View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by SHAREOK repository

Procedia Computer Science

CrossMark Volume 51, 2015, Pages 1907-1916

ICCS 2015 International Conference On Computational Science ompute

ELSEVIER ence

Developing a Hands-On Course Around Building and
Testing High Performance Computing Clusters
Karl Frinkle, Mike Morris

Southeastern Oklahoma State University, Durant, Oklahoma, USA
kfrinkle@se.edu, mmorris@se.edu

Abstract

We describe a successful approach to designing and implementing a High Performance Com-
puting (HPC) class focused on creating competency in building, configuring, programming,
troubleshooting, and benchmarking HPC clusters. By coordinating with campus services, we
were able to avoid any additional costs to the students or the university. Students built three
twelve-unit independently-operating clusters. Working groups were formed for each cluster and
they installed the operating system, created users, connected to the campus network and wrote
a variety of scripts and parallel programs while documenting the process. We describe how
we solved unexpected problems encountered along the way. We illustrate through pre- and
post-course surveys that students gained substantial knowledge in fundamental aspects of HPC
through the hands-on approach of creating their own clusters.

Keywords: High Performance Computing, Supercomputing, Beowulf Cluster, HPC, HPC Education,
Hardware Management, Parallel Programming, Cluster Operating Systems, Curriculum Development,
BCCD, Course Assessment

1 Introduction

Southeastern Oklahoma State University (Southeastern) is a regional liberal arts university.
Teaching HPC at such an institution presents challenges for both students and instructors.
Two major challenges for this experiment were funding and course structure. After four years
of teaching HPC topics with positive results[8], the authors realized a need for students to have
a more hands-on experience in the HPC environment, one in which students do not exclusively
write programs, but one in which students understand the basic components of creating and
utilizing an HPC system.

In many HPC courses, students interact with a reliably stable cluster that has been tested
and benchmarked. At Southeastern, our HPC machinery was limited to a single LittleFE [7]
unit, which has proven to be an excellent teaching tool, but was our only teaching tool. Our
goals for this course were to have students build clusters from basic computer components,
benchmark performance, and be involved in the rudimentary aspects of establishing a HPC

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015 1907
© The Authors. Published by Elsevier B.V.

doi:10.1016/j.procs.2015.05.455

https://core.ac.uk/display/215331238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.455&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.455&domain=pdf

Developing a Hands-On Course for Building and Testing HPC Clusters Frinkle, Morris

cluster. A subsequent benefit to this approach was an additional set of HPC clusters to utilize as
teaching tools in future classes. We were able to accomplish this with no funding by harvesting
hardware from machines designated for recycling, and working closely with the Southeastern
IT department for incidental items such as cables and switches.

2 The Hardware

Southeastern deploys several hundred computers that are periodically retired after two or three
years. When these machines are replaced, they usually end up in a storage area until they
are picked up for recycling. By coordinating with IT, we were able to retrieve approximately
forty computers, extra memory from older non-working computers, network switches, cables,
monitors, keyboards, and mice.

Space is at a premium and our experiment was not a proven asset to the students or
the university. We were only offered an unused chemistry lab containing four long benches,
ample power plugs, and access to the network. Students found it amusing that there was an
abundance of sinks and gas nozzles, and although not ideal, we found the room workable and
eagerly accepted it.

The first task our students undertook was to verify which of the computers were fully
operational. For the non-functional machines, students determined causes of problems. This
was a useful exercise because the problems were plentiful and varied, including non-functioning
power supplies, damaged RAM and motherboards, and inoperable hard drives. Parts were
harvested from the non-functioning machines to construct the largest collection of working
machines.

Once a computer was classified as working, the students who certified it as such were required
to put their names on the outside of the machine and record specifications to include the amount
of RAM, CPU type, speed, and model. This process took more time than we originally planned,
but in three weeks, the task was complete. For many students, this was their first exposure to
working with the internal components of computers and the students learned basic approaches
to analyzing hardware problems and repairing them.

