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ABSTRACT

Victoria Harbour is located between Kowloon and Hong Kong Island in the
southeastern prodelta region of the Pearl River system. Since the mid-1900s, the
population in Hong Kong has grown rapidly, coastal areas surrounding Victoria
Harbour have been reclaimed, and excess raw sewage has been disposed into
the Harbour. Release of methane from harbour sediments during dredging
activities instigated interest in studying the sources of methane trapped in
Victoria Harbour sediments. Core MBH 54/2, from a heavily polluted area in
Victoria Harbour’s Kowloon Bay, was selected for this study. However, no
methane was detected in sediments from this core. The project was redefined,
using a detailed organic geochemical characterization approach to determine the
sources of organic matter, evaluate changes in environmental conditions, and to
ascertain whether remnants of bacterial lipids might be present to enhance our
understanding of processes contributing to methane generation. Bulk properties
(e.9., %Corg, %N, 8"Corg, and 3'°N), lipid composition and profiles were applied
to delineate changes in organic matter sources deposited in the Kowloon Bay
area during the late Quaternary.

The organic carbon-to-nitrogen ratio demonstrated fluctuations in the
sources of organic matter throughout the Holocene unit of MBH 54/2. High fluxes
in the carbon-to-nitrogen ratio may reflect strong storms, where excess
terrigenous plant material is transported into the area. Sediment intervals

impacted by sewage waste had isotopic compositions (i.e., 3"°Cqg and 53'°N)

XViii



consistent with those reported in the literature for sewage in coastal
environments.

Sources of organic matter could be differentiated using free lipids, which
consisted of sterols, n-alcohols, fatty acids, and n-alkanes. Environmental
conditions in Kowloon Bay were inferred to be anoxic based on the relative
abundance of stanols-to-sterols. Sewage contaminated sediments were
confirmed by the presence of fecal sterols. Periods of improved environmental
conditions were noted by the occurrence of sterols common to aquatic
organisms. Bound lipids appear to retain lipid profiles descriptive of bacterial
communities in the sediments. More in-depth comparisons to lipid profiles of
bacterial strains might allow bacterial remnants in sediments to be identified,
allowing us to better speculate on their role in the remineralization of organic

matter in Recent sediments.
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CHAPTER 1

Introduction

1.1 Project Rationale and Objectives

Victoria Harbour is situated within the southeastern prodelta region of the
Pearl River system (Fyfe et al., 1999), between Kowloon and Hong Kong Island,
in the Hong Kong Special Administrative Region (SAR) of China. A tidal channel
runs west to east, through Victoria Harbour, with the mouth of the Pearl River to
the west and the northern continental shelf of the South China Sea to the east
(Fig. 1.1; Fyfe et al., 1997; Yim et al., 2002). The Pearl River system has played
an important role in supplying sediments deposited in Victoria Harbour during the
Quaternary (Chalmers, 1984; Davis, 1999; Fyfe et al., 1999). Sediment transport
in the harbour is controlled by tidal currents, with summer/autumn typhoons and
winter/summer monsoons playing important roles in resuspending and
redistributing sediments throughout the harbour (Huang and Yim, 1997; Yim et
al., 2002).

This region is of particular interest in that the Holocene unit of the inner-
continental shelf in the Hong Kong SAR has been proposed to be a net carbon
sink (Yim et al., 2002). Continental margins, especially in regions in close
proximity to deltas, are typically important reservoirs of sedimentary organic
matter (Berner, 1989; Hedges, 1992; Pernetta and Milliman, 1995; Hedges et al.,
1997; Mudge and Norris, 1997). In studies of the global carbon cycle, the ocean

has been identified as preserving approximately one-third of the total organic
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Fig. 1.1. Map illustrating the location of Victoria Harbour, relative to the Pearl
River, in the Hong Kong Special Administrative Region of China (map taken from
Fyfe et al., 2000).

carbon inventory (Hedges et al., 1997). An estimated 80% of the organic carbon
in the ocean is buried and preserved in deltaic and continental shelf
environments (Berner, 1989; Hedges, 1992; Hedges and Oades, 1997; Mudge
and Norris, 1997). Factors controlling the preservation of organic carbon in
marine sediments have been debated, with primary arguments being between
anoxia versus productivity. Anoxia focuses on the idea that organic carbon is less
efficiently degraded under anaerobic conditions compared to aerobic conditions.
Whereas those supporting productivity argue that conditions favoring the growth

of organisms (e.g., areas of coastal upwelling) are more important for the



accumulation of organic matter (Demaison and Moore, 1980; Pedersen and
Calvert, 1990; Calvert and Pedersen, 1993; Canfield, 1994). Additional
parameters that have also been considered are the adsorption of organic matter
to mineral surfaces and high sedimentation rates (Muller and Suess, 1979; Keil
et al., 1994; Rullkétter, 2000). It has been suggested that organic matter bound
to mineral matrices is better protected from microbial attack and chemical
alteration (Kawamura and Ishiwatari, 1984; Keil et al., 1994). The thought behind
better preservation of organic matter due to high sedimentation rate is that the
organic matter will have a shorter residence time in the water column (where
remineralization of organic matter to CO, typically occurs) and will be rapidly
buried in bottom sediments (Didyk et al., 1978). At the same time, high
sedimentation rates can also result in the dilution of organic matter due to the
deposition of clastic material (Rullkdtter, 2000).

The present-day Victoria Harbour is a unique environment that has
undergone many human-induced changes. Historical records indicate that the
mid-1800s marked the beginning of reclamation activities and large-scale
sewage discharge into Victoria Harbour. In the mid-1900s, the human population
grew rapidly (Table 1.1) in Hong Kong, resulting in an increase of raw sewage
and wastewater effluents being discharged into the harbour. This also led to the
need for more land area resulting in large-scale dredging and coastal reclamation
activities (Chalmers, 1984; Yim, 1984; Connell et al., 1998; Lee and Liu, 1999;
Tanner et al., 2000; Yim et al., 2002). During dredging of Victoria Harbour

sediments, methane was observed escaping from the sediments to the surface



Table 1.1. Estimated population in Hong Kong, 1841-2004.

Year Population
1841i 7,500

1931 849,800
1945" 750,000
1991734 5.6 x 10°
1996%* 6.3 x 10°
1999° 6.6 x 10°
2001%* 6.7 x 10°
2003° 6.8 x 10°
2004° 6.9 x 10°

"http://www.answers.com/topic/demographics-of-hong-kong
nttp://www.china-tour.cn/cityguides/hongkong.htm
3http://www.hk.cc.og.hk/eng/winter%202001/p0pula\tion%ZOCensus.htm
“http://mww.jil.go.jp/foreign/event_r/event/documents/2004-sopemi_e_countryreport3.pdf
*http://www.info.gov.hk/censtatd/eng/hkstat/hkinf/population_index.html

raising concerns in this area for its potential impacts as a greenhouse gas (Yim
et al., 2002).

The increased sewage input has resulted in accelerated eutrophication of
Victoria Harbour. Reclamation activities have not only reshaped the harbour
(Figs. 1.2 and 1.3), but have also increased sedimentation rates in various parts
of the harbour (Tanner et al., 2000; Yim et al., 2002). Based on the current
amount of organic matter input, anoxic bottom waters, and high sedimentation
rate, it would seem that marine sediments in Victoria Harbour should be well-
suited for the deposition and preservation of organic carbon (Didyk et al., 1978).
Prior to human activities, the Pearl River, tidal currents, tropical storms and
monsoons, and eustatic sea level changes were the likely factors controlling

organic matter deposition in Victoria Harbour.



Kowloon

Fig. 1.2. Maps illustrating changes to the land area surrounding Victoria Harbour,
1903 to 1980, as a result of coastal reclamation (from Chalmers, 1984).



Tsten Wan B Reclamation up to 1887 N
[ ] 1888-1924 ¥

N 1925-1945

I 1946 - 1967

I 19638-1976

Chung [ 1977 -1991

B 1993 - 2001

Sham Shui Po

Tsing Yi

MBH 54/2 Tseung
Kwan O.
MVC 74

{

Victoria Harbour

North Point

Sai Ying Pun

Bay

Fig. 1.3. Coastal reclamation history in Victoria Harbour (modified from Yim
2000). MBH 54/2 refers to the piston core used in this study. Sedimentation rates,
based on #°Pb data from MVC 74 (Tanner et al., 2000), were used to estimate
sediment ages in core MBH 54/2.



Lipid composition, elemental and isotopic measurements of organic matter
at various depth intervals from a core in the inner-continental shelf region of
Hong Kong have been used to reconstruct environmental changes and to
speculate on the history of this region. The major objectives of this project were
to: (1) characterize the various classes of lipids (i.e., free-, ester-bound, and
amide-bound lipids); (2) ascertain sources and changes in organic matter
deposited and preserved during the late Quaternary in Victoria Harbour; (3) use
elemental and bulk stable isotope compositions of carbon and nitrogen in
sedimentary organic matter to infer changes in organic matter sources, to
speculate on possible early diagenetic processes, and to identify periods of
environmental change (e.g., the interglacial-glacial boundary); (4) apply
compound-specific carbon isotopes to differentiate sources of lipids in the core

samples.

1.2 Study Area — Victoria Harbour, Hong Kong SAR

Victoria Harbour is located in the Hong Kong Special Administrative
Region (SAR) of China, between Kowloon and Hong Kong Island, and is one of
the busiest shipping ports in the world. The total area within the Hong Kong
territorial boundaries is about 3400 km?. Land coverage in this region, which is
comprised of the New Territories, Kowloon, Hong Kong Island, Lantau Island,
and other surrounding islands, totals an area of about 1100 km? (Fig. 1.1; Yim et

al., 2002). Victoria Harbour is in the southeastern prodelta region of the Pearl



River and has a tidal channel running west to east through the harbour into the
northern continental shelf of the South China Sea (Fyfe et al., 1997). Nearly all

land surrounding Victoria Harbour has been reclaimed (Fig. 1.3).

1.2.1 Hong Kong — Late Pleistocene to Holocene

During the late Pleistocene, around the last glacial maximum (~25,000
years B.P.), the coastline along southern China was about 130 km south of Hong
Kong (Fig. 1.4; Feng and Shi, 1997; Owen et al., 1998). Shallow seismic profiles
(Feng and Shi, 1997) unveiled buried ancient river channels demonstrating that
the Pearl River palaeodelta once extended over a significant area on the
continental shelf in the South China Sea (Fig. 1.4). Fyfe et al. (2000) and Owen
(2005) have reported the occurrence of low sinuous braided river channels in the
Hong Kong area, during the late Pleistocene (Fig. 1.5). Coarser grained sands
were deposited in this area during this period of low sea level (Fyfe et al., 2000).

After about 18,000 years B.P. sea level began rising, reaching at least
-19.5m by around 8,080 years B.P. (Owen et al., 1998; Owen, 2005). The rise in
sea level resulted in a blanket of intertidal silty mud deposited over this area. By
about 6,000 years B.P., the coastline along the southern shores of China
extended as far north as Guangzhou, whereas the coastline surrounding Hong
Kong was similar to what is seen in the present day (Fig. 1.1; Fyfe et al., 1997;

Owen et al., 1998; Davis, 1999). Between 6,000 years B.P. and the present day,
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Fig. 1.4. Ancient river channels and delta plain, extending out into the
continental shelf of the South China Sea, during the late Pleistocene (from Feng
and Shi, 1997).
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sea level fell slightly resulting in the development of the current Pearl River delta
system (Fig. 1.1; Fyfe et al., 1999).

The rise and fall in sea level throughout the Quaternary, in Hong Kong,
has resulted in the deposition of alternating units of marine and terrestrial
deposits (Yim, 1984; Yim, 1994; Owen et al., 1998; Davis, 1999). The alternating
units of marine sediments versus terrestrial sediments have been recognized by
Yim (1994), based on selected features (i.e., palaeontology, sedimentology,
mineralogy, chemistry, and engineering properties). Using these parameters, Yim
(1994) classified Quaternary sediments in Hong Kong as alternating units of
marine and terrestrial sediments (denoted as “M” for marine, “T” for terrestrial,
and numbered from 1 to 5). The youngest marine unit, “M1,” has a maximum age
of 8,100 years B.P. and is comprised of soft green, gray, and/or black colored
silty clay, with abundant shell remnants (Yim, 1984 and 1994). Throughout much
of Hong Kong, the “T1” unit is missing. The “T1” unit represents terrestrial
sediments of the last glacial period (8,100 to 70,000 years B.P.), deposited
during a time of low sea level (Yim, 1994; Davis, 1999). It has been suggested
that sediments of the T1 unit are missing because either they were never
deposited, or during the lowstand the water levels were still high enough not to
expose the sediments (Davis, 1999). The top of the “M2” unit, the marine unit of
the last interglacial period (90,000 to 140,000 years B.P.), has been identified by
the presence of a desiccated crust. The desiccated crust refers to marine
sediments that have been subaerially exposed during periods of low sea level.

Sediments that have undergone desiccation, in pre-Holocene marine sediments,
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will have a mottled appearance (i.e., a mixture of white, yellow, orange, red, and

brown colors) (Yim, 1994; Tovey and Yim, 2002).

1.2.2 Sedimentation Rates (Based on ?*°Pb-Dating) and Approximate Age of
Sediments

Sedimentation rates in the Kwun Tong Typhoon Shelter area have been
measured by Tanner et al. (2000), using ?*°Pb-dating, for core MVC 74 (Fig 1.3).
21%pp_dating is a technique commonly used for estimating sedimentation rates
based on the radioactive decay of ?°Pb, where the half-life (t,,) is about 22.3y
(Geyh and Schleicher, 1990). #°Pb is a naturally occurring radionuclide which
belongs to the #*®U decay series (see illustration below), and is produced in both

the atmosphere and terrestrial environments.

238 451x10°y | 226 1602y | 222 3.8d | 210 223y 210 138.4d | 206
U—"">""Ra >““Rn >“"Pb > Po >*°Pb

Radionuclides formed in the ?**U decay series (from Appleby, 2001).

Atmospheric #°Pb originates from ?*’Rn, a radioactive gas which diffuses
through the subsurface into the atmosphere. ??Rn has a short half-life (t,,=3.8d)
and decays to #*°Pb, which then easily binds to particulate material and is
returned to sediments by dry deposition or rain. The ?!°Pb is believed to be
immobile once redeposited, and undergoes further decay. Terrestrially derived

10pp refers to #*°Pb occurring in the sampled sediment intervals where *Rn
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undergoes in situ radioactive decay. ?*°Pb-dating is calibrated using **'Cs, an
artificial radionuclide produced from the atmospheric testing of nuclear bombs.
Peak deposition of **’Cs in sediments occurred in 1964 (Noller, 2000; Appleby,
2001). Sedimentation rates, using %°Pb, of recent sediments from lacustrine and
marine environments have been estimated to be reliable between 5 to 150 years
(Geyh and Schleicher, 1990; Noller, 2000).

The present-day sedimentation rate in Kwun Tong typhoon shelter (from
the seafloor surface to 0.5m depth) was determined to be 3.5cm y™. The mean
sedimentation rate for 0.5m to 1.5m was estimated to be about 4.4cm y™* and
corresponds to calendar years spanning 1957 to 1980. At depths of 1.5m to
2.1m, the sedimentation rate was estimated to be 1.9cm y™, representing
sediments deposited between 1928 and 1957. Sedimentation rates at depths
greater than 2.1m could not be determined due to uncertainties with excess #*°Pb
activity (Tanner et al., 2000). The maximum Holocene age has been reported to
be about 8,100y. The base of the Holocene unit is marked by a desiccated crust,
which represents the boundary between the M1 and M2 units (Yim, 1994). If the
base of the Holocene unit occurs at 3.7m, and the maximum Holocene age is
8,100y, then the average sedimentation rate between 2.1m and 3.7m would be

about 0.2mm y™.
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1.2.3 Tropical Cyclones (Typhoons) in Hong Kong

Hong Kong is located on the northernmost region of the South China Sea
and lies within the pathway commonly traversed by typhoons (Huang and Yim,
1997). Historical pathways of typhoons (also referred to as tropical cyclones) that
have passed through Hong Kong (between 1957 and 1999), with wind speeds of
at least 118km/hr, are summarized in Fig. 1.6 (http://www.hko.gov.hk/informtc/
historical_tc/nol0track.htm). In general, the majority of typhoons tracked around
the Hong Kong region approach Hong Kong from the southeast, and continues

along a northwestern pathway (Huang and Yim, 1997).
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Fig. 1.6. Map illustrating the pathways of typhoons, with wind speeds of at least
118 km/hr, that passed over Hong Kong between 1957 and 1999 (map taken
from http://www.hko.gov.hk/ informtc/historical_tc/nol0track.htm).
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1.2.4 Sewage Dumping in Victoria Harbour

The disposal of sewage waste into Hong Kong waters occurs on a rather
large scale, primarily due to the immense population (~6.9 million people in
2004), and because existing sanitary landfill sites and sewage treatment plants
are incapable of handling such large amounts of waste (Yim, 1984; World Wide
Fund for Nature Hong Kong, 1993). In general, raw sewage is released into Hong
Kong waters by seawall-type sewage outfalls (Fig. 1.7) and submarine-type
sewage outfalls (Fig. 1.8), with minor or no treatment (Yim, 1984). About fifty
percent of the raw sewage is released directly into Hong Kong waters. Of the
remaining fifty percent of incoming sewage, about forty percent of larger size
solid waste undergoes sedimentation (i.e., “preliminary treatment”), and the
remaining ten percent undergoes some type of further treatment (Wong and
Tanner, 1997; World Wide Fund for Nature Hong Kong, 1993). Sometime after
the mid-1970s, several of the seawall-type sewage outfalls were converted to
submarine-type sewage outfalls and diverted further into the channel of Victoria
Harbour. The goal was to dilute and better disperse sewage in Victoria Harbour
(Yim, 1984). In a 1981 report, the two districts in Hong Kong generating and
discharging the largest amount of sewage wastes were: Kwun Tong (~221,000
m°/day; via seawall-type sewage outfall) and Tsuen Wan/Kwai Chun (~243,000
m>/day; via submarine-type sewage outfall) (Yim, 1984). The total estimated raw
sewage discharged throughout Victoria Harbour has been estimated to be at
least 1.6 x 10° m®/day (Yim et al., 2002). For comparison, the estimated daily

sewage received by the waste water treatment facility in Norman, Oklahoma, is
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about 38,611 m®day, servicing a population of about 92,400 people (personal
communications with Ralph Arnett, Darrell Schwartz, and Mark Daniels, from the

Norman Waste Water Treatment Facility).
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Fig. 1.8. Submarine-type sewage outfalls in Victoria Harbour, Hong Kong (from
Yim, 1984).

1.3 Summary Remarks

The area where the modern-day Victoria Harbour is located has
undergone many changes from the late Pleistocene through the Holocene. The
coastline along the southern regions of China was about 130km south of Hong

Kong during the late Pleistocene (during the last glacial max). During this period,
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ancient river channels ran throughout the area, and a palaeodelta of the Pearl
River extended over a significant region on the continental shelf in the South
China Sea. Sea level began rising after ~18,000 years B.P., reaching at least
-19.5m by ~8,080 years B.P. The coastline reached as far north as Guangzhou
by about 6,000 years B.P., then receded slightly with the fall in sea level. With
the rise in sea level, a blanket of Holocene intertidal silty mud was deposited
throughout the area surrounding Hong Kong. Alternating layers of marine and
terrestrial sediments, resulting from changes in sea level, can be observed in the
Hong Kong marine sediments.

In more recent times, rapid population growth within Hong Kong has
resulted in the need for more land, and the generation and disposal of significant
amounts of raw sewage waste. Reclamation activities have altered the harbour
profile and increased sedimentation rates in many areas around Hong Kong.
Transitions of seawall-type sewage outfalls to submarine-type sewage outfalls
further into the channel of Victoria Harbour have also had an impact on the

concentration and dispersion of sewage waste in Hong Kong waters.
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CHAPTER 2

Samples and Methodology

2.1 Core Samples

Four intervals of a piston core section (MBH 54/2; 0.5m-4.2m) were
obtained from the Kwun Tong Typhoon Shelter in Victoria Harbour’'s Kowloon
Bay (Fig. 1.3). Core MBH 54/2 (Fig. 2.1) was supplied from the collection of Dr.
W. W. -S. Yim, from the Department of Earth Sciences, at the University of Hong
Kong. MBH 54/2 was collected in 1996 by rotary boring in stainless steel casings,
wax sealed, and sent to the University of Oklahoma where it was stored in a

freezer at -21°C.
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Fig. 2.1. Core MBH 54/2-Kwun Tong Typhoon Shelter, Kowloon Bay. Estimated
sedimentation rates were reported by Tanner et al. (2000) for MVC 74.
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2.1.1 Sediment Core Description — MBH 54/2

The majority of sediments in core MBH 54/2 (Fig. 2.1) are made up of
dark greenish-gray to black, soft silty clays, with the presence of shell fragments.
The base of the core section is composed of more compact, lighter colored,
coarse grained sediments. Sediments in the uppermost unit (0.5m to 2.4m) were
dark greenish-gray to black silty clays, underlain by light brownish-gray silty clays
(2.5m to 3.1m), dark gray silty clays (3.1m to 3.5m) which transitioned into lighter
gray sandy clays with red streaks and coarse quartz grains (3.9m to 4.2m). The
dark greenish-gray to black sediment color observed throughout much of the
core section is due to the presence of sulfides (i.e., pyrite), from sulfate
reduction. The light gray sandy clays with red streaks have been observed in
desiccated pre-Holocene sediments formed during a low sea-level stand (Yim,

1994).

2.2 Overview of Experimental Method

Cores were sectioned into 5 cm intervals and stored at -21°C. Samples
from various depths were freeze-dried using a Labconco Freeze Dryer 5. The
following sections will provide detailed procedures used to isolate and analyze
free, ester- and amide-bound lipids. Surrogate standards (cholestane and
cholanic acid) were added to a small number of sediment samples prior to
extraction. An external deuterated standard (C24Ds0) was added to the lipid

extracts prior to analysis by gas chromatography (GC) and gas chromatography-
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mass spectrometry (GCMS) to assess the extraction efficiency. Results
summarizing surrogate standard recovery were misplaced. However, the percent
recovered ranged between 90% and 110%. The flowchart in Fig. 2.2 summarizes

the experimental procedures.

Wet Sediment
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Dry Sediment

Add recovery surrogates to selected samples
Soxhlet Extract: CH,Cl,:CH3OH (2:1, v/v)
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Free Lipids Residual Sediment #1
Reflux in KOH .
overnight Reflux in KOH, 2hrs
[ 1 [ 1
Non-Saponifiable Saponifiable Bound Lipids Residual Sediment #2
(“Neutrals™) (“Acids”) ‘ Reflux in HCI, 6hrs
Methylate
& Silylate
[ T 1 .
Saturate Aromatic Polar ,\'j‘gfhl;?;tfigrn Residual Sediment #3
Tightly Bound
Aliquot for Silylation Lipids
(alcohols, sterols, etc) |
n-alkanes
Methylate
branched/ Silylate aliquot of & Silylate
cyclics fatty acid methyl esters

Fig. 2.2. Flowchart summarizing methodology for separating and isolating lipid
groups from marine sediments.

2.3 Free Lipid Extraction and Fractionation

Cellulose extraction thimbles, glasswool, and boiling chips were pre-
extracted with dichloromethane:methanol (1:1 v/v, at least 6hrs). Copper
trimmings were activated in dilute hydrochloric acid (10% HCI), followed by

ultrasonication in deionized water (3x), methanol (3x), and dichloromethane (3x).
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Frozen sediments were transferred to Lyph-Lock flasks (100ml) with 24/40 joints
and connected to valve ports on the drying chamber of a Labconco Freeze-Dry
system (duration on the freeze-dry system was typically 24hrs). Dried sediments
were ground to a fine powder using a ceramic mortar and pestle, weighed and
transferred to pre-extracted cellulose thimbles for extraction of free lipids.

Free lipids were extracted from freeze-dried sediments using a mixture of
dichloromethane:methanol (2:1 v/v, 48hrs). Activated copper was used to remove
elemental sulfur extracted with the free lipid fraction. Excess solvent was
removed using a Yamato RE-51 rotary evaporator under vacuum, and
transferred to pre-weighed vials where solvents were completely evaporated

under a stream of nitrogen gas. Sample weights were recorded.

2.3.1. Separation of Total Free Lipid Extracts into Non-Saponifiable and
Saponifiable Fractions

A fraction of the total free lipid extract was saponified by refluxing with 6N
potassium hydroxide (15ml; 6hrs) in 10% aqueous methanol. Non-saponifiable
lipids, sometimes referred to as “neutral lipids,” were extracted with
dichloromethane (5x30ml) in a separator funnel (vigorously shaken, 1min). The
aqueous phase was acidified to pH~2 by the addition of 4N HCI to release
saponifiable lipids (also referred to as “acidic lipids”). Saponifiable lipids were
recovered from the aqueous phase by liquid-liquid extraction using

dichloromethane. Excess solvent was removed from lipid fractions by rotary
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evaporation under vacuum, transferred to pre-weighed 4ml vials, dried under a

stream of nitrogen gas, and weighed.

