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CHAPTER I 

 

 

INTRODUCTION 

1.1. Research Motivation 

As the economies in developed countries are shifting from a manufacturing base 

toward a service orientation, the role of the service industry has gained greater 

importance [1].  The healthcare sector is one of the most critical sectors in the service 

industry since it is life-crucial and any mistakes can cause inevitable and incurable results 

[2].  Improper resource allocation has been one of the perennial problems in the 

healthcare service industry [3]. Particularly, the allocation of ―scarce‖ organs for organ 

transplantation has been one of the most critical problems faced in the healthcare service. 

Although organ allocation is the sole viable therapy for various end-stage diseases, often 

times the number of donor organs unfortunately does not meet the need [4]. Therefore, 

the organ-waiting patients are lined up in waiting lists whereas some of the donor organs 

are wasted due to suboptimal match between the donor and the recipient.  

Long organ waiting lists can mainly be attributed to the following two reasons. (1) 

Since the success rate in the organ transplantation has increased due to the advancements 

in the medical field, today there are more patients asking for a transplant. On the other  
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hand, the accessibility of the patients to transplant centers is easier than ever due to the 

drastic increase of these centers throughout the US. While there were only four transplant 

centers thirty years ago, as of 2008 there are 249 centers in US [5]. (2) Although there 

has been some increase in the number of donated organs, it has never reached the level of 

the increase in demand, which results in a shortage of donor organs. This increasing gap 

between the organ waiting patients and donor supplies has caused increased waiting 

times, which in turn led to the death of patients while waiting on the list (c.f. Figures 1.1-

1.2) [6]. 

 

 

Figure 1.1 Number of patients on the waiting list per year in US [6] 
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Figure 1.2 Number of donor organs per year in US [6] 

 

1.2. Problem Statement, Research Goal, and Research Objectives 

Organ transplantation is a vital treatment for the chronic failure of major organs. 

Survival analysis, which is defined as the surviving time after a patient receives 

transplantation surgery, has been the primary evaluation method for the effectiveness of 

such an operation. The primary objective of this research is to develop an integrated data 

mining methodology to accurately predict the survivability and to analyze the prognostic 

factors for different risk groups of transplant patients in order to discover novel patterns 

to augment clinical and biological studies. By incorporating the findings of these data 

mining-based survival and prognostic analyses, a simulation model will be developed to 

search for more efficient and effective scenarios of matching and allocation of organs. In 
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doing so, we propose to use very large data sets with hundreds of determinative variables 

regarding the donors, the potential recipients, and transplantation procedures. While the 

main research goal can be summarized as ―to improve the effectiveness and efficiency of 

the organ transplantation procedures‖, the specific objectives in this research can be listed 

as follows:   

(1) Develop an integrated data mining methodology to build accurate predictive 

models for survivability, and use these models to investigate the fundamental relationship 

between predictor variables and survivability in order to identify the factors that have the 

most significant impact on survivability;  

(2) Create a comprehensive prognostic index related to lung organ transplantation, 

and determine risk groups of patients based on their survivability quantified using the 

developed prognostic index, and identify the optimal setting so as to achieve better 

survivability; 

(3) Develop a composite scoring approach-based matching index in which the 

survival-critic variables are hierarchically integrated in order to rank the potential 

candidate organ recipients and match them with the organ donors so that the survivability 

and quality of life (QoL) regarding the organ transplant procedures can be simultaneously 

predicted; and 

(4) Develop discrete event simulation models to validate (and to conduct 

sensitivity analysis on) the patterns identified by the abovementioned data mining 

methodologies. Various simulation models will be developed and executed to better 

analyze the validity and significance of the composite scoring scheme in order to improve 
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organ allocation policies in terms of various performance measures such as average 

waiting time on the list. 
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CHAPTER II 

 

 

LITERATURE REVIEW 

In this chapter, four main research streams in organ transplantation area are 

summarized. In Section 2.1, survival analysis in organ transplantation is presented. 

Prognostic index devising is followed in Section 2.2. State-of-the art research regarding 

composite scoring approaches to develop an index to measure the quality of life is 

provided in Section 2.3. Finally, in Section 2.4 simulation modeling for organ 

transplantation procedures is introduced. 

2.1 Related Research in Survival Analysis for Organ Transplantation 

A large body of research exists for data-driven analytics in various organ 

transplantation cases. Kusiak et al. [1] conducted a study which compared two rule-based 

data mining techniques, i.e., decision trees and rough sets, for predicting survival time of 

kidney dialysis patients. Their study presented not very high but considerable prediction 

accuracy rates. The main limitation of the study was the utilization of a small dataset with 

188 patients in total and many patient-related parameters were ignored. Hong et al. [2]  

presented a survival analysis of liver transplant patients in Canada by considering only 

some of the determinative factors such as age, blood type, donor type (cadaveric or 
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alive), race and gender of recipient and donors. Having limited the variables with this 

scope, in their study they also admit that the clinical information used in the study lacks 

many details. Specifically focused on thoracic transplantation, Jenkins et al. [3] and 

Fernandez-Yanez et al. [4] had a rich pool of dependent variables for survivability 

prediction. They employed the Kaplan-Meier method of survival analysis with the 

Mantel-Haenszel log-rank test which are fundamental statistical survival analysis 

techniques. These studies have two major limitations: First, they lack an enhanced data-

mining perspective which would utilize machine learning and artificial intelligence tools 

(which are independent of the nonlinearity and multicollinearity assumptions of 

traditional linear modeling techniques) to reveal the previously-unknown potentially-

useful patterns. Secondly, the variables were selected based on the experiences and 

intuitions of the analysts who conducted the study. A more recently held study has the 

same drawbacks, which was proposed by Tjang et al. [5]. Based on their experience, they 

adopted some newer explanatory variables such as body mass index, waiting time on the 

list, and previous cardiac surgery to determine the survivability in heart transplantation. 

However, similar to the aforementioned studies they also utilized only statistical 

techniques such as the Chi-Square test, the Fisher‘s test, non-parametric Kruskal-Wallis 

rank test, and the Kaplan-Meier survivorship function. Similar limitations exist also in 

some other studies related to lung transplantation [6]-[8] which renders them disqualified 

to be considered a detailed data mining study.  
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2.2 Related Research in Devising a Prognostic Index 

Prognostic index (PI) provides compact prognosis information regarding a 

specific patient based on the results of a Cox proportional hazards model [9]. The Cox 

proportional hazards model helps identify variables of prognostic importance and hence 

the prognostic index can be used to define groups of individuals at different risk 

categories. Even though the prognostic index is a convenient tool to measure how well 

the patients are doing after the transplantation, its use in the organ transplantation area 

has been limited mostly due to the lack of follow-up data. Some existing studies related 

to devising a PI in transplant area are summarized as follows.  

In the study conducted by Christensen et al. [10], it is mentioned that primary 

biliary cirrhosis requires a liver transplantation operation at the end stage. However, a 

very critical issue is the timing for transplantation: neither too early nor too late. Based on 

the prognosis analysis with and without transplantation, it will be easier to decide 

whether or not the transplantation is required, and if so, when. To achieve this goal, 

corresponding PI‘s and thence probabilities of surviving are computed for transplantation 

and non-transplantation cases. Using these, a Cox regression model was created for 6-

month survival which also confirms some variables used in the literature previously and 

their model brings new significant variables. As a result, the gain from transplantation 

starts to become positive around 8 months prior to death (this is when PI=2.5). The gain 

of transplantation is defined to be the difference between survival probability with 

transplantation and without transplantation. If it gives a negative value out, 

transplantation should not be performed and vice versa. The predicted gain from 

transplantation starts to become clinically important when PI reaches about 2.5, 
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corresponding to a predicted 6-month survival of about 0.85. The consequence of this is 

the following: If PI>=2.5, transplantation should be done within the following 6 months. 

Yoo et al. [11] developed a similar index and sought to answer whether or not 

socioeconomic status affects the survivability in liver transplantation. They handled the 

survivability in both cases for patients and grafts. The study revealed that socioeconomic 

status does not influence patient or graft survival that undergoes liver transplantation at 

their institute. Deng et al. [12] conducted a study with a national dataset in Germany, 

which discovers the effect of receiving a heart transplant for the patients in a waiting list. 

The results indicate that cardiac transplant is associated with a survival benefit only for 

patients with a predicted high risk of dying on the waiting list. Ghobrial et al. [13] 

performed a study to determine prognostic factors for overall survival in 107 adult 

patients with post-transplantation lymphoproliferative disorders (PTLDs). It is validated 

that in discriminating the low and high scored patients the proposed prognostic scoring 

significantly performs better than the International Prognostic Index for the subset of the 

patients (56 out of 107) with lactate dehydrogenase.  

The common limitation in all of these studies is similar to the limitations of the 

studies summarized in Section 2.2. Namely, they directly devise a prognostic index 

without determining if the variables used in prognostic index devising phase are 

necessary and sufficient. This motivates a machine learning-based initial step of variable 

selection procedure. Because, if the critical predictive factors are not captured effectively 

due to the intuition- and experience-based selection, the resulting prognostic indices 

developed based on the selected variables would be inaccurate and, in turn, related risk 
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groups of patients would be deviated from the real classes. This may cause mistakes for 

decision makers in making organ transplantation policies. 

 

2.3 Related Research in Composite Scoring to Measure Quality of Life 

Voluminous data has been collected from transplant procedures and analyzed to 

evaluate the organ allocation process [14]. Attempts to analyze organ transplants with 

this huge amount of data have focused on identifying the characteristics of thoracic 

transplant recipients and their associated post-transplant outcomes [15]. Molhazn et al. 

[16] examined the perceived quality of life (QOL) of patients with end stage renal disease 

by incorporating patients‘ medical characteristics, their health status, functional status, 

ability to work, and ability to perform activities. Significant direct effects of these 

variables on QOL were determined. Smith et al. [17] conducted a survey to reveal 

whether or not quality of life and health status are distinct constructs. Using three 

functioning domains (mental, physical, and social) they found out that these two are 

different measures and hence, should be analyzed through separate questionnaires. 

Devins et al. [18] devised a novel scale named the Illness Intrusiveness Ratings Scale 

(IIRS) by pooling responses from separate studies concerning quality of life in renal, 

heart, liver, and lung transplants among many others. The study was aimed at 

investigating the factor structure underlying the IIRS. By using exploratory and 

confirmatory factor analyses in a step-by-step fashion, they first identified the factor 

structure and then confirmed it against various patient groups (i.e. renal, heart, lung 

transplants and etc.). Two more recent studies [19]-[20] have analyzed the quality of life 
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after liver transplant as well as chronic heart failure, respectively. Castaldo et al. [19] 

examined the effect of preoperative and postoperative factors on the model for end-stage 

liver disease (MELD score), which is mainly used for organ allocation decisions by 

predicting short-term mortality of patients. This research has revealed that increasing 

MELD score can be attributed to improved physical health-related QOL (HRQOL) 

whereas it does not have an association with mental HRQOL. On the other hand, Faller et 

al. [20] focused on the chronic heart failure patients with the question whether depression 

affects only the psychological domain of patients‘ HRQOL or it is broader and may affect 

the physical domain of HRQOL. The analysis results suggest that depression has an 

independent impact on both physical and psychological domains of HRQOL in patients 

with chronic heart failure while the heart failure severity affects only physical HRQOL. 

Although the abovementioned studies reveal very useful initial knowledge for the 

organ transplantation field based on the classical statistical assumptions adopted, they 

still have some limitations as follows: (1) They implicitly ignore the fact that the 

predictive variables may not necessarily be independent of each other. On the contrary, 

they often do affect each other. These predictor variables can be categorized into higher 

level classes as a group which they refer to. (2) Following the first explanation, grouped 

and aggregated variables may have a nonlinear relationship and/or additive interaction 

effects with the outcome measures of the transplant. However, such features cannot be 

revealed through the existing methods. (3) In the state-of-the-art, the transplant 

performance measure is evaluated based on a single metric. The transplant success may 

not be a single metric to be predicted (e.g. only survival time) to satisfy various benefits 
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of the organ allocation. Instead, this study assumes that it should be the combination of 

various metrics (e.g. survival time, quality of life, and etc.). 

 

2.4 Related Research regarding Simulation of Organ Transplant Procedures 

The vast majority of analytics-driven organ transplantation research involves 

simulation studies and has been studied since mid 80‘s specifically in a simulation 

modeling standpoint pioneered by Ruth et al. [21]. It was further developed by Pritsker 

and his students [22]-[23]. Their study provided a useful simulation tool which utilized 

UNOS liver allocation data hence named as ULAM (UNOS Liver Allocation Model). 

UNOS stands for United Network for Organ Sharing which is a tax-exempt, medical, 

scientific, and educational organization that operates the national Organ Procurement and 

Transplantation Network (OPTN) under contract to the Division of Organ 

Transplantation (DOT) of the Department of Health and Human Services (DHHS). 

ULAM is a simulation proposed to compare various liver allocation policies. It uses 

either historical or simulated data for patient listings and donor arrivals. Patients are 

modeled in a dynamic fashion, namely they can change medical urgency status or be 

removed from the list due to death. Once they are transplanted, patients might die, relist, 

or survive. It adopted a policy that patients will be ranked based on the waiting time and 

blood type compatibility with the donor, using four ranks: 1 showing the most urgent. 

The main components of ULAM are listed as follows: initial waiting list, recipient 

stream, patient medical urgency status change process, donor stream, allocation policy, 

liver offer/acceptance process, post-transplant relisting/mortality, outputs. 
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Implementation of ULAM revealed the fact that the drawbacks in the previously adopted 

policy (sickest patient first allocation policy) could be overcome with a new policy. The 

new policy suggested distributing livers to patients in local, regional and then, national 

areas. In each of these areas, the sickest status group patients were prioritized first. The 

comparison study showed that 1500 more transplants would be achieved if the new 

policy was adopted. Additionally, 1626 fewer post-transplant deaths would occur.  

Based on the successful findings of ULAM, UNOS requested Pritsker to create 

another simulation tool for kidney transplant procedures, which gave birth to the UNOS 

Kidney Allocation Model (UKAM) [24]. Inclusion of 256 nation-wide transplant centers 

in UKAM enhanced its reliability in estimates at the national level. For the ULAM 

outputs, some key measures are determined by the transplant community and are 

assumed to be the most valuable in evaluating policy changes [25].  

Simulation studies have existed and been mostly helpful to adopt an organ 

transplantation policy. Some other studies can be listed as follows: (1) McEwan et al. 

[26] focused on evaluating the cost-effectiveness of sirolimus compared with 

cyclosporine in UK for post surgical management of renal transplant recipients. It is 

based on an evaluation of both cost-effectiveness and cost utility by using a discrete event 

stochastic simulation. (2) Thompson et al. [27] proposed a more sophisticated simulation 

tool which can handle various organ transplantation scenarios, namely heart-lung, liver 

and kidney. (3) Roberts et al. [28] developed a simulation model to compare and contrast 

various organ allocation policies for liver transplants. 
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Table 2.1 Summary of the literature review 

Study held by: 

Survivability  

analysis 

Devising a  

prognostic index 

Modeling 

Quality of Life 

 

Simulation 

modeling 

Trigt et al., 1996  x      

Tringali et al., 1996 x      

Knoll et al., 1997  x      

Schnitzler et al., 1997 x      

Cope et al., 2001  x      

Mehra et al., 2004 x      

Kusiak  et al., 2005 x      

Fu et al., 2006  x      

Boin et al., 2007 x      

Aguero et al., 2007 x 

  

 

Bleyer et al., 1996 x x    

Christensen et al., 1999  x x 

 

 

Deng  et al., 2000 x x 

 

 

Esparrach et al., 2001 x x    

Yoo et al., 2002  x x    

Ghobrial  et al., 2005 x x    

Johnson et al., 2008 x x    

Molhazn et al., 1996 x 

 

x  

Smith  et al., 1999 x 

 

x  

Devins et al., 2001 x 

 

x  

Castaldo et al., 2009 x 

 

x  

Faller  et al., 2009 x 

 

x  

Ruth et al., 1985  x   

 

x 

Pritsker et al., 1995 x   

 

x 

Pritsker et al., 1996 x   

 

x 

Baldwin et al., 2000 x   

 

x 

Harper et al., 2000  x   

 

x 

Taranto et al., 2000 x 

  

x 

Ratcliffe et al., 2001  x 

  

x 

Roberts et al., 2004 x   

 

x 

Thompson et al., 2004 x 

  

x 

McEwan et al., 2005 x   

 

x 

Shechter et al., 2005 x   

 

x 
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In addition to using a UNOS liver transplant-related dataset, they incorporated a 

large transplant center‘s (i.e. University of Pittsburgh Medical Center) data to model the 

disease progression while waiting on the list. They mainly assessed the effect of using a 

single national waiting list as opposed to the current allocation strategy with the 

combination of regional waiting lists. The simulation model accurately captured the 

pattern in waiting time and survival rate after transplant. However, the model results were 

far different than the UNOS in predicting the number of deaths on the waiting list. This 

discrepancy was explained by the fact that the disease progression on the waiting list was 

determined using a local transplant center‘s data instead of the national one due to the 

lack of the latter‘s. The study concluded that the switch to a national waiting list for liver 

transplant would decrease the number of deaths on the waiting list and increase the 

overall survival rate, but it would also increase the graft failures and increase the median 

waiting time. To conclude, the state-of-the-art about organ transplantation efforts can be 

summarized as in Table 2.1. 

 

2.5 Research Gap and Challenges 

The main drawback of the aforementioned studies is that they do not give 

satisfactory results at the local or regional levels whereas they validate well against the 

national level since the datasets are mostly retrieved from national sources. This refers to 

a major gap in the modeling of transplantation procedures. Besides, the outcome measure 

that drove many of the original allocation debates, waiting time, was found to be a poor 

measure of differences in access to transplantation and not a good indicator of medical 
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urgency or priority. This refers to another major gap supposed to focus on other measures 

of equity and justice such as pre-transplant mortality [25]. The former issue is, in fact, 

partially a consequence of the latter. Therefore, if a well-established decision support 

system that would determine good indicators of medical urgency/priority through data 

mining-based survival and prognostic analyses can be developed; there will be a linkage 

to better simulation scenarios at all potential levels of organ transplantation. Also, such a 

comprehensive methodology could help incorporating more outcome measures (in 

addition to waiting time on the list). This research study is intended to cover these gaps 

and overcome its challenges as explained in Chapter III.   
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CHAPTER III 

 

 

RESEARCH METHODOLOGY 

 

To address the aforementioned issues in the state-of-the-art as summarized in 

Chapter II, in this research we propose to apply an integrated data mining method to 

model the complex relationship between predictor variables and survivability at the first 

step (Task 1). Then a prognostic index will be developed in Task 2 and used to group the 

differing risk groups of organ recipients. In accordance with the outputs of Task 2, a new 

matching index (composite score) and a scheme which would be composed with the 

consideration of various criteria of organ transplant would be created in Task 3. This 

index would be used in the following simulation study (Task 4). The simulation will 

conduct what-if analyses to validate and fine-tune the weights of the new matching index 

via response surface methodology. A pictorial representation of the overall methodology 

is illustrated in Figure 3.1. These four tasks are further explained in the following sub-

sections. 

 

3.1 Task 1: Data Mining and Model Integration  

In this task, by assigning the output as the survival time of the patients after 

transplant takes place and input as feature-rich dataset (patient-, donor-, and transplant- 
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TASK 1: Data mining and model 

integration for survival analysis

-Data mining

Neural networks

Decision trees

Logistic regression and etc.

