
THE UNIVERSITY OF OKIAHOMA.
GRADUATE COLLEGE

DIGITAL SIMULATION OF THE HOMEOSTAT MODIFIED
TO SHOW MEMORY AND LEARNING

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the
degree of

DOCTOR OF PHILOSOPHY

by
BARNEY LEE CAPEHART
Norman, Oklahoma

1967

DIGITAL SIMULATION OF THE HOMEOSTAT MODIFIED
TO SHOW MEMORY AND LEARNING

APPROVED BY

ry^ A '

X'Ct

DISSERTATION COMMITTEE

ACKNOWLEDGEMENTS

The author wishes to acknowledge his indebtedness
to Dr. Richard A. Terry whose guidance, patience and under­
standing made possible the success of this investigation,
and also to all members of the author's advisory committee.

XXI

TABLE OF CONTENTS
Page

LIST OF TABLES v
LIST OF ILLUSTRATIONS............................... vi
Chapter

I. INTRODUCTION 1
II. THE ULTRASTABLE S Y S T E M k

III. THE HOMEOSTAT................................. l6
IV. A FORTRAN PROGRAM FOR SIMULATING THE

HOMEOSTAT................................... 21
V. EXAMPLES OF HOMEOSTAT BEHAVIOR 29

VI. DEVELOPMENT OF MEMORY AND LEARNING
FOR THE HOMEOSTAT.......................... 4l

VII. FINAL EXAMPLE AND CONCLUSIONS 65
REFERENCES.. ?6
Appendices

A. FLOW CHART AND LISTING OF THE COMPUTER
PROGRAM TO SIMULATE THE BASIC HOMEOSTAT . . 79

B. LISTING OF FORTRAN SUBROUTINES USED BY ALL
PROGRAMS SIMULATING THE HOMEOSTAT 88

C. LISTING OF THE COMPUTER PROGRAM TO SIMULATE
THE HOMEOSTAT WITH INPUT PATTERN RECOGNI­
TION CAPABILITY 92

D. FLOW CHART AND LISTING OF THE COMPUTER
PROGRAM TO SIMULATE THE HOMEOSTAT WITH
MEMORY AND LEARNING...........................100

XV

LIST OF TABLES
Table Page

1. A Comparison of Adaptation Times as the
Number of Variables is Increased 37

2. Results of Runs Where the A Matrix is
Allowed to have Randomly Signed Main
Diagonal Terms 38

3. Results of Computer Run With Memory
Initially Empty 31

4. Results of Computer Run With Memory
Initially Stocked 52

5. Results of Computer Run Following An
Initial Training Sequence 52

6. Results of Computer Run Showing Occurrence
of Learning in the Modified Homestat 57

7. Summary of Results in Table 6 58
8. Results of Simulation of Ecological System . . 70

V

LIST OF ILLUSTRATIONS
Figure Page

1. System With Feedback........................... 4
2. System With Ultrastable Feedback 7
3- Phase Plane Response of a Second Order

System With Damping a Function of P 13
4. Phase Plane Behavior of an Ultrastable

Sy s t e m....................................... 13
3. Black Diagram of One Unit of the Homeostat . . 17
6. Example Showing the Ultrastable Operation

of the Homeostat............................ 30
7. Record of Computer Simulation's Behavior

When a Feedback Element FB was Reversed
from Time to T i m e 32

8. Adaptation to Training.................... 34

V I

CHAPTER I

INTRODUCTION

The merits of investigating self-organizing sys­
tems are widely recognized. One of the earliest and most
well-known theories of self-organizing systems is W. Ross
Ashby's concept of ultrastability. In his book, Design
for a Brain,̂ Ashby presents the concept of ultrastability
as the mechanism used by the human nervous system to pro­
duce adaptive behavior. The use of this concept is illus­
trated by a machine, actually a special purpose analog
computer, called the Homeostat. The Homeostat has been
recognized and accepted by the bionics community as a
valuable contribution to the field of modelling self-adap­
tive systems.

The Homeostat itself is a hardware device. Thus,
any attempt to use a Homeostat in new self-adaptive sys­
tems research work would require considerable initial cost
and effort to build the device. An even greater effort
could result if substantial modifications of the device

^W. Ross Ashby, Design for ^ Brain (John Wiley and
Sons, Inc., New York, I960).

2
were made to incorporate new concepts of operation. One
of the goals of this paper is to describe a procedure to
simulate the Homeostat on a large scale general purpose
digital computer. This would preclude the cost and effort
of any hardware construction and subsequent modification.
Portions of Ashby's work will be reproduced to show that
the behavior of the computer model is identical to that of
the actual Homeostat.

Ashby himself points out the major faults of the
concept of ultrastability in its failure to adequately
describe the behavior of the nervous system. These faults
are 1) the exponential increase in time required to adapt
for a system of increasing size; 2) failure to accumulate
adaptations; that is, there is no memory function; and
3) failure to show reduced adaptation time to repeated in­
puts; that is, there is no learning function. Another
goal of the paper is to modify the computer simulation of
the Homeostat to incorporate the functions of memory and
learning into its behavior. Examples of this new behavior
will be shown.

A secondary goal of this paper is to promote en­
thusiasm for Ashby's concept of ultrastability. Since
the publication of Design for.a Brain in 1952, there has
been some interest in the Homeostat as a device; but there
has been little interest in the idea of ultrastability
itself. It is the opinion of this author that the concept

3
of ultrastability has much unappreciated merit. Hopefully,
the removal of two major faults will result in a greater
acceptance of Ashby's pioneer work.

CHAPTER II

THE ULTRASTABLE SYSTEM

This chapter is a summary of the ideas leading to
Ashby's concept of ultrastability. The material is taken
wholly from the first seven chapters of Design for ^ Brain.

According to Ashby, the free living organism and
its environment, taken together, may be represented with
sufficient accuracy by a set of variables that forms a
state determined system. Since the organism affects the
environment, and the environment affects the organism, we
have a system with feedback. In block diagram form

Related
Environment

Free Living
Organism

Figure 1 - System with feedback

Of the many variables associated with a living
organism, a certain set can be selected and labeled as
essential variables. Every species has a number of

Ibid.

5
variables which are closely related to survival, and which
are dynamically related so that significant changes in any
one eventually leads to significant changes in the others.
These important and closely related variables of the organ­
ism will be referred to as the essential variables.

Examples of essential variables in some animal
might be:

(1) amount of oxygen in the blood
(2) pulse rate
(3) body temperature

We have previously mentioned that the system com­
posed of an organism and its environment contains feedback.
The presence of feedback immediately requires us to consider
the stability of the system. There are many definitions
and many different types of stability which could be dis­
cussed. However, since we are dealing with a state deter­
mined system, we can define stability in terms of a given
trajectory in state (or phase) space. Given a phase space
diagram of a state determined system, and a region of the
phase space, the region is said to be stable if the tra­
jectories from all points in the region stay within the
region. If all trajectories are stable, then the system
is said to be stable.

Every stable system has the property that if it is
displaced from a state of equilibrium, the resulting

6
behavior is such that the system is returned to the state
of equilibrium. A variety of inputs will therefore pro­
duce a variety of matched outputs. An important feature
of a system's stability is that it is a property of the
whole system, and cannot be assigned to any specific part
of it. Thus, the presence of stability implies some
coordination of the actions between the parts. However,
for a whole dynamic system to be in equilibrium at a par­
ticular state, it is necessary and sufficient that each
part should be in equilibrium at that state, in the con­
ditions given to it by the other parts. Also, if the state
of equilibrium is called a goal, then the stable system is
"goal seeking" if displaced from the goal.

Based on the preceding principles, Ashby proposes
3the following definition of adaptive behavior--

a form of behavior is adaptive if it maintains the
essential variables of the organism within physio­
logical limits.

Adaptive behavior and stability can now be related
by recognizing that--

adaptive behavior is equivalent to the behavior of a
stable system, the region of stability being the re­
gion of phase space in which all of the essential
variables lie within their normal limits.

Now, to be adapted, the organism, guided by infor­
mation from the environment, must control its essential

^Ibid., p. 58.

^Ibid., p. 64.

variables, forcing them to stay within the proper limits,
by so manipulating the environment (through its motor con­
trol of it) that the environment then acts on them appro­
priately. This implies a process of trial and error since
no apriori information about the environment is assumed.
The final behavior of the organism will depend on the out­
come of the trials, i.e. how the essential variables have
been affected. Thus, in addition to the feedback shown in
Figure 1 previously, a second feedback path as shown in
Figure 2 must exist.

Environment

Reacting part
of Organism

Essential
Variables

Figure 2 - System with Ultrastable Feedback

In Figure 2, the second feedback path is through
the essential variables to a gating mechanism, S, which
selects which general reaction shall occur. The first
feedback loop consists of ordinary sensory input. The
second feedback loop goes through the essential variables
and carries information about whether the essential

8
variables are, or are not, outside their normal limits,
and affects the gating mechanism S. In a nutshell, the
first feedback plays its part within each reaction, the
second feedback determines which reaction shall occur.

The basic rule for adaptation by trial and error
is--if the trial is unsuccessful, change the way of behav­
ing; when and only when the trial is successful retain
the way of behaving. Regarding the system depicted in
Figure 2, the basic rule is equivalent to the following
formulation:

(1) When the essential variables are not all with­
in their normal limits (i.e. when the trial
has failed), no state of S is to be equilibrial.

(2) When the essential variables are all within nor­
mal limits then every state of S is to be equi­
librial .

The gating mechanism S, is thus seen to be the dom­
inant factor in the ability of the structure of Figure 2
to show adaptive behavior. S is assumed to produce step
function changes, which in turn alters the basic behavior
pattern of the reacting part of the organism. Since S is a
mechanism showing a step function as its main characteris­
tic, it may conveniently be referred to as a step-mechanism.

For any state determined system, the behavior of a
variable at any time depends on the value of that particu­
lar variable, and all other variables at that time. Thus,

9
given a state determined system with a step mechanism at
a particular value, all the states with the step mechanism
at that value fall into two categories, those whose occur­
rence does not produce a change in the step-mechanism's
value, and those whose occurrence produces a change in the
step-mechanism's value. The latter states are the critical
states of the system; and the step-mechanism will change
its value should one of them occur. We assume that the
only variables that show step function changes are those
in S. The variables associated with the environment and
the reacting part of the organism, including the essential
variables, are assumed continuous.

We now have sufficient background to present the
concept of an ultrastable system, as stated by Ashby.^

Two systems of continuous variables (that we call
"environment" and "reacting part of the organism")
interact, so that a primary feedback (through complex
sensory and motor channels) exists between them. An­
other feedback, working intermittently and at a much
slower rate, goes from the environment to certain
continuous variables which affect some step-mechanisms,
the effect being that the step mechanisms change value
when and only when these variables pass outside given
limits. The step-mechanisms affect the reacting part
of the organism, and by acting as parameters to it,
they determine how it shall react to the environment.

Since the ultrastable system is stable by defini­
tion, we can use the concept of ultrastability to model
the adaptive behavior of an organism.

Any given organism will have a finite set of

^Ibid., p. 98

10
essential variables and critical states. If the organism
is confronted with an environmental state to which it was
not previously specifically adapted, then adaptation, if
it can occur at all, must occur in the following way. The
new situation acts to displace the variables of the react­
ing part of the organism from their state of equilibrium.
The feedback from the environment to the reacting part of
the organism is such that the resulting system is either
stable or unstable with regard to the new environmental
state. If the system is stable, the variables will all
return to the state of equilibrium after some period of
time; and the organism shows that its present state is
adapted to the new environmental state. If the system is
not stable, the essential variables will eventually exceed
their limits, causing the system to reach its critical
state. Reaching the critical state, the system acts to
return the variables to acceptable values by making step
mechanism changes. As long as any essential variable ex­
ceeds its limit, step mechanism changes will continue to
occur. Only when a step mechanism reaches a value such
that the system becomes stable again will the step mech­
anism changes stop. Thus, if adaptation is possible at
all, the step mechanism will produce values eventually,
which will make the system stable.

11

MATHEMATICAL TREATMENT OF ULTRASTABILITY

Let us consider a linear system described by a
set of differential equations of the form x = Ax in vector-
matrix form. For example, a second order servomechanism
which is usually described by the equation

2

can be written in the form

X, 0 1 X,1 1

*2 -W ^ -2(W n ^ n *2

which is of the general form x = Ax. A more general sys­
tem of second order could be given as

*1 ®11*1 *12*2

*2 *21*1 *22*2

Taking a system described by these two equations, we could
consider the requirements necessary to form an ultrastable
system as proposed by Ashby. Since x^ and x^ are contin­
uous variables of the system we could call them the essen­
tial variables. Limits must now be assigned to these vari­
ables which specify the critical states. These limits can
be taken as x^CRIT and x^CRIT . To create the ultra­
stable feedback loop we must identify a certain parameter
of the system to be altered if either x^ or Xg or both

12
ever reach or exceed their critical states. The coeffi­
cients of the describing equations can be taken as func­
tions of a parameter called p. The equations become

Xi (x^, Xg, p) = a^^ (p) x^ + a^2 (p) x^

h (=1' ^2’ P) = «21 ^1 + «22 (P) *2

If the value of p is altered as a result of one of the
variables exceeding its critical state, then the coeffi­
cients a^j(p) will show step function changes in value.

Following Ashby, the above system can be discussed
in terms of its behavior in the phase plane. Recall that
a region of phase space is called stable if the lines, or
trajectories, of behavior from all points within the re­
gion remain within the region. Now the effect of changing
the parameter will be to alter the system field; and pos­
sibly alter the stability of the system.

As an example to specifically illustrate the beha­
vior in the phase plane, consider a second order servo­
mechanism with the value of damping taken as a function of
the parameter p. We have

^2 S (P) =2
Assume x^(0) = Xg(0) = 0.5, x^CRIT = XgCRIT = 1.0; and
that the damping is given as a function of p by the
following table.

13

p 1 2 3 4 5

5(p) 0 0.5 -0.5 2 -2

For each value of the parameter p, a different
field or phase space picture, will result. A plot of the
field for each value of p is shown below. In each case
the system is started at the initial state x^(0) = Xg(0)
= 0.5-

X2

P=1

(0.5,0.5)

P=3

X,

X2

p=4

p=2

2

(0.5,0.5)

P=5

Figure 3
Phase plane behavior of a second order system

with damping a function of p.

14
In the preceding graphs if = Xg = 0.5 initially,

then values of the parameter p = 1, 2 , 4 will result in
stable fields. Values of 0 = 3i 5 will result in unstable
fields. For the case p = 3, variable will exceed its
critical state after some time; and for the case p = 5 »
variable x^ will exceed its critical state.

To show the effect of ultrastability, consider a
sequence of parameter values of p = 3 , l , 5 , 4 , 2
If the system is started with x^ = x^ = 0.5 initially, and
p = 3 initially, then the system will be unstable and var­
iable Xg will eventually exceed its critical state. As a
result a step change will occur which changes p to 1 .
For this case, a steady state oscillation will exist with
constant amplitude. Thus, Xg will again exceed its
critical state about one half cycle later. This will re­
sult in a step change causing p to become 5 , and the
system is unstable. Variable Xg will again have exceeded
its critical state causing a step change and producing p =
4. With this value of p the system is stable, and both
x^ and Xg will decay exponentially to the equilibrium
point x^ = Xg = 0. Adaptation has now occurred, and the
value of p will remain equal to 4 until some new input
occurs which causes the system to become unstable. This
sequence of events showing ultrastability is pictured be­
low.