2.3.2. Fractionation of Non-Saponifiable Lipids to Saturate, Aromatic, and
Polar Fractions

Samples with sufficient total free lipid extracts were separated into
saturate, aromatic, and polar fractions by column chromatography. Free non-
saponifiable lipids were eluted through a 100ml glass column, packed with pre-
conditioned alumina (14g; 80-200 mesh). Solvents of increasing polarity were
used to elute saturate (n-pentane, 50ml), aromatic (n-pentane:dichloromethane
7:3 vlv, 50ml) and polar compounds (dichloromethane:methanol, 97:3 v/v, 50ml).
Lipid fractions were concentrated by rotary evaporation and transferred to pre-
weighed 4ml vials. Both saturate and aromatic fractions were screened by GC
and GCMS.

The polar fraction was separated into three aliquots. The first aliquot was
screened by GC and GCMS. The second aliquot was methylated using BF3-
methanol (see section 2.5.1 for methylation procedure) and screened by GC and
GCMS, followed by silylation (see section 2.5.2 for silylation procedure) of a
small fraction of the methylated free non-saponifiable polar lipids. Free polar lipid

compounds that were methylated and silylated were analyzed by GC and GCMS.
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2.4 Extraction of Ester- and Amide-Bound Lipids

Ester- and amide-bound lipids were released and extracted from residual
sediments using alkaline and acid hydrolysis, respectively. The technique used to
extract the bound lipids is based on a slight modification of the procedure
described by Lattuati et al. (2002). A Soxhlet extraction step was added at the
end of each procedure to recover ester- or amide-bound lipids not extracted
during the filtration step.

“‘Residual sediment-1” was refluxed in a solution of 1N potassium
hydroxide (KOH) in methanol (30ml, 2hrs), to cleave ester-linkages of lipids
present in the sediments. The reaction mixtures were filtered through vacuum
flasks, using pre-combusted glass fiber filters (Whatman 934-AH). Residual
sediment-1 was rinsed with methanol (100ml) and the combined filtrates were
transferred to a large separator funnel (1000ml). Combined filtrates in the
separator funnel were acidified using 10% aqueous HCI. Residual sediment-1
was then rinsed with dichloromethane (50ml), which was transferred to the
separator funnel containing the combined filtrates. The solution mixture in the
separator funnel was shaken vigorously (1min), producing a monophasic
solution. The solution mixture was then diluted with deionized water (50ml) and
additional dichloromethane (50ml). The solution mixture was shaken vigorously
(1min), resulting in a biphasic solution, where the ester-bound lipids were
extracted into the dichloromethane layer. The remaining residual sediment and
glass fiber filter were transferred to a pre-extracted cellulose extraction thimble,

and Soxhlet extracted with dichloromethane:methanol (2:1 v/v, 24hrs) to recover
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any remaining released ester-bound lipids. All released ester-bound lipids were
combined, concentrated, and weighed in 4ml vials, representing the total ester-
bound lipid fraction.

“‘Residual sediment-2” (Fig. 2.2), was hydrolyzed by reflux in 4N HCI
(40ml, 6hrs) to release amide-bound lipids. Hydrolyzed sediments were filtered
through pre-combusted glass fiber filters (Whatman 934-AH) and rinsed with
methanol (100ml). Combined filtrates were transferred to a large separator funnel
(1000ml). The residual sediment was washed with dichloromethane (50ml),
which was then transferred to the separator funnel and shaken vigorously (1min).
Deionized water (50ml) and additional dichloromethane (50ml) were added to the
separator funnel and shaken vigorously (1min), to recover the organic phase
containing the amide-bound lipids. Any freed amide-bound lipids remaining in the
sediment were recovered by Soxhlet extraction (dichloromethane:methanol; 2:1
v/v, 24hrs) and combined with the previously isolated amide-bound lipids. The

total amide-bound lipid fraction was concentrated and weighed in 4ml vials.

2.5 Derivatization of Functionalized Lipids

Functionalized lipids (e.g., alcohols, sterols, fatty acids, and hydroxy fatty
acids) typically require derivatization procedures in order to produce less polar,
more volatile compounds which can be separated on gas chromatographic
columns. Methylation and silylation procedures, respectively, are commonly used

in the derivatization of compounds with carboxyl or hydroxyl groups. Lipids
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containing both carboxyl and hydroxyl groups are typically methylated, then

silylated, to produce methyl ester-trimethylsilyl (TMS) ether compounds.

2.5.1 Methylation of Saponifiable, Ester- and Amide-Bound Lipids

Aliquots of saponifiable, ester- and amide-bound lipids were methylated
using BF3-methanol (14% borontrifluoride, 86% methanol). In general, for 5mg of
lipids, 500ul of BF3-methanol was used for methylation reactions. Lipid fractions
(i.e. saponifiable, ester- and amide-bound lipids) were transferred and weighed in
4ml vials. BF3-Methanol was added to the vials, capped, and heated at 60°C
(15min). The reaction mixture was allowed to cool, transferred to a separatory
funnel (125ml), and diluted with deionized water (20ml). Lipids, as methyl esters,
were recovered by liquid-liquid extraction with dichloromethane (3x40ml).
Samples were concentrated using a rotary evaporator, transferred to pre-
weighed vials, and any remaining solvent removed under a stream of nitrogen
gas. Sample weights were recorded and small aliquots of samples were set
aside for GC, GCMS, and gas chromatography-isotope ratio mass spectrometry

(GCIRMS) analyses. All methylated samples were stored in a refrigerator.

2.5.2 Silylation of Non-Saponifiable, Ester- and Amide-Bound Lipids
Non-saponifiable lipids, ester- and amide-bound lipid-methyl esters were

silylated to produce trimethylsilyl ethers. Lipid samples (up to 1mg) were heated
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to 50°C (30min) in N,O,-bis(trimethylsilyl)trifluoro-acetamide with 1% trimethyl-
chlorosilane (BSTFA with 1% TMCS; 100ul) and pyridine (100ul), which was used
as a catalyst for the reaction. After silylation, samples were dried under a flow of
nitrogen gas, diluted in dichloromethane, and analyzed by GC and GCMS.

Remaining samples were stored in a refrigerator.

2.6 Gas Chromatography

Lipid fractions were initially screened on a Hewlett-Packard 5890 gas
chromatograph equipped with an on-column injector and a flame ionization
detector (FID) set at 310°C. Samples were chromatographed on an Agilent/J&W
HP-5MS fused silica capillary column (30m x 0.25mm i.d. x 0.5um film
thickness), which has a non-polar stationary phase composed of (5%-phenyl)-
methylpolysiloxane. The oven temperature was programmed from 40°C to
310°C, at a rate of 4°C/min, and held isothermally at 310°C (32min). Data were
acquired with a PE Nelson-900 series acquisition interface and transferred to a
Windows-based computer at the end of the run. Chromatograms were processed

and plotted using PE Nelson Chromatography Software.

2.7 Gas Chromatography — Mass Spectrometry
Lipid fractions were analyzed by gas chromatography-mass spectrometry

with a Varian 3400 gas chromatograph interfaced via transfer line to a Finnigan
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MAT triple stage quadrupole mass spectrometer (TSQ-70). Gas chromatography
was performed on an Agilent/J&W Scientific DB-5MS fused silica capillary
column (60m x 0.32mm i.d. x 0.25um film thickness), which utilizes a (5%-
phenyl)-methylpolysiloxane equivalent non-polar stationary phase. The
split/splitless injector on the gas chromatograph was temperature programmed
from 40°C to 310°C at a rate of 180°C/min, then held isothermal at 310°C
(99min). The GC oven program was initially held at 40°C (1.5min), then heated to
310°C at a rate of 4°C/min, where it was held at 310°C (31min). The transfer line
was isothermal (310°C) for the entire length of the run (100min). Analyses were
completed in full-scan mode, where compounds were ionized by electron impact
ionization (El @ 70eV). The electron multiplier was set to detect and measure
ions over the mass range of m/z 50 to m/z 550 each second. GCMS results were
acquired, processed, and interpreted on a DEC Alpha Workstation, using the
ICIS/ICL (i.e. “Interactive Chemical Information System”/’Interactive Control

Language”) data acquisition software.

2.8 Gas Chromatography — Isotope Ratio Mass Spectrometry (GCIRMS)
Compound specific carbon isotopes were measured on two GCIRMS
systems — a Varian 3410 GC interfaced via combustion reactor to a Finnigan
MAT-252 isotope ratio mass spectrometer; and a HP6890A GC interfaced via
ThermoQuest Finnigan GC Combustion Ill furnace to a ThermoQuest Delta®“SXL

isotope ratio mass spectrometer. GCIRMS allows &'*C values to be measured for

32



individual components in complex compound mixtures. In this project, fatty acids
in the ester- and amide-bound lipid fractions were analyzed by GCIRMS as
methyl esters. Samples were introduced into the GC, where the oven was
temperature programmed from 40°C to 310°C at a rate of 4°C/min (total run time
= 100min). The Varian 3410 was equipped with a DB-1 fused silica capillary
column (60m x 0.32mm 1.D. x 0.25um film thickness), which has a non-polar
stationary phase (100% dimethylpolysiloxane); and the HP6890A was equipped
with a HP-5MS fused silica capillary column (30m x 0.25mm i.d. x 0.5um film
thickness), which has a non-polar stationary phase composed of (5%-phenyl)-
methylpolysiloxane. Components separated on the GC columns passed through
a ceramic combustion reactor (980°C), and completely combusted to CO, and
H,0O. The water was removed with a water separator prior to introducing the CO,
into the isotope ratio mass spectrometer, where the relative proportions of '>*CO,
to CO, were determined relative to the Pee Dee Belemnite (PDB) standard.
The data acquisition system converted isotopic ratios of *C/'C to delta (5)

notation, using equation 2.8.1 (Hoefs, 1997).

13c/1ZC

13C 12 C
o"C= (m—quOO (eq. 2.8.1)
standard

5'3C values for fatty acids were corrected for the addition of a methanol
carbon, from the methylating reagent BFs-methanol. Bulk stable isotopes of a
Caa4.0 fatty acid standard and fatty acid methyl ester product formed by the

methylating reagent were measured by Rick Maynard from the Organic
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Geochemistry Laboratory at the University of Oklahoma. The isotopic
composition of the methanol carbon 8'*Cyeon Was determined using equation
2.8.2, where x is the fractional carbon contribution of fatty acid to fatty acid
methyl ester (e.g. tetracosanoic acid would have a fractional carbon contribution
where x=24/25) (Abrajano et al.,1994) . The isotopic composition of fatty acids
(5"Cra) was calculated (equation 2.8.2) using the known &"*Cyeon value and

measured 8'*Crave compositions.

8°C, e =[XI8"C,, +(1-x)0"C,o,  (€q. 2.8.2)

2.9. Elemental Analysis, and Bulk Organic Carbon (61300,9) and Total
Nitrogen (5'°N) Stable Isotope Measurements

Freeze-dried sediment samples were sent to the Sedimentary Coastal and
Oceanic Organic Biogeochemistry Laboratory at Texas A & M University for
elemental analysis, and bulk stable isotope measurements of carbon and
nitrogen. A Costech EA (Model # ECS4010), interfaced to a Finnigan MAT-252
dual inlet isotope ratio mass spectrometer via a Thermo-Finnigan Conflo IlI
interface, was used to measure total organic carbon (%Coqg), total nitrogen (%N),
5"®Corg and 5"°N of decarbonated sediment samples. The following temperature
and flow parameters were used in the analyses: combustion furnace = 1020°C;
reduction furnace =650°C; column temperature = 40°C; and flow-rate = 98ml/min.

3¢/12C and "N/"N isotopic ratios were compared to standards (PDB and
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atmospheric nitrogen, respectively), and converted to delta (5) notation. 5"°C was

calculated using equation 2.8.1, and 5'°N was calculated using equation 2.9.1.

15N 14N
615N:[15N//14—Nsample—1jx1000 (eq 291)

standard
Samples were weighed in silver boats and decarbonated in glass
desiccators, with a small amount of 12N HCI at the base of the desiccator. After
72hrs, acid vapors were removed by placing samples in a vacuum oven (<30°C,
24hrs). Samples free of acid vapors were then placed into tin boats, crushed,
closed and ready for analysis. Since nitrogen is typically present in low amounts
relative to carbon, it is the limiting component. Thus, sample sizes were adjusted
to obtain adequate measurements for 5'°N (i.e., about 100ug to 200ug N is
needed for an adequate signal on the isotope ratio mass spectrometer). Carbon,
however, could be diluted with helium gas to reduce the signal (i.e., to about

75ug to 190ug C) for a reliable 5'°C,,y measurement.
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CHAPTER 3
Elemental and Stable Isotope Analyses of Organic Carbon and

Total Nitrogen in Sediments from Kowloon Bay, Hong Kong

3.1 Introduction

Bulk properties of organic matter in marine sediments provide insights into
the history and changes in environmental conditions in the sedimentary record.
The piston core investigated in this study (i.e., core MBH 54/2) provides a record
of organic matter deposited during the late Quaternary, revealing changes in
organic source material, periods affected by anthropogenic activities, and natural
changes to this region. The bulk properties utilized include elemental and stable
isotope compositions of organic carbon and total nitrogen in sedimentary organic
matter. Sedimentary organic matter is comprised of complex mixtures which can
include lipids, proteins, cellulose, lignin, and/or other components originating
from various organisms or anthropogenic wastes. The majority of organic matter
introduced into the marine environment undergoes remineralization (i.e., organic
matter is oxidized, resulting in the production of CO,, H,O, and nutrients) in the
water column, where less than 10% of the original organic matter is incorporated
and preserved in the sediments (Meyers and Lallier-Verges, 1999; Meyers, 2003).
While remineralization occurs during sedimentation, bulk properties of deposited
sedimentary organic matter still retain important information for delineating the

sources of organic matter and possible processes that may have occurred (e.g.,
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denitrification or enhanced productivity; Teranes and Bernasconi, 2000; Bratton

et al., 2003; Meyers, 2003).

3.2 Review of Literature
3.2.1 Organic Carbon and Total Nitrogen in Marine Sediments

The total organic carbon (TOC) content in marine sediments measures the
amount of organic matter that survived remineralization processes in the water
column and was preserved in the sediments (Meyers and Lallier-Verges, 1999).
The amount of organic matter in sediments has been estimated to be twice the
amount of measured TOC (i.e., 50% of sedimentary organic matter is composed
of carbon; Meyers, 2003). Changes in TOC content reflect periods of higher or
lower influx of organic matter, which includes the total mixture of terrigenous
plant material, algae, bacterial biomass, sewage effluents, and/or other sources
of organic carbon.

Nitrogen is an important nutrient and plays an important role in productivity
in the marine environment (Minagawa and Wada, 1986; Teranes and Bernasconi,
2000; Talbot, 2001). If nitrogen availability is too low, then primary production is
limited; if nitrogen is abundant this can result in intense algal blooms and
eutrophication of the marine system (Sigleo and Macko, 2002). Nitrogen is
typically characterized in sediments as total nitrogen, or as the ratio of organic
carbon-to-nitrogen (C/N), and provides important information to aid in delineating

sources and past variations of nitrogen in the environment (Meyers, 1994; Talbot,
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2001). Atmospheric nitrogen is plentiful, comprising about 78% of the earth’s
atmosphere, and is the primary source of nitrogen for terrigenous plants (Peters
et al., 1978; Sweeney et al., 1978; Hoefs, 1997; Meyers and Lallier-Vergeés,
1999). Terrigenous plants are able to utilize atmospheric nitrogen after bacteria,
located around the plant roots, convert the nitrogen to ammonia via nitrogen
fixation (eq. 3.1; Peters et al., 1978; Sweeney et al., 1978; Whelan and
Farrington, 1992; Bickert, 2000). Terrigenous plants can also uptake nitrogen, in
the form of nitrates, around the plant roots (Moore, 2004).

Nitrogen Fixation: N +3H,0-52NH, +30, (eq.3.1)

2-atmos
Marine organisms assimilate dissolved inorganic nitrogen in the form of nitrate

(NO;), ammonium (NH;), or nitrite (NO; ), although nitrate is the most common

form of assimilated nitrogen (Peters et al., 1978; Fogel and Cifuentes, 1993;
Bickert, 2000; Talbot, 2001). Nitrate is reduced to nitrogen gas (N2) by anaerobic
bacteria via denitrification processes (eq. 3.2), returning nitrogen to the
atmosphere (Hoefs, 1997; Bickert, 2000; Teranes and Bernasconi, 2000; Talbot,
2001). Denitrification is an important mechanism for balancing the natural
processes of nitrogen fixation (Sweeney et al., 1978). Ammonia (NH3) and

ammonium (NH; ) in aquatic environments are produced by bacterial

decomposition of organic matter under anaerobic conditions (Teranes and
Bernasconi, 2000; Talbot, 2001). The ammonia formed from the mineralization of

organic nitrogen is an important component utilized by aerobic bacteria during
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nitrification processes (Sweeney et al., 1978). Conversion of ammonia to nitrate

can be expressed by equation 3.3 (Bickert, 2000).

Denitrification: 5CH,0+4NO; +4H" - 5CO, +7H,0+2N, (eq. 3.2)

o NH, +30, >HNO, +H,0
Nitrification: (eq. 3.3)
HNO, + 10, ->HNO,

3.2.2 Carbon-to-Nitrogen Ratio (C/N)

TOC and total nitrogen are commonly utilized together, where the ratio of
organic carbon-to-total nitrogen functions as a tool for distinguishing the source
of organic matter. The primary nitrogen components in marine organisms (e.g.,
phytoplankton and zooplankton) are proteins. Vascular terrigenous plants,
however, have low protein content and are enriched in cellulose and lignin. The
low cellulose, high protein composition of phytoplankton results in C/N ratios
between 4 and 10, whereas bacterioplankton have C/N ratios ranging between
2.6 and 4.3. High cellulose and lignin composition of vascular terrigenous plants,
along with low protein content, results in C/N ratios greater than 15 (Sampei and
Matsumoto, 2001; Meyers, 2003; Wu et al., 2003). The downcore profile of the
C/N ratio in a sediment core section can illustrate shifts through time as the
principal contributor of organic matter changes between terrigenous and algal
material. Preferential loss of nitrogen relative to carbon can occur as a result of

the decomposition of algal biomass settling through the water column.
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Consequently, organic matter deposited in the sediments may appear to have a

higher C/N ratio (Sampei and Matsumoto, 2001).

3.2.3 Bulk Stable Isotope Analyses

Bulk stable isotope composition of organic carbon and total nitrogen
complement the C/N ratio. Carbon and nitrogen each have two stable isotopes,
12C (98.89%) and "*C (1.11%), and "N (99.64%) and '°N (0.36%) (Hoefs, 1997).
Stable isotopes of carbon and nitrogen are expressed using the delta () value,
where the ratio of heavy-to-light isotope values (i.e., *C/"*C and "°N/"*N) are
calibrated relative to international standards (eq. 2.8.1 and eq. 2.9.1; Hoefs,
1997).

5'*Corg values have been used to determine the sources of sedimentary
organic matter (i.e., marine or terrigenous) and to identify photosynthetic
pathways utilized by terrigenous plants (i.e., C3 plants or C4 plants). C3 plants
incorporate carbon into organic matter using the Calvin pathway, where a
molecule of CO; reacts with the enzyme ribulose 1,5-bis-phosphate carboxylase
to produce two molecules of 3-phosphoglycerate (Fig. 3.1; Fogel and Cifuentes,

1993; Hoefs, 1997).
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CH ,0PO ;H,
|
c=o0 H,0 CH,0PO;H, CH,0PO;H,
|
H—C—OH + CO, S2.- H—C—OH + H—C —OH
|

| |
H—C—OH c=0 c=0

| | |

CH,0PO ;H, OH OH
Ribulose Two molecules of
1,5-bisphosphate 3-phosphoglycerate

Fig. 3.1. Incorporation of carbon into organic matter utilizing the C3 pathway
(from Fogel and Cifuentes, 1993).

C4 Plants follow the Hatch-Slack pathway, where the incorporation of carbon into
organic matter occurs when CO, reacts with phosphoenolpyruvate carboxylase
to form oxaloacetate (Fig. 3.2; Fogel and Cifuentes, 1993; Hoefs, 1997). 5'°C
values of C3 terrigenous plants range between -33°,, and -22°/,,; whereas C4
terrigenous plants are more *C-enriched and range between -22%,, and —8%,
(Meyers, 1994; Hoefs, 1997; Huang et al., 1999; Meyers and Teranes, 2001).
Marine organic matter (e.g., marine algae) is isotopically heavier than C3
terrigenous plants, and has 8'>C values ranging between —25%, and —20%,

(Meyers, 1994).

(I:ozH CO,H
C—OPO;H, + HCO, — C=0 + H,PO,

1-

CH, (l:Hz
CO,H
Phosphoenolpyruvate Oxaloacetate

Fig. 3.2. Photosynthetic pathway of C4 plants, utilizing the enzyme
phosphoenolpyruvate carboxylase (from Fogel and Cifuentes, 1993).
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Nitrogen isotopes often supplement carbon isotope measurements for
delineating source information, where the 5"°N value varies as a result of the
form of inorganic nitrogen assimilated. The two primary forms of nitrogen utilized
are nitrate (i.e., for marine organisms; 8" °Npirate = 7%00 to 10%,0) and atmospheric
nitrogen (i.e., for terrigenous plants; 8"°Naimos = ~0%0) (Peters et al., 1978;
Meyers and Lallier-Vergés, 1999; Meyers and Teranes, 2001; Owen and Lee,
2004). Nitrates derived from anthropogenic activities (e.g., human and/or animal
waste products) are enriched in >N where 8"°N ranges from 10%, to 25,
(Teranes and Bernasconi, 2000; Meyers, 2003). These isotopic signatures can
be traced in the environment where marine plankton or algae utilize NO, and
terrigenous plants utilize atmospheric nitrogen as their nitrogen source (Muzuka
et al., 1991; Meyers and Lallier-Vergés, 1999; Meyers and Teranes, 2001).
Several factors, however, can affect the isotopic composition of nitrogen in
organic matter, providing insights into nutrient cycling and processes such as

nitrogen fixation or denitrification (Fogel and Cifuentes, 1993; Bickert, 2000).

3.2.4 Sewage Derived Carbon and Nitrogen in Marine Sediments

Nitrogen is an essential substrate needed for primary producer growth.
The isotopic composition of the primary producers will be dependent on the
isotopic composition of dissolved inorganic nitrogen components such as NO;,
NH;, or NO, (Montoya, 1994). Potential sources of dissolved inorganic nitrogen

in the aquatic environment include sewage and wastewater effluents. These
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sources of nitrogen can serve as nutrients for marine organisms. When nutrient
overloading occurs (e.g., via excessive sewage waste disposal), algal blooms
can be stimulated leading to eutrophication. Eutrophication results in increasing
anoxic conditions whereby excessive denitrification processes can occur,
enriching the "°N in residual dissolved inorganic nitrogen (Muzuka et al, 1991;
Montoya, 1994; Teranes and Bernasconi, 2000; Bratton et al., 2003). Conversely,
as the phytoplankton assimilate and metabolize the dissolved inorganic nitrogen,
the phytoplankton biomass becomes depleted in ®N relative to that of the growth
substrate (Montoya, 1994). In the early stages of algal blooms, phytoplankton
biomass is isotopically lighter than the dissolved inorganic nitrogen being used as
the substrate. As "N is selectively removed, the residual dissolved inorganic
nitrogen becomes isotopically heavier. Progressive assimilation of the isotopically
heavier nitrogen will be reflected in the phytoplankton biomass (Montoya, 1994).
Bacterial remineralization of settling particulate organic matter in the water
column can also lead to progressive enrichment of "N in the residual organic
matter (Altabet and McCarthy, 1985; Bickert, 2000).

Offshore disposal of sewage waste has been common practice since the
early occurrence of population growth in near-coast environments with the
presumption that minimal sewage particulates would reach or accumulate on the
seafloor due to dispersion and dilution effects in surface waters. Various
research groups have utilized elemental and bulk stable isotope compositions of
carbon and nitrogen in sewage effluents, particulate organic matter, marine

sediments, and/or phytoplankton-derived organic matter to study the effects of
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sewage-derived organic matter on marine sediments. Table 3.1 summarizes the
results of studies from various localities around the world. Sewage effluents,
sewage sludges, and sewage-derived organic matter sampled around coastal
regions have been reported with the following bulk properties: 61‘°’Corg=-28.5°/oo to
-23.0%0; 8'°N=1.8%, t0 3.2%00; and C/N ratios=11.0 to 13.4 (Burnett and
Schaeffer, 1980; Sweeney et al., 1980; Gearing et al., 1991; van Dover et al.,
1992; Hunt et al., 1992; Thornton and McManus, 1994; Rogers, 2003).