-Model integration

Information fusion

TASK 2: Prognostic analysis and 

prognostic indexing (PI)

-Devising a PI

Cox regression model

-Validation of the PI

k-means clustering algorithm

Two-step cluster analysis

Kaplan-Meier survival curves

TASK 3: Creating a composite score 

organ matching index

-Developing a hierarchical model 

structure and an organ matching index

Structural equation model

-Predicting the composite score of 

transplant success

Decision trees

TASK 4: Simulation to validate the 

composite score matching index and to 

find the optimal weight scheme 

-Validating the matching index

Simulation model

-Fine-tuning the weights 

of the matching index

Response surface methodology
 

Figure 3.1 Framework for the research methodology
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related) we will deploy an integrated data mining method to reveal the underlying 

relation between the output and input variables as well as the relationships among input 

variables themselves. Based on the integration of the results in terms of accuracy, it is 

possible to rank the predictor variables, considering their importance contributing to the 

graft status prediction. The data mining models used in this research are introduced in the 

following section and the overall process of developing prediction models is depicted in 

Figure 3.2. 

 

 

Figure 3.2 Illustration of the integrated data mining and model integration 

 

3.1.1 Task 1.1: Predictive Modeling 

Since the dependent variable here was a binary variable (graft status: with 0 

representing survived and 1 representing not-survived), the problem refers to a 

classification type prediction problem. This task is to apply various predictive models to 
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predict the graft status. For the modeling purposes, one prediction model from the 

statistical field (logistic regression) and two models from the machine learning field 

(neural networks and decision trees) will be used. These models are selected to be 

included in the study due to their popularity in the literature. Neural networks (NN) have 

been the most popular artificial intelligence-based data modeling algorithm used in 

clinical medicine due to their good predictive performance [1]. Multi-layer perceptron 

(MLP) has been the most commonly used and well-studied NN architecture in almost all 

fields.  

On the other hand, compared with other machine learning methods (e.g. NNs), 

decision trees have the advantage in that they are not black box models and hence can 

easily be explained as rules. This advantage has made them widely usable in medicine 

[2]. 

 

3.1.2 Task 1.2: Hierarchal Model Integration Method 

Much research has focused on developing procedures to select a single ―best‖ 

model. These procedures often neglect the uncertainty inherent in the model selection 

process. Choosing only one model for prediction comes with inherent risk. When 

multiple possible models fit the observed data similarly well, it is risky to make 

inferences and predictions based on only a single model. In this case, predictive 

performance suffers, because standard statistical inference typically ignores model 

uncertainty. Information fusion is an approach to combine the prediction information 

received from various data mining models. As illustrated in Fig. 3.2 an ―information 
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fusion‖ technique will be used to combine the models together to further improve the 

accuracy of them and rank the importance of the critical factors accordingly. 

 

3.2 Task 2: Devising and Validating a Prognostic Index 

Having constrained hundreds of predictor variables to a manageable extent by 

means of Task 1, Task 2 will devise a prognostic index that categorizes the organ 

recipients by the Cox regression model. 

 

3.2.1 Task 2.1: Determining the Candidate Sets of Predictor Variables 

This subtask is to determine which predictor variables to be used in devising a 

prognostic index in subtask 2.2. Task 2.1 will eliminate the insignificant variables and 

minimize the crowded set of predictor variables. It consists of three candidate predictor 

variables sets. The first set is composed of predictive model-selected variables. The 

predictive models adopted in Task 1 can rank the predictor variables based on their 

importance level in predicting the graft survival. In this way, a union set of predictive 

variables would be constructed which is named as the first set of predictive variables. The 

second set of predictive variables is obtained by considering the common-sense domain 

knowledge. This set includes variables which are logically related to lung transplantation 

such as donor‘s history of cigarette usage. The third set of predictive variables is 

compiled from the literature research conducted. This set essentially consists of the 

variables which have been commonly repeated in previous studies in the organ 

transplantation area. The second and third sets of predictive variables can be referred as 

the expert input to the variable determination stage of the proposed methodology. These 
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sets (Set 2 and Set 3) provide one more chance to the next step in Task 2.2 -Cox model- 

to evaluate the variables that might have importance in the survival analysis although 

they may be determined as insignificant by the predictive models in Task 1.   

 

3.2.2 Task 2.2: Prognostic Index Devising 

This subtask takes all the three sets of predictive variables in Task 2.1 and applies 

the Cox regression to model the graft survivability and filter out the candidate predictive 

variables which do not have a survival effect. Hence, in Task 2.2, the final critical 

predictive variables can be determined by the Cox regression. The Cox regression model 

also enables us to devise a prognostic index to categorize the patients into differing risk 

groups such as low, medium, and high.  

The Cox regression model is a semi-parametric model which is extensively used 

in survival analysis [3]-[4]. One important application of Cox regression model is to help 

identify variables which may be of prognostic importance [5]. Once identified, 

knowledge from these variables may be combined and used to define a prognostic index, 

which in turn defines groups of organ recipients at differing risk. To use the prognostic 

index, key patient characteristics are recorded and a score is derived from these. This 

score gives an indication of whether for example; the particular patient has a good, 

intermediate or bad prognosis for the disease [5].  

 

3.2.3 Task 2.3: Determining Risk Groups of Lung Recipients 

A major issue arises in Task 2.2: how many risk groups to classify the patients 

into? In this task, k-means algorithm [6] and two-step cluster analysis [7] are applied to 
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reveal the answer to this question. The findings of these two algorithms would be 

compared and contrasted against the widely-used medical expert-based heuristics. As a 

statistically and pictorial verification of the number of groups determined by these 

algorithms, Kaplan-Meier survival analysis [4] would be adopted and hence 

corresponding survival curves would be generated. 

 

 

3.3 Task 3: Creating a Composite Score for Modeling Transplant Success 

Task 3 develops a hierarchical structure to model the transplant success in a state-

by-step fashion. By means of adopting the structural equation modeling technique [8], it 

first determines the measurement models and, in turn, determines the composite scores 

for the latent variables which are attributed to the prediction of transplant success. Then 

these composite scores are used for matching the donor organ and the recipient. After the 

matching process, decision trees are employed to predict the overall transplant success, 

which would also be a combination of two performance measures (i.e. graft survival time 

and a kind of quality of life metric). The integration of structural equation modeling and 

decision trees would hypothetically provide more transparency (interpretability) to the 

medical experts and more prediction accuracy. 

 

3.4 Task 4: Simulation to Validate the Matching Index and Optimize its Weights  

The main objective of simulation modeling is to gain invaluable insight into the 

dynamics of complex systems, which is the focus in this research. Simulation models of 

complex systems consist of numerous input variables, linked together by logical 
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relationships. The process of determining the set of input variables that produce the 

optimal output has often posed the greatest challenge during simulation studies. In recent 

years, the ability to integrate optimization technology into simulation models has 

significantly improved this process. To effectively utilize optimization technology, 

however, modelers must define optimization variables [9]. Task 2 and Task 3 outputs 

would determine these optimization variables in our research. That is, the prognostic 

index and the weights of the composite score matching index of the donor and the 

recipient would be the target to fine-tune and optimize. However, since the organ-

recipient match is too complex to optimize we propose to implement a simulation study 

for a satisfying solution through the usage of response surface methodology. By 

considering the utility function along with the efficiency of the process through the 

simulation, a more sensitive matching index could hopefully be derived.  



33 
 

REFERENCES 

 

[1] R. Bellazzi, B. Zupan, Predictive Data Mining in Clinical Medicine: Current 

Issues and Guidelines, International Journal of Medical Informatics 77 (2008) 

81-97. 

[2] S. Dreiseitl, L. Ohno-Machado, Logistic Regression and Artificial Neural 

Network Classification models: A Methodology Review, Journal of Biomedical 

Informatics 35 (2002) 352-359. 

[3] D.R. Cox, Analysis of Survival Data (Chapman&Hall, London, 1984). 

[4] E. Kaplan, P. Meier, Nonparametric Estimation from Incomplete Observations, 

Journal of the American Statistical Association 53 (1958) 187-220. 

[5] M.K.B. Parmar, D. Machin, Survival Analysis: A Practical Approach (John Wiley 

& Sons, Cambridge, UK, 1996). 

[6] J. B. MacQueen, Some methods for classification and analysis of multivariate 

observations, in: Proceedings of the Fifth Symposium on Math, Statistics, and 

Probability, University of California Press, Berkeley, CA, USA (1967), pp. 281-

297. 

[7] T. Chiu, D. Fang, J. Chen, Y. Wang, C. Jeris, A Robust and Scalable Clustering 

Algorithm for Mixed Type Attributes in Large Database Environment, in: 

Proceedings of the seventh ACM SIGKDD international conference on 

knowledge discovery and data mining (2001), 263.



34 
 

[8] K.G. Jöreskog, A General Method for Analysis of Covariance Structure, 

Biometrika 57 (1970), 239-51. 

[9]   T.F. Brady, E. Yellig, Simulation Data Mining: A New Form of Computer 

Simulation Output, Proceedings of the Winter Simulation Conference (2005) 285-

289.



35 
 

CHAPTER IV 

 

 

SURVIVAL ANALYSIS OF LUNG ORGAN TRANSPLANTS 

 

Predicting the survival of lung transplant patients has the potential to play a 

critical role in understanding and improving the matching procedure between the 

recipient and graft. Although voluminous data related to the transplantation procedures is 

being collected and stored, only a small subset of the predictive factors has been used in 

modeling lung transplantation outcomes. The main objective of this study is to improve 

the prediction of outcomes following the lung transplantation by proposing an integrated 

data-mining methodology. A large and feature-rich dataset (16,604 cases with 283 

variables) is used to (1) develop machine learning based predictive models; and (2) 

extract the most important predictive factors. Then, using three different variable 

selection methods, namely, i) machine learning methods driven variables—using decision 

trees, neural networks, logistic regression, ii) literature review-based expert-defined 

variables, and iii) common sense-based interaction variables, a consolidated set of factors 

is generated and used to develop Cox regression models for lung graft survival. 
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4.1 Motivation and Background 

In many circumstances, organ transplantation is the preferred treatment, 

sometimes the only permanent treatment, for the chronic failure of the major organs. For 

example, dialysis can be an option for survival (for months or even years) for a kidney 

patient, whereas for a lung-awaiting patient, there is no option other than transplantation. 

There has been considerable success in the field of organ transplantation, and further 

improvements in the outcome of transplantation procedures are in prospect [1]. The main 

challenge in organ transplantation is the shortage of donated organs. Additionally, a 

significant number of organs are being rejected due to a suboptimal match between the 

graft and the patient. The demand for organ transplantation is increasing while the 

number of donors remains the same, resulting in longer lists of patients waiting for 

transplantation [2]. In such a setting, outcome prediction is becoming increasingly 

important in medicine. But when a resource is scarce the need for accurate prediction 

becomes acute [3]. Especially prediction of survival is a clinically important but 

challenging problem [4]. Therefore, optimization of the system necessitates sophisticated 

procedures for the selection of optimal organ recipients since currently it is impossible to 

satisfy all organ demands. On the other hand, there are competing principles in hand to 

satisfy such as utility, justice, and equity principles. Namely, the likelihood of 

satisfactory outcomes must be jointly optimized with the urgency of need. To be able to 

achieve this level of sophistication, the first step is to reveal the underlying knowledge in 

the large amount of data that is recorded in organ transplantation procedures. The main 

idea would be to maximize the survival rate for transplantation in the light of hundreds of 

determinative variables captured and stored in databases. These databases include 
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variables regarding the donor/graft and the potential recipient. The proposed method 

would simultaneously optimize the utility, justice and equity principles as well. Until 

now, the main focus has been only on some specific factors although there might be 

many more to be taken into account. The findings in our study will provide a new insight 

into the aforementioned three principles. For example, Kirklin et al. [5] defines utility as 

―an allocation policy that maximizes patient and graft survival‖. Here come two 

questions in mind: ―1) Based on what determinative variables can the patient and graft 

survival be maximized?‖ and ―2) How can these critical determinative variables be 

objectively specified and combined in a methodological manner?‖ It would be naïve to 

assume that a decision maker can take all of the independent factors into account to 

optimize the solution, due to the bounded rationality of human beings, and attempting to 

do that would be extremely time-consuming, resulting in some trivial information being 

inferred and acted upon in the process. Therefore, the abovementioned two questions are 

essentially addressed in our study and a data-driven variable selection methodology is 

provided for an effective solution for these two main questions. 

Organ transplantation consists of kidney/pancreas, liver, and thoracic 

transplantation. Thoracic transplantation refers to heart, lung, and simultaneous heart-

lung organ transplantation procedures. It has become an established form of therapy for 

patients with end-stage heart and lung disease since its first clinical introduction in the 

1960s [6]. The number of heart transplant operations performed annually in the United 

States has grown from 2,108 in 1990 to 2,192 in 2006 (a marginal increase) while the 

number of lung transplants has grown from 18 in 1987 to 1,400 in 2006 (a dramatic 

increase) [7]-[9]. Thoracic transplantation is significantly different from other organ 
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transplantation procedures in that it requires transplantation faster and is more vital to 

patient survival. For example, a kidney transplantation awaiting patient might survive for 

extended periods of time by using a dialysis machine, while for a patient awaiting 

thoracic transplantation does not have this choice - at least not at the same comfort and 

cost level. A huge amount of data is complied for thoracic organ transplant patients and is 

analyzed to assess the importance of patient demographics, risk factors, and mortality 

[10]. These analyses have focused on identifying the characteristics of thoracic transplant 

recipients and their associated post-transplant outcomes, namely survival [11]. 

These previous studies have mainly focused on applying statistical techniques to a 

small set of factors selected by the domain-experts in order to reveal the simple linear 

relationships between the factors and survival. The collection of methods known as ‗data 

mining‘ offers significant advantages over conventional statistical techniques in dealing 

with the latter‘s limitations such as normality assumption of observations, independence 

of observations from each other, and linearity of the relationship between the 

observations and the output measure(s). There are statistical methods that overcome these 

limitations. Yet, they are computationally more expensive and do not provide fast and 

flexible solutions as do data mining techniques in large datasets. 

 

4.2 An Integrated Data Mining-based Methodology 

Organ transplantation procedures involve a large number of variables that may 

have a significant impact on the survival of the graft and/or the patient. However, as 

explained in Section 4.1, existing studies on lung transplantation procedures rely heavily 



39 
 

on some specific variables derived from expert knowledge and experience rather than 

data-driven analytical methodologies. The omission of the vast majority of the variables 

may hinder the discovery of underlying relationships between survival and the related 

factors. In such approaches the complete information underlying the transplantation 

datasets cannot be revealed effectively. This may cause non-optimal policy adoptions. 

The further steps (e.g., donor-recipient match) would also be ineffective since they build 

on the very first step, namely, determination of significant variables, which would 

indicate to which patient an organ should be allocated based on what criteria.  

In this study, we adopt an integrated data mining methodology to overcome the 

aforementioned limitations and more effectively reveal the underlying relations between 

survival and predictive factors. We chose the dependent variable as graft survival (which 

is a binary variable with 0 representing survived and 1 not-survive). Thus, the problem 

refers to a classification problem. However, the relationship between the dependent 

variable and the independent/predictor variables are not known in advance. Therefore, as 

a first step of the methodology, various data mining techniques (specifically binary 

classifiers here) which can conduct classification are implemented to predict the graft 

survival. The classification models explain the relationship between the dependent 

variable and independent variables, some explicitly like decision trees and some as a 

black box like the neural networks. They also rank the predictor variables based on their 

importance level in predicting the survival. This step would help determine the common 

variables in all classification models, which will be kept as the first set of critical 

predictive variables. The second set of predictive variables is obtained by considering the 

common-sense domain knowledge. This set consists of variables which are logically 
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related to heart and lung transplantation and also some interaction terms which are 

transformed from the variables provided by UNOS data files. For example, a variable 

might be created to answer the question of ―Is it important if the recipient and the donor 

are from the same ethnicity?‖ The third set of predictive variables is determined from the 

published studies and is referred as the expert input to the variable determination phase of 

our methodology. This set consists of the variables which have been commonly repeated 

in previous studies in the published literature. The last step would take these three sets of 

variables and deploy Cox regression modeling to predict the survival time by determining 

the significant covariate. Cox regression model is the main survival prediction technique 

used in this study. 

The first set of predictive variables would enable the analysis to model all existing 

determinative factors as a whole in aspect of the modeling. Hence, the interference of 

possibly biased human thoughts is eliminated, which would be later incorporated in the 

analysis through the second and third sets of predictive variables. Well-established expert 

opinions should not be ignored either. Therefore, these perspectives are integrated in 

different stages in a way that one‘s effect does not overshadow the other. 

 

4.2.1 Data Source and Data Preparation 

The proposed methodology could be applied for any type of organ transplantation 

procedure. In this study, the data source that was used to validate the methodology was 

thoracic organ transplant data provided by UNOS, which is a tax-exempt, medical, 

scientific, and educational organization that operates the national Organ Procurement and 
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Transplantation Network under the contract to the Division of Organ Transplantation of 

the Department of Health and Human Services [12]. The data files were obtained from 

UNOS using a formal data requisition procedure (which includes submission of specific 

data needs, purpose of the study, and a data use agreement). These data files are named as 

UNOS Standard Transplant Analysis and Research (STAR) files for thoracic transplants 

(heart, lung, and simultaneous heart-lung transplants. Each transplant STAR file consists 

of information on all thoracic transplants that had been performed in the US and reported 

to UNOS since October 1, 1987. It includes both deceased- and living-donor transplants. 

None of the files include any specific patient or transplant hospital identifiers due to the 

privacy and security issues. However, there is a patient identification number, unique to 

each patient, which allows tracking of the patient. Considering these features, UNOS is 

perceived to be the most comprehensive data available in any single field of medicine and 

for organ transplantation in US [13]. 

The complete dataset consists of 443 variables and 61,391 records. These 

variables include the socio-demographic and health-related factors of both the donor and 

the recipients. There are also procedure-related factors among the dataset. To assign as an 

output (dependent variable), there are four possible variables which are called pstatus, 

ptime, gstatus, and gtime. These variables have the following meanings: whether or not 

the patient died after transplantation occurred (referring to pstatus, with dead=1 and 

alive=0). A very similar variable was gstatus, referring to whether or not graft has failed 

(1 denoting failed and 0 denoting succeeded). The variable ptime denoted patient follow-

up time (in days) from transplant to death/last follow up time. Similarly, gtime is 

explained as graft lifespan from transplant to death/last follow up time. For most of the 
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records gtime and ptime had the same value and so gstatus and pstatus. Since the goal of 

this study is to develop models to predict the survival of lung recipients solely based on 

lung-related causes of death, the variables TX_TYPE (type of transplant), COD (recipient 

primary cause of death) and COD_OSTXT (recipient contributory cause of death) were 

used to filter out the lung recipients and discriminate the patients who died solely due to 

the lung graft incompatibility from the ones who died from any other reason. In UNOS 

thoracic files the dependent variable was assigned as gstatus with 9-year survival after 

transplantation and used that way in this study. Therefore, the rest of the potential 

dependent variables (pstatus and ptime) were eliminated from the dataset.   

Considering the gstatus as the categorical dependent variable, the records for the 

patients who were not entered the corresponding value for gstatus were removed from the 

dataset. Data set also included some identification variables (e.g., Donor ID) which 

would track the recipient patient anonymously, track the transplant procedure, or link 

records from multiple data files to each other. Since these identification type variables do 

not have any information content to enhance the prediction capability of the models, they 

were also excluded from the analysis dataset. Moreover, the name of transplantation type 

was recorded in the dataset as a variable named Dataset which had one value (TH 

referring to thoracic) and the date of data processing is recorded as a variable named Date 

of Run which are useful for data integration purposes but have no bearing on the 

prediction of survival are also excluded from the analysis dataset. Similarly, other 

variables having only one possible value for all records in the dataset are also eliminated 

from the predictive modeling. UNOS STAR files also include some post transplant 

variables (such as length of stay and ischemic time) which have a substantial effect on 
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survival. However, these variables would not be available before transplantation takes 

place. Therefore, they were excluded from the candidate sets of variables as well. 

