the purpose of exploiting

this high resolution precipitation information by conducting simulations with multi

water balance models. The Coupled Routing and Excess Storage distributed hydro-

logic model and the Sacramento Soil Moisture Accounting are both adapted for use

in EF5.

EF5 is then used to simulate all time series gauged basins in the CONUS with

basin areas less than 1,000 km2. The water balance models are then evaluated in

terms of bias, correlation coefficient and Nash Sutcliffe Efficiency. The results show

that the water balance models have skill over most of the CONUS with the exception

for the mountain west where low quality precipitation estimates may be to blame.

Finally, a climatology of simulated flash floods is produced over the CONUS by

running EF5 to produce gridded daily maximum discharge, time of maximum dis-

charge, and minimum soil moisture outputs. Thresholds are then developed to relate

minor flood conditions to basin area and mean annual precipitation so that flooding

conditions can be defined even for ungauged watersheds. Maps of the mean annual

number of flash flood days are created which show an enhanced region over the central

plains particularly Texas and Missouri.
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Chapter 1

Introduction

Flash floods are defined by the U.S. National Weather Service (NWS) as “a rapid and

extreme flow of high water into a normally dry area, or a rapid water level rise in a

stream or creek above a predetermined flood level, beginning within six hours of the

causative event (e.g., intense rainfall, dam failure, ice jam). However, the actual time

threshold may vary in different parts of the country” (NWS 2016a). This definition

is matched by definitions from the World Meteorological Organization (WMO) which

puts the time scale as between four to six hours (WMO 1988) and the American

Meteorological Society (AMS) policy statement on flash floods which establishes an

upper bound for affected basin size at 1,000 km2 (AMS 2000). A WMO survey on

disaster risk reduction found that 105 out of 139 responding countries identified flash

floods as a hazard, second to strong winds as the most common hazard. Further of

the 99 countries that responded as issuing flash flood warnings, 91 said improvements

to the warnings are necessary (WMO 2008).

Floods are second to heat in terms of number of fatalities in the U.S. (Ashley and

Ashley 2008). Kunkel et al. (1999) found that flash floods account for 80–90% of all

flood fatalities and that there is a steady upward trend in flood damages (constant

dollars) over the past century. The increasing trend may be do to climate change with

several studies finding a link between warming and extreme rainfall events (Kharin

et al. 2007; Hirabayashi et al. 2013). Mallakpour and Villarini (2015) along with

Hirsch and Archfield (2015) argue that the magnitude of floods may not be increas-

ing but the frequency with which floods occur is increasing. In either scenario an

appropriate historical database of flash flood events, one which can easily be adapted
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to include new flood events, is necessary for monitoring of these events. Figure 1.1

shows the fatalities due to weather hazards recorded by the NWS for 2015 and the

10- and 30-year average fatalities per year. 2015 had a well above average number

of flood fatalities. Only heat has a higher 30-year average number of fatalities than

flooding.

Figure 1.1: Fatalities due to weather hazards for 2015 with 10- and 30-year averages. Figure

adapted from NWS (2016b).

A few examples of recent fatal flash floods in the U.S. include June 11th, 2010

in Arkansas where 20 campers lost their lives. May 31st, 2013 in Oklahoma City,

Oklahoma had significant flash flooding that killed 13 people, the most in the Norman

WFO area since 1934. The event is documented in a NWS service assessment (NWS

2014) and several papers have covered the environmental setup leading to over 150

mm of rainfall (Yussouf et al. 2016; Bluestein et al. 2015). Figure 1.2 shows the

recorded damage locations across Oklahoma City, Oklahoma for this event. Private
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property as well as public property such as schools, hospitals and roads were damaged

by this high impact event. September 14th, 2015 in Hildale, Utah, 19 people were

killed in a flash flood event; this event is the most deadly weather disaster in Utah

history.

Figure 1.2: Damage location and types of damage for the May 31st, 2013 flash flood across

the Oklahoma City, Oklahoma region. Figure adapted from Clark (2016).

Flash flood events are poorly understood and poorly documented when compared

to their cost in terms of dollars and human impact. The AMS policy statement on the

prediction and mitigation of flash floods states, “Still further, the databases created

by the new observing capabilities facilitate better studies of the physical character of

such rainfall events. This is especially true for understanding flash flood dynamics

and microphysical processes, knowledge that is vital for the development of improved

radar rainfall estimates” (AMS 2000). This study will develop the first continental
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scale flash flood climatology from a distributed hydrologic model at 1 km2 and five

minute spatiotemporal resolution.

In doing so this study proposes two hypotheses. The first is if the hydrological

processes governing the generation of flash floods are explained by the distributed

hydrologic model forced by radar quantitative precipitation estimate (QPE), then

time series of discharge for flash flood events can be produced. If the first hypothesis

is true and if the discharge threshold for flooding can be modeled using a statistical

relationship with basin area and mean annual precipitation then spatial climatologies

of flash flooding can be produced.

This study works to better document flash flood events in the U.S. during the

2002–2011 time period by providing supplemental information from hydrologic simu-

lations forced by the improved radar rainfall estimates from the Multi-Radar Multi-

Sensor (MRMS) system. This information will include peak discharge, time of day

of peak discharge and antecedent soil saturation. To do this a hydrologic modeling

framework will be developed where multiple water balance and routing models can

be easily combined to produce simulation results from a single set of input data.

This study is part of the much larger Flooded Locations And Simulated Hydro-

graphs (FLASH) project, which aims to provide NWS forecasters with better warn-

ing decision support tools for issuing flash flood warnings (Hong and Gourley 2014;

Gourley et al. 2016; NSSL 2016). Specifically the goal of the project is to improve

the spatial specificity, timing, and accuracy of flash flood warnings by leveraging

MRMS rainfall products for high resolution forward simulation. This study docu-

ments the hydrologic models used for FLASH, their setup, and their performance

over the current period of record for the precipitation forcing. These hydrologic mod-

els have already been used for experimental evaluations with NWS forecasters in the

Hydrometeorology Testbed (HMT) Hydro experiment (Martinaitis et al. 2016) and

the Flash Flood And Intense Rainfall (FFAIR) experiment (Barthold et al. 2015). In
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both places the hydrologic products presented here received favorable reviews. These

hydrologic products have been used for experiments with automation in the warning

decision process by recommending locations for possible flash flood warnings (Argyle

et al. 2016).

This study is organized into five chapters which document the hydrologic model,

setup, and the simulation results. A description of each chapter follows, with the first

chapter being this introduction.

Chapter 2 describes existing observations of flash floods, the MRMS radar precip-

itation dataset that will be utilized in this study, and how future flash flood databases

may be crowd sourced using tools like meteorological Phenomena Identification Near

the Ground (mPING). This chapter provides literature review on existing climatolo-

gies and that databases used to create them. This includes many databases in both

the U.S. and worldwide.

Chapter 3 is a description of Ensemble Framework For Flash Flood Forecasting

(EF5). The chapter will discuss design decisions behind EF5, the water balance

options, and routing options available for use. A case study of simulations in Arkansas

is presented, followed by bulk analysis of the time series over the conterminous United

States (CONUS) for basins with United States Geologic Survey (USGS) discharge

gauges and basin areas less than 1,000 km2. Finally, discussions of training are

capacity building activities with EF5 are presented. This includes how EF5 is being

used for work with NASA SERVIR in Africa.

Chapter 4 details a flash flood climatology created over the CONUS using EF5

forced with MRMS precipitation rates for the period from 2002 through 2011. The

chapter will show the climatology as a function of season, and detail the hour of the

day that flooding is most experienced. This dataset has the potential to be a database

of flash flood events from the 2002–2011 time period and could be further exploited

in future research as well.
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Last, chapter 5 presents a brief review of the work conducted, and conclusions

drawn from the work. Possible future work will also be presented that details how

improvements can be made to the MRMS QPE, better collection of observations for

model verification, and how better models can be developed.
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Chapter 2

Datasets

2.1 Flash Flood Databases

Despite the impact of flash floods, recorded information in the National Center for

Environmental Information (NCEI) Storm Data, the official record of storm occur-

rence in the United States contains sparse information on the hydrologic response

from heavy rainfall. For a flash flood event the free style narrative may contain

information on how much rain fell and if there was a stream gauge impacted, the

associated stage height change. However, this information is not standardized or al-

ways included. An example Storm Data narrative, “Thunderstorms produced heavy

rain that caused flash flooding leading to two high water rescues in Austin. One

at Stassney Ln. and Palo Blanco Ln. and the other at Pleasant Valley Rd. and

Onion Creek Dr. in southern Austin,” illustrates this point with little information

on the magnitude of the hydrologic hazard provided making it difficult to assess the

contribution of an extreme hydrologic hazard versus societal response. Contrast this

with tornadoes where Storm Data contains explicit fields for tornado damage rating,

tornado path length and tornado width. As such if one wishes to attempt to cor-

relate severity of hydrologic response with severity of impacts then additional data

collection is necessary.

Similar efforts to create compilations of flash floods such as those documented in

Llasat et al. (2010) and Gourley et al. (2013) also lack information on the magni-

tude of the hydrologic hazard for many of the events and data sources. Llasat et al.

(2010) compiles existing databases including the International Disaster Database, the
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European Severe Weather Database, databases from reinsurance companies, newspa-

pers, and scientific case studies into a single flood and flash flood database focused

on documenting numbers of fatalities and damage costs. Gourley et al. (2013) inte-

grates U.S. specific databases such as flash flood data from Severe Hazards Analysis

and Verification Experiment (SHAVE) (Gourley et al. 2010a; Ortega et al. 2009),

USGS discharge gauging stations, and NWS observations of flash flooding from Storm

Data into a single website for ease of download. Only the USGS discharge gauging

station database provides information on hydrologic parameters of flash floods includ-

ing timing and peak discharge. In Europe there have been continental and regional

databases created indexing only extreme flood events and including estimates of flood

peak discharge, flood duration, and rainfall accumulation.

Gaume et al. (2009) compiled flash flood data for the entire continent with an aim

to capture the top 30 flash floods in each region using all available data sources. For

an event to be contained inside the database an estimate of peak discharge must be

available from at least one cross-section. This makes this database one of the few with

hydrologic information but it is still limited to major flash flood events only. Marchi

et al. (2010) expanded on the work of Gaume et al. (2009) by including additional

information such as soil moisture in the previous 30 days and digital elevation models

for impacted basins. Again this compilation was limited to only the most extreme

flash flood events available in the existing database. Mediero et al. (2015) use observed

discharge time series to build a comprehensive set of flood events over Europe for a

time period from 1900 to 1999. Ruiz-Villanueva et al. (2013) builds a database of

flash flood events in ungauged basins in Spain by using existing documentation to

examine flood events and then compute rainfall-runoff relationships from daily rainfall

to estimate the peak flood discharges. Another reconstruction of flash flood events

in Spain is conducted by Rodriguez-Morata et al. (2016) using dendrogeomorphic
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techniques. Bryndal (2015) generated a database of flash flood events over Poland,

but does not attempt to quantify the peak discharge associated with the floods.

Costa (1987a) compares flood envelopes, maximum peak discharges by basin area,

from the U.S. and China, compiling information from China based on personal com-

munication. A database of flood fatalities in Australia was compiled by Coates (1999)

where the database contains physical characteristics of some of the flooding events.

The paper notes a limitation in differences of information from event source to event

source suggesting that a comprehensive database with information compiled in a simi-

lar manner would increase the overall utility of the data. Adhikari et al. (2010) creates

a global flood inventory by combining information from multiple sources. The data

for this inventory contains a discrete severity class based on the recurrence interval

for the flood event. However, there are only three severity classes which define small

to medium flood events, large events and extreme events.

Regardless of the area of the world the information available on flash flood events

is lacking in quality and completion. The peak discharges are often estimated through

reconstruction (high water marks) and extrapolation of stage-discharge relationships.

This method is suitable for analyzing events that have occurred hours or days ago

but over time high water marks fade making reconstruction months or years after an

event difficult. In basins equipped with stream gauges, the stream gauge itself may

yield measurements of the peak discharge, however Ruin et al. (2008) notes that high

storm intensity often affect gauge measurement reliability and integrity. Smith et al.

(2014) and Le Boursicaud et al. (2015) both developed unique methods for retriev-

ing flood discharge from recorded images and videos using photogrammetry but are

limited to events where this information is available. Costa (1987b) uses a slope-area

relationship to estimate peak flood discharges over the CONUS from a form of Man-

ning’s equation but requires surveyed channel cross-sections for estimation. Given

the lack of recorded physical characteristics of flash flood events and the difficulty in
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reconstructing the record from the environment another method is needed for creating

retrospective information on flash flood events.

Herschy (2002), which updates maximum flood envelope curves for data through

1999, states “The estimation of floods by statistical and mathematical analysis will

always be important especially where no measurements exist but actual measurement,

where possible, will always be preferable.” Distributed hydrologic and hydraulic

models, which are one form of mathematical analysis, have been used partially or

fully in reconstruction efforts to estimate the peak discharge of flash flood events and

build databases of hydrologic variables (Koutroulis and Tsanis 2010; Braud et al.