After all of the machines had been cataloged, the students decided the best way to group
the computers to create the clusters, primarily considering the variations in the computer
specifications. One student shared his observation that since some of the computers were almost
identical, we might consider building a Beowulf cluster[11]. Eventually it was decided that the
machines would be best broken up into three groups, thus creating the need to build three
clusters. At this point, the students formed three mutable teams and proceeded to take their
designated machines to their work benches. Once all machines were lined up on each bench,
each machine was connected to a local switch. There were a few other minor missing hardware
items, but students remedied the situation by contacting the Southeastern “Help Desk”, which
was in itself a good communication exercise. Table 1 lists the hardware specifications for each
of the three clusters.

3 The Software

After spending a few years working on a LittleFE unit which utilizes the Bootable Cluster CD
(BCCD)[3] operating system, we decided our familiarity with BCCD would provide a better
chance for success if we used it on our three new clusters. The BCCD operating system is
typically used in the setting where all the machines load the operating system into memory

1908

Developing a Hands-On Course for Building and Testing HPC Clusters

Frinkle, Morris

Model | CPU(Intel) | Cores | Clock Speed | RAM | HD Size | Node
Cluster A

Optiplex755 | Core2 Duo 2 2.7 GHz 8 GB 320 GB master
GX620 P4 1 3.2 GHz 4GB | 80GB | client(x2)
GX620 P4 2 3.2 GHz 4GB | 160 GB | client(x2)
Optiplex755 | Core2 Duo 2 3.4 GHz 4 GB 160 GB | client(x2)
GX620 P4 1 2.8 GHz 4 GB 320 GB client
GX620 P4 1 3.4 GHz 4 GB 40 GB client
GX620 P4 1 2.7 GHz 4 GB 160 GB client
Optiplex755 | Core2 Duo 2 2.7 GHz 4 GB 320 GB client
Optiplex755 Core2 Duo 2 2.7 GHz 4 GB 160 GB client
Cluster B

GX280 Pentium 1 2.8 GHz 1 GB 40 GB master
GX280 Pentium 1 2.8 GHz 1 GB 40 GB client(x7)
GX280 Pentium 1 2.8 GHz 512 MB | 40 GB client(x4)
Cluster C

Optiplex7010 | I5 4 3.4 GHz 8 GB 80 GB master
Optiplex755 | Core2 Duo 2 2.8 GHz 2 GB 500 GB client
Optiplex760 | Core2 Duo 2 2.8 GHz 4 GB 320 GB client
Optiplex760 12 2 2.3 GHz 2 GB 320 GB client
Optiplex760 | 12 2 2.3 GHz 4 GB 500 GB client
Optiplex760 | 12 2 2.3 GHz 8 GB 320 GB client
Optiplex760 | 12 2 2.3 GHz 8 GB 40 GB client
Optiplex755 | Core2 Duo 2 2.7 GHz 1 GB 160 GB client
Optiplex755 Core2 Duo 2 2.7 GHz 4 GB 80 GB client
Optiplex755 Core2 Duo 2 2.7 GHz 2 GB 500 GB client
Optiplex760 Core2 Duo 2 2.8 GHz 4 GB 250 GB client

Table 1: Table of Hardware Specifications

from a flash drive or from a CD. At most one computer will be “liberated”, which means that
the operating system is installed onto the hard drive. In this scenario, the other machines can
be booted in the Preboot eXecution Environment (PXE)[6] from the liberated machine. This
is casually referred to as “pixie booting” and is how the LitteFE unit is configured.

Since each of our machines had a hard drive and we planned on working with relatively
large data sets, we decided to liberate each node on the clusters. When we began the liberation
process, we used BCCD version 3.3.1.4582. Students installed the operating system on the first
computer, which was designated as the master node. Upon installing BCCD on the first client
node, problems were encountered. The two machines had communication issues and parallel
programs could not be executed across this small 2-node network.

After a week of troubleshooting, students formulated questions and presented them to the
BCCD developers forum for assistance. From these detailed questions, the developers deter-
mined that problems existed with the operating system being installed across multiple liberated
nodes. Over the next few weeks, multiple revisions of BCCD were compiled by the developers
and were tested by our students. Results from the updates were reported to the developers, and
as a group, the students troubleshot a plethora of issues. Finally, by BCCD revision 3.3.2.4920,
the students successfully installed BCCD on all machines. Again, this was an excellent real-

1909

Developing a Hands-On Course for Building and Testing HPC Clusters Frinkle, Morris

world technical communication exercise.