This dataset had an excessive number of missing values which render most of the 

records and variables seemingly insignificant. However, in data mining studies one 

should be very reluctant to remove the candidate predictor variables while trying to avoid 

artificial data imputation procedures. There is an obvious tradeoff here. As a rule of 

thumb, for column (variable) deletion, we were cautious to remove any variable from the 

analysis and assumed that if a variable has more than 95 % missing values, only then it 

should be regarded as not having significant information content and hence be deleted. 

Next step was to handle the missing values where we followed the general convention: 

for the categorical variables we filled the missing values with some heuristic values such 

as E (referring to empty) or NR (referring to not reported), and for the continuous 

variables we imputed the missing valued with the average of the existing records. After 

adopting these data preparation strategies, the final dataset was reduced to 283 cleansed 

independent variables and one dependent variable (gstatus) with the total record count of 

16,604. 

 

4.2.2 Data Mining Prediction Models for Survival Analysis 

In this study, two popular classification models from the machine learning field 

were adopted, namely neural networks and decision trees. The preliminary studies were 

conducted to determine which models perform better in terms of classification accuracy 

and these two model types appeared to be the best. In a recently published survivability 
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study, these model types were found to be among the top survivability predictors [14]. In 

building the prediction models, we used SPSS Clementine
®
 [15] and SAS Enterprise 

Miner
® 

[16], two if the most popular data mining toolkits. The next sub-sections provide 

brief descriptions of the classification models used in this study. 

 

1. Neural Networks 

Neural networks (NNs) have been utilized to model complex relationships among 

the predictor variables and the dependent variable such as nonlinear functions and 

multicollinearity [17]. Formally defined, NNs are highly sophisticated analytic 

techniques capable of predicting new observations (on specific variables) from other 

observations (on the same or other variables) after executing a process of so-called 

―learning‖ from existing data [18]. NNs were up until the most popular artificial 

intelligence-based data modeling algorithm used in clinical medicine due to their good 

predictive performance [19]. We used a popular NN architecture called multi-layer 

perceptron (MLP) with back-propagation (a supervised learning algorithm). The MLP is 

known to be a powerful and robust function approximator for prediction and 

classification problems. It is arguably the most commonly used and well-studied NN 

architecture. Our experimental runs also proved the notion that for this type of 

classification problems MLP performs better than other NN architectures such as radial 

basis function (RBF), recurrent neural network (RNN), and self-organizing map (SOM). 

In fact, Hornik et al. [20] empirically showed that given the right size and the structure, 

MLP is capable of learning arbitrarily complex nonlinear functions to arbitrary accuracy 
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levels. The MLP is essentially the collection of nonlinear neurons (a.k.a. perceptrons) 

organized and connected to each other in a feed-forward multi-layer structure.  

 

2. Decision Trees 

Decision trees recursively split the data in branches according to a preset criterion 

(e.g. information gain) to maximize the prediction accuracy resulting in a tree-like 

structure [21]. To achieve this, they use mathematical algorithms (such as information 

gain, Gini index, and Chi-squared test) to identify a pair of variables and its threshold that 

splits the input observation into two or more subgroups. This step is repeated at each leaf 

node until the complete tree is constructed. The objective of the splitting algorithm is to 

find a variable-threshold pair that maximizes the homogeneity (order) of the resulting two 

or more subgroups of samples. Popular decision tree algorithms include Quinlan's ID3, 

C4.5, C5 [21]-[22], and Breiman et al.'s CART [23]. Compared with other machine 

learning methods, decision trees have the advantage that they are not black box models 

and hence can easily be explained as rules. This advantage makes them widely usable in 

medicine [24]. Based on the favorable prediction results we have obtained from the 

preliminary runs, in this study we chose to use C5 algorithm as our decision tree method, 

which is an improved version of C4.5 and ID3 algorithms. 

 

3. Logistic Regression 

Logistic regression is a generalization of linear regression [24]. It is used 

primarily for predicting binary or multi-class dependent variables. Because the response 
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variable is discrete, it cannot be modeled directly by linear regression. Therefore, rather 

than predicting point estimate of the event itself, it builds the model to predict the odds of 

its occurrence. In a two-class problem, odds greater than 50% would mean that the case is 

assigned to the class designated as ―1‖ and ―0‖ otherwise. While logistic regression is a 

very powerful modeling tool, the modeler, based on his or her experience with the data 

and data analysis, must choose the right inputs and specify their functional relationship to 

the response variable. 

 

4.2.3 Cox Regression Modeling 

The Cox regression model is a semi-parametric model which is extensively used 

in survival analysis [25]. It assumes a parametric form of the impacts of the predictor 

variables but such an assumption is not required for the survival function. Another major 

assumption for Cox model is that the hazards for the different groups are proportional 

[26]. The hazard function of each patient is assumed to follow the hazard function (hi(t)) 

given by Eq. 4.1 as follows: 

))(.exp()( =)( 0 txthth ii                         (4.1) 

where h0(t) is the baseline hazard function, xi is the vector of predictor variables for the 

ith patient, and )(t is the vector of regression coefficients for the predictor variables. 

)(t  is a function of time and is assumed to be same for all patients. By eliminating the 

time effect on it, namely assuming it to be constant over time, the effects of the predictor 

variables would be the same for long-term and short-term survival rates. This is known as 
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proportional hazard rate which is an assumption that should be supported by goodness-of-

fit statistics [27]. 

 

4.3 Performance Criteria for Model Evaluation 

4.3.1 k-fold Cross-Validation 

In order to minimize the bias associated with the random sampling of the training 

and holdout data samples in comparing the predictive accuracy of two or more methods, 

researchers tend to use k-fold cross-validation [28]. In k-fold cross-validation, also called 

rotation estimation, the complete dataset (D) is randomly split into k mutually exclusive 

subsets (the folds: D1, D2, …, Dk) of approximately equal size. The classification model is 

trained and tested k times. Each time (t {1, 2, …, k}), it is trained on all but one fold 

(Dt) and tested on the remaining single fold (Dt). The cross-validation estimate of the 

overall accuracy is calculated as simply the average of the k individual accuracy 

measures as follows, 
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where CV stands for cross-validation accuracy, k is the number of folds used, and A is the 

accuracy measure of each fold.  

Since the cross-validation accuracy would depend on the random assignment of the 

individual cases into k distinct folds, a common practice is to stratify the folds 

themselves. In stratified k-fold cross-validation, the folds are created in a way that they 

contain approximately the same proportion of predictor labels as the original dataset. 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6T4K-4D8VM72-2&_mathId=mml5&_user=152108&_cdi=4977&_rdoc=1&_acct=C000012538&_version=1&_userid=152108&md5=901ece65f48a29d7d2d3d234f4062e94
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Empirical studies showed that stratified cross-validation tend to generate comparison 

results with lower bias and lower variance when compared to regular k-fold cross-

validation [28]. 

 

 

Figure 4.1 Graphical representation of 10-fold cross-validation [29] 

 

In this study, to estimate the performance of classifiers a stratified 10-fold cross-

validation approach is used. Empirical studies showed that 10 seem to be an optimal 

number of folds (that optimizes the time it takes to complete the test while minimizing 

the bias and variance associated with the validation process) [28]. In 10-fold cross-

validation the entire dataset is divided into 10 mutually exclusive subsets (or folds) with 

approximately the same class distribution as the original dataset (stratified). Each fold is 

used once to test the performance of the classifier that is generated from the combined 

data of the remaining nine folds, leading to 10 independent performance estimates 

(Figure 4.1). 
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4.3.2 Accuracy, Sensitivity, and Specificity by Confusion Matrix 

A confusion matrix (as shown in Figure 4.2) is a matrix representation of the 

classification results. In a two-class classification problem (as in our case), the upper left 

cell denotes the number of samples classified as true while they were true in the actual 

classification (also called true positives), and lower right cell denotes the number of 

samples classified as false while they were actually false (a.k.a. true negatives). The 

upper right cell represents the number of samples classified as false while they were 

actually true (a.k.a. false negatives) and the lower left cell represents the number of 

samples classified as true while they were actually false (a.k.a. false positives). 

 

 

Figure 4.2 A confusion matrix representation for two-class classification problem 

 

To compare the classification models, three performance criteria are adopted as 

follows: 

 

   Accuracy= )3.4(
FNFPTNTP

TNTP


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where TP, TN, FP, FN denote true positive, true negative, false positive, and false 

negative, respectively. Accuracy, shown by Eq. (4.3), measures the proportion of 

correctly classified test examples, therefore predicting the overall probability of the 

correct classification. Sensitivity and specificity, shown by Eqs. (4.4) and (4.5) 

respectively, measure the model‘s ability to recognize the patients of a certain group. For 

example, if the grafts are in case, sensitivity is a probability that a graft which has failed 

in reality is also classified as failed and specificity is a probability that a succeeding graft 

is classified as succeeding [29]-[30]. 

 

4.3.3 Information Fusion 

There is no apply-to-all generic model which would give the best prediction 

results in predictive modeling. Based on the case study and the data set to be used on 

hand; the best model can only be determined via several trial-and-error steps [31]. 

Therefore, rather than relying on the results received from one of the prediction models 

developed it is suggested combining information received from various models to further 

improve the prediction accuracy [32]. Such a sophisticated forecast combination would 

hypothetically render the information more accurate and unbiased. A sample information 

fusion algorithm was developed by Delen et al. [33]  which can be summarized as 

follows: 

A prediction model (f) can be formulated as in Eq. (4.6) with an output 

(dependent) variable, y, and the input (independent) variables (x1, x2,…, xn)  

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8S-4GWC0J6-1&_user=152108&_coverDate=08%2F31%2F2007&_rdoc=1&_fmt=full&_orig=search&_cdi=5878&_sort=d&_docanchor=&view=c&_acct=C000012538&_version=1&_urlVersion=0&_userid=152108&md5=364969479886f2a95695be98694a607f#fd1
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To exemplify the prediction model, f, take into account a single-neuron artificial neural 

network model which would be written as in Eq. (4.7) 
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where f  is the transfer function and wi's are the weights for xi's. With m number of 

prediction models, the information fusion model can be written as in Eq. (4.8) 
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                                                (4.8) 

If the multi-model fusion algorithm, ψ, is a linear function, then Eq. (4.9) can be 

rewritten as  
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The values for  ‘s refer to the weighing coefficient for each prediction model 

and are the normalized prediction accuracy measure of the individual prediction model 

(e.g. accuracy as calculated in Eq. (4.3)). In other words, a higher weight is assigned to 

the information provided by a prediction model, which achieves a higher accuracy on the 

testing (hold-out) dataset [33]. 
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4.3.4 Gains Chart 

To measure the performance of Cox regression models, the gains chart analysis is 

widely used in comparing alternative techniques [34]. It is an application of the Lorenz 

curve of incremental expenditure to the database marketing setting [35]. Cumulative 

gains charts always start at 0% and end at 100% while going from left to right. For a 

good model, the gains chart will rise steeply toward 100% and then level off. A model 

that provides no information will follow the diagonal from lower left to upper right. The 

y-axis shows what percentage of cases/observations are captured correctly by the model, 

given the corresponding percentage of cases/observations handled, indicated on the x-

axis. For example, the point (30%, 55%) on a gains chart would indicate that 55% of total 

cases can be expected to be captured by the target selection model, when 30% of the 

cases are randomly selected. 

 

4.4 Results and Discussion 

4.4.1 Classification Results 

Following the methodology proposed in Section 4.2, preliminary analysis showed 

that neural networks, decision tree, and logistic regression models gave satisfactory high 

prediction accuracy results in terms of performance measures. Hence, these three models 

were employed for classification on the dependent variable gstatus. Tables 4.1 shows the 

confusion matrices for all three models. Based on the confusion matrix, accuracy, 

sensitivity, and specificity of each fold were calculated using the method presented in 

Section 4.3. Table 4.1 reveals that neural networks and logistic regression showed similar 
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levels of accuracy while outperforming decision tree model. The results are noteworthy 

that a statistical technique (i.e. logistic regression) could predict the graft survival as well 

as a machine learning technique (i.e. neural network). Note that the accuracy level for all 

three models (are better than any other study reported in the existing literature. Moreover, 

none of the reported studies used the voluminous lung transplant procedure dataset, and 

none applied data-mining methodology. These three machine learning models were kept 

as a modeling technique and some other statistical binary classifier models such as 

discriminant analysis were eliminated since their accuracy rates were not observed to be 

satisfactory in our preliminary trials. The cutoff value for success was to adopt a general 

rule of thumb [36] which claimed that the model should be able to predict the classes 

25% better than random chance. 

For our case which has 47% and 53% of each class of dependent variables, a 

―good enough‖ model should exceed the random chance of 59 % and 66 %, respectively. 

Hence, neural networks, decision trees, and logistic regression were kept to be utilized to 

sort out the first set of candidate predictor factors as further explained in Section 4.4.2. 

 

4.4.2 Determination of Candidate Covariates for Cox Regression Modeling 

Since the results in Section 4.4.1 were received by 10-fold cross-validation, they 

are reliable and independent of the random assignment of the testing and training 

datasets. In the conventional approach, independent variables are identified as 

―significant‖ by invoking a variable selection procedure. Subsequent prediction uses the 

single best model which outperforms the others. Apparently, any such procedure ignores 
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the importance of model uncertainty. They underestimate the uncertainty about the 

parameters and overestimate the confidence in relying on a specific model to be correct 

and hence lead to poor predictive ability [37]. Therefore, in our approach, the first set of 

predictive variables which were commonly utilized in all three classification models (i.e. 

MLP, C4.5 and logistic regression) were determined through the accuracy metric-based 

information fusion which was explained in Section 4.3.3 and listed as in Table 4.2. As a 

rule of thumb we adopted the following assumption: The variable was decided to be 

important and deserved to be in the first set of potential predictors as presented in Table 

4.2. if it was utilized in all three models (MLP, C4.5 and logistic regression) for more 

than one fold out of all 10 folds of prediction. 
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Table 4.1 10-fold cross validation results for prediction models 

 Neural Networks (MLP) Decision Tree (C4.5) Logistic Regression 

Fold 

No 

Confusion  

Matrix 
Accuracy Sensitivity Specificity 

Confusion  

Matrix 
Accuracy Sensitivity Specificity 

Confusion  

Matrix 
Accuracy Sensitivity Specificity 

1 
710 120 

0.856 0.858 0.855 
612 159 

0.794 0.770 0.816 
671 115 

0.855 0.842 0.866 
118 710 183 704 126 746 

2 
670 117 

0.853 0.842 0.864 
612 159 

0.794 0.770 0.816 
664 103 

0.858 0.833 0.880 
126 745 183 704 133 758 

3 
657 111 

0.859 0.843 0.874 
621 165 

0.795 0.781 0.809 
666 107 

0.857 0.837 0.876 
122 767 174 697 130 754 

4 
680 110 

0.864 0.855 0.872 
619 171 

0.791 0.779 0.802 
669 121 

0.850 0.840 0.859 
115 752 176 691 127 740 

5 
668 114 

0.854 0.839 0.868 
606 158 

0.791 0.762 0.817 
672 110 

0.858 0.843 0.872 
128 748 189 705 125 751 

6 
669 106 

0.860 0.841 0.877 
600 159 

0.786 0.755 0.816 
674 112 

0.859 0.847 0.870 
126 756 195 703 122 749 

7 
674 121 

0.853 0.847 0.860 
609 154 

0.795 0.766 0.822 
665 108 

0.855 0.834 0.875 
122 741 186 709 132 753 

8 
672 104 

0.863 0.845 0.879 
636 188 

0.791 0.800 0.782 
668 109 

0.856 0.838 0.873 
123 759 159 675 129 752 

9 
675 108 

0.863 0.849 0.875 
636 188 

0.790 0.799 0.782 
667 113 

0.853 0.837 0.869 
120 755 160 674 130 748 

10 
676 115 

0.859 0.850 0.867 
630 181 

0.791 0.792 0.790 
663 107 

0.855 0.832 0.876 
119 748 165 682 134 754 

Mea

n 
  0.859 0.847 0.869   0.792 0.777 0.805   0.856 0.838 0.872 

Std.

Dev. 
  0.004 0.006 0.008   0.003 0.016 0.015   0.003 0.005 0.006 
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Table 4.2 Variables determined as significant by the classification models 

Variables Explanation 

Sternotomy_Tcr Events occurring prior to listing: Sternotomy 

Angina_Cad Recipient angina/cad at registration 

Pulm_Inf_Don Deceased donor-infection pulmonary source 

Func_Stat_Tcr Recipient functional status at registration 

Death_Circum_Don Deceased donor-circumstance of death 

Age Recipient age (yrs) 

Cig_Use History of cigarette use of the recipient 

 

The second set of predictive variables consisted of the ones which are not in the 

literature but are thought to have importance in lung transplantation. This set also 

includes the interaction terms which were not in the dataset but were created by us. These 

binary variable terms are as follows: GINT, the interaction term between gender of 

recipient and gender of donor; and EINT, the interaction term between the ethnicity 

(race) of the donor and recipient to see if being in the same gender/race has an influence 

on survival. The second set of candidate variables are listed in Table 4.3. 

The third set of predictive variables was complied by considering the existing 

studies as mentioned in Chapter II. This set can be referred as the expert component input 

of our methodology. This set consists of the variables which have been commonly used 

in literature. The third set of variables is summarized in Table 4.4. The variable names 

and explanations listed here are provided by UNOS. 
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Table 4.3 Variables determined due to common-sense domain knowledge 

Variables  Explanation 

*
Cancer_Free_Int_Don Deceased donor-cancer free interval (years) 

Cig_Use History of cigarette use of the recipient 

Contin_Cig_Don Deceased donor-history of cigarettes in past and > 20 pack yrs 

*
Contin_Cocaine_Don Deceased donor-history of cocaine use + recent 6 mo. Use 

Contin_IV_Drug_Old_Don Deceased donor-history of iv drug use + recent 6 mo. Use 

Contin_Oth_Drug_Don Deceased donor-history of other drugs in past + recent 6 mo. Use 

#
EINT Ethnicity interaction between donor and recipient 

#
GINT Gender interaction between donor and recipient 

Hist_Alcohol_Old_Don Deceased donor-history of alcohol dependency 

Hist_Cancer_Don Deceased donor-history of cancer 

Hist_Cig_Don Deceased donor-history of cigarettes in past and  > 20 pack yrs 

Hist_Cocaine_Don Deceased donor-history of cocaine use in past 

Hist_Diabetes_Don Deceased donor-history of diabetes, incl. Duration of disease 

Hist_Hypertens_Don Deceased donor-history of hypertension 

*
Hist_Insulin_Dep_Don Deceased donor-insulin dependent diabetes  

Hist_IV_Drug_Old_Don Deceased donor-history of iv drug use in past 

Oth_Tobacco Other tobacco use 

Pack_Yrs If history of cigarette use, number of pack years 

#
not existing in UNOS dataset but created in this study 

*
could not be included in the analysis due to excessive missing values 

 

The variables listed in Table 4.3 and marked with an asterisk (*) could not be 

included in any of the analyses (neither in classification nor in Cox modeling) since they 

had excessive missing values. These variables had less than 5% valid records in the 

original (not imputed) dataset. Apart from those, the union set of Tables 4.2, 4.3, and 4.4 

were used in Cox model as candidate variables to predict the status of the graft. 
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Table 4.4 Variables determined based on literature research 

Variables  Explanation 

ABO Recipient blood group at registration 

ABO_Don Donor blood type 

ABO_Mat Donor-recipient ABO match level 

Age Recipient age (yrs) 

Age_Don Donor age (yrs) 

Dayswait_Chron Active days on waiting list 

Ethcat Recipient ethnicity category 

Ethcat_Don Donor ethnicity category 

Gender Recipient gender 

Gender_Don Donor gender 

Hbsab_Don Deceased donor Hbsab test result 

Med_Cond_Tcr Recipient medical condition at registration 

Wgt_kg_Don Donor weight (kg) 

Wgt_kg_Tcr Recipient weight (kg) at registration 

 

4.4.3 Deployment of Cox Regression Modeling 

A combined stepwise selection (forward and backward) in Cox regression model 

was utilized to obtain the survivor function by predicting the gstatus through the time-

related variable gtime (graft lifespan). Note that the variable gtime was eliminated in 

classification models in order to not overshadow the other variables‘ effect, but here it 

was needed for Cox modeling. The union set of candidate predictor variables were 

assigned and stepwise variable selection procedure was run. The variables found 

significant are listed along with their corresponding statistics in Table 4.5. The rest were 

eliminated due to their insignificance in the prediction. 