2010; Ballesteros Cnovas et al. 2010; Smith et al. 2014). This study expands on these

works and creates a climatology of flash flood events for the 2002–2011 period when

MRMS forcing data are available.

10



2.2 Storm Data Flash Flood Events

NCEI Storm Data is an official publication to document storms and significant weather

phenomena which have the intensity to cause loss of life, injuries, significant property

damage or disruption to commerce (NWS 2007). The publication is also expected

to include rare or unusual weather in which there is media coverage and significant

meteorological events such as temperature minima and temperature and precipita-

tion maxima that occur in connection with another event. Storm Data allows for

forty eight different types of events to be included in the publication. The period

of coverage for all forty eight event types runs from January 1996 to present with

a ninety day lag to allow for research into recently occurring events. Storm Data

events are recorded based on a specified point, however for many flash floods early

in the study period the point is left out of the data set and the event is considered

to be “countywide.” Starting in October of 2006 the events switched to being storm

based where a set of coordinates defining a polygon around the impacted area are

also stored in the database. The accuracy of the storm based polygons is unknown

at this time, especially for flash flood events, and there is a desire to include as much

data as possible so the county locations will be used for this study.

The data used in Storm Data is collected by the NWS. The NWS gathers infor-

mation from many places, including county, state and federal emergency management

officials, law enforcement officials, spotters and storm chasers, official NWS damage

surveys, reports from the general public including social media, and information col-

lected by insurance companies. The NWS does not have the resources to verify the

information reported to them in terms of damage amounts and injuries so the data are

considered to be the best easily available data set in terms of accuracy. The damage

amounts are specifically referred to as the “best guess” by the NWS. Storm Data is

used as the official verification source for warnings issued by the NWS so there is an

incentive for offices to capture events for which they issue warnings. This is both a
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good and bad thing, but given the frequency of warning issuance will tend to insure

that every damaging event is captured.

For the period from 2002 through 2011 there are 35,240 flash flood events reported

in Storm Data. The damage from these events is reported at $5,103,429,787 and 518

lives were lost. There are 528 reported injuries due to flash flooding in the database

during this time period. Figure 2.1 shows the distribution of Storm Data recorded

flash flood events from 2002 through 2011 normalized by the area of the reporting

county. Notable hot spots include the Texas hill country with many counties seeing

over one event a year. South-western Missouri also has a noticeable maximum in flash

flood events with many of the counties in the region also seeing over one event a year.

Figure 2.1: The number of Storm Data flash flood event reports for each county normalized

by the area of the county for the period from 2002 through 2011.

Figure 2.2 shows the distribution of Storm Data recorded damage costs from flash

flood events from 2002 through 2011 normalized by the area of the reporting county.

Local maxima are present over central Mississippi, northern Ohio, and southern New
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York. The locations of the maxima are different for the damage costs compared to

the number of flash flood events suggesting that the sheer number of events does not

drive the distribution of costs of flash flood events. There may also be a reporting

bias present by the NWS where more detailed surveys of impacts are conducted in

areas with fewer overall flash flood events. The influence of population is visible in

this figure with local maxima over Dallas, Chicago, and Birmingham. The exposure

of more infrastructure to flash floods increases the relatively chance of damage so

these maxima over populated locations make physical sense.

Figure 2.2: The damage costs of Storm Data flash flood events for each county normalized

by the area of the county for the period from 2002 through 2011.

Figure 2.3 shows the Storm Data recorded deaths and injuries from flash flood

events from 2002 through 2011 normalized by the area of the reporting county. Deaths

and injuries are rare in a relative sense with few counties reporting significant mul-

tiples of fatalities. The Texas hill country features a local maximum in both deaths

and injuries. Other local maxima are scattered through the southeast and midwest
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for both deaths and injuries. In Arizona and southern California there is a signal that

fatalities and injuries due to flooding occur there but the counties are so large it is

not possible to narrow down on more problematic areas. Single events with multiple

fatalities or injuries seem to be controlling the distribution of these impacts suggest-

ing that these are rare enough occurrences that more data are needed to fully resolve

locations with anomalously high numbers. Overall, the deaths and injuries look very

similar in spatial distribution to the distribution of the total number of flash flood

events. This is in direct contrast with the spatial distribution of the damage costs

which are displaced from the spatial distribution of flash flood events.
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Figure 2.3: The top (bottom) panel shows deaths (injuries) from Storm Data flash flood

events for each county normalized by the area of the county for the period from 2002 through

2011.
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2.3 MRMS Precipitation Forcing

As hydrologic models have evolved so has the forcing information used to drive them.

Rainfall data, once only available from rain gauges are now available from ground

radars with spatially distributed maps updated in near real time. These rapidly

updating radars have driven the creation of mosaic radar rainfall products over the

CONUS. The U.S. NWS River Forecast Center (RFC) provide Stage IV hourly

rainfall accumulations ( Lin and Mitchell (2005)) for most of the CONUS utilizing a

blend of rain gauges, radar rainfall estimates and human editing. The Stage IV QPE

is available with a resolution of 16 km2 at 1-, 6-, and 24 hour accumulation periods.

However, because of the human-in-the-loop nature of the rainfall estimates they are

not updated as frequently as possible given radars with volume coverage pattern

updates on the order of five minutes and low elevation scan revisit times on the order

of a single minute in newer operating modes (Chrisman 2009; Daniel et al. 2014).

The MRMS project started by the National Oceanic and Atmospheric Administration

(NOAA) National Severe Storms Laboratory (NSSL) has revolutionized the realm of

radar based quantitative precipitation estimates by generating rapidly updating QPE

without human intervention giving new precipitation estimates every five minutes.

This study will utilize the rapidly updating QPE from the MRMS project for modeling

of flash floods using a distributed hydrologic model over the CONUS.

Zhang et al. (2016) describes the MRMS system as a whole and in particular

the QPE generation process as derived from the predecessor National Mosaic and

Multi-Sensor QPE (NMQ) system (Zhang et al. 2011a). The MRMS system utilizes

advances in networking and computational power to centralize collection of level II

radar data from 160 radars across the CONUS (Kelleher et al. 2007). After the data

are collected at a central location the first step in processing the radar data are qual-

ity control. The radar data are processed to remove non-precipitation echoes which

may include ground clutter, biological objects such as birds and bats, sun strobes,
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and electronic interference. This quality control procedure is carried out in three

steps. First using heuristic rules to remove obvious ground clutter and anomalous

propagation where the Doppler velocity is zero, as well as easy to identify features

such as sun strobes and speckles. Second, a neural network classification trained on

the mean, median, and, variance of the reflectivity, Doppler velocity and spectrum

width helps identify non-precipitation echoes (Lakshmanan et al. 2007, 2010). Fi-

nally, another set of spatiotemporal image filters and rules is applied to remove any

remaining non-precipitation echoes such as hardware testing signals. These rules can

combine information from numerical weather prediction models such as the surface

temperature to completely remove all radar echoes when the radar is operating in

clear air mode and the surface temperature is above 5◦C. The vertical profiles of re-

flectivity (VPR) from each single radar are then examined to determine and correct

for issues such as radar bright banding (Zhang et al. 2008; Zhang and Qi 2010).

This correction process is essential if the data in the bright band must be used to

generate the precipitation estimate. The VPR are also examined to determine the

type of precipitation regime that is occurring in each range bin such as convective, or

warm rain in order to apply the appropriate Z-R relationship (Xu et al. 2008; Grams

et al. 2014). The radar data from each single radar is then interpolated from polar

coordinates on to 2D Cartesian coordinates on a grid with a horizontal resolution of

0.01◦. The polar coordinate data are selected such that the lowest altitude radar that

are not blocked by terrain or other obstacles are used in the analysis. This product

is equivalent to the hybrid scan reflectivity (HSR) product generated in Fulton et al.

(1998) and so named because it consists of data from different elevation angles for

each azimuth and range bin. An exponential weighting scheme defined in Zhang et al.

(2011a) is used to mosaic the HSR from multiple radars onto a single common Carte-

sian grid. This weighting scheme was picked because it produces better continuity

than a nearest neighbor approach. Figure 2.4 shows the height of the radar beam used
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in the hybrid scan reflectivity computation over the CONUS. Poor radar coverage is

visible in the western CONUS with large areas of high radar beam height.

Figure 2.4: Height of the radar beam (m) in the hybrid scan reflectivity mosaic produced

by MRMS.

Where MRMS really differentiates from existing rain rate algorithms is the ability

to determine on a per grid cell basis which Z-R relationship is most applicable. The

system does this with a simple decision tree based on the 3D reflectivity data, surface

temperature, surface wet bulb temperature, the column vertically integrated liquid

density, and if a warm rain process was identified in the VPR. Figure 9 in Zhang

et al. (2011a) details the entire decision tree with resulting classifications as either

snow, hail, warm rain, convective rain, or stratiform rain. Qi et al. (2013) examines

the segregation between stratiform and convective rain modes in the decision tree

and improves upon the classification results. The resulting Z-R relationships are as

listed where convective rain uses Z = 300R1.4 (Fulton et al. 1998), stratiform rain

uses Z = 200R1.6 (Marshall et al. 1955), warm rain uses Z = 230R1.25 (Rosenfeld

et al. 1993), and snow uses Z = 75R2.0 where Z is the radar reflectivity in mm6 m-3

and R is the rain rate or snow water equivalent in mm h-1.
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Figure 2.5: The Z-R relationships used in the MRMS system for different precipitation

regimes as a function of radar reflectivity.

Figure 2.5 shows in graphical form the differences between the Z-R relationships

as a function of radar reflectivity. The separation between the relationships is most

evident for higher reflectivity values illustrating the need for correct identification of

the precipitation regime.

Several studies have looked to quantify the performance of MRMS QPE both

in terms of comparing to raw rain gauge measurements and the impact on hydro-

logic modeling. Kitzmiller et al. (2011) focused on the impact of MRMS QPE on

discharge prediction in the Hydrology Laboratory-Research Distributed Hydrologic

Model (HL-RDHM) (Koren et al. 2004). The study focuses on three wet periods

including Hurricane Isabel in September of 2003. The conclusions drawn from the

study show that the MRMS QPE products are uniquely capable of capturing the dy-

namic Z-R relationship environments in tropical systems and cool season rain events.

Chen et al. (2015) compared MRMS QPE to Stage IV QPE on a grid cell by grid cell

basis for a two year period and found very favorable correlations across most of the

CONUS. The biggest differences are in regions of complex terrain where the gauge

adjustments and human modifications are increasingly important suggesting MRMS
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may struggle in these areas due to its radar only nature. In Chen et al. (2016) the

MRMS surface precipitation types are evaluated against data from mPING. mPING

data are collected from citizen scientists who use an Android or iOS app to report

the occurrence of rain, snow, or mixed precipitation types at the users’ location (El-

more et al. 2014). In general there is good agreement between MRMS rain and

snow precipitation classes and the data collected from mPING. In a few cases the

MRMS system reports rain when the mPING observations are snow which suggests

the thresholds used for delineation in the precipitation regime decision tree could be

further optimized in the future.

The MRMS system has primarily been a research system focused only on process-

ing incoming data in real time. To perform more comprehensive studies and analysis

there was a desire for the MRMS QPE to be generated for a retrospective period.

Subsequently collaboration between NCEI and NSSL yielded an agreement to pro-

duce an MRMS QPE reanalysis period going from 2001 through 2011. This period

was selected because it covers the period from when installation of the WSR–88D over

the CONUS was completed and data was archived at a centralized location through

when the upgrade to dual polarization began for the network. With dual polarization

radars it may be possible to get better precipitation estimates in the MRMS system

(Gourley et al. 2010b) and better quality control (Tang et al. 2014) but that work

has not yet been finalized.

The MRMS system is constantly evolving with new algorithms and improvements

to old ones. As such, the MRMS algorithms used for this reanalysis are out of date

with the operational MRMS system now in use. The newer MRMS algorithms do not

pick deterministic Z-R relationships for each type class but use a linear combination of

Z-R relationships based on the probability of each type class. This provides smoother

transitions between types and allows for more variability in the overall rain rates

produced.
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The MRMS reanalysis domain is the same as the operational MRMS domain with

products on a regular 0.01◦ grid spanning from –130.0 to –60.0 longitude and 20.0

to 55.0 latitude producing a grid with 7000 columns and 3500 rows for a total of

24,500,000 grid cells. The 5 minute precipitation rate products were produced for

this entire period and then distributed to users. The archive of precipitation rate

data totals 800 GB and 1,139,162 individual files.

