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CHAPTER I 

INTRODUCTION 

1.1 Problem Statement 

There is a great deal of interest within the Air Force community 

m developing a system for networking multiple high-performance 

aircraft simulators. Interest is especially high because of the successful 

testing of SIMNET, a network developed by BBN under sponsorship of 

the Defense Advanced Research Projects Agency (DARPA) and the 

United States Army. SIMNET is a research project whose goal is to 

build a large-scale network of interactive combat simulators. 

One of the results of this research has been the development of 

a SIMNET protocol. This protocol defines an environment in which a 

variety of simulator types can be interfaced, with minimum additional 

hardware and software requirements for the individual simulators. 

The protocol defines the types and formats of messages which can be 

passed over the network. It also defines the manner in which such 

things as vehicle appearance, location, and orientation, weapons fire, 

etc., are communicated. 

One of the key questions to be answered during the 

development of a simulator network is "How much delay can be 

tolerated in inter-simulator communication?". The SIMNET experience 

can provide only limited answers to this question, because of the 
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requirements for high-performance aircraft simulation. The original 

SIMNET tests involved tank simulators. Tank simulators have 

relatively slow response times and modest accuracy requirements, 

therefore delays caused by the operation of the network would not be 

as critical. 

Although the adverse effects of delays in single flight simulators 

have been discussed fully in the literature [1-7], less effort has been 

made in the analysis of delay for networked high-performance flight 

simulators [8]. For the purposes of this research the key characteristic 

of SIMNET, or any other networking protocol, is the network delay. 

There are two components to the network delay. The first component 

is transport delay, caused by the physical distances over which the 
I 

signal must travel. For local area networks this delay is small, but for 

long-haul satellite networks the delay can be several hundred 

milliseconds. The second component is the delay caused by limitations 

in network bandwidth. As the number of simulators in the network 

grows, it will become more likely that messages will be stuck in 

queues for significant periods. These delays are especially problematic, 

because they will vary with time. 

The SIMNET protocol has attempted to deal with the second type 

of delay by limiting the amount of traffic on the network. Vehicle 

information is transmitted only when the vehicle state has changed 

significantly. In order to mitigate the effects of both types of delay, a 

time stamp is added to each message so that the receiver will know 

when the message was sent. (Of course, this requires all simulators to 

be time-synchronized.) 
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In addition, the SIMNET protocol reqmres each simulator to have 

a simplified (dead-reckoning) model of every vehicle in the 

simulation, in order to extrapolate vehicle states between updates. 

Each simulator also has a dead-reckoning model of itself. Updates are 

transmitted whenever the dead-reckoning model state differs by more 

than a specified amount from the true vehicle state. 

These measures appear to be satisfactory solutions to the delay 

problem, when networking simulators for relatively slow-moving 

vehicles that require limited fidelity. However, there is concern that 

these measures may not be sufficient when networking high fidelity 

simulators for high-performance aircraft. 

There appear to be four tasks in which delays might cause 

problems in networks of high-performance aircraft simulators: air-to­

air combat, formation flight, air-to-air refueling, and target handoff. 

For the purposes of this research the formation-flight task was the 

major task chosen in the first phase of study. It is the most amenable 

to standard analysis techniques, and therefore was most appropriate 

for the initial study. Some work has also been done on the more 

challenging air-to-air combat task. 

1.2 Organization 

In order to analyze the networked-simulator problem, it 1s 

necessary to have a mathematical model of the pilot. There have been 

two basic approaches for modeling humans performing manual control 

tasks: the cross-over model and the optimal control model (OCM). 

Chapter II will discuss the field of human performance modeling, and 
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will provide brief descriptions of these two techniques. The OCM will 

be used to analyze the networked-simulator problem, and it will be 

described in detail in Chapter IV. The necessary optimal-control 

background for the OCM will be presented in Chapter III. 

The OCM has been used in the past to analyze the effects of 

delays within single simulators, but has not been used to analyze the 

effects of delays between networked simulators. The formation flight 

task can be analyzed with a modification to the standard OCM. This 

modification is called the "dual" OCM, and is described in Chapter V. 

The basic formation-flight task has been carefully analyzed, and 

a number of interesting phenomena have been found. These 

phenomena are described and explained in Chapter VI. As a logical 

extension, the second phase of this dissertation studies the air-to-air 

combat task, which is more sensitive to the effects of. the delays 

between simulators. Chapter VII considers the feasibility of 

developing an OCM air-to-air combat model. This chapter first 

presents a review of the literature on pursuit-evasion differential 

game theory, then develops an OCM model for a simple air-to-air 

combat task, and finally analyzes a missile-aircraft problem and 

summarizes its main results. Chapter VIII summarizes the principal 

results of this dissertation and contains suggestions for further 

research. 



CHAPTER IT 

HUMAN PERFORMANCE MODELING 

2.1 Introduction 

Among primates, the human being is recognized as a tool user. 

For the whole of his/her history, the human, in order to survive, has 

used simple hand tools for eating, building and fighting. 

During the last four decades, humans have built very complex 

technological systems such as sophisticated vehicles and production 

machines, and he is expected to control these systems. As a result, 

man and machine have to come together; this is called the man­

machine interaction. 

In order to design the interface between man and machinery, 

one needs to define precisely the individual tasks which must be 

executed by the human, and by the machine. These task assignments 

have to be the best, i.e. optimal in some sense. The optimization will 

occur if the capabilities and limitations of both the human and the 

machine are considered carefully [ 11,12]. In other words, in order to 

have an optimum man-machine performance, it is necessary to 

consider the demands that a certain individual task imposes on the 

human's limited resources [13]. 

In any system design, in order to describe or to optimize a 

system, one first needs to model the system mathematically. These 

2-1 
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models must describe the dynamic behavior of both the human and 

the controlled system. Furthermore, they must be able to predict 

effectively the human performance on the system which is controlled 

by the human operator, because the total human-system behavior is 

the main concern of system designers. In order to know analytically 

the total man-in-the-loop performance, the development of 

mathematical models for the human operator are quite necessary, 

since the machine's performance quality itself cannot provide enough 

information about the quality of overall system performance. 

To have a correct and sufficient control of a machine, it is 

assumed that the human operator is familiar with the dynamics of 

the machine, the statistics of the disturbances subjected to the 

machine and the overall task requirements. Practically this 

assumption means that in the development of human performance 

modeling, one must provide the human operator an internal model of 

the system and its environment [14-22]. For more about human 

performance modeling and its role as an information processor or 

adaptive controller in man-machine systems, one may refer to [23-

36]. 

2.2 Manual Control Characteristics 

Human adaptabilities have been studied fully in the literature 

[15,24,37-38], and it has been found that human is capable of 

adjusting his characteristics to meet system requirements. These 

human abilities provide manually-controlled system designs with a 



large degree of flexibility which is somehow unreachable m fully­

automatic control system designs [39-41]. 

Manual control is defined as follows: 

2-3 

A man who perceives, via his senses, information about the desired 

states and the actual output states of a given system, separately or in 

combination, whereby , he is expected to manipulate some mechanical 

equipment, i.e. control stick, so as to minimize some appropriate 

performance criteria [40]. 

Manual control theory has a powerful application for 

monitoring complex vehicles, such as aircraft, automobiles, bicycles, 

etc., which have limited bandwidth and operate in a well-defined 

optimal fashion, and in which the human operator needs to control 

only a few input variables [15,40-41]. 

Basically, a manual control system, illustrated m Figure 2.1, 

consists of three key elements: 

1- Plant dynamics, He 

The equations describing the operation (motion) of the 

controlled system. (This is the machine which is being 

controlled by the human operator.) 

2- Task requirements (objectives) 

It may be defined by a scalar dynamic equation evaluating the 

relative quality of the closed-loop performance. 

3- Human operator dynamics 

It represents a practical, usable, mathematical model of the 

human operator. 



Inputs to the overall system are: 

1- Random unwanted noises acting on the controlled system (e.g., 

wind gust and observation noises). 

2- Task input commands 

2-4 

They are related to task objectives, e.g., target maneuvering for 

an air-to-air combat task. 

3- Remnants 

They are random noises produced by the human operator, 

e.g., responses not related with any other 'System inputs. 

Figure 2.1 shows that the human operator behaves as a 

controller. Later it will be seen that the application of optimal control 

theory in modeling the human operator results in a time-varying 

optimal controller; it means that the human operator acts like a time 

dependent optimal controller. 

Figure 2.2 represents some of the versatile features of the 

human operator controller as an information processor. These figures 

are based on Figure 1 in [41]. 

The neuromotor subsystem, which is actually the human 

operator's output mechanism, consists of muscle, limb, spindle and 

manipulator dynamic elements; their properties depend on the 

controlled system and the task objectives [41]. 



Disturbances 
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Controlled system 

~ dynamics,Yc, and 
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display variables 

Human operator 

Dynamics 
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Task input commands 
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1- obsevation noise 

Remnants= 

2- motor noise 

Figure 2.1. General scheme of a manual control system 
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Commands 
Subsystem 

Manipul error 
1- Muscle dynamics 1- Compensatory 

at or .. .. .. .. 
2- Limbs 

2- Pursuit 
3- Spindels 

Figure 2.2. Major internal pathways of the human operator 
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The perceptual subsystem consists of two maJor pathways 

determining the human control operation structure: compensatory 

and pursuit pathways. In compensatory pathways, the human 

operator observes only the error between his input and output, 

whereas with pursuit, the human observes both his input and output 

separately; in both cases the human operator's task is to minimize 

the error. These two pathways are discussed in the next section in 

detail. 

2.3 Operation of a Simple Manually­

Controlled System 

The human operator is considered as an adaptive servo­

mechanism element attempting to detect the feedback error between 

system input and output and to perturb the system via some 

manipulator devices in order to reduce the error. In other words, the 

human operator is solving a tracking problem, which is defined 

clearly as a movement process in which the human operator keeps 

trying to minimize some degree of mismatch between a desired 

output, an external input quantity, and the actual output, the output 

of the controlled system. For example, a pilot tries to keep an aircraft 

on a specified flight path. 

The tracking ability of the human operator makes him an 

especially unique element in manually-controlled system designs. It 

has been shown that the human operator 1s able to use the statistical 

characteristics of the input signal and the dynamic characteristics of 

the other elements of the system to adjust (shape) his response 
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characteristics in order to match the behavior of the control 

situations [ 16-17,41-44]. 

