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ABSTRACT 

Even though unidimensional item response theory (IRT) provides a better framework for 

practical test settings than classical test theory (CTT), theoretical and empirical evidence 

shows that most response data violate the assumption of unidimensionality. There are 

several computer programs dedicated to estimating parameters based on the 

multidimensional perspective (MIRT). However, their accessibility is still costly, and 

they are not easy to use. In this paper, we present a SAS macro called MDIRT-FIT, to 

increase accessibility to the benefits obtained from this recent measurement theory 

development. The program is developed to estimate parameters based on a compensatory 

multidimensional item response theory (MIRT) model for dichotomous data. The full 

information item factor analysis model with an EM algorithm suggested in Bock & 

Aitken (1988) is implemented in the SAS programs. The estimation program written in 

SAS/IML® provides both parameters of MIRT and parameters of the factor analysis 

model with their associated standard errors and overall model fit statistics. The maximum 

number of latent traits that can be estimated with this program is limited to five latent 

dimensions because of both computational burden and practical sufficiency. The 

accuracy and stability of the SAS macro is examined by utilizing simulated data of 

examinees’ responses. The PIAT math test, a subset of the Peabody Individual 

Achievement Test, was examined to validate the comparability of the SAS macro to 

TESTFACT which is widely used for estimating parameters of MIRT models.

 xii



Multidimensional Item Response Theory: A SAS 

MDIRT Macro and Empirical Study of PIAT 

Math Test 

 

Introduction 

Emergence of Modern Test Theory 

Owing to its role within society, measurement has been a hot area for a long time. 

For example, society has encouraged measurement experts to invent precise instruments 

to measure intelligence, and has used intelligence as a selection criterion. Besides being 

used for selection, measurement has often been used as a tool for assignment of 

individuals to various positions of a society. On the other hand, members of society have 

a strong desire to actualize themselves. Being selected is important because it means 

successful competition and a chance to fulfill oneself. Therefore, measurement by testing 

has been a subtle and complicated arena where the roles of society and the individual 

may often collide.    

Realizing the critical role of measurement to society and its members, 

measurement experts started developing fair measurement procedures that satisfy both 

society and the individuals. Since then, good measurement tools have been sought so that 

society could select qualified applicants, and its members could be tested by a fair test. In 

order to make a good test what was needed was a good test theory quantifying the 
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property of an object being observed, assigning a number to it, and providing for 

interpretation of the meaning of the number assigned. What was additionally required of 

a desirable test theory was that it should be not only theoretically plausible but could also 

be empirically fit to observed data and practically applied to real world settings. Several 

decades of effort searching for the desirable characteristics of a good test theory were 

captured in the concepts of validity and reliability of a test, which are believed 

prerequisite for a good test theory.   

However, constructing a valid and reliable test is a very complicated process, 

especially when the attribute of an object being measured is not observable (e.g. 

intelligence). In measurement, the abstract and philosophical construct is called various 

names such as latent ability, attribute, factor, or dimension (Hambleton & Swaminathan, 

1985). The underlying latent variable is not directly observed but is measured by way of 

manifest variables which are assumed to have a significant correlation with the targeted 

latent trait. What has been needed was a reasonable latent trait theory that stated the 

functional relationship between observed variables and the underlying latent trait.     

It was classical test theory (CTT) that drew the attention of psychological and 

educational researchers in their attempt to measure the underlying latent trait. CTT 

provides a simple model which states that the observed score on a test is the sum of the 

true score and measurement error. It assumes that the expected mean of the observed 

score is equal to the true score underlying the test performance of an examinee if she or 

he is administered the same test infinitely many of times. CTT has been helpful in 

developing important concepts for item and test analysis, and test construction. Those 
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concepts include the reliability coefficient, the correlation between replicated 

measurements, the Spearman-Brown formula for test lengthening, Kuder-Richardson’s 

coefficients for internal inconsistency of a test comprising binary items, Cronbach’s alpha 

for internal consistency, and the corrections for attenuation and validity of a test.  

However, CTT has exposed many undesirable features in practical testing 

situations because it heavily relies on the concept of parallel forms, which are nearly 

impossible to achieve in realty. Researchers must be content with either lower-bound 

estimates of reliability or reliability estimates with unknown biases (Hambleton and van 

der Linden, 1982).  

Another test theory which is more appropriate for measuring an underlying latent 

trait and overcoming the limitations of CTT is item response theory (IRT). The concept of 

modern IRT traces back to Thurstone (1925), when he tried to arrange the items of the 

Binet & Simon test used for estimating children’s metal age on an age-graded scale (Bock, 

1997). Thurstone also plotted each item with the percentage of correct responses to an 

item on the vertical axis and chronological age of a respondent on the horizontal axis. His 

work helped practitioners at that time to estimate children’s mental age because they 

could rank test items from easy to hard on the continuum of mental intelligence and 

narrow them down by administering items with high discriminating power for a specific 

mental age. It is noticeable that the S-shaped plot he drew is very similar to the modern 

item characteristic curve, which is at the core of IRT.   

IRT is a modern test theory that provides a more intuitive and more informative 

measurement model than classical test theory. IRT is more intuitive than its predecessor 
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in that, unlike classical test theory, IRT has accounted for the variability of items in their 

difficulty and discrimination power as a source of variability in human performance. In 

other words, IRT makes it possible to measure proficiency level on the latent trait after 

controlling for nuisance variables (e.g. item difficulty, item discrimination, pseudo 

guessing parameter). IRT is more informative than CTT in that it allows for 

administrators to identify the underlying proficiency level of test takers more precisely 

with smaller measurement error.    

IRT provides many advantages that its old competitor does not in practical 

testing situations. First, the estimated item parameters are invariant with regard to who is 

sampled from the population, and the estimated proficiency level remains constant 

regardless of which items are administered if the item characteristic curve fits the given 

data well. In CTT, the estimated item parameters depend on the characteristics of a group 

of respondents. The calibrated item difficulty tends to be higher for test takers with a high 

proficiency level than test takers with low proficiency level. The estimated item 

discrimination tends to be higher for a heterogeneous group than a homogeneous group 

on the latent trait. In other words, the usefulness of estimated item parameters is limited 

to the group from which they are obtained and the meaning of the estimated proficiency 

levels is limited to the item set from which they are obtained (Hambleton, 1991). 

Second, IRT is more suitable than CTT when the proficiency levels of examinees 

are compared. CTT assumes that the standard error of a test is constant across the entire 

continuum of the targeted latent trait. However, this assumption is not usually correct, 

because the standard error is minimized when the overall test difficulty is matched with 
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the underlying latent trait level of an examinee, and it is larger for those with a high or 

low proficiency level. A standardized test based on CTT gives the most valid 

measurement of examinees whose proficiency level is close to the test difficulty. 

Therefore, comparing two test scores from different sets of items is not easily handled 

because they are not on the same scale. Through IRT, two test scores from two different 

item sets can be easily equated using linking items, because they are compared on the 

same scale (e.g. they are linearly related). 

Third, IRT can provide a more efficient test in terms of test length or 

measurement precision. Typically, with a standard test based on CTT an examinee is 

required to respond to all items, from the easiest item to the hardest item, to estimate the 

proficiency level underlying his or her response to the items. The main reason that a 

standard test does not give a precise estimate for those who have a high or low 

proficiency level in terms of standard error is that the difficulty of items is not matched 

with their proficiency level. It is well known that when hard items are administered to 

respondents with low proficiency level or easy items are given to respondents with high 

proficiency level, measurement error increases. On the other hand, IRT allows the test 

administrator to select an item approximately matched with the proficiency level of an 

examinee, because it is possible to predict how an examinee performs on a particular test 

item using the item characteristic curve.  

Fourth, CTT depends on the important parameters of the latent trait (true score) 

on the assumption that strictly parallel tests are available (Lord, 1980). It is nearly 

impossible to meet this assumption in reality because it requires the same mean, same 
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variance between two tests, and same covariance with other criterion tests. However, IRT 

provides the concept of test information, which replaces the reliability index in CTT.  

Fifth, IRT makes computerized adaptive test (CAT) come to the life. In CAT, test 

items are automatically selected by the computer from an item bank containing calibrated 

items. In a traditional paper and pencil tests based on CTT, examinees are required to 

attempt exactly the same items from the easiest and the hardest regardless of their 

proficiency level, which increases the measurement error of examinees whose 

proficiency level is higher or lower than average. However, CAT based on IRT can 

successively present items matched to the current estimated proficiency level of an 

examinee, depending on the previous responses of the examinee, until some desired 

measurement precision is reached. Those procedures result in more efficient testing than 

that based on CTT, in terms of test length or measurement precision.          

  

Overview of Unidimensional IRT Models 

Item Characteristic Curve (ICC) 

The item characteristic curve (ICC) is at the core of IRT in that the validity of the 

process of estimating parameters entirely depends on its appropriateness to model the 

testing behavior of examinees. It is a probabilistic model that describes the interaction 

between the underlying proficiency level of an examinee and the item parameters 

(Ackerman, 1992). ICC is a mathematical function that predicts the probability that a 

respondent at a certain proficiency level makes a successful response to an item. When 

the model fits response data, it allows test administrators to predict how a particular 
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examinee performs on a particular calibrated item. Therefore, in CAT, the proficiency 

level of an examinee can be estimated more precisely and more efficiently by presenting 

items matched with the examinee’s latent trait level.      

 

The Two-Parameter Normal Ogive Model 

The normal ogive model (cumulative normal distribution) was used to fit the data 

from early psychophysical experiments. It was chosen because of not only its similarity 

to the observed data from early psychophysical experiments but also its well-established 

mathematical characteristics. The mathematical form of the normal ogive model is 

expressed below.  
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)( jiP θ  is the probability that examinee j correctly responds to item i  

ix  is an actual response to item i ( 1 = correct response, 0 = incorrect response)  

iα  is discrimination parameter of item i 

iβ  is difficulty parameter of item i 

jθ  is trait parameter of examinee j 

iz  is limit of the integral, )( iji βθα − , in standard deviation units 

 

Even though the normal ogive model was first used for the ICC, the logistic 

ogive model is preferred because of its similarity to the cumulative normal distribution 
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and its computational efficiency. Haley (1952) showed that the difference between the 

normal ogive model and the logistic ogive model is smaller than 0.01 across the entire 

continuum of the latent trait in terms of predicted probability of correct response (when 

the 1.702 adjustment constant is used). In addition, it is an attractive alternative to the 

normal ogive model because it does not involve numerical integration that causes 

additional computational burden. In this dissertation, two computer programs (SAS IRT-

FIT and SAS POLYIRT-FIT) based on the logistic ogive model are developed to analyze 

dichotomously-recorded items, which are most commonly used in general test settings.  