Figure 2.6 shows the MRMS radar only precipitation rates accumulated for yearly

average for the period from 2001 through 2011. The yearly average precipitation has

a gradient from the east to west across the western two-thirds of the CONUS until

the Rocky Mountains. The mountainous western region of the CONUS has many

radar artifacts still present such as beam blockage, and ground clutter. Along the

west coast of the CONUS the yearly average precipitation values are higher than

anywhere else in the CONUS. The overall distribution of precipitation matches well

with other climatologies such as Parameter Elevation Regressions on Independent

Slopes Model (PRISM). Figure 2.7 shows the average precipitation accumulation

for days with accumulations >1 mm for the period from 2001 through 2011. The

daily average precipitation accumulation was averaged to 0.5◦ grid cells and then

interpolated back to 0.01◦ grid cells using bilinear interpolation. The gradient from

east to west is no longer present in the daily average precipitation map indicating

that the gradient present in the annual average precipitation is created by having

fewer rainfall events and not more events with less rainfall per event.
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Figure 2.6: Yearly average MRMS radar only precipitation rate accumulated for the period

from 2001 through 2011.

Figure 2.7: MRMS radar only average daily precipitation accumulation for days with >1

mm of precipitation.
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2.4 mPING Flash Flood Reports

The mPING project started as a way to collect reports of the precipitation type

falling at the surface, particularly for winter weather events where transition zones

between rain and snow may be quite small (Elmore et al. 2014). The reports were

collected in order to improve the surface precipitation type classifications produced

by the weather radar network. The reports were collected by crowd-sourcing, where

individuals download an app on their phones and then submit a report when there is

precipitation falling. The reports are automatically tagged using the phones GPS to

provide the location of the report and the time. The iOS application was developed

by the author of this dissertation. As of July, 2016, mPING applications had been

downloaded over 100,000 times and over 1 million reports had been collected. Figure

2.8 shows the iOS mPING app interface. Notable features include the simple interface

with emphasis on collecting the report.

The mPING applications were first released in December of 2012 and focused

only on precipitation type. Shortly there afterwards in May of 2013 the apps were

expanded to collect reports of other weather hazards such as wind, floods, tornadoes

and reduced visibility. As of July, 2016 there have been 3,883 flood reports collected

out of a total of 1,000,000+ reports. The reports are loosely classified by severity

with table 2.1 showing the flood levels, associated descriptive text, and number of

reports. The data collected so far seems unbiased with the more severe and rarer

classes of flash flooding seeing fewer overall reports.
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Figure 2.8: The iOS interface for the mPING app which collects crowd sourced reports of

precipitation types and weather hazards.

mPING has been translated into 10 different languages, French, Chinese, Spanish,

Estonian, Hungarian, Vietnamese, Polish, Greek, Portuguese, and Serbian. This in an

effort to increase the exposure around the world and enable the collection of reports

in the future from anywhere in the world by making it available in a language native

to a majority of the people in the world. The reports already collected by mPING are
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Table 2.1: mPING Flood Reports

Flood

Level

Description Number of Reports as of July

2016

1 River/Creek overflowing;

Cropland/Yard/Basement Flooding

2563

2 Street/road flooding; Street/road closed;

Vehicles stranded

1228

3 Homes or buildings filled with water 52

4 Homes, buildings or vehicles swept away 40

waiting for analysis to determine their significance. The reports could also be used by

hydrologic models as a source of data for data assimilation, especially if the reports

can be linked to inundated locations using a digital elevation model (DEM). Future

databases for flash flood information may rely heavily on crowd sourced reports to

identify the locations, time and impacts of the flash floods.

mPING is now a collaborative project between the University of Oklahoma (OU),

NSSL, NASA, and commercial partner AccuWeather who owns the patent on crowd

sourcing weather reports. The AccuWeather press release available at http://www.

accuweather.com/en/press/58766354 provides more details on the ongoing collab-

oration between the two organizations. mPING is a shining example of successful

crowd sourcing and collaboration between public, private and academic partners.

The project has been featured twice on the White House Blog as an example of

successful federal government crowd sourcing.

The future for mPING is very promising, but the number of reports is not yet

enough to develop climatologies of flash flooding. The reports are also biased towards

areas with larger populations, as well as populations with more weather savvy cit-

izens. This results in few reports in the western U.S. because of small population

density limiting the overall utility right now. Future developments and more work to
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promote mPING may change the distribution of reports making it more suitable for

climatological studies.
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Chapter 3

Ensemble Framework For Flash Flood Forecasting

(EF5)

3.1 Introduction

To fully capture flash flood events distributed hydrologic models need to be run at fine

spatial resolution on the order of 100 m to 2 km with a temporal step that is sub-hourly

(Rafieeinasab et al. 2015). Given this requirement to run with fine spatiotemporal

resolution several distributed hydrologic models were evaluated for their potential

to be run in this fashion to capture flash flood events over the CONUS. The Two-

Dimensional Runoff Erosion and Export (TREX) distributed hydrologic model was

one option, however the model attempts to be fully physical meaning that it requires

very fine spatial resolution and time steps on the order of seconds in order to properly

solve the equations (Velleux et al. 2008). Running it over the CONUS would require

computational resources unavailable at present time to OU and NSSL. Given the

obvious choice for a full physics hydrologic model was out of the running one had

to decide if any fully physical hydrologic model would be suitable to this problem

domain at the present time. There is a wide body of literature asking the question

of just how accurate are the physically based hydrologic models and can we produce

equal forecasts and understanding with a conceptual simple model?

Devia et al. (2015) provides an overview of the differences between empirical (sta-

tistical), conceptual (parametric), and fully physical hydrologic models. The authors

provide valuable dialog recognizing that each formulation of a hydrologic model has

strengths and weaknesses and there is no one answer for the entire problem domain
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in hydrology right now. Empirical models are considered to be useful only for the

specific watershed they are developed on and cannot be easily extrapolated into new

water sheds. Conceptual models are defined as simple and easily to implement in

software but require large amounts of data for calibration. Physically based models

require extensive amounts of data on processes often not observed by current sensor

networks and suffer from an inability to scale to large collections of watersheds. They

further state that, “Each model has various drawbacks like lack of user friendliness,

large data requirements, absence of clear statements of their limitations etc. In order

to overcome these defects, it is necessary for the models to include rapid advances in

remote sensing technologies, risk analysis, etc. By the application of new technolo-

gies, new distributed models can be developed for modelling gauged and ungauged

basins.” This belief is held strongly at OU and NSSL too, which will lead ultimately

to the creation of EF5.

Beven et al. (2014) addresses the ever increasing spatiotemporal resolutions of

hydrologic models and particularly the land surface models coupled to atmospheric

weather prediction models. They argue that there is a lack of information available

to validate hypothesizes made in hyper resolution models which may lead to mistake

beliefs about the processes. Information from hyper resolution models is often pre-

sented to stakeholders but without adequate quantification of the uncertainty leading

to misunderstandings. Further the information is presented where only part of the

model is hyper resolution and for example the precipitation forcing may not support

the ability to resolve details at the resolutions being presented on maps. Kuczera et al.

(2010) address the problem of uncertainty in the forcing information used for hydro-

logic models and model structural error. They argue that because of uncertainties in

the forcing information, averaging methods applied to obtain it, and hydrologic model

structural error that no conceptual model should be presented in a deterministic way.

The argument about model structural error suggests that future modeling systems
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should be able to account for these uncertainties with different model structures.

Micovic and Quick (2009) look at the complexity of model representation needed as

the temporal resolution of the hydrologic model decreases. So as simulations move

from long term climate simulations at a daily time step to simulations for individual

days with extreme flood events is there a need for more hydrologic model complexity?

The results from the study are only valid over a single watershed but suggest that

important hydrologic processes for extreme flooding are different than the processes

yielding good prediction skill at long time ranges.

Given the evidence above the choice of a hydrologic model for CONUS flash flood

prediction seems to fall to multiple conceptual models which are computationally ef-

ficient. The Coupled Routing and Excess Storage (CREST) distributed hydrologic

model developed by OU and NASA for global flood modeling seems like a natural

choice for inclusion into such work (Wang et al. 2011). Given the ties between NSSL

and the NWS the other logical choice is to include the Sacramento Soil Moisture

Accounting (SAC-SMA) model in a distributed fashion similar to HL-RDHM (Ko-

ren et al. 2004; Burnash 1995). The available implementations of both CREST and

SAC-SMA featured very user unfriendly software. The input forcing were required

in different formats for each model, as well as parameter grids. The output predic-

tions from HL-RDHM is in a format unfriendly to any software written in the last 30

years. Further HL-RDHM uses a projection system and raster grid storage solution

that are not used in any other software outside of the NWS making it impossible to

utilize community development and improvements. The CREST hydrologic model is

better with the output formats, producing American Standard Code for Information

Interchange (ASCII) text files that can be opened in common geographical informa-

tion systems (GIS) software. However the choice of text files means the data are not

stored in a compressed fashion and so file sizes quickly grow as domain sizes increase.

Neither HL-RDHM or CREST are friendly towards new users as both have confusing

29



error messages (if you even get an error message). CREST did not have the abil-

ity to load distributed parameter grids when EF5 was developed. CREST has poor

handling of units for both parameters and forcing information requiring input files

to be converted to different units instead of allowing for unit conversion multipliers

to be supplied by the end user. All of these factors made it desirable to produce a

new piece of software which could allow for multi-model hydrologic simulations with

common input data sets and tried to be as user friendly as possible.

The ideas behind EF5 were to incorporate the CREST water balance model,

SAC-SMA water balance model, and then couple the runoff output from either of

those to a linear reservoir routing scheme. As work on EF5 evolved it became apparent

that there was a need for more routing options so kinematic wave routing was added

as well. Applying EF5 in different locations made it apparent that there was a need

for snow parameterization so the Snow–17 parametric temperature index snow model

was added to EF5. Additionally it was identified that for some use cases calibration of

the hydrologic models was desirable so the DREAM automatic calibration scheme was

incorporated into EF5. EF5 also has limited data assimilation capabilities supporting

only direct insertion which can also be used as a boundary condition to model a

smaller area of a large watershed (Houser et al. 2012) . Figure 3.1 is the flow chart

for EF5 showing the various modules and options that can be utilized for distributed

hydrologic modeling.
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Figure 3.1: Flow chart illustrating the different modules and options available in EF5.

EF5 is designed with the concepts of watersheds in mind. To pick an area to model

the basic files must first be provided which includes DEM, flow direction map (FDM),

and flow accumulation map (FAM). The downstream point to model is then identified

as a “gauge” which may or may not also correspond to an observation measurement

location. Groups of gauges can be collected into a “basin” which is fundamentally

just a collection of gauges one wishes to model on and not necessarily a collection

of gauges in the same physical watershed. Parameters for the models are specified

on a per gauge basis and then applied everywhere upstream of the gauge, until the

next gauge if there is one. The parameters are specified either as a distributed grid

and then a multiplier value or as a single value that is applied uniformly across the

watershed.
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EF5 is written in C++ and currently contains 20,388 lines of code while support-

ing Linux, Mac OS X and Windows operating systems. Linux and Mac OS X are

supported via binaries run from the shell command prompt while Windows features a

fully-fledged Graphical User Interface (GUI). The Windows GUI provides very simi-

lar feedback when compared to the Linux and Mac OS X versions but in an easier to

work with package. The source code to EF5 is available on GitHub and documented

in Flamig et al. (2016).

EF5 currently supports several different options for file formats and map projec-

tions. The preferred file format for use with EF5 is Geotiff, which has the distinct ad-

vantage of including native compression capabilities reducing file sizes greatly. ESRI

Arc ASCII grids are also supported as input options for all gridded fields. For pre-

cipitation input, MRMS binary, Tropical Rainfall Measurement Mission (TRMM)

TRMM Multi-Satellite Precipitation Analysis (TMPA) 3B42 realtime binary are all

supported input options.