15
X,

x„CRIT

-x„CRIT
X CRIT-x^ CRIT p=3

x„CRIT

-x„CRIT
X, CRIT-x^ CRIT p=5

I

XgCRIT

-x^CRIT p=i x^
-XgCRIT

CRIT

p=4X, CRIT X, CRIT

Figure 4
Phase plane behavior of an ultrastable system.

In the next chapter, the concept of ultrastability
is applied to the design of an analog computer-type device,
called the "Homeostat." The Homeostat exhibits a certain
amount of adaptive behavior, but it has some very basic
limitations. Examples of its abilities and limitations
follow the details of its construction.

CHAPTER III

THE HOMEOSTAT

Description of the Homeostat
The Homeostat is actually a type of analog compu­

ter. It is composed of four units, each containing a
D'Arsenval meter movement driving an output potentiometer.
The angular positions of the meter movements represent the
four continuous variables of the system. Each meter coil
actually has four windings, to which the four variables
are connected through variable sign/gain feedback elements
Thus, every output is connected to every input.

A block diagram of one of the four identical units
of the Homeostat is shown below. For this unit, is the
associated variable, and is given as the output position
of the potentiometer. Variable x^ is multiplied by the
variable sign/gain feedback element b^^, and fed back to
the input. The remaining variables, x^, x^, and x^ are
each fed into this unit through variable sign/gain feed­
back elements b^^, b^^, and b̂ jĵ respectively.

16

+E
17

20 12
METER

MOVEMENT — 0=1
output30

14 -EAMPLIFIER
1 asmvolt

11inputs

STEPPING SWITCH ENER­GIZED AT DIS­CRETE TIME INTERVALS

THRESHOLD
^ DETECTOR

Figure 5
Block Diagram of one unit of the Homeostat.

At this point we have described only a dynamic
system that could be stable or unstable, depending on the
values of the sign/gain feedback elements. Recalling the
concept of an ultrastable system, we see that our system,
so far, has only the first feedback path; and does not
have the "ultrastable" feedback path. We can introduce
the second feedback path by calling the four variables
essential variables, adding a device to sense whether they
are within their normal limits; and if they are not, auto­
matically changing the values of certain of the sign/gain
feedback elements. In the Homeostat, Ashby has selected,
for each unit, the three "outside variable" inputs to con­
tain the automatically adjusted sign/gain feedback elements

18
The "self feedback" of each unit is left for manual adjust­
ment of sign/gain. A detailed discussion of the setting
of the self feedback values is presented in a later chap­
ter.

For any given unit, the variable associated with
that unit is an essential variable. If that essential
variable exceeds its normal limits, then the three sign/
gain elements feeding back the other three variables
should automatically show step function changes in their
values. In each unit of the Homeostat, this process is
accomplished by using a threshold detector, and a stepping
switch to change the sign/gain elements.

The addition of the second feedback path has trans­
formed our system into an ultrastable system; and now it
can be used to demonstrate some of the principles of adap­
tive behavior.

Derivation of the Homeostat Equations
We can use the block diagram shown in Figure 3 to

determine the set of differential equations describing the
behavior of the Homeostat. Figure 5 shows one of the four
units which are interconnected to form the Homeostat. Us­
ing D'Alembert's principle we can equate torques associated
with the meter movement. The torque, T^, generated by the
meter movement is given as

Ti = Kj, *1 ^±2 *2 ^i3 *3 ^i4

19
and this must equal the sum of the torques of the mechani­
cal components of the meter movement:

T. = Jx. + Bx. + Kx, 1 1 1 1
Thus ,

Jx . + Bx. + Kx. = K. ^ b . .1 1 1 1 ijj=l
X .ij J

For the case where the moment of inertia, J, of
the meter movement is negligible, the equation reduces to
first order as:

B x . + Kx. - K. b .. X = 01 1 1 ij J
k

J^l
In state variable, or vector-matrix form, the

equations are:

^1

^2

e
"3

#
""4

B
K, K,

K_2
B 21

K, ,

-> *>13

K
-ir 41 4 b K4 b-g- 42 43 ntK,.b^^-K)B B'^4"44"

By relabeling the constants, we can simplify the
above set of equations to:

^ 1 ^ 1 1 ® 1 2 ®13 ®14 ~

^ 2 ^ 2 1 ® 2 2 ®23 ®24 * 2

"3 ^31 ®32 ®33 *34 X 3

^4 ^41 ®42 »43 *44 X 4

20

or using general matrix motation:
X = Ax

where the a^^'s determine the sign and magnitude of each
variable fed back. To solve this set of equations it is
necessary to know the set of coefficients, auj, and the
initial values of the variables x^(0), x^CO), x^(0) and
x^(0). The a^j, i / j , terms are taken as the random
value components automatically selected by the movement
of stepping switches. The a^j, i = j, terms are taken as
the self feedback elements, and are externally controlled.

The Homeostat equations, and the associated thresh­
old detection and switching mechanisms, are amenable to
solution using digital simulation. In the next chapter
the simulation procedure is designed, and a FORTRAN program
for simulating the Homeostat on the IBM l4lO is given.

CHAPTER IV

A FORTRAN PROGRAM FOR SIMULATING THE HOMEOSTAT

Since the Homeostat is described by a set of equa­
tions in the form x = Ax, there is little difficulty in
mathematically extending the size of the device. However,
large quantities of specialized components would be re­
quired to actually construct a Homeostat with many vari­
ables. Here then, we see a problem where an application
of some type of simulation technique could save the time
and cost of building an actual device.

Simulation of the Homeostat by any given system
would require basic mechanisms to perform the following
tasks :

(1) solve a set of first order linear differential
equations

(2) sense whether the value of an essential variable
is greater than its normal limit (i.e. threshold
detection), and

(3) switch-in new random value sign/gain elements
for a certain unit upon detection of its essen­
tial variable exceeding the normal limit.
Since the problem requires the solution of a set

of simultaneous differential equations, an analog compu­
ter would seem to be the logical choice. The size of the

21

22

Homeostat simulated would be limited only by the size of
the actual analog computer used. However, a fairly com­
plicated threshold detection and switching mechanism
would have to be built and connected to the analog compu­
ter. Thus, the use of an analog computer would not com­
pletely relieve the necessity of large quantities of spe­
cialized components to simulate a Homeostat with a large
number of variables.

To preclude the cost and effort of constructing
any hardware at all, a large scale general purpose digital
computer could be used. If the computer has a reasonable
collection of library subprograms and functions, in addi­
tion to a FORTRAN or ALGOL compiler, the required program­
ming task is somewhat simplified. A Runge-Kutta routine
can be used to solve the set of differential equations;
and a random number generation routine can be used to
select the random sign/gain feedback elements. The thresh­
old detection function can be accomplished easily with sev­
eral FORTRAN or ALGOL statements. One of the advantages
of the digital computer simulation is that in addition to
eliminating the need for an initial outlay of hardware,
changes in the computer model can be made without hardware
modifications or additions. However, some seemingly minor
changes in model behavior may require extensive programming
effort. Thus, if a suitable digital computer and software
system is available, an expanded and/or modified Homeostat

23
can be simulated and tested.

Since an IBM l4lO computer with a FORTRAN compiler
was available, the digital simulation technique was chosen.
The only modification made in the computer model was to
expand the size of the Homeostat so that up to ten variables
could be used. No other changes in the operation of the
Homeostat were permanently made. However, a number of op­
tional changes for experimentation purposes were built in.
These features can be used by changing paramenters on cer­
tain of the input data cards. One of these features is
the ability to restrict the main diagonal terms of the A
matrix (representing the self feedback terms) to negative
values. This greatly increases the chance of any A matrix
being stable. The details of the reason for including
this feature are discussed in the next chapter.

The following list represents the initial design
requirements of the computer program to simulate the Home­
ostat.

1. Allow up to ten units (i.e. variables); and read
a card, N, specifying the exact number of units
for each run. N =10.max

2. Read an initial condition vector that specifies
information analogous to initial meter deflections
of the Homeostat.

3. Provide for internal generation of the NxN matrix
of coefficients (the A matrix). Read a card, K,

2k

which specifies whether the A matrix will be gener­
ated internally, or whether the A matrix will be
read in initially. If the A matrix is generated
internally, still allow the diagonal terms to be
read in. Read a card, K 1 , to determine whether
all or part of the A matrix coefficients are to be
generated internally. If the diagonal terms are
to be generated internally, read a card, K 2 , to
determine whether the diagonal terms shall have
random signs or all negative signs.

4. To follow Ashby's design, the terms of the A matrix
should be integers from -9 to +9-

5. Once the A matrix is read in, or generated inter­
nally, test it for stability. Call a subroutine
to find the characteristic equation of the A matrix.
Call another subroutine to apply the Hurwitz test
to the characteristic equation. If the A matrix
is stable, do not solve the N differential equa­
tions. Record that stable state occurred.

6. If the A matrix is unstable, set up N simultaneous
differential equations, and call an R-K-Gill sub­
routine to solve them.

7. Read threshold values of the N variables. If var­
iable x^ exceeds its threshold, generate a new
set of coefficients (of the A matrix) for â ^̂ to
â jj, except leave a^^ as it was; and continue the

25
solution of the equations.

8. Record the number of step mechanism changes (i.e.
new A matrices) that were required to reach a
stable state.

9. Since a stable state might not occur at all, or
not in a reasonable length of time, provide a
means for the program to stop after a certain
number, 110, of step mechanism changes. Record
that stability was not achieved. Using these
design considerations, a flow chart of the compu­
ter program was constructed, and is shown on the
next page.

FLOW CHART FOR COMPUTER PROGRAM
TO SIMULATE THE HOMEOSTAT

START

Is
NoYes

NoYes Is Kl=l?

Read N,K,K1,K2

Read NxN matrix
of coefficients

Read initial
condition vector

Read threshold
(or critical
values) of
variables

26

Read Diag-
onal terms

Generate all
A matrix terms
except for
diagonal terms Generate A

matrix terms
with negative
signed diago­
nal elements

Generate A matrix terms with randomly-
signed diago­
nal elements

Set up N
simultaneous dif­
ferential equations

Yes
Is the

system
table

Call RKGILL sub-
routine and solve
for XI to

Print out that the
system is stable,
and STOP

Generate new
ith row of A
matrix(don't
change a^^)
Check all x^

27

28
A FORTRAN program was coded in accordance with

the above flow chart. The listing of this program is
found in Appendix 1, along with a detailed flow chart.

The next chapter summarizes the work presented
so far; and discusses some of the problems and limita­
tions of the Homeostat.

CHAPTER V

EXAMPLES OF HOMEOSTAT BEHAVIOR

For a first example, consider the Homeostat with
four variables; and let the purpose of this example be
simply to show the ultrastable operation of the Homeostat.
The four variables are given initial stationary values
x^(0), Xg(0), x^(0) and x^(0). A matrix of random digits
is produced, and tested for stability. If the A matrix
is stable, then no step changes are required, and adapta­
tion has occurred. However, if the A matrix is not stable,
the solution of the four equations is started. At some
later time, due to the condition of instability, at least
one of the variables will exceed its critical value. At
that point, a step mechanism change will occur; and a new
A matrix will result. If this A matrix is still unstable,
then another step change will soon occur, and another new
A matrix will result. This process will continue until a
stable A matrix is obtained, and adaptation occurs; or
until some prescribed time limit is exceeded, and failure
to adapt is recorded.

This basic example was run on the computer

29

30
simulation of the Homeostat, with the results shown graph­
ically below.

SC SC SC

X,

Time

Figure 6
Example showing the ultrastable operation

of the Homeostat.

Initially, the simulation was started with x^(0)
= 0.5 and XgtO) =x^(0) = x^(0) = 0 . At first, the sys­
tem was unstable and x^ exceeded its critical state,
causing step change one. The resulting system was still
unstable, and variable x^ again exceeded its critical
state, causing step change two. Again an unstable system
resulted, and this time both x^ and x^ exceeded their
critical states. This third step change resulted in a
stable system finally, and the four variables returned to
values of zero indicating that a stable state had been

31
reached. For any future trial with initial value of the
variable given, the system will return to equilibrium,
showing that adaptation to environment has occurred.

This example illustrated the basic ability of the
Homeostat to change its internal behavior so that a stable
state can be reached. This self-organizing behavior is a
result of random variations in the system structure pro­
duced by the step mechanism changes.

As a second example, consider the Homeostat with
only two variables. Let x^ represent the reacting part
of the organism, and x^ represent the environment. As­
sume that some environmental state acts to displace x^
and Xg from equilibrium to new values, x^(0) and Xg(0).
In addition, the environment is assumed to show some pro­
perty of alternation in its effect on the reacting part of
the organism. Adaptation of the Homeostat to this environ­
ment could be viewed as analogous to the adaptation shown
by a baby that exibits the same sucking reflex when pre­
sented either with a bottle or a pacifier. In this exam­
ple, the alternation in the environment is produced by
changing the sign of the self feedback element of the Xg
unit.

The Homeostat is started with x^ and Xg given
the values x^(0) and Xg(0). If the system is not stable
initially, step mechanism changes will occur until stabil­
ity is achieved. Next, the sign of the self feedback

32
element in the unit is reversed, and and x^
are placed at x^(0) and Xg(0) again. If the system is
stable under this new change, then the system has adapted
to the new environment. If the system stability is de­
stroyed, step mechanism changes occur to restore stabil­
ity. This process is repeated until the step mechanism
changes produce a system which is stable under the rever­
sal of the sign of x^ self feedback. The computer sim­
ulation of the Homeostat was used to run this example,
and the results are shown below in graphical form.

FB

Time
SCSC

Figure 7
Record of computer simulations behavior when a feedback

element FB was reversed from time to time.

33
This second example is similar to Ashby's example

in Design for ^ Brain, pp. 115-116. At first, two step
changes were necessary to even provide stability. However,
the final state was then stable for reversal of FB at R,
and Rg.

As a third example, consider the Homeostat with
four variables; x^ and x^ representing the reacting
part of the organism, and x^ and x̂ ̂ representing the
environment. Now suppose that the adaptation required is
a form of training; e.g. we could require that a positive
movement of x^ be followed by a negative movement of
Xg. In the event that x^ moved positively, a trainer

would force x^ past its normal limit as a punishment.
If the initial system is not adapted to this environment,
then step changes will occur until a satisfactory system
results. The computer simulation of this example produced
the data shown graphically below.

Time*
SC TSC SC SC T

Figure 8
Adaptation to training. If moves positively, the trainer

forces x_ past its critical state as punishment.