An interesting anecdote is the fact that much of the BCCD developers’ work is done on
virtual machines[10]. Problems arose on the physical machines which could not be replicated
on the developers’ virtual machines, illustrating an important lesson — just because something
works on a virtual machine does not mean it is going to work on a physical machine. As an
example, one cluster had to be setup by a different process than the others. For a still unknown
reason, client nodes on this cluster had to have their IP addresses manually assigned instead of
having them assigned by the master node through its DHCP server. Neither the students, the
instructors, nor the BCCD developers have discovered why this situation exists.

A proper installation was determined to be one where all the nodes were liberated with
one node designated as the master node and the remainder as client nodes. All nodes were
connected through a local network switch and could communicate with each other. Finally,
parallel programs could be compiled and executed across all the nodes with verification of
program execution across all nodes using the standard BCCD user created at installation.

4 Network Connectivity

After reaching the milestone where all three clusters were proven to function, the next step
was to add a second network interface card (NIC) to the master node of each cluster. This
would allow the systems to be connected to the University’s network, and with the correct
configuration, be accessible from off-campus as well. When we originally set up our LittleFE
unit on the campus network, the procedure was documented and the IT department was made
aware of the special settings required for the process.

Next, the students requested permission from the IT department to connect the clusters to
the network. The two ports in our lab were activated, along with a port in an adjoining room.
Students cut, capped, and tested their own network cables, and then ran the cables through
the ceiling to the designated ports.

The IT department gave each cluster a fixed IP on the same domain. Students were allowed
to choose a name for their cluster and the names were added to the DNS server; although a
modicum of caution was necessary as student-inspired names tend to be a bit risqué at times.
After the secondary NIC was set up correctly, each group was required to SSH into their cluster
from their laptops while in the lab and connected to the campus network. Afterwards, students
verified off-campus access from their smartphones.

It was at this point that another interesting issue was encountered. Since all of the clusters
were on the same domain, we had three master nodes trying to assign IP addresses to all of
the client nodes on the three systems. After some searching through the BCCD operating files,
the groups were able to locate the DHCP file and determined that the settings for the DHCP
servers were for both the local cluster network and the domain group. The students disabled
the domain DHCP server by commenting out two lines in the BCCD conf.net file located in the
/etc/dhep folder. At this point, all three clusters were completely rebooted and were verified
to be running correctly. By utilizing communication, ingenuity, and basic troubleshooting
skills, after nine weeks of class, the students had built three functional connected clusters from
hardware scavenged from materials destined to be recycled.

1910

Developing a Hands-On Course for Building and Testing HPC Clusters Frinkle, Morris

5 Cluster Customization

The BCCD operating system had not been used in an all-liberated-node configuration since a
much earlier version, and many of the recent revisions to the operating system did not take this
configuration into account. As a result, important commands and operations, such as creating
user accounts and locating all of the machines on the cluster, did not function correctly.

During the construction phase of the course, no user accounts had been created due to the
likelihood of machines being reset. The BCCD Wiki[4] has a detailed set of instructions for
creating users on a liberated cluster. Unfortunately, this set of instructions refers to one machine
being liberated and the rest PXE booting from the one liberated machine — the standard
configuration for a liberated BCCD cluster. After following the instructions on the BCCD
Wiki, students attempted to compile and run code across all nodes on their cluster and were
unable to do so.

For the standard BCCD cluster, users are created on the master node and cloned to the
temporary directories on the master node for each client node that is successfully PXE booted.
The BCCD developers originally thought this process should work in the fully liberated mode
as well, but it turned out not to be the case. In a first attempt at solving this problem, the
groups attempted to SSH into several of the client nodes and manually create the same test user
account as was created on the master node. This approach met with limited success. Synching
directories across all nodes before executing a parallel program required a password for each
node before copying to that node would commence. This would prove problematic if a program
was executed across many nodes. Furthermore, at execution time, passwords were once again
required for each client node involved in the process. With twelve client nodes this quickly
became cumbersome.