59 
 

Table 4.5 Variables kept in the equation (only the last step, Step 12, is shown) 

Variables DF 
Standard 

Error  

Chi-Square 

Value  
Sig. Exp(  ) 

Wgt_kg_Tcr 1 2.801E-01 96.906 <.0001 1.997 

Func_Stat_Tcr 1 1.492E-02 477.610 <.0001 1.000 

Eint 1 2.323E-01 32.549 <.0001 1.142 

Sternotomy_Tcr 1 9.576E-03 24074.169 <.0001 0.999 

Wgt_kg_Don 1 3.926E-01 56.521 <.0001 1.003 

Dayswait_Chron 1 1.284E-02 3060.772 <.0001 1.001 

Age_Don 1 3.537E-01 523.719 <.0001 1.008 

ABO_Mat 1 1.088E-01 4.664 0.031 0.977 

Gint 1 9.247E-03 19.341 <.0001 1.047 

Death_Circum_Don 1 9.265E-03 427.637 <.0001 1.000 

Med_Cond_Tcr 1 8.051E-06 1026.859 <.0001 1.294 

Hist_Diabetes_Don 1 5.049E-01 10.238 0.001 0.998 

 

The effects of individual predictors are represented by the parameter estimates, 

Exp ( ), and can be interpreted as follows: for a categorical variable, say Gint, the value 

of Exp ( ) (1.047) implies that if the donor and the recipient are not of the same gender 

the risk of graft failing is 1.047 times the failure risk if they are of the same gender. For a 

continuous variable, say Age_Don (the age of the donor), the risk of graft failing is 

increased by 1.008 for each increase in one unit change of the donor‘s age. Note that 

these selected variables by Cox model include the potential predictor variable elements 

from all sets we defined earlier. Chi-Square statistics was performed to determine 

whether or not a specific variable would be kept in the Cox model. The results 

summarized in Table 4.5 also represent that the significance level (Sig.) of the 
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corresponding variables. The standard errors associated with the corresponding parameter 

estimates and the degrees of freedom for each test (DF) are included in Table 4.5 for each 

variable as well. 

In order to make a comparison between the proposed methodology and the 

existing literature, gains charts were utilized in terms of performance measure evaluation. 

The variables in Table 4.4 were assigned in Cox regression model as a benchmark 

representative of the state-of-the-art. This Cox model was named Cox-LR (meaning Cox 

modeling by the variables only from the literature review). Our proposed methodology 

with aggregation of all variable sets in Tables 4.2, 4.3, and 4.4 was called Cox-PM 

(meaning Cox modeling by the proposed methodology in this study). Figures 4.3 and 4.4 

illustrate the gains charts for Cox-LR and Cox-PM, respectively. Note that the gains chart 

for Cox-PM has superiority over Cox-LR. The term gstatus represents how well the Cox 

model has done where the best possible prediction would be as best-gstatus. The closer 

the gstatus line to best-gstatus line, the better the Cox model has performed. Hence, these 

charts illustrate that the proposed methodology has brought more information to predict 

the dependent variable gstatus and can be proposed as a validation of this study.  
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Figure 4.3 Gains chart for Cox-LR 

 

 

Figure 4.4 Gains chart for Cox-PM 

 

On the other hand, Akaike information criteria (AIC) is a measure for goodness-

of-fit of an estimated model and a tool for model selection among competing models 
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[38]. The smaller the AIC, the better the model has performed. The AIC value for Cox-

PM has been received as 1374012.3 and 1465300.2 for Cox-LR. This is another numeric 

validation of our proposed methodology. 

 

4.5 Conclusions 

This study suggests that when modeling lung transplantation procedures a data-

mining-driven methodology should be used to augment the variable selection process 

rather than focusing on mere expert-selected predictor variables. The human expert‘s 

input cannot be ignored in modeling lung transplantation (nor can be in any area of 

medicine) but should be (and as shown in this study, could be) strengthened with the 

knowledge that can be discovered from data. In order to make use of voluminous 

datasets, it may be useful to apply the data mining models to extract previously unknown 

patterns and relationships among the predictor variables. Thus, a small set of effective 

variables (predictors) could be identified for analysis instead of the original large number 

of variables, which enables more effective and efficient analyses. This study proposes 

that the data mining models select the significant variables as the first step. Thereafter, 

potential variable sets from domain experts will be integrated in the process. In the 

subsequent analysis, the medical experts should especially be referred to interpret the 

results that this methodology reveals in lung transplantation. The medical experts are to 

evaluate the patterns and the newly-introduced predictor variables as to their significance 

and if they bring new actionable and logical directions in transplant area. An example is 

the GINT variable which was created in this study, which is shown to be important in 
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predicting graft survival. The medical professionals who have years of experience in the 

lung transplant area will be expected to decide if it is medically important to assign an 

organ to a recipient who is the same gender as the donor.  

Because of its ability to model highly-complex data-rich phenomenon, predictive 

data mining is destined to become an essential instrument for researchers in medical 

informatics. Due to the increasingly more effective and efficient data collection and 

storage mechanisms in a variety of medical fields coupled with the enormity of ever more 

complex problems, data mining applications will continue to gain popularity. Future 

research efforts will involve extension of the data mining analysis for UNOS thoracic 

dataset along with the follow-up datasets. This perspective will hopefully open a new 

window to observe patients‘ medical condition after the lung transplant has been 

performed. A critical prognostic index can be devised, which categorizes the transplant 

patients in terms of various risk groups, namely low, medium, and high. 
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CHAPTER V 
 

 

PROGNOSTIC ANALYSIS OF LUNG ORGAN TRANSPLANTS 

 

The prediction of survival time after organ transplantations and prognosis analysis 

of different risk groups of transplant patients are not only clinically important but also 

technically challenging. The current studies, which are mostly linear modeling-based 

statistical analyses, have focused on small sets of disparate predictive factors where many 

potentially-important variables are neglected in their analyses. Data mining methods, 

such as machine learning-based approaches, are capable of providing an effective way of 

overcoming these limitations by utilizing sufficiently large data sets with many predictive 

factors to identify not only linear associations but also highly complex, non-linear 

relationships. Therefore, this study is aimed at exploring risk groups of lung recipients 

through machine learning-based methods. 

 

5.1 Motivation and Background 

Thoracic (heart and lung) transplantation has been accepted as a viable treatment  
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for end-stage cardiac and pulmonary failure. The increased experience in cardiac and 

pulmonary transplantation, improvements in patient selection, organ preservation, and 

preoperative support have significantly reduced the early threats to patient survival [1]. 

Over the past decade, the thoracic transplant waiting time for a listed patient has 

markedly increased, but the number of transplants performed has declined. In addition, 

the research also found that there is a perceived inequity in access to organs. The organ 

allocation system need to be improved since it may become a major factor negatively 

influencing the survivability of thoracic transplant [2].  

The survivability prediction is becoming increasingly more important in 

medicine. When a resource is scarce the need for accurate prediction becomes acute [3]. 

Especially prediction of survival time and prognosis prediction of medical treatments are 

clinically important and challenging problems [4]. Scarceness of organs necessitates the 

development of effective and efficient procedures to select the most optimal organ 

receiver since demand for organs of all patients might not be satisfied. To achieve this, 

one critical step is to reveal the knowledge underlying huge amount of data collected and 

stored from organ transplantation procedures performed in the past. The objectives are 

(1) to maximize the patients‘ survival time after the organ transplantation surgery, and (2) 

to optimize the prognosis for the organ recipients. These can be potentially achieved by 

discovering the knowledge that may be contained in large dataset consisting of more than 

hundreds of determinative variables regarding the donors, the potential recipients, and 

transplantation procedures. Therefore, in this study a data mining method is proposed to 

process large amount of transplantation data obtained from UNOS to identify the 

important factors as well as their relationships to the survival of the graft and the patient. 
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Thereafter, a prognostic index [5]-[6] is developed to classify the patients into different 

risk groups for better understanding of the transplantation phenomenon. In short, this 

study will address the following questions: (1) what are the most important variables to 

be included in an effective prognostic index related to lung organ transplantations? (2) 

what are the most coherent risk groups that can be formed based on the prognostic index? 

Predicting the lung survivability and classifying the patients (potential lung organ 

receivers) into different classes of risks would help decision makers in determining 

patients‘ priority for transplantation source assignment. 

 

5.2 Proposed Method for Prognostic Analysis and Risk Group Determination  

Section 2.2 shows that the most of the existing studies for organ transplantation 

procedures utilize conventional statistical approaches such as Kaplan-Meier function and 

log-rank test along with expert-selected variables to predict the survivability. However, 

organ transplantation procedures consist of a large number of variables (several hundred) 

that may have nontrivial impact on modeling the prognosis of the grafts/patients. Using a 

somewhat comprehensive variable list may help discriminate patients from each other by 

placing them into proper risk groups. Unintentional omission of the important variables 

may lead to inaccurate classification of patient risk groups, which may, in turn, lead to 

less than optimal organ allocation policies and ineffective treatments. 

This study is aimed at overcoming the abovementioned shortcomings by 

employing both machine learning techniques as well as statistical methods to identify the 

most critical factors affecting the survivability of lung transplant patients.  
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Figure 5.1 A flowchart representation of the proposed method 
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To achieve this goal, this study proposes adopting a 5-step approach illustrated in 

Figure 5.1. Step 1 involves data understanding and preparation, which is arguably the 

most time demanding step in the process. Step 2 employs various predictive modeling 

techniques such as support vector machines, artificial neural networks, and regression 

trees to develop survival time prediction models and to extract the most important 

variables by means of sensitivity analysis through the best performing model. Step 3 

determines the consolidated candidate set of critical predictor variables. Step 4 develops a 

Cox regression model using the consolidated set of predictor variables and also devises a 

prognostic index. The last step, Step 5, classifies the patients into various risk categories 

by comparing and contrasting the clustering performance of algorithm-based and 

manually calculated groups. Then the resulting risk categories are validated by using the 

Kaplan-Meier survival curves. 

 

5.2.1 Data Source and Data Preparation 

There are two datasets involved in our study, which are regular dataset and 

follow-up dataset. The regular dataset contains all information of donors and recipients 

before transplantation occurred, and the follow-up dataset provides all information of 

donors and recipients after the transplantation. The TRR_ID variable (transplant 

identifier) is the common variable between these two datasets and the one which is 

proposed by UNOS to merge and integrate these two datasets. Therefore, these two 

datasets were combined in a relational database environment using the link (a.k.a. 

primary key) of TRR_ID. Overall, the complete dataset consists of 310,773 records and 
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565 variables. Since the goal of this study is to develop models to predict the 

survivability solely based on lung transplant, the dependent variable was assigned as 

gtime. This assignment was done to discriminate the patients who died solely due to the 

lung graft incompatibility from the ones who died from any other reasons. Therefore, the 

rest of the potential dependent variables (pstatus and ptime) were eliminated from the 

dataset. Besides, gstatus was kept inactive up to the stage where Cox regression model 

was implemented (Step 4 in Figure 5.1). After adopting various data preparation 

strategies, the final dataset was reduced to 372 cleansed independent variables and one 

dependent variable (gtime) with the total record count of 106,398. 

 

5.2.2 Predictive Modeling for Prognostic Analysis 

Since the dependent variable herein was a continuous variable (graft survival 

time, which is the number of days from transplant to death or last follow-up), the problem 

refers to a prediction (or regression) problem (as opposed to a classification problem). 

Since the relationships between the dependent variable and the independent variables 

were not known in advance, this step was to develop various predictive models for graft 

survival time using all of the available independent variables. It is also required to check 

whether the models have passed the pre-specified threshold values of performance 

measures, specifically the R
2
 and mean square error (MSE), to determine the best model 

that explains these unknown relationships between dependent and independent variables 

by ranking them according to these measures. The model which is deemed to be the most 

successful one would be kept for further modeling steps to determine the importance of 
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the independent variables. Since neural networks and decision trees were already 

described in Chapter IV, here we briefly define support vector machines only. 

Support vector machines (SVMs) are supervised learning methods that generate 

input–output mapping functions from a set of training data. They belong to a family of 

generalized linear models which achieve a classification or regression decision based on 

the value of the linear combination of features. They are also said to belong to the kernel 

methods [7]. The mapping function in SVMs can be either a classification function (used 

to categorize the data) or a regression function (used to estimate the numerical value of 

the desired output, as is the case in this study). Nonlinear kernel functions are often used 

to transform the input data (inherently representing highly complex nonlinear 

relationships) to a high dimensional feature space in which the input data become more 

separable (i.e. linearly separable) compared to the original input space. Then, maximum-

margin hyperplanes are constructed to optimally separate the classes in the training data. 

Two parallel hyperplanes are constructed on each side of the hyperplane that separates 

the data by maximizing the distance between the two parallel hyperplanes. An 

assumption is made that the larger the margin or distance between these parallel 

hyperplanes, the better the generalization error of the prediction would be.  

 

5.3 Performance Measures of Model Evaluation 

To compare the abovementioned prediction models, two performance criteria are 

considered: mean squared error (MSE) of the model on testing dataset and R-square 

value between the actual observation for the target variable (Yt) and the predicted value 
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by the model (Ft). MSE which is given by the Eq. (5.1) does not have a rule-of-thumb 

threshold cut-off value for acceptable models. It is a relative criterion to select the best 

model, namely the smaller the value the better the model has performed [8].  
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On the other hand, R-square ( tt YFR ,
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or shortly R
2
) which is given by Eq. (5.2) 

can be considered as both an absolute measure and a relative measure to determine and 

rank the satisfactory models [9]. Unlike the MSE, the higher the R
2
, the better the 
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After selecting the best prediction model based on the performance criteria (i.e. 

MSE and R
2
), it is required to determine the importance of the independent variables. In 

machine learning algorithms, sensitivity analysis is a method for extracting the cause and 

effect relationship between the inputs and outputs of a trained model [10]. In the process 

of performing sensitivity analysis, after the model is trained the learning is disabled so 

that the network weights are not affected. The fundamental idea is that the sensitivity 

analysis measures the predictor variables based on the change in modeling performance 

that occurs if a predictor variable is not included in the model. Hence, the measure of 

sensitivity of a specific predictor variable is the ratio of the error of the trained model 

without the predictor variable to the error of the model that includes this predictor 
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variable [10]. The more sensitive the network is to a particular variable, the greater the 

performance decrease would be in the absence of that variable, and therefore the greater 

the ratio of importance. This method is followed in support vector machines and artificial 

neural networks to rank the variables in terms of their importance according to the 

sensitivity measure defined in Eq. (5.4) [12]. 
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where V(Ft) is the unconditional output variance. In the numerator, the expectation 

operator E calls for an integral over X-i; that is, over all input variables but Xi, then the 

variance operator V implies a further integral over Xi. Variable importance is then 

computed as the normalized sensitivity. Saltelli et al. [13] show that Eq. (5.4) is the 

proper measure of sensitivity to rank the predictors in order of importance for any 

combination of interaction and non-orthogonality among predictors. As for the decision 

trees, variable importance measures were used to judge the relative importance of each 

predictor variable. Variable importance ranking uses surrogate splitting to produce a scale 

which is a relative importance measure for each predictor variable included in the 

analysis. Further details on this procedure can be seen in Breiman et al. [14]. 
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5.4 Determining Candidate Sets of Predictor Variables 

Step 3 is to determine which predictor variables to be used in devising a 

prognostic index in Step 4. This step helps eliminate the insignificant variables and 

improves the accuracy of the model by optimizing the predictor variables list. The 

potential input variables to this step consist of three candidate sets of predictor variables. 

The first set is composed of variables selected by the predictive models. The predictive 

models rank the predictor variables based on their importance level in predicting the graft 

survival time. The predictive variables selected by the sensitivity analysis of the best-

performing model (ranked in terms of R
2
 and MSE) are chosen as the first set of 

predictive variables. The second set of predictive variables is obtained by considering the 

expert domain knowledge. This set includes variables which are logically related to heart 

and lung transplantation such as donor‘s history of cigarette usage. The third set of 

predictive variables is selected from the related literature. This set consists of the 

variables which have been commonly and repeatedly used in previous studies in the 

organ transplantation area. The second and third sets of predictive variables provide more 

comprehensive information for the next step, the Cox regression model, by including the 

variables that might have importance in the survival analysis but were determined to be 

insignificant by the predictive models in step 2. 

5.5 Prognostic Index Devising for Lung Transplants 

Step 4 takes all the three sets of predictive variables identified in Step 3, and then 

applies Cox regression to model the graft survivability and filter out the candidate 

predictive variables which do not have significant survival effect. Hence, in Step 4 the 
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final critical predictive variables are determined by the Cox regression model. Cox 

regression model also enables devising a prognostic index to categorize the patients into 

various groups with different levels of risks. One important application of Cox regression 

model is to identify variables which may be of prognostic importance [5]. Once 

identified, knowledge from these variables will be combined and used to define a 

prognostic index, which in turn defines groups of organ recipients with different levels of 

risk. To use the prognostic index, key patient characteristics are recorded, from which a 

score is derived. This score gives an indication of whether a particular patient has high, 

intermediate or low levels of prognosis for the disease [5]-[15]. Recalling Eq. (4.1), the 

prognostic index (PI) for each patient can be calculated by Eq. (5.5): 

)5.5(........ 2211 nnxxxPI  
  

Note that PI in Eq. (5.5) represents the exponent portion in Eq. (4.1). Therefore, 

the smaller the PI, the smaller the hazard function value, and hence the smaller the risk 

associated with a particular recipient. 

An important question following Step 4 is ―How many risk groups should the 

patients be classified into?‖ In Step 5, k-means clustering algorithm, two-step cluster 

analysis, and conventional heuristics-based approaches are used to answer to this 

question. As a statistical and/or pictorial verification mechanism for the number of 

groups determined by the best performing abovementioned clustering approaches, finally 

the Kaplan-Meier survival analysis [16] is adopted and corresponding survival curves are 

generated. 
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k-means method is an extensively used, arguably the most popular clustering 

algorithm that searches for a nearly optimal partition with fixed number of clusters 

represented by the parameter k [17]. It proceeds by assigning k initial centroids to the 

multi dimensional datasets. Each record in the dataset is allocated to the centroid which is 

nearest and hence forming a cluster. Each cluster centroid is then updated to be the center 

of its members, followed by a new assignment of records to the nearest centroids to re-

construct the clusters. The algorithm converges when there is no further change in 

allocation of members to clusters or some predefined time-based stopping criteria is 

satisfied [18]. 

Another popular clustering algorithm is two-step cluster analysis (TSCA) [19]-

[20]. It has two steps: (1) to pre-cluster the cases (or records) into many small sub-

clusters, and (2) to cluster the sub-clusters resulting from pre-cluster step into the desired 

number of clusters. The pre-cluster step uses a sequential clustering approach. It scans the 

data records one by one and decides if the current record should be merged with the 

previously formed clusters or starts a new cluster based on the distance criterion. Then 

the cluster step takes sub-clusters resulting from the pre-cluster step as input, and groups 

them into the desired number of clusters. Since the number of sub-clusters is much less 

than the number of original records, the traditional clustering methods can be used 

effectively. This step uses the agglomerative hierarchical clustering method [19]-[20]. 