 

The Two-Parameter Logistic Model (2PLM) 

The two-parameter logistic model (2PLM) has two item parameters that 

determine the shape of the item characteristic curve. Item difficulty is a location 

parameter that is determined by the θ  value at which an examinee has a probability of 

50% for a correct response. A difficult item is located to the right (large θ ) and an easy 

item is located to the left (small θ ), as shown in the Figure 1 (compare item 1 with item 

2), when the other parameters are held constant. The discrimination parameter is 

proportional to the slope at the inflection point. When the other parameters are fixed, an 

item with high discriminating power has a steeper slope than an item with low 

discriminating power, as shown in Figure 1 (see item 2 and item 3). The probability of a 

correct response given the item parameters and the ability parameter is defined as below. 
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)( jiP θ  is the probability that examinee j with θ  getting the item i correct  

 is 2.718, the base of the natural logarithm  e

D is 1.702, which is a scaling factor  

ix  is a response to item i (1 for correct response, 0 for incorrect response)  

iα  is discrimination parameter of item i  

iβ  is difficulty parameter of item i  

jθ  is ability parameter of examinee j 
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Figure 1. ICC of two-parameter logistic model 
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The Three-Parameter Logistic Model (3PLM) 

In the three-parameter logistic model (3PLM), a pseudo guessing parameter is 

added to model the phenomenon that an examinee with a low ability gets an item correct 

by chance. The pseudo guessing parameter is a lower asymptote of the item characteristic 

curve, as shown in Figure 2. It is notable that in the 3PLM, the difficulty parameter is not 

defined on the trait continuum where an examinee has a 50% chance to get the item 

correct. It is determined where a respondent has [c + (1-c)/2] chance to get the item 

correct (e.g. difficulty of item 2 = 0.2+(1-0.2)/2 = 0.6) because of the effect of the 

guessing parameter on the ICC. The 3PLM becomes identical to the 2PLM when the 

pseudo guessing parameter is zero. The mathematical form of the three-parameter logistic 

model is expressed as below. 

 

)(, 1
1)1(),,|1()(

ijiDiijiiiiji e
cccxPP βθαθβαθ −−+

−+=== , where    (3) 

 

ic  is guessing parameter of item i, and 

all the other components are defined as for the two-parameter logistic model. 
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Figure 2. ICC of three parameter logistic model 

 

The Graded Response Model for Polytomous Data 

 Many psychological testing instruments measuring attitude or personality include 

multiple ordered-categories items (e.g Likert-type item) for which the previous models 

are not appropriate. Samejima (1969) suggested an IRT model that can handle items that 

have multiple categories and are recorded in an ordered fashion. It is an extension of the 

two parameter logistic model in that the same model is used for boundary characteristic 

curves (Baker, 1992) that are needed to estimate boundary threshold parameters. 

Boundary threshold parameters provide the major advantage of Samejima’s polytomous 

model over the previous IRT model for dichotomous data. The latent trait level can be 

more precisely estimated because the successive boundary threshold parameters can 

extract more information about the underlying trait level of an examinee than a single 
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threshold parameter. The strategy Samejima used to generate boundary characteristic 

curves is to treat the response of examinees as dichotomously recorded. For instance, 1 is 

assigned to the first category as a correct response and 0 is assigned to the remaining m-1 

categories as incorrect responses. For the second boundary characteristic curve, 1 is 

assigned to categories 1 and 2 as a correct response while 0 is assigned to the rest of the 

categories as incorrect responses, and so on. The model for boundary characteristic 

curves is expressed as  

 

)(
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1
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ikjiDjk e
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k = 1, 2 …m-1 ( m is the number of categories ),  

)(*
jkP θ  is the probability that examinee j responds to category k or a lower category 

1*
0 =P , ,  0* =mP

THETA

4.003.002.001.00.00-1.00-2.00-3.00-4.00

PR
O

B

1.0

.8

.6

.4

.2

0.0

 

 

                                    P                                       *
1P *

2P *
3P *

4

 

 

 

 

 

Figure 3. Boundary Characteristic Curves of Graded Response Model  
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In Figure 3, four boundary threshold parameters (-1.5, -0.5, 0.5, 1.5) and a 

common discrimination parameter of 1.5 are used for a graded response item with five 

ordered categories. Boundary characteristic curves are used to produce item response 

category characteristic curves (IRCCC) that define the probability that an examinee 

responds to a particular category of an item (Baker, 1992). The relationship between the 

boundary characteristic curve and IRCCC is expressed as    
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The narrower and the more peaked the IRCCC’s are, the better they are at discriminating 

among latent trait levels (Embretson and Reise, 2000). Boundary threshold parameters 

are determined at the intersection where two adjacent IRCCC’s meet. 

 

Rasch vs. Two or Three Parameter Models 

The one-parameter logistic model (known as Rasch model) is not included in this 

dissertation not because it is unimportant, but because the procedure for estimating 

parameters is relatively easy. However, it has interesting features that the 2PM and 3PM 

do not. First, it estimates only one item parameter (difficulty), assuming all items have an 

equal discriminating power. Second, a different estimation method, called conditional 

maximum likelihood (CLM), is utilized. The sufficient statistic (the sum of correct 

responses) for the underlying latent trait is available in the estimation process. Third, it is 

based on a different philosophy about measurement. It puts more emphasis on obtaining 

desirable measurement properties (called specific objectivity) than capturing all aspects 

of the observed response data in developing item response models.        

This has been a controversial issue between these two different philosophical 

lines throughout the history of IRT models. Theorists following Rasch have asserted that 

IRT models providing specific measurement property should be preferred. In fact, it is 

only the Rasch model that provides a kind of ratio scale for estimated ability and item 

parameters. To be more specific, it is true in the Rasch model that two estimated 

proficiency levels can be compared in terms of the probability of correct response to an 

item without reference to item parameters, and vice versa. On the other hand, theorists 
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advocating the use of 2PLM and 3PLM have insisted that models should not determine 

the response data and the empirical data themselves should determine the properties of 

the model. Thissen (2001, p. 90) mentioned that “the properties of the model for 

measurement are a consequence of the observed item-response data, as summarized by 

the parametric model: Items are assumed to measure as they do, not as they should.”     

 

Advent of Multidimensional Item Response Theory (MIRT) 

Advantages Multidimensional IRT over Unidimensional IRT 

Even though unidimensional IRT gives better solutions to the test practitioner 

than CTT, a more sophisticated test theory like multidimensional item response theory 

(MIRT) has been required to accommodate a complex reality. The major problem with 

unidimensional IRT is that it cannot handle many empirical data that are potentially 

multidimensional. If the unidimensional IRT model does not fit a set of response data, we 

might suspect that the test is measuring more than two underlying latent traits. Many 

researchers have shown that psychological factors like cognitive skill, motivation, and 

test-anxiety, as well as the targeted latent trait, have an effect on the test performance of 

an examinee. In reality, it is almost impossible to make a test that purely measures a 

single latent trait only, which is especially true when a test measures a latent construct 

related to human cognition.  

Using multidimensional items to measure a single trait may weaken the construct 

validity of a test, because the construct validity of the test depends on the degree to which 

a theoretical construct and a specific measuring tool or a procedure agree. When the 
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assumption of unidimensionality is violated, the main source that decreases construct 

validity comes from the fact that there is no unique one-to-one matching between 

multidimensional latent spaces and the targeted unidimensional space (Ackerman, 1992). 

This means that it is not even guaranteed that examinees at the same unidimensional 

proficiency level are measured on the same composite of multiple abilities when they are 

administered multidimensional items.  

What makes it worse is that multidimensional trait dimensions are not 

independent of item difficulty (Reckase, 1985; Reckase, Carlson, Ackerman, & Spray, 

1986; Ackerman, 1989; Ackerman, 1991). They showed that easy items tend to measure 

the targeted trait and difficult items tend to measure the nuisance trait. This implies that 

examinees taking a CAT might be measured on completely different composites of 

multiple latent traits, depending on their unidimensional proficiency level (Ackerman, 

1991). The construct validity of CAT based on unidimensional IRT can be secured only 

when the assumption of unidimensionality is satisfied. The net result is that the more a 

test deviates from unidimensionality, the more the construct validity of the test is likely to 

decrease.  

Another limitation of applying a unidimensional IRT model to a 

multidimensional test is well documented by many researchers (Ackerman, 1992, 1996; 

Reckase, 1985; Reckase & McKinley, 1991). Ackerman explained why examinees cannot 

be ranked in order as is done on a single dimension when the assumption of 

unidimensionalty is violated. From the unidimensional IRT perspective, the justification 

of assigning a meaningful score to the latent construct of an examinee entirely depends 

 16



on the extent to which a test measures the latent trait. Furthermore the invariant property 

of the estimated item parameters and estimated latent trait level does hold only if the 

assumption of unidimensionality is satisfied. Therefore, when a test is measuring more 

than two underlying latent traits, ordering examinees on one dimension does not make 

sense because they are identified as coordinates on multiple latent trait spaces. From a 

multidimensional IRT perspective, the concept of invariant estimated item parameters and 

proficiency level need to be modified because of the multidimensionality of test items. 

Estimated item parameters are invariant and proficiency level estimates of examinees 

remain constant only if test items are measuring the same composite of multiple latent 

traits. 

In addition, the concept of differential item function (DIF) based on 

unidimensional IRT can be more clearly comprehended from a multidimensional 

perspective. It is well known that the main source of differential item function (DIF) is 

that test items are measuring unintended latent traits. Oshima and Miller (1992) examined 

how often multidimensional items whose means on nuisance trait for two subgroups are 

different can be identified as biased items using  item bias indices based on a 

unidimensional IRT. Multidimensional items in this study are detected as biased most of 

the times, albeit the detection rate of DIF depends on the number of multidimensional 

items, discrimination power of those items, and the degree to which those items measure 

the nuisance trait. The result agrees with what Ackerman (1992) suggested for potentially 

biased items in which the conditional means or variances of subgroups on a nuisance trait 

are different. 
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Finally, the computerized adaptive test (CAT) based on MIRT gives advantages 

over CAT based on traditional IRT. Segall (1996) showed that administering 

multidimensional items not to measure a single trait but to measure multiple traits at the 

same time could obtain substantial gains over administering separate unidimenisional 

CAT’s. First, he demonstrated that the multidimensional item selection strategy 

incorporating a Bayesian framework could considerably increase the efficiency of a 

measurement. When the dimensions are correlated, using the prior knowledge of one 

dimension for the rest of the dimensions in item selection can result in the reduction in 

test lengths or greater precision. In addition, multidimensional CAT provides more 

adequate and efficient coverage of content in CAT, which is almost impossible in 

unidimensional CAT because of the confounding between item difficulty and latent 

dimensions. Therefore, when the assumption of unidimensionality is violated, MIRT is an 

attractive alternative to unidimensional IRT because the multidimensional perspective 

may provide a better way to get around the problems that unidimensional IRT cannot 

easily handle.  

 

Overview of MIRT Models 

Compensatory Multidimensional 3PL Model 

There are two types of MIRT models, depending on whether compensation of 

high proficiency on one trait for low proficiency on other traits is available or not. 

Reckase (1983) suggested a multidimensional extension of the three-parameter logistic 

model. In the model, the probability of a correct response to an item is linearly related to 
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the sum of k weighed proficiency levels. Also, it is evident that the weights represent the 

impact on the dimensions and they are compensating for each other. The mathematical 

function is expressed as below. 
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D is scaling constant which is 1.702 

ia  is a row vector of discrimination parameters of item i on k dimensions (k = 1, 2, … g) 

id  is a difficulty parameter of item i 

ic  is a guessing parameter of item i 

jθ  is a row vector of ability parameters of examinee j on k dimensions (k = 1, 2, … g) 

 

Noncompensatory Multidimensional 3PL Model 

The noncompensatory MIRT model was suggested by Sympson (1978). Unlike 

compensatory MIRT, the probability of successful performance on an item depends on 

the product of the success on each of the underlying dimensions. Therefore, failure on 

any dimension ends up with failure to solve the item. In other words, higher proficiency 

on one dimension does not compensate for lower proficiency on the other dimensions.      
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D is scaling constant which is 1.702 

ika  is discrimination parameter of item i on kth dimension ( k = 1, 2, … g) 

ikb  is difficulty parameter of item i on kth dimension ( k = 1, 2, … g) 

ic  is a guessing parameter of item i 

jkθ is ability parameter of examinee j on kth dimension ( k = 1, 2, … g) 

 

Graphical Representation of Multidimensional Items 

Displaying a multidimensional item in the space of multiple latent traits is 

restricted to the two-dimensional case because of the limitation of visual representation. 