Organic matter derived from sewage effluents have been differentiated
from terrigenous derived organic matter (Rogers, 2003) and organic matter
derived from marine sediments unaffected by sewage (Burnett and Schaeffer,
1980; Sweeney et al., 1980) using bulk stable isotope values of carbon and
nitrogen. The proportion of sewage contributions can be estimated using isotopic
measurements of sewage contaminated sites and pristine sites (Rogers, 2003).
Burnett and Schaeffer (1980), for example, used equation 3.5 to estimate the
relative amount of sewage affected sediments at their study sites, where: Fs=%
sewage sludge; 5'°C=5"C value of Coy in the measured samples; 5"°C,=5"C
value of Cg in uncontaminated marine shelf sediments “normal” to the area;

5'3Cs=5"3C value of the sewage sludge.

B 613 C _613 Cm

=350 590 x100 (eq. 3.5)
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Table 3.1. Summary of elemental and bulk stable isotope measurements of carbon and
nitrogen in marine sediments, sewage sludge/effluents, particulate organic matter, and
plankton-derived particulate organic carbon.

Location Sample %Corg %N CIN Ratio 5C (°loo) 5N (°l,s)  Reference
Western Hong Kong Sediment 041012 - 6.0t0185 -25310-21.3 5010125  Owen, 2005
(estuarine-derived)
Central Hong Kong Sediment 0.5t0 1.1 - 6.0 to 20.0 - - Owen, 2005
Eastern Hong Kong Sediment 0.6103.0 - 6010255 -26.7t0-19.0 100to185  Owen, 2005
(marine-derived)
Lake Biwa Sediment - - - -24.7t0-21.5 57t07.8 Mishima et al., 1999
Yodo River Sediment - - - -26.2 to -24.7 43t06.7 Mishima et al., 1999
Ane River Sediment - - - -28.3 to -26.6 -09t02.6 Mishima et al., 1999
Tokyo Bay POM - - - -15.0 - Mishima et al., 1999
Otuchi Bay TOM - - - -26.5 - Mishima et al., 1999
S. California Bight Marine PM - - - -21.0t0 -19.0 8.0t0 12.0 Spies et al., 1989
S. California Bight )
(Whites Point, CA) Sewage PM - - - -16.5 1.8 Spies et al., 1989
S. Calif. Coastal Area-1 Sewage Effluent 30.8 2.33 13.2* - 3.0 Sweeney et al., 1980
S. Calif. Coastal Area-2 Sewage Effluent 31.7 2.38 13.3* - 2.0 Sweeney et al., 1980
S. Calif. Coastal Area-3 Sewage Effluent 31.8 2.37 13.4* - 2.4 Sweeney et al., 1980
S. Calif. Coastal Area-4 .
(Whites Point, CA) Sewage Effluent 31.7 2.36 13.4 - 25 Sweeney et al., 1980
Edinburgh Sewage Effluent - - - -25.2+0.9 10.7+0.7  Waldron etal., 2001
(marine embayment)
Edinburgh Sediment - - - -22.9+0.2 6.1106.7  Waldron etal,, 2001
(marine embayment)
Cranston, Ri Sewage Sludge - - - -23.5+0.4 - Gearing et al., 1991
Los Angeles Sewage Sludge - - - -23.5£0.5 - Gearing et al., 1991
New York Sewage Sludge - - - -26.0 & -25.7 - Gearing et al., 1991
Moa Point, New Sewage Effluent ; - ; 235 181025  Rogers, 2003
Zealand
Middlesex, NJ gi/lwage derived - - - -24.7 -1.1 van Dover et al., 1992
Mergen, NJ gi/lwage derived - - - -23.2 6.1 van Dover et al., 1992
Yonkers, NY gi/lwage derived - - - -21.4 7.2 van Dover et al., 1992
Providence, RI g‘fw""age derived - - - 23.7 - van Dover et al., 1992
Hunts Bay, Kingston Sewage ; - 11010130 -2851t0-23.0 ; Andrews et al., 1998
Harbour, Jamaica
New York Bight-Newton Burnett & Schaeffer,
Creek Treatment Plant Sewage Sludge ) . ° -25.7 . 1980
New York Bight- Ward Burnett & Schaeffer,
Island Treatment Plant Sewage Sludge . . ° -26.0 . 1980
Mangrove Creek,
Hong Kong Seston - - - -27.1610.44 10.48+0.21 Lee, 2000
Seston
Pearl River Estuary (phytoplankton - - - -25.22+0.48 -1.06+0.98 Lee, 2000
dominated)
Shan Pui River, POM (primarily } } ) :
Hong Kong anthropogenic) 24.13 523 Lee, 2000
New York/New Jersey giﬂwage—derived - - - -23.0 3.2 Hunt et al., 1992
. Phytoplankton-
North Atlantic derived POM - - - -21.7 6.1 van Dover et al., 1992
Sed. POC
Western North Atlantic (phytoplankton- - - - -21.6 - ?:X 'Sif‘e?:t"ayl' 1%352'
derived)? B
Pacific-Deepwater PON - - - - 5.0t0 15.0 ?:rinlgg;a;ttoar:j’uggsgz;
Altabet, 1988; van
Sargasso Sea PON - - - - 5.0t 7.0 Dover et al., 1992
Invergowrie Bay, Tay Sewage Effluent B _ 12.57 26.7 23 Thorton & McManus,

Estuary, Scotland

1994
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3.3 Results and Discussion

Bulk properties of sedimentary organic matter (i.e., elemental and stable
isotope compositions of carbon and nitrogen in sediments) have been measured
in core MBH 54/2 to identify sources of organic matter, speculate on processes
that affect carbon and nitrogen preservation and isotopic composition (e.g.,
signatures resulting from microbial activity), and to infer processes that occurred
as a result of raw sewage disposal in coastal environments. While the majority of
organic matter (>90%) is remineralized during sedimentation, the C/N ratios and
5'°Corg values of the initial organic matter that survives the water column is
preserved (Meyers and Ishiwatari, 1993; Meyers, 2003; Sifeddine et al., 2004).
Results of elemental and bulk stable isotope measurements are summarized in

Table 3.2.

3.3.1 Elemental Analyses

Elemental analysis of organic carbon (%Cqrg) and total nitrogen (%N)
content have been utilized to differentiate between terrigenous and aquatic
sourced organic matter. The distribution of %Cqq has been used in various
studies to study changes in organic matter input and preservation in sediment
core sections. One possible application has been to use organic carbon
distributions to reflect periods of enhanced anthropogenic waste input (e.qg.,

sewage wastes, oil spills, and/or industrial waste effluents). Bulk measurements

47



Table 3.2. Summary of elemental analyses and bulk stable isotope
measurements of carbon and nitrogen in sediments from core MBH 54/2.

Sed. Rate Coons:  Depth %Corg %N (V\z/ir;ht (A(t:cfr':ic 8°Cog 3N
cmiy): ~ Calendar - “iny) dght (e e Cho)
3.50mly 1981 0.5 0.75  0.07 1071 1250  -22.60 -

1977 0.7 128 009 1422 1660  -23.86 6.19
4.4cmly 1971 0.9 168 042 1400 1634  -28.59 2.57
1965 12 274 020 1370 1599  -26.62 3.44
1961 14 283 015 1887 2202  -26.30 2.14
1954 16 162 041 1473 1719 -27.49 3.13
1.9cmly 1943 18 0.88  0.09 978 1141 2774 4.49
1930 2.0 083  0.09 922 1076  -27.99 3.05
1428 22 059 007 8.43 984 2712 430
928 23 062 007 8.86 1034  -26.92 427
604BC 2.6 094 006 1567 1828  -26.01 4.43
0.22mmly  1604BC 2.8 073 006 1217 1420  -27.25 3.61
31048C 3. 063 006 1050 1225  -27.23 4.60
4104BC 3.3 0.88  0.06 1467 1712  -24.74 4.57
51048C 3.5 083 007  11.86  13.84  -27.50 433
M1 6104BC 3.7 0.86  0.05  17.20 2007  -21.87 4.51
M2 3.9 042 004 1050 1225  -26.27 4.26
4.0 022  0.03 7.33 856  -30.18 2.53
4.1 039 003 1300 1517  -30.85 -
4.2 023  0.04 5.75 671  -33.17 -

* Sedimentation rates from 0.5m to 2.1m are based on “'’Pb measurements reported by Tanner

et al. (2000). At depths below 2.1m, the sedimentation rate is based on the maximum Holocene
age of 8100y BP, which is marked by the dessicated crust which represents the boundary
between the M1 and M2 layers (Yim, 1994); -- Indicates that measurements were below the
detection limit; values in “bold” indicate an average of replicate runs. C/N (atomic mass ratio)
was calculated by multiplying the C/N weight ratio by 1.167 (Meyers and Teranes, 2001). See
Appendix | for a complete list of measurements and standard deviations.
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Fig. 3.3. Downcore profiles of %Cqg and %N in sediment from core MBH 54/2,
from Kowloon Bay, Victoria Harbour, Hong Kong SAR.

for several sediment samples were run in replicate and are summarized in
Appendix I. The average %Cog had standard deviations ranging up to +0.2;
average %N up to £0.01; average 613Corg compositions as high as +0.54; and
average 5'°N values within +0.3. The downcore profile of organic carbon
deposited in Kowloon Bay during the Holocene and possible late Pleistocene is
shown in Fig. 3.3a. Three primary intervals can be observed, where the upper
unit (0.7m to 1.6m) consists of the highest organic carbon content ranging
between 1.28% and 2.83%. The maximum organic carbon content occurs
between 1.2m and 1.4m, where Corq is 2.74% and 2.83%, respectively. The

second unit (1.8m to 3.7m) is comprised of more intermediary organic carbon
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compositions ranging between 0.59% and 0.94%. Within this unit (1.8m to 3.7m)
there appear to be five subgroups marked by slight changes to the organic
carbon content. The first subgroup occurs between 1.8m and 2.0m, where Cqy is
0.83% and 0.88%, respectively. The organic carbon content decreases to
between 0.59% and 0.73% at depths of 2.2m to 2.3m, and 2.8m and 3.1m; a
sharp spike occurs at 2.6m where Cqq is 0.94%. A slight rise in organic carbon
content to between 0.83% and 0.88% occurs between 3.3m and 3.7m. The third
unit is at the base of the core (3.9m to 4.1m) where Cqg ranges between 0.22%
and 0.42%.

The total nitrogen content reported in this study is positively correlated
with organic carbon (Fig. 3.4), where the best fit line gives a correlation
coefficient (R?) of 0.8845. By extrapolating the organic carbon content to zero,
the amount of inorganic nitrogen can be estimated (which was found to be
~0.02%). Thus, the total nitrogen content in sediments from MBH 54/2 can be
assumed to be representative of organic nitrogen (Hedges et al., 1986; Talbot
and Johannessen, 1992; Andrews et al., 1998; Talbot, 2001; Owen and Lee,
2004). The overall N content (Fig. 3.3b) is relatively low and ranges between
0.03% and 0.20%. In the same way as the organic carbon content, the nitrogen
content can be divided into three major intervals. The upper unit (0.7m to 2.0m)
has the highest N content ranging between 0.09% and 0.20% (maximum N
occurs at 1.2m). The second unit extends from 2.2m to 3.7m and has a N

composition ranging between 0.05% and 0.07%. The lowest N content occurs at
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the base of the core (3.9m to 4.1m) with N values ranging between 0.03% and

0.04%.

0.25

020 | .
1 y = 0.0544x + 0.0238
R?=0.8845

0.15 -

%N

0.10 -

0.05 -

0.00 0.50 1.00 1.50 2.00 2.50 3.00
%Corg

Fig. 3.4. Graph of %C,g versus %N in sediments from core MBH 54/2, Kowloon
Bay, Victoria Harbour. The trend line shows a positive correlation between
organic carbon and total nitrogen.

3.3.2 Ratio of Organic Carbon to Total Nitrogen

The weight % ratio of organic carbon to total nitrogen (C/N) is highly
variable in the sediment core (Fig. 3.5). Fluctuations in the downcore profile
documents shifts in the proportion of terrigenous, algal, and/or anthropogenically
derived organic matter deposited during the Holocene and late Pleistocene. Early
diagenesis may result in alterations in the C/N ratio. For example, microbial

remineralization in the water column can cause the C/N value to decrease, or
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increased productivity with limited nitrogen availability can result in higher C/N
values (Meyers, 1994). Despite these changes in the water column, Meyers and
Ishiwatari (1993) and Meyers (1994) have demonstrated that the C/N ratios and
613Corg signatures of organic matter do not undergo further diagenetic changes

after burial, and that the overall source information is retained.

C/N Ratio
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Fig 3.5. Downcore profile of the C/N (wt. % ratio) in core MBH 54/2, from
Kowloon Bay, Victoria Harbour, Hong Kong SAR. “O” indicates possible flux of
terrigenous-derived organic matter.
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Four possible intervals are observed in Fig. 3.5. The first interval occurs
between 0.7m and 1.6m with C/N ratios ranging between 13.7 and 14.7, except
at 1.4m where the C/N ratio is 18.9. The relatively high C/N ratio between 0.7m
and 1.6m occurs within a period known to have experienced a high influx of
sewage waste. Higher disposal rates of sewage waste and nutrients lead to
excessive algal blooms and this in turn could result in parts of Victoria Harbour
becoming eutrophic. Phytoplankton and zooplankton typically have C/N ratios
ranging between 4 and 10 (Meyers and Ishiwatari, 1993); however, the high C/N
values observed in this interval indicates that other factors have affected this
ratio. While the microbial denitrification of organic matter can result in the
preferential loss of nitrogen, and increase the C/N values in sedimentary organic
matter (Sarazin et al., 1992; Sampei and Matsumoto, 2001; Owen and Lee,
2004), the high C/N values are likely due to contributions from sewage effluents.

The second interval occurs between 1.8m and 2.3m where the C/N ratio
ranges between 8.4 and 9.8. The C/N ratio within this interval suggests that
during this period Kowloon Bay received greater contributions of algal-derived
organic matter compared to terrigenous-derived organic matter. These values
are within the range for C/N ratios that have been used to implicate organic
matter derived from phytoplankton, bacteria, and other single-celled organisms
(Sigleo and Macko, 2002).

Intermediate C/N values are observed between 2.8m and 3.9m with
values generally ranging between 10.5 and 12.2. Sedimentary organic matter in

this region may reflect a mixture of both terrigenous- and algal-derived organic
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matter. Spikes in the C/N ratio are observed at 2.6m (C/N=15.7), 3.3m
(C/N=14.7), and 3.7m (C/N=17.2). The high C/N ratios at depths of 1.4m, 2.6m,
3.3m, and 3.7m (Fig. 3.5) resulted from higher organic carbon contents and were
proposed to have been caused by the transport of terrigenous plant material by
heavy monsoons or typhoons. At 1.4m, for example, a large spike in the C/N
ratio (~18.9) was observed. Based on sedimentation rate data, sediments at this
interval were deposited around 1961. Typhoons Mary (1960), Wanda (1962),
Ruby (1964), and Dot (1964 ) passed through Hong Kong with Typhoon Wanda
being the strongest typhoon to occur during this period (Yim, 1993; Huang and
Yim, 1997). These events could have carried a greater abundance of terrigenous
plant material into Kowloon Bay resulting in the spike in the C/N ratio observed at
1.4m. Owen (2005) reported spikes in the C/N ratio in two sediment core
samples, corresponding to an event that occurred around 1910, from two
locations in Tolo Harbour in northeastern Hong Kong. Heavy monsoons or
typhoons were thought to have been responsible for the spike in the C/N ratio in
his study. In core MBH 54/2, however, no spike in C/N ratio was observed in
sediments deposited around depths corresponding to 1910 (i.e., between 2.0m
and 2.1m).

The fourth interval occurs at the base of the core, between 4.0m and 4.1m,
where the C/N ratio is 7.3 and 5.8, respectively. A spike in the C/N ratio (13.0) is
observed at 4.1m along with an elevated organic carbon content (0.39%). This
may be indicative of an event where additional terrigenous organic matter was

transported into Kowloon Bay.
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3.3.3 Bulk Stable Isotope Composition of Organic Carbon and Total
Nitrogen

Sewage affected marine sediments can be discriminated from unaffected
sediments using 5'°N signatures. Teranes and Bernasconi (2000) have reported
isotopic values of sewage-derived nitrates to range between 10.00°,, and
25.00° 0. Bulk isotopic values for total nitrogen ranging between 1.8%/,, and
3.2°,, have been reported in the literature for sewage effluent, sewage sludge,
and sewage-derived organic matter (see Table 3.1). Bulk isotope values for
organic carbon in these same samples were found to range between -28.5° o,
and -23.0%.

Isotopically heavy organic carbon and nitrogen occur in sediments from
the uppermost interval of core MBH 54/2 (0.5m to 0.7m), where 613C<,rg ranges
between -23.86% o, to -22.60%,, and 3'°N is 6.19%¢, (Fig. 3.6). Higher influxes of
raw sewage and nutrients can result in intense algal blooms, which ultimately
would lead to eutrophication in Kowloon Bay. Under conditions of eutrophication,
severe denitrification processes can occur, leading to the isotopic enrichment of
®N (Teranes and Bernasconi, 2000; Bratton et al., 2003). The increased
productivity can also result in organic matter becoming enriched in '*C. As
phytoplankton preferentially consume "C from dissolved inorganic carbon, the
residual inorganic carbon will become isotopically heavier. Utilization of *C
enriched inorganic carbon by phytoplankton will result in the production of

isotopically heavier organic matter (Meyers, 2003).
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The interval between 0.7m and 1.6m represents a period most affected by
raw sewage waste. The estimated calendar years for this interval fall between
1954 and 1977, a period of rapid population growth and increased dumping of
raw sewage (seawall-type sewage outfall). Bulk properties (i.e., 3"*Corg, 3'°N,
and C/N ratio) of sediments in this interval are consistent with values reported in
the literature for sewage contaminated sites, where sediments from MBH 54/2
have 5'°C.rq compositions between -28.59%,, and -26.30%,; 8'°N values range
between 2.14°/,, and 3.44°,,; and C/N ratio range between 13.7 and 14.7,
except at 1.4m where the C/N ratio is 18.9.

The C/N ratio between 1.8m and 2.3m ranges between 8.4 and 9.8,
suggesting that the sediments received greater contributions from algal-derived
organic matter rather than terrigenous-derived organic matter during this time
period. Bulk carbon isotope compositions, however, indicate values typical for C3
plants (-27.99°%, to -26.92° ). The carbon isotopic values in this interval were
expected to be heavier, with values more characteristic of aquatic-derived
organic matter (i.e., around -25°,, to -20°4,) since the C/N ratios indicated
greater contributions from algal-derived organic matter. 5'°N values ranged
between 4.27°% 4, and 4.49%,, except at 2.0m where 8'°N was 3.05%,. The
relatively light 3'°Corq and 3'°N values may reflect the occurrence of excess
bacterial biomass bound to the sediment (Bratton et al., 2003).

The C/N ratio shifts between 10.5 and 15.7 at depths between 2.5m and
3.6m. Changes in the organic carbon content appear to be responsible for the

variations observed in the C/N ratio. The nitrogen content is consistently around

57



0.06% between 2.5m and 3.6m. Spikes in C/N ratios are observed at 2.6m and
3.3m possibly reflecting a higher influx of terrigenous plant material transported
into Kowloon Bay by strong storms. 613Corg compositions at these intervals are
-26.01°/0 and -24.73° o, respectively, which are normal values for C3
terrigenous plants. At other measured intervals within this unit 5'°Corq values
ranged between -27.50%,, and -27.23%,. 8'°N values were relatively consistent
between 4.33%, and 4.60%,,, except at 2.8m, where 3'°N was 3.61%4,. This may
suggest that, for the most part, there was not much variability in organic matter
source input within this interval.

At 3.7m, there is a large spike in the C/N ratio (i.e., C/N=17.2) and the bulk
carbon isotope composition is enriched in *C (-21.87%,,). While a 5'*Corq value
of -21.87°/,, falls within the range typical for marine-derived organic matter, the
sediments in this part of the core appears to be part of the desiccated crust
observed throughout most of Hong Kong Harbour. The desiccated crust
represents a period when marine sediments were subaerially exposed during a
low sea-level stand and mark the boundary between Holocene marine sediments
(i.e., the M1 layer) and pre-Holocene marine sediments (i.e., the M2 layer),
described by Yim (1994). The heavier 5'°C,q value observed at this interval may
reflect contributions of C4 terrigenous plants (e.g., C4 seagrasses) to the marine
sediments. The 5'°C,q values become progressively lighter from 3.7m towards
the base of the core, where 8"°Coyq is -26.27%, at 3.9m, and ranges from -
33.17° 0 t0 -30.18%,, between 4.0m and 4.1m. Isotopic values of organic carbon

between 4.0m and 4.1m suggests predominant contributions of organic matter

58



from terrigenous plants. 5'°N values at 3.7m and 3.9m do not deviate much from
5'°N values measured in sediments deposited above these intervals, and range
between 4.26%, and 4.51%,. At 4.0m, a sharp drop in 8"°N (2.53%) is
observed which may be reflective of terrigenous plants utilizing atmospheric
nitrogen as their nitrogen source.

Crossplots of C/N (atomic mass ratio) to 613C<,rg of plant and algal material,
from lake and marine environments, have been utilized for distinguishing sources
of sedimentary organic matter (Fig. 3.7; Meyers, 1994). The C/N atomic mass
ratio is calculated by multiplying the C/N weight % ratio by 1.167 (Meyers and
Teranes, 2001). The C/N (atomic mass ratios) and 613C<,rg measurements from
sediments in the Victoria Harbour core sample (MBH 54/2; Fig. 3.8) do not fall
within the regions defined in Fig. 3.7. The majority of the samples have C/N
(atomic mass ratios) less than 20, and have 613Corg values that fall within the
range for C3 terrigenous plants (Figs. 3.8 and 3.9). Sediments from the interval
between 1.8m and 2.3m have C/N (atomic mass ratios) that fall within the range
for algal-derived organic matter. The 613Corg values within this interval, however,
are much lighter than expected (-27.99%, to -26.92%,,).

Uncontaminated sediments with isotopic compositions suggesting
contributions from C3 terrigenous plants (i.e., 3'°Corq values ranging between
-27.50% 4 and -24.74°/,,) fall into two identifiable groups (Fig. 3.8). One group
has C/N ratios ranging between 12.2 and 14.2, and the second group ranges
between 17.1 and 18.3. Sewage contaminated sediments in the uppermost part

of the core (0.5m to 0.7m) may have been affected by denitrification processes,
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resulting in the enrichment of 3c (i.e., 613Corg values in this region range
between -23.86°/,, and -22.60°/4,). In general, 613C<,rg values of sewage
contaminated sediments range from -28.59°%,, to -26.30%,,, with C/N values
between 16.0 and 17.2, except at 1.4m where there appears to have been a flux
in organic matter input.

A plot of Corg versus atomic C/N mass ratio (Fig. 3.10) illustrates two
envelopes separating those sediments affected or unaffected by sewage waste.
Sediments in the upper 1.6m of the core are known to have been contaminated
by sewage waste and contain the highest organic carbon content. Sediments

contaminated
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Fig. 3.7. Crossplot of atomic C/N mass ratio to 8'>C of terrigenous plant and
algal material, for differentiating sources of organic matter (from Meyers, 1994).
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Fig. 3.8. Crossplot of C/N ratio to 8'°Corq of sediments from core MBH 54/2.
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Fig. 3.9. Overlay of the atomic C/N mass ratio vs 613Corg of sediments from core
MBH 54/2, and the Meyers (1994) plot for differentiating sources of organic

matter.
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Fig. 3.10. Discrimination of sewage contaminated sediments from
uncontaminated sediments using the plot of %Cqg versus C/N ratio.

with sewage waste can not be differentiated from uncontaminated sediments
using the plot of 3'°N versus 8'°Cyq (Fig. 3.11). The envelopes drawn in Fig.
3.11 are based on prior knowledge of sediments contaminated with sewage. The
sewage affected sediments have 5'°N values ranging between 2.14%, and
3.44%,,, and 8'°Corq values ranging between -28.59%,, and -26.30%q,. In the
uppermost part of the core, the sewage contaminated sediment may have also
been affected by denitrification processes, resulting in the enrichment of "°N and

130.
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Fig. 3.11. Crossplot of 3'"°N versus 5'°C,y of contaminated and uncontaminated
sediments from Kowloon Bay (core MBH 54/2).

3.4 Summary Remarks

Elemental analyses and bulk stable isotope measurements of organic
carbon and nitrogen in sediments from core MBH 54/2, Kowloon Bay, provide
clues for delineating sources of organic matter and provide a means for
speculating on processes and events that have occurred in this region.
Sediments in the upper 1.6m of the core are known to have been deposited
during periods of rapid population growth and excessive disposal of raw sewage.
The highest flux in organic carbon and nitrogen occur within this interval and
5"°Corg and 5'°N values (i.e., -28.59% o, t0 -26.30%0 and 2.14%, to 3.44%,,

respectively) are consistent with bulk isotopic compositions reported in the
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literature for sewage contaminated sites. The uppermost part of the core (0.5m to
0.7m) is more enriched in "*C and "°N, where 5"C, ranged between -23.86%,
to -22.60%,0, and 8'°N was 6.19%,,. It is speculated that this may be an indication
that the organic matter was affected by denitrification processes as a result of
eutrophication in Kowloon Bay. Enrichment of "*C and "N in organic matter has
been observed under conditions of eutrophication where increasing anoxicity
results in intense denitrification processes.