Furthermore, when tracking a low frequency sinusoid, the 

human operator is able to predict the future of the sinusoid and 

compensate for his inherent response lags. In other words, the 

human operator is able to make his response approximately in phase 

with sinusoidal inputs [45]. For stochastic signals, it has been shown 

that human response lags the input [41,45]. 

Human operator characteristics are not fixed, and it has been 

found that the stochastic variations in his characteristics are due to 

the external stimuli, not due to the input signals; they are called 

remnant and treated as if they were noise [15], see Figure 2.1. 

The most important characteristics of the human operator 

behavior may be enumerated as [ 14]: 

i. Reaction-time delay 

ii. Low frequency bandwidth 

iii. Relatively good amplitude linearity. 

Major sources of the reaction time delay are retina excitation, 

(roughly about 0.02 - 0.04 second), nerve condition (between 0.01 

and 0.02 second), muscle contraction (in the range of [0.02 , 0.04] 

seconds), and finally the time required for processing, which is 

basically dependent on the task requirements [14-15,40]. In a simple 

tracking task, the reaction time delay is about 0.1 to 0.4 second 

[14,15] .. Both the visual and muscular systems possess a maximum of 

10 cycles per second in their frequency responses and in visual-
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manual control tasks, the controlled elements cannot move faster 

than three cycles per second [14,39]. Further, it has been shown that 

for accurate tracking, one needs to consider input signals whose 

power is mostly concentrated below one cycle per second in their 

spectrum [15]. 

A simple manual control system includes a controlled system, a 

human operator as a controller and a display. The two most 

important types of manual control tasks, pursuit and compensatory, 

are shown in Figures 2.3 and 2.4 respectively. In the compensatory 

task, only the error between the input and the output is displayed, as 

shown in Figure 2.5. The human operator's task in this case is to 

reduce the mismatch error by keeping the circle around the dot (see 

Figure 2.5). 

Human 
r(t) + e(t) s(t) 

Operator 
u(t) ... .. Display .. 

desired error ... stimulus p control 
output AL Hh input 

Controlled 
y(t) 

System -
act. output He 

Figure 2.3. A simple compensatory manual control system 
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() output,r t .. Human 

Display 
s(t) Operator u(t) .. 

Act. output Stimulus --... .. 
Hh 

y(t) 
Controlled Control input 
System .... ..... 

He 

Figure 2.4. A simple pursuit manual control system 

T- Target 
F- Follower 
C- Center 

e=y-r 

For Compensatory For Pursuit 
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y 

Figure 2.5. Typical displays for compensatory and pursuit tasks 
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In the pursuit system, both the input and the output are 

displayed separately, and the human's task is to follow the target by 

keeping the circle around the dot. It is clear that the pursuit system 

will perform better than the compensatory system, because of the 

direct availability of the input. This helps the human operator to 

predict the future of the input and to compensate for his inherent 

lags (e.g., reaction-time delays) [39-40]. 

2.4 Analysis Techniques for 

Human Performance 

No physical system is really linear. The human operator, as a 

complex physio-psychological system, functions in a non-linear 

fashion [15,40-41]. The preceding section briefly reviewed the 

human's nonlinearities that strongly depend on the task variables, 

including system parameters, statistics of external disturbances, etc. 

Consequently, the well-known classical techniques for 

describing control systems will not work for manually-controlled 

systems because of the human operator's nonlinear characteristics. 

Further, we have to deal with the structure of the family of the 

human operator characteristics. This structure is obtainable via 

measurement of the human operator performance in several 

different tracking situations [ 15,46-4 7]. 

Between 1945 and 1970, more than five hundred papers and 

technical reports were published related to human operator 

modeling, applying nonlinear analysis techniques to describe the 
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characteristics of manually-controlled systems, i.e human tracking 

performance. These models can be rooted in two broad categories: 

i) Classical control theory 

ii) Modern control theory 

Classical control theory applies closed-loop stability analysis to form 

describing functions of the human operator, as a controller, in order 

to predict the operator's output. Whereas the modem control theory 

uses state space analysis techniques to model the human operator 

[17 ,48]. 

Among these models, the quasi-linear describing function 

model, Cross-Over Model [15], and the Optimal Control Model (OCM) 

[ 49], have been been recognized as the two most powerful tools in 

the representation of the human operator as a servo-element in 

man-machine systems. These two models will be discussed in section 

2.4.2 and Chapter IV in detail. 

Since both types of models, Cross-Over and OCM, represent the 

human operator in the man-machine system as a quasi-linear 

controller, the following section describes quasi-linear model 

properties briefly. 

2.4.1 Ouasi-Linear Controller Model 

Quasi-linearization is a process which represents the 

characteristics of a non-linear system by a constant differential 

equation, linear transfer function H(s), and a stationary noise 

generator, n(t). The constant parameters of H(s) depend on the task 
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variables including input signal, controlled element and other 

variables related to the non-linear system [40,48]. In other words, 

H(s) possesses different parameters for different inputs, r(t), and 

controlled elements, He. Further, they are assumed to be constant 

during any tracking run. 

It has been found that quasilinearization is able to model the 

human operator's non-linearities, because the human's main 

deviation from linearity happens if the input statistics or the system 

parameters change [15,39,40]. 

Figure 2.6 shows a block-diagram of a quasi-linear human­

operator model. The remnant, n(t), represents the following non­

linearities or variabilities in the human's behavior: 

i) Observation noise due to inaccurate measurements 

ii) Motor noise due to inaccurate motor control 

iii) Non-stationary behavior of the operator ( the parameters of 

H(s) vary with time). 

Remnant 

n(t) 

Human 
Qperator Linear transfer ,, 
Iriput .. .. + .. Human Operator 

Function, H(s) output 
e(t) u(t) 

Figure 2.6. Quasi-linear human operator model 
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In other words, the external noise signal, n(t), represents the 

elements of the human behavior which cannot be correlated with the 

input, and which cannot be generated by a linear operation on the 

input [49,50]. Further, it has been shown [47] that the remnant 

occupies the longest portion of the human response for the tracking 

task, and it is independent with the input signal, e(t). Moreover, it 

possesses a smooth spectrum without sharp peaks [39,46]. 

In order to measure the performance of the overall system, we 

need to compute (estimate) the spectral densities H(f) and N(f), see 

Figure 2. 7, which can be determined from the measurements of the 

input and the output through the application of statistical techniques 

[39,40]. 

The describing function analysis technique is a kind of transfer 

function technique which describes mathematically the frequency 

characteristics of non-linear systems which closely act like linear 

systems, for certain classes of inputs such as sinusoidal inputs [ 40]. 

The most famous describing function model is the Cross-Over model 

which is discussed in the next section. 
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Figure 2.7. Quasi-linear model of human m a compensatory tracking 

task 

2.4.2 Cross-Over Model 

As mentioned earlier, because of certain nonlinearities in 

human operator, the structure of the family of human behavior can 

only be approximately formulated. This can be done only by 

measuring human perf01mance in several different tracking tasks 

and by applying quasilinearization. McRuer and his coworkers in 

1957 represented the family of human behavior with the structure 

given in Equation 2.1. They developed this model by performing of 

many studies on the findings of the previous researchers who had 
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measured the human behavior m single-axis compensatory tasks 

[15,40,51]. 

1 + T1s e -ts 
H(s)= k X 

~~ 
Equilization term Limitation term 

(2.1) 

H(s) is the linear transfer function in the quasilinear manual control 

system, illustrated in Figure 2.8, with 

U(s) = H(s)E(s) + N(s). 

Herein, the describing functions are written in terms of the 

frequency operator s=jw instead of the general complex form s=a.+jco. 

The first term (equalization term) in Equation (2.1) represents 

the human adaptabilities by which he tries to optimize his control 

strategy to match a given situation. This term is strongly dependent 

on the controlled system and task situations. The limitation term in 

(2.1) represents the human operator's limitations, including reaction 

time delays and neuro-motor dynamics. 

Equation (2.1) is caHed a general analytical/verbal describing 

function model for the human operator [12,14,50,53]. It is analytical 

because of its general dynamical form and it is verbal because it 

allows us to adjust its parameters so that the model can be an 

accurate estimate of the human operator for a specified situation. 

In equation (2.1), K is an open loop gain which can be adjusted 

by the operator, and Tt and Tz are time constants corresponding to 
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lead and lag coefficients, respectively. The human operator will 

adjust these variables so that the overall closed loop system satisfies 

some prespecified performance criterion, e.g. the highest open loop 

gain k with a phase lead less than 180 degrees, and so that the closed 

loop system possesses a phase margin between 60 and 100 degrees. 

Noises 

Controlled 
System 

H (s) 
c 

U(s) 

N(s) 

R(s) 

Y(s) 

H(s) 

Figure 2.8. Frequency domain configuration of Figure 2. 7 

The time constant 't represents a reaction-time delay and 't n 

represents a time constant coefficient of a first order lag in the 

neuromuscular system. Furthermore, it has been shown that 

[ 12,50,52]' 

i) 1:::; k :::; 100, 
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ii) 't 0 = 0.2 second, 

iii) 0.12 < 't < 0. 2 seconds. 

Therefore, Equation (2.1) may be recognized as an implicit internal 

model of human operator. This model is obtained based on the 

stability criterion of the entire ,closed-loop man-machine system 

[15,28]. 

Servo-control theory says that for good control dynamics, the 

open loop transfer function, G(s)=H(s)Hc(s), should behave as an 

integrator near the crossover frequency (the frequency where the 

gain of G(s)=1); it means that as the frequency of the open loop 

moves toward the crossover frequency, the phase lag should remain 

less than 180 degrees in order to guarantee the stability [12,22,39-

40,50]. 

For manual control systems, [15,50] shows that the following 

model possesses the property of a good servo. 