EF5 was created to be model physics agnostic and to do so implements virtual

base classes for the snow melt, water balance, and routing physics. The water bal-

ance base class is detailed below, and thus it is possible for any water balance model

that can conform to this specification to be implemented into EF5. EF5 provides

two input forcing variables for the water balance component, precipitation and po-

tential evapotranspiration. The output variables are a fast flow (typically surface)

component, slow flow (typically subsurface) component, and a soil saturation value.

class WaterBalanceModel {

public:

virtual bool InitializeModel(std::vector<GridNode> *nodes,

std::map<GaugeConfigSection *, float *> *paramSettings,

std::vector<FloatGrid *> *paramGrids) = 0;

virtual void InitializeStates(TimeVar *beginTime,
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char *statePath) = 0;

virtual void SaveStates(TimeVar *currentTime, char *statePath,

GridWriterFull *gridWriter) = 0;

virtual bool WaterBalance(float stepHours,

std::vector<float> *precip, std::vector<float> *pet,

std::vector<float> *fastFlow, std::vector<float> *slowFlow,

std::vector<float> *soilMoisture) = 0;

virtual bool IsLumped() = 0;

virtual const char *GetName() = 0;

};

The base class contains methods for initializing the model, initializing model state

variables that may have been saved to file, saving model state variables to file and

finally performing the water balance physics itself. For completeness the base classes

for the routing and snow components are included below. The routing and snow com-

ponents contain similar methods to be implemented as the water balance component

with functionality for initialization, state loading and saving, and the main method

for executing the physics. The routing virtual class takes a fast flow and slow flow

input components and provides a single discharge output variable. The snow module

takes as input precipitation, and temperature while providing melted runoff (or just

passing through precipitation in the no snow case) and snow water equivalent as the

output variables.

class RoutingModel {

public:

virtual bool InitializeModel(std::vector<GridNode> *nodes,

std::map<GaugeConfigSection *, float *> *paramSettings,

std::vector<FloatGrid *> *paramGrids) = 0;

virtual void InitializeStates(TimeVar *beginTime,
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char *statePath, std::vector<float> *fastFlow,

std::vector<float> *slowFlow) = 0;

virtual void SaveStates(TimeVar *currentTime,

char *statePath,

GridWriterFull *gridWriter) = 0;

virtual bool Route(float stepHours, std::vector<float> *fastFlow,

std::vector<float> *slowFlow,

std::vector<float> *discharge) = 0;

virtual float GetMaxSpeed() = 0;

virtual float SetObsInflow(long index, float inflow) = 0;

};

class SnowModel {

public:

virtual bool InitializeModel(std::vector<GridNode> *nodes,

std::map<GaugeConfigSection *, float *> *paramSettings,

std::vector<FloatGrid *> *paramGrids) = 0;

virtual void InitializeStates(TimeVar *beginTime,

char *statePath) = 0;

virtual void SaveStates(TimeVar *currentTime, char *statePath,

GridWriterFull *gridWriter) = 0;

virtual bool SnowBalance(float jday, float stepHours,

std::vector<float> *precip, std::vector<float> *temp,

std::vector<float> *melt, std::vector<float> *swe) = 0;

virtual const char *GetName() = 0;

};

This implementation of the model physics allows for EF5 to be easily expanded in

the future to contain more options for treatment of basic hydrologic functions. This
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expandability is a unique feature because many modeling implementations claim to

be frameworks for supporting multiple sets of model physics none (to this authors

knowledge) actually contain more than a single set of physics options.
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3.2 Water Balance Models

Currently EF5 contains three water balance options. All three options are conception-

ally based and rely on parameters loosely based on properties measured in existing

data sources. The three options described in this section are CREST, SAC-SMA and

Hydrophobic (HP). The most detailed description will be provided for the CREST

model because the underlying model has been modified from previous publications.

The HP option is by far the simplest, as there are no parameters to be specified

for the land surface. The HP option treats the surface as completely impervious so

all rain immediately runs off and flows down slope. The HP water balance option is

included for the ability to diagnose processes and errors when running in an ensemble

with the other water balance models. Underestimation with the HP model indicates

that the precipitation is likely biased. When everything is operating correctly the HP

model produces an upper bound on the expected discharge values.

Another water balance option, CREST, is a derivation of the Xinanjiang model

developed for use in China which features a variable infiltration curve for partitioning

rainfall into direct runoff and infiltration. (Ren-Jun 1992; Liang et al. 1996; Liu

et al. 2009). The first version of CREST was documented in (Wang et al. 2011) and

the version used here is an adaptation of that. The EF5/CREST implementation

has only a single soil layer, further simplifying the model and reducing the input data

requirements. EF5/CREST also contains partitioning for impervious area. Figure 3.2

shows a schematic for the various processes represented in EF5/CREST to convert

rainfall into runoff.
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Figure 3.2: A schematic showing the progression of processes represented in the

EF5/CREST water balance component (Vergara 2015).

Since EF5/CREST differs significantly from previous versions of CREST a de-

tailed description of EF5/CREST will be provided here. The first step is convert-

ing potential evapotranspiration to effective transpiration using the user configurable

scalar parameter Ke as shown in equation 3.1.

EETt = Ke ∗ PETt (3.1)

Where PETt is input forcing data into EF5 and EETt is the effective potential

evapotranspiration.

EPt =


0, for EETt ≥ Pt

Pt − EETt, for EETt < Pt

(3.2)

Where Pt is the input forcing rainfall into EF5. From the effective rainfall (EPt)

the direct runoff portion is calculated with the rest falling to the soil and then the

infiltration process. The rainfall is then partitioned into a portion reaching the soil

(SPt), a portion contributing to actual ET and a portion contributing to direct runoff

(DPt).

DPt = EPt ∗ Im (3.3)

SPt = EPt ∗ (1− Im) (3.4)
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Where Im is a scalar parameter representing the percent impervious area. The

infiltration is then modeled using:

It =


0, for Pt ≤ EETt ∨ SMt ≥ Wm

Wm − SMt, for (it + SPt) ≥ Im

Wm − SMt −Wm ∗ [1− it+SPt

im
]1+b, for (it + SPt) < Im

(3.5)

Where Wm represents the maximum water capacity, and b represents the exponent

of the variable infiltration curve. Both Wm and b are user defined parameters in EF5/

CREST. im represents the maximum infiltration capacity defined by:

im = Wm ∗ (1 + b) (3.6)

The infiltration capacity at the current time, it, is defined as:

it = im ∗ [1− (1− SMt

Wm

)
1

1+b ] (3.7)

Where SMt is the soil moisture state variable. The soil precipitation is then

partitioned into excess rainfall (ERt) based on the infiltration.

ERt =


0, for SPt = 0 ∨ SPt ≤ It

SPt − It, for SPt > It

(3.8)

The excess rainfall is then divided into overland (OERt) and subsurface (SERt)

flow components by:

SERt =


0, for EPt = 0

temXt, for ERt > temXt

ERt, for ERt ≤ temXt

(3.9)

With temXt is defined as:

temXt =


SMt +Wt2Wm ∗ Fc, for EPt > 0

(EETt − Pt) ∗ SMt

Wm
, for EPt = 0

(3.10)
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Using Fc to represent the hydraulic conductivity and with Wt as:

Wt =


0, for EPt = 0

Wm, for SMt + It ≥ Wm

SMt + It, for SMt + It < Wm

(3.11)

The overland flow component is then calculated by taking a difference between

the amount that infiltration and the excess rain plus adding in the direct runoff.

OERt =


0, for EPt = 0

ERt − SERt +DPt, for EPt > 0

(3.12)

The new soil moisture value is then computed using:

SMt+1 =


SMt − temXt, for EPt = 0

Wt, for EPt > 0

(3.13)

Finally the actual evapotranspiration, AETt, is given as:

AETt =


temXt for EPt = 0

EETt, for EPt > 0

(3.14)

EF5/CREST has six user configurable parameters. Wm is the cell’s maximum

water capacity and is closely related to the soil porosity. This parameter controls

how much water is necessary for a grid cell to become saturated and can be viewed as

a bucket that fills up. Fc is the maximum amount of water allowed to infiltrate into

the subsurface flow when the grid cell is saturated. This parameter is closely related

to saturated hydraulic conductivity. Ke is a linear adjustment to potential evapotran-

spiration and controls how efficiently potential evapotranspiration is converted into

actual evapotranspiration. The b parameter is related to the soil texture. Figure 3.3

shows the sensitivity of the variable infiltration curve as a function of soil saturation

and the b parameter. Im is the percent of rain that will be converted directly into
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overland runoff. This parameter is related to the impervious area of the grid cell. The

final parameter, Iwu is the percent of Wm that is water initially in the grid cell. This

is really a model state, but to allow for more thorough model calibration is classed

as a parameter value.

Figure 3.3: Curves showing how the infiltration rate changes as a function of soil saturation

and the b parameter, the exponent of the variable infiltration curve.

The SAC-SMA water balance option is the most complex one featured in EF5

currently. The implementation of SAC-SMA in EF5 is based off the works of Koren

et al. (2004) and Yilmaz et al. (2008) so the model structural details are not described

here. Figure 3.4 is a schematic of the processes represented in the SAC-SMA water

balance component. Multiple zones with significantly more complex interactions are

include in SAC-SMA than when compared with CREST. The twenty one parameters

for EF5/SAC-SMA are listed and briefly described in table 3.3. The SAC-SMA uses

a saturation excess process to generate runoff differing from the infiltration excess

process used in CREST.
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Figure 3.4: A schematic showing the progression of processes represented in the EF5/SAC-

SMA water balance component. Figure adapted from UCAR COMET MetEd (UCAR

2009).
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3.3 Routing Options

The routing options available in EF5 are a lumped routing model conceptualized

as a series of linear reservoirs and a kinematic wave approximation of the Saint-

Venant equations for one-dimensional open channel flow. The linear reservoir option

is adapted from the original CREST model (Wang et al. 2011) and has been well

described and used in many hydrologic projects (Nash 1957; Moore 1985; Chow

et al. 1988; Vrugt et al. 2002). The EF5 linear reservoir option features two separate

reservoirs where their depths are computed as:

ORt+1 = ORt +OERt +
N∑
i=1

OERi
t (3.15)

SRt+1 = SRt + SERt +
N∑
i=1

SERi
t (3.16)

Where ORt and SRt are the overland and subsurface reservoirs. OERt and SERt are

the excess rainfall components from EF5/CREST representing the fast and slow flow

components. The N represents the number of adjacent grid cells that flow into the

current grid cell. The discharge out of each reservoir is based on the linear equations:

OQt = LeakO ∗ORt (3.17)

SQt = LeakI ∗ SRt (3.18)

Qt = OQt + SQt (3.19)

Where LeakO and LeakI are parameters defining the rate of discharge. The total

discharge Qt is based on the summation of the fast (OQt) and slow (SQt) discharge

rates. At each time step the fast and slow discharges are routed downstream following

the FDM into the reservoir of the downstream grid cell.

The implementation of the kinematic wave routing is based on an approximation to

the one-dimensional unsteady open channel flow equations. The full one-dimensional

unsteady open channel flow equations were developed in 1871 by Barr de Saint-

Venant and represent a physical description of the movement of water in a watershed
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(Chow et al. 1988). The full equations have a number of assumptions which must

be true in order for the Saint-Venant equations to work including that the flow is

one-dimensional, that the flow varies gradually along the channel implying vertical

accelerations can be neglected, that the channel is approximately a straight line,

that the channel does not experience scour and deposition, and that the flow fluid

is incompressible implying a constant density. The kinematic wave model further

simplifies the equations and requires that bed slopes be steep. In the steep slope case

the kinematic wave approximation reasonably describes the unsteady flow phenomena

(Ponce 1986). The work by (Ponce 1991) claims that even in most overland cases the

criterion for the kinematic wave approximation hold. The kinematic wave model is

widely used in hydrology and has been implemented in systems such as the Hydrologic

Engineering Center’s Hydrologic Modeling System (Feldman 2000), the Storm Water

Management Model created by the Environmental Protection Agency (Huber 1995),

HL-RDHM previously mentioned here and described in Koren et al. (2004), and finally

already coupled to the Xinanjiang model (Liu et al. 2009).

Deriving the kinematic wave approximation starts with the Saint-Venant equa-

tions in the Eulerian frame of reference where we model fluid as it passes by a control

point, or in this case as it passes through a control volume. The time rate of change

of the fluid is model as a function of the external forces acting on it as in Reynolds

transport theorem (Chow et al. 1988). The external forces in this case are derived

from Newton’s second law of motion while neglecting lateral inflow, eddies and wind

shear. The Saint-Venant continuity equation is given as:

∂Q

∂x
+
∂A

∂t
= q (3.20)

Where Q is the discharge, x is the horizontal distance, q is the lateral inflow into

the channel, t is time, and the channel cross-sectional area is A. The equation of

momentum is defined by:
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1

A

∂Q

∂t
+

1

A

∂

∂x
(
Q2

A
) + g

∂y

∂x
− gSo + gSf = 0 (3.21)

Where gravity is g, So is the bottom channel slope, and Sf is the friction slope.

The terms in equation 3.21 have been named such that 1
A
∂Q
∂t

is the local acceleration,

1
A

∂
∂x

(Q
2

A
) is the convective acceleration, g ∂y

∂x
is the pressure force, gSo is the gravity

force, and gSf is the friction force. Simplifications to equation 3.20 and 3.21 rep-

resent different schemes commonly used in distributed hydrologic models. When no

simplifications are made the routing is referred to as dynamic wave, when the ac-

celeration terms are neglected the resulting wave model is called diffusive wave, and

when the acceleration terms are neglected and the gravity force and friction force are

assumed to be equal the result is the kinematic wave routing. In the kinematic wave

assumption the resulting equation for momentum is:

Q = αAβ (3.22)

Where α and β are the kinematic wave parameters. This can be substituted back

into the continuity equation and solved for Q which yields:

∂Q

∂x
+ αβQβ−1∂Q

∂t
= q (3.23)

Chow et al. (1988) also provides an implicit solution to the equations for dis-

tributed routing which is implemented into EF5. The kinematic wave routing in EF5

is applied only to the overland discharge, the subsurface discharge is routed with lin-

ear reservoir routing as described above. The equations above describe the kinematic

wave routing for channel routing. For overland routing process is the same as above

but for q instead of Q. The resulting equation is as follows:

∂q

∂x
+ α0β0q

β0−1∂q

∂t
= i− f (3.24)
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where α0 is the overland conveyance parameter, and the β0 parameter is fixed

at 3
5
. The i − f forcing term is the surface excess rainfall passed in from the water

balance model. Table 3.5 details the parameter options for kinematic wave routing

used by EF5.
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3.4 Setup Over CONUS

The EF5 was set up over the CONUS to run CREST, SAC-SMA and HP water

balance models all coupled with Kinematic Wave (KW) routing. No snow module

was used for these simulations. The modeling domain was set to exactly match the

MRMS domain with a regular 0.01◦ grid spanning from –130.0 to –60.0 longitude and

20.0 to 55.0 latitude. This grid was picked to fully exploit the resolution provided by

the MRMS precipitation estimates. The basic files, which are the DEM, FDR, and

FAM, were derived from the National Elevation Dataset (NED) (Gesch et al. 2009).