This third example is similar to Ashby's example
in Design for ^ Brain, pp. 113-115» The number of variables
here was taken as four; whereas the original example had
three. Note that initially three step changes were required
to reach initial stability. At T^, x^ was forced posi­
tive, and Xg moved positive, which was the undesired re­
sponse. Variable x^ was forced past its critical state
as a punishment and a step change occurred. The resulting
A matrix was stable, so at Tg>, x̂ ̂ was again forced posi­
tive. This time Xg responded by going negative, which
was the desired response. The training was successful, and

35
for future trials, x will always move negatively for a
positive movement of x^.

In the second and third examples, the results were
identical in concept with those of Ashby. Since both the
Homeostat and the computer simulation of the Homeostat
use switching of random valued components exact duplicate
results should not be expected. The same example run
twice on either system would show a similar effect - equiv­
alent end results, but different intermediate behavior of
the variables. Next, results are given from a large num­
ber of runs of both examples on the computer simulated
Homeostat.

So far we have presented the concept of ultrasta­
bility, the design of an ultrastable system called the
Homeostat, and a computer program for simulating the oper­
ation of the Homeostat. In addition, several examples of
adaptive behavior were run using the computer simulation
of the Homeostat, and the results were shown. This work,
then, shows primarily that the behavior of the Homeostat
can be faithfully reproduced using digital computer simu­
lation.

Ashby was limited in the actual examples of adap­
tive behavior of the Homeostat due to the restricted size
of the device (four variables). However, the computer
simulation expands the size of the Homeostat to ten vari­
ables and therefore several additional examples can be

36
given.

One of the major problems with the Homeostat is
that the time required to adapt to a given situation in­
creases exponentially with an increase in the number of
variables. Ashby did not present any examples to verify
or demonstrate this limitation. Using the computer simu­
lation, examples of this time increase are easily shown.
We can take two examples from the previous discussion,
increase the number of variables, and run them again.
This was done for the cases of number of variables N,
equal to four and seven. The results are shown in tabular
form in Table 1.

TABLE 1
A COMPARISON OF ADAPTATION TIMES AS THE NUMBER OF VARIABLES IS INCREASED

EXAMPLE N NUMBER OF RUNS NUMBER THAT ADAPTED AVERAGE TIME TO ADAPT TOTAL TIME RUN

2
2 10 9 1.22 s. c.* 0.17 Hrs
4 10 6 6.17 s . c . 1.40 Hrs

7 5 2 20.30 s . c . 4.37 Hrs

3
4 9 6 2.83 s. c. 2.50 Hrs

7 5 2 7 .50 s . c . 7.09 Hrs
10 9 0 — — — 17.15 Hrs

VoJ
-vl

s. c. = step changes.

38
From Table 1 it can be seen that the time to adapt

(measured in terms of the number of step changes required
to reach stability) is greatly increased for each case
where variables are added. In some cases adaptation was
not achieved at all within a fixed length of time. Also
note the extreme running time as N becomes larger.

Ashby points out that the probability of stability
associated with a given A matrix is greatly increased if
the main diagonal terms are required to be negative.^ The
results presented in Table 1 were produced with all runs
except for the case N = 2 made with all diagonal terms
negative. To show the need for this restriction, examples
two and three with N = 4 were run with randomly signed
main diagonal terms. The results are shown in Table 2.
Note that in most of the runs adaptation was not achieved
at all in a fixed, reasonable length of time.

TABLE 2
RESULTS OF RUNS WHERE THE A MATRIX IS ALLOWED TO

HAVE RANDOMLY SIGNED MAIN DIAGONAL TERMS

EXAMPLE N NUMBER OF RUNS NUMBER THAT ADAPTED

2 4 9 1

3 4 9 0

'ibid., pp. 258-260.

39
To justify the use of all negative main diagonal

terms, we can turn to the large body of information on
feedback control systems. The Homeostat can be considered
as a collection of interrelated control systems, each re­
presenting a functional variable. The main diagonal terms
of the A matrix represent the self feedback in each unit
of the Homeostat. Comparing these units to well known
position, velocity, and acceleration control systems, it
is expected that the self feedback be negative, for nega­
tive feedback is the basic principle of operation of an
error controlled system.

The above discussion points out one of the major
problems in modelling adaptive behavior with an ultra­
stable system - the time to adapt becomes prohibitive as
the number of variables in the system become large. The
behavior of the Homeostat exposes two additional major
problems - failure to accumulate adaptations (i.e. no
memory), and failure to show reduced adaptation time for
repeated inputs (i.e. no learning). These problems pre­
sent some very severe restrictions to general acceptance
of Ashby's work. It is the opinion of this author that
the concept of ultrastability has much unrecognized merit ;
and that much can be accomplished to relieve some of the
restrictions mentioned. In the next chapter, two prob­
lems are singled out for further investigation. They
are the addition of memory; and the incorporation of

40
learning into the behavior of the Homeostat.

CHAPTER VI

DEVELOPMENT OF MEMORY AND LEARNING FOR THE HOMEOSTAT

Adaptive Behavior of the Homeostat

The Homeostat is a linear system whose behavior
at any instant of time is specified by a set of first
order differential equations in the form x = Ax. Since
the system is linear, the stability is determined wholly
by the characteristic roots of the A matrix, and is inde­
pendent of initial conditions given by the x(0) vector.
For example, if the system is stable for an input of
x^(0) = 0 .5, Xg(0) = x^(0) = x^(0) = 0 ; then it will

be stable for an input of x^(0) = Xg(0) = x^(0) =
x^(0) = 0 .7. This assumes that an initial value of a

variable is never taken greater than or equal to its
critical value. If a variable was initially given a
value exceeding its critical level, then a step change
would occur; and possibly the stable system could be
changed to an unstable one. With this restriction then,
stability is independent of the initial values of the
variables.

To what then, does the Homeostat adapt? Recalling
41

42
that Ashby defines adaptation as the process of seeking
equilibrium or stability, we see from the above discussion
that if the A matrix is stable for any one set of initial
conditions, then it will be stable for all sets of initial
conditions. Thus adaptation is generally not with respect
to arbitrary initial conditions, but to relations between
the variables of the system, or the structure of the A
matrix. For example, the Homeostat can adapt to the con­
straint that a forced change in x^ be followed by an
opposite change in x^. This relation can be achieved by
forcing step mechanism changes to alter the A matrix until
a suitable system configuration is obtained. One way to
cause these step mechanism changes is to force a variable,
or variables, other than x^ and x^ past the critical
state each time an "incorrect" response occurs. This case
was illustrated as example 3 in Chapter IV.

In the initial versions of the computer model of
the Homeostat, separate programs were used for each of the
different conditions required for adaptation. That is, a
separate program was required for each of the three exam­
ples of Homeostat behavior given in Chapter IV. If the
Homeostat is to serve as a model for a general adaptive
process then some changes must be made in the computer
program in order for it to respond to the varying types
of input that will occur.

To generalize the operation of the computer model.

43
the input dependent adaptive logic from each of the three
simpler programs was combined into one large program.
However, now that the general adaptive logic was included
in one program, a means was needed to determine which por­
tion of that logic should be used for a given input. Thus,
a need arises for some form of input pattern classification
scheme, where each input pattern produces a unique pattern
classification signal thereby calling the required portion
of adaptive logic. The design of the input pattern class­
ifier should be as simple as possible, in order to minimize
the necessary program changes. However, the form of the
inputs to the Homeostat are such that a very careful exam­
ination is required to guarantee that the significant as­
pects of the inputs are considered.

Input patterns to the Homeostat are not immediately
recognizable as "normal" patterns, since the input does not
appear all at once, or even in a simple time sequence. An
example of an input pattern is taken from example 3 in the .
previous chapter (Figure 8).

A positive displacement of variable x^ must be
followed by a negative displacement of variable x ^ , or
else variable x^ will be forced past its critical state
as a punishment.

Note what is required to determine the full nature
of the input: if the x^ solution is observed, it must
not follow the direction of the x^ input. This requires

44
some time for solution, and a stable A matrix must result.
If Xg does follow x^ then x^ is forced past its
critical state, and the process is repeated.

Thus it can be recognized that some coding scheme
is necessary to tell the Homeostat at the start of an ex­
periment the exact nature of the input. Also note that in
the above example, we could consider the solution to be
obtained by repeated application of a simpler pattern.

The problem then, is to take a class of inputs
and find some method of expressing the input as a group
of simpler inputs, if possible; and somehow encode the
result for input to the Homeostat.

This coded input must be such that input patterns
can be classed as members of say one of N possible cate­
gories. The Homeostat must then be capable of classifying
inputs as they occur, and storing the pattern classifica­
tion along with the resulting A matrix.

In order to code the input pattern in some manner,
certain features of the pattern must be selected so that
knowledge of these features is sufficient to uniquely
describe the pattern. This process is called feature re­
cognition. The following features were selected as being
descriptive of a wide class of possible input patterns to
the Homeostat.

(1) Which variables of the system are related?
(la) How are they related?

45
(lb) What are the consequences of an incorrect

relation?
(2) Is the structure of the A matrix altered?
(2a) What terms of the A matrix are altered?
(2b) How are they altered?
(2c) What are the consequences of incorrect

behavior?

Although all of these features are utilized by
the computer program in some manner, they are not all re­
quired in identifying the input pattern class. Based on
the above input features, we can construct a simple four
category pattern classifier using only features (1) and
(2) from the above list. A much more comprehensive pattern
classifier could be built, but four categories were chosen
as a matter of program simplicity. A future addition to
the program could be made to widen the spectrum of input
pattern classes. The four pattern classes are specified
as below.

Class Features
1 No variables related, A matrix unaltered
2 Variables related, A matrix unaltered
3 No variables related, A matrix altered
4 Variables related, A matrix altered

The original or "basic" Homeostat program was
modified to include the input pattern classifier and the
combined adaptive logic. This version of the program was

46
then tested using the three examples from Chapter IV. All
three examples ran successfully, showing proper operation
of the integrated program. No results are shown here
since the results from the previous examples were simply
reproduced. A listing of this version of the program is
found in appendix B.

Incorporation of the Memory Function

Once the elementary pattern recognition scheme has
been added to the computer model of the Homeostat, a fairly
simple memory function can also be added. The following
list specifies the design requirements for this memory
function.

(1) Modify the program to store the A matrix that
produces adaptation to a given input. The A matrix should
be stored in a section of memory reserved for adaptations
to inputs in the pattern class of the original input. If
memory space is available, it might be desirable to store
all stable A matrices resulting from a particular run.

(2) Modify the program to start by reading A
matrices from the pertinent section of memory, rather than
initially generating them internally. If a given A matrix
from memory is not successful in producing adaptation to
the present input, then another A matrix is read and tried.
An unsuccessful A matrix obtained from memory is not

47

altered and tried again; instead, it is simply returned
to memory, and another completely new A matrix is called
from memory.

(3) Prepare a "preprocessor" which will store a
specified number of stable A matrices in memory prior to
the first run of the main program.

Operation of the computer model of the Homeostat
with memory would proceed in the following manner - ini­
tially no memory would exist in the system. Thus adapta­
tion to the first input would of necessity be the result
of trial and error behavior of the ultrastable feedback
mechanism. Once adaptation to this input is obtained,
the resulting A matrix is stored in a section of memory
reserved for members of the respective pattern class.
Further A matrices resulting from other inputs of this
class will be stored sequentially. Next, consider the
application of a second input. This input is first class­
ified; and then a check is made to see if the memory sec­
tion corresponding to that pattern class is non-empty.
If that memory section is empty, then adaptation can only
occur through use of ultrastability. If the second input
happened to belong to the same class as the first input,
then a non-empty memory section will be found. The first
A matrix in this memory section (in this case, the only A
matrix) is called and tested to see if it provides

48
adaptation to the new input. If the first A matrix is
successful, then a record is made of the fact that adap­
tation occurred from a memory search. Should the first
A matrix from memory be unsuccessful, the next A matrix
in sequence in the memory section will be tested. This
process is continued until either a successful A matrix
is found from memory; or until the memory is exhausted
in which case the ultrastable feedback mechanism is acti­
vated.

An important aspect of the operation of the memory
function is that when an A matrix is called from a section
of memory and tested, if the A matrix is not successful,
it is simply returned to memory; no attempt is made to
modify it in any manner. As a later sophistication of the
program, a change could be made to assess the utility of a
particular A matrix from memory and determine some proce­
dure to alter the A matrix such that it will produce adap­
tion to the given input. The problem here would be how to
determine the manner in which to modify a given A matrix
for a given input. The program changes required would
probably be quite complex.

After a period of operation where many different
inputs have occurred, a fairly large memory could be ex­
pected. Thus, as time of operation increases, the proba­
bility of adaptation from memory to any given input should
increase. The actual value of this probability will

49
depend on the diversity of the different inputs. A large
class of fairly similar inputs could be expected to pro­
duce a high probability of adaptation from memory; where­
as a very diverse class of inputs might produce a low or
near zero probability.

In the computer program, a finite memory size
must be selected. For reasons of simplicity, each section
of memory corresponding to a given input class was given
1/ number of classes of the total memory space. Thus, for
the case here with four pattern classes, the memory was
divided into four equal parts. Arbitrarily, a figure of
400 matrix storage locations was selected for the total
memory. This gave 100 A matrix storage locations per
pattern class. At this stage of development of the program,
the finite, fixed memory space results in a loss of any A
matrix desired to be stored once that particular section
of memory is full. Later, a program feature will be dis­
cussed which allows a selective process to decide which A
matrices to keep, and which to dump.

The behavior of the human memory function provides
the basis for this design of the memory for the Homeostat.
If a situation occurs where there is no memory of a rele­
vant adaptation, then a process of trial and error is used
by the person. If adaptation can be achieved in this man­
ner, then some result related to this process is stored in
memory. This stored result is associated with some pattern

50
related to the particular situation. In some future situa­
tion similar to the original situation here, the stored re­
sult will be recalled and applied. In this manner, it is
conceivable how a young child might start with virtually
no memory, yet end up with a substantial memory of adapta­
tions after a period of only trial and error behavior.

The program modification required to enable suc­
cessful A matrices to be stored in memory, and to provide
for initial memory search are not extremely complex. A
utility subroutine is used to store successful A matrices
on the disk; another utility subroutine is used to read A
matrices from the disk. Most of the program changes are
in the form of indexing procedures to allow reading and
writing A matrices into and out of the correct sections
of memory for a given pattern class. The inclusion of the
preprocessor to store a collection of stable A matrices
before starting the system is mostly for test purposes.
However, if many of these initial A matrices prove to be
successful, then the adaptation time for a number of input
patterns will be reduced. A possible human analogy to
this procedure could be inherited or inborn ability to
adapt to certain classes of input. The operation of the
program will be tested with and without an initial memory
of A matrices; and the overall time to adapt to a fixed
number of inputs will be recorded.

An attempt will be made to estimate the effect of

51
the memory function by computing the probability of adap­
tation from memory for a certain set of inputs applied
after a fixed training sequence. This training sequence
will consist simply of allowing the memory of the computer
model of the Homeostat to record adaptations to a fixed
number of typical input patterns.

A flow chart and listing for this version of the
program is not specifically provided due to the minor dif­
ferences in this version and the final version given in
appendix D. To demonstrate the effect of adding a memory
function to the Homeostat, the following three computer
runs were made. In the first run no initial memory of A
matrices was provided. Out of 20 inputs there were 13
adaptations from memory.