McKinley & Reckase (1983) proposed a multidimensional two parameter logistic model 

(M2PLM) which is a direct extension of unidimensional 2PLM. The mathematical form 

of the model is expressed as below and examples of six multidimensional items are 

presented using the model.  
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Figure 5a. IRS of a Multidimensional item with 5.0,0,0.2 21 === dαα   
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Figure 5b. IRS of a Multidimensional item with 5.0,0,7.0 21 === dαα  
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Figure 5c. IRS of a Multidimensional item with 5.0,0.2,0 21 === dαα   
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Figure 5d. IRS of a Multidimensional item with 5.0,7.0,0 21 === dαα  
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Figure 5e. IRS of a Multidimensional item with 5.1,5.1,5.1 21 −=== dαα   
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Figure 5f. IRS of a Multidimensional item with 5.1,5.1,5.1 21 === dαα  
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Reckase (1885) named the multidimensional trace surface of a multidimensional 

item as the item response surface (IRS) rather than ICC as in unidimensional IRT. The 

IRS has different characteristics from undimensional ICC. First, the probability of correct 

response monotonically increases as each level of latent traits increases and low 

proficiency level on one dimension can be compensated for high proficiency level on any 

other dimension. Second, the shape of The IRS depends on not only a single difficulty 

parameter but multiple discrimination parameters of an item. For example, two items 

presented in Figure 5a and Figure 5b show the effect of discrimination power on IRS. 

They measure only the first dimension but the item in Figure 5a has more discriminating 

power than the item in Figure 5b giving a steeper IRS. Similarly, the items displayed in 

Figure 5c and Figure 5d primarily measure the second trait only. However, the item in 

Figure 5c discriminates the second trait better than the item in Figure 5d. Figure 5e and 

Figure 5f are showing two multidimensional items that are equally discriminating two 

latent traits well. The difference between them is that the item in Figure 5e requires 

higher proficiency level on both traits than the item in Figure 5f.   

However, the interpretation of the IRS is not as easy as it looks at the first glance. 

It is notable that the IRS of an MIRT model gives numerous slopes depending on 

different combinations of latent traits. Ackerman (1996) showed graphically how the 

information of an item varies depending on the different combinations of multiple latent 

traits. The item difficulty and item discrimination of a multidimensional item depend on a 

particular composite of latent traits. Reckase (1985, 1991) suggested how to determine 

multidimensional item difficulty (MDIFF) and multidimensional discrimination (MDISC) 
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of a multidimensional item hoping that characterizing multidimensional items with a 

single number is helpful in ranking and selecting them. Those formulae are shown below.  
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iMDISC  multidimensional item discrimination of item i 

iMDIFF  multidimensional item difficulty of item i 

ikα   slope of item i on kth dimension 

id   multidimensional difficulty of item i 

ika   angle between a line made by MDIFF and kth axis for ith item 

 

 MDIFF is the distance from the origin to the point of the steepest slope in θ  

space in the direction that gives the best discriminating power. MDISC is a sensitivity of 

a multidimensional item to the difference in a particular composite of traits in the 

direction that gives the best discriminatory power. Both MDIFF and MDISC are 

convenient to summarize multidimensional items and may be used as the counterparts of 

unidimensional IRT. However, the item information function (MIF), an additional 

important concept in MIRT, depends on the direction that is being measured in θ  space, 

which is determined by the formula below. In summary, the most informative point of an 
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multidimensional item can be uniquely determined with the information of MDIFF, 

MDISC and the angle that is being measured in θ  space. 
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a a vector of angles determined by  

)(θiaI  the information of item i in the direction of a in M2PLM 

iu  a vector of directional cosine 

(Reckase & McKinley, 1991; Reckase, 1997) 

 

Computer Programs for IRT Models 

Many computer programs conducting IRT parameter estimation have been 

developed to meet the increasing computational demand. Popularly used computer 

programs based on unidimensional IRT are LOGIST (Wingersky, 1983), BILOG 

(Mislevy & Bock, 1983), PARSCALE (Muraki & Bock, 1996) and MULTILOG (Thissen, 

1991). They can be categorized depending on the response type of the data and the 

estimation method implemented. LOGIST and BILOG are both used to analyze 

dichotomously responded data, but they are different in that the joint maximum 

likelihood estimation method is implemented in LOGIST whereas the marginal 

maximum likelihood estimation method is implemented in BILOG. PARSCALE is used 

to estimate parameters when the response categories are graded as in Likert-type scale. 

MULTILOG is used when the responses of examinees are nominally scored. 
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 Since the advantages of a multidimensional approach to measuring underlying 

latent traits over a unidimensional approach were recognized in the testing arena, the 

demand for computer software that can implement multidimensional test theory has 

increased. Commonly used computer programs equipped with a multidimensional 

perspective are MIRTE (Carlson, 1987), TESTFACT (Wilson, Wood, & Gibbons, 1984) 

and NOHARM (Fraser, 1988). Those programs are flexible in that they can be used to 

estimate parameters based on both unidimensional IRT and multidimensional IRT but 

they have been developed from distinctive principles. In MIRTE, which is an updated 

version of MAXLOG (McKinley & Reckase, 1983), the joint maximum likelihood 

estimation method suggested by Birnbaum (1968) is expanded to the multidimensional 

perspective. Full information item factor analysis using the EM algorithm is implemented 

in TESTFACT. In NOHARM the normal ogive ICC is approximated by a third degree 

Hermite-Tchebycheff polynomial with least squares criterion.  

 

Development of SAS IRT Programs 

Research Topics 

The primary purpose of the current dissertation is to develop reliable and precise 

SAS computer programs that can be used to calibrate item parameters and estimate the 

proficiency level of examinees. Two computer programs that conduct parameter 

estimation based on unidimensional IRT are developed to accommodate various response 

types. First, a computer program implementing the marginal maximum likelihood 

estimation method suggested by Bock (1981) is developed to deal with dichotomous data. 
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Second, another computer program based on the polytomous IRT model by Samijima 

(1969) is developed to analyze categorical and ordered response data.  

The unidimensional estimation program is extended to the multidimensional 

perspective, which is needed to reveal a more complex and more realistic structure of 

latent traits. The last computer program, based on full information factor analysis (Bock, 

Gibbons & Muraki, 1988), is developed to estimate parameters of multidimensional items. 

Even though the multidimensional normal ogive model was suggested to describe the 

interaction between multiple latent traits of an examinee and a multidimensional item, the 

multidimensional logistic ogive model was implemented in the SAS MDIRT macro 

because of the computational efficiency and numerical equivalency (| |)()( zz ψφ −  < 0.01 

for all z). 

Following, the computer programs developed in this study will be simulated with 

computer-generated data to examine the stability, precision and comparability to their 

competitors (e.g. BILOG, PARSCALE, and TESTFACT). In addition, newly developed 

SAS macros are demonstrated and validated with an empirical application. The math 

items from the Peabody Individual Achievement Test ( PIAT-Math ) will be used to 

validate and demonstrate the utility of the SAS IRT programs.  

 

Computer Language used in the Study 

Albeit item response theory has come to fruition as computer technology has 

advanced, there are still some obstacles to make it easily accessible. In the market, there 

are several computer programs dedicated to IRT, but accessibility to them is still costly 
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and requires quite some time in getting used to the program language. The computer 

programs developed in this research are written in SAS, which is one of the most popular 

and familiar statistical packages and data management to statistics-related people. This 

will hopefully increase availability and accessibility to IRT estimation software. The SAS 

interactive matrix language (IML) is used because it is a powerful and flexible 

programming tool, which makes it easy to use for matrix mathematics.   

 

The Estimation Method in SAS Unidimensional IRT Programs 

 In this dissertation, the marginal maximum likelihood estimation (MMLE) 

method for the two parameter logistic model and the Bayesian marginal maximum 

likelihood estimation (BMMLE) method for the 3PLM are implemented. They not only 

overcome some limitations associated with other estimation methods, but also facilitate 

the calibrating process by applying the EM algorithm (Bock, 1981). It is well known that 

estimated structural parameters are not necessarily consistent when structural parameters 

are jointly estimated with incidental parameters (Neyman & Scott, 1948). In IRT, item 

parameters are considered as structural while parameters of the underlying latent trait are 

considered as incidental, because the number of ability parameters estimated increases as 

the number of respondents increases. For the Rasch model in which all items are assumed 

to have the same discrimination power, the conditional maximum likelihood estimation 

method can be an alternative to MMLE because it provides a sufficient statistic (e.g. the 

sum of correct responses) for latent trait level at each level of the latent trait. However, 

this does not hold for the two or three parameter model.  
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In MMLE, assuming the population distribution of a latent trait is known, item 

parameters are estimated independently of incidental parameters by integrating over the 

distribution of the latent trait. Thus, MMLE is freed from the inconsistency problem, 

which is not true for other estimation techniques (Baker, 1992). However, MMLE does 

not provide an appropriate estimate for an item to which all examinees respond correctly 

or an item to which all respondents answer incorrectly. In addition, MMLE is not capable 

of calibrating the proficiency level of an examinee when she or he makes all correct 

responses or all incorrect responses to the test items, unless some constraint is imposed. 

In contrast, BMMLE assumes a distribution of parameters in the population, which 

prevents item or proficiency parameters from drifting toward positive or negative infinity.         

 

Three Steps of Estimation common to all SAS Unidimensional IRT Programs 

 The process of estimating parameters consists of three stages. In the first stage, 

initial values, which are used as starting values in the next stage, are computed. Obtaining 

initial values close to true parameters is important because it reduces the number of 

iterations required in estimating parameters. The importance of good starting values 

becomes more evident when the number of estimated parameters for an item increases. 

Baker (1988) showed that whether the Newton-Raphson iteration process converges 

depends on initial estimates being very close to the actual value when the guessing 

parameter is added.     

       In the second stage, the item parameters are estimated by implementing the 

estimation method of marginal maximum likelihood with the EM algorithm. The EM 
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algorithm (Damster, Laird, and Rubin, 1977) is divided into two processes, which are the 

expectation process and the maximization process. The expected posterior probability of 

correct responses to an item conditional on each trait level is computed in the expectation 

process and the item parameters are estimated at the value that maximizes the likelihood 

function based on the expected posterior probability in the maximization process. Those 

two steps are iterated until the convergence of estimated parameters is achieved by using 

the Newton-Raphson iteration method. It is notable that the process of estimating the item 

parameters does not depend on the process of estimating the trait parameters of 

examinees because of the EM algorithm. The EM algorithm will be described in detail 

later.  

 In the last stage, the examinee parameters are estimated by using the item 

parameters obtained in the second stage. Unlike the item parameters, examinee 

parameters are estimated by implementing the maximum likelihood estimation method 

without the E-M step. 

 

Estimation Method Implemented in SAS Multidimensional IRT Program 

 In this MDIRT-FIT macro, the full information item factor analysis model (Bock, 

Gibbons & Muraki, 1988) with marginal maximum likelihood estimation with the EM 

algorithm is implemented to estimate parameters. Even though Takane (1987) 

demonstrated the equivalence of marginal likelihood of the two-parameter normal ogive 

model and factor analysis on dichotomous data, factor analysis on dichotomized variables 

has produced unsatisfactory results. It is difficult in some cases to compute desirable 
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tetrachoric correlation coefficients and the computational burden increases as the number 

of items increases. The full information item factor analysis model gives a better solution 

to those problems by directly modeling item responses of examinees instead of modeling 

the pairwise tetrachoric correlation coefficients.          