The NED data was resampled to the 0.01◦ resolution using an arithmetic mean and

then FDR and FAM were derived using ESRI ArcGIS and the ArcHydro toolbox.

Figure 3.5 shows the resulting FAM where large rivers and streams are clearly visible.

A priori distributed parameter maps were preferred where available. The models were

run in an uncalibrated mode because robust calibration is not currently feasible over

CONUS due to computational constraints. The models were also run uncalibrated

because there are not enough observation points over the CONUS to adequately

calibrated distributed hydrologic models.
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Figure 3.5: The flow accumulation map derived at 0.01◦ horizontal resolution from the

National Elevation Dataset.

The CREST parameters used for this study are largely based on a priori maps

of soil information generated by Miller and White (1998) utilizing the STATSGO

dataset. Table 3.2 summarizes the EF5/CREST parameters and the values used in

this study. The b parameter was derived from the soil texture map provided by Miller

and White (1998) with a lookup table from Cosby et al. (1984) then used to convert

from the soil texture into the exponent parameter. The lookup table for b is provided

in Table 3.1. The values for b over the CONUS are shown in Figure 3.6. The Wm

parameter map was generated from resampling the available water capacity 250 cm

depth map in Miller and White (1998) to the domain used here with bilinear interpo-

lation. The resulting map is shown in Figure 3.7. The Fc parameter for EF5/CREST

was produced using the permeability map from Miller and White (1998) where Figure

3.8 shows the spatial variability over the CONUS. The percent impervious area was

derived from the National Land Cover Database (NLCD) 2011 edition impervious

area from Xian et al. (2011) resampled using average interpolation onto the study
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domain. Figure 3.9 shows the resulting map of impervious area percentage over the

CONUS. The KE and IWU are the only EF5/CREST parameters without distributed

aprior parameter maps.

Table 3.1: Soil Texture and b Value from Cosby et al. (1984)

Soil Texture b

Sandy loam 4.74

Sand 2.79

Loamy sand 4.26

Loam 5.25

Silty loam 5.33

Sandy clay loam 6.77

Clay loam 8.17

Silty clay loam 8.72

Sandy clay 10.73

Silty clay 10.39

Light clay 11.55

Figure 3.6: The EF5/CREST b parameter shown over the CONUS.
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Figure 3.7: The EF5/CREST Wm parameter shown over the CONUS.

Figure 3.8: The EF5/CREST Fc parameter shown over the CONUS.
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Figure 3.9: The EF5/CREST Im parameter shown over the CONUS.

Table 3.2: CREST Parameter Values

Param-

eter

Description Value Grid Source Min Mean Max

WM Water capacity of soil in mm 1 Miller and White

(1998)

0 206 2500

FC Saturated hydrologic

conductivity in mm h-1

1 Miller and White

(1998)

0 8 51

B Exponent of the infiltration

curve

1 Miller and White

(1998)

0 5 12

IM Percentage impervious area in % 1 Xian et al. (2011) 0 1 96

KE Potential evapotranspiration

adjustment factor

1 NA NA NA NA

IWU Initial soil water content 75 NA NA NA NA

The EF5/SAC-SMA parameters were taken directly from work done by Zhang

et al. (2011b) because this work is most comparable to what is used operationally

by the NWS. Table 3.3 lists the parameters and their respective values used in this

study. PCTIM, ADIMP, SIDE, and RIVA are using lumped values defined in the

tables as a priori grids were not made available.

The kinematic wave parameters used by EF5 are listed in Table 3.5. These

parameter values are used for all model combinations when coupled with CREST,
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Table 3.3: SAC-SMA Parameter Values

Parameter Description Value Grid Source

UZTWM Upper zone tension water capacity in mm 1 Zhang et al. (2011b)

UZFWM Upper zone free water capacity in mm 1 Zhang et al. (2011b)

UZK Depletion rate from upper zone free water

storage from interflow in day-1

1 Zhang et al. (2011b)

LZTWM Lower zone tension water capacity in mm 1 Zhang et al. (2011b)

LZFSM Lower zone supplemental free water

capacity in mm

1 Zhang et al. (2011b)

LZFPM Lower zone primary free water capacity in

mm

1 Zhang et al. (2011b)

LZSK Rate of depletion of the lower zone

supplemental free water storage in day-1

1 Zhang et al. (2011b)

LZPK Rate of depletion of the lower zone

primary free water storage in day-1

1 Zhang et al. (2011b)

ZPERC Maximum and minimum percolation rate

ratio

1 Zhang et al. (2011b)

REXP Shape parameter of the percolation curve 1 Zhang et al. (2011b)

PFREE Percolation fraction that goes directly to

the lower zone free water storage

1 Zhang et al. (2011b)

PCTIM Percentage impervious area in % 0.1 NA

ADIMP Maximum fraction of additional

impervious area from saturation

0.1 NA

RIVA Riparian vegetation fractional area 1.0 NA

SIDE Ratio of deep percolation from lower zone

free water storage

0.0 NA

ADIMC Initial additional impervious area from

saturation

1.0 NA

UZTWC Initial filled amount of upper zone tension

water

0.55 NA

UZFWC Initial filled amount of upper zone free

water

0.14 NA

LZTWC Initial filled amount of lower zone tension

water

0.56 NA

LZFSC Initial filled amount of lower zone

supplemental free water

0.11 NA

LZFPC Initial filled amount of lower zone primary

free water

0.46 NA
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SAC-SMA and HP water balance options for this study. The parameters are a priori

based on statistical relationships with geomorphological, precipitation and soil pa-

rameters developed in Vergara et al. (2016). Observed α and β values were computed

from the cross-sections and discharge values measured by the USGS. These observed

values were then modeled using generalized additive models for location, size, and

shape (GAMLSS) which allows for the extrapolation of information collected at the

approximately 10,000 USGS discharge stations in the CONUS to everywhere on the

hydrologic model grid. The parameters used are basin area, elongation ratio, relief

ratio, slope index, slope to outlet, mean annual precipitation, mean annual temper-

ature, K factor, depth-to-rock, rock volume percentage, soil texture, curve number,

and river length. Figure 3.10 shows the resulting model fit to the observed data for α

and β. The α0 parameter was computed using Manning’s equation for overland flow:

α0 =
1

n
S

1
2 (3.25)

Where the S is the slope computed from DEM, n is Manning’s roughness coeffi-

cient. The roughness coefficient was computed from University of Maryland (UMD)

Moderate Resolution Imaging Spectroradiometer (MODIS) land cover type mosaics

(Channan et al. 2014) and a lookup table from Chow et al. (1988) documented in

Table 3.4. Figure 3.11 shows the resulting α parameter map for the CONUS. The β

parameter is shown in Figure 3.12. Figure 3.13 shows the results for α0 from Equation

3.25.
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Table 3.4: UMD Land Cover Classes

UMD Class Description Manning’s n

0 Water 0.001

1 Evergreen Needleleaf Forest 0.1

2 Evergreen Broadleaf Forest 0.1

3 Deciduous Needleleaf Forest 0.1

4 Deciduous Broadleaf Forest 0.1

5 Mixed Forest 0.1

6 Woodland 0.1

7 Wooded Grassland 0.3

8 Closed Shrubland 0.3

9 Open Shrubland 0.2

10 Grassland 0.17

11 Cropland 0.035

12 Bare Ground 0.01

13 Urband and Built 0.015

Figure 3.10: Density scatter plots showing GAMLSS modeled fits for (a) α and (b) β

kinematic wave parameters. Figure adapted from Vergara et al. (2016).
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Figure 3.11: The α kinematic wave parameter derived in Vergara et al. (2016).

Figure 3.12: The β kinematic wave parameter derived in Vergara et al. (2016).
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Figure 3.13: The α0 kinematic wave parameter derived in Vergara et al. (2016).

Table 3.5: Kinematic Wave Parameter Values

Param-

eter

Description Value Grid Source Min Mean Max

α Kinematic wave multiplier

coefficient

1 Vergara et al.

(2016)

0.4 3 149

β Kinematic wave power

coefficient

1 Vergara et al.

(2016)

0.4 0.7 1.0

α0 Kinematic wave conveyance

parameter for overland

1 Vergara et al.

(2016)

0.06 0.7 18

Under Subsurface flow speed in m s-1 0.0001 Miller and White

(1998)

0 8 51

LeakI Percentage reduction in

interflow storage per time step

in %

1 Zhang et al.

(2011b)

0.127 0.128 0.129

Th Area threshold for declaring a

grid cell to contain a channel in

grid cells

10 NA NA NA NA

ISU Initial water storage in channel

grid cells

0.0 NA NA NA NA

EF5 was run for the period from 2001 through 2011 for all USGS discharge gauges

with a basin area under 1,000 km2. There are 4,366 discharge gauges over the CONUS

that meet this basin area threshold. The MRMS reanalysis precipitation rates every
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five minutes were used as the precipitation forcing for EF5. The potential evapotran-

spiration (PET) data was climatological monthly mean data derived in Koren et al.

(1998) and shown in Figure 3.14. EF5 was run with a five minute time step producing

five minute output simulated time series. The resulting simulations took 1-week of

computer time for the EF5/CREST combination and 2.5-weeks of computer time for

EF5/SAC-SMA illustrating the relative differences in complexity and performance

between the two water balance models. The year 2001 was used as a model warmup

period and so results will only be presented from 2002 through 2011.

56



Figure 3.14: Maps of the mean daily PET variations by month derived from Koren et al.

(1998).
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3.5 CONUS Case Study Results

Before diving directly into bulk evaluations of the performance of the hydrologic

models it is useful to view hydrographs for a flash flood event. The performance

of the hydrologic models will be examined for the June 11th, 2010 flash flood in

Arkansas because this event had the most fatalities during the study time period.

20 campers at the Albert Pike Recreational Area lost their lives 10 km northwest of

the Little Missouri River discharge gauge when flood waters rapidly rose overnight

while they were sleeping. Many of the campers were in tents, but even cabins near

the river were destroyed in the flash flood. As many as 200 people were in the area

when the flood occurred with many able to make it safely away from the disaster.

Figure 3.15 shows the basin averaged accumulated precipitation for this event. The

Little Missouri River, with a basin area of 177 km2 is plotted upstream of USGS

discharge gauge 07360200. For the Caddo River the basin upstream of the USGS

discharge gauge 07359610 is plotted with a contributing basin area of 352 km2. The

MRMS precipitation reanalysis shows event total precipitation of 200 mm over a large

area of the basins with some isolated areas receiving over 350 mm. The observed and

simulated hydrographs for the Caddo River are shown in Figure 3.16. All three model

simulations overestimate the peak and are three hours earlier with the timing of the

peak for this gauge. At the Little Missouri River, shown in Figure 3.17, the EF5/

CREST and EF5/SAC-SMA simulations underestimate the peak but are very close

on the timing being only an hour early while the EF5/HP simulation has similar peak

timing but overestimation of the magnitude.
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Figure 3.15: 24 hour precipitation accumulation ending 2010-06-12 00 UTC over the Caddo

and Little Missouri Rivers in Arkansas. The blue triangles are USGS discharge measurement

locations.

Figure 3.16: Observed and simulated hydrographs from Caddo River near Caddo Gap, AR.

The contributing basin area at this point is 352 km2.
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Figure 3.17: Observed and simulated hydrographs from Little Missouri River near Langley,

AR. The contributing basin area at this point is 177 km2.
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3.6 CONUS Bulk Results

While the analysis for a single extreme event determined the EF5 simulations capable

of producing reasonable hydrologic simulations, more analysis is needed to determine

the overall ability of the modeling system. A bulk analysis was performed to evaluate

the skill of the modeling system at every USGS gauge with a basin area less than

1,000 km2. The time series from the EF5 simulations can be evaluated as a function

of the performance at each individual discharge gauge. This information can then be

viewed in bulk to gather of a sense of how the system performs spatially in terms of

the overall mass of water, and the correlation between events. The accuracy of the

simulations will be judged using Pearson’s linear correlation coefficient, CC, defined

as:

CC =
Cov(Qsim, Qobs)√
Var(Qsim)Var(Qobs)

(3.26)

Where Qsim is the simulated discharge value and Qobs is the USGS measured

discharge value. The values for correlation coefficient can range from –1 to 1 with 1

being the best. The normalized bias of the simulations will be computed using:

bias =

∑N
i=1(Q

i
sim −Qi

obs)∑N
i=1Q

i
obs

∗ 100 (3.27)

Where N is the number of observations in the discharge time series. Normalized

bias ranges from –100 % to ∞ with 0 % being the best. Finally the Nash Sutcliffe

Efficiency (NSE) (Nash and Sutcliffe 1970), commonly used as a skill metric to define

simulations that have better skill than the mean of the observations would have, will

be computed as:

nse = 1−
∑N

i=1(Q
i
sim −Qi

obs)
2∑N

i=1(Q
i
obs −Qobs)2

(3.28)
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Where Qobs is the mean of the discharge observations for this station. The val-

ues for NSE range from −∞ to 1 with 1 being a simulation perfectly matching the

observations.