TABLE 3
RESULTS OF COMPUTER RUN WITH MEMORY INITIALLY EMPTY

PATTERN CLASS 3
Number of inputs 20
Number of adaptations by trial and error 3
Number of adaptations from memory 13
Number of failures to adapt k

For the second run, an initial memory of 15 stable
A matrices was provided. The number 15 simply represents

52
an arbitrarily selected value. The data from the first
run was then used for this run. Then, out of 20 inputs
there were 19 adaptations from memory.

TABLE 4
RESULTS OF COMPUTER RUN WITH MEMORY INITIALLY STOCKED

PATTERN CLASS 3
Number of inputs 20
Number of adaptations by trial and error 1
Number of adaptations from memory l8
Number of failures to adapt 1

The third run was made using the data from run
number one to produce an initial memory of 3 A matrices.
Next, 20 inputs were applied after the memory had been
stocked. Out of the 20 new inputs, l8 adaptations occurred
from memory. Thus, following a fixed training sequence of
inputs, we have 90 per cent of the new inputs adapting from
memory.

TABLE 5
RESULTS OF COMPUTER RUN FOLLOWING INITIAL TRAINING SEQUENCE

PATTERN CLASS 3
Number of inputs following formation of memory 20
Number of adaptations from memory l8
Probability of an adaptation from memory .90

53
The above results show that addition of the memory

function has reduced the adaptation time for a significant
number of inputs by providing adaptation from memory search
rather than by trial and error. Table 5 shows that after
a fixed training sequence, we can estimate the utilization
of the memory at 90 per cent.

Incorporating Learning into the Homeostat

The discussion of addition of the memory function
presented in the previous section suggests a way to incor­
porate learning into the behavior of the Homeostat. Here,
learning is taken as a decrease in the amount of time re­
quired for the Homeostat to adapt to a given input pattern
which is repeated. Since the A matrix resulting from an
input pattern of some kind represents a successful adapta­
tion, that matrix should be stored in memory, and recalled
as one of the first A matrices tried when a new input pat­
tern of the same class occurs. Taking elementary rein­
forcement as a model for learning we can make a simple ex­
tension of the memory function modification to enable the
Homeostat to show a form of learning. A "success tag"
can be added to each matrix that is successful, and there­
fore stored in memory. Whenever the ultrastable system
produces an adaptation by trial and error, the correspond­
ing A matrix is stored in the section of memory reserved
for the respective pattern class, with a value of 1 as its

54
success tag.

For a new input pattern the operation of the Home­
ostat with learning proceeds in a manner similar to that
of the Homeostat with only memory; except that the A mat­
rices with the greatest value success tags would be tried
first. Each time an A matrix from memory is used to pro­
duce adaptation to a new input, that A matrix will have
its success tag increased by one, up to a certain maximum
value. When the value of an A matrice s success tag
reaches this maximum, that A matrix is assumed to become
a part of the permanent memory, and its success tag is no
longer increased with use.

In the event that no A matrix stored in memory
produced adaptation to a given input the basic ultrastable
mechanism of the Homeostat would generate a new A matrix,
if possible. This new A matrix would then be added to
memory with a success tag value of one.

The combination of ultrastable behavior and memory
with the above described search procedure should result in
a total system that shows a reasonable form of learning.
After a period of time any pattern class section of memory
will have a collection of A matrices with success tags of
varying values. If now, the initial memory search, given
the next input pattern, is organized such that the A mat­
rices with the largest valued success tags are tried
first, then the probability is greatest that one of the

55
first A matrices will be successful. In general, adapta­
tion time can be considered as being inversely proportional
to the frequency of a particular input pattern. High fre­
quency input patterns should have very low adaptation
times, possibly equal to some fixed minimum time. Low
frequency inputs could have fairly long adaptation times
due to the lengthy search of all the contents of memory.

The problem of selective memory operation due to
a finite size memory can be handled by using the success
tags associated with stored A matrices. As the memory
contents near the maximum, a search can be conducted for
A matrices with low valued success tags. These A matrices
could be deleted from memory without significantly reduc­
ing the effectiveness of the memory and learning functions.
New A matrices could then be added to the memory until the
next deletion process occurred. Any of the new A matrices
that were not used again one or more times before the de­
letion process would be eliminated. Thus, for a fixed
memory size, over a long period of time, the memory would
contain only A matrices with the greatest valued success
tags .

The program changes required to enable the modi­
fied Homeostat to show learning are very minor. An index­
ing system to keep a record of the number of times each A
matrix is used must be added, and a sorting routine to
arrange the A matrices sequentially in memory according

56
to their success tags must be provided. A detailed flow
chart and listing for this version of the computer program
is given in appendix D. This represents the final computer
program, simulating the Homeostat with pattern recognition,
memory, and learning. To demonstrate the learning ability
of the modified Homeostat, two computer runs were made.
The first run used the simulation of the Homeostat with
only memory, while the second run used the simulation of
the Homeostat with memory and learning. For the first run,
records were made of the number of adaptations that occurred
from memory. In addition, the number of A matrices read
from memory before adaptation occurred were recorded. For
the second run, the same number of adaptations from memory
will occur, but the number of A matrices read from memory
should be reduced. This decrease in memory search time
can be attributed to learning being shown by the modified
Homeostat.

57

TABLE 6
RESULTS OP COMPUTER RUN SHOWING OCCURRENCE

OF LEARNING IN THE MODIFIED HOMEOSTAT

Data Input
Number

Number of Memory
Searches without Learning

Number of Memory
Searches with Learning

5 2 2
6 1 2
8 3 3
9 2 1

11 1 2
12 2 1
l4 2 1
15 2 1
l6 3 3
1718

2
1

1
21 2 1
22 3 3
23
25

2
1

1
26 2 1
27 2 1
28 2 1
29 2 1
30 2 1
32 2 1
33 2 1
34 2 1
36
37
38

2
3
1

1

39 2 1
40
41

2
5

1
42 2 1
43 2 1
44 2 1
49 5 5
50 2 1

34 73 56

58

TABLE 7
SUMMARY OF RESULTS IN TABLE 6

Average Number of Memory Searches
Without Learning for 34 Inputs 2.15

Average Number of Memory Searches
With Learning for 34 Inputs 1.65

The above results show that the incorporation of
the learning technique has resulted in a faster adaptation
to a number of inputs. An overall reduction in memory
search effort is given in Table ?• In all honesty, it must
be pointed out here that the results from other computer
runs showed only marginal reduction in adaptation time or
failed to show any decrease at all. The reason for this
appears to be the small number of A matrices stored in mem­
ory, resulting in an inability of the search technique to
produce any clear cut improvement.

Relation of Homeostat Operation to the Human Brain

Basic Homeostat
Operating with the concept of ultrastability, the

Homeostat provides a basic model for the adaptive behavior
of the human brain. The Homeostat assumes no apriori in­
formation; it adapts by pure trial and error. The only
required mechanisms are those which allow sensing of an

59
unstable state, and randomly altering behavior patterns.
The Homeostat is quite similar to a small child in its
behavior. Initially, a child has no learned behavior;
each adaptation is by trial and error. Adaptation is ac­
quired quickly for simple situations, and slowly to very
slowly for complex situations. However, the child soon
surpasses the basic Homeostat by showing memory and learn­
ing. For example, the young child soon learns the routine
of the mother, and conditioned responses occur. The sim­
ple Homeostat is incapable of learning even the simplest
task, if learning is taken as a reduction in adaptation
time when a certain input is repeated some number of
times.

However, the basic Homeostat behaves similarly to
a fully developed adult that is faced with an environmen­
tal input that is unrelated to the current forms of
learned response patterns stored in the adult's memory.
If the new input were related to or closely associated
with some previously learned behavior, then the adult
would show learning fairly quickly, due mainly to the pro­
cess of association. Since the basic Homeostat cannot
show significant learning of any form, it would provide a
poor model of an adult brain using learning by association.

Homeostat with memory and learning ability
The basic Homeostat can be modified to show a form

6o
of memory and learning. The learning is associated with
a pattern classification scheme for a fixed class of in­
puts. Four input pattern categories were chosen initially.
The first step in the operation of the modified Homeostat
is to scan the input environmental state and classify it
according to a simple decision procedure. The Homeostat
proceeds to adapt to the environmental input by the pro­
cess of trial and error. If adaptation occurs within a
fixed length of time, the resulting A matrix is stored,
along with tags indicating the pattern classification end
number of times the given A matrix has been successful.
This process is repeated for a large number of input pat­
terns within a certain class. As soon as a reasonable
memory is stored, operation of the modified Homeostat is
switched so that now each input is classified and the mem­
ory is searched for A matrices which have been successful
for inputs of the same class. Within the pattern class,
the A matrix, or A matrices, with the highest number in
the tag position indicating number of times successful,
is called and tried first. If that A matrix does not pro­
vide adaptation, the A matrix with the next highest tag
is tried and so on, until a successful A matrix is found
in memory; or until the memory is completely searched.
If the memory has been completely searched in that pattern
class, then operation reverts to that of the basic Homeo­
stat, and adaptation will be found by trial and error.

6l
However, if a successful A matrix is found in memory that
A matrix will have its success tag increased by 1, up to
a certain maximum value.

With repeated inputs, this form of operation
should provide a reduction in adaptation time. Note the
similarity in this form of operation of the modified Homeo­
stat and the logical operation of a human being in a typi­
cal problem environment. Given a certain problem, a logi­
cal first step would be to classify the problem. Whether
the exact problem had been worked before is of little
significance. Once the problem has been classified, the
memory is searched for the technique to solve the problem.
The technique tried first will probably be the one that
has worked most often before on similar problems. If that
technique is not successful, the next most successful
technique is used, and so on, until a successful technique
is found or until the memory is exhausted. If a technique
in memory worked, a mental note is made of the fact that
that particular technique was again successful. Physcho-
logically, the memory of that technique is reinforced.
After enough problems, the most useful techniques fail to
be reinforced significantly. A saturation level has been
reached; and the memory of those techniques can be con­
sidered permanent. If no technique from memory was suc­
cessful, then a trial and error form of behavior will
appear, and solution of the problem may be quite a long

62
time coming.

As long as the complete memory of the modified
Homeostat is saved, say stored on magnetic tape, the sys­
tem can be stopped and started again at a later time with
no loss in operating ability. Even some select portion
of memory could be stored on tape and the rest destroyed.
If this were the case, then the operation would be some­
what slowed, but the most frequently used A matrices would
be kept, and less frequently used A matrices might result
as fast from trial and error as from memory search. Again,
this is somewhat analogous to a person who is trying to
remember the solution to a problem, and less time might
actually be required if the person were to "start from
scratch" and solve the problem.

Forgetting could be incorporated into the model
for memory. The "Success tag" could be made time depen­
dent, with the value of the tag dropping one for each per­
iod of X hours or days in which the A matrix was not
successful. The A matrices being assigned the condition
of permanent memory would not be subject to this time de­
pendence .

One form of learning not shown by the modified
Homeostat is that of association. If a new input environ­
ment occurs that is similar to an input previously occur­
ring in a different pattern class, the previous adapta­
tions A matrices will never be considered. A form of

63
association learning could be built into the program by
stopping the memory search in the given pattern input
class, and switching to the other pattern class storage
areas in a random manner. For example, if an input is
classed as pattern 2 , the pattern 2 memory can be searched
through the highest, say, 3 tags. If a successful A mat­
rix has not been located during this search, stop and go
to pattern 3 memory and try 5 random A matrices. If this
is not successful, go to pattern 4 memory and try 5 random
A matrices. If this is not successful go to pattern 1 and
try 5 random A matrices. If this is not successful, switch
back to pattern 2 memory and continue the detailed search.
However, if any of the A matrices from the other pattern
classes produced a successful adaptation, then associative
learning occurred. This particular A matrix will then be
stored in two pattern class memory areas.

Another possibility is that when an A matrix from
one class is used to give adaptation for an input from a
different class, that A matrix could be tagged and placed
in a new category of "generalized adaptations". If a rea­
sonable sized memory of these more generalized A matrices
were available, the memory search for any problem could
begin in this area.

A point related to the need for allocating the
contents of a finite memory is that A matrices with the
smallest success tags could be eliminated. This would

64
mean that over a period of time, the contents of the mem­
ory would be A matrices with the largest success tags.
The A matrices used the least amount would be erased.
This process is analogous to the selective process of the
human memory. Only those events which have been heavily
reinforced are retained in the accessable memory. Events
which occurred without subsequent reinforcement are soon
forgotten. The finite space of the memory is used to hold
those events which have the most significance, i.e. the
ones which have been most useful over some previous period.
No one is amazed that he fails to remember an isolated
event that occurred some time in the past. Even events
with high significance value are forgotten over a period
of time where their use is not required.

As mentioned in Chapter V, the modified Homeostat
can provide a possible explanation for effects of heredity
or instinctive behavior patterns. If the memory originally
were stocked with stable A matrices, then adaptation to
certain forms of input could be greatly speeded up. The
inherited A matrices could be quite non-specific in type
of inputs for which they produce adaptation, thus providing
a large base of adaptive behavior from which to proceed.

CHAPTER VII

FINAL EXAMPLE AND CONCLUSIONS

A Homeostat Example Based on a Dynamic
Model of an Ecological System

As a final example of the behavior of the computer
model of the Homeostat, consider the dynamic model of an

7ecological system. Animal ecology is concerned with the
interrelations between animals and their environment. In
this case the environmental factors of interest are avail­
ability of food for carnivorous species, and co-existence
between competing species. With regard to a particular
environment, a certain species may adjust to the total en­
vironment; it may seek another environment; or it may be­
come extinct. If a species adapts to the environment,
this means it can compete or co-operate with other species
for food and other needs.

Consider the interdependence of two animal species,
one of which serves as the food supply for the other. In
isolation, the species serving as the food.supply can be

John G. Kemeny, and J. Laurie Snell, Mathematical
Models in the Social Sciences (Boston: Ginn and Company,
1962), Chapter III.

65

66
assumed to increase at a rate proportional to the total
population. Alternately, in isolation, the other species
can be assumed to decrease at a rate proportional to its
total population, since in isolation its food supply has
been cut off. When placed together the two species can
be assumed to change at a rate proportional to the product
of the individual populations. Mathematically, this can
be stated in the form of two equations.

dx V■^ = ax - bxy a,b,c,d y 0
(1)

^ = - cy + dxy

Here, x represents the populations of the food
source, eind y represents the population of the other spe­
cies .

Next consider the interdependence of two animal
species which are in competition with each other. In this
case each species is assumed to increase at a rate propor­
tional to the population, and to decrease at a rate pro­
portional to the product of the individual populations.
The equations describing this interdependence are known as
Volterra's competition equations.

~ = ax - bxy a,b,c,d ^ 0
(2)

^ = cy - dxy

Both sets of equations presented are similar in

67
form, and are both included in the general set of equations

dx
(3)

dt = *11 = + ^12

it = =21 + =22 y
where the a^^ terms can assume arbitrary signs. In additon,
this formulation includes a number of other ecological con­
figurations .