Although there are several other clustering algorithms (e.g. Kohonen networks) they do 

not allow the modeler to specify a desired number of clusters at the beginning of the 

clustering algorithm. k-means and TSCA algorithms overcome this issue.  The modeler 

can predefine a specific number of clusters to group the variables and compare them 
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according to their clustering performances. Since this is the main focus of our study, we 

utilized k-means and TSCA algorithms for clustering the PIs and thus identify the risk 

groups of lung patients.       

The Kaplan–Meier analysis is a non-parametric technique used to test the 

statistical significance of differences between the survival curves associated with two 

different circumstances [16]. The analysis expresses the distribution of patient survival 

times in terms of the proportion of patients still alive up to a given time. On the other 

hand, the Kaplan-Meier survival curves plot the proportion of patients surviving against 

time which has a characteristic decline. In biostatistics, a typical application of Kaplan-

Meier survival curves involves grouping patients into risk groups such as low, medium, 

and high risks. 

 

5.6 Results and Discussion 

5.6.1 Prediction Model Results 

To reveal the initially unknown relationship between the lung input/independent 

variables and the continuous output/dependent variable (gtime), due to the high 

computational time required for 10-fold cross validation of each model we only used two 

most popular models from each family of machine learning techniques. Radial basis 

function (RBF) and polynomial functions as Kernel methods in support vector machine 

were deployed. We used multi layer perceptron (MLP) and RBF type of network 

structures for ANNs. The most recent algorithms C&RT and M5 were utilized for 



82 
 

prediction with the decision trees. The 10-fold averaged prediction results in terms of 

MSE and R
2
 for each model are tabulated in Table 5.1. 

  

Table 5.1 Comparison of machine learning prediction model results 

 

 

 

 MSE
 

R
2 

Support Vector Machine     

RBF  0.023 0.879 

Polynomial 0.793 0.643 

Artificial Neural Network     

MLP 0.031 0.847 

RBF 0.146 0.835 

Decision Tree     

M5 0.324 0.785 

C&RT 0.578 0.766 

 

The acceptance of predictive models is first evaluated based on their coefficient of 

determination (R-square) values. It is widely accepted that if R-square is higher than 0.6, 

the predictive model has performed fairly well [21]-[22]. Therefore, we set this as a 

threshold value for the model sufficiency. Since all the models have passed this 

threshold, we kept the one with the highest R
2
 and the smallest MSE for further analyses, 

which came out to be the support vector machine model with radial basis Kernel function 

in this case study. 

 

 

Performance 

Measures 

Prediction 

Models  
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5.6.2 Determination of Candidate Covariates for Prognostic Analysis 

Step 3 in the proposed method provides three different sets of candidate 

covariates to be used in the Cox model.  

Table 5.2 The 1
st
 set of candidate covariates generated from RBF-SVM 

Variables Explanation 

Citizenship Recipient citizenship @ registration 

Contin_alcohol_old_don Deceased donor-history of alcohol dependency+ recent 6mo use 

Contin_iv_drug_old_don Deceased donor-history of iv drug use+recent 6mo use 

Creat2_old Most recent creatinine > 2.0 mg/dl y/n 

Da2 Donor a2 antigen 

Dantiarr_old Deceased donor given antiarrythmics 24 hours prior to cross clamp 

Dayswait_chron Active days on waiting list 

Dobut_don_old Deceased donor-dobutamine w/in 24 hrs pre-cross clamp 

Education Recipient highest educational level @ registration 

Ethcat_don Donor ethnicity category 

Func_stat_tcr Recipient functional status @ registration 

Func_stat_trr Recipient functional status @transplant 

Gender Recipient gender 

Hbsab_don Deceased donor hbsab test result 

Hemo_pa_dia_tcr Most recent hemodynamics pa (dia) mm/hg @ registration 

Hemo_pa_mn_tcr Most recent hemodynamics pa (mean) mm/hg @ registration 

Heparin_don Deceased donor management - heparin 

Hgt_cm_tcr Recipient height @ registration 

Hist_alcohol_old_don Deceased donor-history of alcohol dependency 

Htlv2_old_don Deceased donor-antibody to htlv ii result 

Impl_defibril_after_list Implantable defibrillator inserted between listing and transplant 

Inotrop_agents Deceased donor- three or more inotropic agents at time of incision 

Inotrop_support_don Deceased donor inotropic medication at procurement (y/n) 

Med_cond_tcr Recipient medical condition @ registration 

Med_cond_trr Recipient medical condition pre-transplant   @ transplant 

Physical_capacity_tcr Physical capacity at listing 

Pretreat_med_don_old 

Deceased donor medication(s) from brain death to 24 hrs prior to 

procurement 

Prior_lung_surg_tcr Recipient prior lung surgery (non-transplant) at listing 

Pt_t4_don Deceased donor-thyroxine-t4 b/n brain death w/in 24 hrs of procurement 

Sternotomy_tcr Events occurring prior to listing: sternotomy 

Sternotomy_trr Events occurring between listing and transplant: sternotomy 

Steroid Chronic steroid use y/n/u @ transplant 

Trtrej1y Treated for rejection within 1 year 

Trt_pulm_sepsis IV treated pulmonary sepsis y/n/u @ registration 

Vad_tah_tcr Recipient on life support - ventilator @ registration (1=yes, 0=no) 

 

Since the best performing model to explain the relationships of independent and 

dependent variables was found to be RBF-SVM, the sensitivity analysis as explained in 
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Section 5.3 by Eq. (5.4) was conducted on the predictor variables to rank them in terms 

of their importance in predicting the gtime (c.f. Table 5.2). The second set of predictor 

variables were selected by the authors through brainstorming sessions with medical 

professionals as summarized in Table 4.3. The third set of candidate covariates was 

determined through the recent literature [23]. This set includes the variables commonly 

used in the previously published studies related to organ transplantation. The third set of 

candidate covariates are shown in Table 4.4. The second and third set of candidate 

covariates can be perceived as the expert component of the method. 

If the predictive models in Step 3 do not reveal some very critical predictor 

variables (such as the age of the recipient in our case study), the method proposes to force 

the Cox model once more to review the significance of this kind of predictor variables. 

 

5.6.3 Devising the Lung Prognostic Index 

All the candidate covariates as determined in Section 5.6.2 were assigned to Cox 

regression model at this step. The stepwise variable selection procedure was applied with 

0.05 for entry and 0.1 for removal as significance threshold criteria. The predictor 

variables determined to be significant by Cox regression model are listed along with their 

corresponding statistics in Table 5.3.  

The rest of the variables (which were in Tables 5.2, 4.3, or 4.4 but not in Table 

5.3) were eliminated since they were found to be insignificant by Cox regression model. 

As listed in Table 5.3, 9 of the variables had prognostic value which are determined by 

the Cox model as significant and kept in the Cox equation. Therefore, they were used to 
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calculate the PIs by means of Eq. (5.5). The PI values received here were ranging 

between 0 and 3. 

Table 5.3 The variables kept in the Cox regression model 

Variable SE 
Chi_square 

Test 
DF Significance exp(β) 

95% CI for 

exp(β) 

Lower Upper 

Eint 0.0178 56.9447 1 <.0001 0.844 0.844 0.905 

Gint 0.0183 11.8644 1 0.0006 0.906 0.906 0.973 

Age_Don 0.0006 247.3162 1 <.0001 1.009 1.009 1.011 

Wgt_kg_Tcr 0.0004 5.5091 1 0.0189 0.998 0.998 1.000 

Wgt_kg_Don 0.0005 21.3483 1 <.0001 0.997 0.997 0.999 

Citizenship 0.0554 5.5538 1 0.0184 0.787 0.787 0.978 

Dayswait_Chron 0.0002 7.5318 1 0.0061 1.000 1.000 1.000 

Med_Cond_Tcr 0.0109 75.6231 1 <.0001 1.076 1.076 1.123 

Vad_Tah_Tcr 0.0077 48.9955 1 <.0001 1.040 1.040 1.072 

 

5.6.4 Clustering the Prognostic Indices and Creating the Risk Groups 

Once the prognostic indices (PIs) for each recipient calculated, the next step was 

to cluster the recipients through these PIs. However, the problem of defining these 

clusters and deciding which value to cut off and categorize the recipients should be 

solved first. Two commonly used clustering algorithms as described in Section 5.5, 

namely k-means and TSCA were used to determine these clusters. We also compared 

these algorithm-based clusters to conventional PI devising methods in medicine. Two 

potential ways to do the clustering are constructing equal-width PIs and equal-percentile 

PIs in this research domain. In the former one, the PIs are separated in groups so that the 

increments of PI in each group are equal whereas the latter method focuses on allocating 

the patients equally to each group. The algorithms k-means and TSCA were run by 

changing the value for k (number of clusters to be formed). 
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Table 5.4 The comparison of results for clustering algorithms and heuristics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prognostic 

Index

Number 

of patients

Intraclass

inertia

Prognostic 

Index

Number 

of patients

Intraclass

inertia

0-0.69 21163 (58%) 0-1.09 34199 (94%)

0.70-3 15262 (41%) 1.1-3 2226 (6%)

0-0.56 13766 (38%) 0-1.04 33529 (92%)

0.57-0.91 5834 (16%) 1.05-1.83 2807 (7.7%)

0.92-3 16825 (46%) 1.84-3 89 (0.3%)

0-0.49 15227 (42%) 0-0.41 6410 (17%)

0.50-0.77 1764 (5%) 0.42-0.70 15163 (42%)

0.78-1.12 9542 (26%) 0.71-1.04 11892 (33%)

1.13-3 9892 (27%) 1.05-3 2960 (8%)

0-0.44 13266 (36%) 0-0.36 2960 (8%)

0.45-0.69 451 (1%) 0.37-0.53 10475 (29%)

0.70-0.95 4449 (12%) 0.54-0.73 10815 (29%)

0.96-1.39 7814 (22%) 0.74-1.04 4674 (13%)

1.40-3 10445 (29%) 1.05-3 7501 (21%)

Prognostic 

Index

Number 

of patients

Intraclass

inertia

Prognostic 

Index

Number 

of patients

Intraclass

inertia

0-1.5 36154 (99%) 0-0.64 18212 (50%)

1.6-3 271 (1%) 0.65-3 18213 (50%)

0-0.9 32571 (89%) 0-0.53 12142 (33.5%)

1-1.9 3794 (10%) 0.54-0.76 12141 (33%)

2-3.0 60 (1%) 0.77-3 12142 (33.5%)

0-0.7 26087 (72%) 0-0.47 9106 (25%)

0.8-1.5 10153 (28%) 0.48-0.64 9106(25%)

1.6-2.3 162 (0.4%) 0.65-0.82 9106 (25%)

2.4-3 23 (0.06%) 0.83-3 9107 (25%)

0-0.5 15605 (43%) 0-0.43 7285 (20%)

0.6-1.1 19608 (54%) 0.44-0.58 7285 (20%)

1.2-1.7 1109 (3%) 0.59-0.71 7285 (20%)

1.8-2.3 80 (0.2%) 0.72-0.87 7285 (20%)

2.4-3 23 (0.06%) 0.88-3 7285 (20%)Cluster 5 Very High

Cluster 2 Low

Cluster 3 Medium

Cluster 4 High

Cluster 3 High-Medium

Cluster 4 High

Cluster 1 Very Low

Cluster 3 High

Cluster 1 Low

Cluster 2 Low-Medium

Cluster 2 High

Cluster 1 Low

Cluster 2 Medium

Number of 

Clusters Risk Group

Cluster 1 Low

1678.65*10^-8 2.01*10^-6

12961.43*10^-8 2755.48*10^-6

457.67*10^-8 3.16*10^-6

By Heuristics-based Calculation

with equal PI widths with equal percentiles

713.68*10^-8 7.02*10^-6

two-step cluster analysis

High

445.39*10^-8

720.71*10^-8

866.30*10^-8

Very High

k-means algorithm

By Clustering Algorithms

Low-Medium

High-Medium

High

Very Low

Low

Medium

2.20*10^-8

11.2*10^-8

3.02*10^-8

12.4*10^-8

1.68*10^-8

Cluster 3

Cluster 4

Cluster 5

Risk Group

Low

High

Low

Medium

High

LowCluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 1

Cluster 2

Cluster 3

Number of 

Clusters

Cluster 1

Cluster 2

Cluster 1

Cluster 2
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The value of k with 2, 3, 4, and 5 were tried because it was considered that having 

clusters more than 5 would not provide logical risk groups to categorize and would 

probably not be easy to name and interpret medically afterwards. The results for each run 

are represented in Table 5.4. The performance of these entire four approaches with 

different number of clusters (k=2, 3, 4, 5) was compared using intraclass inertia as the 

performance measure to decide which one to adopt. It is a measure which shows how 

compact each cluster is. Intraclass inertia is the average of the distances between the 

means and the observations in each cluster. Eq. (5.6) indicates this value for given k 

number of clusters [24]. 
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where n is the number of total observations, CK is the set of k
th 

cluster, XiP is the value of 

the attribute P for observation i and µkP is the mean of the attribute P in the k
th 

cluster. 

Note that in our case there is only one attribute which is PI, and hence m=1. The 

intraclass inertia values for each possible cluster are also summarized in Table 5.4. 

Prognostic indices were clustered best with k=3 with k-means clustering algorithm in our 

case as seen in Table 5.4 considering its low intraclass inertia value. As seen in Table 5.4, 

this classification  not only gives the lowest intraclass inertia value but also provides a 

even distribution of the patients for our nation-wide dataset (38%, 16%, and 46% for low, 

medium, and high risk groups of patients respectively). Although 5 clusters with k-means 

algorithm and 3 clusters in two-step cluster analysis perform very close to k-means 

algorithm with 3 clusters, neither of them provides such an even distribution of patients. 
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Note that in addition to considerably higher inertia scores, heuristic calculation with 

equal-width PIs distribute the nation-wide patients highly skewed to lower tails of risk 

groups for all five potential cluster formations. Therefore, we conclude that the k-means 

algorithm based clustering performs better than the other potential groupings in terms of 

both objective and subjective aspects. 

5.6.5 Validation of Risk Groups by Kaplan-Meier Survival Analysis 

To validate the established prognostic indices with 3 clusters in Section 5.6.4 and 

hence the various risk groups, Kaplan-Meier survival analysis was conducted. The 

corresponding PI clusters were matched with the patients and their predictor variables 

from Table 5.3. In Kaplan-Meier survival analysis the predictor variables were used as 

explanatory variables and the PI-based clusters were used as the strata variable to label 

the patients with different risks. The main objective here was to compare survivor 

functions for different risk groups of lung recipients. If the survivor function for one risk 

group is always higher than the survivor function for another risk group, than the first 

group clearly lives longer than the second one. The less the survivor functions cross, the 

better the discrimination of the patients would be. Figure 5.2 shows this clear distinction 

for k-means algorithm-based PIs. 

In order to show that there is a statistically significant difference among these 

three risk groups, the test of equality over strata was also conducted. Test of equality over 

strata contains rank and likelihood-based statistics for testing homogeneity of survivor 

functions across strata. The rank tests with the log-rank test and Wilcoxon test indicate a 
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significant difference between the risk groups. These results are also supported by 

likelihood-based statistics. These statistical test results are summarized in Table 5.5. 

 

Figure 5.2 Kaplan-Meier survival curves for three PIs 

 

Table 5.5 Tests of equality over risk groups for k-means based three PI cluster 

Test Chi-Square DF Pr>Chi-Square 

Log-Rank 1002.6135 2 <.0001 

Wilcoxon 939.7492 2 <.0001 

-2Log(LR) 1013.3153 2 <.0001 

 

5.7 Conclusions 

This study demonstrates that machine learning-based methodology for selecting 

predictor variables in survivability and prognostic modeling of lung organ transplantation 
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is superior to the approaches adopting only expert-selected variables. The study showed 

that of the comprehensive list of predictors, some have been included in the previous 

studies (such as gender and age of the recipient, his/her medical condition at registration) 

while some others (which are found to be critical) have been absent from the related 

literature.  These variables (e.g. such as recipient length of stay post transplant and the 

interaction of gender and ethnicity between the recipient and the donor) should be 

combined with the factors identified in previous studies to better understand and improve 

the organ transplantation process.  

The study revealed that based on k-means clustering algorithm the lung organ 

recipients should be allocated into an optimal number of ―three‖ risk groups, namely low, 

medium, and high. This finding confirms the conventional medical discrimination 

commonly used in this field of study. However, it also proves that this grouping should 

be better performed through a data mining perspective rather than a heuristics-based 

approach because the latter one gives more skewed distribution of patients for our US 

nation-wide dataset. This is the point where the medical professionals should be advised 

to handle the problem in the future. 

Some of the research extensions to the study reported in this manuscript includes 

analysis of other organ types as well as the analysis of multi organ scenarios where the 

correlations among the organs coming from the same donor are also included in the 

formulation of the problem. Another potential further research direction of this study is to 

validate the patterns obtained from the data mining models with a comprehensive 

simulation model of the organ transplantation process. Using actual cases, a 

comprehensive discrete-event simulation model can be developed and be used as a test-
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bed where the potential benefits and limitations of these novel patterns are tested and 

validated lengthy period of time in the computer simulation environment. 
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CHAPTER VI 

 

 

DEVELOPING A COMPOSITE SCORE OF MATCHING INDEX  

FOR LUNG TRANSPLANTS 

 

Thoracic (heart-lung) transplantation has a vital role among all organ transplant 

procedures since it is the only accepted optimal treatment for the end-stage cardiac and 

pulmonary failure. There have been several research attempts to model the performance 

of lung transplants. Yet, they either lack model predictive capability by relying on strong 

statistical assumptions or provide adequate predictive capability but suffer from less 

interpretability to the medical professionals.  

The proposed method in this chapter is focused on overcoming the abovementioned 

limitations by providing a structural equation modeling-based decision tree for lung 

transplant performance evaluation. Specifically, partial least squares-based path modeling 

is used for the structural equation modeling part. The proposed method is validated 

through a US nation-wide dataset obtained from United Network for Organ Sharing 

(UNOS). The results are promising in terms of both prediction and interpretation 
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capabilities and are superior to the existing techniques. Hence, a proposed method-based 

decision support system can bridge the gap between the large amount of available data 

and in-depth understanding of the lung transplant procedure. 

 

6.1 Motivation and Background 

Organ transplantation is regarded as a viable treatment for the chronic failure of 

major organs and is an inevitable option for the end-stage cardiac and pulmonary failure, 

namely thoracic (heart/lung) patients [1]. Although lung transplantation is the accepted 

optimal treatment for eligible patients, the shortage of organs seriously limits this option. 

Additionally, a significant number of organs are rejected due to a suboptimal match 

between the donor and the recipient. Benefit-driven organ allocation schemes, where 

post-transplant outcome is taken into account as a performance criterion, are very 

attractive approaches because they are targeted at ensuring that organs are not wasted on 

patients who would not benefit from them [2]. Recently, the demand for organ 

transplantation has drastically increased whereas the number of donors has remained 

almost the same, which, in turn, caused longer lists of patients waiting for transplantation 

[3]. Therefore, outcome prediction (i.e. transplant success) has emerged as a critical issue 

in organ transplantation. Moreover, when a resource (the donor organ in this case) is 

scarce, the need for an accurate outcome prediction becomes acute [4]. Especially 

prediction of survival and the quality of life are clinically important but challenging 

problems [5]. However, the design of such schemes is very complex, even more difficult 

to validate and to control the outcome of the transplantation [2]. Therefore, modeling 
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such a system necessitates effective procedures for the selection of optimal organ 

recipients since currently it is not possible to satisfy all organ demands. 