G(s) =He (s)H(s) 
kw c -'ts - --e 

s 
(2.2) 

Where G(s) represents the open-loop transfer function and W c 

denotes the cross-over frequency. The model formulated by equation 

(2.2) ts called the cross-over model. This equation says that 

IG(s)l >> 1 for w << w c 

and 

IG(s)l << 1 for w >> w c 
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Hence, for forcing inputs with bandwidth, We, less than cross­

over frequency, W c. the cross-over model behaves as a good servo, 

since for w<W c the open-loop phase lag is less than 180 degrees (no 

risk of instability) the open loop gain becomes very big, and most of 

the disturbances will be filtered, because for high frequencies w> W c 

the open loop gain becomes very small. Figure 2.9 shows the Cross­

Over model block-diagram for the compensatory manual control 

system of Figure 2.3. Ref. [41], by spectral analysis of experimental 

data, shows that the parameters of Cross-Over model, k & t, are 

strongly dependent on input bandwidth and subject practice. 

r(t) k w e- t 8 
y(t) 

t __., c 
j~ s 
-

Figure 2.9. The block-diagram of Cross-over model 

Starting with equation (2.1), the human operator attempts to 

adjust the values of adjustable variables k, Tt, and T2 so that the 

open-loop transfer function G(s) meets equation (2.2). In other 

words, the parameters of the human operator transfer function, H(s), 
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depend strongly on the frequency spectrum of the forcing function of 

the open-loop, (which is the error between the desired output and 

the actual one), the gain k and the spectral properties of the 

controlled element He. Reference [39] shows that the open loop gam 

will decrease as the bandwidth of the external input r(t), Wr 

increases so that their cross product, IG(s)IWr, remains approximately 

constant in the cross-over region. Table (2.1) shows some of human 

operator's adaptation to the dynamics of controlled systems [12,50]. 

TABLE 2.1 

HUMAN OPERATOR'S MODEL ADAPTATION TO PLANT DYNAMICS 

Yc H(s) Parameters m (2.1) 

1 (W c/s) e-s't k=wcTz, 'tn=O, Tt=O, 

Tp>l 

1 Is (W c) e-s't k=wc, Tl=O, T2=0, 

'tn=O 

lfs2 (sw c ) e-s't k=Wc/Tl. T1>>l, T2=0, 

'tn=O 
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At low frequencies, the experimental data show a residual 

phase lag which is not considered by equation (2.1) [52]. McRuer et. 

al. in 1965 [16] modified the equation (2.1), as formulated in 

equation (2.3), in order to have a better fit to the experimental data. 

H(s) 

The quantity a. denotes a residual low frequency phase lead-lag 
2 

coefficient. This phase is contributed by the term e-(sa/w ) · 

(2.3) 

It was shown that the modified model, Equation (2.3), becomes 

more useful when the human operator is monitoring a control system 

which is unstable and possesses a small phase margin [52]. 

In summary, the Cross-Over model allows us to predict the 

performance of manually-controlled systems, given knowledge of the 

system, He, the external input r(t), and the remnant model, n(t), 

which represents the degree of accuracy of the prediction. The Cross­

Over model for the human operator will not work if He is sharply 

nonlinear, He_ K/s3, or if the bandwidth of r(t), Wr >>10 rad/sec [16]. 

For more about the Cross-Over model, its application and deficiencies, 

and new modified approaches, one may refer to [50,52-55]. 

2.4.3 Optimal Control Model (OCM) 

As mentioned earlier, there are two predominant human 

operator performance modeling approaches: structural and 

algorithmic models [41]. The structural approach is mainly based on 
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applicable to the manual control of single input/output linear time 

invariant systems. 

The algorithmic model is based on linear quadratic Gaussian 

state-space optimal control theory, which is modified for acceptance 

of the human operator's inherent limitations. In other words, the 

OCM applies modern control techniques, state space analysis, 

optimization and estimation, in order to maximally use the adaptive 

characteristics of the human operator subject to his constraints, 

which are represented via the visual and motor noises and time­

constant delays [41,49]. Because this study uses the OCM model 

extensively, the theory of optimal control and the OCM are 

considered in chapters III and IV respectively. 

2.5 Summary 

In this chapter we briefly reviewed the behavior of the human 

operator, as well as the characteristics of the models which may be 

used to describe and predict the human performance in manually­

controlled systems. The characteristics of manual control systems are 

discussed in section 2.2. The operation of human operator, as a 

controller or information processor, in a simple manual control 

system has been conside'red" in section 2.3. Analysis methods for 

measuring human operator performance have been introduced in 

section 2.4. 

There are two powerful models for the human operator in 

manual control systems: the Cross-Over model and the optimal 

control model. The Cross-Over model, as a good predictive tool, Is 
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only applicable to the manual control of single-input/single-output 

linear time invariant systems. Section 2.4.2 discussed the Cross-Over 

model in detail and section 2.4.3 briefly introduced the optimal 

control model, which can be applied to both single-input/single­

output and multivariable linear manual control systems. 



CHAPTER ITI 

OPTIMAL CONTROL 

3.1 Introduction 

Since 1868, when Maxwell made the first mathematical model 

for stability analysis, till now, control theory has made significant 

progress. Frequency domain techniques in the 1930s, Laplace 

transforms (Transfer functions) in the 1940s, optimal control in the 

late 1950s and state-space analysis (a time-domain approach) in the 

1960s made the progress possible [56-58]. These versatile methods 

may be rooted in classical control theory or modem control theory. 

Classical control design, a trial & error approach, applies an 

iterative analysis method in order to determine the design 

parameters, satisfying some time/frequency domain criteria such as 

settling time, maximum overshoot, gain and phase margin. However, 

in practice, there are many control problems such as airplane landing 

problems [59], which can only be analyzed if some multiple 

performance requirements and constraints are satisfied, specifically, 

when the performance tasks require a time-varying control whose 

configuration and values of time-varying parameters must be selected 

by the designers. In such cases, a synthesis method based on 

optimization theory is superior to classical trial and error techniques, 

since the selection of the time-varying gains is basically replaced by 

3-1 
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the selection of constant parameters used as weighting factors m the 

performance index [60]. 

Therefore, there was an obligatory shift toward optimal control 

design of more realistic and complex systems having a large number 

of variables including input/output variables and containing non­

linearities and time-varying parameters. Modern control theory using 

state space analysis provides a powerful me,thopology for dealing with 

these high order, linear or nonlinear multivariable systems. However, 

classical techniques are restricted to almost linear constant single 

input/output systems [56]. 

In order to control a process, we need to know the current state 

of the process. Controlling a process means to find a way in which to 

manipulate the input so that the syst~m will behave in some 

prescribed way. In most practical cases, the current state of the 

system is unknown. Therefore, we need to estimate the current state 

from a set of observed measurements. Here, estimation and control 

theory come together. Figure 3.1 shows the general framework of 

estimation and control. In the this figure, u(t) is a manipulator input, 

w(t) is a disturbance input and v(t) is measurement noise. 

The physical element (plant) is affected by a disturbance input 

)¥_(t) which represents some unmanipulated inherent limitations of the 

plant and its environment, such as noise in circuits and wind gusts in 

aircraft flights. We may observe the behavior of the plant by using 

some appropriate device,s, sensors, which are , subjected to some 

random errors represented by v(t). Consequently, the observed 

outputs of the system will give some uncertain information about the 

controlled process (plant). This requires us to estimate the system 
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response variables, such as the system states, in order to effectively 

control the plant. The estimation can be done by determining an 

approximation to the states from the measurements. The relative 

goodness of the estimates is measured by some performance indices. 

An estimate is optimal if it is obtained by optimizing some 

performance criteria. 

Disturbance Measurement 
Process Error Process 

:w(t) ~~ l!(t) , 
D(t) :K(t) 

y(t) 
.. Measurement --Control Plant Devices Outputs System state 

mput 

Figure 3 .1. General Scheme of Estimation & Control 

Figure 3.1 represents also a general stochastic control problem 

[63-64]. The optimal control for this problem is defined as follows: 

knowing the plant and the statistics of the unwanted noises w(t) and 

v{t), we wish to determine a control input u *(t) which minimizes a 

specified performance criterion so that the overall system performs m 

an optimal fashion. To do so, we first need to determine an optimal 

estimate of the state from a set of measurements and then to find an 

optimal control input which would be a function of the state estimate, 
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so that the overall system performance agrees with some desired 

objectives. 

The linear time-invariant stochastic optimal problem is the 

major concern in this study. The rest of this chapter is organized as 

follows. Sections 3.2-3.4 discuss state variable models, linear systems 

and linear optimal controllers, respectively. Section 3.5 considers 

regulator problems. State estimation problems are discussed in section 

3.6. The separation theorem and the solution of the optimal controller 

for stochastic linear systems are . presented in section 3. 7. Tracking 

problems are discussed in section 3.8. Finally, section 3.9 summarizes 

this chapter. 

3.2 State Variables 

State variable analysis, smce the 1960s, has become a powerful 

approach to deal with multivariable (multi-input/multi-output) 

control system problems. A set of state variables of a system is 

defined as a minimum independent set of parameters, x(t), being able 

to show the complete status of the underlying system in the sense 

that the output of the system, y(t), and the values of x(t) can be 

uniquely determined by knowing the values of x(t0) , to < t, provided 

that control input u ('t), !!( 't ), t 0 $ 't $ t is known. Figure 3.2 shows a 

simple black-box representation of a physical system. 

The definition of the state variables leads to the following 

transformation on the input, state and output. 

~( t) ='If( to, t,~( to),!!( 't), 't E [to, t]) 

~(t) =h(t,~(t),!!(t)) 
(3.1) 

(3.2) 



3-5 

The functions 'I' and 1i must have the following three properties. 

i) 

ii) 

iii) 

!( t 0 ) = '1'( t 0 , t 0 , !( t 0 ), !!( t 0 )) 

If !! ( 't) = y ( 't), t 0 ::; 't ::; t I> then 

'I' ( t 0 , t 1 , ! ( t 0 ), !! (-c)) = 'I' ( t 0 , t 1 , ! ( t 0 ), y( -c)) 

!( t 2 ) = '1'( t 0 , t 2 ,!( t 0 ),!!(-c), -c E [ t 0 , t 2 ]) 

='Jf(t1 ,t2 ,!(t1 ),!!(-c) ,-cE[t1 ,t2 ]) 

(3.3) 

(3.4) 

(3.5) 

lit (t) Input States 

Uz(t) J 
Y1 (t) 

Output y2 (t) 

x0 (t)] r-. ~(t)-y(t)= _ _..1 ~{t)=[x1 (t) x2 (t) .. 

~(t) 
Prime denotes vector transpose Ym(t) 

Figure 3.2. A simple black-box diagram of a physical system 

For a continuous time-variant dynamic system, equation (3.1) 

may be replaced by a system of first order ordinary differential 

equations of the form 

~(t) = f (!' !! 't ). 