Given some initial values for the populations of
the two species, we are interested in which configurations
lead to conditions of equilibrium for the species. This
problem, or ecological system, is applicable to investiga­
tion using the computer model of the Homeostat. In other
words, we would like to make an ultrastable system using
the equations 3 above. This requires a change from the
present Homeostat model which uses a set of linear equa­
tions. The equations in 3 are nonlinear, and may have more
than one equilibrium point. In addition, it is generally
quite difficult to determine the stability of a set of
nonlinear differential equations.

We can obtain a general idea of the behavior of
equations 3 by locating the equilibrium, or singular points,
and investigating the solutions of the original equations
linearized about each singular point. Taking equations 3*
we can form a single equation

(4) ë "
=11 + =12

68
which has its singular points at values of x and y which
simultaneously make the numerator and denominator expres­
sions equal to zero. Thus, the singular points are found
by solving the equations

(5)
^21 + *22 y = 0

ail ^ + *12 xy = 0

giving solutions of x = y = 0 , and x = ~^22/aL ’̂ “”^ll/a

Now we will need to investigate each singular point individ­
ually.

Near the singular point at x = y = 0, we can lin­
earize equations 3 to give

• • dx
X - a^^ X * - dt

(6) dy
y = *22? ? = dt

This linear set of equations will be stable if â ^̂ and
a^g are both negative, and unstable if either â ^̂ or a^g

or both a^^ and a^g are positive. Thus, the stability
of the singular point at the origin, and consequently, some
small region near the origin, can be determined by consid­
ering the signs of only and agg.

Near the singular point at x ="®22/a ? ~ ~®ll/a

we must make a change of variable in order to allow proper
linearization. Let x^ = x + ®22^*21 + *11^*12'
Substituting these into equations 3 and keeping only the
linear terms, we are left with a set of equations

69

(7)
12

’'I
21
‘l2^ ^11 =1

which can be given in matrix form as

^12

The stability of this set of equations can be deter­
mined by finding the characteristic roots of the coefficient
matrix.
Using DET - X = 0, we have

- X 12
«21 ^22

a21
‘l2 ‘11

= 0

or «11*22 = 0* Thus, X = + *11*22" «11 «'̂ ̂«22
of the same sign, the characteristic roots will be real
with opposite signs, and therefore unstable. For a^^ and
Bgg opposite in sign, the roots are complex conjugates,
and a stable oscillation will result.

Therefore, the most interesting behavior will occur
in the vicinity of this second singular point. Here, it
will be possible to have a periodic form of behavior with

70
the populations of the two species showing cyclic varia­
tions, while still remaining within some finite limits.
For the Homeostat example, we can let x(o) and y(o) re­
present the initial numbers of the species. Next we must
define a maximum number for each species, and call those
numbers xCRIT and yCRIT. The system would then be con­
sidered adapted to the environment if x and y remain less
than xCRIT and yCRIT respectively.

A number of computer runs were necessary to obtain
the following five stable system configurations. Most of
the runs resulted in unstable systems which failed to
adapt in a fixed length of time. Table 8 gives the results
of the five successful runs, showing the system configura­
tions and specifying the type of behavior shown.

TABLE 8
RESULTS OF SIMULATION OF ECOLOGICAL SYSTEM

Run
Number ^11 ^12 ^21 ^22 Form of Behavior

1 1 -4 7 2 Cyclic Variation

2 -4 1 9 -9 Extinction of Both Species

3 -7, 1 2 -6 Extinction of Both Species

4 -3 7 -8 4 Cyclic Variation

5 -1 3 -7 3 Cyclic Variation

71

CONCLUSIONS

One of the goals of this paper was to describe a
procedure to simulate the Homeostat on a large scale gen­
eral purpose digital computer. This goal was fully accom­
plished, with the program being given in appendix A, and
examples of the behavior of the computer simulation given
in Chapter IV. Additionally, examples of Homeostat behav­
ior were given for number of variables equal to seven and
ten. This work represented a demonstration of certain
statements made by Ashby, which he was unable to verify
experimentally.

The second goal of this paper was to modify the
computer simulation of the Homeostat to incorporate the
functions of memory and learning into its behavior. The
results given in Chapter VI show that the addition of the
memory function significantly alters the behavior of the
basic Homeostat. A quite unexpected result was the almost
total ability of the memory to produce adaptation to a
wide range of inputs. In Table 3 of Chapter VI this re­
sult is shown. Out of 20 inputs only 3 adaptations by
trial and error were required to produce 13 adaptations
by use of the memory function. Results from Table 5 of
Chapter VI show that following a sequence of 20 inputs
used as a training sequence, the probability of an adap­
tation from memory was 90 per cent. This figure of 90

72
per cent was computed on the basis of a random set of
data, and may vary considerably for different data sets.
However, on subsequent computer runs, the number of adap­
tations from memory was always near this value.

One of the main factors given for not accepting
the concept of ultrastability as a valid model of the
nervous system is that the time to adapt using ultrasta­
bility is far excessive to that actually shown. However,
the results obtained show that a very small memory of
successful adaptations produced by trial and error can
result in a large number of adaptations of future inputs
using this memory. Thus after some training sequence, the
modified Homeostat would seem to be a much more acceptable
model since it greatly reduces the adaptation time required
for new inputs.

Because of the unexpected great success of the
memory addition, the effect of adding the learning function
was quite unspectacular. The main reason for this is that
with the small number of A matrices stored in memory, the
special search technique used is too restricted. Even
with a computer run using 50 input patterns only 4 A mat­
rices were stored in memory. Thus, most any reasonable
number of inputs will produce a scant number of A matrices
for the memory. Here, a reasonable number of inputs is
defined by the length of computer time required to process
the inputs. The results obtained for other computer runs

73
were almost random. In some cases the learning scheme
reduced the search time, but in other cases it lengthened
it. The results of Table 7 in Chapter VI show one run
where the effect of the learning scheme was such that the
overall search time was significantly reduced.

The final example of the simulation of an ecolog­
ical system was included to show the general utility of an
ultrastable system model. The purpose of the simulation
was to obtain a number of stable ecological systems in
response to varied input patterns. The results showed that
the ultrastable system model was useful for predicting
stable system configurations. Some additional comments on
other uses for ultrastable system models are given in the
next section.

TOPICS FOR FURTHER STUDY

During the course of this work a number of topics
arose which were quite interesting, and appear to be worthy
of further study. However, the pursuit of these topics is
beyond the scope of this work. Therefore, these topics are
collected here for the purpose of providing apparently
worthwhile ideas for extensions and/or modifications to
this work.

An elementary extension of the size of the basic
Homeostat simulation could easily be made, and some exam­
ples run to show the actual behavior for a Homeostat with

74

several hundred variables. An extensive effort could be
devoted to a more comprehensive pattern description and
recognition system. A possible view here could be to
classify a number of human learned responses for input to
the Homeostat. A study could also be made to determine
the number of input patterns required to provide a meaning­
ful simulation of a particular system.

Within the framework of the concept of ultrasta­
bility there might be some other search scheme for A mat­
rices besides the pure random search. Presently, an A
matrix is modified on a row basis relative to the particu­
lar variable that exceeded its critical state. It might
be possible to obtain a faster rate of convergence by mod­
ifying the whole A matrix; or possibly by modifying only a
single element of the A matrix. Here, a wide variety of
methods are available for analysis. With regard to the
learning techniques, a number of different learning schemes
could be tried, or using the method proposed, other search
techniques could be investigated.

A very interesting topic which would require a de­
tailed analysis is the explanation of the result from page
52 that 3 A matrices produced adaptation to I8 inputs.
During one particular computer run, a single A matrix was
used 31 times. The reason for a particular A matrix pro­
ducing adaptation for a wide variety of inputs is not
clear. Analysis of this phenomenon could lead to a

75
technique for constructing or selecting A matrices that
are universal, or at least quite general in use.

A number of topics were suggested in the section
relating the Homeostat operation to operation of the human
brain in Chapter VI. The effect of loss of memory sec­
tions could be studied; or different models for forgetting
could be tried and tested. The addition of learning by
association would be a very worthwhile addition. Also
the effects of heredity could be studied by initially
stocking the memory of the modified Homeostat with differ­
ent types and numbers of A matrices.

A final area of further study is the use of ultra­
stability in the modelling of general systems. In other
words what type of systems are amenable to simulation us­
ing the principle of the Homeostat. One possibility here
might be political systems in countries with dictatorships.
A revolution could be considered as a random change in the
system due to a certain systems variable having exceeded
its critical state. A wide variety of other systems can
also be studied using the concept of ultrastability.

REFERENCES

Books
Anderson, A. R. Minds and Machines, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1964.
Ashby, w . Ross. Design For a Brain, John Wiley and Sons,

New York, I96O.
An Introduction to Cybernetics, Science Edi­

tions, John Wiley and Sons, New York, I963.
Bell, D. A. Intelligent Machines, Blaisdell Publishing

Company, New York, 1962.
Cherry, C., Editor. Information Theory, Fourth London

Symposium, Butterworths, Inc., Washington D. C.,
1961.

Cunningham, W. J. Introduction to Non-linear Analysis,
McGraw-Hill Book Company, Inc., New York, 1958.

Feigenbaum, E. A. and Feldman, J., Editors. Computers and
Thought, McGraw-Hill Book Company, New York, I963.

Formby, John. An Introduction to the Mathematical Formu­
lation of Self-Organizing Systems. D. Van Nostrand
Company, Inc., Princeton, New Jersey, I965.

George, F. H. Automation, Cybernetics and Society. Philo­
sophical Library, New York, 1959*

Glushkov, V. M. Introduction to Cybernetics. Academic
Press, New York, 196é.

Hill, J. D., McMurtry, G. J., and Fu, K, S. A Computer-
Simulated On-Line Experiment in Learning Control
Systems. AFIPS Conference Proceedings, Vol. 25,
1964 Spring Joint Computer Conference, Spartan
Books, Inc., Baltimore, Maryland, 1964.

76

77
Hilton, A. M. Logic, Compating Machines, and Automation,

Spartan Books, Washington, Dl C., I963.
Kemeny, J. G., and Snell, J. L. Mathematical Models in

the Social Sciences, Ginn and Company, Boston,
19^2.

Kemeny, J. G., Snell, J. L., and Thompson, G . L. Finite
Mathematics, Prentice-Hall, Inc., Englewood
Cliffs, N. J., 1957-

Lapidus, L. Digital Computation for Chemical Engineers,
McGraw-Hill Book Company, New York, I962T

McCracken, D. D ., and Dorn, W. S. Numerical Methods and
FORTRAN Programming, John Wiley & Sons, Inc., New
York, 1964.

Mishkin, E ., and Braun, L. Adaptive Control Systems,
McGraw-Hill Book Company, I9&I.

Muses, C. A., Editor. Aspects of the Theory of Artificial
Intelligence. Plenum Press, New York, 19^2.

Naylor, T. H., et al. Computer Simulation Techniques, John
Wiley and Sons, Inc., New York, I966.

Nilsson, N. J. Learning Machines, McGraw-Hill Book Company,
New YorkT] I965.

Pask, G. An Approach to Cybernetics, Hutchinson and Com-
pany, London, I96I .

Pedelty, M. J. An Approach to Machine Intelligence. Spartan
Books, Washington, D. C., I963.

Sayre, K. M., and Crosson, F . J., Editors. The Modeling
of Mind. University of Notre Dame Press, Notre
Dame, Indiana, 1963.

Singh, J. Great Ideas in Information Theory, Language and
Cybernetics. Dover Publications, Inc., New York,
1966.

Tou, J. T. Modern Control Theory. McGraw-Hill Book Company,
New York, 1964.

Tsien, H. S. Engineering Cybernetics. McGraw-Hill Book
Comp any. New York, 1954.

78

Walter, W. Grey. The Living Brain, W. W. Norton and Com­
pany, New York, 1953-

Wiener, Norbert. Cybernetics, The Technology Press, John
Wiley and Sons, New York, 1948.

Woolridge, Dean E. The Machinery of the Brain, McGraw-
Hill Book Company, New York, I963.

Yovits, M. C., and Cameron, S., Editors. Self-Organizing
Systems, Pergamon Press, New York, 196O.

Yovits, M. C., Jocobi, G . T., and Goldstein, G. D. Self-
Organizing Systems 1962, Spartan Books, Washington,
B.C., 1962.

Zadeh, L. A., and Desoer, C. A. Linear System Theory,
McGraw-Hill Book Company, New York, 1963.

Articles
Atzenbeck, C. R . , and Hampel, D. "Neural, Threshold,

Majority, and Boolean Logic Techniques", RCA Pub­
lication PE-233, Life Sciences, pages 31-35» 1965»

Chichinaldze, V. K. "On the Dynamics of Some Learning
and Self-Learning Processers", Automatic and Remote
Control Proceedings of the International Federation
of Automatic Control, 1963» Butterworth and Company,
Ltd., London, 1964.

Hawkins, J. K. "Self Organizing Systems - A Review and
Commentary", Proc. IRE, vol. 49» number 1, 196I,
pages 31-48.

Hermann, A. M. "Gaku: An Artificial Student", Behavioral
Science, vol. 10, number 1, I965» pages Ô8-100.

Lynn, J. W ., and Goldrigh, J. M. "Analytical Techniques
in Brain Modelling", Bionics Symposium, I966, 3-5
May 1966, Wright-Patterson Air Force Base, Ohio.

Minsky, Marvin. "Steps Toward Artificial Intelligence",
Proc. IRE, vol. 49» number 1, I96I, pages 8-30.

Sklansky, J. "Adaptation Theory", RCA Publication PE-232,
1965.