 

STAGE 1: Computing Initial Value 

Computing Tetrachoric Correlation. In the 1940’s, the phi correlation 

coefficient, conventionally used as a linear description of two binary variables, it was 

shown to be an inappropriate measure to represent the true relationship between two 

dichotomous variables with underlying normal distributions. Researchers found several 

problems with the phi correlation coefficient when it was used for continuous variables. 

In particular, it tends to decrease when the difficulty levels of two variables are different. 

In other words, the phi correlation coefficient no longer has an upper bound of unity 

when the difficulty of two variables is different, which results in misrepresenting the true 

relationship between two continuous variables (McDonald, 1985, pp.198). Due to this 

drawback, it has been suggested that the tetrachoric correlation coefficient which is a 

Pearson product-moment correlation for binary variables with an underlying normal 

distribution be substituted for the phi correlation. 
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  Item 1  

  Right Wrong  

Right 11P (a) 12P (b) •1P  
Item 2 

Wrong 21P (c) 22P (d) •2P  

  2•P  1•P   

Table 1. 2×2 Contingency Table. *( ) frequency for each cell 

 

A good estimation method for the tetrachoric correlation was suggested by 

Brown (1977). In this article, the integral of the bivariate normal distribution is 

approximated by the tetrachoric series expansion when the estimated r  is smaller than 

0.95. Otherwise, 32 Gaussian quadrature points are used to evaluate the tail of the 

bivariate normal distribution. The estimated tetrachoric correlation is accurate to at least 

three decimal places unless one of the cell probabilities is less than 0.0001. The standard 

deviation of the estimated tetrachoric correlation is provided as an option in this SAS 

program. 

The Newton-Raphson method is implemented to estimate the population 

tetrachoric correlation. Yule’s Y (equation 10), one of the indices representing the 

magnitude of association between two dichotomous variables, is used as the initial 

estimate of r . The Tetrachoric series (equation 11) and its derivative with respect to r  

(equation 12) are computed to find the next approximation at each iterative step. Each 

new estimate of r  is obtained from the previous one by the Newton-Raphson method 

(equation 13). The following equations support this development: 
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( Brown, 1977) 

 

However, the tetrachoric correlation has its own shortcomings when used for 

factor analysis on dichotomous data. It is not assured that the observed tetrachoric 

correlation matrix is positive definite, if not, then, it is not a complete correlation matrix 

but an imaginary correlation matrix. In addition, it was found that factor analysis on the 

matrix of tetrachoric correlations tends to extract more factors than are actually present in 

the data. Therefore, a smoothing procedure must be implemented before the tetrachoric 

correlation matrix is used for factor analysis when it is not positive definite.  
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Smoothing Tetrachoric Correlation. If the matrix of the observed tetrachoric 

correlation (see equation 15) is not positive definite, (which means one of the eigenvalues 

is negative), a nonnegative definite correlation (positive semi-definite) matrix can be 

obtained by correcting the negative eigenvalues without changing the sum of the 

eigenvalues. For an example, the reader should see the manual of TESTFACT (1984, pp. 

790). 

 

2/12/1 ]'([')]'([ −−= KKDDiagKKDKKDDiagR CCCS , where   (14) 

 

SR  is a smoothed tetrachoric correlation matrix 

CD  is a corrected diagonal matrix with corrected eigenvalues   

K  is a diagonal matrix with eigenvalues of R  

'K  is a transposed matrix of K 

(Knol & Berger, 1991) 

 

Factor Analysis for Initial Estimates of Item Parameters. To obtain initial 

values close to true item parameters, a factor analysis on smoothed tetrachoric correlation 

matrix needs to be conducted. To extract factor loadings from the smoothed correlation 

matrix, the minimum residual (MINRES) method is implemented. MINRES factor 

analysis (Harman, 1976) determines a new factor pattern matrix so that the objective 

function (equation 16) is minimized (using the least-squares criterion) with only off-

diagonal elements of the correlation matrix accounted for. Then, the obtained factor 
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loadings are rotated to simple structure (varimax rotation), using an option in SAS 

MDIRT program. The equations to support this process are the following: 
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R  an observed correlation matrix 

)(AF  is objective function that is minimized 

jkr  is an observed correlation between variable j and k 

jkr̂  is an estimated correlation between variable j and k 

 

MINRES proceeds by estimating initial communalities for each item using 

squared multiple correlation (17), replacing them with the diagonal elements of the 

smoothed correlation matrix, extracting initial factor loadings by eigen decomposition 

(equation 18) given that the number of factors is determined in advance, estimating 

parameters (factor loadings) that minimize the objective function (19), and storing the 

updated factor loadings (20) repeating previous steps (19, 20) until a desired criterion is 

reached. 
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Squared Multiple Correlation (SMC) : 
jjr
11−  , where    (17) 

jjr  is the diagonal element in 1−R corresponding to variable j 

 

Eigen Decompositon : ΛΛ= `R , , where    (18) 2/1CD=Λ

Λ  is the factor pattern matrix  

C  is the matrix comprising of eigen vectors  

D  is the diagonal matrix of eigenvalues 

 

Incremental change of factor loading : , where  (19) 1`0 )()( −ΛΛΛ=ΔΛ jjjR

0
jR  is the row vector of residual correlation of variable j with all other  

variables (zero for the self-residual) 

jΛ  is the factor matrix with the elements in row j replaced by zeros 

)(ΔΛ  is the incremental change of factor loadings at each iterative step 

)(1 ΔΛ+Λ=Λ + tt , where        (20) 

1+Λ t  is the factor loading at the iterative step tht )1( +

 

Interchangeability Between FA Parameters and MIRT Parameters. The full 

information item factor analysis model (Bock, Gibbons & Muraki, 1988) applied 

Thurston’s multiple factor model to describe the underlying response process. The 

response process (called an item variable by Baker, 1992, pp.8) is a hypothetical 

continuous random variable over a population of subjects representing a subject’s 
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propensity to respond correctly to an item. The factor analysis model is: 
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assumed for the response of subject j to an item i  

ijx = 1 if imjmjjjjji fffy γεθθθ >+++= ....2211   

ijx = 0 if imjmjjjjji fffy γεθθθ <+++= ....2211 , where 

iγ  is item threshold, then 

dzexP
jiZ

z

mij ∫
∞ −

==
)(
2
1

21

2

2
1),...,|1(

θσπ
θθθ = )(Zφ , where 

i

imjmjjjjj
ji

fff
Z

σ
γθθθ

θ
−++

=
...

)( 2211  and  

)...(1 22
2

2
1 mjjji fff +−=σ  

 

The corresponding multidimensional logistic model is 

 

)(
1

1),...,|1( )(21 Z
e

xP
jiDZmij ψθθθ θ =

+
== − , where 

imjmjjjjjji dZ +++= θαθαθαθ ....)( 2211  

 

Therefore, the parameters of factor analysis can be easily interpreted as the parameters of 

MIRT and vice versa. 
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Where,  

ikf  is the factor loading of item i on the kth dimension 

ikα  is discrimination parameter of item i on the kth dimension 

)( jiz θ  is the normal deviate of item i conditional on jθ          

iσ  is the standard error of unique factor in FA 

id  is the intercept of item i        

 

Gaussian-Hermite Quadrature Method. Numerical integration of the normal 

distribution is a challenging process in terms of computer running time. The most popular 

solution to the problem is to evaluate the continuous normal distribution by a discrete 

distribution on a small number of points as shown in Figure 6. For example, we can 

approximate the bivariate normal distribution by summing the volume of hexahedrons 

under the surface of bivariate normal distribution. The center of a hexahedron and its 

volume are called a joint quadrature point and weight, respectively. Quadrature points are 

the roots of Hermite polynomials over the interval [ ∞∞− , ] with its weighting function of 

. Computed quadratures are multiplied by 
2xe− 2  and weights are divided by π  to 

obtain better approximation. 

 

 

 39



 

 

 

Figure 6. approximation of bivariate PDF by hexahedrons 

 

STAGE 2: Estimating Item Parameters with MML 

Likelihood Method with EM Algorithm. It was pointed out by Neyman and 

Scott (1948) that the inconsistent estimates are caused by the dependence of the 

estimation process of item parameters on the estimation process of ability parameters. 

Bock & Liberman (1970) suggested the marginal maximum likelihood estimation 

(MMLE) to circumvent the inconsistency issue on the estimates of item parameters. They 
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estimated item parameters in the marginal distribution to preclude the effect of ability 

(nuisance variable) parameters from the estimation process of item parameters by 

integrating over the ability distribution. 

 

∫
∞

∞−

= θτθαθ dgdUPUP iijjj )|(),,|()( , where     (25) 

 

)( jUP  is the marginal probability that an examinee with ability jθ  has a response 

vector U with respect to item parameters and the population ability density 

function. 

iα  is a vector of discrimination parameters of item i 

id  is item difficulty parameter of item i 

jθ  is a vector of ability parameters of examinee j 

)|( τθg is a probability density function of ability  

  

Computing the marginal probability )( jUP  demands a great deal of 

computational work because it includes numerical integration of the multivariate normal 

distribution which is assumed for the underlying latent traits. The Gaussian quadrature 

method is used to compute the marginal probability of a response pattern of an examinee 

for a set of test items. A numerical approximation to the integration over the ability 

distribution is conducted by summing the product of the likelihood at all joint 

quadarature points and their associated weights. 
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where 

)( jUP  is the marginal probability that an examinee with jθ  has a response vector 

U with respect to the item parameters and the population ability density function. 

ijU
kmkkXP )( ...21  is the probability of a correct response at a joint quadrature point ( k1= 1, 

2… p), ( k2 = 1, 2… q) .…, and ( km = 1, 2 … t) 

ijU
kmkkXQ −1

...21 )(  is the probability of an incorrect response at a joint quadrature point 

( k1= 1, 2… p), ( k2 = 1, 2… q) .…, and ( km = 1, 2 … t) 

)( ...2,1 kmkkXL  is the estimated likelihood at a joint quadrature point ( k1= 1, 2… p), 

( k2 = 1, 2… q) .…, and ( km = 1, 2 … t) 

)( kmXA  is the weight at kth quadrature point on mth dimension 

 

The EM algorithm is a useful estimation technique to find the maximum 

likelihood estimates of parameters in a probabilistic model that depends on an 

unobservable latent variable. Bock & Aitkin (1981) proposed the EM algorithm be 

implemented because the parameter estimation process (MMLE) of IRT models, a set of 

latent trait models, fit the paradigm. In addition, employing the EM algorithm with 

MMLE adds more velocity to the estimation process. 
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Expectation Process. The expected number of examinees ( kmkikf ...21 ) and the 

expected number of correct responses ( kmkikr ...21 ) at all pairs of quadrature points 

( ) corresponding to m latent traits are computed in the expectation step of the 

EM algorithm. The provisional statistics are called “artificial data” because they are 

computed based on the assumed population distribution of latent trait (Baker, 1992). In 

other words, the expected likelihood including the unobservable latent trait is computed 

as though it were observed.  

kmkikX ...21
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, 

where 

kmkikf ...2,1  is the expected number of examinees at the joint quadrature point ( k1 = 

1, 2… p), ( k2 = 1, 2… q) .…, and ( km = 1, 2 … t) 

kmkikr ...2,1  is the expected number of correct responses at the joint quadrature point 

( k1 = 1, 2… p), ( k2 = 1, 2… q) .…, and ( km = 1, 2 … t)   

)( ...2,1 kmkkXL  is the estimated likelihood at each of joint quadrature points ( k1= 1, 2… 
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p), ( k2 = 1, 2… q) .…, and ( km = 1, 2 … t) 

)( kmXA  is the weight at the kth quadrature point on the mth dimension 

iju  is a response of examinee j to item i (1 for a correct response, 0 

otherwise) 