There is a unique solution for equation (3.6) if 

i) u (t) is piecewise continuous 

ii) f is continuous with respect to u. 

iii) f is piecewise continuous with respect to t. and 

(3.6) 
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iv) !lf(~,t)-f(~,t)ll :::; C 11~-~11 , forsomeconstantC > 0. 

This solution can be expressed by equation (3.1) [56,57,61,62]. 

3.3 Linear Systems 

In practice, the functions f and h in equations (3.6) and (3.2) - -

are nonlinear. In general, the operation of nonlinear time-varying 

dynamic system may be described by the following equations 

~( t) f (~ ' !! ' w' t ) 

y( t) = h(~ ' !! ' w' y 't) 
(3.7) 

(3.8) 

Where w (t) and v (t) are state disturbances and measurement noises 

respectively. Equation (3. 7) represents an n-component vector of first 

order differential equations describing the dynamics of the system 

and equation (3.8) represents the measurements (observed outputs of 

the system). Unfortunately, there is no complete analytical solution to 

equation (3.7), Whereas, there is a general methodology to solve a set 

of linear differential equations. Consequently, linear dynamical 

systems became very attracti~e. The following equations may 

represent the general state space form of a linear time-variant 

continuous time dynamic system. 

!(t) = A(t)!(t) + B(t)1!(t) + E(t)w(t) 

~( t) = C( t )!( t)+ D( t)1!( t )+ ~( t) 

Where 

x(t)- an n-component state vector 

u(t)- an r-component control input vector 

(3. 9a) 

(3. 9b) 



y_(t)- an m-component output vector 

w (t)- a p-component state noise vector 

v(t)- an m-component measurement noise vector 

and the compatible matrices A, B, C, D and E are continuous. 

3-7 

(3.10) 

The linear system is called fixed or time-invariant if the 

matrices A, B, C, D, and E do not change with time. Figure 3.3 

illustrates the general block-diagram for a continuous linear time­

invariant stochastic system. 

~(t) 

y(t) 
B 

+ 

1 
-s-

~(t) 

y(t) 

c 

Figure 3.3. Block-Diagram for a continuous Linear Time-Invariant 

Stochastic System 

This study considers systems illustrated m Figure 3. 3. In order 

to deal with these systems we need to know the statistical 

characteristics of both noises w(t) and v(t). However, we assume that 

we can observe only the measurements y_(t) and we have access only 
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to the control input u(t). In other words, by observing y(t), we are 

trying to determine the characteristics of the system and by 

manipulating u(t), we wish to force the system to react in some 

desired manner. 

3.4 Linear Optimal Controller 

For linear optimal control, the device which produces the 

optimum control input, is linear, i.e. the optimal control law IS a 

(constant) linear combination of the state variables. We shall see later 

in this chapter that the linear optimal controller is attainable by 

selecting a performance index which is a quadratic function of the 

motions of the system and inputs. 

Mathematically, the problem is stated as follows: For the given 

linear time-invariant system 

~(t) = A~(t) + B!! (t) 

y(t)- C~(t) 

and for some initial state x(O) find a control input, u *(t), that 

minimizes the quadratic performance index 

100 
J = 2 J (x'Q~ + u'R!!) dt 

0 

(3.11a) 

(3.1lb) 

(3.12) 

where R is a positive definite symmetric matrix, Q is a nonnegative 

definite symmetric matrix and prime denotes matrix transpose. 
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The cost function J is a scalar quantity which consists of an 

infinite integral of sums of quadratic functions of the output and the 

control inputs to the system (3.11). This quadratic form of the cost 

ensures the linearity of the optimal control and the constraints on 

weighting matrices Q and R insure a finite control law. The terms m 

the performance index J, must represent the desirable quality of the 

overall system performance. For example, if we are able to predict the 

closed loop eigenstructure of the system, we will be capable of 

selecting right weighting factors Q and R [58,65-67]. 

An intuitive reason for using linear quadratic methods may be 

stated as: Wonham [67] showed that if the open-loop system (3.11) is 

completely controllable, we can assign a conjugate set of desirable 

numbers to the closed loop poles of the system by an appropriate 

state feedback gain. This gain matrix is not unique for multivariable 

systems. There is no restriction on choosing these prespecified set of 

closed loop poles. The more the closed loop poles move to the left in S­

plane, the faster states of the system converge and consequently, the 

more input amplitude (control energy) is requii·ed. But in any 

realizable system a bounded input is required. This requires that the 

poles not be moved beyond some certain distance to the left in the 

complex plane. Therefore, it is necessary to consider both the rate of 

convergence and the magnitude of the input. This may be done by 

choosing a performance criterion like J in Equation (3.12). 

Several advantages of the linear optimal control have been enu­

merated in the literature [60]. Here, we list some of them and end this 

section. 
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1. Linear optimal control system analysis is simpler than the conven­

tional trial & error method. 

2. All linear optimal control problems have computable solutions. This 

is not true for non-linear optimal control problems. 

3. It is possible to generalize the linear optimal control problem to m­

clude a performance index involving any quadratic form of the 

output and its derivative. 

4. It is possible to apply linear optimal control to non-linear systems. 

5. The linear optimal control guarantees a stable closed loop system 

with a smooth and well-behaved transient response. 

3.5 Noise Free Regulator Problems 

3.5.1 Problem Statement 

Here, we consider the following n01se free plant (3.9) 

~(t) = A(t):K(t) + B(t)y (t) (3.13) 

We wish to move the system (3.13) from a non-zero initial state, x(to) 

to the zero terminal state, x(T)=O by applying some acceptable input 

amplitude, u(t). To do this, we may define the following quadratic 

performance index with quadratic form in the terminal state plus an 

integral of quadratic terms in the state and the control input 

T 

J = ~ J(~'(t)Q(t)~(t)+!!'(t)R(t)!!(t))dt+x'(T) S ~(T), 
to 

(3.14) 

where the matrices Q(t) and R(t) have continuous entries. They are 

symmetric non-negative and positive definite, respectively. 
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The scalar quantity J measures the quality of the overall system. 

The term x'Qx in equation (3.14) is a measure of the distance of the 

state x(t) from the zero state, and the weighting matrix Q determines 

the amount of the weight assigned to each of the components of the 

states. The quantity !T x'(t)Q(t)!(t) determines the cumulative 

deviations of the state at time t~ x(t) from the ,zero state during the 

interval [t,T]. The same is true for the o~her terms in (3.14). 

Before presenting the solution of the regulator problem, let us 

have a brief qualitative description of the regulator problem. Figure 

3.4 shows a general control problem which has the following key 

elements: 

i) The plant for which a control input u(t) is desired. 

ii) The measurement devices which give information about the 

plant. 

iii) The controller which produces the proper input to the plant. To 

do that, controller uses the the reference input, i.e. desired 

output, as a base for comparison with the observed data. 

In general, the controller is expected to generate an input u(t) to 

achieve the following goal: For a given reference input r(t), determine 

a proper input u*(t) such that the controlled variable y(t), tracks r(t). 

This is called a tracking problem. A special class of tracking problems 

is called the regulator problem, where the reference input, r(t), is a 

constant function. In other words, the regulator problem is to find a 

control input to bring the plant from a non-zero state to a constant, 

generally zero, state. 
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Disturbances 

,, 
input ... Plant 

output Measurement z(t) 

u(t) y(t) Device 

Observed Output 
Controller ... ... 

·~ 
r(t) 

Reference Input 
Figure 3.4. General Representation Of A Control Problem 

In short, the regulator IS designed to keep a stationary plant 

subjected to some unwanted disturbances as close as possible to the 

zero state by using the smallest possible amounts of control input. 

3.5.2 Solution of the Noise-Free 

Regulator Problem 

The regulator problem, as a special class of optimization 

problem, can be solved by applying the calculus of variation technique 

[67] or by using dynamic programming [60]. The analytical solution 

may be formulated as: 

u *(t) = - F(t) x(t) (3.15) 



with the controller gam matrix 

F(t) = R- 1(t)B'(t)P(t) 

3-13 

(3.16) 

where the positive definite symmetric matrix p(t) Is the solution of 

the Riccati equation 

P(t) + P(t)A(t) +A' (t)P(t)­

P(t)B(t)R -l (t)B' (t)P(t) + Q(t) = 0, 

with the boundary condition P(T)=S. 

(3.17) 

The solution of the optimal noise-free linear regulator problem 

IS in the form of a linear control law, see Equation (3.15), which 

produces the optimal control for any initial state, x(t). Figure 3.5 

shows a block-diagram of the noise-free linear regulator controller. 

The optimal performance index, Jopt(~,t) exists for all t less than 

or equal T and has the following quadratic form 

Jopt(x,t) = x'(t)P(t)x(t) (3.18) 

where P(t) satisfies the Riccati equation (3.17). 

0 + x(t) .. Plant -
~ 
-

Controller 

F(t) 
.. 

Figure 3.5. Noise-Free Linear Regulator Controller 
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If T, the upper limit of the integral in the performance index J 

(equation (3.14)), approaches infinity, then the problem is called 

infinite-time noise-free regulator. It is of practical importance to 

know whether the time-invariant plants (3.13) will lead to a constant 

controller law or not. For finite-time regulator problems, the optimal 

performance index, J opt is always finite, but this is not true for infinite 

regulator problems unless the time-invariant system (3.13) is 

completely controllable or the uncontrollable states are stable [47]. In 

this case, the performance index (3.12) will be of the form 

1 OOJ( I I ) J = 2 ~ ( t) Q ~ ( t) + !! ( t) R!! ( t) dt 
to (3.19) 

since for noise free system (3.13), the terminal state will be zero, 

The solution to the infinite regulator problem gives nse to the 

linear time-invariant optimal control law 

u*(t)=-F x(t) (3.20) 

where the constant matrix F IS the optimal controller gam matrix 

F = R-1B' Ps (3.21) 

and P 8 is the solution of the Riccati equation 

(3.22) 
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with the optimal index 

(3.23) 

Now, the question is raised whether the overall closed-loop 

system formed with the constant control law, equation (3.20), is 

asymptotically stable or not. In other words, when is the closed-loop 

system 

~(t) ={A- BF)~(t) (3.24) 

stable? It has been shown that [60,67], in order to ensure the 

asymptotically stability of Equation (3.24), the pair [A,D] must be 

detectable for any D such that Q=DD'. 