APPENDIX A
FLOW CHART AND LISTING OF THE COMPUTER PROGRAM

USED TO SIMULATE THE BASIC HOMEOSTAT

FLOW CHART FOR BASIC HOMEOSTAT COMPUTER MODEL

START
BASIC j

HOMEOSTAT |

K=1 K=2

211

PRINT N
PRINT Y0(I)

I = 1 ,N

READ Y0(I)
I = 1,N

GO TO
(11,211),K

SET
Y(I) = Y0(I)

READ YCRIT (I)
PRINT YCRIT
1=1,N (I)

READ L
PRINT L

SET
Y(I) = Y0(I)

READ A(I,J)
1=1,N
J=1,N

READ L
PRINT L

J8=1
IA=1

INITIALIZE
VALUES

KKK=1
KW1=0

READ K
READ N
READ K1
READ K2

80

0

Kl=l

CALL RNDMAT
(L,N,B,

K2SIGN)

GO TO
(71,72),J8

J8=2

GO TO
(47,333),K1

J8=1
Kl=2

K2=l GO TO K2=2
(49,104),K2

A(I,I) = A(I,I) =
ABS B(I,I) -ABS(B(I,I))

A(I,J) =
B(I,J)
IfJ

PRINT A(I,J)
1=1,N
J=1,N
CALL

HURWTZ(A,N,NS)
NS=1 STABLE
NS=2 UNSTABLE

SET
110=0
T=0.0

NoYes
^IS \
(Y(I)<
0.001

SET
x=o.o

YSEC(I)=Y(I)
1=1,N

PRINT T
PRINT Y0(I)

1=1,N

SET
W = 0 . 0
IA=1

YFST(I)=Y(I)
1=1,N

CALL RKGILL
(X ,H,Y,N,FUNC)

DEFINE
DELY(I) =

ABS(YSEC(I)-
YFST(I))

82

ABS (BELT (à v - ~-No

Y(I)=YFST(I)
1=1,NIS

ABS (DELY(l)h>-^^
\ C .01

No

H/2.0
Y(I)=YFST (I)

I-1,N

H*2.0

T+H

PRINT Y(I)

Yes No
I SET J8=2 p r i n t
It h a t v a r i a b l e
17 HAS EX­
CEEDED CRITVAL

ISTes NoIA=1

W = W+H
PRINT WNoYes

IS \
W > 10.1Yes No

83

SET KW1=KW1+1
SET W=0.
PRINT W

No /

SET
110 = IlO+l

PRINT TOO
LONG IN CRIT­
ICAL STATE

PRINT A(I,J)
I = 1,N
J = 1,N

CALL
HURWTZ
(A,N,NS)

PRINT KWl

IS
— NS = 1

PRINT
STABLE STATE
HAS OCCURRED

— ---------1

SET J8=1
PRINT KWl

PRINT
ADAPTATION
HAS OCCURRED

SET J8 = 1
PRINT KKK

GO TO
211

84

: BASIC HOMEOSTAT IBM l4lO SIMULATION FORTRAN II
DIMENSION A d o , 10),B(l0 ,10),Y(lO),YO(lO),YCRIT(10)
DIMENSION YFST(IO),YSEC(10),DELY(10)
COMMON N,A
READ 1, K
READl, N
READ 1, K1
READ 1, K2

1 FORMAT(13)
110 DO 2 1=1,N

2 READ 3, Y0(I)
3 FORMAT(FIO.O)

PRINT 4, N
4 F0RMAT(1X,23H the number of UNITS IS,13,//)

PRINT 5
5 f o r m a t Ci x ,36h t h e i n i t i a l m e t e r d i s p l a c e m e n t s a r e , //)

PRINT 6 , (Y0(I),I=1,N)
6 F0RMAT(1X,10F8.2,///)

DO 101 1=1,N
101 READ 3,YCRIT(I)

PRINT 201
201 FORMAT(///,24H THE CRITICAL STATES ARE,//)

PRINT 6 ,(YCRIT(I),I=1,N)
J8=1
KKK=1
GO T0(ll,21l) ,K

11 DO 8 1=1,N
8 READ 21, (A(I,J),J=1,N)

21 FORMAT(10F8.0)
DO 1000 1=1,N

1000 Y(I)=Y0(I)
READ 210, L
PRINT 105, L

105 FORMAT(IX,3H L=,I10,//)
GO TO 99

211 DO 7 1=1,N
7 Y(I)=Y0(I)

12 READ 210,L
210 F0RMAT(I6)

PRINT 105, L
13 CALL RNDMAT(L,N,B,K2SIGN)

IA=1
36 GO TO(71,72),J8
71 DO 4l 12=1,N

DO 4l J2=1,N
i f (I2-J2)49,48,49

48 GO T0(47,333),Kl
47 READ 45,A(I2,I2)
45 FORMAT(FIO.O)

GO TO 4l
333 GO T0(49,104),K2
104 B(I2,J2)=-(ABS(B(I2,J2)))

85

49 A(I2,J2)=B(I2,J2)
4l CONTINUE
99 PRINT 433

433 FORMAT(///,16H the A MATRIX IS,//)
DO 131 1=1,N
PRINT 132,(A(I,J),J=1,N)

132 FORMAT(IX,I0F8.2)
131 CONTINUE

CALL HURWTZ(A,N,NS)
1F(NS-1)81,81,396

396 110=1
T=0.0
PRINT 450,T

450 FORMAT(///,18H BEGIN TRIAL AT T=,F10.8)
PRINT 451

451 FORMAT(///,14H THE YO(l) ARE)
PRINT 6, (Y0(1),1=1,N)
KW1=0

76 W=0.0
1A=1
H=0.05

62 X=0.0
DO 635 1=1,N

635 YFST(1)=Y(1)
CALL RKG1LL(X,H,Y,N,FUNC)
DO 636 1=1 ,N

636 YSEC(1)=Y(1)
DO 480 1=1,N
1F(ABS(Y(1))-0.0Ol)480,480,48l

480 CONTINUE
GO TO 469

481 DO 470 1=1,N
DELY(1)=ABS(YSEC(I))-ABS(YFST(1))
1F(ABS(DELY(1))-0.1)470,470,463

470 CONTINUE
GO TO 462

463 H=H/2.0
467 DO 466 1=1,N
466 Y(1)=YFST(1)

GO TO 62
462 DO 465 1=1,N

1F(ABS (DELYd))-0.01)465, 469, 469
465 CONTINUE

H=H*2.0
GO TO 467

469 T=T+H
PRINT 452,T

452 FORMAT(IX,6H AT T=,F20.8,14H THE Y(l) ARE,//)
PRINT 6 ,(Y(l),1=1,N)
DO 52 17=1 ,N
1F(ABS(YCR1T(17))-ABS(Y(17)))54,5^,52

52 CONTINUE
86

485 GO to(631,6io),IA
631 W=W+H

PRINT 499,W
499 FORMAT(IX,3H W=,F20.B,//)

GO TO 61
54 PRINT 102, 17

102 F0RMAT(1X,3H X(,I2,33H) HAS EXCEEDED ITS CRITICAL
STATE,//)

J8=2
GO T0(13,?2),IA

610 KW1=KW1+1
W = 0 . 0
PRINT 499,W
IF(I10-20)91,92,92

92 PRINT 93
93 FORMAT(IX,20H TOO LONG IN CRIT ST)

J8=1
PRINT 606, KWl

606 FORMAT(IX,15,24H STEP CHANGES OCCURRED,//)
GO TO 103

91 110=110+1
GO TO 611

72 DO 73 1=1,N
IF(I7-I)74,75,74

75 GO TO 73
74 A(I7,I)=B(I7,I)
73 CONTINUE

IA=2
GO TO 52

611 PRINT 433
DO 151 1=1,N
PRINT 132,(A(I,J),J=1,N)

151 CONTINUE
395 CALL HURWTZ(A,N,NS)

if(ns-i)8i,8i ,76
61 IF(W-10.1)82,82,81
82 DO 473 1=1,N

IF(ABS(Y(I))-0.001)473,473,472
473 CONTINUE

GO TO 81
472 GO TO 62
81 PRINT 83
83 FORMAT(IX,26H STABLE STATE HAS OCCURRED)

PRINT 606, KWl
780 PRINT 781
781 FORMAT(IX,24H ADAPTATION HAS OCCURRED)
103 PRINT 106,KKK
106 FORMAT(IIH RUN NUMBER,I6)

J8=l
KKK=KKK+1
GO TO 211
END

87

APPENDIX B
LISTING OF FORTRAN SUBROUTINES USED IN ALL
COMPUTER PROGRAMS SIMULATING THE HOMEOSTAT

SUBROUTINE RNDMAT(L,N,B,K2SIGN)
DIMENSION B(5,5)

13 DO 31 11=1,N
DO 31 J1=1,N

301 F=RANDOM(L)
F1=10.0*F
M1=F1
IF(M1)302,301,302

302 F2=100.0*F
M2=F2
M3=M2/2
F3=M3
F4=M2
F5=F4/2.0
IF(F3-F5)32,33,34

32 B(I1,J1)=-M1
GO TO 31

33 B(I1,J1)=M1
GO TO 31

34 PRINT 35
35 FORMAT(IX,14H MACHINE ERROR)

STOP
31 CONTINUE

GO TO (10,11),K2SIGN
11 DO 12 1=1,N
12 B(I,I)=-(ABS(B(I,I)))
10 RETURN

END
SUBROUTINE RKGILL(X,H,Y ,N,FUNC)
DIMENSION Y(5),YK(5),Q(5),YP(5)
DIMENSION A (5,5)
EQUIVALENCE (YK,YP)
R=H/6.0
Z=X+0.5*H
CALL FUNC(X,Y,YP)
DO 1 1=1,N
COMPUTE K1,J1,Q1
YK(I)=H*YP(I)
Y(I)=Y(I)+0.5*YK(I)

1 Q(I)=YK(I)
CALL FUNC(Z,Y,YP)
DO 2 1=1,N
COMPUTE K2,J2,Q2
YK(I)=H*YP(I)
Y(I)=Y(I)+.29289321S8,1345247600*(YK(I)-Q(D)

2 Q(I)=.58578643762690495200 * YK(I) + .12132034355964
2572 *Q(I)

CALL FUNC(Z,Y,YP)
DO 3 1=1,N
COMPUTE K3,J3,Q3

89

YK(I)=H*YP(I)
Y(I)=Y(I)+ 1.707106781186547524 * (YK(I) - Q(I))

3 Q(I)= 3.414213562373095048 * YK(I) -4.1213203435596
42572 * Q(I)

X=X+H
CALL FUNC(X,Y,YP)
DO 4 1=1,N
COMPUTE J4

4 Y(l)=Y(l)+R*YP(l)-Q(l)/3.0
RETURN
END
SUBROUTINE FUNC(X,Y,YP)
DIMENSION A(5,5),Y(5),YP(5)
COMMON N,A
DO 1 1=1,N
YP(I)=0.0
DO 1 J=1,N

1 YP(I)=YP(I)+A(I,J)*Y(J)
RETURN
END
SUBROUTINE HURWTZ(A ,N ,NS)
DIMENSION A(5,5),ACHAR(I0)
CALL CHAREQ(A,N,ACHAR)
PRINT 20, (ACHAR(I),I=1 ,N)

20 F0RMAT(1X,5E20.8)
DO 60 1=1,N
IF(ACHAR(I))2,3,4

60 CONTINUE
4 D2=(ACHAR(I)*ACHAR(2)-ACHAR(3))

IF(D2)2,3,55 E1=ACHAR(3)*D2
E2 =ACHAR(1)*(ACHAR(1)* ACHAR(4)-ACHAR(5))
D3=E1-E2
IF(D3)2,3,6

6 F1=ACHAR(4)*D3
G1=ACHAR(5)*D2
G2 =ACHAR(1)*(ACHAR(1)* ACHAR(6)-ACHAR(7))
F2=-(G1-G2)*ACHAR(2)
HI=ACHAR(5)*(ACHAR(1)* ACHAR(4)-ACHAR(5))
H2 =ACHAR(3)*(ACHAR(1)* ACHAR(6)-ACHAR(7))
F3=H1-H2
D4=F1-F2+F3
IF(D4)2,3,77 PRINT 8
NS=1

8 FORMAT(IX,2IH THE SYSTEM IS STABLE)
GO TO 50

2 PRINT 9
NS=2

9 FORMAT(IX,23H THE SYSTEM IS UNSTABLE)
90

GO TO 50
3 PRINT 10

NS=3
10 FORMAT(IX,6H DET=0)
50 RETURN

END
SUBROUTINE CHAREQ(A ,N ,ACHAR)
DIMENSION A(5 ,5),0(5,5),D(5,5),TR(5),ACHAR(10)
TR(1)=0.0
DO 1 1=1,N

1 TR(1)=TR(1)+A(1,1)
20 F0RMAT(1X,5E20.8)

DO 2 1=1,N
DO 2 J=1,N

2 D(1,J)=A(1,J)
DO 3 1=2,N
CALL MATM10(A,D,C,N)
TR(1)=0.0
DO 4 J=1,N

4 TR(1)=TR(1)+C(J,J)
DO 5 12=1,N
DO 5 J2=1,N

5 D(12,J2)=C(12,J2)
3 CONTINUE

ACHAR(l)=-TR(l)
PRINT 20, ACHAR(1)
DO 10 K=2,N
SUM=0.0
L=K-1
DO 11 1=1,L
M=K-1

11 SUM=SUM+ACHAR(1)*TR(M)
AK=K . _
ACHAR(K)=-(1.0/AK)*(SUM+TR~(K))

10 PRINT 20, ACHAR(K)
NN=N+1
DO 30 1=NN,10

30 ACHAR(1)=0.0
RETURN
END
SUBROUTINE MATM10(A,D,C,N)
DIMENSION A(5,5),D(5,5),C(5,5)
C=A*D
DO 1 J=1,N
DO 1 1=1,N
T = 0.
DO 2 K=1,N

2 T=T+A(1,K)*D(K,J)
1 C(1,J) = T

RETURN
END

91

APPENDIX C
LISTING OF THE COMPUTER PROGRAM TO SIMULATE THE HOMEOSTAT

WITH INPUT PATTERN RECOGNITION CAPABILITY

HOMEOSTAT WITH PATTERN CLASSIFICATION IBM l4lO
SIMULATION

DIMENSION A(5,5),B (5,5),Y0(5),Y(5),YCRIT(5),YFST(5),
YSEC(5)

DIMENSION DELY(5),A1(1,2),A2(1,2)
COMMON N,A
READl, K
READl, N
READ 1, K1
READ 1, K2

1 FORMAT(13)
KALT=0
KTRLCT=0
KSW=1
READ l6l, NVA

161 FORMAT(13)
MVA=NVA+1
GO TO (162,163,163)MVA

163 READ 165, IJ1 ,IJ2
165 FORMAT(2I3)

GO TO (164,166),NVA
166 READ 165, IJ3,IJ4
164 READ 161, KALT

TO TO (162,168),KALT
168 READ 265, Al(l,l),A2(1 ,1)
265 FORMAT(2F4.0)

GO TO (162,170),NVA
170 READ 265, Al(l,2),A2(1,2)

GO TO 162
162 READ 161, NVR

MVR=NVR+1
GO TO (171,172,172),MVR

172 READ 165, KY1,KY2
GO TO (173,174),NVR

174 READ 165,KY3,KY4
173 READ 161, KRELl

GO TO (176,175),NVR
175 READ 161, KREL2
176 READ 165, KVF1,KVF2

READ 165, KTRIAL
IF(KVF2)171,171,332

332 READ 161, KTWOV
GO TO 171

171 IF(NVA)180,180,181
180 IF(NVR)i82,182,183182 KPAT=1

GO TO 190
183 KPAT=2

GO TO 190
181 if(nvr)i84,i84,i85
184 KPAT=3

93

GO TO 190
185 KPAT=4

GO TO 190
190 PRINT 315, KPAT
315 FORMAT(IX,7H KPAT =,I3,//)

DO 107 1=1,5
DO 107 J=l,5
A(I,J)=0.0

107 B(I,J)=0.0
110 DO 2 1=1,N

2 READ 3, 10(1)
3 FORMAT(FIO.O)

PRINT 4,N
4 FORMAT(IX,23H THE NUMBER OF UNITS 15,13,//)

PRINT 4, N
5 FORMAT(IX,36H THE INITIAL METER DISPLACEMENTS ARE, //)

PRINT 6 , (Y0(1),1=1,N)
6 F0RMAT(1X,10F8.2,///)

DO 101 1=1,N
101 READ 3,YCR1T(1)

PRINT 201
201 FORMAT(///,24H THE CRITICAL STATES ARE,//)