Voluminous data has been collected from lung transplant procedures and analyzed 

to evaluate the organ allocation process [6]. Attempts to analyze lung transplants with 

this huge amount of data have focused on identifying the characteristics of lung 

transplant recipients and their associated post-transplant outcomes [7]. However, they 

have not analyzed the allocation procedure in a cause-and-effect relationship perspective. 

To fill this gap, our study handles benefit-driven organ allocation schemes in terms of 

―causality‖ perspective because such a methodology would give clearer interpretability 

as well as a better prediction accuracy of the transplant success. While the former is 

extremely important to the medical professionals, the latter is critical to establish a 

satisficing optimal allocation scheme [8]. 

 

6.2 Proposed Method for Deriving a Composite Score of Organ Matching Index 

The related research work summarized in Chapter II studied the organ transplant 

success in a cause-and-effect relationship and analyzed the predictor factors as both 

independent and dependent variables. However, most of the data used in the literature is 

obtained by conducting surveys on the patients. Such an approach broadens the scope of 

voluminous datasets to a small set of predictors by bringing the previous data collection 

efforts to naught. Also, the relationships among the aggregated constructs are limited to 

linearity which may not hold true in reality. Although structural equation modeling 

presents a clear depiction of causality, it lacks prediction accuracy since it is a model-
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testing approach rather than a prediction method. There is a trade-off between model 

prediction accuracy and interpretability. In order to better handle this trade-off, we 

propose a structural equation modeling-based decision tree construction. Such a method 

can identify the causality with high prediction accuracy. Thus, it would satisfy the 

medical professionals by its clear interpretability and predictability for a benefit-driven 

allocation scheme considering the expected transplant success.  

In this study, considering the recent literature [9]-[10] we chose 27 variables from 

the UNOS database to predict the transplant success. Among these 27 variables, GTIME 

(graft lifespan from transplant to death/last follow-up) and FUNC_STAT_TRF 

(functional status at last follow-up) reflect the success rate of the organ transplantation. 

Hence, these two variables will be combined to create the performance measure, namely 

transplant success for organ transplantation in this study. This relationship is shown by 

Model 1 in Figure 6.1. The rest 25 variables are considered as the causal indicators, 

which are associated with the 3 main decision variables used by the medical professionals 

to model the organ transplantation. These 25 variables are listed in Table 6.1 along with 

their brief explanations. Three decision variables include (1) recipient’s profile, (2) 

donor’s profile, and (4) match level. Although these 3 decision variables cannot be found 

from the UNOS database directly, they are related to the 25 variables chosen from the 

database. The mapping between these 3 decision variables and the 25 variables from the 

UNOS database is constructed based on the medical knowledge in organ transplantation. 

Their quantitative relationship can be obtained using formative modeling which would be 

explained in Section 6.3.1. Thus, we also call these 3 decision variables as composite (or 

latent) variables. We can consider that these 3 decision variables are in fact the 
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latent/composite variables hidden behind the 25 causal indicators. These latent/composite 

variables and their underlying causal indicators are pictorially summarized as Model 2 in 

Figure 6.1. Note that in this study latent/composite variables are always written in lower 

case to discriminate them from their corresponding causal indicators (all of which are 

written in upper case). To model the underlying causal relationship between these 3 

decision variables and their corresponding 25 causal indicators and between transplant 

success and its items (GTIME and FUNC_STAT_TRF), we use partial least squares 

(PLS) path modeling technique because it allows to construct the formative models (as 

well as reflective relations), both of which are required in this study. In formative 

modeling, the causal indicators affect on their corresponding composite variable as 

shown in Model 2 of Figure 6.1. In other words, in formative modeling the composite 

variable would be determined by its causal indicators. In contrast, in reflective modeling 

the latent variable drives its indicators. To exemplify, referring to Model 1 in Figure 6.1 

if the transplant has been conducted successfully (referring to transplant success), the 

patient would live for a long time (referring to GTIME) with a high quality of life 

(referring to FUNC_STAT_TRF). On the other hand, referring to Model 2 of Figure 6.1, 

for example recipient’s profile can be determined by considering his/her age, weight, 

medical condition before the transplant and etc. Finally, the model that discloses the 

relationship between the 3 decision variables with the organ transplantation performance 

variable (i.e. transplant success) is developed  
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AGE

 

 

 
Model 1

FUNC_STAT_TRF

Model 2

Model 3

WGT_KG_DON

Transplant 

Success

…

GTIME

Recipient‘s

Profile
Match

Level
Donor‘s

Profile

WGT_KG_TRR ABO_MAT HLAMAT… AGE_DON …

 

Figure 6.1 Causal relationships diagram for the proposed modeling
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using the decision tree predictive approach, which is shown as Model 3 in Figure 6.1. The 

details regarding these relations through Model 1 and Model 2 are presented in Section 

6.3.1. Using Model 2 results as inputs and Model 1 result as output, Model 3 would 

construct a decision tree prediction model, which is explained in Section 6.3.2. Based on 

the three models shown in Figure 6.1, we propose a 5-step approach which is depicted in 

Figure 6.2 to achieve interpretability and predictability simultaneously. 

 

Collect, integrate and prepare the 

UNOS data for analyses 

Determine the measurement models 

for latent/composite variables 

Determine the composite scores for 

each latent/composite variable

Normalize the composite scores

Construct the decision tree model to 

predict/analyze the transplant success

Raw data
Processed 

Data

x1 x2 x3

e1 e2 e3

x1

d1

x1 x2 x3x1

1p1 p2 p3 2 3

 

Figure 6.2 Flowchart of the proposed method 
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The first step in the methodology is to prepare the dataset to be used in further 

modeling. The second step is to create the measurement model explaining the cause-and-

effect relation between the latent/composite variables and their corresponding indicators 

as shown in Figure 6.1 (Model 1 and Model 2). In the second step, medical experts‘ 

opinion is also consulted. Then the composite scores for each latent/composite variable 

can be calculated through the measurement models as a third step. These scores are then 

normalized to an interval of [0-1] as the fourth step. The fifth step is to implement 

decision tree construction by using the composite scores of the latent/composite variables 

as the predictors/inputs and the performance variable, namely transplant success, as 

output. These steps are presented in Section 6.3 in detail. 

Regarding the dataset, we used the same dataset in Chapter V, namely the UNOS 

thoracic regular and follow-up datasets merged into one file. To be able to claim that a 

transplant has been conducted successfully, namely a satificing match has been 

performed, not only the length of survival after transplant but also how well the recipient 

feels after the transplant should be considered. This is referred to as functional status (i.e. 

ability to work and ability to perform activities of daily living) or as quality of life [11]. 

Hence, in addition to GTIME we incorporated FUNC_STAT_TRF variable (functional 

status at last follow-up, which is an ordinal variable) as a causal indicator of the 

transplant success. The causal indicators of the other latent/composite variables and their 

definitions in UNOS dataset are tabulated in Table 6.1. This dataset had excessive 

number of missing values which render some of the records and variables seemingly 

unusable. Case-wise deletion method excludes all records (cases) that have missing data 

in at least one of the selected variables [12]. 
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Table 6.1 Explanation of indicators and their corresponding composite variables 

Indicators Explanation 

Variable  

Type 

Composite  

Variable 

AGE Recipient's age (years) Continuous 

Recipient's 

Profile 

DAYSWAITCHORN Active days on waiting list Continuous 

FUNC_STAT_TRR Recipient functional status @ transplant Ordinal  

HGT_CM_TRR Recipient height @ transplant Continuous 

MED_COND_TRR 

Recipient medical condition pre-transplant 

@ transplant Ordinal  

STERNOTOMY_TRR 

Events occurring between listing and 

transplant: sternotomy Ordinal  

WGT_KG_TRR Recipient weight (kg) @ transplant Continuous 

ABO_MAT Donor-recipient ABO match level Ordinal  

Match 

Level 

AMAT A locus match level Ordinal  

BMAT B locus match level Ordinal  

DRMAT DR locus match level Ordinal  

EINT 

Ethnicity interaction between donor and 

recipient Binary 

GINT 

Gender interaction between donor and 

recipient Binary 

HLAMAT HLA match level Ordinal  

AGE_DON Donor age (years)  Continuous 

Donor's 

Profile 

HGT_CM_DON Donor height (cm) Continuous 

HIST_ALCOHOL_OLD_D

ON 

Deceased donor-history of alcohol 

dependency Binary 

HIST_CANCER_DON Deceased donor-history of cancer  Binary 

HIST_CIG_DON 

Deceased donor-history of cigarettes in 

past Binary 

HIST_COCAINE_DON 

Deceased donor-history of cocaine use in 

past Binary 

HIST_DIABETES Deceased donor-history of diabetes Binary 

HIST_HYPERTENS_DON Deceased donor-history of hypertension Binary 

HIST_IV_DRUG_DON 

Deceased donor-history of IV drug use in 

past Binary 

HIST_MI 

Deceased donor-history of previous 

Myocardial Infarction Binary 

WGT_KG_DON Donor weight (kg) Continuous 

 

 

We applied this method considering the 27 indicators as our reference in hand, 

which ended up with 6512 records. This technique was implemented here mainly because 

a sample size of 6512 is satisfactory considering the fact that the PLS-based path analysis 

can be conducted with relatively small sample sizes [13]. As a general rule of thumb, 
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Chin and Newsted [14] suggested using a minimum sample size of ten times the 

maximum number of paths aiming at any latent/composite variable in the PLS path 

model, which renders 6512 records far beyond this heuristic threshold value for our 

model. 

 

6.3 Structural Equation Modeling-based Decision Tree Construction 

The structural equation model can be described by two models: (1) a 

measurement (a.k.a outer) model explaining the relationship between the observed 

variables (already existing variables in the UNOS database for our case) and their 

corresponding composite/latent variables. (2) a structural  (a.k.a inner) model explaining 

the relationship between some (or all) of the composite/latent variables (i.e. the decision 

variables to predict transplant performance such as recipient‘s profile) with other 

composite/latent variables (i.e. the transplant performance variable, transplant success). 

What follows next in Section 6.3.1 is a short description of these models with a partial 

least squares path modeling algorithm summarized from Tenenhaus et al. [15]. 

 

6.3.1 The Measurement (Outer) Model 

A latent variable ξ is an unobservable variable (a.k.a construct, component or 

composite variable) which is indirectly described by a set of observable variables (xh) 

(a.k.a. indicators). There are two ways of explaining the relationship between the 

latent/composite and observable variables: reflective and formative models. 
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1. Reflective modeling of transplant success (Model 1 in Figure 6.1) 

In reflective model, the latent variable is assumed to underlie or cause its related 

causal indicators (observable variables). Each is attributed to its latent variable by a 

simple linear regression as in Eq. (6.1). 

 

              ξ                                                                                                                       

 

where    is the causal indicator,      is the constant intercept,    is the item loading, ξ is 

the latent variable, and    is the measurement error/residual. The index h refers to the h
th

 

causal indicator which would be related to its latent variable. Here ξ has a mean of m and 

a standard deviation of one. It is interpreted as each causal indicator xh reflects its latent 

variable ξ. Eq. (6.1) is solved based on the main assumption that the residual    has a 

zero mean and is uncorrelated with the latent variable ξ. This is called the predictor 

specification condition and shown by Eq. (6.2). 

 

          ξ        ξ                                                                                                                  

 

In this study, the latent variable transplant success affects its causal indicators, 

namely GTIME and FUNC_STAT_TRF. Considering Figure 6.1, these reflective models 

can be formed and predicted as shown by Eqs. (6.3) and (6.4). 
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2. Formative modeling for the predictors of the transplant success (Model 2 in Figure 

6.1) 

In this model, it is assumed that the composite variable is formed or caused by its 

causal indicators. The composite variable is a linear function of its causal indicators plus 

a residual term as shown in Eq. (6.5). 

 

     ξ
 

   
  

   

 

                                                                                                                      

 

where  kh is the regression weight and    is the residual error. The subscripts kh refer to 

the k
th 

composite variable with its h
th

 causal indicator in sequence. Note that for formative 

models ‗composite variable‘ is the preferred generic term instead of ‗latent variable‘. 

Eq. (6.5) is solved under the assumption that the residual vector    has a zero 

mean and is uncorrelated with the indicators xh. This assumption is called the predictor 

specification condition and hypothesized by Eq. (6.6). 
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       ξ         
    

 
  

 

                                                                                                     

 

Referring to Figure 6.1 and Table 6.1, the five formative models of this study 

corresponding to the composite variables recipient’s profile, match level, and donor’s 

profile can be constructed as in Eqs.(6.7)-(6.9), respectively. 

                                                                                      

 

                                                                                            

 

                                                                                

Since the indicators were on different measurement scales, we implemented a 

scale transformation as in Eq. (6.10) so as to have an interpretable reference scale to 

compare the individual scores to each other. 
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The next step is to estimate the standardized composite variables    

             ξ
 

    . The unstandardized composite variable ξ
 
 and its mean mk are 

estimated by Eqs. (6.11) and (6.12), respectively. 

 

     ξ 
 

                                                                                                                                   

 

                                                                                                                                           

where      refers to the estimated regression weight between the k
th 

composite variable 

with its h
th

 causal indicator and      is the mean of the h
th

 causal indicator that loads onto 

the k
th 

composite variable. By using Eqs. (6.11) and (6.12), the standardized composite 

variables    can then be estimated as combinations of their causal indicators as shown in 

Eq. (6.13). 
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6.3.2 The Structural (Inner) Model (Model 3 in Figure 6.1) 

In conventional structural equation modeling, the structural model is composed of 

linear equations relating the latent variables with other latent variables. This is formulated 

as in Eq. (6.14). 

 

ξ
 
   

  
   

  
ξ
  

 

                                                                                                                    

 

where ξ
 
 is the latent/composite variable that has a path from another latent/composite 

variable, i.e. ξ
 
.  

  
 is the constant intercept,  

  
 is the path coefficient from ξ

 
 to ξ

 
, and 

   is the residual error. Although this modeling approach is very powerful in terms of 

causality explanation, it relies on a strong assumption that the relationships among the 

latent/composite variables are linear. Therefore, for the structural model part we propose 

to employ decision trees which are effective nonlinear data mining techniques. The 

composite scores of the latent/composite variables can be calculated by the reflective and 

formative modeling as explained in Section 6.3.1. These normalized composite scores are 

then used to construct the decision tree to predict the transplant success. This proposed 

structural model with decision tree-based construction should hypothetically be more 

effective than a linear regression-based structural model since it is capable of revealing 

the nonlinear relationships. 
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Decision trees recursively split the data in branches according to a preset criterion 

(e.g. information gain) to maximize the prediction accuracy resulting in a tree-like 

structure [16]. To achieve this, they use mathematical algorithms (such as information 

gain, Gini index, and Chi-squared test) to identify a pair of variable and its threshold that 

splits the input observation into two or more subgroups. This step is repeated at each leaf 

node until the complete tree is constructed. The objective of the splitting algorithm is to 

find a variable-threshold pair that maximizes the homogeneity (order) of the resulting two 

or more subgroups of samples. Popular decision tree algorithms include Quinlan's ID3, 

C4.5, C5, M5 [16]-[18], Breiman et al.'s CART [19], and CHAID introduced by Kass 

[20]. Compared with other machine learning methods, decision trees have the advantage 

that they are explicit models (as opposed to black box models) and hence can easily be 

interpreted and summarized as rules. This advantage makes decision trees widely used in 

medicine [21]. If the dependent (output) variable is categorical or ordinal, the decision 

tree is specifically called classification tree; if the dependent variable is continuous (as in 

our case) the resulting decision tree is called regression tree. Regression trees are one of a 

group of relatively flexible and computer-intensive statistical techniques [22]. These 

methods use repeated re-sampling of the data to develop empirical sampling distributions 

of the relevant statistics in place of the more restrictive distributional assumptions in 

classical statistical methods. Popular regression trees are CART, CHAID, and M5 all of 

which can be used as classification and regression trees. Based on the favorable 

prediction results we have obtained from preliminary runs in our case study, we chose to 

use CART algorithm as the regression tree method. 

 



111 
 

6.4 Universal Structure Modeling: Bayesian neural networks-based PLS path 

modeling 

As a benchmark to our methodology, we compare and contrast our case study 

results with the universal structure modeling (USM) which was developed by Buckler 

and Hennig-Thurau [23]. The reason that USM was chosen in this study as a benchmark 

is that it does capture the nonlinearity perfectly and hence achieves high prediction 

accuracy, yet it lacks interpretability since it uses a black-box model, namely neural 

networks. Additionally, it requires high computational time to reveal potential nonlinear 

and latent variable interaction effects on each other through the bootstrapping method. 

What follows next is a short description of USM. Similar to our approach, the USM also 

limits the nonlinear relations only to the structural model and it assumes that the 

measurement model part is linear. In other words, measurement model portion of USM is 

the same as described in Section 6.3.1. As for the structural model, USM substitutes the 

linear least squares regression with Bayesian neural networks. This enables the model to 

discover unproposed structural paths, nonlinearity, and interaction effects. The estimator 

ξ  of the latent variable ξ is defined as the output of multilayer perceptron (MLP) 

architecture and shown as in Eq. (6.15). 

     ξ                        

 

   

   
 
 ξ         

 

   

                                                   

 

where       is the activation function of the hidden neural units and       is the output 

neural unit. H  is the number of hidden neural units, I is the number of latent input 
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variables ξ, w‘s are the weights and b‘s are the biases for the neural network.   
 
 is the 

apriori likelihood that a variable i  influences another variable j. To prevent the 

overfitting in the neural network model, USM minimizes the error function E for each 

latent variable i of the structural model. E refers to the overall error of the respective 

variable‘s neural network and shown as in Eq. (6.16). 

 

             ξ
     
   ξ

   
               

                                                                   

 

   

 

   

 

   

 

 

where n refers to the individual cases, N is the total number of cases, and p is the index 

for the weights, w. On the other hand, ξ
 
 
 is the conditional estimate of the latent variable i 

in the current estimation step, t, calculated from the structural model by the Bayesian 

neural network, and ξ
     
 

 is the estimate of the previous iteration for the same latent 

variable. If the case is the first step for this estimation, ξ
     
 

 would then refer to the 

initial composite score received from the measurement model. The hyperparameters 

        prevent overfitting of the neural network model. They are updated in every 

iteration of the learning process and are given by Eqs. (6.17) and (6.18). 
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   ξ
 
  ξ

 
     

   

                                                                                                               

 

where N is the total number of records and    
  

         

 
   .    are the eigenvalues of 

the Hessian matrix of the error function in Eq. (6.16) and        is the hyperparameter   

from the previous learning iteration. 

 

6.5 Case Study and Discussion 

To confirm the measurement model and determine the composite scores of the 

latent and composite variables, PLS was preferred in this study because it does not place 

much importance on the sample size and data distribution assumptions [24]. Additionally, 

it can handle the formative measurement models which are required in our approach. The 

results for the reflective part of the model, namely the part of the model pertaining to 

transplant success (Model 1 in Figure 6.1) are presented in Table 6.2. 

 

Table 6.2 Internal consistency, reliability, and convergent validity measures 

Latent Variable CR 

Cronbach's 

Alpha AVE Items and their loadings 

Transplant 

Success 
0.736 0.728 0.699 

GTIME  0.841 

FUNC_STAT_TRF  0.994 
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Composite reliability (CR) is a criterion of scale reliability. It can assess the 

internal consistency of the item and is given by Eq. (6.19) following the same parameters 

from Eq. (6.19) [25]. 