The class decided to work on a scripting solution to the user accounts problem instead of
trying a new revision of the BCCD operating system since the clusters were functioning with the
current version. The idea of writing a script was new to most of the students, but as a group,
they learned the syntax required to code exactly what they needed. During the development
of the “create user” script, approximately 100 test users were created which did not satisfy the
criteria needed to be considered a viable user account. Finally, after much trial and error, the
script was completed. A complete “create user” script created a user account across all nodes
and generated and copied SSH keys to all nodes, making it possible to both synch directories
and execute programs in parallel without requiring passwords.

In the process of writing the “create user” script, another script was written to locate all
active nodes on the cluster. The standard BCCD command which accomplishes this, “bced-
snarfhosts”, did not work with the configuration of our clusters. Finally, since there were so
many test users created during the “create user” script process, another script was written to
delete a user completely from each node. By the end of this stage, students had successfully
wrote scripts specific to the particular system and particular need.

6 Benchmarking

Encountering problems with the operating system and the user accounts ended up taking four
weeks. With just over two weeks left in the semester, there were two tasks left: documenting
the process of setting up the clusters, and benchmarking them. The BCCD operating system
comes with many programs ready to compile. One of these programs, GalaxSee[5], emulates
the n-body problem in parallel. Using the time option when executing the GalaxSee program
in parallel, students were able to compile run time data based on the number of particles in the

1911

Developing a Hands-On Course for Building and Testing HPC Clusters Frinkle, Morris

simulation and the number of processes. These data sets were then plotted in Mathematica for
analysis by the individual groups and they were asked to analyze the results in the context of
their cluster. Finally, results were compared across all the clusters.

Runtime vs Processes and Number of Bodies

12400

1600

800Time (s)

Processes

Figure 1: Comparison of real runtimes of the GalaxSee simulation versus the number of bodies
and number of processes for all three clusters. The top surface corresponds to cluster B, the
middle surface is cluster A, and bottom surface cluster C.

In Figure 1, the three clusters real runtimes were compared based on number or processes
and number of bodies in the simulation. Cluster B had a maximum of 12 processes and is the
top most surface. Cluster A had a maximum of 19 processes and is the middle surface. Cluster
C had 24 processes available and is the bottom surface. Overall, cluster C had the fastest set of
CPUs and, as a consequence, had the shortest runtimes. Cluster B had the slowest machines,
all single core, and as a result their runtimes were the longest. Figure 1 was shown to the
students and they were asked to analyze it, and arrived at the conclusions already given.

Three-dimensional graphs can be rather complicated to analyze, so specific cuts of Figure 1
were made by holding the number of processes fixed. These two-dimensional plots can be seen
in Figure 2. Of particular interest is the case of n = 2 processes, corresponding to the top row
of graphs in Figure 2. Students were asked to interpret why the system time graph (middle)
appeared to have only one curve with non-negligible values and to determine which cluster it
corresponded to. For cluster B, each machine has only a single-core processor which means
that when trying to execute the GalaxSee program across two processes, cluster B must go
through the local switch and initiate the program on a client machine. The other two clusters
have master nodes with at least two processes, and could execute the program exclusively on
the master node.

1912

Developing a Hands-On Course for Building and Testing HPC Clusters Frinkle, Morris

User Time, 2 Processes System Time, 2 Processes Real Time, 2 Processes Cluster A
Time (s) Time (s) Time (s)
3000 600 3000
2000 400 2000 —s— Cluster B
1000 200 1000
—o+— Cluster C
0 N Bodies 0 N Bodies
2000 6000 10000 2000 6000 2000 6000 10000

User Time, 10 Processes System Time, 10 Processes Real Time, 10 Processes
Time (s) Time (s) Time (s)
600
1000 1000
400
500 500
200
0 N Bodies 0 N Bodies
2000 6000 10000 2000 6000 2000 6000 10000

User Time, Max Processes

System Time, Max Processes

Real Time, Max Processes

Time (s) Time (s) Time (s)
2000 1200 1000
1000 600 500
0 N Bodies 0 0 N Bodies
2000 6000 10000 2000 6000 2000 6000 10000

Figure 2: Plots of user, system, and real runtimes versus the number of bodies in the GalaxSee
simulation for select numbers of processes. First row is with two processes, second row with 10
processes, and third row with the maximum number of processes. The maximum number of
processes was n = 19 for cluster A, n = 12 for cluster B, and n = 24 for cluster C.