Below the sewage contaminated sediments (1.8m to 2.3m), there is a shift
in the C/N (weight % ratio) where organic carbon decreases relative to nitrogen.
This may be an indication that the organic matter source has experienced a shift
towards more aquatic-derived organic matter that would have a higher nitrogen
content relative to Cog. Sediments deposited between 2.6m and 3.5m appear to
be dominated by C3 terrigenous plant material with periodic shifts towards
aquatic-derived organic matter (e.g., at 3.1m and 3.5m). C/N ratios and 613Corg
values within this interval range between 10.5 and 15.7, and -27.50%,, and -
24.74%,,, respectively. The 8'°Coq value is enriched in "°C at 3.7m (-21.87%,),
which is located around the desiccated crust indicating the M1-M2 boundary. The
heavier 613Corg value may represent contributions from C4 plants during the early
Holocene/late Pleistocene, when sea level was approximately 130km south of
Hong Kong. The isotopic signature at this depth may serve as a secondary
parameter for identifying the boundary between Holocene marine sediments and
pre-Holocene marine sediments (i.e., the M1-M2 layer). Sediments at the base of

the core (4.0m to 4.1m) are the most depleted in "*C, where 5'°C,q ranges
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between -33.17%o t0 -30.18%0. 8'°N was only measurable at 4.0m with a value
of 2.53%,. Isotopic compositions of the sedimentary organic matter at these
intervals suggest origins from C3 terrigenous plant material where atmospheric

nitrogen is utilized via nitrogen fixation.

3.5 References

Altabet, M. A., 1988. Variations in nitrogen isotopic composition between sinking
and suspended particles — implications for nitrogen cycling and particle
transformation in the open ocean. Deep-Sea Research Part A-Oceanographic
Research Papers, 35, 535-554.

Altabet, M., McCarthy, J., 1985. Temporal and spatial variation in the natural
abundance of "N in PON from a warm core ring. Deep Sea Research, 32, 755-
772.

Andrews, J. E., Greenaway, A. M., Dennis, P. F., 1998. Combined carbon
isotope and C/N ratios as indicatorso f source and fate of organic matter in a
poorly flushed, tropical estuary: Hunts Bay, Kingston Harbour, Jamaica.
Estuarine, Coastal and Shelf Science, 46, 743-756.

Bickert, T., 2000. Influence of geochemical processes on stable isotope
distribution in marine sediments. In: Schulz, H. D., Zabel, M. (eds), Marine
Geochemistry. Springer-Verlag, Berlin, 309-333.

Bratton, J. F., Colman, S. M., Seal Ill, R. R., 2003. Eutrophication and carbon
source in Chesapeake Bay over the last 2700 yr: human impacts in context.
Geochimica et Cosmochimica Acta, 67, 3385-3402.

Burnett, W. C., Schaeffer, O. A., 1980. Effect of Ocean Dumping on "*C/'?C
Ratios in Marine Sediments from the New York Bight. Estuarine and Coastal
Marine Science, 11, 605-611.

van Dover, C. L., Grassle, J. F., Fry, B., Garritt, R. H., Starczak, V. R., 1992.

Stable isotope evidence for entry of sewage-derived organic material into a deep-
sea foodweb. Nature, 360, 153-156.

65



Fogel, M. L., Cifuentes, L. A., 1993. Isotope fractionation during primary
production. In: Engel, M. H., Macko, S. A. (eds), Organic Geochemistry:
Principles and Applications, Plenum Press, New York, 73-98.

Gearing, P. J., Gearing, J. N., Maughan, J. T., Ovlatt, C. A., 1991. Isotopic
distribution of carbon from sewage sludge and eutrophication in the sediments
and food web of estuarine ecosystems. Environmental Science and Technology,
25, 295-301.

Hedges, J., Clark, W., Quay, P., Richey, J., Devol, A., Santos, U. D. M., 1986.
Compositions and fluxes of particulate organic material in the Amazon River.
Limnology and Oceanography, 31, 717-738.

Hoefs, J., 1997. Stable Isotope Geochemistry. Springer, Berlin, 4™ ed., 401p.

Huang, G., Yim, W. W. -S.,1997. Storm sedimentation in the Pearl River Estuary,
China. International Conference on the Evolution of the East Asian Environment.
Centre of Asian Studies: Occasional Papers and Monographs, 124, 156-177.

Huang, Y., Street-Perrott, F. A., Perrott, R. A., Metzger, P., Eglinton, G., 1999.
Glacial-interglacial environmental changes inferred from molecular and
compound-specific 3'°C analyses of sediments from Sacred Lake, Mt. Kenya.
Geochimica et Cosmochimica Acta, 63, 1383-1404.

Hunt, C. D., Ginsburg, L., West, D., Redford, D., 1992. The fate of sewage
sludge dumped at the 106-mile site — preliminary results from sediment trap
studies. EOS Transactions American Geophysical Union, 73, 165.

Lee, S. Y., 2000. Carbon dynamics of Deep Bay, eastern Pearl River estuary,
China. II: Trophic relationships based on carbon- and nitrogen- stable isotopes.
Marine Ecology Progress Series, 205, 1-10.

Meyers, P. A., 1994. Preservation of elemental and isotopic source identification
of sedimentary organic matter. Chemical Geology, 114, 289-302.

Meyers, P. A., 2003. Applications of organic geochemistry to paleolimnological
reconstructions: a summary of examples from the Laurentian Great Lakes.
Organic Geochemistry, 34, 261-289.

Meyers, P. A., Ishiwatari, R., 1993. The early diagenesis of organic matter in
lacustrine sediments. In: Engel, M. H., Macko, S. A. (eds), Organic Geochemistry:
Principles and Applications. Plenum, New York, 185-209.

Meyers, P. A., Lallier-Vergeés, E., 1999. Lacustrine sedimentary organic matter

records of Late Quaternary paleoclimates. Journal of Paleolimnology, 21, 345-
372.

66



Meyers, P. A., Teranes, J. L., 2001. Sediment organic matter. In: Last, W. M.,
Smol, J. P. (eds), Tracking Environmental Change Using Lake Sediments. Vol. 2:
Physical and Geochemical Methods. Kluwer Academic Publishers, Dordrecht,
The Netherlands, 239-269.

Minagawa, M., Wada, E., 1986. Nitrogen isotope ratios of red tide organisms in
the East China Sea: a characterization of biological nitrogen fixation. Marine
Chemistry, 19, 245-259.

Mishima, Y., Hoshika, A., Tanimoto, T., 1999. Deposition rates of terrestrial and
marine organic carbon in the Osaka Bay, Seto Inland Sea, Japan, determined
using carbon and nitrogen stable isotope ratios in the sediment. Journal of
Oceanography, 55, 1-11.

Montoya, J. P., 1994. Nitrogen isotope fractionation in the modern ocean:
Implications for the sedimentary record. In: Zahn, R., Pedersen, T. F., Kaminski,
M. A., Labeyrie, L. (eds), Carbon Cycling in the Glacial Ocean: Constraints on
theOceans Role in Global Change. Nato ASI Series, 117, 259-279.

Moore, P. D., 2004. Isotopic biogeography. Progress in Physical Geography, 28,
145-151.

Muzuka, A. N. N., Macko, S. A., Pedersen, T. F., 1991. Stable carbon and
nitrogen isotope compositions of organic matter from sites 724 and 725, Oman
Margin. Proceedings of the Ocean Drilling Program, Scientific Results, 117, 571-
586.

Owen, R. B., 2005. Modern fine-grained sedimentation — spatial variability and
environmental controls on an inner pericontinental shelf, Hong Kong, Marine
Geology, 214, 1-26.

Owen, R. B, Lee, R. 2004. Human impacts on organic matter sedimentation in a
proximal shelf setting, Hong Kong. Continental Shelf Research, 24, 583-602.

Peters, K. E., Sweeney, R. E., Kaplan, I. R., 1978.Correlation of carbon and
nitrogen stable isotope ratios in sedimentary organic matter. Limnology and
Oceanography, 23, 598-604.

Rogers, K. M., 2003. Stable carbon and nitrogen isotope signatures indicate
recovery of marine biota from sewage pollution at Moa Point, New Zealand.
Marine Pollution Bulletin, 46, 821-827.

Sampei, Y., Matsumoto, E., 2001. C/N ratios in a sediment core from Nakaumi

Lagoon, southwest Japan — usefulness as an organic source indicator.
Geochemical Journal, 35, 189-205.

67



Saino, T., Hattori, A., 1987. Geographical variation of the water column
distribution of suspended particulate organic nitrogen and its N-15 natural
abundance in the Pacific and its marginal seas. Deep-Sea Research Part A-
Oceanographic Research Papers, 34, 807-827.

Sarazin, G., Michard, G., Al Gharib, 1., Bernet, M., 1992. Sedimentation rate and
early diagenesis of particulate organic nitrogen and carbon in Aydat lake (Puy de
Dome, France). Chemical Geology, 98, 307-316.

Sayles, F. L., Curry, W. B., 1988. 8"°C, TCO,, and the metabolism of organic-
carbon in deep-sea sediments. Geochimica et Cosmochimica Acta, 52, 2963-
2978.

Sifeddine, A., Wirrmann, D., Albuquerque, A. L. S., Turq, B., Cordeiro, R. C.,
Gurgel, M. H. C., Abrao, J. J., 2004. Bulk composition of sedimentary organic
matter used in palaeoenvironmental reconstructions: examples from the tropical
belt of South America and Africa. Palaeogeography, Palaeoclimatology,
Palaeoecology, 214, 41-53.

Sigleo, A. C., Macko, S. A., 2002. Carbon and nitrogen isotopes in suspended
particles and colloids, Chesapeake and San Francisco Esutaries, USA. Estuarine,
Coastal and Shelf Science, 54, 701-711.

Spies, R. B., Kruger, H., Ireland, R., Rice Jr., D. W., 1989. Stable isotope ratios
and contaminant concentrations in a sewage-distorted food web. Marine Ecology
Progress Series, 54, 157-170.

Sweeney, R. E., Kalil, E. K., Kaplan, I. R., 1980. Characterisation of domestic
and industrial sewage in southern California Coastal Sediments using nitrogen,
carbon, sulphur, and uranium tracers. Marine Environmental Research, 3, 225-
243.

Sweeney, R. E., Liu, K. K., Kaplan, | R., 1978. Oceanic nitrogen isotopes and
their uses in determining the source of sedimentary nitrogen. In: Robinson, B. W.
(ed), Stable Isotopes in the Earth Sciences. New Zealand Department of
Scientific and Industrial Research, DSIR Bulletin, 220, 9-26.

Talbot, M. R., 2001. Nitrogen isotopes in palaeolimnology. In: Last, W. M., Smol,
J. P. (eds), Tracking Environmental Change Using Lake Sediments. Vol. 2:
Physical and Geochemical Methods. Kluwer Academic Publishers, Dordrecht,
The Netherlands, 401-439.

Talbot, M. R., Johannessen, T., 1992. A high resolution palaeoclimate record for
the past 27,500 years in tropical west Africa from the carbon and nitrogen

68



isotopic composition of lacustrine organic matter. Earth and Planetary Science
Letters, 110, 23-37.

Tanner, P. A., Leong, L. S., Pan, S. M., 2000. Contamination of heavy metals in
marine sediment cores from Victoria Harbour, Hong Kong. Marine Pollution
Bulletin, 40, 769-779.

Teranes, S. L., Bernasconi, S. M., 2000. The record of nitrate utilization and
productivity limitation provided by 8'°N values in lake organic matter — a study of
sediment trap and core sediments from Baldeggersee, Switzerland. Limnology
and Oceanography, 45, 801-813.

Thornton, S. F., McManus, J., 1994. Applications of organic carbon and nitrogen
stable isotope and C/N ratios as source indicators of organic matter provenance
in estuarine systems: evidence from the Tay Estuary, Scotland. Estuarine,
Coastal and Shelf Science, 38, 219-233.

Waldron, S., Tatner, P., Jack, I., Arnott, C., 2001. The impact of sewage
discharge in a marine embayment: a stable isotope reconnaissance. Estuarine,
Coastal and Shelf Science, 52, 111-115.

Whelan, J. K., Farrington, J. W., 1992. Organic matter: productivity, accumulation,
and preservation in recent and ancient sediments. Columbia University Press,
New York, 533p.

Wu, Y., Zhang, J., Li, D. J., Wei, H., Lu, R. X., 2003. Isotope variability of
particulate organic matter at the PN section in the East China Sea.
Bigeochemistry, 65, 31-49.

Yim, W. W. -S., 1993. Future sea level rise in Hong Kong and possible
environmental effects. In: Warrick, R. A., Barrow, E. M., Wigley, T. M. L. (eds),
Climate and Sea Level Change: Observations, Projections and Implications, 349-
376.

Yim, W. W. -S., 1994. Offshore Quaternary sediments and their engineering
significance in Hong Kong. Engineering Geology, 37, 31-50.

69



CHAPTER 4
Sources and Distribution of Extractable Organic Matter in

Kowloon Bay Sediments, Hong Kong SAR, China

4.1 Introduction

Lipids are important constituents of sedimentary organic matter and can
be used to delineate the sources of organic matter and transformation processes
in Recent sediments. While lipids make up a minor fraction of the organic matter
in Recent sediments (i.e., proteins and carbohydrates are more abundant), they
demonstrate a greater degree of resilience to environmental alteration (Killops
and Killops, 1993; Wakeham et al., 1997; Smallwood and Wolff, 2000; Gogou
and Stephanou, 2004; Muri et al., 2004). In general, lipids are defined as the
fraction of organic matter extractable from biological material using organic
solvents such as dichloromethane, methanol, toluene, ether, or hexane (Meyers
and Ishiwatari, 1993; Rullkétter, 2000). It should be noted that a significant
portion of lipids in sedimentary organic matter occur in bound form (discussed in
Chapter 5) and require harsher treatments (e.g., alkaline and acid hydrolysis) in
order to release ester- and amide-bound lipids (Goosens et al., 1986, 1989a,b;
Cranwell, 1990; Fukushima et al., 1992a,b; Wakeham, 1999; Killops and Killops,
2005). Lipids extractable from marine sediments are comprised of sterols, fatty
alcohols, fatty acids, and hydrocarbons. Each of these lipid groups provides
diagnostic information that can be used to reconstruct the origin of sedimentary

organic matter and transformation processes.
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4.2 Review of Literature
4.2.1 Sterols in Marine Sediments

Sterols are well preserved in the environment and have unique structures,
making them favorable compounds as biological markers. The basic structure
and numbering scheme for sterols, using cholesterol as an example, is shown in

Fig. 4.1.

Fig. 4.1. Cholesterol structure illustrating an example of the numbering scheme
for sterols.

Sterols and compounds derived from sterols (e.g., stanols, stenones, stanones,
sterenes, and steranes; Fig. 4.2) have been used as proxies to determine the
proportions of algal and terrigenously derived organic matter in marine sediments,

study transformation processes, and to trace the origin of fecal material in the
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W A’-sterol
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5a(H)-stan-3-ol

5B(H)-stan-33-ol

5B(H)-stan-3-one

5B(H)-stan-3a-ol

Fig. 4.2. Sterol transformation pathways (from Mackenzie et al., 1982).
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environment (Gagosian et al., 1980; Mackenzie et al., 1982; Readman et al.,
1986; Volkman, 1986; Mudge et al., 1999; Meyers, 2003).

Sterols from algal and zooplankton derived organic matter are typically
dominated by cholesterol (Volkman, 1986; Santos et al., 1994; Burns et al., 2003;
Meyers, 2003). The key sterols in vascular terrigenous plants are the Cyg sterols,
B-sitosterol and stigmasterol (Huang and Meinschein, 1979; Volkman, 1986;
Saliot et al., 1991; Mudge and Norris, 1997). Relative contributions of aquatic
versus terrigenous plant material in Recent sediments have been estimated
using the Cy7 to Cyg sterol ratio (Huang and Meinschein, 1979; Meyers, 2003).
This ratio should be used with caution, since Cyg sterols have been observed to
occur in certain marine organisms (Volkman, 1986; Santos et al., 1994; Gogou
and Stephanou, 2004). Other unique sterols include brassicasterol, a common
marker for diatoms and prymnesiophytes; and dinosterol, an indicator for
dinoflagellates (Gagosian et al., 1980; Volkman, 1986; Santos et al., 1994;
Smallwood and Wolff, 2000).

Sewage contamination in the environment has been monitored and traced
using sterols. Human sewage waste can be monitored in the environment using
the fecal sterol, coprostanol (5p8-cholestan-33-ol; Fig. 4.3a). Coprostanol is a
unique marker formed by the bacterial reduction of cholesterol (cholest-5-en-33-
ol) in the human digestive tract, and released into the environment in human
feces (Fig. 4.3b; Readman et al., 1986; Nichols and Leeming, 1991; Mudge et al.,

1999). The process for transforming cholesterol to coprostanol is illustrated in
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Fig. 4.3. Fecal sterol profiles from (a) sewage waste and (b) human feces
(figures provided via personal communications with Dr. Rhys Leeming, CSIRO).
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Fig. 4.4. During sewage treatment, coprostanol is transformed to its isomer
epicoprostanol (5B-cholestan-3a-ol). To date, epicoprostanol is only known to be
present in treated sewage sludge (McCalley et al., 1981; Mudge et al., 1999; and
personal communication with Rhys Leeming, 2003). Leeming et al. (1994, 1996
and 1997) and Sinton et al. (1998) have demonstrated that fecal sterols can be
used to distinguish human and animal feces. Herbivores (e.g., sheep and cows)
consume substantial amounts of plants enriched with Cyg sterols (e.g., B-
sitosterol and stigmasterol). Fecal matter released into the environment by
herbivores are usually composed of considerable amounts of 24-ethylcoprostanol

and 24-ethyl-epicoprostanol (Leeming et al., 1997).

Cholest-5-en-33-ol
(cholesterol) HO

5B-Cholestan-3§3-ol
(coprostanol)

HO

5B-Cholestan-3-one

/ 4-Cholesten-3-one
(coprostanone)

(cholestenone) 0O

Fig. 4.4. Biohydrogenation of cholesterol to coprostanol in the human digestive
tract (based on Bjorkhem and Gustafsson, 1971).
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4.2.2 Fatty Alcohols in Marine Sediments

Fatty alcohols have been observed in marine sediments but have not
been utilized to the same extent as fatty acids and aliphatic hydrocarbons
(Mudge and Norris, 1997; Meyers, 2003). Organic matter derived from
terrigenous or marine sources have been differentiated using fatty alcohols
(Mudge and Norris, 1997; Mudge and Seguel, 1999; Meyer, 2003). In terrigenous
plants, fatty alcohols (C2 to C3p) occur as wax esters in epicuticular waxes with
an even-over-odd carbon preference (Grimalt and Albaigés, 1990; Mudge and
Norris, 1997; Mudge and Seguel, 1999; Meyers, 2003). Leaf waxes are generally
dominated by C,4, Cy, and Cys alcohols (Mudge and Norris, 1997; Fernandes et
al., 1999). Their primary function in terrigenous plant leaves is to retain water
(Eglinton and Hamilton, 1967; Mudge and Norris, 1997; Mudge and Seguel,
1999).

Short chain fatty alcohols (<Cy) are associated with organic matter
derived from aquatic algae and/or bacterial sources. It has been suggested that
wax esters are synthesized by marine animals to serve as energy reserves
during periods of food shortages (Lee and Hirota, 1976; Mudge and Norris, 1997).
Fatty alcohols in marine wax esters are normally dominated by saturated
alcohols (i.e., Cis.0and Cy6.0) or monounsaturated alcohols (e.g., C1:1, C1s:1, C20:1,
and Cy.1) (Sargent et al., 1977, 1981; Rajendran et al., 1991; Mudge and Norris,

1997).
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4.2.3 Fatty Acids in Marine Sediments

Fatty acids are ubiquitous in the environment and are common
constituents in bacteria, microalgae, terrigenous plants, and marine plants
(Volkman et al., 1998; Mudge and Seguel, 1999; Meyers, 2003). They serve
important roles in energy storage and are involved in the structure of cellular
membranes (Ratledge and Wilkinson, 1988; Budge and Parrish, 1998). Two
common applications of fatty acids include determination of the sources of
organic matter and studying transformation processes (Budge and Parrish, 1998;
Wakeham, 1999). Terrigenously derived fatty acids consist of long-chain
monocarboxylic acids (>Cxzo.0; with an even-over-odd carbon preference), and are
associated with epicuticular waxes of higher plants. Both n-alkanoic and n-
alkenoic acids <Cy (with an even-over-odd preference) have been used as
indicators for planktonic and bacterial input (Grimalt and Albaigés, 1990; Saliot et
al., 1991; Budge and Parrish, 1998; Volkman et al., 1998; Meyers, 2003).

The diverse range of fatty acid structures allow certain fatty acids to be
used as markers for specific organisms (Budge and Parrish, 1998). Branched
fatty acids, in particular iso- (i-) and anteiso- (ai-) C15.0 and C47.0, along with their
corresponding unsaturated branched fatty acids are considered to be unique
constituents of bacteria. Their occurrence in Recent sediments have been used
as indications of bacterial activity (Cranwell, 1973; Saliot et al., 1991; Budge and
Parrish, 1998; Grimalt and Albaigés, 1990). Markers for planktonic input consist
of mixtures of C14.0, C16:0, C16:107, C18:109, C18:0, C20:503, and Coa:64,3 fatty acids

(Saliot et al., 1991). Budge and Parrish (1998) have utilized the Cy2:6,,3/C20:5w3

7



ratio to distinguish between dinoflagellates and diatoms, where C22:6w3/C20:503 > 1
suggests the predominance of dinoflagellates and C22:6w3/C20:503 << 1 is

indicative of diatoms. Additional indicators of diatoms include the occurrence of
C16:4w1 (Which is common in diatoms, but rare in other phytoplankton); an
abundance of C4¢:1 relative to Cis.0 (€.9., C16:1/C16:0> 1.6); and an abundance of
C16 fatty acids relative to Cyg fatty acids (i.e., ZC1g(saturated + unsaturated)/ 2 C18(saturated +
unsaturated)) (Saliot et al., 1991; Mudge and Seguel, 1997; Budge and Parrish, 1998;

Mudge and Seguel, 1999).

4.2.4 Hydrocarbons in Recent Sediments

Aliphatic hydrocarbons in Recent sediments are more resistant to
microbial degradation than other types of organic matter and can be used to
delineate source information. In studies, primarily around lakes, aliphatic
hydrocarbons have been used to distinguish between sources of organic matter
commonly found within lakes (e.g., algae, bacteria, and vascular plants) and
vascular plants surrounding the lakes (Meyers, 2003). Marine phytoplankton and
bacteria have hydrocarbons that maximize around C47 (Cranwell et al., 1987;
Mudge and Seguel, 1999; Meyers, 2003). Vascular plants, on the other hand, are
dominated by longer chain n-alkanes with an odd-over-even predominance
pattern (Cranwell, 1978; Santos et al., 1994). The type of vascular plant can be
differentiated based on alkane distributions. Submerged and floating

macrophytes in lakes have n-alkanes that maximize around C;4, Cy3, or Cys
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(Cranwell, 1984; Ficken et al., 2000; Meyers, 2003). Terrestrially derived
vascular plants are dominated by C,7, Cy9, and C31 n-alkanes, where n-C,7 and

n-Cyg are indicators for trees and n-C34 is dominant in grasses (Meyers, 2003).

4.3 Results and Discussion

Free lipids were extracted from sediment samples taken from core MBH
54/2, from Kowloon Bay, in Victoria Harbour, Hong Kong. Procedures used to
recover non-saponifiable and saponifiable fractions are discussed in Chapter 2.
Samples were derivatized to produce trimethylsilyl ethers (for sterols, stanols,
and alcohols) and methyl esters (for fatty acids), prior to analysis by gas
chromatography-mass spectrometry. Identification of lipid components was
based on mass spectra interpretation, comparison to published spectra, and
retention times. The extractable lipids provide information that can be used to
determine the sources of sedimentary organic matter and to infer environmental
conditions. Identified lipids are discussed in the following sections. Sterol
structures, spectra, chromatograms, and tables summarizing lipid ratios are
located in Appendix Il, Ill, and IV. Examples of fatty acid and alcohol structures

can be found in Chapter 5, Fig. 5.2.
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4.3.1 Sterols and Stanols

Sterols and stanols were detected in sediments from core MBH 54/2. This
area in Kowloon Bay has received significant amounts of raw sewage and is
thought to be highly anoxic. The downcore distribution of sterols and stanols is
illustrated in Fig. 4.5. Sediments from the uppermost part of the core (Fig. 4.5a)
were deposited after the sewage outfall in Hong Kong was converted to a
submarine-type outfall and diverted further into the channel of Victoria Harbour.
No significant amount of fecal sterols were identified at 0.5m, possibly suggesting
that there were improvements in reducing sewage contamination in this part of
the harbour. Cholesterol, cholestanol, brassicasterol, B-sitosterol, and
stigmastanol were also identified at 0.5m.