In summary, for linear time-invariant noise-free finite dimen­

sional systems, the infinite-time regulator problem possesses a 

constant linear optimal control law which gives an asymptotically 

stable closed-loop system if the .system is completely stabilizable and 

detectable. Furthermore, one may modify the performance index 

(3.19) for the time-invariant system (3.13) by introducing a weighting 

term, eat, in order to achieve a prespecified a-degree of stability for 

the closed-loop system (3.24) [60]. 

3.6 State Estimation Problem 

The preceding section considered the ~egulator problem based 

on the unrealistic assumption that the states of the controlled system 

are completely and accurately measurable, moreover it has been 
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shown that the optimal control laws are dependent on the system 

states. In practical situations, we do not have access to the states 

completely. For example, for most of the linear systems, only certain 

linear combinations of the states, output variables, can be measured. 

Therefore, the problem of estimating or reconstructing the states of a 

dynamical system given the output measurements is of fundamental 

importance. 

For linear systems, there are two famous approaches. If there is 

no disturbance acting on the system states, a Luenberger 

deterministic state estimator, state observer, can be applied to 

reconstruct the states. For stochastic linear system modeling, where 

the output variable are corrupted by noise (white), the statistical state 

estimator design (Kalman-Bucy Filter) can be used to reconstruct the 

states of the system. The latter is an optimal state estimator in the 

sense that the noise has the minimum possible effect when the 

estimator is used in controlling a plant. 

Figure 3.6 shows a general scheme of using an estimator in 

implementing a linear dynamic system. In general, a state estimator 

which (is actually a model for the plant) is a dynamical system whose 

inputs are the plant inputs and outputs and its output is the current 

estimate of the system state. Because, in this study, the linear 

stochastic systems are our major concern, we consider the Kalman 

Filter (optimal state estimator) in the next section. 
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r ... + 
Linear Plant y Y. ... ... i(t)=A(t)x(t)+ B(t)u(t) 

·~ .Y( t )=C( t)!(t)+ D( t)y( t) 

t 
t(t) 

State ... 
Controller 

... -
Estimator 

Figure 3.6. Using estimator in control law 

3.6.1 Optimal State Estimator 

Figure 3.7 illustrates the structure of the optimal estimator. The 

plant is of the general form given in (3.9) which we repeat below. 

where 

~(t) = A(t)~(t) + B(t)!!(t) + E(t)w(t) 

~(t) = C(t)!(t)+D(t)!!(t)+ y(t) 

w (t) n-component state excitation white noise with intensity 

W(t), E[w(t)w'(-r)]=W(t)o(t-'t), 

v(t) - m-component observation error white noise vector with 

intensity V(t), E[v(t)v'( 't) ]= V(t)o(t-'t). 

It is assumed that V(t), for all t, is a positive definite symmetric 

matrix. It means that we can not extract any noise-free information 

from the measurements; all components of y(t) are corrupted by 
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notse. Further, it is assumed that w(t), v(t) and x(to) are independent 

and Gaussian with 

E[y(t)]=E[w(t)]=O, E[~(t0)]=~ 

E[ (lf( to) -lfo )(li( to)- 2\o )' J = Po 
E[ ~( t 0 )~' (t)] = E[ ~( t 0 )w' (t)] = 0 for all t, 

(3.25) 

and W(t) is nonnegative definite symmetric matrix. 

The task of estimation may be stated as follows: knowing the 

statistical characteristics of x(t0), w(t) and v(t), we wish to use the 

available information of the plant input, u('t), and plant output, x_('t) 

for 't between t0 and t, to obtain an optimal estimate, ~( t) of the state, 

x(t), which minimizes the following error variance performance index 

J = E[ (~( t)- ~( t) )' 0( t )(~( t)- ~( t))] 

where n ( t) is a positive- definite symmetric weighting matrix 

The state estimator models the plant with the dynamical 

equation of the form 

~(t) = A(t)~(t) + B(t)!!(t) + K(t)C(t)[~(t)- ~(t) ], 

(3.26) 

(3.27) 

where K(t) is the estimator gain matrix which will be given in the next 

section. Figure 3.7 shows the block-diagram of the state estimator 

formulated in (3.27). 
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By subtracting (3.27) from (3.9a), we can have the following 

dynamical equation 

~(t) = [A(t)- K(t)C(t)]~(t) + E(t)w(t) (3.28) 

where ~(t)=~(t)-!(t) is the estimation error. Equation (3.28) shows 

that 

i) if ~(to)= !(to), for any initial time t 0, then ~(t) = !(t) for all 

t;;:::to and for all input u(t) provided that w(t)=O. 

ii) limt ~ oo ~(t) = 0 iff A 0 (t) = A(t)- K(t)C(t) is asymptotically 

stable. 

Because we wish the estimation error to approach zero, the right 

selection for the estimator gain matrix K(t) is of fundamental 

importance. The right choice of K(t) affects the rate of convergence 

!(t) to ~(t). 

3.6.2 Solution of the Optimal Estimator Problem 

It can be shown [60] that in order to obtain an optimal 

estimator, !(t), we need to choose the following estimator gain matrix 

K*(t)=P(t)C'(t)V-1(t), t >to (3.29) 

Where P(t) is the error covariance matrix, P(t)=E[~'~]. and it is 

determined by solving the following matrix Riccati equation 

P(t) = A(t)P( t) + P(t)A' (t) + E( t)W(t)E' ( t) 

-P(t)C'(t)V-1 (t)C(t)P(t), 
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with the initial boundary condition P ( t 0 ) = P 0 . While the mean square 

estimation error is 

E [ ~ · ( t) n ( t) ~ ( t)] = Tr { P ( t) n ( t)}, 

where Tr(.) denotes trace(.) and ~(t) = ~(t)- 8:(t). 

plant lY(t) y(t) 

y(t) . , y(t): 
J.~ ~ ( t~ .-1----.1---~-( t.,..) __ .. ~ C(t) 1---t-l .. ~G\+ ..:..... : :- B ( t) 1---,r---.,.,..t+\:/ g- . 

·~ ·~ 

....___~ A( t) .,.~....___. 

L----1----~===~--·•1 D(t) 1--___,j 

F--------- ----------------------------------- ---- ' 
:Estimator , i.(t) 
• ... - _. 1 . ...~/ .. --
: A~ S 

"' ~ 
1----.,..--1=-~ C( t) t-----t_..~, 

•------; A( t) .... ~t--___. 

K(t) 
• 
~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - j 

Figure 3.7. Plant-Estimator Structure For Linear Stochastic Systems 
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The solution of the optimal estimator problem is independent of 

the reconstruction error weighting matrix n ( t). This optimal estimator 

is known as the Kalman-Bucy filter. We are not able to find any other 

linear functional of the observations ~('t) and input u('t) ('t is in the 

range [t0 ,t]) that produces an estimate of x(t) with a smaller mean 

square estimation error. 

For the time-invariant plant (3.9), the following equations solve 

for the constant estimator gain provided that the time-invarint plant 

(3.9) is completely detectable. 

K= -Pcv-1 (3.30) 

where P Is the error covariance matrix satisfying the Riccati equation 

(3.31) 

and further, if the pair [A,G] is stabilizable for any matrix G such that 

GG'=W, then the optimal estimator is asymptotically stable, i.e. the 

eigenvalues of the matrix A0 =A-KC, have negative real parts. 

Consequently, ~(t) goes to zero at a certain exponential rate 

determined effectively by the choice of the estimator gain K ( ~( t) will 

track x(t) after a finite period of time determined by the eigenvalues 

of the matrix A0 ). 

In short, the estimator problem is to find an optimal gam, K*(t), 

by minimizing equation (3.26) given (3.9), (3.27) and the statistical 

information about x(t0 ), w(t) and v(t) (for the time invariant case the 

noise intensities are constant). 



3. 7 Optimal Controller for Stochastic 

Linear Systems 
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As discussed before, stochastic linear systems are defined by 

Equations (3.9) with the appropriate assumptions given in Equations 

(3.10) and (3.25). Stochastic plant models represent a tool for 

introducing a quantitative measure of the uncertainty of a system to 

the dynamic characteristics of the plant ( see Equation (3.9a) which 

represents a random dynamical equation). Therefore, the performance 

measure associated with any decision policy on the system (3.9) must 

be random. As we mentioned earlier, in order to find an optimal 

controller, we need to select an appropriate scalar valued cost 

functional. Since the system behavior is random, it ~s unrealistic to 

choose a performance index as we had before, Eq.(3.14). 

Because of its analytical tractability, the mean utility of the per­

formance index, equation (3.32) is the most commonly used perfor­

mance criterion in linear stochastic systems. 

J = E{ x'(T)S~(T) + L: (~' (t)Q(t)~(t) + y' (t)R( t)y(t) }dt} (3.32) 

where S is a symmetric n by n nonnegative definite matrix, Q(t) is a 

symmetric continuous n by n nonnegative definite matrix, R(t) is a 

symmetric continuous r by r positive definite matrix and E denotes 

the expected value over x(to), v('t) and w('t) on the whole operation 

time interval [to, T] . 

The performance index J is quadratic in the state and the 

control. The first term in J, x'(T)Sx(T), is a measure of the terminal 
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error, while the integral term indicates the system error and control 

effort over the entire time interval [to,T]. Here, we require that the 

control input at time t be realizable in terms of the system outputs 

y('t), which are physically available for 't in [to,T], and also in terms of 

the initial statistics of x(to). Therefore, the control law has to have the 

form 

So, the optimum control may not be an instantaneous function of y(t). 

The solution of this problem is known as the 'separation 

theorem'. This theorem says that for linear systems subjected to 

additive white Gaussian noise inputs with quadratic index of 

performance, the optimal stochastic controller is determined by 

combining an optimal estimator with a deterministic (noise-free) 

optimum controller. Figure 3.8 shows a block-diagram of the linear 

stochastic optimal regulator problem and illustrates the separation 

theorem. 

u - .. !(t) =A(t)!(t) +B(t)y(t)+E(t)lY(t) y 

y(t) =C(t)~(t)+D(t)y(t)+y(t) 

Controller 
11 

" Optimal x'(t) 
-F(t) Estimator 

Figure 3.8. Optimal controller for linear stochastic systems 
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The linear stochastic optimal controller is determined as follows: 

1) Compute the optimal noise-free control law u(t)=-F(t)x(t). 