 

Maximization Process. The estimates of item parameters are computed using 

the marginal distribution of the item response vector U with respect to the item 

parameters. Item parameter estimates are determined where the marginal likelihood 

function is maximized. To determine provisional estimates of item parameter, the first, 

the second, and the cross derivatives of the log likelihood function with respect to each 

item parameter are expressed in terms of those artificial statistics. The result of the 

differentiation of the log likelihood function with respect to each of the item parameters 

is shown below in general form. To find more detail about the differential process of the 

log likelihood function, see Baker (1992, Ch. 6). 
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 The first derivative is computed from the following: 
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The first derivative is computed from the following: 

∑∑ ∑
= = =

−=
∂
∂ p

k
kmkxkikmkki

q

k

t

km
kmkikkm

im

XQXPfXDL
11

...1...21
12 1

...21
22

2

2

)()()(...ln
α

   (34) 

∑∑ ∑
= = =

−=
∂
∂ p

k
kmkxkikmkki

q

k

t

km
kmkik

i

XQXPfD
d

L
11

...1...21
12 1

...21
2

2

2

)()(...ln      (35) 

 

The cross derivative is computed from the following: 
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Newton-Raphson Iteration Method. The expectation process and the 

maximization process are looped inside the Newton-Raphson method. The iteration 

process continues until the convergence criterion (e.g. 0.001) is satisfied. The 

approximation at the tth cycle is updated by computing the change from the previous 

approximation and adding it to the approximation at the (t-1)th cycle. For example, the 

inversed information matrix consisting of the second derivatives on its diagonal and cross 

derivatives and the vector consisting of the first derivatives with respect to parameters of 

item i are multiplied to compute the amount of change from the previous iteration.        
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STAGE 3: Estimating Ability Parameters 

Estimation Methods. At the third stage, the Bayes expected a posteriori (EAP) 

estimation procedure is implemented to estimate ability parameters assuming the 

obtained item parameters at the second stage are true item parameters. The process of 

computing the EAP estimates of a subject’s ability is non-iterative and can be easily 

obtained. For instance, the EAP ability estimate of the jth examinee on the first dimension 

(equation 39) and the posterior standard deviation (PSD) of the estimate can be directly 

approximated by equation 40. The maximum likelihood estimation (ML) procedure is 

available as well. The first (equation 41), second (equation 42), and cross derivatives 

(equation 43) of the log likelihood function with respect to multiple ability parameters are 

needed because Fisher’s scoring method (equation 44) is implemented. The estimated 

parameters are updated until they reach a predetermined criterion value. The information 

matrix provides the variances of the estimated ability parameters and the inverse 
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information matrix provides measurement errors of those ability parameters. 
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Simulation of Parameter Recovery 

Method 

A Monte Carlo method was used to examine how close parameters recovered by 

the SAS MDIRT program are to the true parameters. Ability parameters of the jth 

examinee up to five dimensions ( 521 ,...., jjj θθθ ) are generated from an NID (0,1) 

distribution and these values were used as examinees’ true known ability levels. 

Discrimination and intercept parameters were generated from a uniform distribution. 

Discrimination parameters of the ith item on up to five dimensions ( 521 ...., iii ααα ) were 

generated from a uniform distribution [0, 2]. The intercept parameter of the ith item is 

generated from a uniform distribution [-3, 3]. To simulate the response vector of an 

examinee, a randomly generated number from a uniform distribution [0, 1] is compared 

to the probability obtained by plugging the randomly generated item parameters and 

ability parameters into equation (2). If the computed probability is bigger than the 

random number, 1 is assigned to the response, or 0 assigned otherwise.  

 Factors manipulated to examine the recovery ability of the program are the 

number of latent dimensions, the number of examinees and the number of quadrature 

points. For two dimensions, an additional factor, the extent of correlation between two 

ability dimensions, is manipulated to examine the effect of correlated dimensions on 

parameter recovery using the SAS MDIRT program. To evaluate the accuracy of the 

recovered multidimensional item characteristic curve, the root mean square deviation 

(RMSE) between the estimated probability and the true probability was calculated using 

the following equation:    
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K = the number of items  

L = the number of examinees.  

 

To obtain a reliable estimate of RMSE, each condition was repeated 10 times, which was 

constant for all conditions. 

 

 

Results 

 The mean and the standard deviation (in the parenthesis) of 10 estimates with the 

number of quadrature points fixed at 10 are shown in Table 2. The third column of Table 

2 is the correlation between two dimensions, which was manipulated from 0.0 to 0.9 to 

examine the effect of correlated dimensions on the accuracy of the estimated item 

parameters. The next three columns are the correlation between the true item parameters 

and the recovered item parameters by SAS MDIRT program. RMSE shown in the last 

column was computed as an index for the agreement between the estimated probability 

and the true probability of a correct response. 
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Table 2. The means and standard deviations of RMSE between the estimated ( P̂ ) and 

true probability ( P ) across items and the means and standard deviations of the 

correlation between the true parameters and the estimated parameters from SAS MDIRT 

program using 10 quadrature points for two dimensions. 

 

N n ),( 21 θθr  )ˆ,( 11 ααr     )ˆ,( 22 ααr     r  RMSE )ˆ,( dd

2000 40 0.0042(0.0253) 0.989(0.004)   0.989(0.005)   0.998(0.000) 0.037(0.012) 

2000 40 0.3015(0.0226) 0.974(0.019)   0.966(0.020)   0.998(0.001) 0.067(0.014) 

2000 40 0.5005((0.0140) 0.941(0.042)   0.956(0.041)   0.998(0.001) 0.068(0.016) 

2000 40 0.7035(0.0043) 0.891(0.058)   0.925(0.053)   0.998(0.000) 0.079(0.009) 

2000 40 0.9098(0.0275) 0.797(0.120)   0.749(0.119)   0.984(0.042) 0.075(0.003) 

2000 20 0.0125(0.025) 0.991(0.004)   0.989(0.004)    0.998(0.001) 0.028(0.013) 

2000 20 0.3025(0.0181) 0.977(0.008)   0.983(0.009)    0.997(0.001) 0.039(0.007) 

2000 20 0.5001(0.0128) 0.938(0.048)   0.946(0.028)    0.998(0.001) 0.069(0.014) 

2000 20 0.7033((0.0114) 0.911(0.053)   0.883(0.067)    0.998(0.001) 0.079(0.008) 

2000 20 0.9001(00025) 0.776(0.091)   0.794(0.128)    0.984(0.030) 0.078(0.007) 

1000 40 -0.0125(0.0258) 0.974(0.013)   0.955(0.060)    0.995(0.000) 0.050(0.019) 

1000 40 0.2828(0.0266) 0.954(0.028)   0.953(0.038)    0.994(0.007) 0.063(0.014) 

1000 40 0.4973(0.0156) 0.920(0.102)   0.916(0.038)    0.991(0.013) 0.071(0.016) 

1000 40 0.7067(0.0130) 0.863(0.074)   0.911(0.056)    0.996(0.001) 0.079(0.007) 

1000 40 0.8996(0.0033) 0.717(0.177)   0.725(0.091)    0.995(0.004) 0.079(0.006) 

1000 20 0.0009(0.0275) 0.971(0.024)   0.978(0.007)    0.995(0.002) 0.034(0.011) 

1000 20 0.2846(0.0228) 0.952(0.032)   0.959(0.021)    0.994(0.003) 0.055(0.018) 
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1000 20 0.5013(0.0268) 0.955(0.015)   0.921(0.039)    0.997(0.001) 0.066(0.012) 

1000 20 0.6978(0.0130) 0.884(0.054)   0.894(0.049)    0.994(0.002) 0.075(0.006) 

1000 20 0.8944(0.0058) 0.713(0.148)   0.723(0.157)    0.976(0.055) 0.079(0.010) 

 

 

 RMSE shown in last column of Table 3 was computed to examine the effect of 

the number of trait dimensions on the accuracy of the recovered item response surface by 

SAS MDIRT program. For more than three dimensions, the number of quadrature points 

is fixed at 3 because the computational work exponentially increases depending on the 

number of quadrature points. However, 5 quadrature points was used to examine the 

effect the number of quadrature points on the accuracy of the estimated item response 

surface, which is done only for three-dimension. 
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Table 3. means and standard deviations of the RMSE between the estimated ( P̂ ) and true 

probability ( P ) for more than three dimensions. 
 

# Examinees # Items  # Dimensions # Quadrature   RMSE 

2000  40  3  5  0.0758(0.0159) 

2000  40  3  3  0.0982(0.0133) 

2000  40  4  3  0.1261(0.0132) 

2000  40  5  3  0.1503(0.0457) 

2000  20  3  5  0.0801(0.0293) 

2000  20  3  3  0.0832(0.0104) 

2000  20  4  3  0.1381(0.0293) 

2000  20  5  3  0.1812(0.0398) 

1000  40  3  5  0.0856(0.0202) 

1000  40  3  3  0.0997(0.0140) 

1000  40  4  3  0.1303(0.0142) 

1000  40  5  3  0.1881(0.0518) 

1000  20  3  5  0.0828(0.0234) 

1000  20  3  3  0.1022(0.0262) 

1000  20  4  3  0.1388(0.0308) 

1000  20  5  3  0.1861(0.0453) 

 

 

The results show that there are four factors that affect the accuracy of the SAS 
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MDIRT program in reproducing the multidimensional item characteristic curve (MICC): 

the number of examinees, the number of items, the number of quadrature points, and the 

degree of correlation between latent dimensions. In Table 2, the accuracy of the estimated 

parameters decreases as the correlation between two dimensions increases. Both Table 2 

and Table 3 show that the SAS MDIRT program tends to recover MICC better when 

either the number of examinees or the number of items is increased. It is noticeable that 

the precision of the estimated MICC is mainly obtained from increasing the number of 

quadrature points. However, the effect of the number of quadrature points on the 

accuracy of recovered MICC decreases as the number of dimensions increases. For 

instance, using 3 quadrature points to reproduce the MICC for three dimensions does not 

provide the same level of accuracy when they are used for four or five dimensions. Using 

more quadrature points is recommended as the number of dimensions increases to 

compensate for the reduced accuracy. 

  

Application of MDIRT SAS program to NLSY79 data 

 

It is of great importance to identify the nature of items correctly because it plays 

a crucial role in evaluating the construct validity of a measurement. For instance, the 

appropriateness of practical applications of IRT, such as computer adaptive test and score 

equating, depends on how well the dimensionality of underlying latent variables is 

defined. Reckase (1985) demonstrated that math items used for the ACT, presumed to 

measure purely math skill, were multidimensional. In addition, he showed that item 
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difficulty is confounded with dimensions, which makes even more invalid the 

interpretation of the scores on the test.  

The purpose of this empirical study is to examine the dimensionality of the PIAT 

mathematics test, a subtest of the Peabody Individual Achievement Test (PIAT) and to 

identify the confounding of item difficulty with latent dimensions. This research will 

provide a useful information base about the validity and dimensionality of the test, which 

could result in positive revision or change of content of the test. 

 

Method 

The PIAT Math Test 

Biennial assessments have been conducted since 1986 to all children born to 

women interviewed for the National Longitudinal Survey of Youth (NLSY79), to 

measure the children’s cognitive ability. For this purpose, the Peabody Individual 

Achievement Test, one of most widely used cognitive assessment instrument, known for 

its high test-retest reliability and concurrent validity, has been administered to the 

children to assess their academic achievement. In this dissertation, the PIAT math, 

subscale of the PIAT, was examined. It was dichotomously recorded (1 for correct 

response or 0 otherwise) and consisted of 84 multiple-choice items.  