 

       ξ  
      

        ξ
 

                                                                                                            

 

On the other hand, Cronbach‘s alpha measures the extent to which the observable 

variables can explain their corresponding latent variable and is also supportive reliability 

measurement criterion [26]. For this latent variable (transplant success) CR measure was 

found to be 0.736 and Cronbach‘s alpha was 0.728, both of which pass the widely 

accepted threshold value of 0.7 [27]. These two measures ensure that this latent variable 

is internally consistent i.e. reliable and stable. On the other hand, to check the convergent 

validity of the latent variables the average variance extracted (AVE) should be calculated 

as in Eq. (6.20). 
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AVE should exceed the 0.5 threshold value as a rule-of-thumb, which was 0.699 

in our results for this latent variable. Also, all item loadings should be at least 0.70 and 

were observed as 0.841 for GTIME and 0.994 for FUNC_STAT_TRF in our analysis. 

The measurement models pertaining to the 3 composite variables, i.e. recipient‘s 

profile, donor‘s profile, and match level, (Model 2 in Figure 6.1) are constructed by 

formative models because all item measures are independent of one another and are 

viewed as items that constitute their corresponding composite variables. In formative 

model cases, abovementioned internal consistency, reliability, and convergent validity 

criteria (i.e. Cronbach‘s alpha, CR, and AVE) are not deemed appropriate [24], [28]. In 

assessing formative models, Petter et al. [29] place great importance on prior data 

collection phase and rather propose to assess content validity essentially by ―evaluating if 

the set of indicators under-specify the domain of the construct based on explicated facets 

in the theory base‖. For formative models, PLS weights represent a comparable effect of 

indicators on composite variables [31]. Construct validity can be assessed by  eliminating 

the non-significant items in expense of losing the content validity to some extent or 

alternatively non-significant items can be kept to preserve the content validity [29]. 

Formative model results of our model are presented in Table 6.3 in detail. 

Note that considering the t-statistics in Table 3, all of the indicators were found to 

be significant at the 0.05 significance level, and therefore kept in the model. Negative 

PLS weights indicate the fact that the individual variable affects in a negative direction in 

its corresponding composite variable. In other words, for example the total days a patient 

waited for a transplant on the waiting list (DAYSWAITCHORN) has a negative impact 

on the recipient‘s profile quantified by the PLS weight of -0.527, which in turn negatively 
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affects his/her strength to undergo a successful transplant. All the negative and positive 

signs of the other indicators are to be interpreted in the same fashion. 

 

Table 6.3 Formative model results for composite variables 

Indicators 

Composite 

Variables 

PLS 

Weights 

t-

statistic 

AGE 

Recipient's 

Profile 

-0.301 6.529 

DAYSWAITCHORN -0.527 2.396 

FUNC_STAT_TRR 0.113 8.739 

HGT_CM_TRR -0.182 4.269 

MED_COND_TRR 0.624 6.954 

STERNOTOMY_TRR 0.018 5.343 

WGT_KG_TRR -0.475 7.885 

ABO_MAT 

Match Level 

0.413 6.957 

AMAT 0.082 5.691 

BMAT 0.276 3.098 

DRMAT 0.037 7.738 

EINT 0.593 2.131 

GINT 0.727 4.799 

HLAMAT 0.073 5.325 

AGE_DON 

Donor's Profile 

-0.929 7.694 

HGT_CM_DON -0.228 6.746 

HIST_ALCOHOL_OLD_DON -0.032 7.348 

HIST_CANCER_DON -0.015 9.718 

HIST_CIG_DON -0.106 8.047 

HIST_COCAINE_DON -0.034 2.106 

HIST_DIABETES_DON -0.029 5.541 

HIST_HYPERTENS_DON -0.073 3.698 

HIST_IV_DRUG_DON -0.049 7.379 

HIST_MI_DON -0.051 8.432 

WGT_KG_DON -0.088 6.454 
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As for the structural portion of our model, we used normalized composite scores 

of the latent/composite variables received from PLS path model as inputs to the 

regression tree models which were implemented with CHAID, CART, and M5. Based on 

the favorable results provided by CART we present the results of PLS-based CART 

model as in Table 6.4. 

The results in Table 6.4 are based on the testing dataset. In this study, to estimate 

the performance of the prediction models a 10-fold cross-validation approach was used 

and hence the results presented in Table 6.4 are the 10-fold cross-validated results for 

each model.  

In a 2 GHz Intel Core 2 Duo
® 

PC,
 
USM model required 28 hours to complete  50-

sample bootstrapping whereas the analysis using our proposed structural equation 

modeling-based CART model was completed within a few minutes (~3-4 min).  

 

Table 6.4 Comparison of R
2 

values from each model 

 
Sole 

PLS 

Sole 

CART 

PLS-

based 

CART USM 

R
2
 value  0.34 0.56  0.68  0.73  

 

In this study, variable importance measures were also investigated to judge the 

relative importance of each composite variable. Variable importance ranking in decision 

trees uses surrogate splitting to produce a scale (a relative importance measure) for each 

predictor variable included in the analysis. The computational details regarding these 

Performance 

Measure 

Prediction 

Models  
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measures can be found in Breiman et al. [23]. 10-fold cross-validated variable importance 

ranking for sole PLS, sole CART, and PLS-based CART model results are illustrated in 

Figure 6.3. Regarding the sole PLS variable ranking, path coefficients are reported all of 

which were found to be significant at 0.05 level. Note that in Figure 6.3, our proposed 

structural equation model-based decision tree model and the universal structure modeling 

ranked the variables exactly in the same order. This consistency between the two models 

could be attributed to the fact that both models are capable of discovering nonlinear 

relationships among the predictors, which was not possible to capture with sole partial 

least squares-based path modeling. These two models agree that in predicting the 

transplant success the ascending rank order of composite variables is as follows: donor’s 

profile, match level, and recipient’s profile. Based on this consistency in Figure 6.3 and 

high prediction accuracy provided by the two models as in Table 6.4, we can conclude 

that the most important predictors of transplant success would be ranked as such.  
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Figure 6.3 Variable importance ranking by different models  
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Likewise, when all predictor variables are tapped into the CART model, nine 

topmost important variables (WGT_KG_DON, HIST_CIG_DON, 

HIST_IV_DRUG_DON, ABO_MAT, AMAT, AGE_DON, DRMAT, GINT, HLAMAT) 

also belong to the top-ranked two composite variables, namely donor‘s profile and match 

level with a 10-fold cross-validated variable importance ranking approach. In the USM 

model, nonlinear relations were sought, and at 0.05 significance level transplant success 

was revealed to have a significant nonlinear relationship with the donor‘s profile.  

 

Figure 6.4 Nonlinearity revealed by the USM model 

 

In Figure 6.4 the causing composite variable, donor‘s profile, is represented 

against the affected latent variable, transplant success. The line getting through the 

observed cases is the additive function explaining the nonlinear cause of donor‘s profile 
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on transplant success. Note that the 0-100 bandwidth of x-axis is the scale of the 

normalized latent variable of donor‘s profile. The y-axis represents the variation in 

transplant success caused by the causing variable, i.e. donor‘s profile. High nonlinearity 

observed here explains why sole PLS model could not reveal the high impact of the 

composite variable donor‘s profile while ranking the composite variables in terms of their 

importance. 

Interaction effect (IE) of two independent latent/composite variables (ξ
 
 and ξ

 
) 

on ξ
 
 (shortly     

 ) is expressed as the portion of variable ξ
 
‘s explained variance that can 

be attributed to the interaction between ξ
 
 and ξ

 
 and is given by Eq.(6.21) [23]. 

 

         
  

  
   

          

ξ  ξ 
  

   

 
                                                                                                    

 

where    is the additive score of a polynomial regression of ξ on a and    is the outcome of 

a universal regression with the two latent variables j and k as regressors on     
   Here a 

and  z can be given by Eqs.(6.22) and (6.23), respectively. 

 

       
     ξ    ξ    ξ      ξ    ξ     ξ                                                                     
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where   
   is the change in ξ

 
 caused by the additive effect of ξ

 
, f is the neural network 

function, and ξ
 
 and ξ

 
 are the latent variables. By setting the value of  ξ

 
 to its mean 

value (ξ
  ), the change in ξ

 
 which is provided by ξ

 
 can be captured. 

Similarly, Eq. (6.25) represents the change in ξ
 
caused by the interactive effect of 

ξ
 
 and ξ

 
. 

 

        
     ξ    ξ    ξ    ξ      ξ    ξ     ξ     ξ                                           

 

In our analysis, only one such an interaction effect on transplant success was 

observed at 0.05 significance, which was caused by the interaction of recipient‘s profile 

and match level as shown in Figure 6.5. The IE value of this effect through Eq. (6.21) 

was 0.82. This is translated into that 82 % of the explained variance of the latent variable 

transplant success has been explained by the interaction effect caused by recipient‘s 

profile and match level. In other words, referring to Table 6.4, 82 % of the explained 

variance by USM with 73 % can be attributed to the interaction effect and the rest is 

explained by individual effects of all composite variables, i.e. recipient‘s profile, donor‘s 

profile, and match level. 
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Figure 6.5 Interaction effect of treatment and match level on transplant success 

 

The final structural equation modeling-based CART model is also pictorially 

presented in Figure 6.6. One of the most straightforward sample rules extracted by this 

final model is as follows: if the donor‘s profile score is higher than 0.766 and the match 

level score is higher than 0.841, then transplant success would be 94.6 %. The rest of the 

rules can also be visualized in Figure 6.6. 
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Figure 6.6 The final PLS-based CART model 

 

6.6 Conclusions 

Medical experts are trained to reason ―medically‖ whereas data miners place more 

importance on model‘s performance, e.g. prediction accuracy. Since research designs 

vary in both areas, such differences grow even more later on [8]. In addition to this 
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conflict of interests, some machine learning methods (e.g. neural networks) are powerful 

in terms of predictive ability, yet they are black boxes. Namely, they give no (or very 

limited) explanation of the ―reasoning‖ used behind the scene to achieve high predictive 

accuracy. Therefore, their acceptance by the medical experts is limited [8]. Our proposed 

method balances this trade-off and overcomes aforementioned issues that have been 

faced in collaboration between medical experts and data miners. Our integrated method 

with structural equation modeling and decision trees is proven to be fairly capable in 

terms of predictive accuracy with an R
2 

value of 0.68 as well as interpretability with a 

much lower computational time requirement compared to Bayesian neural networks-

based USM technique. Proposed method not only covers nonlinear relations among 

various variables but also brings more explanation into the scene to make the lung 

transplant procedure more understandable and transparent in terms of variables used for 

modeling and prediction. It provides concise rules which can be visualized in the final 

decision tree. 

A main future research stream of this study might be to create a decision support 

system equipped with a user-friendly frontend and a near-transparent backend application 

which would help medical professionals to deal with voluminous data more effectively 

and efficiently (e.g. providing reliable results in a very short time period). Having entered 

hundreds of predictive variables into the system, a medical professional can then 

visualize the summarized information through our proposed method and make decisions 

for the upcoming transplants. In other words, having a potential donor organ on hand a 

medical expert could make a rapid decision as to which potential recipient patient to 

allocate the donor organ. As explained in this study, this could be achieved by utilizing 
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the most critical variables which are related to recipient‘s and donor‘s profiles and their 

match level information as opposed to using a couple of hundreds of variables. 
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CHAPTER VII 
 

 

SIMULATION MODELING TO VALIDATE THE MATCHING INDEX AND  

 TO FINE-TUNE ITS WEIGHTS  

 

To validate the matching index for organs through the composite score, a 

simulation model would be developed in this chapter. At the first step, the simulation 

model is to be validated against the current organ allocation scheme. In the next step, 

through the response surface methodology the weights of the matching index will be fine-

tuning.  

 

7.1 Background 

Since the first successful lung transplantation in 1983, the lung allocation policy 

has gradually evolved from allocating the organs purely based on waiting list time to the 

current day lung allocation policy called Lung Allocation Score (LAS), which is an 

intricate process involving different kinds of people, resources and organizations [1]. 

There are numerous reasons for the current complex state of lung allocation policy, but 

the most noteworthy is due to the fact that the lung transplantation became an accepted 

treatment option for patients, resulting in rapid increase in patients registering their 
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names for lung transplantation. However, the relative scarcity of suitable lung donors 

among the pool of conventional brain dead organ donors has resulted in increasing 

waiting time for the patients on the list [2]. 

Prior to 2005, organs were allocated to patients purely based on the amount of 

time that candidates had accumulated on the waiting list and ABO match (donor-recipient 

blood group match level). Offers were first made to candidates within the OPO (organ 

procurement organization) donor service area where the donor was located, and then 

within expanding 500-nautical-mile zones around the donor hospital. The Organ 

Procurement and Transplantation Network (OPTN) focused on the use of objective 

medical criteria and medical urgency. To achieve this, the effect of waiting time should 

be minimized and broader geographic sharing of donor organs should be encouraged.  It 

was decided to implement Lung Allocation Score (LAS), which is a multivariate model 

designed to predict the risk of death during the following year on the waiting list and the 

likelihood of survival during the first year after the transplantation [1]-[4]. The primary 

objective of LAS is to decrease waiting list mortality, prioritize candidates based on 

medical urgency, and decrease the relevance of waiting list time on prioritization of 

donor lung [2]. This algorithm was focused on minimizing deaths on the waiting list and 

maximizing the benefit of transplant by incorporating post-transplant survival into the 

algorithm. 
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7.2 The Current Lung Allocation and Transplantation Process 

This process has three categories which can be listed as 1) pre-transplant process, 

2) LAS calculation, and 3) organ matching process. 

 

7.2.1 Pre-transplantation Process 

In the pre-transplantation process, the corresponding physician recommends lung 

transplantation to the patient based on the patient's medical condition. Once the patient is 

willing, s/he can approach a lung transplant center. Here the patient needs to complete a 

transplant work-up. During the transplant work-up the patient will participate in a series 

of medical tests and consult a transplant physician, social worker and financial 

coordinator. Based on the test results and the review from all the consulted people, the 

transplant center will register the patient as a candidate for lung transplantation. This 

same information will also be used to calculate the patients Lung Allocation Score. The 

entire patients registration process shall be carried out by the corresponding transplant 

center on UNet
SM

, which is a web-based electronic utility used by UNOS (which is an 

OPTN contractor). Once the registration process is completed, the patients name is added 

to the waiting list [5]. 

 

7.2.2 Lung Allocation Score (LAS) Calculation Process 

Before explaining LAS calculation, some other terminology (such as transplant 

benefit, urgency, and post-transplant survival) needs to be introduced.  
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1. Transplant Benefit 

The concept of survival, with or without a transplant, constitutes the central theme 

in transplant benefit. To predict that benefit, the area under the predicted survival curve is 

used, which represents the total days of predicted survival within one year on the waiting 

list and one year following the transplant. In Figure 7.1, the shaded area under the waiting 

list curve is the measure of predicted number of days of survival without a transplant 

during an additional year on the list, which is a measure of urgency [6]. This is named as 

waiting list urgency measure (WLi). 

 

 

Figure 7.1 Transplant benefit calculation through survival curves [1] 

 

On the other hand, the area under the post-transplant survival curve shows the 

number of days survived after the transplant, which is named as post-transplant survival 

measure and shown by PTi. The difference between these measures is a measure of 

―transplant benefit‖ (Benefiti). This is translated into the number of expected additional 

days of life over the next year if a particular patient receives a transplant, rather than 

remaining on waiting list. The calculation of Benefiti is summarized in Eq. (7.1) [7].  
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Benefiti = PTi - WLi                                                                                                                                                   (7.1) 

 

2. Urgency and Post-transplant Survivability 

The OPTN committee evaluated the options to select the relative importance of 

urgency and transplant benefit. Weighing in favor of benefit alone would offer organs to 

patients with a high chance of survival on the waiting list over the short term. In contrast, 

weighing in favor of urgency alone would allocate organs to patients with poor post-

transplant outcomes over equivalently urgent patients who could have a better outcome. 

These two are represented in Figure 7.2 (a) and (b). After mathematical modeling, OPTN 

observed that a 45
o
 bar is the optimal approach to balance both measures, as shown in 

Figure 7.2 (c). Therefore, the raw allocation score was written as in Eq. (7.2) [6]-[7]. 

 

Raw scorei = PTi – 2* WLi                                                                                                                                   (7.2) 

where ―2‖ in the equation refers to the 45
o 

angle in the graph of Figure 7.2 (c). Changing 

this angle to 60
o
 or 90

o
 caused more number of predicted deaths. The possible values of 

Raw scorei  range between +365 and -730, which represent the two extremes of 100% 

survival post-transplant but dying today without a transplant to a 100% chance of living 

for one year on the waiting list but a 100% probability of dying before the first day just 

after the transplant. To eliminate the negative scores the raw score was decided to be 

normalized to a continuous scale of 0-100 as shown in Eq. (7.3) [6]-[7]. 
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LAS = [100*(Raw Score+2*365)]/3*365                                                                   (7.3) 

 

 

Figure 7.2 Urgency vs. post-transplant survival [7] 
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7.2.3 Lung Matching Process 

 The final and arguably the most important step in lung allocation process is the 

matching process. Whenever a donor lung becomes available, a match list is created to 

match the lungs with a suitable candidate based on the distance from the donor hospital to 

their transplant center, ABO type, and age group. 

The donor location is one of the most important factors in the lung allocation 

process since the organs are perishable items and cannot survive more than a specific 

length of time. Once the lung becomes available, it is first offered locally to the 

candidates within the OPO‘s limits. If a suitable recipient cannot be identified, the zonal 

allocation process starts. The zones are delineated by concentric circles of 500 (Zone A), 

1000 (Zone B), 1500 (Zone C) and 2500 (Zone D) nautical mile radii with the donor 

hospital at the center. Zone A will extend to all transplant centers which are within 500 

miles from the donor hospital but not in the local area of the donor hospital. Zone B will 

extend to all transplant centers between 500 and 1000 miles. Similarly, Zone C and D 

will follow the same 500-mile radii increments. On the other hand, Zone E will extend to 

all transplant centers beyond 2500 miles. Figure 7.3 represents the geographic sequence 

of lung allocation process. Since there is considerable difference between pediatric and 

adult patients and their potential lung sizes, the matching process takes age groups of 

donor and recipients into account. The prioritization matrix is summarized in Table 7.1. 

The candidate with the highest LAS score in a particular age group will have priority 

over others [5]. If no appropriate recipient is found among local candidates in any of the 

three age groups, then the potential compatible recipients in Zone A will be offered the 

donor lungs. If still an appropriate recipient is not found in any of the three age groups, 
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then the potential compatible recipients in Zone B will be offered the donor lungs. 

Similarly this process is repeated in successive zones until a suitable recipient is found 

[5], [8].  

 

 

Figure 7.3 Geographic sequence of lung allocation process [5] 

 

Table 7.1 Age group prioritization matrix [8] 

 Donor Age <12 Donor Age 12−17 Donor Age 18+ 

1
st
 Priority  

Candidate 
Recipient Age <12 Recipient Age 12−17 Recipient Age 12+ 

2
nd

 Priority  

Candidate 
Recipient Age 12−17 Recipient Age <12 Recipient Age <12 

3
rd

 Priority  

Candidate 
Recipient Age 18+ Recipient Age 18+  
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The ABO types of the donor and the recipient plays a major role in deciding because 

it critically affects the success of the lung transplantation. There are two levels of ABO 

match level: identical and compatible. The first preference is given to the candidates who 

have identical match with the donor, and then the compatible ABO match. 