PRINT 6 ,(YCRlT(l),1=1,N)
J8=l
KW1A=1
KKK=1
KSWCT=0
K1ND=1
GO T0(ll,21l),K

11 DO 8 1=1,N
8 READ 21, (A(1,J),J=1,N)

21 FORMAT(10F8.0)
DO 1000 1=1,N

1000 Y(1)=Y0(1)
READ 210, L
GO TO 99

211 DO 7 1=1,N
7 Y(1)=Y0(1)

12 READ 210,L
210 FORMAT(16)

PRINT 105, L
105 FORMAT(IX,3H L=,110,///)

K2S1GN=K2
13 CALL RNDMAT(L,N,B,K2SIGN)

IA=1
36 GO T0 (71,72),J8
71 DO 41 12=1,N

DO 4l J2=1,N
1F(12-J2)49,48,49

48 GO TO (47,49),K1
47 READ 45,A(I2,I2)

94

45 FORMAT(Flo.0)
GO TO 4l

49 A(I2,J2)=B(I2,J2)
4l CONTINUE

IF(KALT-1>99,99,202
202 A(IJ1,IJ2)=A1(1,I)

GO TO (203,204),NVA
204 A(IJ3,IJ4)=A1(1,2)
203 KC0UNT=1
99 PRINT 433

433 FORMAT(///,16H the A MATRIX IS,//)
DO 131 1=1,N
PRINT 132,(A(I,J),J=1,N)

132 F0RMAT(1X,10F8 .2)
131 CONTINUE

CALL HURWTZ(A,N,NS)
IF(NVR)250,250,396

250 if(NS-i)8i,8i,396
396 110=1

T=0.0
PRINT 450,T

450 FORMAT(///,18H BEGIN TRIAL AT T=,F10.8)
PRINT 451

451 FORMAT(///,14H the Y0(I) ARE)
PRINT 6 , (Y0(I),I=1,N)
K¥1=0

76 W=0.0
IA=1
H=0.05

62 X=0.0
FUNC
DO 635 1=1,N

635 YFST(I)=Y(I)
CALL RKGILL(X,H,Y,N,FUNC)
DO 636 1=1 ,N

636 YSEC(I)=Y(I)
DO 480 1=1,N
IF(ABS(Y (I))-0.001)480,480,48l

480 CONTINUE
GO TO 469

481 DO 470 1=1,N
DELY(I)=ABS(YSEC(I))-ABS(YFST(l))
IF(ABS(DELY(I)>-0.1)470,470,463470 CONTINUE
GO TO 462

463 H=H/2.0
467 DO 466 1=1,N
466 Y(I)=YFST(I)

GO TO 62
462 DO 465 1=1 ,N

IF(ABS(DELY(I)>-0.01)465,469,469
95

465 CONTINUE
H=H*2.0
GO TO 467

469 T=T+H
PRINT 452,T

452 FORMAT(IX,6H AT T=,F20.8,14H THE Y(l) ARE,//)
PRINT 6 ,(Y(I),I=1,N)
IF(NVR)i42,142,212

212 IF(KSWCT-20)276,2?6,277
277 PRINT 288
288 FORMAT(IX,22H ADAPTATION IMPOSSIBLE)

GO TO 289
276 IF(KS¥-1)i41,141,I42
141 IF(YFST(KY1))121,122,123
121 IF(YSEC(KY2))126,122,124
126 IND1=1

KSW=2
GO TO (125,213),NVR

124 IND1=2
KSW=2
GO TO (125,213),NVR

123 IF(YSEC(KY2))124,122,126
122 GO TO l42
213 IF(YFST(KY3))214,215,216
215 KSW=1

GO TO 142
214 IF(YSEC(KY4))217,215,2l8
217 IND2=1

GO TO 230
218 IND2=2

GO TO 230
216 IF(YSEC(KY4))218,215,217 230 KSW=2
125 KSWCT=KSWCT+1

IF(NS-1)81,81,142
142 DO 52 17=1 ,N

IF(ABS(YCRIT(I7))-ABS(Y(I7)))54,54,52
52 CONTINUE

GO TO (485,275),kind
275 DO 348 1=1 ,N
348 Y(I)=Y0(I)

KIND=1
GO TO 99

485 GO TO(631,6i o),IA
631 W=W+H

PRINT 499,W
499 F0RMAT(1X,3H W=,F20.8,//)

GO TO 61
54 PRINT 102,17

102 FORMAT(IX,3H X(,I2,33H) HAS EXCEEDED ITS CRITICAL
STATE,//)

96

J8=2
GO T0(13,72),IA

610 KW1=KW1+1
W=0.0
PRINT 499,W
IF(I10-20)91,92,92

92 PRINT 93
93 FORMAT(IX,20H TOO LONG IN CRIT ST)

289 J8=l
PRINT 606, KWl

606 FORMAT(IX,15,24H STEP CHANGES OCCURRED,//)
GO TO 103

91 110=110+1
GO TO 611

72 DO 73 1=1,N
IF(I7-I)74,75,74

75 GO TO 73
74 A(I7,I)=B(I7,I)
73 CONTINUE

IA=2
GO TO 52

611 PRINT 433
DO 151 1=1,N
PRINT 132,(A(I,J),J=1,N)

151 CONTINUE
GO TO 395

395 CALL HURWTZ(A,N,NS)
IF(NS-1)81,81,76

61 IF(W-5 .1)82,82,81
82 DO 473 1=1 ,N

IF(ABS(Y(I))-0.001)473,473,472
473 CONTINUE

GO TO 81
472 GO TO 62
81 PRINT 83
83 FORMAT(IX,26H STABLE STATE HAS OCCURRED)

IF(KALT-1)240,192,198
192 J8=1

PRINT 606,KWl
DO 776 1=1,N

776 Y(I)=Y0(I)
A(IJ1,IJ2)=-A(IJ1,IJ2)
GO TO (193,194),NVA

194 A(IJ3,IJ4)=-A(IJ3,IJ4)
GO TO 193

198 C0UNT=KC0UNT/2
KCONTl=KC0UNT/2
C0UNT1=KC0NT1
C0UNT2=C0UNT/2.0
KVAR=C0UNT1-C0UNT2
IF(KVAR)200,199,200

97

199 A(IJ1,IJ2)=A2(1,1)GO TO (205,206),NVA
206 A(IJ3,IJ4)=A2(1,2)
205 KC0UNT=KC0UNT+1

GO TO 193
200 A(IJ1,IJ2)=A1(1,1)

GO TO (207,208),NVA
208 A(IJ3,IJ4)=A2(1,1)
207 KC0UNT=KC0UNT+1
193 IF(KW1)799,778,799
799 KW1A=1

KW1=0
GO TO 99

778 IF(K¥1A-2)779,780,779
779 KW1A=2

GO TO 99
240 i f (n v r)78o ,78o ,24i
241 IF(KW1)143,143,144
143 i f (i n d i-k r e l i)i45,i46,i45
146 GO TO (780,231),NVR
231 IF(IND2-KREL2)i45,780,145
145 KSW=1

DO 148 1=1,N
148 Y(I)=Y0(I)

KTRLCT=KTRLCT+1
KIND=2
IF(KTRLCT-KTRIAL)232,233,233

232 Y(KVF1)=YCRIT(KVF1)+0.01
GO TO l42

233 IF(KVF2)330,330,331
330 GO TO 277
331 IF(KTRLCT-KTRIAL* 2)234,235,235
234 Y(KVF2)=YCRIT(KVF2)+0.01

GO TO l42
235 GO TO (236,237),KTW0V
236 IF(KTRLCT-KTRIAL*3)238,237,237238 Y(KVF1)=YCRIT(KVF1)+0.01

Y(KVF2)=YCRIT(KVF2)+0.01
GO TO l42

237 PRINT 239
239 FORMAT(IX,28H ADAPTATION HAS NOT OCCURRED)

IND1=1
IND2=1
KTRLCT=0
GO TO 103

144 KS¥=1
DO 147 1=1,N

147 Y(I)=Y0(I)
GO TO 99

780 PRINT 781
781 F0RMAT(1X,24H adaptation has OCCURRED)

98

PRINT 606, KWl
103 PRINT 106, KKK
106 FORMAT(IX,IIH RUN NUMBER,I6 ,///)

J8=1
KW1A=1
KKK=KKK+1
KW1=0
IND1=1
IND2=1
KSW=1
KSWCT=0
KTRLCT=0
GO TO 211

111 STOP
END

99

APPENDIX D
FLOW CHART AND LISTING OF THE COMPUTER PROGRAM TO
SIMULATE THE HOMEOSTAT WITH MEMORY AND LEARNING

FLOW CHART FOR COMPUTER PROGRAM TO SIMULATE THE
HOMEOSTAT WITH MEMORY AND LEARNING - IBM 36O

START

No

SET
KTAG(I) = 0
ILOC(I) = I
I = 1,400

N = 4
ACOREd, J,K)=0.0
1=1,N J=1,N

K=l,400
SET

K2=2 KW1=0
KALT=0 KSW=0
KKK=1 W=0.0

I " - - - - - - - -

KTRLCT = 0
L = 71937
KMEMTG = 1
MDISK(I)=0

READ NVA
MVA=NVA+1

READ
IJI,
IJ2

NVA=1 y —

READ
IJ3,
IJ4

READ KALT

IS
Yes NoKALT=1

READ
Al(l,l)
A2(l,l)

IS
Yes NoNVA=1

READ
Aid, 2)
A2(l,2)

READ NVR
MVR=NVR+1

^ IS \
N VR>1No Yes

READ KYI
KY2

IS
Yes NoNVR=1

READ KY3
KY4

READ KRELl

102

No es

YesNo

No Yes

No Yes Yes

PRINT KPAT

KVF2 > 0

/ IS \
NVR> 0

X'IS \
NVR> 0

^ IS \
NVA> 0

IS X
NVR> 1

KPAT=1 KPAT=3KPAT=2 KPAT=4

READ KTWOV

READ KVFl,
KVF2 READ
KTRIAL

READ KREL2

Y0(l)=0.5
Y0(2)=0.0
Y0(3)=0.0
Y0(4)=0.0

103

_ L

PRINT-THE NUMBER
OF UNITS IS

PRINT-THE INITIAL
METER DISP. ARE

PRINT Y0(I)
SET YCRIT(I)=1.0
PRINT YCRIT(I)

I - 1,N

SET
J8=1 KMEM=1
KW1A=1 KIND=1
KSWCT=0

SET
KMEM =2
KMEMTG=1
K1DISK=1

KJDISK=K1DISK+(KPAT-1)*25

YesKTAG(KJDISK)
> 0

9PRINT-MEMORY
SEARCH UNSUCCESS­

FUL
KMEM=1 Y(I)=Y0(I)

K2SIGN=K2

CALL RNDMAT
(L,N,B,K2SIGN)

lA = 1

JLOC=ILOC(K JDISK)
A(I,J)=AC0RE

(I,J,KJDISK)
1=1,N J=1,N

104

A(I2,J2)
B(I2,J2)
12 = 1,N
J2 = 1,N

IS
YesNo KMEM=2

IS KCOUNTNoYes KALT=1

A(IJ1,IJ2)
= Al(l,l)

IS ̂
NVA > 1 YesNo

KCOUNT

PRINT - THE
A MATRIX IS
PRINT A(I,J)

IS
NoY„es. NVR=0

ISNo YesKMEM=2

CALL HURWTZ
(A,N,NS)

105

IS
Yes NoNS=1

IS
YesNo KWIA

SET
KWIA = 1
KMEMTG=1

IS
No YesKMEM=2

DEFINE DELY(I)
= ABS

(YSECd)-YFST(l))
1110=0. T=0
PRINT T
PRINT-BÉGIN
TRIAL AT T=

ABS(DELY(lN^'
\ > 0.1

PRINT-THE
Y0(I)
PRINT Y0(I)
SET KWl = 0

NoARE

Y(I) =
YFST(I)
H=H/2.0SET

W=0.0 IA=1
H=0.5 ^ X I S

ABS(DELY(I^^®®
No

SET
X=0.0
YFST(I)=Y(I)

Y(I) =
YFST(I)
H=H*2.0

CALL RKGILL
SET

YSEC(I)=Y(I)
IS

^^^^^<^S(Y(I)
\^<.001

20
106

10 18

KMEMTG=2 YesNo

IS
Yes NoNVA=0

IS
YesNo KALT=2

P=A(IJ1,IJ2)
-Al(l,l)

T=T+H
PRINT
Y(I)

IS
NoYes

IS
No YesNVA

IS
Yes ̂

IS YesNo NVR=0
IS

KSWCT > 20

PRINT-
ADAPTATION
IMPOSSIBLE

107

< E S W >] ^ -

YFST(KY1

YFST(KY1)>

IS
YSEC(KY2)

=0 YSEC(KY2)
=0

9

SEC(KY2)>0> I ^-°-< YSEC(KY2)>0

1

INDI=2 INDI=1
KS¥=2 KSW=2

! KSWCT=KSWCT+1

A N Y \

© @

ABS(Y(I))>;
\YCRIT(l) "

9

No.