The calculation of F(t) is independent of C(t), D(t) and input 

n01ses. 

2) Compute the optimal state estimator of x(t) using u('t) and ~('t) 

for 'tin the range [to,t]. 

3) Use the control law 

y*(t)=-F(t)&(t), where &(t) IS obtained m step 2. 

The calculation of the observer gam matrix K(t) and the 

controller gain F(t) can be done independently. This separability of the 

problem is due to the fact that the system is linear and the stochastic 

processes are white noises. Because of their unpredictability, the 

white noise processes are not considered in the design of the optimal 

controller. 

The separation theorem cannot be applied for any general 

nonlinear optimal stochastic problem. We cannot determine the 

control and estimation strategies independently for the most general 

stochastic problems. Figure 3.8 diagrams the linear stochastic optimal 

controller. 

3.8 Optimal Tracking Problems 

3.8.1 Noise Free Tracking Problem 

The preceding section formulates and solves the problem of 

returning a system to zero state in some optimal way (optimal 

regulator problem). This section considers tracking problems in which 
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the output of a system (plant) must follow a desired trajectory 

optimal-wise. 

Assume that we are given the following plant. 

~(t) = A~(t)+B~(t) 
y(t)=C~(t) 

where 

x ---- n- dimensional state vector 

u ---- r-~ dimensional input vector 

y m-dimensional output vector 

A n by n dimensional constant matrix 

B n by r dimensional constant matrix 

C n by m dimensional constant matrix 

(3.33a) 

(3.33b) 

We wish to find an input u *(t) such that y(t) tracks the desired output 

Y which is the output of the reference mode 

~( t) = Az ~( t) 

~=Cz~(t) 

where 

~ ---- p-dimensional reference state vector 

(3.34a) 

(3.34b) 

Y m-dimensional output vector(desired trajectory) 

and 

A z p by p dimensional constant matrix 

C z --- p by m dimensional constant matrix 

[A C ] Is completely observable. 
z' z 
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The optimal tracking problem is defined as: 

For the plant model (3.33), find a control input, u*(t) which m1mm1zes 

the cost functional 

T 

J = j {y'Ry + (~- R)' Q(~- R) ~t 
to (3.35) 

where 

(3.36) 

Q--- an n by n constant non-negative definite symmetric matrix 

R--- an r by r constant positive definite symmetric matrix 

Here, we assume that the reference state ~ is directly measurable. 

Let us define the new state XT and matrices AT and BT as: 

[~(t)] [ A 
~T(t)= ~(t) , AT= Opxn 

Onxp] [ B ] A 'BT = 0 . 
z pxr (3.37) 

By introducing the new state XT and new matrices AT and BT, we are 

trying to convert the servo problem to a regulator problem with the 

following augmented state equation. 

~T (t) =AT~( t) + BT y( t) (3.48) 

Note that the the above system is not completely controllable, it has p 

uncontrollable states. The performance index J is modified as follows. 

First, by using equations (4.46) and (3.44), we write the difference 

between x and ~ in term of XT, 

(3.39) 
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' 
u( t) •I B( t) 1-__.r_.~_ )--- ~.-_ _!--~-,.--_.L...-____.~--.-..... ~LL t. 

r(t) 

~----------------------------------------
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I ~ ___1.__ ~ 

s 

Controller 

.....___..5]1-----
A = A-BF-KC Estimator ; _____ p ______________________ , 
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Figure 3.9. Block-Diagram Of Linear Optimal Stochastic Regulator 
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Then, the second term in index J, equation (3.35) is written in term of 

;KT as: 

Hence, the index J in terms of XT becomes 

T 

J = J {!!'(t)R!!(t) + ~~ (t)QT ~T (t) ftt 
to (3.40) 

where 

Now, we can apply the noise-free regulator problem, section 3.5, 

which yields the optimal control input, u *(t) as: 

where PT is the solution of the positive definite matrix Riccati 

equation 

with PT (T) = 0. The minimum performance index is 

(3.41) 

(3.42) 
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In order to see the effect of the plant parameters on the optimal 

controller gain matrix, we may continue as follows. Let us partition 

_ [Pnxn Plnxp] 
PT- Pl. P2 . pxp 

The controller gain F becomes 

-1 • -1 [B] [ P F = R BTPT = R O [B 0] p{ Pl]= 
P2 

[R-1BP R"1BP1]=[fx fz], (3.43) 

where 

Equation (3.51) is rewritten as 

!! * ( t} = -fx ~( t}- fz ?;( t }. (3.44) 

The Riccati equation (3.42) becomes 

[ P Pl][A 0 ] [A' 0 ] [ P 
Pl. P2 0 Az + 0 A~ p{ 

Pl] 
P2 

-[ P, Pl] [B]R·1 [B' o][ P, Pl] 
Pl P2 0 Pl P2 

[ Q -QLC ] [ P Pl] 
+ -c'L'Q c'L,QLC + 1?2 1?2 =O. 



The following equations solve for p, Pl and P2· 

PA + A'P- PBR-1B'P + Q + P = Onxn 

PlAz + APl- PBR-1B' Pl- QLC + Pl = Onxp 

P2Az +Az P2-P2BR-1B' P2+C'L'QLC+P2=0pxp 

with the boundary conditions 

P(T) = Onxn, pl(T) = Onxp ,P2(T) = Opxp. 
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(3.45a) 

(3.45b) 

(3.45c) 

In order to determine fx, we need to solve equation (3.45a) for 

P. This solution is dependent only on plant parameters A and B. Figure 

3.10 shows the regulator control of the augmented system XT. 

Reference Plant 
~ ~ 

z=A z ... fz ... ,~ .. 
i=A~+By 

~ c .. 
- z- .. ... 

·~ 

-f 
,._ 

Figure 3.10. Block Diagram of the Regulator Control of the Augmented 

System x T (Tracking Problem) 
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The above results are based on the assumption that the 

reference state vector ~ is completely measurable. For the case m 

which ~ is not measurable, the technique in section 3.6 has to be 

applied to construct a state estimator with ~( t) as an input and an 

estimator :X as an output (see Figure 3.11). The next section considers 

these kinds of tracking problems where the states are not directly 

measurable. 

-
~ 

,, Plant - I 
Optimal State 

X ~ 2£. c .. -- fz ~,+ ... i=~+Bu .... ... 
Estimator ·~ 

-f 
,._ 

Figure 3.11. Block-Diagram of the Optimal Tracking Problem 



3.8.2 Linear Optimal Stochastic 

Tracking Problem 
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Section 3.8.1 considers a tracking problem where the state of the 

plant and the state of the reference model are assumed to be directly 

measurable. This section considers a tracking problem in which 

certain noisy linear combinations of the state components of both 

reference and plant can be measured. 

Let us assume that the following equations define the reference 

model 

~(t)=Az~(t)+Ez wz(t) 

l(t)=Cz~(t) 

where 

(3.46a) 

(3.46b) 

~{ t 0 ) is a stochastic process with mean ~0and intensity Qz0 • 

w z ( t) is white noise with mean zero and intensity W z. 

y z ( t) is a white noise process with mean 0 and intensity V. 

The plant is modeled as 

!(t) = A~(t) + B:!!(t) +Ex wx (t) 

~(t)=C~(t)+yy(t) 

where 

(3.47a) 

(3.47b) 

~{ t 0 ) is a stochastic variable with mean ~0 and intensity Qx0 . 

w x ( t) and y y ( t )are white with intensities W x and Vy 

respectively. 



For the system (3.47), we want to find the input u *(t) as a 

function of ~( t) and ~( t ), t 0 $ t $ T, so that the index (3.48) is 

minimized with the assumption that all white noises and initial 

conditions are Gaussian and uncorrelated. 

where 

~(t)=y(t)-y(t) 
- -
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(3.48) 

The index J says that the controlled output y_ has to be as close as 

possible to ~ while not letting the input u(t) exceeds its maximum 

level. 

In order to convert this tracking problem to a stochastic 

regulator problem, the following augmented state and matrices are 

defined. 

and 



Now, we can write the following augmented equations 

~T (t) =AT ~T (t) + BT !!(t) + ET WT (t) 

~ T ( t) = CT ~T ( t) + y T ( t) 

The index J can be rewritten in terms of XT(t) as follows. 

By using (3.50) in (3.48), the index J becomes 

where 
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(3 .49a) 

(3.49b) 

(3.50) 

(3. 51) 

So, the tracking problem is stated as: for the system (3.49) find 

an optimal control input which minimizes the index J given in 

Equation (3.51). This problem is in the form of the stochastic regulator 

problem that has been solved in section 3. 7 

Figure 3.12 shows the structure of the optimal stochastic linear 

tracking problem. We need to construct two separate state estimators, 

one for plant state x and one for the state of the reference model, ~· 

As before, the optimal controller has the form 

(3.52) 
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Again, it is seen that the feedback link of the optimal controller 1s 

completely independent of the reference model parameters. 

~----------------------------------~ l 
l Controller 

l 
l 
l 

' l 

Estimator l 

~ 'U y State . 

w 
X 

, 

• l __., 

eference -f + X=AX+BU+E w z 
__ _..,.~ for R 

l X 

Model I l 
l 
l 
l 
l 

I 
l 

l, 
1\ y l 

X Estimator for l 

-f - -~ c 
X X 

,+ 
l 
l I 

l 

-----------------------------

X 

Figure 3.12. A Linear Optimal Stochastic Tracking Problem With 

3.9 Summary 

In this chapter we presented some mathematical preliminaries 

which are fundamental to the work of subsequent chapters. After 

presenting some notation, definitions and some results concerning 

linear dynamic systems and linear optimal control models, a general 

stochastic optimal control problem was stated. The linear optimal 
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regulator problems and their solutions have been discussed in section 

3.4 and it has been shown that for linear time-invariant stabilizable 

and detectable systems, the infinite time regulator problem possesses 

a constant linear control law leading to an asymptotically stable 

closed-loop system. 

When the states of a system are not measurable, then the 

separation theorem discussed in section 3.6 says that the optimal 

control law is to use an optimal full state feedback design, but to 

substitute state estimates for the actual states. Section 3.6 considered 

state estimation including the case in which :we have additive 

Gaussian noise on the measurements. The control law synthesis, 

which represents the solution of a linear stochastic optimal control 

problem, using full state feedback design and state estimation, was 

discussed in section 3. 7. 