Since 1994 children have been administered the PIAT math test with CAPI 

(computer-assisted personal interview), which aimed to make the content of the interview 

clear, complete, and compact. Assuming that only one latent skill, math ability, is 

measured, all items are ranked in order of their difficulty level from easiest to hardest. 
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However, in the actual administration, no one was required to answer all the items of 

PIAT math test. A child started with a particular starting question, which was determined 

by the physical age and grade of the children. When a child answered a starting question 

wrong, he was presented the starting question of the next lower level. The basal level was 

established when a child made five consecutive correct responses, and the ceiling was 

reached when a respondent answered five out of seven items incorrectly. The final raw 

score was calculated by subtracting the number of incorrect responses between the basal 

and ceiling from the question number of the last question which was answered wrong. 

 

Analysis 

For this dissertation, the response data of children whose ages ranged from 5 to 

15 on the PIAT math test were calibrated with MDIRT SAS program. Only 1998 

responses (the third CAPI administration) were used. Missing responses were simply 

replaced with 1 before the basal 0 after the ceiling. The raw score computation implied 

that the PIAT math test is a Guttman scale, assuming only one latent trait is measured. 

Guttman's insight was that for unidimensional scales, those who make a correct response 

to a more difficult item will also answer all less difficult items right that preceded it. Thus, 

to some extent, a unidimensional scale is imposed by the administration and scoring 

procedure. 

The NLSY children were classified in three different groups according to their 

age; children whose age were 5 to 7, 8 to 11 and 12 to 15 in 1998. The main reason that 

the children were categorized into different groups is that they are in different cognitive 
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developmental stages, which could affect the analysis. In addition, a different set of items 

was selected for each group for the stability of estimated item parameters. As mentioned, 

the nature of the administration didn’t allow older children who established basal to 

answer the items below the basal while younger children who reached ceiling weren’t 

shown to the items above the ceiling. Thus, only items in the range typically administered 

for the particular age were analyzed for each age group. 

   

Results 

 Descriptive statistics from the selected PIAT math items for the children whose 

age are 5 to 7 are shown in Table 6, 8 to 11 in Table 7, and 12 to 15 in Table 8. The items 

are roughly in order according to their difficulty level. Item difficulty level may fluctuate 

from one group to another. To prevent the effect of the fluctuation of item difficulty on 

achievement level of examinees, basal and ceiling were established by locating five 

correctly answered items and five incorrectly answered items out of seven. As mentioned, 

responses of an examinee before basal are automatically recorded as correct while 

responses after ceiling recorded as incorrect, assuming a Guttman scale is applicable to 

the test.  

 

 

 
 
 
 
 
 

 56



Table 4. Item statistics of 30 items selected for the children whose ages were 5 to 7 in 
1998 
 
ITEM  # TRIED         # RIGHT      P 
1  915  907  0.9912568 
2       915        902  0.9857923 
3       915        905  0.989071 
4       915        900  0.9836066 
5       915        898  0.9814208 
6        915  796  0.8699454 
7        915       835  0.9125683 
8        915  882  0.9639344 
9      915  804  0.8786885 
10    915  855  0.9344262 
11     915  598  0.6535519 
12      915  645  0.704918 
13       915  770  0.8415301 
14      915  584  0.6382514 
15      915  560  0.6120219 
16     915  439  0.4797814 
17      915  549  0.6 
18      915  405  0.442623 
19     915  415  0.4535519 
20      915  421  0.4601093 
21 915  409  0.4469945 
22    915  456  0.4983607 
23     915  356  0.389071 
24    915  282  0.3081967 
25      915  383  0.4185792 
26  915  249  0.2721311 
27 915  277  0.3027322 
28 915  145  0.1584699 
29 915  136  0.1486339 
30 915  129  0.1409836 
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Table 5. Item statistics of 35 items selected for the children whose ages were 8 to 11 in 
1998 
 
ITEM   # TRIED         # RIGHT      P 
21 1519  1466  0.9651086 
22 1519  1445  0.9512837 
23 1519  1361  0.8959842 
24 1519  1345  0.885451 
25 1519  1406  0.925609 
26 1519  1337  0.8801843 
27 1519  1357  0.8933509 
28 1519  1174  0.7728769 
29 1519  1192  0.7847268 
30 1519  1294  0.8518762 
31 1519  1239  0.8156682 
32 1519  1185  0.7801185 
33 1519  1241  0.8169849 
34 1519  1147  0.755102 
35 1519  1010  0.6649111 
36 1519  1110  0.7307439 
37 1519  1327  0.8736011 
38 1519  806  0.5306122 
39 1519  1056  0.6951942 
40 1519  620  0.4081633 
41 1519  1149  0.7564187 
42 1519  569  0.3745885 
43 1519  951  0.6260698 
44 1519  950  0.6254115 
45 1519  608  0.4002633 
46 1519  719  0.4733377 
47 1519  400  0.2633311 
48 1519  829  0.5457538 
49 1519  320  0.2106649 
40 1519  377  0.2481896 
51 1519  600  0.3949967 
52 1519  337  0.2218565 
53 1519  393  0.2587228 
54 1519  344  0.2264648 
55 1519  232  0.1527321 
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Table 6. Item statistics of 32 items selected for the children whose ages were 12 to 15 in 
1998 
 
ITEM   # TRIED         # RIGHT      P 
38 953  819  0.8593914 
39 953  885  0.9286464 
40 953  688  0.7219307 
41 953  916  0.9611752 
42 953  752  0.7890871 
43 953  841  0.8824764 
44 953  845  0.8866737 
45 953  657  0.6894019 
46 953  708  0.7429171 
47 953  531  0.5571878 
48 953  764  0.8016789 
49 953  384  0.4029381 
50 953        504  0.5288562 
51 953        543  0.5697796 
52 953        484  0.5078699 
53 953        523  0.5487933 
54 953        403  0.4228751 
55 953        345  0.3620147 
56 953        271  0.2843652 
57 953        459  0.4816369 
58 953        337  0.3536201 
59 953        258  0.270724 
60 953        346  0.363064 
61 953        298  0.3126967 
62 953        249  0.2612802 
63 953        349  0.366212 
64 953        215  0.2256034 
65 953        173  0.181532 
66 953        179  0.1878279 
67 953        132  0.13851 
68 953        192  0.201469 
69 953        60  0.0629591 

 

 
 
 
 
 
 

 59



Table 7. Item parameters for NLSY79 children whose ages were 5 to 7 in 1998 
ITEM INTERCEPT  SLOPE1    SLOPE2    MDISC       MID        DC1      DC2         A1        A2 

1      6.50006    1.81034     1.73172    2.50523    -2.59459    0.72262    0.69124    43.7285    46.2715 

2      8.48042    2.85889     2.31183    3.67665    -2.30656    0.77758    0.62879    38.9605    51.0395 

3      4.18705    1.33533    -0.16110    1.34501    -3.11302    0.99280    0.11978    6.8793      83.1207 

4      6.12678    2.40091     0.85929    2.55004    -2.40262    0.94152    0.33697    19.6924    70.3076 

5      2.78529    0.67972    -0.21452    0.71277    -3.90770    0.95363    0.30097    17.5159    72.4841 

6      1.49715    0.74415    -0.33561    0.81633    -1.83401    0.91158    0.41112    24.2749    65.7251 

7      2.16990    0.99538    -0.61314    1.16907    -1.85610    0.85143    0.52447    31.6325    58.3675 

8      4.16843    1.51584    -1.27877    1.98318    -2.10189    0.76435    0.64481    40.1512    49.8488 

9      1.93716    1.03248    -0.70893    1.25243    -1.54672    0.82438    0.56604    34.4747    55.5253 

10     2.48215    1.11746    -0.46653    1.21093    -2.04979    0.92281    0.38526    22.6602    67.3398 

11     0.50757    0.68799    -0.30023    0.75065    -0.67618    0.91653    0.39996    23.5754    66.4246 

12     0.85190    1.12518    -0.32568    1.17136    -0.72727    0.96057    0.27803    16.1427    73.8573 

13     1.60957    1.05354    -0.56339    1.19472    -1.34724    0.88183    0.47157    28.1360    61.8640 

14     0.55329    1.09157    -0.33264    1.14113    -0.48486    0.95657    0.29151    16.9481    73.0519 

15     0.45450    0.98152    -0.60284    1.15187    -0.39457    0.85211    0.52336    31.5577    58.4423 

16     0.04597    0.90608    -0.12206    0.91427     0.05028    0.99105    0.13350    7.6720     82.3280 

17     0.40685    1.16448    -0.23871    1.18870    -0.34226    0.97963    0.20081    11.5845    78.4155 

18     0.23363    1.38636    -0.16748    1.39644     0.16731    0.99278    0.11993    6.8881     83.1119 

19     0.20085    1.48256    -0.16971    1.49225     0.13460    0.99351    0.11373    6.5301     83.4699 

20     0.21384    1.74863    -0.55632    1.83499     0.11654    0.95294    0.30317    17.6484    72.3516 

21     0.28349    1.77025    -0.44984    1.82651     0.15521    0.96920    0.24629    14.2578    75.7422 

22    -0.06556    2.57227    -0.56310    2.63318     0.02490    0.97687    0.21385    12.3478    77.6522 

23    -0.74246    2.30834    -0.42779    2.34765     0.31626    0.98326    0.18222    10.4992    79.5009 

24    -1.20122    2.32262    -0.21657    2.33270     0.51495    0.99568    0.09284    5.3272     84.6728 

25    -1.21409    4.04931    -0.19386    4.05395     0.29948    0.99886    0.04782    2.7410     87.2590 

26    -1.28666    2.04832    -0.21455    2.05952     0.62474    0.99456    0.10417    5.9796     84.0204 

27    -1.39519    2.41561    -0.89055    2.57453     0.54192    0.93827    0.34591    20.2371    69.7629 

28    -1.55316    1.27095    -0.36506    1.32234     1.17455    0.96114    0.27607    16.0257    73.9743 

29    -2.17931    1.93910    -0.63469    2.04033     1.06812    0.95039    0.31107    18.1239    71.8761 

30    -2.13443    1.69886    -0.80037    1.87795     1.13657    0.90463    0.42619    25.2262    64.7738 

(DC: directional cosine, A: angle)  
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Table 8. Item parameters for NLSY79 children whose ages were 8 to 11 in 1998 
ITEM  INTERCEPT  SLOPE1    SLOPE2    MDISC      MID        DC1       DC2        A1         A2 

21       4.4601     1.75060    -1.22669    2.13761    -2.08648    0.81895    0.57386    35.0199    54.9801 

22       3.2962     1.37706    -0.83297    1.60939    -2.04809    0.85564    0.51757    31.1692    58.8308 

23       2.6185     1.48466    -0.94484    1.75981    -1.48792    0.84365    0.53690    32.4728    57.5272 

24       2.4119     1.41020    -0.91868    1.68304    -1.43306    0.83789    0.54585    33.0825    56.9175 

25       2.1710     0.94251    -0.40147    1.02445    -2.11922    0.92001    0.39189    23.0721    66.9279 

26       2.2754     1.36568    -0.82637    1.59624    -1.42549    0.85556    0.51770    31.1780    58.8220 

27       2.5710     1.53443    -0.74665    1.70644    -1.50662    0.89920    0.43755    25.9474    64.0526 

28       1.3301     1.31567    -0.64815    1.46666    -0.90687    0.89705    0.44192    26.2267    63.7733 

29       1.6282     1.61059    -0.75762    1.77989    -0.91478    0.90489    0.42566    25.1922    64.8078 

30       1.7869     1.23986    -0.41918    1.30881    -1.36529    0.94732    0.32028    18.6797    71.3203 