7 Process Documentation

Our campus requires specific networking settings to operate in its particular environment. Tak-
ing these facts into account, we wanted to create documentation that would ensure that the
process of setting up a cluster will be easy to reproduce in the future or in the event that a
cluster must be rebuilt during a semester.

Students were required to document each and every step in the cluster build. During
the installation process of the BCCD operating system, there are several stages at which user
interaction is required, mainly in the networking settings. Documentation for liberating a single
node can be found at the BCCD Wiki[4]. However, there is no public documentation for setting
up an entirely liberated cluster. Each group submitted their documentation to the instructors
and were subsequently required to add information to their write-ups until deemed complete
by the instructors. Once complete, the documentation was sent to the BCCD developers to
help the developers build a complete set of instructions for setting up a fully liberated BCCD
cluster. As a consequence, our students were able to contribute directly to the BCCD project.

8 Learning Outcomes

At the beginning of the semester, students were given a survey to assess their knowledge of all
of the aspects of what they would experience throughout the semester. Questions ranged over

1913

Developing a Hands-On Course for Building and Testing HPC Clusters Frinkle, Morris

topics including hardware, software, networking, benchmarking and documenting procedures.

Students were to assign values to each question. A ‘0’ was a “strongly disagree”, or “ver
)
little experience”, a ‘5" was “average” while a ‘10" was a “strongly agree”, or “very good at”.

I have built a computer from a pile of components.

I have set up a network on a single computer.

I have set up a network on several computers.

I have installed a Linux OS distribution on one or more computers.

I have worked with campus IT people and basically understand how our network
infrastructure is designed.

6. I have “benchmarked” computers.

7. I have written C++ programs that work.

8

9

G o=

I have written C programs that work.

I have written documentation for computer projects.
10. I know how basic HPC architecture works.
11. T have written my own HPC code.
12. T have compiled and run my own HPC code.
13. T can understand HPC code (even if I am not that good at writing it).
14. T can execute and understand basic command-line Linux commands.
15. I can handle file management in a Linux environment.

The survey was given once again at the end of the semester. There were 16 students who
took the survey at the beginning of the semester, and 16 who took it at the end of the semester.
Mean values for each question were calculated.

TR 6 7 14 15

L 8 9 i
8t 3 A 5

i 10 12 13 1
6 11
!]J] |
0L]

B Pre
B Post

Mean

[\S}
T

Question

Figure 3: Comparisons of Means for Survey Outcomes

As is illustrated in Figure 3, mean scores for each category increased, with the largest
increases occurring for the HPC specific questions and those related to the Linux based operating
system environment. Recent ACM guidelines][1, 2] for program accreditation now include HPC.
We tailored this course to comply with the most recent guidelines. In this course, students were
exposed to more HPC content and as a result, feel more confident with the HPC environment,
as is shown by the pre- and post-survey data for questions 10 through 15.

1914

Developing a Hands-On Course for Building and Testing HPC Clusters Frinkle, Morris

9 Conclusions

By the end of the semester, the students had a variety of learning experiences. Students had
learned to set up the hardware required to run a cluster. Many hardware problems were encoun-
tered, assessed and rectified. Installing a specialized operating system required communication
with the developers of the operating system. Setting up a cluster network by connecting to a
local switch, and then creating connectivity to the outside world necessitated interacting with
the IT department. Customizing the clusters after they became operational required the stu-
dents to learn about scripts, and also taught the students how to work within the confines of
the given operating system.

The authors plan to continue this project and offer a follow-up course where the students
will write parallel programs on the machines they or their peers have built. These clusters
are not extremely large or powerful, but they demonstrate the concepts of HPC. As in past
endeavors, we can use these clusters to debug parallel programs and after thoroughly debug-
ging them, execute them on Boomer, which is the supercomputer managed by the Oklahoma
Supercomputing Center for Education and Research[9] at Oklahoma University in Norman.