Figure 3.18 shows the spatial distribution of normalized bias for the EF5/CREST

simulations. The bias is close to 0 % over most of the eastern CONUS but with severe

underestimation in the mountain west. The median bias for these simulations is 9 %

Figure 3.19 shows the spatial distribution of normalized bias for the EF5/SAC-SMA

simulations. The bias shows a very similar spatial pattern to the EF5/CREST results

but with a tendency towards more slight underestimation in the central and eastern

CONUS. The median bias for the EF5/SAC-SMA simulations is –8 %. The EF5/HP

normalized bias shown in Figure 3.20 shows significant overestimation for a majority of

the CONUS except for the mountainous areas in the west. The EF5/HP median bias

is 248 %. These results show that the multi-model ensemble is working as intended

with EF5/HP providing a worst case scenario result that typically overestimates while

EF5/CREST and EF5/SAC-SMA have subtle differences. The results also show the

underestimation resulting from a lack of MRMS radar coverage in the mountain west

shown in Figure 2.4.
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Figure 3.18: The normalized bias for the EF5/CREST simulations over the CONUS for

USGS basins with areas less than 1,000 km2.

Figure 3.19: The normalized bias for the EF5/SAC-SMA simulations over the CONUS for

USGS basins with areas less than 1,000 km2.
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Figure 3.20: The normalized bias for the EF5/HP simulations over the CONUS for USGS

basins with areas less than 1,000 km2.

Figure 3.21 plots the correlation coefficient for the EF5/CREST simulations over

the CONUS while Figure 3.22 and Figure 3.23 are for the EF5/SAC-SMA and EF5/

HP respectively. The maps are all very similar with higher correlation coefficients in

the eastern CONUS and along the west coast. The correlation coefficients are near 0

for the mountain west where the simulations are again plagued by a lack of good radar

coverage. Cities with clusters of gauges such as Dallas, Houston and Atlanta have

higher CC with EF5/CREST and EF5/HP compared to EF5/SAC-SMA. The EF5/

CREST simulations have a min, median, max CC of –0.47, 0.40, and 1.0 respectively.

The simulations for EF5/SAC-SMA have a min, median, max CC of –1.0, 0.35, and

0.92 respectively. The EF5/HP simulations have a min, median, max CC of –0.25,

0.36, and 0.83 respectively.
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Figure 3.21: The correlation coefficient for the EF5/CREST simulations over the CONUS

for USGS basins with areas less than 1,000 km2.

Figure 3.22: The correlation coefficient for the EF5/SAC-SMA simulations over the CONUS

for USGS basins with areas less than 1,000 km2.
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Figure 3.23: The correlation coefficient for the EF5/HP simulations over the CONUS for

USGS basins with areas less than 1,000 km2.

Figure 3.24, Figure 3.22, and Figure 3.23 plot the NSE for the EF5/CREST,

EF5/SAC-SMA, and EF5/HP simulations respectively. The maximum, median, and

minimum NSE are 0.71, –0.06, and –313 for the EF5/CREST simulations. 1,825 out

of the 4,366 simulated basins have NSE values greater than 0. For the EF5/SAC-SMA

simulations the maximum, median, and minimum NSE values are 0.76, –0.03, and

–631. The EF5/SAC-SMA simulations have 1,982 basins with NSE greater than 0.

And finally for the EF5/HP results the maximum, median, and minimum NSE values

are 0.59, 0.08, and –20. The EF5/HP runs have 3,642 out of the 4,366 basins with

NSE greater than 0.
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Figure 3.24: The NSE for the EF5/CREST simulations over the CONUS for USGS basins

with areas less than 1,000 km2.

Figure 3.25: The NSE for the EF5/SAC-SMA simulations over the CONUS for USGS basins

with areas less than 1,000 km2.
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Figure 3.26: The NSE for the EF5/HP simulations over the CONUS for USGS basins with

areas less than 1,000 km2.

Table 3.6: Stastical Summary of EF5 Performance

EF5/CREST EF5/SAC-SMA EF5/HP

Max NSE 0.71 0.76 0.59

Median NSE –0.06 –0.03 0.08

Min NSE –313 –613 –20

# basins NSE > 0 1,825 1,982 3,642

Max CC 1.0 0.92 0.83

Median CC 0.40 0.35 0.36

Min CC –0.47 –1.0 –0.25

Median Bias 9 % –8 % 248 %

Figure 3.27, Figure 3.28, and Figure 3.29 plot the CC as a function of basin area

with bias color coded for the EF5/CREST, EF5/SAC-SMA, and EF5/HP simulations

respectively. The plots show significant scatter as a function of basin area. There

is a common trend among the models of performance decreasing with increasing

basin area suggesting the routing may play a role as it is the only common model
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structural component between the three sets of simulations. The EF5/CREST and

EF5/SAC-SMA plots have a cluster of very negatively biased simulations which also

exhibit poor CC while the EF5/HP simulation does not have this feature.

Figure 3.27: The CC from the EF5/CREST simulation plotted as a function of basin area

for USGS basins with areas less than 1,000 km2.

Figure 3.28: The CC from the EF5/SAC-SMA simulation plotted as a function of basin

area for USGS basins with areas less than 1,000 km2.
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Figure 3.29: The CC from the EF5/HP simulation plotted as a function of basin area for

USGS basins with areas less than 1,000 km2.

The EF5/CREST a priori parameters are new compared to the rigorous validation

work done with the EF5/SAC-SMA parameters, as such there is interest in the skill of

EF5/CREST as a function of the parameter values. Figure 3.30 shows the correlation

coefficient and bias plotted as a function of the basin averaged b parameter. There

is no noticeable correlation between the skill of EF5/CREST and the b parameter.

Figure 3.31 shows the comparison between the model skill and the basin averaged

Fc parameter. There is also not obvious correlation between the parameter and

the model skill. The relationship between skill and impervious area is shown in

Figure 3.32. There is a trend with more impervious area leading to higher correlation

coefficients but the bias also seems to increase at the same time. Figure 3.33 shows

the skill between the model and the Wm parameter. There is not a clear signal in the

relationship between model skill and this parameter. Finally, Figure 3.34 plots the

model skill as a function of the percentage of precipitation that falls as snow. The

higher the percentage of precipitation that is snow the lower the skill of EF5/CREST.

This makes sense because the hydrologic model was run without a snow component.

70



Figure 3.30: The CC from the EF5/CREST simulation plotted as a function of b for USGS

basins with areas less than 1,000 km2.
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Figure 3.31: The CC from the EF5/CREST simulation plotted as a function of Fc for USGS

basins with areas less than 1,000 km2.
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Figure 3.32: The CC from the EF5/CREST simulation plotted as a function of Im for USGS

basins with areas less than 1,000 km2.
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Figure 3.33: The CC from the EF5/CREST simulation plotted as a function of Wm for

USGS basins with areas less than 1,000 km2.
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Figure 3.34: The CC from the EF5/CREST simulation plotted as a function of snow per-

centage for USGS basins with areas less than 1,000 km2.

The results from this study using EF5/CREST, EF5/SAC-SMA, and EF5/HP

all coupled with kinematic wave routing and a priori uncalibrated parameters for all

models are acceptable showing no significant trends in skill related to basin averaged

values. EF5 is able to ingest MRMS five minute precipitation rate files and a ten year

simulation completed in a week of computer time is a reasonable expectation given

the high resolution of the basic grids. The overall skill of the system is reasonable

given its uncalibrated nature and on some watersheds the skill is good even for a

calibrated hydrologic model. The results show no significant trend in accuracy versus

basin area for the range of flash flood basins from 1 km2 to 1000 km2. The EF5/
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HP model works as a worst case scenario and exhibits large positive bias for most

watersheds which is expected behavior for a completely impervious land surface.
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3.7 Training, Capacity Building, and the Future

As part of ensuring that EF5 is user friendly, a detailed user manual has been devel-

oped. This user manual explains purely the operation of EF5 leaving explanations

of the science to journal articles. The user manual also gives detailed examples of

different configuration file options so that they can be copy and pasted to run. Learn-

ing from experiences with user training, EF5 is also designed to give friendly error

messages telling you what line of the configuration file has a problem and the source

of the error. If a field with a fixed number of options is incorrectly specified then EF5

will list the valid options and what option was input in order to help users locate

a potential misconfiguration. EF5 also tries to infer as much information as possi-

ble from the provided data files. This is useful because it simplifies and reduces the

configuration options that must be specified in order to successfully run EF5.

EF5 has also been used for capacity building activities support by NASA SERVIR,

the Secure World Foundation, and the Mexican Space Agency. For this role a week

long training course was developed. This course covers an introduction to hydrologic

modeling, an introduction to precipitation measurement via remote sensing satellites

and radars, an introduction to GIS using the freely available and open source Quan-

tum GIS software, and finally an overview of EF5 with sample cases ready to run.

This workshop has been viewed as very valuable by the participants who have taken

it because the workshop starts from the very beginning and builds skills. One of the

lessons we have learned over the development of the workshop is to provide hands on

time with the models and other tools every day so that the trainees can build actual

experience with how to run the software packages. This is invaluable as a tool for

increasing engagement from the workshop participants.

The training workshops are invaluable for the improvement to EF5 alone. Many

features are requested, built, and tested by end users during the week long workshops.

This rapid integration of user feedback is essential for improving the experience for
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everyone involved. Having the model developer working directly with end users and

feeling their pain plus frustration with learning EF5 is a wonderful way to ensure

friction points with hydrologic modeling are resolved quickly.

Figure 3.35: A map showing where EF5 training workshops have been conducted and where

EF5 systems are currently running in operational or quasi-operational settings.

Figure 3.35 shows a map of all of the locations where EF5 training has been

conducted or where EF5 is being run in a quasi operational fashion. African countries

are the primary beneficiary from capacity building activities right now but there

has been a growing EF5 presence in Central and South America as well. The year

and location of EF5 workshops are listed in table 3.7. The training materials are

all available online at http://ef5.ou.edu/training which includes 11 instructional

modules. Video recordings of the first 5 training modules being presented are available

at http://ef5.ou.edu/videos/ . The videos were produced with the assistance of

the OU School of Meteorology IT.
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Table 3.7: EF5 Training and Capacity Building Workshops

Year Workshop Location Workshop Attendees

2012 Storrs, CT, USA University of Connecticut

2015 Windhoek, Namibia Namibia National Hydrologic Service

2015 Puebla, Puebla, Mexico Colombia, Honduras, Uruguay, Brazil,

Venezuela, Costa Rica, Mexico, Guatemala,

and the Dominican Republic

2015 Bogata, Colombia El Bosque University

2015 Villahermosa, Tabasco, Mexico University of Tabasco, and the Mexican

Space Agency

2016 Windhoek, Namibia Namibia National Hydrologic Service
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Chapter 4

Hydrologic Climatology Over the CONUS

4.1 EF5 Setup

The results in Section 3.6 show that the EF5 modeling system running EF5/CREST

and EF5/SAC-SMA with uncalibrated a priori parameters over the CONUS produces

reasonable skill on flash flood scale gauged basins. Given these results the next

logical step is to extrapolate the hydrologic models to ungauged basins to examine

a climatology of when these watersheds experience flash flooding. The goal is to

produce a climatology of the number of days each grid cell experiences flash flooding.

To do so the model setup will be described, a threshold to determine if a grid cell is

flooding will be derived, and finally climatological maps produced.

In order to generate a climatology, the EF5 system was set up as described in

Section 3.4. The EF5/HP model was not included in this analysis because the focus

here is not on a worst case scenario. The modeling domain was again set to exactly

match the MRMS domain with a regular 0.01◦ grid spanning from –130.0 to –60.0

longitude and 20.0 to 55.0 latitude. This produces 10,816,262 grid cells which will

be modeled over the CONUS. The computation and storage requirements for storing

five minute gridded data from the resulting model runs was too large for available

capacity. It was determined that only specific variables should be kept and that

they would be integrated through time to find a daily maximum or minimum value

depending on the variable. For discharge, the daily maximum value and the time

that the maximum occurred were kept so that the peak discharge for flash floods

would be captured. For soil saturation, the daily minimum value was kept in order
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to quantify the antecedent soil saturation conditions before flash flood events. Table

4.1 summarizes which variables were kept and what data reduction method was used.