31       1.5815     1.25896    -0.64555    1.41482    -1.11784    0.88984    0.45628    27.1470    62.8530 

32       1.6010     1.63358    -0.73411    1.79094    -0.89393    0.91213    0.40990    24.1985    65.8015 

33       1.7103     1.43399    -0.60225    1.55532    -1.09966    0.92199    0.38722    22.7814    67.2186 

34       1.3409     1.63372    -0.42317    1.68764    -0.79456    0.96805    0.25075    14.5217    75.4783 

35       0.5935     1.21295    -0.25397    1.23925    -0.47888    0.97878    0.20493    11.8257    78.1743 

36       1.1183     1.59517    -0.26172    1.61650    -0.69183    0.98681    0.16190     9.3174    80.6826 

37       11.4639    8.94786    -2.88224    9.40061    -1.21948    0.95184    0.30660    17.8545    72.1455 

38       0.0035     0.85375    -0.12855    0.86338    -0.00400    0.98885    0.14890     8.5629    81.4371 

39       0.8453     1.55441    -0.12549    1.55947    -0.54205    0.99676    0.08047     4.6156    85.3844 

40      -0.4072     0.79423     0.02570    0.79464     0.51247    0.99948    0.03234     1.8531    88.1469 

41       1.4576     1.89816     0.18847    1.90750    -0.76416    0.99511    0.09880     5.6703    84.3297 

42      -0.6864     1.16045    -0.05924    1.16196     0.59076    0.99870    0.05098     2.9224    87.0776 

43       0.3616     1.14305     0.10629    1.14798    -0.31500    0.99570    0.09259     5.3128    84.6872 

44       0.3652     1.27098     0.28147    1.30177    -0.28053    0.97635    0.21622    12.4870    77.5130 

45      -0.5251     0.98692     0.21345    1.00974     0.52008    0.97740    0.21139    12.2036    77.7964 

46      -0.2598     1.01653     0.19437    1.03494     0.25101    0.98221    0.18781    10.8248    79.1752 

47      -1.1641     1.11767     0.30325    1.15808     1.00516    0.96511    0.26186    15.1802    74.8198 

48      -0.1339     2.01509     0.54590    2.08773     0.06415    0.96521    0.26148    15.1579    74.8421 

49      -1.3608     1.04942     0.31890    1.09680     1.24071    0.95680    0.29075    16.9031    73.0969 

50      -1.3394     1.24986     0.35438    1.29912     1.03097    0.96208    0.27278    15.8299    74.1701 

51      -0.9698     1.74658     0.79694    1.91981     0.50518    0.90977    0.41512    24.5266    65.4734 

52      -1.7704     1.58639     0.46606    1.65344     1.07074    0.95945    0.28187    16.3720    73.6280 

53      -2.0134     2.13899     0.53838    2.20571     0.91280    0.96975    0.24408    14.1277    75.8723 

54      -2.4102     2.24589     0.92934    2.43057     0.99160    0.92402    0.38235    22.4795    67.5205 

55      -2.4387     1.80023     0.51524    1.87251     1.30236    0.96140    0.27516    15.9717    74.0283 

(DC: directional cosine, A: angle)  
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Table 9. Item parameters for NLSY79 children whose ages were 12 to 15 in 1998 
ITEM  INTERCEPT   SLOPE1    SLOPE2    MDISC      MID        DC1        DC2       A1        A2 

38       2.43429    1.75117     0.96018    1.99713    -1.21889    0.87684    0.48078    28.7364   61.2636 

39       3.28238    1.91444     0.24018    1.92945    -1.70120    0.99222    0.12448     7.1509    82.8491 

40       1.20420    1.63511     0.52773    1.71816    -0.70087    0.95166    0.30715    17.8874   72.1126 

41       4.47202    2.20412     0.43523    2.24668    -1.99050    0.98106    0.19372    11.1700   78.8300 

42       1.48615    1.43063     0.46702    1.50493    -0.98752    0.95063    0.31032    18.0788   71.9212 

43       1.92683    1.17818     0.36162    1.23242    -1.56345    0.95598    0.29342    17.0629   72.9371 

44       1.94739    1.17381     0.30585    1.21300    -1.60543    0.96769    0.25214    14.6044   75.3956 

45       0.72489    1.01375     0.24131    1.04208    -0.69562    0.97282    0.23156    13.3892   76.6108 

46       0.83604    0.78278     0.09862    0.78897    -1.05966    0.99216    0.12500    7.1810    82.8190 

47       0.21525    1.24479     0.05327    1.24593    -0.17276    0.99909    0.04276    2.4506    87.5494 

48       1.13178    0.85038     0.08672    0.85479    -1.32406    0.99484    0.10146    5.8230    84.1770 

49      -0.33147    0.86158     0.11755    0.86956     0.38120    0.99082    0.13518    7.7689    82.2311 

50       0.07278    0.92865    -0.21138    0.95240    -0.07642    0.97506    0.22194    12.8232   77.1768 

51       0.21316    0.79695    -0.09678    0.80280    -0.26552    0.99271    0.12055    6.9241    83.0759 

52      -0.02752    1.20118    -0.33271    1.24640     0.02208    0.96372    0.26693    15.4818   74.5182 

53       0.15286    1.31235    -0.31837    1.35041    -0.11319    0.97181    0.23576    13.6361   76.3639 

54      -0.35989    1.10642    -0.33338    1.15555     0.31144    0.95748    0.28851    16.7685   73.2315 

55      -0.63157    1.12122    -0.46169    1.21256     0.52086    0.92468    0.38075    22.3804   67.6196 

56      -1.02594    1.19562    -0.57766    1.32786     0.77263    0.90042    0.43503    25.7872   64.2128 

57      -0.33404    2.03231    -0.87816    2.21392     0.15088    0.91797    0.39665    23.3691   66.6309 

58      -0.94176    1.61106    -0.72459    1.76650     0.53312    0.91200    0.41018    24.2164   65.7836 

59      -1.53044    1.83598    -0.75491    1.98512     0.77095    0.92487    0.38028    22.3512   67.6488 

60      -1.14596    2.06808    -0.89270    2.25252     0.50874    0.91812    0.39631    23.3478   66.6522 

61      -1.74503    2.45739    -1.06241    2.67721     0.65181    0.91789    0.39683    23.3803   66.6197 

62      -1.61630    1.78931    -0.95044    2.02607     0.79775    0.88314    0.46911    27.9763   62.0237 

63      -4.83812    7.70700    -3.84362    8.61228     0.56177    0.89489    0.44630    26.5063   63.4937 

64      -2.03246    2.04796    -1.00849    2.28281     0.89033    0.89713    0.44178    26.2172   63.7828 

65      -2.27305    2.01849    -0.93616    2.22501     1.02159    0.90718    0.42074    24.8816   65.1184 

66      -2.23339    2.07104    -0.81334    2.22503     1.00376    0.93079    0.36554    21.4410   68.5590 

67      -1.93867    1.32361    -0.74964    1.52115     1.27448    0.87014    0.49281    29.5255   60.4745 

68      -2.16636    1.95821    -1.12922    2.26047     0.95837    0.86628    0.49955    29.9704   60.0296 

69      -2.79540    1.56631    -0.72102    1.72429     1.62119    0.90838    0.41815    24.7179   65.2821 

(DC: directional cosine, A: angle)  
 
 

Estimated parameters of the MIRT 2 parameter logistic model (2PL) using the 

SAS MDIRT program are presented in Table 9 for age 5 to 7 group, Table 10 for age 8 to 

11 group, and Table 11 for age 12 to 15 group, successively. Unlike unidimensional IRT, 
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directional information for a multidimensional item is necessary to fully describe it. 

Direction cosines (DC1, DC2) or the angles (A1, A2) give the direction in which a 

multidimensional item provides the best overall information about multiple latent traits of 

an examinee. Given the directional information of an item, a multidimensional item 

discrimination parameter (MDISC) is determined at the point which gives the steepest 

slope. Multidimensional item difficulty (MID) is the distance from the origin to the point, 

where MDISC is determined in theta space. 
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Figure 7. Graphical presentation of PIAT math items (1-30) for Children of NLSY79 
whose ages were 5 to 7 using TESTFACT  
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Figure 8. Graphical presentation of PIAT math items (1-30) for Children of NLSY79 
whose ages were 5 to 7 using SAS MDIRT Program 
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Figure 9. Graphical presentation of PIAT math items (21-55) for Children of NLSY79 
whose ages were 8 to 11 using TESTFACT  
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Figure 10. Graphical presentation of PIAT math items (21-55) for Children of NLSY79 
whose ages were 8 to 11 using SAS MDIRT Program 
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Figure 11. Graphical presentation of PIAT math items (38-69) for Children of NLSY79 
whose ages were 12 to 15 using TESTFACT  
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Figure 12. Graphical presentation of PIAT math items (38-69) for Children of NLSY79 
whose ages were 12 to 15 using SAS MDIRT Program 
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Items are graphically represented in a two dimensional theta space in Figures 7 – 

Figure 12. Generally, most of the items are homogenous in that they are measuring 

roughly the same composite of two dimensions across different stages of cognitive 

development. It appears that most of the PIAT test items are measuring a dominant 

dimension and several closely correlated miscellaneous dimensions. However, those 

miscellaneous dimensions are not strong enough to create distinctive factors since they 

are highly correlated with the main factor. This result concurs with the general guideline 

for the use of PIAT, which warns that it is not designed to use as a diagnostic tool to 

measure a particular ability but designed to measure a general performance. 

Generally, the estimated item parameters from the SAS MDIRT program are in 

agreement with those from TESTFACT (compare the pairs of MDIRT and TESTFACT 

graphs). The observed differences between them may come from the different methods 

they adopt to compute the tetrachoric correlation. TESTFACT implements Divgi’s 

approach (1979) to computing tetrachoric correlation while SAS MDIRT employs 

Brown’s approach (1977). In addition, TESTFACT is based on the normal probability 

density function while the SAS MDIRT program is approximating the normal probability 

function with the logistic ogive function with correction constant of 1.702. 
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Table 10. Comparison of factor loadings of SAS MDIRT program to those from 
TESTFACT after rotation for the children whose ages were 5 to 7 
 

Item      SAS MDIRT       TESTFACT 

Factor 1  Factor 2  Factor 1  Factor 2 
 
1 0.45785  -0.87737 0.49068  -0.63268 
2 0.55748  -0.73891 0.55577  -0.68854 
3 0.72634  -0.45317 0.63517  -0.60647 
4 0.73068  -0.53120 0.68129  -0.58365 
5 0.56685  -0.18803 0.46592  -0.38548 
6 0.63434  -0.01143 0.59778  -0.06313 
7 0.75016  -0.25265 0.69924  -0.29661 
8 0.84633  -0.06585 0.78432  -0.14819 
9 0.76143  -0.19673 0.71181  -0.15483 
10 0.77161  -0.13187 0.69667  -0.11127 
11 0.60356  -0.03245 0.58447  -0.03567 
12 0.77465  -0.02404 0.72637  0.07380 
13 0.74996  0.01818  0.69847  -0.00215 
14 0.74937  0.07531  0.70718  0.14199 
15 0.72949  0.03057  0.71233  -0.00842 
16 0.65226  0.12985  0.62919  0.17566 
17 0.73611  0.21639  0.75233  0.00395 
18 0.77758  0.22013  0.71620  0.41295 
19 0.79867  0.19238  0.76719  0.21297 
20 0.85984  0.16000  0.84326  0.12889 
21 0.85292  0.20512  0.83168  0.18062 
22 0.89618  0.27472  0.92181  0.07748 
23 0.88584  0.29891  0.85084  0.28479 
24 0.87864  0.38269  0.81508  0.36356 
25 0.89054  0.45175  0.90352  0.15432 
26 0.85795  0.25953  0.82027  0.27526 
27 0.91868  0.12024  0.88793  0.21157 
28 0.78434  0.10891  0.73994  0.19800 
29 0.89458  0.08905  0.85404  0.21505 
30 0.88780  -0.06208 0.81949  0.21786 
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Table 11. Comparison of factor loadings of SAS MDIRT program to those from 
TESTFACT after rotation for the children whose ages were 8 to 11 
 