2^

108
@

22
SEJ8=2
PRINT-VARIABLE 17 EX.CRIT.ST.

Yes

Y(I)=Y0
(1)1=1,N
KIND =1

Yes/^S'\ No
IA=2 ^ —Yes NoIA=1

KW1=KW1+1
W=0.0 PRINT ¥

/ l s \
ID >20 YesNo

PRINT-TOO
LONG IN

CRIT. STATE110= 110+1
PRINT A(I,J)
CALL HURWTZ

J8=l
PRINT KWlYes NoNS=1

^ I S \ YesABS(Y(I))<
.001 /

PRINT-
STABLE
STATE HAS
0 CCURRED

Yes

No

12

109

j8=i
PRINT KWl
Y(I)=Y0(I)

COUNT=KCOUNT
KCONTl=KCOUNT/2
C0UNTT=KC0NT1
C0UNT2-COUNT/2.0
KVAR=COUNT1-C0UNT2A(IJ1,IJ2)=

-A(IJ1,IJ2)
I S \
VAR^ NoNo Yes

A(IJ1,IJ2)
= A2(l,l)

A(IJ1,IJ2)
= Al(l,l)

1ÎVA=2 NoNo

KCOUNT=
KCOUNT+1

KCOUNT=
KCOUNT+1

IS^
KW1=0 Yes

IS
No YesKWTA=0

KWT=0 KWTA=2

K A L T ^ > ^ ^KW1A=2
KMEMTG
=2 A(IJ1,IJ2)

= Al(l,l)

NVA=1No Yes

110

29]

^.IS ̂
NVR>0No Yes

NoYes KW1>0
KSW=1
Y(I)=Y0(I)

I=KRGL

NVR= NoYes

IS
Yes,No IND2=KREL2

KSW=1
Y(L)=Y0(I)
KTRLCT = KTRLCT + 1

NoYes KMEM=r

KIND=2

^r^<(KTRIAL >
KTRLC

No

Y (KVFl) =
Y CRIT
(KVFD+.OI

PRINT-
ADAPTATION
IMPOSSIBLE

PRINT-
ADAPTA-
TION HAS
KWl

111

IS
NoYes KMEM

No Yes

GO TO
351

M=KPAT

KSWCT=0
KTRLCT=0
KALT=0

PRINT KKK
PRINT - RUN

NUMBER
INITIALIZE
J8=1
KW1A=1 '
KKK=KKK+1

KW1=0 KSW=1
IND1=1 IND2=1
KMEMTG=1

SORT THE
KTAG(M) INTO
DESCENDING

ORDER

PRINT KIDISK
KTAG(KJDISK)=
KTAG(KJDISK)+l

ACORE(I,J,MDISK(M))
= A(I,J)

KTAG(KJDISK) = 1
MDISK(M) =MDISK(M)h1

112

DISK OPERATING SYSTEM/36O FORTRAN 360N-P0-451 20
PROGRAM TEST
EXTERNAL FUNC
DIMENSION A(5,5),B(5,5),C(5,5),d (5,5)
DIMENSION Y0(5),Y(5),YCRIT(5)
DIMENSION YFST(5),YSEC(5),DELY(5),AI(1,2),A2(1,2)
DIMENSION KTAG(400),IL0C(400)
DIMENSION AC0RE(5,5,100)
DO 340 1=1,400

340 IL0C(I)=I
DO 357 1=1,400

357 KTAG(I)=0
DO 361 1=1,5
DO 361 J=l,5
DO 361 K=l,100

361 ACOREd, J,K)=0.0
N=4
KW1=0
KMEMTG=1
KKK=1
W=0.0
K2=2

1 FORMAT(13)
KALT=0
KTRLCT=0
KSW=1
MDISK1=0
MDISK2=0
MDISK3=0
MDISK4=0
L=71937 351 READ(1,161)NVA

161 FORMAT(13)
MVA=NVA8cl
GO TO (162,163,163),MVA

163 READ(1,165)IJI,IJ2
165 FORMAT(2I3)

GO TO (l64,l66),NVA
166 READ (1,165)113, U 4
164 READ(1,161)KALT

GO TO (162,168),KALT
168 READ(1,265)Al(1 ,1),A2(1 ,1)
265 FORMAT(2F4.0)

GO TO (162,170),NVA
170 READ(1,265)A1(1,2),A2(1,2)

GO TO 162
162 READ(1,161)NVR

MVR=NVR&1
GO TO (171,172,172),MVR

172 READ(1,165)KY1,KY2

113

GO TO (173,174),NVR
174 READ(1,165)KY3,KY4
173 READ(1,161)KRELl

GO TO (176,175),NVR
175 READ(1,161)KREL2

03/24/67 FORTMAIN
176 READ(1,165)KVF1,KVF2

READ(1,165)KTRIAL
IF(KVF2)171,171,332

332 READ(1,161)KTWOV
GO TO 171

171 if(nva)i8o,i8o,i8i
180 IF(NVR)182,182,183182 KPAT=1

GO TO 190
183 KPAT=2

GO TO 190
181 if(nvr)i84,184,185
184 KPAT =3

GO TO 190
185 KPAT=4

GO TO 190
190 WRITE(3,309)KPAT
309 FORMAT(IX,7H KPAT =,I3,//)
110 Y0(l)=0.5

Y0(2)=0.0
Y0(3)=0.0
Y0(4)=0.0

4 F0RMAT(1X,23H THE NUMBER OF UNITS IS,13,//)
WRITE(3,5)5 F0RMAT(1X,36H THE INITIAL METER DISPLACEMENTS ARE, //)
WRITE(3,6)(Y0(I),1=1,N)

6 F0RMAT(1X,10F8.2,///)
YCRIT(1)=0.9
YCRIT(2)=0.75
YCRIT(3)=0.75
YCRIT(4)=1.0
WRITE(3,201)

201 FORMAT(///,24H THE CRITICAL STATES ARE,//)
WRITE(3,6)(YCRIT(I),1=1,N)
J8 = 1
KMEM=1
KW1A=1
KSWCT=0
KIND=1

294 KMEM=2
DO 295 K1DISK=1,25
KJDISK=K1DISK&(KPAT-1)*25
IF(KTAG(KJDISK))402,352,402

402 JLOC=ILOC(KJDISK)

114

DO 358 1=1,N
DO 358 J=1,N

358 A(I,J)=AC0RE(I,J,JL0C)
GO TO 99

295 CONTINUE
352 WRITE(3,314)314 FORMAT(IX,27H MEMORY SEARCH UNSUCCESSFUL,//)

KMEM=1
211 DO 7 1=1,N

7 Y(1)=Y0(1)
03/24/67 FORTMAIN

K2S1GN=K2
13 CALL RNDMAT(L,N,B,K2S1GN)
342 1A=1
36 GO T0(71,72),J8
71 DO 4l 12=1,N

DO 4l J2=1,N
4l A(12,J2)=B(12,J2)

GO TO (711,203),KMEM
711 1F(KALT-1)99,99,202
202 A(1J1,1J2)=A1(1,I)

GO TO (203,204),NVA
204 A(1J3,1J4)=A1(1,2)
203 KCOUNT=l
99 WRITE(3,433)433 FORMAT(///,16H the A MATRIX IS,//)

DO 131 1=1,N
WR1TE(3,132)(A(1,J),J=1,N)

132 F0RMAT(1X,10F8.2)
131 CONTINUE

IF(NVR)250,250,396
250 GO TO (701,703),KMEM
701 CALL HURWTZ(A,N,NS)

1F(NS-I)8l,8l,383383 GO TO (310,384),KWIA
384 KW1A=1

KMEMTG=1
GO TO 310

703 GO TO (380,701),KMEMTG
380 1F(NVA)81,81,704
704 1F(KALT-2)8i,705,705705 IF(A(IJl,1J2)-Al(1,I))708,706,708
706 GO TO (31,707),NVA
707 if(a(ij3,ij4)-ai(i,2))708,8i,708
708 GO TO 295
310 GO TO (396,295),KMEM
396 110=1

T=0.0
WRITE(3,450)T

450 FORMAT(///,18H begin TRIAL AT T=,F10.8)

115

WRITE(3,451)451 FORMAT(///,14H THE YO(l) ARE)
WRITE(3,6)(Y0(I),I=1,N)
KW1=0

76 W=0,0
IA=1
H=0.05

62 X=0.0
DO 635 1=1,N

635 YFST(I)=Y(I)
CALL RKGIL1(X,H,Y,N,FUNC,A)
DO 636 1=1 ,N

636 YSEC(I)=Y(I)
DO 480 1=1,N
IF(ABS(Y(I))-0.001)480,480,481

480 CONTINUE
03/24/67 FORTMAIN

GO TO 469
481 DO 470 1=1,N

DELY(I)=ABS(YSEC(I))-ABS(YFST(I))
IF(ABS(DELY(I))-0.1)470,470,463

470 CONTINUE
GO TO 462

463 H=H/2.0
467 DO 466 1=1,N
466 Y(I)=YFST(I)

GO TO 62
462 DO 465 1=1,N

IF(ABS(DELY(l))-0.01)465,469,469
465 CONTINUE

H=H*2.0
GO TO 467

469 T=T&H
WRITE(3,452)T

452 FORMAT(IX,6H AT T=,F20.8,14H THE Y(l) ARE,//)
WRITE(3,6)(Y(I),I=1,N)
IF(NVR)i42,142,212

212 IF(KSWCT-20)276,276,277
277 WRITE(3,288)
288 F0RMAT(1X,22H ADAPTATION IMPOSSIBLE)

GO TO 289
276 IF(KSW-I)14I,141,142
l4l IF(YFST(KY1)>121,122,123
121 IF(YSEC(KY2)>126,122,124
126 IND1=1

KSW=2
GO TO (125,213),NVR

124 IND1=2
KSW=2
GO TO (125,213),NVR

116

123 IP(YSEC(KY2)>124,122,126
122 GO TO l42
213 IF(YFST(KY3)>214,215,216
215 KSW=1

GO TO 142
214 IF(YSEC(KY4>>217,215,218
217 IND2=1

GO TO 230
218 IND2=2

GO TO 230
216 if(ysec(ky4>>218,215,217
230 KSW=2
125 KSWCT=KSWCT&1

IF(NS-1>81,81,142
142 DO 52 17=1,N

IF(ABS(YCRIT(I7> >-ABS(Y(l7> > >54,54,52
52 CONTINUE

GO TO (485,275>,kind
275 DO 348 1=1,N
348 Y(I>=YO(I>

KIND=1
GO TO 99

03/24/67 FORTMAIN
485 GO T0(631,6I0>,IA
631 W=W&H

WRITE(3,499>W
499 F0RMAT(1X,3H W=,F20.8,//>

GO TO 61
54 WRITE(3,102>17

102 F0RMAT(1X,3H X(,I2,33H> HAS EXCEEDED ITS CRITICAL
STATE,//>

J8=2
GO T0(13,72>,IA

610 KW1=KW1&I
W=0,0
WRITE(3,499>W
IF(I10-20>91,92,92

92 WRITE(3,93>93 F0RMAT(1X,20H TOO LONG IN CRIT ST>
289 J8=1

WRITE(3,6o6>KW1
606 FORMAT(IX,15,24H STEP CHANGES OCCURRED,//>

GO TO 103
91 I10=I10&1

GO TO 611
72 DO 73 1=1,N

IF(I7-I>74,75,74
75 GO TO 73
74 A(I7,I>=B(I7,I>
73 CONTINUE

117

IA=2
GO TO 52

611 WRITE(3,433)
DO 151 1=1,N
WRITE(3,132)(A(I,J),J=1,N)

151 CONTINUE
GO TO 395

395 CALL HURWTZ(A,N,NS)
IF(NS-1)81,81,76

61 IF(W-5.1)82,82,81
82 DO 473 1=1,N

IF(ABS(Y(I))-0.001)473,473,472
473 CONTINUE

GO TO 81
472 GO TO 62
81 WRITE(3,83)83 FORMAT(IX,26H STABLE STATE HAS OCCURRED)

IF(KALT-1)240,192,198
192 J8=l

WRITE(3 ,606)KWl
DO 776 1=1,N

776 Y(I)=Y0(I)
A (IJI,IJ2)=-A(IJI,IJ2)
GO TO (193,194),NVA

194 A(IJ3,IJ4)=-A(U3 ,U4)
GO TO 193

198 COUNT=KCOUNT
KCONTl=KC0UNT/2
C0UNT1=KC0NT1

03/24/67 FORTMAIN
C0UNT2=C0UNT/2.0
KVAR=COUNTl-C0UNT2
IF(KVAR)200,199,200

199 A(IJ1,IJ2)=A2(1,1)
GO TO (205,206),NVA

206 A(IJ3,IJ4)=A2(1,2)
205 KC0UNT=KC0UNT&1

GO TO 193
200 A(IJ1,IJ2)=A1(1,1)

GO TO (207,208),NVA
208 A(IJ3,IJ4)=A2(1,1)
207 KC0UNT=KC0UNT&1
193 IF(KWl)799,778,799
799 KW1A=1

KW1=0
GO TO 99

778 IF(KW1A-2)779,38i,779 381 GO TO (385,386),KALT
386 A(IJ1 ,IJ2)=A1(1 ,1)
385 GO TO (780,382),NVA

118

382 A(IJ3,IJ4)=A1(1,2)
GO TO 780

779 KW1A=2
KMEMTG=2
GO TO 99

240 IF(NVR)780,780,241
241 IF(KWl)l43,l43,l44
143 IF(IND1-KREL1)i45,i46,i45
146 GO TO (780,231),NVR
231 IF(IND2-KREL2)i45,780,145 145 KSW=1

DO 148 1=1,N
148 Y(I)=Y0(I)

KTRLCT=KTRLCT&1
GO TO (311,295),KMEM

311 KIND=2
IF(KTRLCT-KTRIAL)232,233,233

232 Y(KVF1)=YCRIT(KVF1)&0.01
GO TO l42

233 IF(KVF2)330,330,331330 GO TO 277
331 IF(KTRLCT-KTRIAL*2)234,235,235234 Y(KVF2)=YCRIT(KVF2)&0.01

GO TO l42
235 GO TO (236,237),KTWOV
236 IF(KTRLCT-KTRIAL*3)238,237,237
238 Y(KVF1)=YCRIT(KVF1)&0.01

Y(KVF2)=YCRIT(KVF2)&0.01
GO TO l42

237 WRITE(3,239)239 FORMAT(IX,28H ADAPTATION HAS NOT OCCURRED)
IND1=1
IND2=1
KTRLCT=0
GO TO 103

03/24/67 FORTMAIN
144 KSW=1

V BO 147 1=1,N
147 Y(I)=Y0(I)

GO TO 99
780 WRITE(3,781)
781 FORMAT(IX,24H ADAPTATION HAS OCCURRED)

WRITE(3,606)KWl
GO TO (350,312),KMEM

350 GO TO (300,301,302,303),KPAT
300 IF(MDISK1-25)304,305,305
304 JDISK1=(KPAT-1)*25&MDISK1&1

DO 362 1=1,N
DO 362 J=1,N

362 ACOREd,J,JDISK1)=A(I,J)
119

KTAG(JDISK1)=1
MDISK1=MDISK1&1
GO TO 305

301 IF(MDISK2-25>306,305,305306 JDISK2 = (KPAT-l)*25&MDISK28el
DO 363 1=1,N
DO 363 J=1,N

363 ACOREd, J, JDISK2)=A(I, J)
KTAG(JDISK2)=1
MDISK2=MDISK28cl
GO TO 305

302 IF(MDISK3-25)307,305,305
307 JDISK3=(KPAT-1)*25&MDISK3&1

DO 364 1=1,N
DO 364 J=1,N

364 ACOREd, J ,JDISK3)=A(I,J)
KTAG(JDISK3)=1
MDISK3=MDISK3&1
GO TO 305

303 IF(MDISK4-25>308,305,305308 JDISK4=(KPAT-1>*25&MDISK4&1
DO 365 1=1,N
DO 365 J=1,N

365 ACOREd,J,JDISK4>=A(I,J>
KTAG(JDISK4>=1
MDISK4=MDISK4&1

305 CONTINUE
GO TO 103

312 WRITE(3,313>K1DISK
313 FORMAT(IX,28H ADAPTATION ON MEMORY SEARCH,I6 ,//>

KTAG(KJDISK)=KTAG(KJDISK>&1
DO 403 IKJDSK=1,25
IKKDSK=KJDISK-IKJDSK
IF(IKKDSK-(KPAT-1> *25 >103,103,343

343 IF(KTAG(KJDISK>-KTAG(IKKDSK> >403,403,404
404 KTEMP1=KTAG(KJDISK>

KTEMP2=IL0C(KJDISK>
KTAG(KJDISK > =KTAG(IKKD SK >
ILO C(KJDISK)=ILOC(IKKDSK >
KTAG(IKKDSK > =KTEMP1
ILOC(lKKSDk)=KTEMP2

03/24/67 FORTMAIN
403 CONTINUE
103 WRITE(3,106>KKK
106 FORMAT(IX,IIH RUN NUMBER,I6 ,///>

J8=1
KW1A=1
KKK=KKK&1
KMEMTG=1
KALT=0

120

KW1=0
IND1=1
IND2=1
KSW=1
KSWCT=0
KTRLCT=0
GO TO 351

111 STOP
END

121