Table 4.1: Climatology Variables Kept

Variable What is Kept

Discharge Daily Maximum Value & Time

Unit Discharge Daily Maximum Value & Time

Soil Saturation Daily Minimum

The simulations were again run for the 2001 through 2011 period when MRMS

precipitation rate forcing was available. 2001 was used for a model warm up period

and so results will be presented from 2002 through 2011. Both sets of simulations

were run year-by-year, saving the states at the end of one year to use for the start

of the next year. The EF5/CREST simulation took 6 days to complete a year of

simulation while the EF5/SAC-SMA simulation took 7.5 days to complete a year. In

total 3 months of computer time was spent to generate the simulations used here.

Future reanalysis periods may be able to use the saved states generated here to hot

start simulations for all of the years in parallel reducing the computational time to

only a week. This may also be an elegant avenue for creating a five minute gridded

time series for the hydrologic variables if there is a desire.
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4.2 Flood Thresholds

Hydrologic models, especially those employing simplifying assumptions to the Saint-

Venant equations, do not explicitly model the stream channel or channel cross-section.

As such it is not possible for the hydrologic models to know when the water volume

is so great that it can no longer be contained inside the channel banks. Therefore a

threshold must be set on the discharge to approximate when the water will exceed

the channel banks. This section will define the threshold used and show how it is

estimated for ungauged locations.

Categories for flooding are defined at USGS stations by the USGS, NWS, and with

input from the local community (NWS 2012). There are four stages of flood defined

currently, action, minor, moderate, and major. The action stage is the stage that

triggers mitigation action from the NWS for possible significant hydrologic activity.

Often action stage is very similar or identical to the bankful condition. The minor

flood stage is defined as minimal or no damage to property but possibly some threat

to human life from for example inundated roads. Moderate flooding is classified

as some inundation of structures/roads near stream, motivating some evacuation

of people and/or transfer of property. The final category, major flooding, contains

extensive inundation of structures and roads causing significant evacuations of people

and transfer of property. In general the categories can be said to depend on the

channel and bank conditions as well as the infrastructures near the river and the

possible presence of levees.

For the purposes of this work the minor flood stage threshold will be used. Minor

flood stage is appropriate because it is the first category with the potential for the

loss of human life. Of the 10,000+ USGS stream gauges in the CONUS only 3,490

(∼34%) of them have defined flood stages (Gourley et al. 2013). Figure 4.1 shows

the minor flood threshold values and the locations where they are defined at across

the CONUS. The lack of coverage for defined thresholds is apparent. It is hard to be
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certain since discharge is dependent on basin scale but there are patterns visible such

as higher threshold values over the eastern CONUS particularly over the Appalachian

mountain range. Higher threshold values are also seen along the west coast and in

south central Arizona.

Figure 4.1: The minor flood thresholds defined by USGS, NWS, and local stakeholders for

USGS stream gauge locations.

To define thresholds at ungauged basins the thresholds were modeled using the

power law relationship shown in equation 4.1.

MinorF lood = aBAbP c (4.1)

Where a, b, c are coefficients, BA is the basin area, P is the basin averaged

mean annual precipitation. Here the basin area was defined by the model FAM and

the basin average mean annual precipitation was generated from the PRISM dataset

(Daly et al. 1994). The coefficients were found using ordinary least squares regression
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and determined to be a = 0.000784, b = −0.47, and c = 1.25 with BA in units of

km2 and P in units of mm. As an example from this dataset, for grid cells with a

basin area of 1 km2 the mean threshold is 2.03 m3 s-1 and the median threshold is

1.76 m3 s-1. Figure 4.2 shows a scatter plot of the predicted minor flood threshold

versus the observed minor flood threshold. There is considerable scatter, but given the

uncertainty implied by how the minor flood thresholds are defined this is considered

to be a good fit.

Figure 4.2: A scatter plot showing modeled minor flood thresholds using a power law with

basin area and mean annual precipitation versus the observed minor flood thresholds.

After developing the model the next step is to use it to extrapolate flood thresholds

for the entire CONUS. The same model FAM grid for basin area and PRISM grid

for the basin averaged mean annual precipitation was used for this extrapolation

process. The results of the extrapolation are shown in Figure 4.3 which is map of the

distributed values for the minor flood threshold. The modeled map shows some of the
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same trends as seen in the observed data in Figure 4.1. The higher values along the

west coast of the US are well captured. The higher thresholds along the Appalachian

mountains are not as apparent here. The gradually increasing values from east to west

across the CONUS are visible here matching the mean annual precipitation pattern.

Figure 4.3: A map showing the modeled minor flood thresholds for the CONUS area.

While the minor flood threshold was used in this instance, it is possible to repeat

this exercise for the action, moderate, or major thresholds if the need should arise.

The following results which make reference to flood days are subject to the quality of

these thresholds. If in the future, additional improvements to the flood thresholds are

possible they should be undertaken because the improvements will yield significant

dividends in the quality of research relating to flood climatology.
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4.3 Quality Control

The quality of the resulting simulations is important to any conclusions hoping to be

drawn from them. The MRMS quality control procedures greatly reduce the amount

of bad data that could go into the hydrologic models but they are not perfect. As

such three further steps will be taken to quality control the hydrologic output data.

First, grid cells with contributing basin areas ≥ 1,000 km2 will be masked out.

Figure 4.4 shows in red the areas removed for violating the basin area criteria which is

visually only the large river networks in the CONUS. This step is necessary because

the hydrologic models were run for the entire CONUS but we are only interested in

flash flood grid cells as per the basin area definition.

Figure 4.4: The areas shown in red were masked for having basin areas ≥ 1,000 km2

Second, the MRMS precipitation accumulation grid was analyzed to remove grid

cells that were consistently too high compared to surrounding neighbors. This may

be the case when ground clutter or anomalous propagation is not fully removed by

the MRMS quality control algorithms. This process was carried out by taking a
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basin averaged MRMS precipitation accumulation for 2002–2011 and marking grid

cells that were 200% greater than the average of all the grid cells in a 50 km radius

from the cell of interest. This procedure is ideal for removing small areas that have

a consistent overestimation when compared with the surrounding area. The results

of this procedure are illustrated in Figure 4.5 with the red areas being areas that

will be masked out. The mask here highlights several things such as wind farms in

Kansas, and Texas, ground clutter from cities, highways and interstates (e.g. I–5 in

California), and mountainous areas where the beam blockage was not fully mitigated

(e.g. New Mexico, Colorado and Arizona) in the MRMS algorithms. The Pacific

northwest and Vermont suffer heavily from the masking because the radars have

beam blockage across many azimuths and elevations which limit good coverage to

only a small area. The precipitation amounts over this area are large so the great

change from an unblocked azimuth to a blocked azimuth gets caught in the masking

procedure.

Figure 4.5: The areas shown in red were masked for having accumulated precipitation 200

% greater than the average of the grid cells in a 50 km radius.
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Third, days with unit discharge values anywhere in the CONUS greater than 100

m3 s-1 km-2 will be completely removed from the analysis procedure. This threshold

value is appropriate based on the maximum envelope curves presented in Gaume et al.

(2009) and Herschy (2002). It is necessary to remove the entire day and associated

grid file because hydrologic routing propagates the impact of bad data down stream.

This check helps control for spurious radar data that may have impacted a very

limited temporal window. This check is performed for both the EF5/CREST and

EF5/SAC-SMA simulations with the days removed being days where the threshold

is violated for either model result. Table 4.2 contains a complete list of the 137

out of 3650 total days (4%) removed for violating this criteria. Figure 4.6 shows

the maximum unit discharge for 2004 before (left panel) and after (right panel) this

quality control step was implemented. The circular radar artifact visible in Texas in

the before image is removed in the after image. The distribution of days that are

removed due to this filter are skewed towards the winter cool season months, with

four out of ten Christmas days being removed for example.This may suggest an issue

with the algorithms employed in MRMS or enhanced radar hardware failure rates

during the winter.
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Table 4.2: Days Removed for Exceeding Unit Discharge Threshold

2002–01–25 2002–02–19 2002–06–06 2002–08–31 2002–11–17

2002–12–10 2002–12–11 2003–04–01 2003–04–14 2003–06–03

2003–08–29 2003–08–30 2003–11–06 2003–11–09 2003–11–11

2003–11–13 2003–11–18 2003–11–19 2003–11–21 2003–11–22

2003–11–13 2003–11–18 2003–11–19 2003–11–21 2003–11–22

2003–11–23 2003–11–24 2003–11–25 2003–11–26 2003–11–28

2003–11–29 2003–11–30 2003–12–15 2003–12–18 2003–12–23

2003–12–28 2004–03–26 2004–05–18 2004–05–19 2004–05–20

2004–12–11 2004–12–22 2004–12–25 2005–01–19 2005–01–27

2005–02–12 2005–02–17 2005–02–28 2005–04–01 2005–04–10

2005–04–11 2005–04–21 2005–11–14 2005–11–20 2005–11–21

2006–01–23 2006–01–29 2006–02–04 2006–03–17 2006–03–22

2006–05–07 2006–11–28 2006–11–29 2006–11–30 2006–12–05

2006–12–13 2006–12–19 2006–12–22 2006–12–25 2007–01–14

2007–01–31 2007–04–10 2007–11–02 2007–12–04 2007–12–10

2007–12–21 2008–01–02 2008–01–28 2008–02–11 2008–09–14

2008–11–13 2008–11–17 2008–12–21 2008–12–30 2009–01–05

2009–01–08 2009–01–16 2009–01–22 2009–01–28 2009–02–09

2009–02–10 2009–02–11 2009–02–12 2009–02–16 2009–02–18

2009–03–22 2009–03–28 2009–03–30 2009–04–04 2009–04–21

2009–10–10 2009–11–02 2009–11–16 2009–11–26 2009–12–19

2009–12–24 2009–12–25 2009–12–26 2009–12–31 2010–01–19

2010–02–03 2010–06–01 2010–11–21 2010–11–23 2010–11–26

2010–11–30 2010–12–11 2010–12–21 2010–12–22 2010–12–25

2011–01–10 2011–01–29 2012–02–04 2011–02–18 2011–03–02

2011–03–06 2011–03–07 2011–03–09 2011–03–11 2011–03–19

2011–03–22 2011–03–30 2011–04–06 2011–10–10 2011–10–29

2011–12–20 2011–12–23
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Figure 4.6: The maximum unit discharge for 2004 from EF5/CREST before (top panel)

and after (bottom panel) it was quality controlled by removing 7 days with greater than

100 m3 s−1 km−2 unit discharge.

Future efforts to quality control the data may be able to isolate specific areas

that were negatively impacted on the above days and remove them. The ideal so-

lution would be for the MRMS precipitation reanalysis to be corrected using infor-

mation gleaned from above. This would prevent the impacts of hydrologic routing
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from contaminating a large portion of the grid to an unknown extent. The dual-

polarization upgrade to the weather radars should help significantly to cut down on

non-precipitation echoes in the future. These polarimetric variables will remain un-

available for the 2001–2011 period analyzed here so additional work to quality control

the data may be needed. It is possible a machine learning algorithm trained on au-

tomatic classifications produced with the aid of the polarimetric variables can be

applied to the retrospective dataset. Gauge correction at hourly scale downscaled to

the precipitation rates may be another effective mean for correcting the reanalysis

precipitation dataset.
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4.4 Results

Figures 4.7 and 4.8 show the mean annual maximum discharge simulated by EF5/

CREST and EF5/SAC-SMA respectively. The basin areas greater than 1,000 km2

were not removed for these figures so that the full extent of the hydrologic analysis is

present. The differences between the models are readily apparent with EF5/CREST

producing higher values overall and a more distinct spatial pattern. The EF5/CREST

figure has a peaked areas all around the eastern US while the EF5/SAC-SMA figure

lacks this pattern featuring a relatively uniform mean annual maximum discharge.

These grids would be useful in the creation of model simulation return period esti-

mates for this time period.

Figure 4.7: The mean annual maximum discharge simulated by EF5/CREST from 2002-

2011.
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Figure 4.8: The mean annual maximum discharge simulated by EF5/SAC-SMA from 2002-

2011.

The mean annual maximum unit discharge are shown in Figures 4.9 and 4.10 for

EF5/CREST and EF5/SAC-SMA respectively. The differences between the models

are again apparent with the same trend that the EF5/SAC-SMA amplitudes are not

as high across the US. EF5/CREST has values greater than 10 m3 s-1 km-2 in many

cities such as Dallas, Texas; Atlanta, Georgia; Birmingham, Alabama, and Houston,

Texas. The values from the EF5/SAC-SMA simulation for these cities is only around

1 m3 s-1 km-2. EF5/CREST has higher values in Arizona while EF5/SAC-SMA has

higher values in Florida. The differences between the models here is likely due to

land surface parameterization.
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Figure 4.9: The mean annual maximum unit discharge simulated by EF5/CREST from

2002-2011.

Figure 4.10: The mean annual maximum unit discharge simulated by EF5/SAC-SMA from

2002-2011.