Optimal tracking problems, a wider class of regulator problems, 

have been discussed in section 3.8. First we found control laws which 

require that both the state of the plant and the reference model be 

available. In this case, the feedback . link of the controller is completely 

independent of the reference model parameters. Then, we considered 

a linear stochastic tracking problem, in which a linear combination of 

the states can be measured. In addition, these measurements are 

contaminated by additive Gaussian white noise. It has been shown 

that in order to synthesize the optimal controller, we need to construct 

two separate state estimators, one for the plant state and one for the 

reference state. 



CHAPTER IV 

OPTIMAL CONTROL MODEL (OCM) 

4.1 Introduction & Background 

As mentioned in chapter II, modeling the input-output 

characteristic of the human operator in a man-machine system has 

been extensively investigated in the literature, starting with Tustin 

[42] and Bates et al. [17] in 1947, followed by Elkind [14] in 1956, and 

continuing with the investigations of McRuer et al. into mathematical 

descriptions of human operator in 1957 [15] and human pilot 

dynamics in 1965 [50,53]. To that point of time, only classical control 

theory had been applied to manually-controlled systems, i.e. Cross­

Over modeling [41]. 

The Cross-Over models, discussed in chapter II, can only be 

applied to manual control systems which are restricted to be single­

input, single-output, linear and time-invariant. Therefore, they are of 

no use for multivariable time varying systems. 

The earliest application of optimal control theory to modeling a 

human operator in man-machine systems was made by Thomas in 

1962, Obermayer et al. in 1965 and Elkind et al. in 1968 [40,50]. 

They attempted to combine the human response theory with the 

analytical techniques of modern control theory in order to predict 

human-system performance. They had little success because they 
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didn't account for limitations which anse due to controller remnant 

[40,49]. In 1970, Kleinman et al. [49 ] applied optimal estimation and 
' 

stochastic control theory in order to synthesize the human operator as 

an optimal stochastic controller. This controller consists of a Kalman 

filter (optimal state estimator) and a least mean square state 

predictor, cascaded with the optimal noise-free controller gain factor. 

This model, known as an optimal control model (OCM) became very 

powerful and attractive for predicting human performance behavior 

in simple tasks as well as complex tasks. Section 4.2 discusses this 

model in detail. 

In general, the OCM is a time-domain methodology which 

combines the human response theory [27 ,46] and the analytical 

techniques of the optimal control theory to describe a complex 

manual control system. The human response theory provides a 

complete representation of the human operator's psychophysical 

limitations, and the optimal control theory provides a tool to predict 

the closed-loop human-system performance. 

The OCM is mainly based on the assumption that a well-trained, 

well-motivated human operator will behave optimally subject to its 

inherent psychophysical constraints, (whereas the Cross-over model 

is based on the stability considerations of the closed-loop system). 

This assumption, which complies with the findings of human behavior 

in the psychological literature, implies that the human operator, after 

a period of training, will be acquainted with his own and the system's 

dynamics (characteristics) including the know ledge of human 

response capabilities, the statistical nature of the unwanted external 

noises acting on the controlled system and the task objectives. The 
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OCM represents internally the human's inherent_ constraints and 

includes elements that optimally compensate for these constraints. 

The following section considers the Kleinman-Baron-Levison 

(KBL) model of the human operator [ 49] and illustrates the general 

description of the OCM in more detail. 

4.2 Kleinman-Baron-Levison's Model 

4.2.1 General Description & Assumptions 

Figure 4.1 diagrams the general structure of the OCM. The top 

path represents the controlled system dynamics, which are 

represented by a linear state vector, and display variables which are 

linear combinations of the system states and controlled inputs. As 

indicated in Figure 4.1, the external state disturbance input is 

considered to be Gaussian white noise, and it can be prefiltered and 

injected into the control dynamics (additive to the control input). The 

lower paths in Figure 4.1, represent the human operator with its 

inherent constraints, represented by the effective time delay 't and 

remnant sources, including observation and motor noise. The 

observation noise is applied to the displayed variables and the motor 

noise is injected to the controller output. The rest of the human 

operator components in Figure 4.1, are adaptive. They are adjusted m 

the sense that a mean square cost functional of states and control 

efforts is optimized. In other words, the human operator contains 

elements related to its adaptive behavior and related to inherent 

limitations which constrain this behavior. 
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The optimal control model depicted m Figure 4.1 IS based on the 

following assumptions. 

i) The human operator, pilot, is well-trained to behave in a near­

optimal way subject to its own limitations and the system's 

task requirements. 

ii) The controlled system IS described by a stochastic linear time­

invariant finite-dimensional dynamic system. 

iii) The performance objective is represented by a scalar quadratic 

performance function of error and control effort. 

iv) The unwanted disturbance noises acting on the controlled 

system, i.e. state disturbance, observation nOise and motor 

nOise, are represented as stationary filter processes driven by 

white noise inputs. 

Figure 4.1 also emphasizes that the basic task of human 

operator is to observe a linear combination of the states corrupted by 

n01se and to generate a control input, in some prescribed way, m 

order to control a linear dynamical system subjected to some random 

external noises. Here it is further assumed that the human operator 

manipulates a single control input u(t) through manipulator devices , 

e.g., a control stick in pilot modeling. 
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Figure 4.1 OCM Model Structure. 



4.2.2 Vehicle Dynamics. Task Description and 

Representation Of Human Operator's Limitations 
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It is assumed that the vehicle dynamics can be adequately 

represented 'by the linear time-invariant equations 

~(t)=AI£(t)+ bu(t)+Ew(t) (4.1) 

where x is the vehicle state vector of dimension n, the scalar u is the 

human operator (pilot) control input to the vehicle and w is a zero 

mean white Gaussian state disturbance vector of dimension p (e.g., 

wind gust) with intensity matrix 

E[ w( t)w' (-c)]= Wo(t- -c), 

E[ w; ( t)w j ( 't) l = {:;;li( t- 't) : # n. (4.2) 

For the case when w(t) is C()lored noise, a linear process driven 

by white noise can be included in the equation ( 4.1) by introducing 

additional states. The visual displayed variables, available system 

outputs, are linear combinations of state variables and the vehicle's 

input 

~( t) = C!£( t) + QU(t) (4.3) 

where ~ ( t) is a vector of dimension m, m ~ n. Furthermore, since it 

has been found that when the human operator observes a displayed 

quantity, ~( t), he is' able to extract the first rate of change of that 



quantity [9 ,59]. It is assumed that y ( t) includes all variables 

displayed explicitly plus the first derivatives of those variables. 
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We suppose that the human operator's task is adequately 

specified in terms of the following cost functional that he attempts to 

minimize 

(4.4) 

where the first term in ( 4.4) represents mean square error and the 

rest represents mean square control effort. rhe human operator 

attempts to make the mean square error as small as possible while 

not letting the control efforts exceed some desired maximum level. 

The cost weighting factors may be objective or subjective. It is 

objective if the designer specifies them and it will be subjective if the 

human operator adopts them. There is no guarantee that the 

controller will adopt subjectively the cost functions which are 

preassigned objectively [ 40]. Therefore, it is assumed that the human 

operator's subjective cost function· is of the same form as equation 

(4.4) and that he may choose different weighting than those assigned 

by the designer. 

Equation ( 4.4) includes a cost which is dependent on the control 

rate. This term may represent physiological limitations on the rate at 

which a human operator can take an action. Rynaski et al. [39] have 

proven that introducing a control rate term, subjective or objective 

weight g, in equation (4.4) results in a first order lag in the optimal 

controller. As a consequence, the quantity g may be used to account for 

the neuromuscular time constant lag 't 0 , i.e. the reaction time constant 
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of the pilot. We shall see later that the adjusting weight, g, is used m 

order to set the lag 't 0 which is between 0.1 and 0.3 seconds. 

Furthermore, it is assumed that the different sources of human 

randomness can be clearly represented by errors in observing the 

displayed variables and in executing the desired control movements. 

Therefore, the observation noise and motor noise represent the 

lumped effects of controller remnant. Reference [ 46] considers the 

controller remnant in detail and shows that over a wide range of 

single-axis tracking tasks, the equivalent observation noise associated 

with a displayed quantity can be a Gaussian white noise process, and 

when a quantity is observed foveally, its associated white observation 

noise has a intensity (power density) that is proportional to the 

variance of the observed quantity. The constant of proportionality, 

the observation noise ratio, does not depend on the system inputs. 

This quantity is defined as the ratio of the power density of the 

observation noise to the variance of the associated observed variable. 

Thus it is assumed that the observation noises, y Y 
1 

( t), i = 1, ... , m, 

are linearly independent zero mean, stationary Gaussian white noise 

processes with intensity Vy. 

[ ] {
v o(t-'t) i=j} 

E vy. (t)vy. ('t) = Y1 • • 

I J 0 I:;CJ 

or 

(4.5) 

where 
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0 . 

0 

0 
(4.6) 

A typical value of Py would be 0.01, which yields a normalized 

power level of -20 db. The intensity matrix Vy depends on the 

display's features, such as type and quality and the way the human is 

viewing the display (foveally or peripherally). Therefore, the human 

operator perceives a delayed noisy version of the displayed variables. 

In other words, the pilot experiences y ( t) in order to take an action 
-P 

(yielding commanded control input uc(t)). 

~ p ( t) = ~( t- 't) + ~ y ( t- 't) 

= C~(t- 't) + QU(t- 't) + ~y (t- 't). (4.7) 

Because the human operator has no perfect knowledge of the 

controlled system input, u(t), a motor noise process vu(t), which also 

represents random errors in executing the desired control 

movements, is added to the commanded input uc(t). The motor noise 

vu(t) is a Gaussian white process with variance 

(4.8) 

A typical value for Pu is 0.003, which gtves a normalized motor noise 

of approximately -25 db. 