Sediments deposited during a period of rapid population growth can be
recognized by the chromatograms shown in Figs. 4.5 b and c. At the time
sediments were deposited at 1.1m and 1.6m, raw sewage was discharged into
the harbour via a seawall-type sewage outfall. Significant amounts of fecal
sterols were observed in the extractable lipid fraction. Fecal material derived from
human sewage waste is indicated by the occurrence of coprostanol. The isomer
of coprostanol, epicoprostanol, is commonly used as a ratio with coprostanol as
an indicator for the degree of sewage treatment (i.e. a higher epicoprostanol to
coprostanol ratio would indicate that the majority of sewage is treated before
being released into the environment) (McCalley et al., 1981; Mudge and Seguel,

1999).
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Fig. 4.5. Distribution of sterols and stanols in sediment samples from core MBH
54/2. (1) coprostanol; (2) epicoprostanol; (3) cholesterol; (4) cholestanol; (5)
brassicasterol; (6) 24-ethylcoprostanol; (7) 24-ethylepicoprostanol; (8)
campesterol; (9) ergostanol (campestanol); (10) B-sitosterol; (11) stigmastanol
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The occurrence of epicoprostanol throughout the core is peculiar since there
were no sewage treatment plants in Hong Kong during these periods. Bacterial
populations in the human digestive tract preferentially mediate cholesterol to
coprostanol, but not to epicoprostanol or cholestanol. The epicoprostanol in core
MBH 54/2 was most likely produced by the anaerobic bacterial community within
the sediments. Both coprostanol and epicoprostanol are more abundant than
cholesterol at 1.1m and 1.6m (Fig. 4.6a). Similar to the human fecal sterols, 24-
ethylcoprostanol and 24-ethylepicoprostanol (i.e., fecal markers for herbivores)
are more abundant than cholesterol at 1.1m and 1.6m.

Brassicasterol and campesterol were not detected at 1.1m or 1.6m (Figs.
4.5 b, c; and Fig. 4.6b). Brassicasterol is the major sterol in the algae
Prymnesiophycean and is commonly used as a biomarker for diatoms (Volkman,
1986). Campesterol is widespread in vascular plants (Mudge and Seguel, 1999),
but has also been observed in green algae and marine invertebrates (Goad and
Akihisa, 1997). Both brassicasterol and campesterol were only observed at 0.5m,
2.3m, and 3.4m (Figs. 4.5 b, d, and e). Depth intervals around 2.3m and 3.4m
represent periods when Victoria Harbour was not affected by sewage waste;
around 0.5m the sewage was diverted away from the study site. The diminished
sewage contamination appears to have improved conditions, allowing marine

organisms to bloom.
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Fig. 4.6. Stanol and sterol ratios in sediment samples from core MBH 54/2.
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Cholestanol and campestanol increase downcore (between 1.0m and
2.0m) relative to their corresponding sterols. The ratios of cholestanol/cholesterol
and campestanol/campesterol show similar patterns downcore (Fig. 4.7). These
stanols are likely derived from the hydrogenation of their corresponding sterols
(Gaskell and Eglinton, 1975; Nishumira and Koyama, 1977; Pinturier-Geiss et al.,
2002). Gaskell and Eglinton (1975) have observed, and demonstrated
experimentally with radiolabelled sterols, that sterols undergo rapid
hydrogenation in anoxic Recent sediments. Gagosian et al. (1980) noted that
while anaerobic conditions inhibit sterol degradation, sterol to stanol reduction is
accelerated. At depth intervals between 1.0m and 2.0m, the study site received
substantial amounts of raw sewage, which probably resulted in highly anoxic
conditions. Between 2.0m and 3.0m, Kowloon Bay was an open bay and did not
receive significant amounts of raw sewage. Conditions during this period may
have been less anoxic resulting in the decrease in stanol/sterol ratios observed in
Fig. 4.7. The slight increase in stanol/sterol ratio at 3.4m suggests a shift towards

slightly more anoxic conditions.
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Fig. 4.7. Hydrogenation of sterols to stanols in sediments deposited in Kowloon
Bay.

4.3.2 Fatty Acids

Free n-alkanoic acids were identified in both saponifiable and non-
saponifiable fractions. In the saponifiable fraction (Fig. 4.8), n-alkanoic acids
were distributed between C42.9 and Css.0, With a distinct even-over-odd
predominance pattern (average CPI=7.8). A slightly higher even preference is
observed at depths of 1.1m (CPI1=10.4) and 1.6m (CPI1=9.5). Throughout the core,
a bimodal distribution is observed, with short chain n-alkanoic acids
predominating over long chain n-alkanoic acids. The short chain n-alkanoic acids
maximize at n-C1s.0, and long chain n-alkanoic acids at n-Csp.p around 1.1m and

n-Cy.0 or n-Ca4.0 at all other depths. Short-chain n-alkanoic acids (<n-Cy.0) are
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Fig. 4.8. n-Alkanoic acids (as methyl esters) in the saponifiable fraction of
extractable lipids from two depth intervals in core MBH 54/2.

attributed to planktonic and bacterial input, whereas longer chain alkanoic acids
(>n-Cy0.0) originate from the cuticular waxes of terrigenous plant material (Grimalt
and Albaigés, 1990).

A plot of the aquatic-to-terrigenous ratio (i.e., short-chain to long-chain
alkanoic acids; e.g., 2(C12.0-C1s:0)/Z(C22:0-C2s.0)) downcore illustrates a higher
aquatic input from the surface down to 1.6m (2(C12:0-C1s:0)/Z(C22.0-C2s:0)> 1.5). At

depths below 2.3m, terrigenous plant material are more abundant than
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aquatically-derived organic matter (Fig. 4.9a; 2(C12:0-C15:0)/Z(C22:0-C2s:0) < 1).
Iso- and anteiso- alkanoic acids (C1s.0, C15.0, and C47.0) have been used as
indicators of bacterial activity. The most abundant branched acids are i- and ai-
C15.0, Where i-C45.0 dominates over ai-C1s.90 downcore (avg i-/ai- C1s. ratio =1.2).
Aside from indicating the presence of bacteria, the branched fatty acids identified

in the free lipid fraction provide limited information about the bacteria types.
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Fig. 4.9. Aquatic-to-Terrigenous ratio for free n-alkanoic acids in the (a)
saponifiable and (b) non-saponifiable fractions. Short-chain alkanoic acids are
typically more abundant than long-chain alkanoic acids, and are attributed to
planktonic and bacterial input. A greater abundance of short-chain acids is
observed at 1.1m and 1.6m.
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Alkenoic acids (C16:1 and C1s.1) were only observed in the upper 1.6m, and are
present in low abundance relative to their corresponding n-alkanoic acids. Two
peaks in the chromatograms were identified as Cg alkenoic acids with 1-degree
of unsaturation (the location of the double bond was not determined). The
C16:1/C16:0 and ZC+g:1/C1g.o ratios are lowest at 1.1m (0.006 and 0.018,
respectively), and highest at 1.6m (C16:1/C16:0=0.41) and 0.5m
(2C18:1/C18:0=0.065). The ratio of C45.1/C16.0 has been used to measure the
predominance of diatoms in sediments (Saliot et al. 1991; Santos et al., 1994;
Budge and Parrish, 1998; Mudge and Seguel, 1999; Azevedo, 2003; Burns et al.,
2003) whereas C1g.1 is commonly used as an indicator for zooplankton (Santos et
al., 1994; Azevedo, 2003; Burns et al., 2003). C+6:1 and C4s.1, however, have also
been observed in certain species of sulfate-reducing bacteria (Edlund et al., 1985;
Wilkinson, 1988), which may be the primary source of these acids in sediments
from Kowloon Bay.

Free n-alkanoic acids in the non-saponifiable fraction had carbon number
distributions between n-C14.¢ to n-Cy:¢ With an even carbon number preference
(Fig. 4.10). CPI typically ranged between 7.0 and 9.6, except at 1.6m, where a
more pronounced even preference is observed (CPI1=15.9). Short-chain alkanoic
acids (<n-Cyp.0) are present at significantly higher abundance than long-chain
alkanoic acids (>n-Cy.0), and typically show a high aquatic-to-terrigenous ratio
(Z(C14:0-C18:0)/Z(C20:0-C24:0) >3.5) downcore. Aquatic input is significantly higher
between 1.1m and 1.6m, where the average aquatic/terrigenous ratio is 7.3 (Fig.

4.9b).
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Fig. 4.10. n-Alkanoic acids (as trimethylsilyl ethers) in the non-saponifiable
fraction of extractable lipids from two depth intervals in core MBH 54/2.

Monounsaturated fatty acids (C+6.1 and C1s:1) in the non-saponifiable fraction are
more abundant than in the saponifiable fraction. Ratios of C44.1/C16:0 and
2C18:1/C1s:0 are significantly higher at a depth of 1.6m (0.07 and 0.3, respectively).
C16:1is not observed in the non-saponifiable fraction below 2.3m. i- and ai-C1s.9
and C47,0 are observed downcore with greater abundance of i- and ai-C4s,0. At all
depths, ai-C1s,0 is more abundant than i-C4s,, (where i-/ai- C15.0 range between

0.5-0.8), except 2.3m (where i-/ai- C15,0=1.1), possibly indicating the presence of
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the sulfate reducing bacteria D. gigas (Vainshtein et al., 1992). The ratio of i-/ai-
C+7.0 in the non-saponifiable fraction demonstrates a very similar pattern to that
observed in the saponifiable fraction. In both fractions, i-/ai- C47 ratio is about
1.1 at depths of 0.5m and 1.6m. At all other depths, the i-/ai- C47,¢ ratio ranges
between 0.7-0.9. i- and ai-C47,¢ are markers for sulfate reducing bacteria and

other anaerobic bacteria (Rajendran et al., 1992a and b).

4.3.3 Alcohols

Free n-alcohols (C14 to C3p) in the non-saponifiable fraction (Fig. 4.11)
have an even carbon-number preference downcore. Short-chain n-alcohols (C1s-
Cy) represent a minor source of alcohols and may originate from zooplankton or
other marine invertebrates (Grimalt and Albaigés, 1990). The long-chain n-
alcohols (C22-Cs2) are more abundant and suggest cuticle waxes of terrigenous
plant material (Grimalt and Albaigés, 1990; Santos et al., 1994; Mudge and
Norris, 1997; Mudge and Seguel, 1999) are more important sources of alcohols
in these sediments. The aquatic-to-terrigenous ratio (C1s/C2s <1) supports the
idea that terrestrial plants are the primary source of alcohols in Kowloon Bay. In
general, the aquatic-to-terrigenous ratio ranged between 0.4 and 0.6, except at
1.1m where alcohols were dominated by Cys, C3p, and Cs; (Fig. 4.12). The Cy-
Cae alcohols were only present as very small peaks, near the baseline of the
chromatogram, in sediments around 1.1m. At 1.6m, the alcohols may have been

degraded, although C+g, C4s, C2s, and Csp alcohols were still identifiable.
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Fig. 4.11. Fatty alcohols (as trimethylsilyl ethers) in the non-saponifiable fraction
of extractable lipids, from core MBH 54/2 (CPI1~8).
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Fig. 4.12. Aquatic-to-Terrigenous ratio for free fatty alcohols. Downcore
distribution indicates cuticle waxes of higher plants are the primary source for
alcohols.
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4.3.4 Hydrocarbons

A distinct odd-over-even preference is observed for n-alkanes (n-C4s to n-
Cs7) at all depths (Fig. 4.13). CPI values for n-alkanes ranged between 2.2 and
3.0, except at 1.1m and 1.6m where CPI| was about 1.2. The distinct odd
predominance suggests that the free n-alkanes were most likely derived from
biotic hydrocarbons rather than petroleum hydrocarbons. The aquatic-to-
terrigenous ratio for free n-alkanes (n-C19/n-C34) ranged between 0.1 to 0.2,
except at 1.1m and 1.6m where n-C19/n-C31 was about 0.6 (Fig. 4.14a). n-
Alkanes in sediments around 1.1m and 1.6m were partially degraded, as was
observed for n-alcohols at these depths. Cuticle waxes of higher plants appear to
be the primary contributors of n-alkanes and can be further subdivided into those
derived from terrigenous plants (maximum at n-Cy9 and n-Cs4) and macrophyte
plant material (n-C,3 and n-Cys) (Ficken et al., 2000; Filley et al., 2001; Silliman
and Schelske, 2003). Proxy ratios based on mid-chain (Caz3, C2s) to long chain
(C29, C31) n-alkanes have been used to distinguish between macrophyte and
terrigenous plant input (Ficken et al., 2000; Filley et al., 2001; Silliman and
Schelske, 2003). The downcore profile of this proxy shows a slight increase at
1.1m and 1.6m (0.8 and 1.0, respectively). All other depths appear to be
dominated by free n-alkanes derived from terrigenous plants based on the
(C23+C25)/(C29+Cs34) ratio between 0.3 to 0.6 (Fig. 4.14b). Fisher et al. (2003)
have used the mean carbon number (MC#) parameter (X([Ci]*Ci)/Z[Ci], where [C]]
is the amount of n-alkane with carbon number C;, and C; ranges between Cy7-C31)

to reflect slight changes in vegetation. Grasses are dominated by Cz4 n-alkanes,
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while trees tend to contribute leaves with significant amounts of C,7 and Cyg n-
alkanes (Cranwell, 1973; Fisher et al., 2003; Meyers, 2003). A plot of the MC#
downcore shows a shift from 29.4 to about 28.7 between 1.1m and 1.6m (Fig.
4.14c). The shift towards a MC# of 28.7 is due to a decrease in the C31 n-alkane
compared to C,7 and Cyg. Less grass and possibly more terrestrial plant leaves
were transported into Kowloon Bay between 1.1m and 1.6m. This may support
the idea of storms transporting higher plant material into this area, indicated by a

spike in the C/N ratio around 1.4m (discussed in Chapter 3).

4.4 Summary Remarks

Extractable lipids in core MBH 54/2, Kowloon Bay, are comprised of
sterols, fatty alcohols, fatty acids, and hydrocarbons. Each of these lipid groups
(i.e., the lipid composition and profile) provide information that allow the sources
of sedimentary organic matter to be determined, and to also infer conditions and
transformation processes that may have occurred. Stanols were more abundant
than their corresponding sterols suggesting that the sterols had been
hydrogenated to stanols under anaerobic conditions.

Significant amounts of fecal sterols (i.e., coprostanol, epicoprostanol, 24-
ethylcoprostanol, and 24-ethylepicoprostanol) were identified in the upper 2m of
the core, maximizing at 1.1m and 1.6m. These depth intervals correspond to

periods of rapid population growth in Hong Kong and also during a time when
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raw sewage was disposed directly over the sample site via seawall-type sewage
outfall. Of the fecal sterols extracted, coprostanol (a marker for human feces)
was most abundant. 24-Ethylcoprostanol, a lipid marker for herbivores (e.g.,
cows and sheep), was also very abundant in the sediment. The occurrence of
epicoprostanol in the sediments was unusual since it has only been observed in
treated sewage. Microbes in the human intestine are not known to be able to
hydrogenate cholesterol to epicoprostanol and no direct evidence of bacteria
mediating cholesterol to epicoprostanol has been documented in the literature.
Since sewage treatment plants were not operating in Hong Kong when
epicoprostanol was detected in the sediments, it is proposed that the microbes in
the anaerobic sediments were probably responsible for transforming cholesterol
to epicoprostanol.

n-Alkanoic acids were identified in both saponifiable and non-saponifiable
fractions of extractable lipids. A bimodal distribution of even carbon numbered n-
alkanoic acids (C12:0 to Cz4.0) were detected in the saponifiable lipid fraction. The
short chain components (<Cy.0) are attributed to bacterial and/or planktonic input,
and the long chain components (>Cao.0) are associated with cuticular waxes of
terrigenous plants. Iso- and anteiso-alkanoic acids (C13.0, C15:0, and C47.0) were
identified in the sediments and are used as general markers for bacteria. In the
non-saponifiable fraction, n-alkanoic acids ranged between C14.0 to Cys.0.
However, C1.0 and C4g.0 were dominant in each of the samples.

n-Alcohols ranged between C44 and Csp, with an even carbon preference.

The longer chain n-alcohols (Cy; to Csz) were more abundant throughout the core,
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suggesting that terrigenous plants are the primary source of alcohols in Kowloon
Bay. n-Alkanes ranged between Cg and Cs7, with distinct odd carbon preference.
The n-alkanes are derived from a biotic source where cuticular waxes of
terrigenous plants (e.g., terrestrial plant leaves and grasses) are the likely

contributors.
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CHAPTER S5
The Occurrence and Distribution of Microbial Markers in Ester- and

Amide-Bound Lipid Fractions from Kowloon Bay, Hong Kong SAR, China

5.1 Introduction

Ester- and amide-bound lipids in Recent sediments are well preserved in
sedimentary organic matter and provide a record of different sources of input in
the biogeochemical record. While various research groups have suggested that
bound lipids can provide more detailed information than freely extractable lipids
for characterizing sedimentary organic matter, bound lipids have not been widely
utilized (Wakeham, 1999; Stefanova and Disnar, 2000; Zegouagh et al., 2000;
Garcette-Lepecq et al., 2004). Recovery of bound lipids from Recent sediments
requires harsher treatments than conventional solvent extraction. Ester-bound
lipids are freed from solvent extracted sediments via alkaline hydrolysis followed
by solvent extraction. The amide-bound lipids are freed by acid hydrolysis and
subsequent solvent extraction (Goosens et al., 1986, 1989a,b; Cranwell, 1990;
Fukushima et al., 1992a,b; Wakeham 1999; Garcette-Lepecq et al., 2004). Unlike
free lipids, bound lipids are sterically protected and resilient to chemical and
diagenetic degradation (Kawamura and Ishiwatari, 1984; Kawamura et al., 1986;
Zegouagh et al., 2000). Preserved organic material in sediments can be utilized
to reconstruct the origin and diagenetic pathways from which the organic matter

was derived.
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A key interest in identifying the types of bacteria present in sediments from
core MBH 54/2 is that significant amounts of methane have been released from
sediments in Victoria Harbour during dredging activities. Since no methane was
detected in sediments from core MBH 54/2, markers identifying the bacterial
community may provide a better understanding of organic matter remineralization
and possible methane generation. The general sequence of organic matter
remineralization processes is summarized in Fig. 5.1, starting with aerobic
respiration. Once O, has been consumed, denitrification occurs followed by
manganese and iron respiration. Methane generation via methanogenesis will
occur after the sulfate oxygen has been consumed by sulfate reduction (Froelich

et al., 1979; Jargensen, 2000).

Pathways of organic matter remineralization:

Oxic respiration: CH,0+0,—>CO, +H,0

Denitrification: 5CH,O + 4NO; — 2N, + 4HCO; + CO, +3H,0
Mn(1V) reduction: CH,O +3CO, +H,0 + 2Mn0O, — 2Mn*" + 4HCO,
Fe(lll) reduction: CH,0 +7CO, + 4Fe(OH), — 4Fe* + 8HCO; + 3H,0

2CH,0 + S0 - H,S + 2HCO,
Sulfate reduction: 4H, + SO* +H" - HS +4H,0
CH,COO™ +S0?% +2H" —»2CO, +HS +2H,0

4H, +HCO; +H" —CH, +3H,0

Methanogenesis:
CH,COO™ +H" —»CH, +CO,

Methane Oxidation: CH, +SO, > HCO, +HS +H,0

Fig. 5.1. Generic reactions summarizing steps in the remineralization of organic
matter (from Jgrgensen, 2000).

103



Sulfate reducing and methanogenic bacteria often coexist in anoxic
marine sediments (Martens and Berner, 1974; Barnes and Goldberg, 1976)
where the sulfate reducing bacteria play two important roles. First, sulfate
reducing bacteria are important for removing sulfate from the system, allowing
methanogenesis to proceed (Martens and Berner, 1974; Barnes and Goldberg,
1976; Martens and Klump, 1984). Secondly, sulfate reducing bacteria (along with
other methanogens) can also reduce the flux of methane from marine sediments
by anaerobic methane oxidation (Barnes and Goldberg, 1976; Reeburgh, 1980;
Valentine and Reeburgh, 2000). This chapter discusses the occurrence and
distribution of ester- and amide-bound lipids recovered from sediments in core
MBH 54/2, from Kowloon Bay, in the Hong Kong Special Administrative Region
of China. Lipid groups in the ester- and amide-bound lipid fractions may provide
insights into the types of bacterial communities that were present and possible

roles they may have played in the remineralization of organic matter.

5.2 Literature Review
5.2.1 Ester- and Amide-Bound Lipids in Sedimentary Organic Matter

Bound lipids in sedimentary organic matter are typically dominated by
bacterial lipids. Compounds observed in ester- and amide-bound lipid fractions
include carboxylic acids, alcohols, p-hydroxy fatty acids, a-hydroxy fatty acids, w-
hydroxy fatty acids, (w-1)-hydroxy fatty acids, and a,w-dicarboxylic fatty acids

(Fig. 5.2; Kawamura and Ishiwatari, 1984; Goosens et al., 1989b; Fukushima et
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al., 1992a; Skerratt et al., 1992; Wakeham, 1999). Bacterial fatty acid profiles
have been described by Boon et al. (1977), Edlund et al. (1985), Dowling et al.
(1986), Ratledge and Wilkinson (1988), Vainshtein et al. (1992), and others.
However, limited information has been documented for bacterial fatty acid

profiles isolated from

/\/\/\/\/\/\/Y OH /\/\/\/\/\/Y\’( OH
(0] OH O
pentadecanoic acid 3-hydroxy pentadecanoic acid
(C1s:0 fatty acid) (C15 B-hydroxy acid)
OH HO OH
ANNANANNANN \/\/\/\/\/\/\/Y
(0]
Pentadecanol 15-hydroxy pentadecanoic acid
(C15 alcohol) (C15 w-hydroxy acid)
OH OH
W( OH )\/\/\/\/\/\/\’( OH
0] O
2-hydroxy pentadecanoic acid 14-hydroxy pentadecanoic acid
(C15 a-hydroxy acid) (C15 (w-1)-hydroxy acid)
o
M OH
HO
0]
1,15-dipentadecanoic acid
(a,w-C1s:0 dicarboxylic acid)

Fig. 5.2. Example of structures and nomenclature of lipids commonly observed in
bound lipids.
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sediments (Zelles et al., 1995). Other sources of bound lipids that have been
recognized include those derived from terrigenous plant material, algae, and
formed as intermediaries during oxidative transformations (Cardoso et al., 1977,
Albaigés et al., 1984; Cranwell, 1984; Kawamura and Ishiwatari, 1984;

Fukushima et al., 1992a,b; Wakeham, 1999; Garcette-Lepecq et al., 2004).

5.2.2 Carboxylic Acids

Carboxylic acids are ubiquitous in the environment and occur in free,
ester-, and amide-bound forms. In free form, the low molecular weight
monocarboxylic acids (<Cxo.0) are more susceptible to degradation and can
appear to be less abundant than the high molecular weight monocarboxylic acids
(>C20.0; Wlnsche et al., 1988). Carboxylic acids in the ester- or amide-bound
forms are more resilient to degradation, and when utilized with free carboxylic
acids can provide a better assessment of the original source material (Farrington
and Quinn, 1973; Cranwell, 1984; Goosens et al., 1989b; Garcette-Lepecq et al.,
2004). General source information can be obtained by the distribution and
abundance of monocarboxylic acids in the ester- and amide-bound forms. Low
molecular weight monocarboxylic acids (C12.0 to Cz0.0) have been used as
indicators for bacterial and algal source material, whereas iso- and anteiso-
carboxylic acids (e.qg., i- and ai-C13.0, C15.0, and C47,0) have been utilized as
evidence for bacterial input (Cranwell, 1978; Kawamura and Ishiwatari, 1984). As

was the case for free lipids, high molecular weight monocarboxylic acids (Czo.0 to
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Cs0:0) are derived from terrigenous sources (Cranwell, 1978; Kawamura and

Ishiwatari, 1984).

5.2.3 a- and B-Hydroxy Fatty Acids

a- and B-Hydroxy fatty acids (Fig. 5.2) are more abundant in sediments in
ester- and amide-bound form than as free lipids (Kawamura and Ishiwatari, 1984;
Fukushima et al., 1992b; Wakeham, 1999). In free lipids, the occurrence of a-
and B-hydroxy fatty acids is typically attributed to intermediates formed during the
oxidative degradation of fatty acids (Goosens et al., 1986; Wakeham, 1999).
Hydroxy acids, formed as intermediates in the oxidative degradation of fatty acids,
preferentially follow the B-oxidation pathway rather than the a-oxidation pathway
(Lehninger, 1975; Wakeham, 1999; Garcette-Lepecq, 2004). Distribution patterns
of a- and B-hydroxy fatty acids, formed as intermediates, will parallel those of
their precursor monocarboxylic fatty acids (Wakeham, 1999).