Item      SAS MDIRT       TESTFACT 

Factor 1  Factor 2  Factor 1  Factor 2 
 
21 0.91513  0.16869  0.87751  0.16759 
22 0.86004  0.05880  0.81611  0.06772 
23 0.87340  0.11159  0.86402  0.13259 
24 0.85549  0.09166  0.84843  0.11619 
25 0.73772  0.00384  0.69129  0.01806 
26 0.84539  0.06903  0.83274  0.08481 
27 0.86687  -0.00326 0.84452  -0.00161 
28 0.83854  0.03092  0.82881  0.01734 
29 0.88005  -0.01344 0.87775  0.00287 
30 0.80500  -0.09886 0.76954  -0.11191 
31 0.81668  -0.00488 0.80313  -0.00238 
32 0.87318  -0.04023 0.86357  -0.04320 
33 0.84755  -0.05862 0.82463  -0.07568 
34 0.85227  -0.15880 0.84409  -0.14601 
35 0.79274  -0.14263 0.78156  -0.16485 
36 0.83719  -0.21442 0.82366  -0.21692 
37 0.96990  -0.20931 0.96404  -0.26452 
38 0.68970  -0.13590 0.68319  -0.16368 
39 0.81965  -0.27297 0.80495  -0.27498 
40 0.58908  -0.26248 0.59874  -0.26728 
41 0.78541  -0.43264 0.75872  -0.41215 
42 0.75109  -0.22909 0.74367  -0.24561 
43 0.70415  -0.33910 0.69246  -0.34083 
44 0.69470  -0.44404 0.68271  -0.43578 
45 0.62937  -0.38835 0.62651  -0.40051 
46 0.65257  -0.38423 0.65289  -0.37954 
47  0.67761  -0.42297 0.66525  -0.41771 
48 0.76823  -0.50625 0.75721  -0.50632 
49 0.62717  -0.42028 0.62446  -0.42613 
50 0.68670  -0.43999 0.68719  -0.44394 
51 0.69451  -0.56295 0.68096  -0.58612 
52 0.73440  -0.47417 0.73306  -0.47206 
53 0.80629  -0.48535 0.78930  -0.48328 
54 0.72458  -0.58082 0.72520  -0.58127 
55 0.75380  -0.47803 0.75361  -0.47272 
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Table 12. Comparison of factor loadings of SAS MDIRT program to those from 
TESTFACT after rotation for the children whose ages were 12 to 15 
 

Item      SAS MDIRT       TESTFACT 

Factor 1  Factor 2  Factor 1  Factor 2 
 

38 0.71155  -0.48369 0.69561  -0.50825 
39 0.85248  -0.24693 0.81544  -0.27385 
40 0.78183  -0.37815 0.75780  -0.37274 
41 0.86191  -0.29964 0.82667  -0.31577 
42 0.75541  -0.38354 0.73752  -0.39133 
43 0.68813  -0.34049 0.65353  -0.35288 
44 0.71504  -0.32646 0.66882  -0.34298 
45 0.67762  -0.29416 0.66202  -0.28134 
46 0.58214  -0.17192 0.57085  -0.19161 
47 0.76763  -0.17305 0.76192  -0.17347 
48 0.61606  -0.11849 0.58453  -0.14374 
49 0.61391  -0.16672 0.61239  -0.16469 
50 0.68998  0.01163  0.68101  0.00146 
51 0.60110  0.01136  0.60392  -0.02231 
52 0.76572  0.09495  0.75478  0.07880 
53 0.79159  0.06670  0.77837  0.05131 
54 0.73292  0.11076  0.72776  0.10174 
55 0.75183  0.12521  0.73599  0.14230 
56 0.75507  0.21562  0.74321  0.19636 
57 0.87236  0.23209  0.85901  0.21510 
58 0.83380  0.22199  0.81884  0.20014 
59 0.87078  0.19182  0.85629  0.19797 
60 0.87766  0.23552  0.86419  0.23179 
61 0.91246  0.17332  0.89981  0.19944 
62 0.84794  0.26991  0.83097  0.28762 
63 0.93907  0.22919  0.92562  0.23839 
64 0.87578  0.25875  0.86592  0.26692 
65 0.87743  0.21898  0.86803  0.24194 
66 0.89042  0.17289  0.88127  0.20173 
67 0.78064  0.27200  0.76449  0.32133 
68 0.84991  0.27847  0.83723  0.33089 
69 0.83574  0.22742  0.80358  0.24784 
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The estimated factor loadings from SAS the MDIRT program are rotated to 

match those from TESTFACT because the estimated parameters can vary depending on 

their starting values. The rotated results are shown in Table 10 – Table 12 for three 

different age groups. The factor loadings on the first dimension from the SAS MDIRT 

program are well matched with those from TESTFACT, while the sign of the factor 

loadings on the second dimension tends to be inversely estimated. For the age 5-7 group, 

the factor loadings of 30 items on two dimensions are rotated  clockwise. The factor 

loadings of 35 items on two dimensions are rotated  clockwise for the age 8-11 

group. For the age 12-15 group, the factor loadings of 32 items on two dimensions are 

rotated  clockwise. In addition, the sign of factors loadings on the second dimension 

is inversed for the three different age groups.  

o28

o18

o39

 

Discussion 

 In this paper, the accuracy of recovered parameters by SAS MDIRT macro, still 

relatively untested but comparable to software such as TESTFACT and NOHARM, has 

been verified. However, additional advanced estimation techniques need to be 

implemented to make it more efficient. First, an acceleration technique can be added to 

the SAS program to reduce computer running time in the process of estimating 

parameters. It is a well known property of maximum likelihood estimation method that it 

becomes notoriously slow as it approaches the true value. In TESTFACT, an acceleration 

technique suggested by Ramsey (1975) is implemented to facilitate the estimation of 

parameters in the maximization step of EM algorithm.  
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Second, an option for a prior distribution of parameters needs to be available in 

order to prevent item parameters from drifting toward positive or negative infinity 

(Heywood case). The phenomenon becomes even worse when a pseudo guessing 

parameter is added to the model. Various prior distributions for the uniqueness were 

suggested; an exponential distribution, an inverted γ  prior distribution, β  prior 

distribution. Maximizing the posterior density function gives a practical advantage over 

maximizing the likelihood density function by setting the bound within which 

discrimination parameters can be stably estimated. However, it should be remembered 

that an incorrectly imposed prior distribution can cause serious deterioration in the 

quality of estimated parameters (Baker (1992). Mislevy (1986b) pointed out that 

incorrectly specifying the prior distribution is likely to result in an “ensemble bias.” This 

means that all the estimated discrimination parameters will be biased in some fashion and 

the statistical properties like consistency are unlikely to hold. 

In addition, the stability of MDIRT SAS program in estimating parameters with 

skewed distribution of ability needs to be examined. Batley & Boss (1993) showed that 

the recovery of trait and item parameters using the MIRTE (Carlson, 1987) program is 

adversely affected when the range of trait level of the second dimension is restricted. In 

addition, the effect of correlated dimensions on the estimation of parameters and the 

interaction effect between the skewed ability distribution and correlated dimensions are in 

question. Considering that it is hardly possible to find a perfectly orthogonal latent space 

as far as cognitive skills are concerned, correlated latent variables in estimating 

parameters should be further examined. 
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Application of MIRT Models to many psychological phenomena that are 

multidimensional in nature has provided a frame in which their collective properties can 

be more clearly understood. Personality research is among many practical spheres to 

which multidimensional IRT can be applied. An attempt to measure personality with a 

computerized adaptive test (CAT) based on MIRT, an ultimate goal of IRT practitioners, 

could estimate personal traits more precisely with fewer items than traditional practice. 

Examining raters’ behavior using an MIRT approach is an interesting area as well. 

Raters’ behavior can be analyzed as an item is calibrated. In fact, the application of IRT to 

rating data has been attempted, to give a successful index for the accuracy of raters and 

agreement among them. However, if we examine the inconsistency problem among raters 

in a multidimensional perspective, we might give a more complex but more detailed 

answer to the question. For example, multidimensional characteristics of raters such as 

the number of criteria dimensions they are using, their threshold on each dimension, and 

the dimension to which they are most sensitive could be investigated. 

Application of MIRT to longitudinal data is an interesting area as well. We might 

provide deeper understanding of the famous Flynn effect (Flynn, 1984) in which the 

mean score on intelligence tests has been increasing over the last few decades. We cannot 

draw a simple conclusion about whether the difference between different age groups on 

the same items comes from a real difference in their intellectual ability or something else 

(Rodgers, 1999). If the Flynn effect exists (Rodgers and Gissberg, 2006), MIRT might 

help us to pinpoint exactly on which dimension it happens, because we can talk about a 

sub-domain score instead of a total score on the PIAT Math test. In the paradigm of MIRT, 
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sub-domain scores on a multidimensional test obtained at different times become 

comparable because we can put them on the same multidimensional scale by a 

multidimensional equating method. 

Reckase (1997) enumerated the similarities and dissimilarities between factor 

analysis and item response theory. Simply stated, the difference between them is how we 

construct unknown latent entity (top-down process vs. bottom-up process). For example, 

the goal of factor analysis is to estimate parameters (factor loadings) so that the 

correlation between the observed covariance and the reproduced covariance is maximized. 

The importance of an individual item is considered in relation to its contribution to the 

overall fit index. Consequently, the information of an individual item is ignored when 

analyzing data. On the other hand, IRT emphasizes the role of each item of a test in 

developing its construct validity. The extent to which the construct of a test is valid 

depends on which items are selected and how the items are organized.  

Even though we can enumerate the difference between factor analysis and MIRT, 

essentially the only difference existing between them is the nature of the manifest 

variables that are assumed to measure underlying latent variables. While manifest 

variables in factor analysis are continuous, response variables in item response theory are 

categorical (binary or polytomous). Therefore, for MIRT to make a unique contribution to 

the arena of test and measurement, it should find a way to get around the critical 

weaknesses that factor analysis suffers. 

For example, the study on the dimensionality of the construct under interest and 

its correlational structure should precede the calibration of parameters in MIRT models, 
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because incorrectly determined dimensionality of a test may result in a decrease of its 

construct validity. Moreover, reducing dimensionality to fewer interpretable dimensions 

can lead to more complicated problems like test equating.  

Even though the MIRT Model fits the observed data and is correctly specified, 

the estimated parameters are subject to a rotation for a better fit. When rotation is allowed 

or dimensions are permitted to correlate with each other, the estimated parameters are 

changed. In other words, they are uniquely determined only up to a rotation of the factor 

space (Bock & Aitkin, 1981). Furthermore, Gorsuch (1983) mentioned “the direction of a 

factor is always arbitrary so any factor with a preponderance of negative salient loadings 

can always be reversed” (p.181). Therefore, the direction of a factor should be 

determined by considering both a theoretical expectation based on accumulated 

knowledge about the domain under interest and empirical observations of it. MIRT shows 

its promising future but it still has its own limitations to overcome to achieve the ultimate 

goal of measurement, scoring or ranking individuals as unambiguously as possible. 
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