The recipient candidates are categorized into two classes: adults and pediatric 

candidates. The ones older than 12 years are adults and ranked based on aforementioned 

LAS score whereas younger ones (less than 12 years) are pediatric candidates and are 

ranked based on the waiting time on the UNOS waiting list [5], [8]. Figure 7.4 

summarizes the current lung allocation method in a schema. 
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Figure 7.4 Schematic representation of the current lung allocation process
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7.3 Validation of the Composite Score of Matching Index for Lung Transplants 

A composite score for lung matching index was created in Chapter VI. In this 

current chapter, we will search for the potential improvements if such an index is used for 

the lung allocation procedure. Since the matching and allocation are quite complex step-

by-step procedures with various performance measures to be considered simultaneously, 

we use simulation modeling in this chapter to validate the proposed matching index. The 

potential modules in this simulation model would be patient arrival, donor arrival, 

waiting for allocation, prioritization and matching, and transplantation modules. After 

constructing the simulation model based on the current allocation scheme as summarized 

in Section 7.2, the verification of it should be ensured. If the simulation model runs 

correctly without errors, then the validation of it should also be certified. Validation can 

be tested by checking the model output results in comparison with the actual outputs 

presented by UNOS allocation scheme. If the validation of the simulation fails, the model 

formulation and construction would be revised and corrected. If it produces statistically 

similar enough results compared to the baseline model of UNOS, then we can proceed to 

incorporate our proposed matching scheme. What-if scenario analyses would be 

conducted at this stage to observe how the output measures change based on potential 

changes in the logic of matching and allocation. 

Since our proposed matching index is a combination of various input factors to 

satisfy 3 output measures (as listed previously), the determination of weights for each 

factor would be analyzed through response surface methodology (RSM). RSM can be 

used as a post-simulation analysis to significantly reduce the number of simulation runs. 

It gives an idea of how the response surface changes over various regions of input-factor 
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space to find the optimal settings for them. By utilizing the RSM technique, we can 

determine the suboptimal weights for our composite score matching index. The flowchart 

for the simulation modeling approach in our proposed method is illustrated in Figure 7.5. 

 

Create a composite-score matching index 

(MI) for each potential pair of organ 

donor-recipient match (Chapter VI)

Identify the critical factors for the lung 

matching procedure by data mining 

(Chapters IV and V)

Construct a simulation model to 

reflect the current lung 

matching and allocation scheme 

Compare the model outputs  to 

baseline performance measures

Implement response surface 

methodology to determine the 

optimal weights of inputs of MI

Is the model valid?
NO

YES

 

Figure 7.5 Proposed simulation modeling framework 

 

 



143 
 

7.4 Simulation Modeling 

 In this study, Simio
®
 simulation software package was used to develop a 

simulation model. Simio
® 

has changed the modeling basis from process orientation to 

object orientation and has taken its name from the notion of simulation modeling 

framework based on intelligent objects [9]. The modelers can construct intelligent objects 

to be utilized in multiple modeling projects, which makes the object orientation very 

simple to utilize and in turn effective to run [9]. 

 There are two main input streams for our simulation model, namely donor arrival 

module and patient arrival module. The donor arrival module provides donor organ 

arrivals and assigns the related attributes to be used in further modeling. In the same vein, 

the patient arrival module creates patient arrivals and assigns their related attributes to 

each and every patient. Since the purpose of this study is to compare and contrast lung 

allocation score (LAS) system against our proposed composite score matching index, we 

use the UNOS lung transplant data starting from the year 2005 up to 2008 (the LAS 

system was developed in 2005). Another critical module of the simulation model is the 

matching and allocation module, which takes into account the steps as represented in 

Figure 7.4. As a donor organ enters the system, this module determines which patients 

match with the organ, how to prioritize them based on the criteria of distance, ABO type, 

age group, and LAS. Our contribution to the matching and allocation module is in the 

determination of which patient should be given the priority based on the composite score 

matching index derived in Chapter VI. 
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 A sample screenshot of Simio is presented in Figure 7.6 to show how the decision 

logic works in the matching and allocation module in the simulation model. This process 

flow basically models the prioritization of the candidate patients based on their age 

category, as summarized in Table 7.1. 
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Figure 7.6 The Simio screenshot for matching and allocation module with regard to age match
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7.5. Response Surface Methodology-based Simulation Optimization 

 Response surface methodology (RSM) is widely used for simulation-based 

optimization, which drastically minimizes the number of required experimental runs [10]. 

RSM is conducted by the integration of polynomial equation using regression analysis 

and a functional relationship between the output (dependent/response) variable y and the 

set of input (independent) variables xi [11].  

 As the first step, a first-order polynomial function of input variables along with 

two-way interactions is fit as given in Eq. (7.4) 

 

                                                                                                            

 

   

 

   

 

   

 

 

where xi refers to the input variables and y refers to the response variable to model.  ‘s 

refer to the unknown regression coefficients to be determined by the method of least 

squares so that the random model error ε would be minimized. If the model does not 

perform well and has some significant curvature, then a second-order model is fit via Eq. 

(7.5) 
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The output measures (responses) are computed based on each experiment-based 

simulation. The model adequacy is measured via coefficient of determination (i.e. R
2
) as 

given in Eq. (7.6) 

 

     
        

  
   

           
   

                                                                                                                

 

where Ft , Yt , and tY  refer to predicted, actual, and mean values of the response variable, 

respectively. Since adding more input variables would increase the value of R
2
, the 

adjusted R
2
 is usually also considered for model fit as given in Eq. (7.7) 

 

    
    

   

   
                                                                                                                   

 

where k is the total number of observations and p is the number of regression coefficients. 

These two measures, R
2 

and     
  are supposed to be close to each other and both close to 

1 for a good fitted model [11]. 

 Central composite design (CCD) is the main technique used in modeling second-

order response surface models. If the response surface is modeled dependent on three 

input variables (which is the case for our study), the surface is approximated to be a 
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hypercube or a sphere as shown in Figure 7.7 (with a radius of    where k is the number 

of input variables) [11]. 

 

Figure 7.7 Central composite design for three input variables [12] 

 

7.6 Simulation Modeling Results 

 As explained in Figure 7.5, the first step for the simulation is to verify and 

validate that the model mimics the real world. In order to check that, the performance 

measures taken into account based on the LAS system are compared and contrasted 

against our simulation outputs. This part of the study is focused on the data between 2005 

and 2007 due to the data existence at the time of the study. The output measures, i.e. 

survival rate and average waiting time came out to be in alliance with the actual system 

outputs within the time frame of 2005-2007. Table 7.2 summarizes the outputs of the 

simulation and presents the actual system values. 
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Table 7.2 The comparison of performance measures of the simulation vs. actual system 

  Survival 

Rate 

Average 

Waiting Time 

Simulation Outputs 83% 283 days 

Actual System Outputs 81% 267 days 

 

As seen in Table 7.2, the values determined by the simulation model are a good 

representation of the real-world. In statistical terms, the estimated survival rate at 83% 

has a standard error of 0.0099 and therefore the 95% confidence interval (i.e. [0.811, 

0.849]) includes the real-world output of 0.81. In the same fashion, the average waiting 

time on the waiting list has a standard error of 8.3 and hence the 95% confidence interval 

for the simulated output, [266.732, 299.268], consists of the actual system output value of 

267. Having showed that the simulation model replicates the real-world output measures 

and hence mimics the real-world lung matching and allocation scheme correctly, the next 

step is to discover if our composite score matching index helps improve this system in 

terms these output measures. 

 

Table 7.3 Performance outputs received via the matching index  

 
Survival Rate Average Waiting Time 

New Value via Matching Index 86% 271 days 

SE 0.0012 5.8 

95% CI (85.76%, 86.24%) (259.632, 282.368) 

 

Table 7.3 summarizes the results received by implementing our proposed composite 

score matching index instead of the currently implemented LAS scoring system. Since 
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the fundamental contribution of the matching index is essentially focused on a more 

efficient matching between the donor organ and the recipient by making use of 

voluminous UNOS dataset more effectively, it provides an improved survival rate (from 

81% to 86%) while the average waiting time of the patients on the waiting list does not 

improve. This makes sense since in the queuing systems the waiting time could only be 

decreased by either decreasing the service time and/or by decreasing the service 

demands. Neither of these is the case for our study on hand. Therefore, the 

implementation of the composite score matching index (as derived in Chapter VI) is 

justified via this simulation output. 

 

7.7 Fine-Tuning for the Weights of the Matching Index Components 

 In Section 7.6, the matching index was shown to be a better way of matching 

candidate recipients with donor organs. In this current section, we develop a response 

surface method (particularly a central composite design with k=3 variables) to optimize 

the weights of the components of the matching index as explained in Chapter VI in detail, 

namely recipient’s profile, donor’s profile, and match level. In our setting, the input 

variables are the weights (coefficients) of these three latent variables where the weights 

refer to the importance of each latent variable. In doing so, it can be determined how to 

weight each of these latent variables so as to receive a satisficing matching in terms of 

survival rate and waiting time on the list. Since the problem refers to a multi-response 

(multi-criteria) optimization problem, we implement the concept of desirability approach 

developed by Derringer and Suich [13] and refined by Castillo et al. [14]. In this 
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approach, each response yi is mapped to a desirability function, di(yi), which take values 

between 0 and 1. If the response yi is at its desired level (target/goal value), di(yi) would 

be 1. On the other hand, di(yi) would take 0 if yi is out of its desirable range. Via a 

geometric mean calculation as given in Eq. (7.8), these individual desirabilities are 

maximized to calculate the overall desirability (D). 

 

                                                                                                                 

 

where n is the total number of responses [11]. If the response is to be maximized, the 

corresponding individual desirability function is given by Eq. (7.9). 

 

        

              

 
        

     
 

 

       

             

                                                                                              

 

where yi is the response to be maximized, Li is the lower value, and Ti is the target value 

for the the response yi. The exponent s determines the importance of hitting (being closer 

to) the target value Ti [11]. Similarly following the same notation, if the response is to be 

minimized, the desirability function would be written as in Eq. (7.10). 
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where Ui is an upper value for the response. 

 

7.8 Results and Discussion 

 The generic central composite design (CCD) matrix with k=3 (x1=recipient’s 

profile, x2= match level, and x3=donor’s profile) as given in Table 7.4 was used to 

conduct the response surface methodology in the simulation model of this study. Since 

the CCD is utilized to determine the optimal weights/coefficients of the three latent 

variables (x1, x2, x3), the coding-uncoding these weights was realized by the scale 

transformation as summarized in Eq. (7.11). 

 

             
                    

                    
                                                           

 

The fitted simulation meta-models based on the coded xi units for the two 

response values are summarized as follows in Eq. (7.12) and Eq. (7.13). 
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Table 7.4 Central composite design matrix 

x1 x2 x3 

-1 -1 -1 

1 -1 -1 

-1 1 -1 

1 1 -1 

-1 -1 1 

1 -1 1 

-1 1 1 

1 1 1 

-1.682 0 0 

1.682 0 0 

0 -1.682 0 

0 1.682 0 

0 0 -1.682 

0 0 1.682 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

 

                                 
                                                                           

                                     
                                                

 

The    and     
  values for each of the response values were found to be as follows 

showing the model adequacy for both of the response surface models:   (           ; 

    
              and   (                 

               Since the CCD-based 

metamodeling performs satisfactorily based on the    and     
  values, the next step is to 

reveal the combined (overall) desirability of these two responses, y1 and y2.  
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 Assigning different levels to s values in Eqs. (7.9) and (7.10) makes the overall 

desirability function, D, either convex (via s<1) or concave (via s>1). If s is assigned to 

be 1, it is approximated to be linear towards Ti [13]. Since the shape of the function is not 

known apriori, it is suggested in the literature to adopt a trial-and-error approach with 

various settings at 0.1, 1, and 10 [14]. Hence, in this study all potential combinations 

were searched and the best one was received by s=0.9 for y1 and s=0.8 for y2, which 

revealed the highest overall desirability value at D=0.82. The survival time was targeted 

at 0.90 and was restricted to be bigger than 0.85. The waiting time was targeted to be 270 

days and was restricted to be smaller than 365 days, namely one year. The optimal 

solution for the weights of the latent variables, x
*
(recipient’s profile, match level, donor’s 

profile), the responses at the optimal solution, the corresponding individual desirability 

function results, and the overall desirability are tabulated in Table 7.5. Using Eq. (7.11), 

uncoding of the weights was also conducted and is shown in Table 7.5. 

 

Table 7.5 The CCD-based optimal weighting scheme and the desirability functions  

Coded optimal  

solution (x*) 

Uncoded optimal  

solution y1(x*) y2(x*) d1(y1) d2(y2) D(y1,y2) 

[-0.9664, 0.9344, 0.5267] [0.2127, 0.778, 0.657] 0.90 308.02 1.00 0.66 0.82 

 

Note that the response surface method-based simulation optimization placed the 

most importance on the match level between the donor and the recipient which is 

followed by the donor’s profile. This may be attributed to the fact that once the recipient 

is prioritized and determined with regard to our newly derived matching index, the 
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survival rate of the recipient would be dependent on the extent how much the donor and 

the recipient are fitting to each other in terms of medical matching. Also, the survival of 

the recipient is strongly affected by the medical history of the donor such as the donor‘s 

history regarding the usage of alcohol, cigarette, and cocaine. While this approach did not 

cause a dramatic increase in the average waiting time of patients on the list (a slight 

change from 267 days to 308 days), it helped improve the survival rate from 81% to 90%. 

 

7.9 Conclusions 

 This study is primarily focused on the validation of the composite score matching 

index for lung transplant patients which was derived by using a structural equation 

model-based decision tree model. The simulation model results showed that the matching 

indexing of the recipients in terms of prioritization and then allocation of the donor organ 

accordingly provided an improved survival rate (from 81% to 86%) with a slight 

deterioration in the average waiting time (from 267 days to 271 days). Sticking to the 

matching index formulation, a response surface method-based simulation was deployed 

to develop meta-models to fine-tune the weights of the matching index components and 

to optimize the lung allocation system. This was realized by jointly optimizing the lung 

transplant measures, namely justice principle (in terms of waiting time) and utility 

principle (in terms of survival rate) via the desirability approach along with a central 

composite design method. The results showed that without making a policy change in the 

current UNOS-based lung allocation system the survival rate can still be increased up to 

90% through the suggested comprehensive data analysis-based matching index 
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derivation. Such a methodology not only provides an improved utility of the donor organs 

but also presents a means for the medical experts to gain in depth control of the 

voluminous data while making their decisions.  

The integration of response surface method-based simulation helps determine the 

importance of the components of the transplant decision process and also provides a low 

cost tool for medical professionals to conduct what-if analyses effectively and efficiently. 

Additionally, this integration provides a generic model which can later be evaluated 

based on the potential changes and improvements in the transplant systems of other organ 

types i.e. liver, kidney, and etc.  
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CHAPTER VIII 
 

 

CONCLUSIONS AND FUTURE WORK 

 

 Healthcare has recently become one of the most important research domains 

within the industrial engineering studies. Within this domain, resource allocation, 

particularly matching and allocation of scarce number of donor organs with a long list of 

candidate patients, has attracted researchers‘ attention more than the others. This is 

mainly attributed to the fact that the voluminous data collected for system modeling have 

not been efficiently utilized. Therefore, this dissertation has targeted at modeling of lung 

transplant procedures through a methodological data analysis-based strategy. The major 

contribution of the study and future plans for research are summarized in the follow 

subsections. 

 

8.1 Conclusions 

 UNOS lung transplantation dataset is used within this study to reveal the 

unknown patterns lying under the data. Although voluminous data has been recorded for 

the above purpose, a small subset of it has been explored in the literature based on the 

intuitions and experiences of medical experts. This study provides an effective way for
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selection of critical variables for survival analysis and prediction of lung transplant 

outcomes (e.g. survival time after transplant) by utilizing data mining techniques. 

 By deploying an integrated method with clustering algorithms and medical 

domain knowledge, potential organ recipients (candidate patients) are categorized in 

terms of their risk severity after the transplant. A prognostic index is derived for this 

purpose to group patients in terms of risk groups, e.g. low, medium, and high risk. Such a 

grouping would lead to a wise approach for medical experts to plan on an appropriate 

means of treating organ recipients and suggesting a more proper follow-up and clinical 

visit scheduling. 

 A sophisticated structural equation model-based decision tree is developed to 

simultaneously predict the performance outcomes of the lung transplant, namely, survival 

time and functional status of the patient after the transplant. The UNOS-based large 

dataset is grouped into three major representative higher-level components in light of the 

discussions with medical experts in the transplant surgery. This integration of structural 

equation modeling with decision trees not only provides a satisfactory level of accuracy, 

but it also presents more interpretability of the massive dataset and the related lung 

procedure. Moreover, a single composite-score matching index has been derived for each 

potential match of candidate recipient and the donor organ. 

 The matching index derived via the structural equation model-based decision tree 

is validated to be a more effective way of matching lungs to the patients since it achieves 

an increased survivability with an ignorable amount of deterioration in the average 

waiting time on the list. This is realized by a simulation study using the findings of the 
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structural equation model-based decision tree model. The simulation-based optimization 

using the response surface methodology provides a cost-effective tool to determine the 

weights of the matching index factors. The developed simulation model can be further 

utilized to evaluate potential future changes in the lung matching system before 

deploying them in the real life. 

 

8.2 Future Work 

 Targeted at improving the organ matching and allocation system in the US, the 

prospected future work could be focused on data analysis and modeling of other organ 

matching and allocation systems such as liver, kidney, etc.  

 First of all, a decision support system (DSS) equipped with a user-friendly 

frontend and a backend application would be developed in order to make the proposed 

modeling approach usable for the medical professionals in this domain. Such a DSS 

would enable medical experts to deal with voluminous data more effectively and 

efficiently by providing reliable and accurate organ matching and allocation results in a 

very short period of time. 

 Secondly, in this research the risk groups of patients (low, medium, and high risk) 

have been modeled in the subsequent analysis as a whole. A future research extension 

would be devising a separate matching index and hence suggesting a matching and 

allocation scheme based on the risk group which patients belong to. Such a scheme may 

be more appropriate and convincing for various stakeholders of the lung allocation 

system. 
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 Thirdly, the current lung allocation scheme is severely affected and limited by the 

ischemia time of the donor organ. Transferring the extensive use of the Radio Frequency 

Identification (RFID) technology from manufacturing supply chains into the supply chain 

management of the donor organs would potentially provide an extended ischemia time 

and hence an improved lung allocation system. This RFID implementation could be 

realized via sensor-based modeling and hopefully lead to a fairer system diminishing the 

effect of distance of potential organ recipient from the donor organ. 
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Scope and Method of Study: The objective of this research is to develop a decision 

support methodology for the lung transplant procedure by investigating the UNOS 

nation-wide dataset via data mining-based survival analysis and simulation-based 

optimization. Traditional statistical techniques have various limitations which 

hinder the exploration of the information hidden under the voluminous data. The 

deployment of the structural equation modeling integrated with decision trees 

provides a more effective matching between the donor organ and the recipient. 

Such an integration preceded by powerful data mining models to determine which 

variables to include for survival analysis is validated via the simulation-based 

optimization. 

 

Findings and Conclusions: The suggested data mining-based survival analysis was 

superior to the conventional statistical methods in predicting the lung graft 

survivability and in determining the critical variables to include in organ matching 

and allocation. The proposed matching index derived via structural equation 

model-based decision trees was validated to be a more effective priority-ranking 

mechanism than the current lung allocation scoring system. This validation was 

established by a simulation-based optimization model. It was demonstrated that 

with this novel matching index, a substantial improvement was achieved in the 

survival rate while only a short delay was caused in the average waiting time of 

candidate patients on the list. Furthermore, via the response surface methodology-

based simulation optimization the optimal weighting scheme for the components 

of the novel matching index was determined by jointly optimizing the lung 

transplant performance measures, namely, the justice principle in terms of the 

waiting time and the utility principle in terms of the survival rate. The study 

presents uniqueness in that it provides a means to integrate the data mining 

modeling as well as simulation optimization with the survival analysis so that 

more useful information hidden in the large amount of data can be discovered. 

The developed methodology improves the modeling of matching and allocation 

system in terms of both interpretability and predictability. This will be beneficial 

to medical professionals at a great deal. 