As a final remark, we dispel the widely held myth that utilization of HPC resources requires a
substantial expenditure of money and resources. In this experiment, we were able to construct
three dedicated HPC clusters by working closely with our University and taking advantage
of the HPC resources available in the public domain. All necessary hardware was harvested
from our University’s obsolescence program, a dedicated room was procured for our modest
requirements of a HPC lab, and the software was obtained at no cost. All of the problems we
encountered while building the clusters were turned into opportunities for the students to learn
more about HPC and give them insight into what they may encounter in industry. The end
result was a net expenditure of zero dollars to accomplish the successes described in this paper.

10 Acknowledgments

The production and presentation of this paper at the ICCS 2015 event would not have been pos-
sible without a generous award of a Southeastern Oklahoma State University Faculty Research
Grant for each of the authors of this paper.

This experiment is an ongoing project that will develop different versions of what we per-
ceive to be effective teaching techniques for high performance computing classes. Curriculum
development is in its infancy in the HPC field and we plan to contribute to the industry by
preparing students to work in the industry. None of this would be possible without the valuable
help we have received from Henry Neeman, director of OSCER and all the priceless time we
have been given on OU’s supercomputer, Boomer.

We also appreciate Charlie Peck and all the individuals involved with the LittleFE group
for legitimizing our early efforts by awarding us a LittleFE supercomputer. The BCCD devel-
opment team worked closely with us on fine tuning the operating system so that it would meet
our needs.

On the local level, the network operations staff at Southeastern allowed us to connect with
the outside world and gave us permissions and ability to access any resources we needed to carry
out our projects. The CS 4973 — Supercomputing Architecture and Development class is also
to be thanked for enrolling in this course, and successfully creating three working clusters. One
student in particular, Keith Pearce, went above and beyond what was expected of a student in
this course and really helped get these three clusters online. Finally, we thank Bobbi Page for
her insightful comments and suggestions regarding the contents and structure of this article.

1915

Developing a Hands-On Course for Building and Testing HPC Clusters Frinkle, Morris

References

(1]

2]

8]
[4]

[5]

[9]
(10]

(11]

ACM. Computer Science Curricula 2008. [online], 2008.
http://www.acm.org/education/curricula/ComputerScience2008.pdf, last viewed Decem-
ber 2014.

ACM. Computer Science Curricula 2013, Final Report 0.9. [online], 2013.
http://www.acm.org/education/C32013-final-report.pdf, last viewed December 2014.
BCCD. Bootable Cluster CD. [online], 2014. http://bccd.net, last viewed December 2014.
BCCD. Bootable Cluster CD Wiki. [online], 2014. http://bced.net/wiki/, last viewed December
2014.

BCCD. GalaxSee. [online], 2014. http://bccd.net/wiki/index.php/GalaxSee, last viewed De-
cember 2014.

Intel Corporation. Preboot Execution Environment (PXE) Specification, Version 2.1. [online],
1999. http://download.intel.com/design/archives/wfm/downloads/pxespec.pdf, last viewed
December 2014.

LittleFE. Parallel and Cluster Computing Education on the Move. [online], 2014.
http://littlefe.net, last viewed December 2014.

Mike Morris and Karl Frinkle. A Three-Semester, Interdisciplinary Approach to Parallel Pro-
gramming in a Liberal Arts University Setting. In Proceedings of the 2014 Annual Conference on
Ezxtreme Science and Engineering Discovery Environment, page 66. ACM, 2014.

The University of Oklahoma. OSCER — OU Supercomputing Center for Education Research.
[online], 2014. http://oscer.ou.edu/, last viewed December 2014.

James E Smith and Ravi Nair. The Architecture of Virtual Machines. Computer, 38(5):32-38,
2005.

Wikibooks. Building a Beowulf Cluster — Wikibooks, The Free Textbook Project. [online], 2011.
http://en.wikibooks.org/w/index.php?title=Building_a_Beowulf_Cluster&oldid=2210594,
last viewed December 2014.

1916