Significant amounts of a- and B-hydroxy fatty acids bound by ester-
linkages are released by saponification of solvent extracted sediments (Cranwell,
1978; Kawamura and Ishiwatari, 1984; Goosens et al., 1986; Garcette-Lepecq et
al., 2004). Ester-bound hydroxy acids are thought to originate from biotic
sources, where short-chain a- and B-hydroxy fatty acids are representative of
bacterial sources and the longer chain homologues are characteristic of
terrigenous sources (Kawamura and Ishiwatari, 1984; Winsche et al., 1987).

Further acid hydrolysis of residual sediments releases amide-bound lipid
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moieties (Klok et al., 1984; Goosens et al., 1986, 1989a,b; Mendoza et al., 1987;
Fukushima et al., 1992a; Garcette-Lepecq et al., 2004). In general, B-hydroxy
fatty acids in sediments are more abundant in the amide-bound form than as
ester-linked compounds, and are thought to be intact cellular remains of bacteria

(Kawamura and Ishiwatari, 1982; Goosens et al., 1986; Wakeham, 1999).

5.2.4 w- and (w-1)-Hydroxy Fatty Acids

Fatty acids hydroxylated at the w- and (w-1)- positions (Fig. 5.2) have
been observed in the ester- or amide-bound lipid fractions in sediments. The w-
hydroxy fatty acids are common constituents of cutin and suberin, and have been
used as indicators for terrigenous plant material (Kawamura and Ishiwatari, 1984;
Winsche et al., 1987; Fukushima et al., 1992a,b; Garcette-Lepecq et al., 2004).
C+6 and C1g w-hydroxy fatty acids are the most common acids in cutin, whereas
the longer chain w-hydroxy fatty acids (e.g., C22 and C,4) are more prevalent in
suberin (Cardoso et al., 1977). An alternative source of w-hydroxy fatty acids is
the microbial oxidation of n-carboxylic acids at the terminal end. w-Hydroxy fatty
acids derived from microbial oxidation reactions can be recognized by distribution
patterns analogous to the distribution patterns of their precursor n-carboxylic

acids (Wakeham, 1999; Garcette-Lepecq et al., 2004).
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Even numbered (w-1)-hydroxy fatty acids in sediments are thought to be
derived directly from methanotrophic bacteria or indirectly through the microbial
hydroxylation of monocarboxylic acids at the carbon adjacent to the terminal end
(typically via some type of aerobic microorganism; Skerratt et al., 1992;
Wakeham, 1999). Seagrasses and cuticles of bryophytes have also been

speculated as possible sources of (w-1)-hydroxy fatty acids (Skerratt et al., 1992).

5.2.5 a,w-Dicarboxylic Acids

a,w-Dicarboxylic acids (Fig. 5.2) with carbon numbers distributed between
C10 and C3p have been observed in sediments (Cranwell, 1977; Wakeham, 1999;
Stefanova and Disnar, 2000). Reported origins for a,w-dicarboxylic acids include
biosynthesis in seagrasses and higher plants, or as oxidation products of w-
hydroxy fatty acids and monocarboxylic acids (Cranwell, 1977; Wakeham, 1999;
Stefanova and Disnar, 2000). In higher plants, a,w-dicarboxylic acids typically
occur as constituents of cuticular waxes, or as components in cutin and suberin
(Cranwell, 1977; Wakeham, 1999). Formation of a,w-dicarboxylic acids, via
oxidative processes, will result in profiles similar to their precursor acids

(Cranwell, 1977; Wakeham, 1999).
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5.2.6 Ester- and Amide-Bound Lipids in Bacteria

Bacterial fatty acids typically occur in bound form as phospholipids,
glycolipids, lipoproteins, lipopolysaccharides, and lipoteichoic acids (O’Leary,
1962; Zelles, 1999). The predominant components of bacteria, useful for
characterizing microbial communities in sediments, are phospholipid fatty acids
and lipopolysaccharides (Zelles, 1999; Rutters et al., 2002). The ester- and
amide-bound lipids can be utilized as unique markers for bacteria in the
environment. The phospholipid fatty acids are predominantly located in the inner
cellular membrane but also occur in the outer cellular membrane (Fig. 5.3). The
illustration in Fig. 5.4 represents the components of phospholipids in bacterial
cellular membranes, where the head of the phospholipid is hydrophilic (polar end)
and the tail is hydrophobic (non-polar end). Lipopolysaccharides make-up a
significant portion of the outer cell-membrane of Gram-negative bacteria, where
the most abundant fatty acids are the B-hydroxy fatty acids (Kawamura and
Ishiwatari, 1984; Zelles, 1999). The B-hydroxy fatty acids are unique markers
exclusive to a bacterial origin (Kawamura and Ishiwatari, 1984; Wakeham, 1999;
Garette-Lepecq et al., 2004). In the outer cell-membrane, n-carboxylic acids and
B-hydroxy fatty acids occur as substituted constituents (via ester- and amide-
linkages, respectively) on the phosphate-sugar backbone of Lipid-A of

lipopolysaccharides (Fig. 5.5; Bhat and Carlson, 1992).
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Fig. 5.3. Cellular structure of a Gram-negative bacterium (from
http://www.bmb.leeds.ac.uk/mbiology/ug/ugteach/icu8/introduction/bacteria.html#
cell_wall).

Fig. 5.4. Components of phospholipids in bacterial cellular membranes (from
http://cellbio.utmb.edu/cellbio/membrane_intro.htm)
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Fig. 5.5. Structure of Lipid-A in Gram-negative bacteria (from
http://www.cyberlipid.org/glycolip/glyl0005.htm)

5.2.7 Carbon Isotopic Composition of Fatty Acids

Sources of fatty acids (e.qg., terrigenous, marine plankton, or bacteria) can
be elucidated using their compound-specific carbon isotope compositions (e.g.,
Monson and Hayes, 1982; Abrajano et al., 1994; Naraoka et al., 1995; Duan et
al., 1997; Naraoka and Ishiwatari, 1999, 2000; Tolosa et al., 1999). Terrigenous

plants utilize different photosynthetic pathways for carbon fixation (i.e., C3, C4, or
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CAM pathways; see Chapter 3, Section 3.1.3). C3 plants are depleted in '*C, C4
plants are more enriched in '*C, and CAM plants (which can utilize both C3 and
C4 pathways) have intermediate 5'°C values (Collister et al., 1994). The 5'°C
values of C3 plants range around -26%,,, C4 plants around -13%,, and 5'°C
values for CAM plants cover the range typical of C3 and C4 plants (Deines,
1980). Lipids, however, are commonly depleted in °C relative to the biomass by
3% to 12°/4, (Deines, 1980; Monson and Hayes, 1982; Collister et al., 1994;
Abraham et al., 1998; Naraoka and Ishiwatari, 1999). In a study by Naraoka and
Ishiwatari (2000), fatty acids (Cz0.0 to C30.0) from leaves of C3 terrigenous plants
ranged between -35°, to -30°,,, Wwhereas marine derived fatty acids (e.g., C14.0,
Cis0, and Cig,) had an average 5'°C value of -23.8+1.1%.. Duan et al. (1997)
measured the isotopic composition of fatty acids (Cie.0 to C2s:0) in sediment
samples from Ruoergai marsh, China. The average &'°C composition for
individual fatty acids was -33.7°%/,,, which was about 7.3°, lighter than the
average 5'°C composition of C3 plants (i.e., -26.4%,) around the marsh. The
7.3% 4o difference is consistent with levels of depletion observed between lipids
and their associated biomass. Knowledge of end-member isotopic compositions
of fatty acids would allow the proportion of source contributors to be estimated in
marine sediments (Naraoka and Ishiwatari, 2000).

More recently, carbon pathways within microbial communities have been
investigated using compound-specific carbon isotope analysis of fatty acids
derived from cellular membranes of bacteria (Boschker et al., 1998, 1999;

Abraham et al., 1998; Boschker and Middleburg, 2002; Petsch et al., 2003;
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Londry and Des Marais, 2003; Londry et al., 2004). Carbon isotopic fractionation
of bacterial lipids is affected by the mode of growth (i.e., heterotrophic or
autotrophic growth in the environment), growth substrate (e.g., acetate, mannose,
lactose, or glycerol), and metabolic pathway (e.g., the acetyl-CoA pathway or
tricarboxylic acid cycle) (Abraham et al., 1998; Boschker et al., 1998; Londry and
Des Marais, 2003; Londry et al., 2004). However, it has been demonstrated that
the isotopic composition of fatty acids is not dependent on the growth stage of
the bacteria (Summons et al., 1994; Abraham et al., 1998; and Londry and Des
Marais, 2003).

Sulfate-reducing bacteria, for example, are ubiquitous in coastal
sediments and can mineralize as much as 50% of the total organic carbon
(Jorgensen, 1982; Boschker et al., 1998). The primary substrate used by sulfate-
reducing bacteria, during the anaerobic decomposition of organic matter, is
acetate (Parkes et al., 1989; Boschker et al., 1998). In a study by Boschker et al.
(1998), the isotopic composition of fatty acids was measured for sulfate-reducing
bacteria, using 3C-labelled acetate as the substrate. The isotopic composition of
key phospholipid fatty acids associated with the Gram-positive bacteria
Desulfotomaculum acetoxidans, indicated that these bacteria consumed a
significant portion of the "*C-labelled acetate. >C-Labelled acetate, however, was
not significantly utilized by the Gram-negative bacteria of the Desulfobacter
species (Boschker et al., 1998).

Methanotrophs (i.e., methane-oxidizing bacteria) in anaerobic sediments

utilize methane as their carbon and energy source. They play an important role in
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limiting the amount of methane released from anaerobic environments (Boschker
et al., 1998). Biogenic methane has isotopic compositions depleted in *C in the
range of -110%,, to -60°,, (Hunt, 1996). Bacteria utilizing biogenic methane will
reflect biomass depleted in ">C, by as much as 20%,, (Boschker et al., 1998;

Boschker and Middelburg, 2002).

5.3 Results and Discussion

In the following sections, compound classes identified in the ester- and
amide-bound lipid fractions from core MBH 54/2 will be discussed. Ester- and
amide-bound lipids were isolated by the saponification and acid hydrolysis of
solvent extracted sediments. Techniques used to release and extract ester- and
amide-bound lipids are discussed in more detail in Chapter 2. Lipids were
identified based on mass spectra, retention time, and comparison to literature
data (see Appendix Il for representative spectra from identified lipid classes).
Ester-bound lipids in sediments from core MBH 54/2 include carboxylic acids, a-
hydroxy fatty acids, B-hydroxy fatty acids, w-hydroxy fatty acids, and n-alcohols,
and are summarized in Table 5.1. The amide-bound lipid fraction consists of
carboxylic acids and B-hydroxy fatty acids. The quantitative data for the lipid
constituents from ester- and amide-bound lipid fractions are summarized in

Appendix V.
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5.3.1 n-Carboxylic Acids in the Ester-Bound Lipid Fraction

Carboxylic acids comprised of straight chain, branched, and
monounsaturated fatty acids dominated the ester-bound lipid fraction in core
MBH 54/2. Throughout the core, a bimodal distribution is observed for carboxylic
acids (Fig. 5.6). Short-chain fatty acids (C12.0 to Cz0.0) are significantly more
abundant than long-chain fatty acids (C21.0 to Cs0.0). On average, the short-chain
fatty acids comprise ~78% of the ester-bound alkanoic acids and the long-chain
fatty acids the remaining ~22%. The ester-bound short-chain fatty acids (C12.0 to
Ca0:0) are most abundant between 0.7m and 2.3m, with amounts ranging
between 81% and 89%. In general, short-chain alkanoic acids (<Cy.0) are
associated with bacterial and planktonic input, whereas long-chain alkanoic acids
(>C20.0) are derived from cuticular waxes of terrigenous plants.

The concentrations of short- and long-chain fatty acids are plotted in Fig.
5.7. The long-chain alkanoic acids do not demonstrate much variation down the
core (concentration ranges between 2-4 ug/g dry sediment weight in the upper
3.5m). A slight enrichment, to about 6 ug/g dry sediment weight, is observed at
1.2m and 1.6m; below 3.5m the concentration of long-chain alkanoic acids falls
below 1 ug/g dry sediment weight.

The degree of variation in fatty acid composition and shifts in source
contributions preserved in core MBH 54/2 can be illustrated by plotting the
aquatic-to-terrigenous ratio (i.e., Z(C12:0-C18:0)/Z(C22:0-C2s.0); Fig. 5.8). The
highest influx of aquatic derived organic matter is observed between 0.7m and

1.4m. A higher influx of terrigenously derived organic matter is observed
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Fig. 5.6. Downcore profile of fatty acids as methyl esters in the ester-bound lipid
fraction of core section MBH 54/2. * indicates iso- branched fatty acids, and «
indicates anteiso- branched fatty acids.
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Ester-Bound FAME (pg/g sed dry wt)

0.0 10.0 20.0 30.0 40.0
0.0 ! ! L : ! ! ! r% I L ! L % ! ! !
05 - m & — ~1980AD
10 + 1
4R T | ~1965AD
15 + 1
_ e e R P LT { ~1954AD
E ] ’
= ] ]
"5_ 20 I I
(] h 4
o I e ... ~928AD
25 - 1
3.0 gy 1 ~2604BC
35 4 1
--------------------------------------------- 1 ~6104BC
40 + +
] —— 2(Ci20.180) |
] —8— %(Cx0.0-300) A
4.5

Fig. 5.7. Downcore distribution illustrating the abundance of short- and long-
chain n-alkanoic acids in the ester-bound lipid fraction.
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Fig. 5.8. Ratio of short to long chain ester-bound fatty acids as methyl esters.
Downcore variations and shifts in contributions of organic source material are
illustrated in this diagram.
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at 1.6m, followed by increased contributions from aquatically derived organic
matter around 2.3m. Between 2.3m and 3.3m, more abundant contributions from
terrigenously derived organic matter are recorded in the sediment. A slight
increase in aquatically derived organic matter is observed at 3.5m and 3.9m.
Results of the C/N ratio (discussed in Chapter 3) support these observations
where a higher C/N ratio at 1.6m shifts towards lower C/N ratios around 2.3m,
followed by more intermediate C/N ratios between 2.3m and 3.3m (indicating a
mixture of both terrigenous and aquatic derived organic matter).

The carbon preference index (CPI) was originally used to estimate the
thermal maturity of source rocks and crude oils, based on the odd-over-even
preference of n-alkanes (Bray and Evans, 1961). n-Alkanes with CPI values
greater than or less than 1.0 suggest low thermal maturity, whereas CPI values
closer to 1.0 indicate higher thermal maturity. In Recent sediments, which are
immature, the CPI has been applied to n-alkanoic acids (even-over-odd
preference) as an indicator for the degree of diagenetic alterations (Matsuda and
Koyama, 1977; Meyers and Ishiwatari, 1993). CPI values of n-alkanoic acids that
approach 1.0 suggest higher degrees of diagenetic alterations. In ester-bound
lipid fractions from core MBH 54/2, an even-over-odd predominance pattern is
observed over the total carbon number range (C12.0 to Cso.0; Fig. 5.9), with an
average CPI ~ 6.5 (eq. 5.1). The average CPI for short-chain fatty acids (C12. to

Cao:0) is 6.8 (eq. 5.2); long-chain fatty acids (Cz0.0 and C3p.0) have an average CPI
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Fig. 5.9. Carbon preference index for ester-bound fatty acids as methyl esters,
relative to depth, in core MBH 54/2.

CPI _ (C12:o +2*(C14:o +Cig -+ Cogg +Czs:o)+C30:o) (eq. 5.1)
G120~ Cooo 2*(Cygp +Cigg + e+ Corg + Cogp)
CP _ (C12:0 +2° (C14:0 +Cie0 +Ciso )+ Czo:o) (eq. 5.2)
Ci20-Cano 2* (C13:0 + C15:O + C17:0 + C19:0)
CP _ (CZO:O +2° (sz:o +Cou0 +Coeo + Coso )+ C30:°) (eq. 5.3)
C200-Ca00 — * o
2 (C21:0 +Cas0 +Cos0 +Copp + CZQ:O)
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of 5.5 (eq. 5.3). In the short chain fatty acid fraction, the highest CPI values are
observed between 0.7m and 1.4m, where CPI values range between 8.3 and 9.6.
Small spikes in the CPI values for short-chain fatty acids are observed at depths
of 2.3m and 3.3m, where CPI values are 6.9 and 6.1, respectively. The long-
chain fatty acids appear to demonstrate more variability in CPI values down the
core, with CPI values shifting between 4.1 and 6.6. Peak CPI values occur at
0.7m, 1.6m, and 3.3m (where CPI values are 6.6, 6.2, and 6.5, respectively). The
downcore plot of CPI values calculated over the total carbon number range
closely parallel CPI values calculated for the short-chain fatty acids.

At depth intervals between 0.7m and 1.4m, CPI values for short-chain fatty
acids are significantly greater than CPI values for long-chain fatty acids. Cellular
fatty acids in bacteria are commonly dominated by short-chain even carbon
numbers. The high CPI values of short-chain fatty acids between 0.7m and 1.4m
may reflect an increase in bacteria in the region due to the excessive discharge
of sewage into the harbour. The long-chain fatty acids, on the other hand, had
much lower CPI values between 0.7m and 1.4m. Lower CPI values may reflect
bacterial reworking of sedimentary organic matter. Around 2.3m, there is another
slight rise in the CPI value for short-chain fatty acids, with a corresponding lower
CPI value for long-chain fatty acids. Again, this may reflect a higher flux of
bacteria in the sediment and increased reworking of the longer chain fatty acids.
CPI values of long-chain fatty acids demonstrate a slight increase at 1.6m and
3.3m, and correspond to fluxes observed in the concentration of w-hydroxy fatty

acids and n-alcohols (discussed in section 5.3.5).
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5.3.2 Branched-Carboxylic Acids in the Ester-Bound Lipid Fraction

Branched-carboxylic acids in sediments (i.e., primarily i- and ai-C13.9, C1s.0,
and C47.0) have been used as lipid markers providing evidence for bacterial input
(Cranwell, 1973, 1978; Saliot et al., 1991; Guezennec and Fiala-Medioni, 1996;
Budge and Parrish, 1998). The proportion of bacteria in a sedimentary
environment can be represented by the relative abundance of i-C15.0 and ai-Cys.o
to C16:0, since the Cqg.0 fatty acid is ubiquitous in most organisms (Nichols et al.,
1987; Mancuso et al., 1990; and Rajendran et al., 1992a). The ratio of i-C4s.¢ plus
ai-C1s5.9 to Cyg:0 in the ester-bound lipid fraction in core MBH 54/2 is plotted
relative to depth in Fig. 5.10. At depths between 2.0m and 4.0m, the (i-C1s.0 + ai-
C15:0)/C16:0 ratio ranges from 0.06 to 0.14. In the upper 2.0m, the (i-C15.0 + ai-
C15:0)/C1e:0 ratio ranges from 0.23 to 0.68. A significant increase in the proportion
of bacterial components is observed in the uppermost section of the core (i.e.,
peak occurrences at 0.7m, 1.2m, and 1.6m).

Throughout core MBH 54/2, branched fatty acids have been identified in
the C12.0 to Cyo.0 range, comprising between 7.6% to 29.3% of the total short
chain fatty acids (Fig. 5.11). Branched fatty acids are most abundant in the upper
2.0m of the core (i.e., between 16.8% and 29.3%), with a maximum abundance
at 1.6m. Between 2.3m and 3.9m, branched fatty acids become less abundant
and consist of 7.6% to 12.7% of the short chain fatty acid fraction. Various
groups have attempted to identify and classify bacteria types based on the
carbon chain length of branched fatty acids and on the location of branching

points (e.g., Edlund et al., 1985; Rajendran et al., 1992c; Vainshtein et al., 1992).

124



(i-C15.0*ai-C15.0)/C16:0
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

00 ‘,,,;‘,,‘},,,‘},,,“#,,“;,,“;,,‘,;,“
0.5 | 1980AD
1.0
1 1965AD
1.5 +
1 1954AD
£ 20
£ ]
Y 1 928AD
q, A
a 25
3.0 | ~2604BC
35 -
1 ~6104BC
40 +
45

Fig. 5.10. Plot illustrating the relative proportion of bacterial components in the
ester-bound fraction of sediments from core MBH 54/2, using the ratio of (i-C1s.0
+ ai-C15;o)/C16;0 VS depth.
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Fig. 5.11. Percent composition of branched chain fatty acids within the Cq2, to
Ca0.0 range of ester-bound lipids.
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The ester-bound branched fatty acids identified in sediments from core MBH 54/2
include i-C13.0, @i-C13.0, i-C14:0, i-C1s:0, @i-C15.0, i-C16:0, 10Me16:0, i-C17.9, @i-C17.0, i-
C1s:0, i-C19:0, and ai-C1g.9 (as illustrated in Fig. 5.12). A broader distribution of
branched fatty acids is present in the ester-bound form, compared to free lipids,
and has more specificity enabling the identification of bacteria types. Branched
fatty acids, with carbon chain lengths ranging between C14.0 and C,0 are
commonly associated with Gram-positive and anaerobic bacteria. Branched fatty
acids in the Cqg.0 to Cq9,0 range are attributed to sulfate reducing and anaerobic
bacteria (Rajendran et al. 1992c). Each of these branched fatty acids was
identified throughout core MBH 54/2. Vainshtein et al. (1992) observed that i-
C1s.0 fatty acids are predominant in most Desulfovibrio species of sulfate
reducing bacteria (e.g., Desulfomicrobium and Desulfomomas). i-Cs.¢ Fatty acids
were observed to be less abundant than ai-C1s. fatty acids in D. sulfodismutans,
D. alocoholvorans, D. carbinolicus, D. fructosovorans, D. giganteus, and D. gigas
(Vainshtein et al., 1992). Throughout the core section from Kowloon Bay, the i-
C+5.0 acid is the most abundant branched fatty acid. The iso-/anteiso- C4s, ratio
(Fig. 5.13) demonstrates that the iso- acid is more abundant than the anteiso-
acid, with the greatest difference occurring below 3.0m. The Desulfovibrio
species of bacteria were likely present throughout the core. In studies of fatty
acid profiles of Desulfovibrio species of sulfate reducing bacteria, Edlund et al.
(1985) observed i-C1s.0, C16:0, and i-C47.¢ saturated fatty acids to be major

constituents of D. desulfuricans, D. vulgaris, and D. africanus. These
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Iso-/Anteiso- Ratio of Ester-Linked Fatty
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Fig. 5.13. Iso-/Anteiso-ratio of C45.0 and C47.o fatty acids in the ester-linked
fraction of sediments from core MBH 54/2.

bacteria also contain significant amounts of monounsaturated fatty acids (e.g.,
Ci6:1(n-7)cs 1-C17:1(n-7c, @nd Cisg:1(n-7)c), and were only observed between 0.7m to
1.6m, and at 3.5m. Major components of D. gigas include i-C1s.9, ai-C1s.9, C1s:0,
and i-C47,0 (Edlund et al., 1985). The branched fatty acid, 10Me16:0 (i.e., 10-
methyl-hexadecanoic acid), has been identified as a signature compound for

Desulfobacter species of sulfate reducing bacteria (Rajendran et al., 1992b;
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Rajendran et al., 1992c; Vainshtein et al., 1992). The marker for Desulfobacter
species of sulfate reducing bacteria was only identified at 1.4m, 1.6m, and 3.5m.
Each of these depths corresponds to periods with the greatest stanol/sterol ratio

(discussed in Chapter 4).

5.3.3 Unsaturated-Carboxylic Acids in the Ester-Bound Lipid Fraction
Unsaturated fatty acids were not detected in significant amounts in the
ester-bound lipid fraction of core MBH 54/2, and only C1g.1, C1s.1, and Cqg:2
unsaturated fatty acids were identified in relatively low concentrations. While
monounsaturated fatty acids have been used as markers for aerobic bacteria and
polyunsaturated fatty acids as markers for eukaryotes (Findlay et al., 1990;
Rajendran et al., 1992b,c), certain unsaturated fatty acids have been detected in
anaerobic bacteria (Perry et al., 1979; Edlund et al., 1985; Dowling et al., 1986;
Rajendran et al., 1992b; Vainshtein et al., 1992). In particular, C16.147 and C1g.1w7
fatty acids have been observed as predominant components in anaerobic
bacteria (Perry et al., 1979; Summit et al., 2000), and i- and ai-C1s.1 and C+7:1
fatty acids have been attributed to sulfate reducing bacteria and other anaerobic
bacteria (Edlund et al., 1985; Rajendran et al., 1992b; Vainshtein et al., 1992;
Summit et al., 2000). No branched unsaturated fatty acids (i.e., i- and ai-C4s.1 and
C17.1) were identified in core MBH 54/2. If any branched unsaturated fatty acids

had been present in older sediments of Victoria Harbour, they may have been
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hydrogenated to their saturated counterparts (e.g., i- and ai-C4s.0 and C47,9) due

to the highly anoxic conditions around the study site.