The mean annual number of flash flood days are shown in Figures 4.11 and 4.12

for EF5/CREST and EF5/SAC-SMA respectively. The data for these plots was

resampled to 0.25◦ using the average for display purposes. As might be expected
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given the mean annual maximum unit discharge, EF5/CREST produces more flood

days in cities than EF5/SAC-SMA with many cities seeing 2+ flash flood days a year

in the EF5/CREST simulations. In Arizona there are significant differences between

the two models with EF5/CREST producing several areas of 2+ flash flood days per

year on average that are not present in the data from EF5/SAC-SMA. The EF5/

SAC-SMA data are relatively uniform across the eastern US in the number of flash

flood days while the EF5/CREST simulations are very peaked over hot spots and

then quickly trend towards nearly zero flash flood days. Both models agree on a

zone of higher number of flash flood days over Missouri, eastern Kansas, northern

Arkansas, Iowa, and into southern Minnesota. These region sees on average 0.5 flash

flood days per year, or putting it another way each area sees a flash flood on average

every other year. New York and Pennsylvania are another zone of increased average

number of flash flood days that have agreement from both models with a comparable

number of flash flood days here to the zone in the central US.

Comparing the mean annual number of flash flood days back to the original Storm

Data dataset of the number of flash floods in Figure 2.1 there is a good spatial

correspondence. Both the Storm Data and the model simulations capture the region

of flash flooding in the southwest caused by the monsoon. The region of higher flash

floods in Missouri is also well captured in both datasets. The peak in flash floods

in central Texas observed in Storm Data is not well captured in either of the model

simulations even though this region is a hot spot for flash flood fatalities and injuries.

There does appear to be a signal in the mean annual maximum unit discharge figures

over the region of interest in central Texas. This may mean that the flash floods in

Texas have higher peak discharges which is why they are more deadly than the more

numerous flash floods in the Missouri region.

95



Figure 4.11: The mean annual number of flash flood days simulated by EF5/CREST from

2002-2011.

Figure 4.12: The mean annual number of flash flood days simulated by EF5/SAC-SMA

from 2002-2011.

Figures 4.13 and 4.14 show the mean annual number of flash flood days simulated

by EF5/CREST and EF5/SAC-SMA respectively separated by season. Starting from
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the top left plot working clockwise, winter: December, January, February; spring:

March, April, May; summer: June July August; and autumn: September, October,

November. Both models capture well the seasonality of flash flooding with the west

coast being favored in the winter. Spring flash flooding occurs in the central plains

with a relatively weak signal. Summer flash flooding occurs in Arizona and the

southwest associated with the summer monsoon pattern. The flash flooding hot

region located in the central US is also active during the summer. In Autumn the

flash flooding activity is ongoing in the southwest, and activity in the central plains

has shifted eastward. This matches up well with the seasonal cycle of precipitation

observed across the US.

Figure 4.13: The mean annual number of flash flood days simulated by EF5/CREST from

2002-2011 plotted by season.
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Figure 4.14: The mean annual number of flash flood days simulated by EF5/SAC-SMA

from 2002-2011 plotted by season.

Figures 4.15 and 4.16 show the mean hour of the peak discharge for flash flooding

days simulated by EF5/CREST and EF5/SAC-SMA respectively. Hour of the day is

a circular quantity so care was taken to properly compute the mean. The average of

a circular quantity can be computed by:

hour = atan2(
N∑
i=1

sin(αi),
N∑
i=1

cos(αi)) (4.2)

Where N is the number of flash flood days, and α is the hour of the peak discharge

converted to a point on a unit circle. The hour of the peak flash flood discharge starts

at about 00 Local Solar Time (LST) on the east side of the front range in Colorado

and gradually increases going eastward from there until it reaches about 12 LST over

Arkansas. Both of the hydrologic model simulations show this same result which

matches well with the known overnight propagation of mesoscale convective systems
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off the Rocky Mountains. Other areas of notable signal include in Arizona where the

flash floods peak around 00 LST which corresponds to late evening flash floods driven

by the monsoon rains. Figures 4.17 and 4.18 show the mean hour of the peak discharge

for flash flooding days simulated by EF5/CREST and EF5/SAC-SMA respectively

as a function of the season. Changes in the timing of the peak are visible in Arkansas

where spring flash floods have peaks around 00 LST while autumn flash floods have

peaks around 12 LST.

Figure 4.15: The mean hour of peak discharge during flash flooding as simulated by

EF5/CREST from 2002-2011.
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Figure 4.16: The mean hour of peak discharge during flash flooding as simulated by

EF5/SAC-SMA from 2002-2011.

Figure 4.17: The mean hour of peak discharge during flash flooding as simulated by

EF5/CREST from 2002-2011 plotted by season.
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Figure 4.18: The mean hour of peak discharge during flash flooding as simulated by

EF5/SAC-SMA from 2002-2011 plotted by season.

Figures 4.19 and 4.20 show the mean antecedent soil saturation for flash flood days

simulated by EF5/CREST and EF5/SAC-SMA respectively. Both models simulate

comparable looking spatial patterns but with an offset in relative magnitudes. The

highest values across the CONUS for EF5/SAC-SMA are in the range of 70 % while

EF5/CREST hits 100 % in some regions. This difference may be due to how soil

saturation is defined and parameterized in the two different water balance models.

Putting aside the magnitude differences, the spatial patterns are large the same. The

eastern US has a more saturation mean antecedent soil saturation than the central

US. California is comparable to the eastern US and has an elevated mean antecedent

soil saturation for flash flood days. Surprisingly, EF5/SAC-SMA has a drier Florida

than EF5/CREST even though the EF5/SAC-SMA simulations produce more flash

flood days there. Figures 4.21 and 4.22 show the mean antecedent soil saturation

101



anomaly for flash flood days. Both models show a tendency for flash flood days

to have 0–10% higher soil saturation than days without flash floods. Both models

also highlight the Pacific coast of the CONUS as an area where flash flood days are

preceded by significantly wetter soils.

Figure 4.19: The mean antecedent soil saturation before flash flooding as simulated by

EF5/CREST from 2002-2011.
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Figure 4.20: The mean antecedent soil saturation before flash flooding as simulated by

EF5/SAC-SMA from 2002-2011.

Figure 4.21: The mean difference from normal antecedent soil saturation before flash flood-

ing as simulated by EF5/CREST from 2002-2011.
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Figure 4.22: The mean difference from normal antecedent soil saturation before flash flood-

ing as simulated by EF5/SAC-SMA from 2002-2011.
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Chapter 5

Conclusions and Future Work

Flash floods are a major problem to life and property, as witnessed by 2015 which

had over twice as many flood fatalities as the 30-year average in the US. Globally,

flash floods are the number one killer when it comes to weather hazards. Flash floods

are defined as floods that begin up to 6 hours after the preceding rainfall and occur

in basins with areas less than 1,000 km2. A new reanalysis precipitation rate dataset

suitable for flash flood modeling was created using the existing MRMS system. This

dataset runs from 2001 through 2011 with data every 5 minutes. A few key takeaways

from this study are that MRMS precipitation rates are now available for 2001 through

2011. MRMS precipitation accumulations from 2002–2011 feature the same spatial

pattern as those in other climatologies such as PRISM. The gradient of precipitation

across the eastern CONUS is likely due to a decreasing number of precipitation events.

To further utilize the new precipitation dataset with high resolution distributed

hydrologic models a new modeling platform, EF5, was created to facilitate this pro-

cess. EF5 features flexible options for choosing which conceptual water balance mod-

els to utilize and allows coupling to two different routing schemes. The resulting

software package was used for generating 5 minute simulations for 4,366 gauge loca-

tions across the CONUS with uncalibrated a priori parameters for the EF5/CREST,

EF5/SAC-SMA, and EF5/HP water balance models coupled to kinematic wave rout-

ing. Furthermore, EF5 is being used for training, capacity building and operational

forecasting. Key conclusions and summary items from the EF5 work are The Ensem-

ble Framework For Flash Flood Forecasting (EF5) was created to provide a better

multi-model distributed hydrologic modeling platform. EF5 is scalable from flash
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flood scale up to global river scale. EF5/CREST and EF5/SAC-SMA run with un-

calibrated a priori parameters over the CONUS and MRMS precipitation forcing

produce skillful simulations except for in mountainous regions with NSE scores up

to 0.76. EF5/HP produces useful estimates for worst case scenarios if all rainfall is

converted into runoff. Differences between EF5/HP and those of the EF5/CREST

& EF5/SAC-SMA model runs illustrate the inherent uncertainties with hydrologic

model parameter estimation and the non-linear conversion from rainfall into runoff.

After reasonable skill was established over the CONUS on flash flood scale basins

the distributed hydrologic models were used to generate simulations for all grid cells

in the CONUS including ungauged basins. These simulations saved for every day the

maximum discharge, unit discharge, time of maximum discharge, and minimum soil

saturation. Thresholds for minor flooding, defined as flooding that may cause loss

of human life, were then developed over the CONUS using statistical extrapolations

of mean average annual precipitation and basin area. From these thresholds, maps

of the average number of flash flood days per year were produced. This information

was then used to derive the mean time of peak flooding and the mean antecedent soil

saturation for floods. Specific highlights and findings are that EF5/CREST and EF5/

SAC-SMA hydrologic simulations were produced for 2002 through 2011. Thresholds

to define a flood based on discharge were developed from the NWS minor flood stage.

Maps of the mean annual number of flash flood days were produced for the CONUS.

The spatial patterns here largely match those in Storm Data, validating both datasets.

The mean time of peak flooding and mean antecedent soil saturation were generated

for these flash flood days. The seasonality of flash flooding across the CONUS was

examined and described. Flash floods propagate eastward from the Rocky Mountains

in the overnight hours.

The hypotheses proposed in Chapter 1 are confirmed, the infiltration and satu-

ration excess processes described by the EF5/CREST and EF5/SAC-SMA models
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coupled with kinematic wave routing skillfully predict flash flood events across the

CONUS. Furthermore, a relationship was found between minor flood thresholds, con-

tributing basin area, and mean annual precipitation allowing for a statistical model

to be developed enabling the extrapolation of thresholds across the CONUS. This

relationship takes the form of a power law, and confirms the second hypothesis. The

results of this are a climatology of flash flood days across the CONUS.

The future for EF5, hydrologic modeling and developing climatologies of flash

floods is extremely promising. EF5 is being used to power the distributed hydrologic

models in the FLASH system (Hong and Gourley 2014) where NWS forecasters are

using it in a warning decision support role. Future developments for EF5 may include

diffusive wave routing to better handle shallow slope basins, and a parameterization

for reservoirs so that they can also be accommodated. EF5 currently has a snow

module, but a priori parameter development is required before it can be deployed

across the CONUS and globally. Continued improvements to EF5 are a must to

ensure it remains accessible to all users in the future. A better graphical user interface

on the Windows operating system may improve classroom and workshop usability.

Solutions for containerizing EF5 such as Docker should be explored to see if there

are significant advantages to this workflow. The capacity building work started with

NASA and USAID using EF5 is expected to continue well into the future and should

be supported.

The MRMS precipitation reanalysis will continue to improve as it gains users. Ad-

ditional improvements from rain gauge correction may be able to be downscaled to

the precipitation rates improving those estimates. New methods for quality control-

ling the single-polarization weather radar data may be found as the dual-polarization

radar data are fully exploited. This may include training machine learning algo-

rithms to data classified using the dual-polarization algorithms but with only the

single-polarization variables available. The information from the 11 year archive of
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data may be of use to generate static probabilities that any given grid cell is a non-

meteorological echo thus lowering the quality control thresholds in those grid cells.

Going forward, cheap well calibrated radars would be a great benefit for hydrology.

The overall scan rate is not as important for hydrology as is the quality of the re-

sulting measurements. As such, radars which can be easily networked, are affordable,

and produce high quality data are desired to fill in the missing coverage locations in

the mountain west.

Climatologies built with distributed hydrologic models will continue to improve

as the precipitation input improves. Further, as uncalibrated hydrologic modeling

matures the estimates and quantifications used for a priori parameters will naturally

improve as well resulting in better simulations. The data contained within the clima-

tology built here can be further exploited to understand the roles of the parameters

in the resulting skill of the EF5/CREST and EF5/SAC-SMA models. One way to

do this would be to look for relationships between basin averaged parameters and

the skill of the hydrologic model. Improving the thresholds used to define when a

flash flood is occurring will greatly improve simulated climatologies of flash floods.

Short of a break through in data measurements and computational efficiency these

thresholds will be needed well into the future.

In the future, new observational platforms will be necessary to collect the obser-

vations needed to validate distributed hydrologic models. As the result the models

are run at decreases the need for observations to help validate the model increases.

These new observations could come from augmentations of existing datasets such as

with stream radars that can map the channel cross-section, water velocity and water

height. Unmanned ariel systems have a promising role in the future as well, an au-

tomated platform that maps out flood waters in real time would be invaluable as a

dataset for verifying hydrologic models.
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The MRMS group has plans to release the MRMS reanalysis dataset used here

to the public as soon as October, 2016. The hydrologic model variables generated

during the course of this research study will also be released publicly so that they can

be used for future research projects. The value of these datasets is just beginning to

be realized, and the expectation is that they will be seen as treasured assets in the

future.
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