5.3.4 a- and B-Hydroxy Fatty Acids in the Ester-Bound Lipid Fraction
a-Hydroxy fatty acids were less abundant in the ester-bound lipid fraction
than B-hydroxy fatty acids. Only straight-chain, even numbered a-hydroxy fatty
acids (C+6 to Cas), With variable distributions, were detected downcore (Table 5.1).
Possible sources of a-hydroxy fatty acids (C4s to Cys) include phytoplankton,
bacteria, and cyanobacteria (Wakeham, 1999; Smallwood and Wolff, 2000).
Substantial amounts of 3-hydroxy fatty acids (C+ to Cy) were detected
and identified in the ester-bound lipid fraction (Fig. 5.14). n-B-Hydroxy fatty acids
comprised ~48% to ~75% of the total B-hydroxy fatty acids; whereas branched [3-
hydroxy fatty acids constituted ~25% to ~52% of the total -hydroxy fatty acids.
The total straight chain and branched 3-hydroxy fatty acid contents (in pg/g dry
sediment weight) are plotted relative to depth in Fig. 5.15. Significant
contributions of these compounds to the ester-bound lipid fraction of the
sediments are observed between 0.8m and 2.0m, maximizing at 1.2m and 1.6m.
A slight secondary flux of B-hydroxy fatty acids is observed at 3.5m. Ester-linked
B-hydroxy fatty acids are unique markers for bacteria (Edlund et al., 1985;
Mendoza et al., 1987; Skerratt et al., 1992; Wakeham, 1999). They are important
cellular components in lipopolysaccharides of Gram-negative bacteria, and are

linked by ester- or amide-bonds (Weckesser and Drews, 1979; Edlund et al.,
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Ester-Bound f-Hydroxy Fatty Acid Content (pg/g)
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Fig. 5.15. Downcore profile of straight chain and branched B-hydroxy fatty acids
(Mg/g dry sediment weight), in the ester-bound lipid fraction of core MBH 54/2.
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1985; Mendoza et al., 1987). The occurrence of 3-hydroxy fatty acids in
sediments is thought to reflect intact cellular remains of bacteria in the sediment
(Klok et al., 1988). The depth interval where a large flux in B-hydroxy fatty acids
occurs (i.e., 0.8m to 2.0m), corresponds to a period of rapid population growth in
regions surrounding the study site. The rapid population growth, in turn, resulted
in excess sewage waste discharged into Kowloon Bay. The increase in
abundance of bacterially derived B-hydroxy fatty acids suggests that bacterial
communities thrived during this period (between ~1933AD and 1974AD). The
secondary flux at 3.5m probably indicates an event which led to an abundance of
bacteria in the sediment. Similar fluxes suggesting the occurrence of bacterial
remnants in sediments were observed in Fig. 5.10 and Fig. 5.11, using

branched-carboxylic acids as bacterial markers.

5.3.5 Ester-bound w-Hydroxy Fatty Acids and n-Alcohols

Small amounts of even numbered w-hydroxy fatty acids and n-alcohols
were detected in the ester-bound lipid fraction of core MBH 54/2 (Table 5.1).
Variable distributions of even numbered w-hydroxy fatty acids (C¢s to Cy6) were
identified in the ester-bound lipid fraction. The presence of w-hydroxy fatty acids
reflect contributions from vascular plant material, where C4s and C1g w-hydroxy
fatty acids are derived from cutin and Cy+ w-hydroxy fatty acids are likely derived
from suberin (Cardoso et al., 1977; Kawamura and Ishiwatari, 1984; Wiinsche et

al., 1987; Fukushima et al., 1992a,b). The downcore distribution of the total w-
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hydroxy fatty acid content in Fig. 5.16 shows that there were at least two periods
of high influx of terrigenous plant material (i.e., around 1.6m and 3.3m).

The n-alcohols consisted of variable distributions of even numbered
alcohols in the range C+s to Cos. Short chain alcohols (e.g., C12, C14, and Cyg) are
typically used as indicators of marine organisms, whereas long chain alcohols
(Cz0+) originate from cuticular waxes of terrigenous plant material (Mudge and
Norris, 1997; Mudge and Seguel, 1999). Terrigenous plant material may be the
primary source of alcohols detected in the ester-bound lipid fraction. The
downcore distribution pattern of the total n-alcohol content (Fig. 5.17) follows the
pattern observed for the downcore distribution of the total w-hydroxy fatty acid
content. At least two periods of high influx of terrigenous plant material were
seen at 1.6m and 3.3m, analogous to the w-hydroxy fatty acids. The two periods
with a high influx of terrigenous plant material may indicate periods of strong
storms, which transported excess terrigenous plant material into the study site.
The first spike occurred around 1.6m, which corresponds to a calendar date
around 1954. Around this time period at least 7 typhoons were documented in

this area (http://www.hko.gov.hk/informtc/historical_tc/no10track.htm).
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Fig. 5.16. Downcore distribution of w-hydroxy fatty acids in the ester-bound lipid
fraction of core MBH 54/2.
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Fig. 5.17. Downcore distribution of n-alcohols in the ester-bound lipid fraction of
core MBH 54/2.
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5.3.6 Amide-Bound Carboxylic Acids

Amide-bound lipids consist of n-alkanoic acids and B-hydroxy fatty acids.
The n-alkanoic acids are bimodally distributed between C1,.0 and Cso.0 (Fig. 5.18),
and have an even-over-odd predominance pattern with an average CPI = 6.1.
The short chain fatty acids (C+2,0 to C20.0) have an average CPI = 7.0, and the
long chain fatty acids (Czo.0 to C30.0) have an average CPI = 4.9 (Fig. 5.19). In the
uppermost interval of core MBH 54/2 (0.5m to 0.8m), the CPI over the total
carbon number range (C12.0 to Csg.0) falls between 5.3 and 6.0. Between 1.0m
and 2.0m, the CPI (C12,0 to Cso.0) increases to 10.2, decreases to 4.0 to 4.8
(between 3.0m and 3.8m), and increases slightly to 6.7 at 3.9m. The relatively
high CPI values indicate that the n-alkanoic acids have not been significantly
reworked by bacteria. The slight decrease in CPI values between 3.0m and 3.8m
may indicate that slight alterations (e.g., bacterial degradation) may have
occurred at these depths. An increase in the presence of bacterial lipids within
this depth range supports alterations due to bacteria.

Analogous to the ester-bound lipid fraction, the short chain fatty acids
(C12:0 to C20:0) are more abundant than the long chain fatty acids (C21:0 to Czo:0).
The downcore plot of the aquatic-to-terrigenous ratio (i.e., Z(C12:0-C1s:0)/Z(C22:0-
Cas.0); Fig. 5.20) illustrates the change in contributions of organic source material.
A high influx of aquatically derived organic matter is observed between 0.8m and
2.3m, and at 3.9m. The aquatic-to-terrigenous ratio then decreases between
2.6m and 3.3m, possibly due to a slight increase in contributions from terrigenous

plant material.
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Fig. 5.18. Downcore profile of fatty acids as methyl esters in the amide-bound
lipid fraction of core MBH 54/2. * indicates iso- branched fatty acids, and
* indicates anteiso- branched fatty acids.
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CPI: Amide-Bound Fatty Acid
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Fig. 5.19. Average CPI of fatty acids in the amide-bound lipid fraction, relative to
depth. CPIs were calculated using eq. 5.1, eq. 5.2, eq. 5.3.
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Fig. 5.20. Aquatic-to-Terrigenous ratio using n-alkanoic acids in the amide-bound
lipid fraction.
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5.3.7 Amide-Linked B-Hydroxy Fatty Acids

B-Hydroxy fatty acids are more abundant in the amide-bound lipid fraction,
than in the ester-bound lipid fraction (Fig. 5.21). The p-hydroxy fatty acid profiles
(C10 to Cy) consists of significant amounts of iso- and anteiso-B-hydroxy fatty
acids (Fig. 5.22). B-Hydroxy fatty acids in the amide-bound lipid fraction are
unique to bacteria and are widespread in Gram-negative bacteria (Edlund et al.,
1985; Mendoza et al., 1987; Klok et al., 1988; Kaneda, 1991; Bhat and Carlson,

1992; Wakeham, 1999; Garcette-Lepecq et al., 2004).

Concentration of B-Hydroxy Fatty Acids (ng/g sed dry wt)
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Fig. 5.21. Downcore abundance of ester- and amide-bound B-hydroxy fatty acids
in core MBH 54/2.
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5.3.8 Compound-Specific Carbon Isotope Composition of Ester- and
Amide-Bound Fatty Acids

The carbon isotopic values for ester-bound fatty acids (C14.0 to Cs0.0), at
depths between 0.8m and 2.6m, are generally more depleted in "*C than
corresponding values at 3.3m and 3.9m (Fig. 5.23). The 5"°C compositions of
fatty acids at 3.7m, however, are slightly isotopically lighter than at adjacent
depth intervals (i.e., 3.3m and 3.9m). In general, the isotopic composition of C1s.g
and Cig.o- fatty acids at 3.7m are still enriched in *C relative to the average
isotopic compositions measured between 0.8m and 2.6m. Downcore distributions
of 5"3C compositions for individual ester-bound fatty acids (i.e., C140 to Cagg) are
illustrated in Figures 5.24a-c. At depths between 0.8m and 3.1m, 3'°C values
ranged between -26°/,, and -33°,,. Each of the ester-bound fatty acids (C14, to

Cs0.0) demonstrated a general overall enrichment in *C at depths below 3.1m.

-20.00
i —e—Average 0.8m to 2.6m
1 —m— Average 3.3m to 3.9m
-22.00 1
i —0—3.7m
-24.00
8 2600
S ]
o -28.00
-30.00
-32.00
-34.00 , ‘ ‘ , : ] : i : i : i i : ]
12 14 16 18 20 22 24 26 28 30 32

Ester-Bound Fatty Acid: C#

Fig. 5.23. Average carbon isotopic composition of ester-bound fatty acids at
depths ranging from 0.8m to 2.6m, and the average isotopic composition at 3.3m
and 3.9m.
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Fig. 5.24a-c. Downcore carbon isotopic composition of ester-bound fatty acids.
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Throughout the core, Cys.0 and Cso.0 ester-bound fatty acids are more
depleted in *C, compared to ester-bound fatty acids <C.g,. The isotopic
composition of Cag.o fatty acids range between -29.76°, and -32.49%,,; whereas
Cao.o fatty acids are isotopically lighter, with 8'>C values ranging between
-32.35% 0 and -33.19% . The Cag.0 and Cao. fatty acids are likely derived from C3
terrigenous plants. Slight enrichments in "*C were observed at depths of 3.3m
and 3.9m, where 8'°C values for Cas. fatty acids are -26.92%, and -24.76%,
respectively; and 5'3C values for Cso. fatty acids are -29.04%, and -28.74%,
respectively. The slight enrichment in ">C observed at 3.3m and 3.9m may be
due to mixing with C4 terrigenous plants.

Branched fatty acids (e.qg., i- and ai-C1s.0 and C47.0) are typically used as
markers for bacteria. In the ester-bound lipid fraction, i- and ai-C1s.0 have 8'°C
values ranging between -28.11%, to -30.59%, (in the upper 2.6m), and are
isotopically heavier at 3.3m and 3.9m with an average isotopic composition of
-23.75% 00 (Fig. 5.25). Similarly, i- and ai-C47., are isotopically lighter at shallower
depths (i.e., upper 1.6m, where 8'>C ranges between -27.08%, and -28.02% )
and isotopically heavier deeper in the core (i.e., at 3.9m, 5'°C = -24.66%.; Fig.
5.25). In general, however, each of the ester-bound fatty acids appear to be
isotopically lighter in the upper half of the core, then systematically become

enriched in *C with increasing depth.
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Fig. 5.25. Carbon isotopic composition of i- and ai-C+s.0 and C47,¢ ester-bound
fatty acids in core MBH 54/2.

The isotopic compositions of amide-bound fatty acids demonstrate more
variability downcore (Fig. 5.26a-c). C14.0 and C+s.0 amide-bound fatty acids have
5'3C values ranging between -26.26%, to -29.34% 0, and -25.50% to -29.12% .,
respectively; where Cq4. fatty acids are generally slightly lighter than Cg. fatty
acids. Amide-bound fatty acids (C1s.0 to Cso.0) exhibit more shifts in isotopic
compositions downcore, where 8'>C values at 0.5m are more enriched in *C

compared to all other depths (Fig. 5.27). The isotopic composition of C1s.0 to Cas:0
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Fig. 5.26a-c. Carbon isotopic composition of amide-bound fatty acids in core
MBH 54/2.
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Fig. 5.27. Isotopic composition of amide-bound fatty acids, at increasing depth
intervals in core MBH 54/2.

fatty acids are more depleted in *C at 1.4m, than at other depth intervals. Cg.0,
Cas0, and Cys fatty acids demonstrate enrichments in '*C at 2.3m, 2.6m, 3.3m,
and 3.9m (Fig. 5.26a-c). At depths of 1.4m and 3.7m, &'°C values are slightly
lighter than isotopic compositions measured at adjacent depth intervals.

Limited information is currently available on the carbon isotopic
composition of fatty acids in bacteria. Various groups (e.g., Abraham et al., 1998;

Boschker et al., 1999; Londry et al., 2001; Boschker and Middelburg, 2002;
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Londry and Des Marais, 2003) have proposed that the isotopic composition of
bacterial fatty acids can be used to evaluate the substrate utilized or to determine
if the bacteria were autotrophic or heterotrophic. In a study by Londry et al. (2004)
the isotopic composition of fatty acids were measured for four types of sulfate
reducing bacteria, grown autotrophically, heterotrophically, or mixotrophically, on
substrates of known isotopic composition. No consistent fractionation pattern was
observed between the isotopic composition of fatty acids relative to the biomass
or substrate, where differences were dependent on growth mode or bacteria type.
For example, Londry et al. (2004) reported that Desulfovibrio desulfuricans grown
heterotrophically with lactate (-29.1%,,) resulted in fatty acids (-41.0%,) that were
11.7%o, lighter than their biomass (-29.3%,) and 11.9%, lighter than the
substrate. When grown mixotrophically with acetate (-34.2°,,), fatty acids
(-36.2°% ) Were 4.1%, lighter than biomass (-32.1%,,) and 2.0%, lighter than
substrate. Desulfobacter hydrogenophilus grown autotrophically produced fatty
acids (-52.2%,) that were 11.8%, lighter than biomass (-40.4°%,) and 24.4° o,
lighter than substrate. Desulfobacter hydrogenophilus was also grown
heterotrophically with acetate (-34.2°/,.), producing fatty acids (-48.1°/,) that
were 13.3%, lighter than biomass (-34.9°%,,) and 13.9%, lighter than substrate.
Abraham et al. (1998) also compared the isotopic compositions of fatty acids in a
set of bacteria grown with different substrates (e.g., glycerol, glucose, mannose,
lactose, and a complex medium). They found that the isotopic composition of
fatty acids varied between bacterial strains based on the substrates being utilized.

It is uncertain whether compound specific carbon isotopes can be used to
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differentiate bacterial strains, substrates being utilized, or growth modes being
followed, by measuring the isotopic composition of lipids in marine sediments.
Under natural environmental settings, the situation is much more complex where
multiple bacterial strains and substrates are present, and where each of the
bacteria follows a different growth mode and competes for available substrate.
This will require further investigation.

There have been reports of the isotopic composition of bacterial fatty acids
measured around methane seeps (Hinrichs et al., 2000; Orphan et al., 2001;
Zhang et al., 2002; Pancost and Sinninghe Damsté, 2003). The isotopic
compositions of lipids from bacteria, involved in anaerobic methane oxidation,
were measured in these studies. In general, the 8'*C composition of fatty acids
was depleted in "*C, and had isotopic values within the range of the methane
seeps. Pancost and Sinninghe Damsté (2003) used i- and ai-C1s.9 and C47,o fatty
acids as markers for sulfate reducing bacteria. The isotopic composition of these
branched fatty acids ranged between -60 and -90°,,, demonstrating that the
sulfate reducing bacteria were involved in anaerobic methane oxidation. Fatty
acids in sediments from core MBH 54/2, in Kowloon Bay, did not have isotopic
compositions that were significantly depleted in 3C. Isotopic values of bacterial
fatty acids ranged between -22 and -34°/,,, possibly suggesting that biogenic
methane was not a significant carbon source or that the bacteria did not play a
significant role in anaerobic methane oxidation.

The compound-specific carbon isotope measurement of ester- and amide-

bound fatty acids will require more in-depth evaluation for potential future
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applications. There are currently many uncertainties with potential fractionation
effects that may occur with the cleaving of ester- and amide-linkages in bound
fatty acids. Ester- and amide-bound fatty acids are likely derived from cellular
membranes of a broad variety of bacteria, which follow different metabolic
pathways, and metabolize carbon sources from different substrates. Each of
these variables further complicates the interpretation of the compound-specific
carbon isotope composition of bound fatty acids. Further work should be
conducted to determine if fractionation occurs during the isolation of bound lipids,
and to better understand possible fractionation effects due to the type of bacteria,

metabolic pathways, and type of substrate utilized.

5.4 Summary Remarks

Ester- and amide-bound lipids in sediment core MBH 54/2 from Kowloon
Bay are well preserved and provide a record of the sources of organic matter.
Ester-bound lipids were dominated by n-alkanoic acids and smaller amounts of
hydroxy fatty acids and n-alcohols. The n-alkanoic acids had bimodal
distributions where the first modal ranged between C1,.0 and Cy0.0, maximizing at
C1e:0; the second modal was distributed between Cyo.0 and Csp.0, maximizing at
either Cy2.0, Co4:0, Or Cys.0. Relatively high CPI values (average CPI = 6.5)
suggest that the n-alkanoic acids are well preserved and have not undergone
significant diagenetic alteration. While short chain fatty acids were typically more

abundant than long-chain fatty acids throughout the core, this was more evident
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at depths between 0.7m and 1.4m. This depth interval corresponds to a period of
rapid population growth in Hong Kong, which led to the substantial discharge of
sewage waste into Kowloon Bay.

Branched fatty acids were very abundant, constituting between 7.6% to
29.3% of the total short-chain fatty acid fraction. Branched fatty acids in the
carbon range Cq4.0 to C16:0 may have been derived from Gram-positive bacteria
or some type of anaerobic bacteria, while branched fatty acids in the Cs.0 to C1g:0
range may have originated from either sulfate-reducing bacteria or some type of
anaerobic bacteria. Iso- and anteiso-Cs, fatty acids are abundant in various
species of Desulfovibrio type sulfate reducing bacteria. Desulfobacter species of
sulfate reducing bacteria were identified at depths of 1.4m, 1.6m, and 3.5m,
using the signature lipid marker 10Me16:0 fatty acid. Monounsaturated and
polyunsaturated fatty acids were not detected in any significant amounts. Only
Ci6:1, C1s:1, and C4g.2 were identified in the ester-bound lipid fraction.

B-Hydroxy fatty acids (C1o and Cz) were identified throughout the core,
with significant amounts of iso- and anteiso-B-hydroxy fatty acids. The B-hydroxy
fatty acids are derived from bacterial sources and demonstrate two periods of
higher influx (i.e., between 0.8m and 2.0m, and around 3.5m). The substantial
influx of bacterial material (0.8m to 2.0m) occurs during the period of rapid
population growth and excess discharge of sewage waste.

w-Hydroxy fatty acids and n-alcohols were detected in minor amounts and
are likely derived from cuticle waxes of terrigenous plant material. At least two

intervals in the downcore profile indicate significant contributions from
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terrigenous plant material. The two fluxes may be indications for the occurrence
of strong storms in the area which could transport excess terrigenous plant
material into the area.

Amide-bound lipids were dominated by B-hydroxy fatty acids and smaller
amounts of n-alkanoic fatty acids. The B-hydroxy fatty acids are derived directly
from the outer cellular membrane of bacteria and have carbon number
distributions between C1p and Cy. n-Alkanoic fatty acids in the amide-bound lipid
fraction, like the ester-bound fatty acids, were bimodally distributed between C12.9
and Cso.0. The short-chain fatty acids <Cyp.o were likely derived from bacterial
sources, while the long-chain fatty acids >Cy.o originated from terrigenous plant
material. More detailed profiles of B-hydroxy fatty acids from various strains of
sulfate reducing bacteria and other types of anaerobic bacteria may provide a
means to better delineate the types of bacteria in marine sediments.

Carbon isotopic compositions were measured for ester- and amide-bound
fatty acids. Fatty acids in the ester-bound lipid fraction were isotopically lighter in
the upper 3m of the core (3'°C values ranged between about -26°/4, t0 -33%0)
and became enriched in "*C at 3.3m and 3.9m. Enrichment in "°C at 3.3m and
3.9m may have been due to the presence of significant amounts of C4-type
terrigenous plants. A slight decrease in 5'°C composition was observed at 1.4m
and 3.7m, which corresponds to spikes observed in the C/N ratio (discussed in
Chapter 3). This depletion in 3'°C composition may reflect the influx of C3-type
terrigenous plant material thought to have been carried into the study site via

strong storms. The isotopic composition of amide-bound fatty acids
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demonstrated more varied distributions downcore. However, similar to the ester-
bound fatty acids, a slight decrease in 5"°C composition was also observed at
1.4m and 3.7m. It is still uncertain how the isotopic composition might be affected
when ester- and amide-bound fatty acids are freed from sediment samples.
Since the short-chain fatty acids are thought to be derived from bacterial sources,
the interpretation of isotopic compositions becomes more challenging. The fatty
acids most likely represent a broad range of bacterial strains, feeding on different
substrates, and which follow different metabolic pathways. Further work is

necessary to address each of these uncertainties.
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CHAPTER 6

Conclusions and Recommendations for Future Work

6.1 Concluding Remarks

Core MBH 54/2 consists of two sediment units, a dark greenish gray to
black Holocene mud unit and a desiccated crust unit representing sediments
from the upper unit of the late Pleistocene. Very little has been done on the
detailed organic geochemical characterization of sediment cores around Hong
Kong, which could provide a glimpse of changes to environmental conditions,
changes in organic matter source contributions, and changes in bacterial
communities throughout the late Quaternary.

Recent dredging activities around Hong Kong have resulted in the release
of methane from the Recent sediments, initiating interest in the study of potential
sources of methane in Victoria Harbour. The initial goal was to study the
downcore variations in isotopic composition of methane in a 4m core section
(MBH 54/2) from Kowloon Bay, in Victoria Harbour, Hong Kong. However,
methane was not detected in the core sediments. Hence, a lipid marker approach
was undertaken to determine the sources of organic matter, evaluate changes in
organic matter composition and environmental conditions during the Quaternary,
and to ascertain whether remnants of bacterial communities might be present to
enlighten our understanding of processes that may have contributed to methane
generation. Organic geochemistry tools such as bulk properties (e.g., %Corg, %N,

5"%Corg, and 8'°N), lipid composition and profiles were applied to delineate and
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map changes in organic matter sources deposited in the Kowloon Bay area of

Victoria Harbour during the late Quaternary.

6.1.1 Summary of Bulk Parameter Measurements

Bulk properties (i.e., %Corg, %N, 8'°Corg, and 5'°N) of sedimentary organic
matter were measured in core MBH 54/2. Fluctuations in the sources of organic
matter derived from terrigenous and aquatic sources can be assessed using the
C/N ratio. Although the Holocene unit in core MBH 54/2 appears as a thick unit of
dark greenish gray to black mud, the C/N ratio demonstrates significant changes
in sedimentary organic matter sources at different periods in Hong Kong’s
history. Higher C/N ratios are observed between 0.7m and 1.6m (C/N ratios
generally fall between 13.7 and 14.7). Sediments deposited at this depth interval
correspond to calendar dates between ~1954AD and ~1977AD, a period after
significant portions of Kowloon Bay had been reclaimed and when untreated
sewage was discharged into the study site. Below this depth range (i.e., 1.8m to
2.3m), Kowloon Bay was an open bay and the area did not receive significant
amounts of raw sewage. A sharp shift towards lower C/N ratios (i.e., between 8.4
and 9.8) is observed at these depths, indicating that there was a higher input of
aquatically-derived organic matter. C/N ratios were more variable between 2.6m
and 3.5m, with values shifting between 10.5 and 15.7. The frequent fluctuations
suggested that these sediments received a mixture of aquatically and

terrigenously derived organic matter. Spikes in the C/N ratio were observed at
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1.4m, 2.6m, 3.3m, and 3.7m (where C/N ratios were 18.9, 15.7, 14.7, and 17.2,
respectively). The sharp spikes in the C/N ratio may reflect periods of strong
storms, carrying excess terrigenously derived organic matter into the area.
Bulk stable isotope compositions (i.e., 3'>Cqrg, and 3'°N) between 0.7m
and 1.6m ranged between -28.59°%,, to -26.30%, and 2.14°/ o, to 3.44°%/ o,
respectively. These isotopic values are consistent with isotopic compositions
reported in the literature for sewage contaminated sites. A shift towards
isotopically heavier 8'°C,q values (-21.87°%,,) was observed at 3.7m in the
desiccated crust. The enrichment in "*C may reflect higher contributions from C4-
type plants (e.g., C4 seagrasses) thought to have once been present around
Hong Kong. The base of the core (4.0m to 4.1m) had 613Corg values ranging
between
-33.17°/0 and -30.18%, and a nitrogen isotope composition of 2.53°%, (at
4.0m). These isotopic compositions suggest contributions from C3-type

terrigenous plants, fixating atmospheric nitrogen as their nitrogen source.

6.1.2 Summary of Free Lipid Composition and Profiles

Free lipids in sediments from core MBH 54/2 consisted of sterols, n-
alcohols, fatty acids, and hydrocarbons. The lipids can be used to delineate
sources of sedimentary organic matter and to provide a record of past
environmental conditions. The relative abundance of stanols-to-sterols suggested

that conditions in Kowloon Bay were anoxic. The stanols were significantly more
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abundant than sterols between 1.1m and 1.6m (~1967AD and ~1954AD,
respectively), and again around 3.4m (~4604BC). These two depth intervals
represent periods when Victoria Harbour was highly anoxic. Lower stanol-to-
sterol ratios were observed at 0.5m and between 2.0m and 3.0m, indicating that
conditions were less anoxic. At 0.5m, the seawall-type sewage outfall was
diverted further out into the channel of Victoria Harbour via a submarine-type
sewage outfall. Between 2m and 3m, Kowloon Bay was an open bay and did not
receive significant contributions of sewage waste. Conditions appear to have
been more favorable for aquatic organisms during these periods. Sterols
common to aquatic organisms (e.g., brassicasterol and campesterol) were
observed at these depths; however, they were not detected at 1.1m and 1.6m
when conditions were more anoxic. Fecal sterols (e.g., coprostanol,
epicoprostanol, 24-ethylcoprostanol, and 24-ethylepicoprostanol) were identified
at relatively high concentrations compared to cholesterol at 1.1m and 1.6m.
These depths corresponded to periods of rapid population growth in Hong Kong,
and periods of high sewage disposal into Kowloon Bay.

Free lipids commonly used to distinguish between aquatic and terrigenous
sources include n-alcohols, fatty acids, and n-alkanes. Short chain n-alcohols
and fatty acids (<Cyp) denote an aquatic source, whereas long chain n-alcohols
and fatty acids (>Cy) indicate a terrigenous source. The n-alcohols were
dominated by the longer chain constituents, indicating that they were derived
from cuticular waxes of terrigenous plant material. Fatty acids demonstrated

bimodal distributions where short chain fatty acids were more prevalent at 1.1m
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and 1.6m. More terrigenously derived organic matter appears to be more
abundant than aquatically derived organic matter in the bottom half of the core.
Branched fatty acids (i.e., iso- and anteiso-C13.0, C15.0, and C47,) indicate a
bacterial source. The n-alkanes in core MBH 54/2 had pronounced odd-over-
even preference patterns at all depths. It is likely that these hydrocarbons
originated from a biotic source, probably cuticular waxes of terrigenous plant

material.

6.1.3 Summary of Ester- and Amide-Bound Lipids

Ester- and amide-bound lipids in Recent sediments have not been widely
utilized but are well preserved and can provide a record of sources of organic
matter. Ester-bound lipids in sediments from core MBH54/2 were dominated by
carboxylic acids and B-hydroxy fatty acids, with smaller amounts of n-alcohols
and w-hydroxy fatty acids. While the carboxylic acids had a bimodal distribution,
the short chain fatty acids (C120 to C20.0) predominated over long chain fatty acids
throughout the core. Branched fatty acids made up a significant fraction (7.6% to
29.3%) of the total short chain fatty acids and are associated with Gram-positive
bacteria, sulfate-reducing bacteria, and other types of anaerobic bacteria. At
depths of 1.4m, 1.6m, and 3.5m, the signature marker 10Me16:0 fatty acid was
identified. The occurrence of 10Me16:0 fatty acids in the sediments indicate the

presence of Desulfobacter species of sulfate-reducing bacteria.
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The B-hydroxy fatty acids (C1o to Cz0) are unique to bacteria and can be
found at all depths of core MBH 54/2. At least two periods of high influx of 3-
hydroxy fatty acids occur between 0.8m and 2.0m, and around 3.5m. The interval
between 0.8m and 2.0m was a period when excess raw sewage was discharged
into Kowloon Bay, and conditions appear to have been highly anoxic. Around
3.5m, the event that occurred is not known, but environmental conditions around
that depth appear to have been more anoxic.

Lipid markers for terrigenous plants were also identified in the ester-bound
lipid fraction. These include w-hydroxy fatty acids and n-alcohols, which are
common components of cuticular waxes of land plant material. There were at
least two periods of high influx of terrigenous plants, denoted by greater
contributions of vascular plant material (i.e., indicated by higher abundance of w-
hydroxy fatty acids and n-alcohols) at depths around 1.6m and 3.3m. Sharp
fluxes in the C/N ratio were also observed around these depths. The higher flux
of w-hydroxy fatty acids and n-alcohols may support the idea that spikes in the
C/N ratio are indications of the occurrence of strong storms in the area, which
can carry in excess terrigenous plant material.

Amide-bound lipids are comprised of B-hydroxy fatty acids and n-alkanoic
acids. The B-hydroxy fatty acids are the dominant compound group in the amide-
bound form and are thought to be derived directly from the outer cellular
membrane of bacteria. More detailed 3-hydroxy fatty acid profiles of various
strains of sulfate-reducing bacteria and other types of bacteria may provide a

means to differentiate bacterial communities in marine sediments.
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6.2 Recommendations for Future Work

Organic geochemical characterization of sediments from core MBH 54/2
demonstrated that bulk properties (such as the C/N ratio, 5'°Corq and 3'°N
compositions), lipid marker composition, and profiles can be used to reconstruct
past contributions of sedimentary organic matter and to infer environmental
conditions as the organic matter was being deposited. This study looked at the
deposition of sedimentary organic matter in an area of Kowloon Bay that has
undergone significant environmental transformations (e.g., reclamation activities,
which in turn have increased sedimentation rates), experienced extreme
conditions (e.g., excessive raw sewage disposal directly into the study site),
organic matter transported into the area from the Pearl River, and strong storms
(which are capable of carrying in excess terrigenous plant material).

In order to gain a broader perspective and understanding of organic
matter deposition throughout Hong Kong during the late Quaternary, detailed
organic geochemical characterization should be carried out on cores throughout
Victoria Harbour and in regions surrounding Hong Kong. A sediment core from
the western border of Victoria Harbour might show a greater influence of
sedimentary organic matter from the Pearl River, whereas sediment cores from
the eastern rim may show a greater marine influence. Core sites should be
selected in areas throughout Victoria Harbour that have experienced variable
sedimentation rates, proximity to raw sewage disposal sites, and areas that have

undergone changes in oxic/anoxic conditions. Each of these factors will have an
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impact of the amount and type of sedimentary organic matter deposited and
accumulated around Hong Kong.

The occurrence and identification of bacterial remnants in Victoria Harbour
sediments should be studied further. If bacterial strains native to Victoria Harbour
can be isolated and identified, their lipid profiles may allow us to gain better
insights into the types of bacterial communities that were active in Victoria
Harbour sediments (i.e., to try and link bacterial lipid profiles to lipid profiles
preserved in ester- and amide-bound forms in sediment samples). This may help
us understand the roles of bacteria in organic matter remineralization and their
role in the consumption and/or generation of carbon dioxide or methane.

Compound-specific carbon isotopes can be measured on ester- and
amide-bound fatty acids in sediments. However, it is uncertain if isotopic
fractionations occur during the cleavage of ester- or amide-linkages. Further work
should be conducted to investigate potential fractionation effects on synthesized
ester- and amide-bound fatty acids of known isotopic composition. This would
provide better confidence in the possible application of compound-specific
isotope compositions of bound fatty acids. The ester- and amide-bound fatty
acids in sediments are likely derived from cellular membranes of bacteria. Recent
groups (e.g., Boschker et al., 1998, 1999; Abraham et al., 1998; Boschker and
Middleburg, 2002; Petsch et al., 2003; Londry and Des Marais, 2003; Londry et
al., 2004) have begun evaluating the compound-specific carbon isotope analysis
of fatty acids in bacteria. This is a complicated task with many variables to

consider in interpreting the isotopic composition of bound fatty acids (e.qg., type of
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bacteria, metabolic pathway and carbon sources being metabolized). Each of
these uncertainties will need to be addressed in order to better utilize and
incorporate compound-specific isotope measurements of bound lipids as a tool to

better understand processes recorded in Recent sediments.
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APPENDIX |

A1.1. Bulk measurements of sediments from core MBH 54/2: total organic
carbon (%Corg) and total nitrogen (%N).

Depth (m) %Corq Avg %Corq * stdev %N Avg %N * stdev
0.07
-o7sx000 0% Loorsoo

0.73+0.05 0.06 + 0.00

0.63 £ 0.05 0.06 £ 0.00
0.88 £ 0.01 0.06 £ 0.00
0.83+0.06 0.07 £ 0.00
0.86 + 0.04 0.05 £ 0.00

0.42 +0.09 0.04 +0.00

0.22 +0.05 0.03 +0.00

0.39 £ 0.06 0.03 £ 0.00

0.23 +£0.06 0.04 £ 0.00

®bad value — atmospheric nitrogen present
®had value — inorganic carbon present
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A1.2. Bulk measurements of sediments from core MBH 54/2: "Corq (%/00) and
5N (%/o0).
Depth(m)  87Coq _ Avg 8 °Coyq * stdev 3°N__ Avg 8"N * stdev

-22.60+0.14

S X IR
2.66
-28.59 + 0.30 2.51 2.57 £ 0.08
X
3.44
2.14
3.13
____________________________________________ 449
3.19
-27.99+0.18 3.20 3.05+0.26
T -2
4.30
___________________________________________ 427
- 2601£0S4 443
S2r2sx005 eet
-27.23+0.29
1.956°
________________________________________________________________________ 460
o oaye  e4Tax0Od 457
-27.50+0.13
-21.87 £ 0.08 4.51+0.30

-30.18 £ 0.54
-31.85+0.45

(if delete -29.94,then
avg=-31.04 £0.03)

-33.17 £ 0.10

®bad value — atmospheric nitrogen present
®had value — inorganic carbon present
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APPENDIX Il

A2.1. Sterol structures, common names, IUPAC names, and chemical formula.

) ) OES:ESVY ) GI;S:ESVY

Cholesterol

(Cholest-5-en-3p-ol) Coprostanol Epicoprostanol

C,7H4s0 (5B-Cholestan-3p-ol) (5B-Cholestan-3a-ol)

C27H480 C27H480

W O;?:g\*( HO
HO : HO

H Campesterol Brassicasterol

Cholestanol (24-methylgho#esg&eneﬁ-ol) (24-methylchol(<:ezs:z-5i82E-dlen-SB-ol)
(5a-cholestan-3p-ol) 287748

Ca7H4s0

Campestanol 24-Ethylcoprostanol 24-Ethylepicoprostanol
(24-methyl-5a-cholestan-33-ol) (24-ethyl-5p-cholestan-3p-ol) (24-ethyl-5p-cholestan-3a.-ol)

CasHs00 Ca9Hs520 Ca9Hs20

HO HO HO
Stigmasterol Stigmastanol B-Sitosterol
(24-ethylcholesta-5,22E-dien-3p-ol) (24-ethyl-5a-cholestan-3B-ol) (24-ethylcholest-5-en-33-ol)
Ca9H4s0 Ca9Hs2,0 Ca9Hs500
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APPENDIX 1lI

A3.1. Representative mass spectra for carboxylic acids, B-hydroxy fatty acids, a-
hydroxy fatty acids, w-hydroxy fatty acids, sterols, and stanols.

74.0
100+ i-C14.0 fatty acid methyl ester
80+
60
] 87.0
404
i 69.1
- _| [M_43]+
204 19?.2 [M-15]"
- 91.0 143.1 2271
. — | M
: H | | ‘ ,‘ 129.1 171.0 185.1 242.2
0 ANl | , ||.I||| | , ] ||I|I|| ||I | N ||||l||h|l|||l|||l|lhIl' 14 I.lmlll [T ITRERITA | ||| PR ||n I N [N 1, ||
L e e e T E e e B T B e e o o e e LA e
50 100 150 200 250
74.0 .
1004 C14. fatty acid methyl ester
80
60
1 87.0
40 |
20 55.1
] [M-43]"
4 143.1 199i2 M
: “ ‘ 101.1 129.1 157.1 185.2 211.2 242.2
0 ullly N || W I.||I |. i Ll Ly L | I | ) |.I L
LN o S S e B S B B B B e B e e B ) B B
50 100 150 200 250
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741

100 — i-C4s. fatty acid methyl ester
80
60 —
40 87.1
] |
] 854
20
_ 1431
T 129.1| [|\/|.43]*[NI 31T M*
i 157.1 2131 M- 256.2
- 157.1 185.1 199.1
0 ||I||||=| |Ih|||',|”'||'“|||| |‘|n||||||| —— I||||l |‘|ll‘|lI||I|'|l .I IIII . |' — |' — || . Ill‘ ‘22‘51‘1 —— ||' ——T
50 100 150 200 250
74.0 . .
100+ ai-Cys.o fatty acid methyl ester
80
60+
] 87.0
404
] 551
20_’ [M-57]
] 213|.1 (M-29]° M
256.2
. 157.1 185.1
-
50 100 150 200 250
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I
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. ] 1
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.||..|.||. AR R P L. | ] I, f L f
sl sl L R e s e
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I
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69.1

100+ C1¢.1 fatty acid methyl ester

1 74.0

4 |
80|
601 83.1

1 |

| 87.0
407 96.1

1 |
204 1 1(?.1 [M-32]"

| 11.1 152.2 194.2 236.2 .

1 137.1 ! M

1 268.2

1 250.2

0- R B B B

50 100 150 200 250 300

74.0 .

100+ C16.0 fatty acid methyl ester

1 87.0
80|
604
40
20 143.1 [M-43]" M*

i 2272 31" 270.2

. 971 129.1 171.1 19%.2 23|9.2
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74.0

100+ 10Me16:0 fatty acid methyl ester
80
60
1 87.0
] |
40
[M-43]" M*
199.2 241.2 R 284.2
i " IM-29] |
171.1 955 2
Lo} | L L Ju o Al ll. N Il
e A L S
50 100 150 200 250 300
74.0 ) )
100‘_ i-C47.0 fatty acid methyl ester
80
60
1 87.1
] I
40
20 [M-43]"
1 143.1 241.2 M*
|
1 971 129.1 185.1 [M-29] 284.2
1 f I 199.2 ‘
1 157.1 255.2
0-
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74.0

100+ ai-C47,, fatty acid methyl ester
80
60
] 87|.O
40
20 .
] 97.1 143.1 _M-29] M
1 | 129.1 185.1 [M-43]" 255 2 284.3
i I 199.2 2412 |
O -
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_55.1 .
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80- 74.0
60
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74.0

74.0

87i0
100
87.1
101.0
I
1111
—
100

Ci7.0 fatty acid methyl ester

[M-43]"
143.1 2412

1851 1992 |
150 200 250
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171.1

199.2 5145
150 200

182
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25|5.2

250

300

i-C1s.0 fatty acid methyl ester

M+
298.2

300



69.1

100‘_ C1s.1a fatty acid methyl ester
i 74.0
80 e
] 83.1
60 -} |
1 87.0
40 [96.1
] | 981
- |_
204 11 1|.1 [M-32]"
] 123.1 M-74]" 264.2
1 ' 137.1 180.2 222.2 265.2 M
] 296.3
» J; ol ﬂ‘.,..z‘q’?.'z. e 2782 T
0- ooty gl sl ELE ol
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55.1 .
100—_ 69.1 C1s.1p fatty acid methyl ester
. 74.0
i [ —
80
60 83|.1
] 87.1
- |_
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| |
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74.0

100—_ C.s.0 fatty acid methyl ester
80
1 87.0
1 |
60
40-
20. 143.1 [M-43]" M*
] | 255.2 298.3
1 97.1 199.2 !
] ' 129.1 157.1 185.1 2132 2412 | 267.2
0 | |.|I| N I ] \ | \ L, \ L. 1 L |
psllo gl oo b psplps gl A
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74.0 )
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80
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60

404

20

100+

73.1

C.4.0 fatty acid methyl ester

M+
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971 N
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m' sl |l dudgs Jbdasd L [ '- fi 1 1 L, ul, 1 L 1 L Lo |.
e W gt o A
100 200 300 400
C14:0 B-hydroxy fatty acid methyl ester-trimethylsilyl ether
175.0
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|
89.0
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|
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100 150 200 250 300

185



C16:0 B-hydroxy fatty acid methyl ester-trimethylsilyl ether

1004 175.0 [M-15]"
: 343.1

80—5

60—5

40—5

50 100 150 200 250 300 350
100 73.0 ] ] ]
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100+ C22.0 a-hydroxy fatty acid methyl ester-trimethylsilyl ether
80+
60
] M-59]"
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40-
] 89.0
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20+
_ P 129.1 384.3 4273
1 159.0 .
] - M
] | 8993 | 4423
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80
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80

60

40

20
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Abundance
150000
140000
130000
120000
1100004
1000004

90000+
80000
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Abundance 73 Cholesterol, tms
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Abundance 73 B-Sitosterol, tms
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APPENDIX IV

A.4.1. Summary of sterol ratios in free lipids in core MBH 54/2.

Depth (m) brassicasterol sitosterol campesterol coprostanol epicoprostanol cholestanol
cholesterol cholesterol cholesterol cholesterol cholesterol cholesterol
0.5 0.58 0.80 0.44 - 0.21 0.78
1.1 - 0.83 -- 3.07 1.17 3.13
1.6 - 0.70 -- 1.49 0.78 1.76
23 0.58 1.09 0.44 -- 0.27 1.17
3.4 0.57 0.90 0.53 - 0.49 1.90
A.4.2. Summary of aquatic/terrigenous ratios for free lipids in core MBH 54/2.
Depth Fatty Acids. N Fatty Acids Alcohol n-sikanes
(12:0-18:0)/%(22:0-28:0) (14:0-18:0)/%(20:0-24:0)
0.5 1.50 3.71 0.60 0.25
1.1 2.32 7.25 0.01 0.63
1.6 3.28 6.45 0.41 0.69
23 1.00 4.41 0.54 0.20
3.4 0.72 5.72 0.38 0.07
A.4.3. Summary of carbon preference indices for free lipids in core MBH 54/2.
Doptn ) Chormer  NopSsemaenconos  mAlanes
CP|(12:0-34:Q CP|(14:0.§;0) (C22-C32) (C19-C35)
0.5 7.4 7.0 6.49 2.58
11 10.4 9.1 1.24
1.6 9.5 15.9 1.22
23 7.1 9.6 7.99 2.24
3.4 5.0 7.5 9.70 3.01

Non-saponifiable fatty acids: CPI ., s =

Saponifiable fatty acids: CPI g 4y, =

n-Alcohols: CPI ¢, ¢y =

n-Alkanes: CPI ¢4 ¢z =

[Cipg +2*(Coyp + Cigp + -+ Cp0 + Capg) + Cayol

[2*(Cyap + Cisp + -+ Capo + Cigo)l

[Cigo +2*(Cy0 + Cgo + -+ Copp + Cogg) + Cigol

[Cp +2*(Cyy +Cyps +

[2*(Cys0 +Cp + e + Cop + Ciso)]

+Cp+Cy) +Cppl

[2%(Cpy +Cps +

[Cio +2*(Cy +Cps +

+Cp +Cy1)l

+Cy +Cg3) +Cys]

[2%(Cp +Cp +
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A4.4. Chromatograms of free fatty acids in the saponifiable lipid fraction.
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A4.5. Chromatograms of free fatty acids in the non-saponifiable lipid fraction.
Abundance 16:0 0.5m (~1980)
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A4.6. Chromatograms of free alcohols in the non-saponifiable lipid fraction.
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A4.7. Chromatograms of free n-alkanes in the non-saponifiable lipid fraction.
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A.5.7. Summary of carbon preference indices, aquatic-to-terrigenous ratio, and
the (i-Cy5.0 + ai-C15.0)/Cy6.0 ratio for ester-bound fatty acids.

Z (CIZ:O — ClB:O)

(iCy50 +aiCys0)

Depth (m) CPl(2:0-30:0) CPl(12:0-20:0) CPl0:0-30:0) S (Caz0—Cono) Cos
0.5 6.48 6.68 6.09 2.46 0.18
0.7 9.63 10.78 6.56 5.07 0.25
1.2 9.82 11.04 6.02 6.90 0.27
14 9.06 11.01 4.54 6.57 0.19
1.6 8.14 8.88 6.21 4.78 0.32
2.3 6.64 7.38 4.93 3.90 0.11
3.0 6.15 6.46 5.54 2.49 0.09
3.3 6.72 6.75 6.67 1.21 0.06
35 6.31 6.71 5.43 3.04 0.12
3.9 551 6.25 4.26 2.76 0.07

A.5.8. Summary of carbon preference indices, and the aquatic-to-terrigenous
ratio for amide-bound fatty acids.

Z (012:0 — ClB:O)

Depth (m) CPl12:030:0) CPlu2:0200) CPlo:0-50:0) > (C120 — Cono)

220 280
0.5 6.00 5.91 6.15 1.59
0.8 5.33 5.35 5.29 3.23
1.2 7.86 8.85 6.04 2.93
1.4 8.34 10.16 5.72 2.87
1.6 7.93 8.93 6.18 2.86
2.3 5.88 7.33 3.79 3.10
2.6 5.71 6.54 4.59 2.06
3.1 4.84 5.22 4.39 1.77
3.3 4.51 5.18 3.53 2.39
3.7 4.04 5.57 2.75 1.82
3.9 6.72 7.52 5.05 3.43

204



v.'82- 9.vZ- 29°Ge- 6L.°¢tc 0cve- 8v'Le- £g'ee L9've- 99've- ey've- G9'ce- 08¢e- 08°Ge- 6t
Ly'0e- 68’6 00'8¢- 99'0¢- 89've- ¢8'Ge- L9've- ce8e- £€°9¢- 11°8¢- L'e
y0'6¢- ¢6'9¢-  8ELe- 1G'9¢- GTve- L6°€C- Sl'ee- 1262 y6°¢e- 69°¢e- 04'9¢- ee
06'ce-  l6'0E-  Of'LE- 0e'0e- 90'8¢- 62°9¢- v2'oce- 64'9¢- 61°9¢- ev'0e- I'e
6L'€e- 88'6¢  £€6C- 434 G6'9¢- 89°G¢- 89'9¢- [AA TA S0'6¢- 60'8¢- 10'62- 16'6¢" cL6e- 9¢C
¢s'ce- 80°0e-  0C6e- 6¢'8¢- £v'8¢- 28'9¢- 26l 81'9¢- 00'8¢- 18'8¢- 66°0¢- €l6¢- ¥6'8¢- £
GE'ce- 6¥'¢e-  9c6e L6°LC 90°'8¢- 20'9¢- 60'9¢- WA Sv'Le- §g8'8c- ¢6'Le 9c'6e- 1L9'82- ¥1'8¢- 9l
89°¢e- ye'6c- 16'6¢- 19'8¢- 1e°12- 6G'6¢- 80'8¢- 81°0¢- 9¢'6¢- 86'8¢- vi

9.'6¢- 9C'6¢C 66°LC- 8G'8¢- 08°L¢- 99'9¢- 0¢'9¢- (XA 80°L2- 0c'le¢- L6'L2- SL'6¢- li'8e- [

0gce-  Ll'8C 1244 ye6¢- 8.°9¢- Gl'le- 20'8¢- ov'Le- va'le- 9e°0¢- €€l £8'8¢2- 81'8¢- 99'/¢- 80

0:0¢ 0:82 0:9¢ 0:ve 0:ze 0:0C 0:81 0:L1 0:lite 0:L)! 0:91 0:91! 0:S1 0:gile 0:G! o:vi :szmvo

"2/¥S HEN 8103 Ul spioe Aje} punog-193se Jo uoisodwod (%°/,) O, 9 “1'9°V

IA XION3ddV

205



0g'ce-

yc6¢-

g1€2 6Lv2 082 L8z ev'9z- 5022 £8'92- 6¢

Zile- se'0e- 9/°1€- z8'9z- 0€'8e- 9022 Le

£0ze- €9'/2- 66'v2- Ve 85'9¢2- ov 1z v ve- $6°6e- 92'9z- £t

VLl 8l'9z- 16'92- 6L L2 ez 1182 £0'62- be

Lhze- ve'62- 182 1z 2512 sz'8z- 6972 58'9z- ve'62- 9z

ol'sz- 206z 96'/2- 69°Gz- 99'/2- 98'8z- €T

0gee- 68'2e- £5'62- 559z 1882 v9'62- €z 12 ov'9z- 95'9z- 9l

Ve ve- 0962 5'12- 12°0¢- 86'62- 8912 z16z- vl

Ve L2 98'82- 06'92- ov'9z- z

Lyee- z8'sz- 26'92- 05'6Z- 20

vZ L2 Ve 56'2e- oL'€T- 6822 v9'Se- sg'ee- 259z 06'L2- 50
0:0¢ 0:8Z 0:92 0:v2 0:2Z 0:02 0:8l 0:91 0:p1 (w) yideq

"Z/¥S HBIN 8102 Ul spioe Ajey punog-spiwe Jo uonisodwod (%) O, 9 '2'9'V

206