4.2.3 Basic Structure Of The OCM 

Figure 4.1 illustrates the general structure of the human 

operator. It consists of the following two submodels. 

i) Perceptual Submodel 

4-10 

Figure 4.2 shows this submodel in a block-diagram form. This 

submodel with displayed variables as input and noisy delayed 

variables as its output accounts for the human operator's own 

limitations discussed in the preceding section, except for the neuro­

muscular reaction time delay. 

ii) Controller Submodel 

The remammg elements of the human operator model (the 

controller submodel) are illustrated in Figure 4.3. As seen in this 

Figure, the Kalman filter gives the optimal estimation of the delayed 

state, :& ( t - 't), from the noisy, delayed output variables, I P ( t) and 

then the predictor produces the current estimate of state vector, &( t) 

, followed by the optimal controller which assigns a set of control 

gains to the elements of :& ( t), yielding the commanded control signal 

uc(t). The Kalman filter-predictor followed by controller gains 

represent the adaptations by which the human operator maximizes 

his performance and compensates for his own constraints [69]. 

Finally, the first-order neuro-muscular system filters the commanded 

input plt;ts noise and generates the control input u(t). This filtering is 
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The neuro-muscular time lag , 'tn, is typically between 0.09 and 

0.12 second for wide bandwidth manual control tasks. In most cases, 

the desired lag 'tn, may be obtained by correctly choosing of the cost 

weighting g in equation (4.4). 

4.2.4 Solution Of The Optimal Control Model 

Referring to chapt~r III, one can see that the human operator's 

control input characteristics may be determined by the solution of a 

stochastic linear regulator problem which includes a time delay 

constraint 't. Reference [70] solves this special kind of stochastic 

regulator problems Using the techniques in [70], it has been found 

[ 49] that the solution of this problem has the essential analytical 

results which are summarized below. 

Since the controlled system is linear and the noise processes 

acting on the system are Gaussian and white, the separation theorem, 

discussed in chapter III, can be applied. Let us define the new 

augmented state 

[~( t )] 
~(t)= u(t) · 

The following equations are used to solve for the optimal noise-free 

controller gain matrix which yields the commanded control input 

uc(t) that minimizes the cost function J(u), equation (4.4). 

1 ' 
fn+l ]. F=-!21P=[fl . . fn (4.9) g 
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where the constant matrix P is the umque positive definite solution of 

the (n+ 1 )-dimensional Riccati equation 

(4.10) 

with 

Al= [ 
A 

Olxn 
Q] [Onxl] [ Q 0 ' Ql = , 1 ' Qo = Oixn ( 4.11) 

The human's time constant lag 'tn and optimal controller gain F* are 

1 
'tn =--, 

fn+l 
(4.12) 

p* = [ft . 
(4.13) 

The optimal control input u*(t) is generated as: 

t n U * ( t) + U * ( t) = Uc ( t) + V u ( t) (4.14) 

where the optimal commanded input uc(t) is 

(4.15) 

The quantity ~( t) is the optimal state estimate of x(t) based on the 

observation output data y ( 't ), 't ~ t . 
-P 

By combining Equations (4.1) and (4.14), ~(t) satisfies 

(4.16) 
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and the state estimate ~( t) is obtained by cascade combination of an 

optimal state estimator (Kalman filter) and a least mean square 

predictor. The Kalman filter produces a least mean square delayed 

estimate, ~ ( t - 't) , of the delayed state ~ ( t - 't) b y 

(4.17) 

where 

[ ~(t-'t)] [ A 
1 ( t) = u ( t - 't) ' A 2 = 0 lxn 

and 

[ w(t)] [ E w 1 (t)= () ,E 1 = 0 
V0 t lxn., 

The optimal estimator gain matrix K is 

(4.18) 

where r is the error intensity matrix and the unique symmetric 

positive definite solution of the Riccati equation 

(4.19) 

with 

[
EWE' Onxll 

Wl = 0 Vu • 
lxn 2 

"'n (4.20) 
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The predictor yields the optimum estimate X( t) = [~( t )] from the 
- u(t) 

Kalman filter output y_( t). The following equations define the linear 

dynamics of the predictor 

~ ( t) = ~ ( t) + e A2't [y ( t) - ~ ( t - 1:)] 
. * 
~(t) = A 2 ~(t) + !22uc (t) 

and the optimal commanded input Is 

(4.21) 

(4.22) 

(4.23) 

Figure 4.4 shows the structure of the optimal controller in the 

frequency domain. As seen, the human operator is a linear model and 

it is possible to find a closed-loop expression for the covariance 

matrix of x(t). 
' 't ' 

X=E{x(t)~(t)'}=eA2 't reA2 't + f eA2C1 wl eA2C1 dcr+ 
0 

(4.24) 

where 

. [~(.)] 
Smce ~(.) = u(.) , the vanance of the system quantities are: 

Fori= 1, ... , n 
(4.25a) 
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Fori= l, ... ,m 

(4.25b) 

E[ u2 (t)] = X(n + l),(n + 1). 
(4.25c) 

The effects of human's limitations on the ovearall closed-loop man­

machine system are e,xplicitely reflected in the equations (4.24) & 

(4.25). 

Being linear and time-invariant, the structure of the OCM can be 

formulated in the frequency domain by a linear transfer function 

linking y to u in the form 

U(s)=H(s)Y(s)= [Hl (s) . . Hm (s)] 

m 
=I, Hds)Yi{s). 

1 

Ym(s) 

From Equations (4.16)-(4.23)., we may derive the following expression 

for H(s). 

( 4.26) 

where A=A 2 -KC 2 and 

Appendix A presents the solution of the OCM in more detail. 
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In summary, the KBL's OCM (standard OCM) is built up based on 

the following assumptions. 

1. The human operator possesses an internal state space 

representation of the controlled system and it's environment. 

2. The human operator perceives a set of noisy, delayed display 

variables and their first derivatives. 

3. The human operator acts like an optimal full-state estimator­

controller. 

4. The human operator, as an optimal controller, selects a control 

law which minimizes a quadratic index functional in temis of 

states and control efforts (including control input and its first 

derivative). 

5. The human operator takes an action m a nOisy motor channel. 

Under the above assumptions, the OCM consists of three key 

elements: Kalman filter, minimum mean square predictor, and the 

optimal controller gain factor. Moreover, for a given controlled system 

the OCM is completely determined by the quadratic cost weightings, 

the time delay 't, and the ·intensities of the observation and motor 

noise; the effects of human's limitations on the overall closed-loop 

man-machine system are explicitly reflected in, the equations (4.24)-

( 4.26). 



4.3 Modified OCM (Using Pade Approximant 

For Delay Elements) 
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As seen in section 4.2, the optimal control model contains a 't­

second time delay which reflects the combined effects of delays 

associated with various inherent constraints of the human operator 

(e.g., visual & sensory pathways shown in Figure 4.1). Reference [49] 

considered this delay in the measurements, see equation (4.6), and 

solved the OCM problem for this case. Their solution was summarized 

in the preceding section. In the literature, KBL's OCM is called the 

standard OCM [8,71] which is discussed in section 4.2. 

The standard OCM tries to act as a trained human operator in 

the sense that it mimics the human tasks of observing, thinking and 

acting (motor control). As mentioned earlier, it consists of two cascade 

elements (estimator and predictor m state space form) whose model 

structure complexities depend on the controlled system structure. 

For high order controlled systems, the input/output transfer 

function for the human operator is of high order, and it has been 

shown that it is often affected by near pole-zero concellations [72]. 

Therefore, it is desirable to have a minimally complex OCM model for 

the human operator. 

Because the controlled system is linear, we could insert the 't­

second delay element anywhere in the man-machine-loop (see Figure 

4.1). Reference [8] considers the case where the delay is imbeded 

within the state equations (see Figure 4.5) and solves the optimal 

control problem for this case by employing Pade Approximation 

technique, which models the delay element 't as a finite dimensional 
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dynamic system. The solution of the modified OCM is presented in 

this section, after some introduction of Pade Approximant. 

:\Y 

Yy 

ud u -1 -'tS b e (sl-A) 

y (t) 
-p 

Figure 4.5. Controller System With Perceived Output Variables 

4.3.1 Pade Approximant Technique 

A Pade approximant is nothing but a rational function ~g [73], 

where, P(.) is a polynomial of degree m and Q(.) is a polynomial of 

degree n. We say that P((.)) is a Pade approximant of the function f(.) 
Q. -

iff their power series agree up to and including terms of order x m+n. 

Let f ( s) = e -'tS be the function we wish to approximate. The function 

f(s) may be defined by the following power series about s=O. 



i=m+n f (i) (0) . 
f(s)= r ., s1 

i=O 1. 

f (l) (0) f (Z) (0) f (m+n) (0) 
=1+ s+ s2 + ... + sm+n 

1! 2! (m+n)! 
where 

f(j) (O) = dj f \x) 
dxJ x=O 

(i) 

(e-'ts) I =(-'t)ie-'ts,_ =(-'t)i. 
s=O s-0 

Hence, ( 4.26a) can be rewritten as 

Let the Pade approximant be of the form 

p(s) ao +a1s+ ... +amsm 
----=~--~----~--

Q(s) 1+ b1s+ ... +bnsn 
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( 4.26a) 

(4.27) 

(4.28) 

Equation (4.27) has to agree with equation (4.28) up to order sm+n. To 

be so, the following set of equations has to be satisfied. 

(-t)m (-t)m-1 m (-'t)m-i 
am=b0 +b1 + ... +bm=L b 1 ( .) 

m! ( m - 1)! t=O m - 1 ! 
0 ( -'t )m+j-i 
I, bi =0, j=l,2, ... ,n 
i=O ( m + j - i)! 
where, b ;:::1. 

0 

(4.29) 
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The above (n+m) equations solve uniquely for coefficients of the 

Pade approximant given in equation (4.28). In order to solve the set 

of equations ( 4.29) simultaneously, we may continue as follows. 

( -'t)j 
Let us denote cj = .1 Equations (4.29) can be rewritten m 

J· 

the following matrix form 

ao co 0 0 . . 0 0 1 

a1 c1 co, 0 0 . . . 0 0 b1 

b2 

am Cm Cm-1 co 0 0 0 

0 Cm+1 Cm . c1 co 0 0 

co 

~· 

0 Cm+n Cm+n-1 Cm bn 

(4.30) 

Let us define the new matrices 

a1 b1 c1 co 0 0 0 0 

a2 b2 c2 c1 co 0 0 0 

a= b= '- s = 
'-1 '• , s2 = 

am bn Cm Cm-1 co 0 0 

(4.3la) 



and 

t= Z-' -

Cm+n-1 Cm+n-2 

Using (4.31), we can write equation (4.30) 

[ai ]= 
co o· 

[~] ~1 s2 
t z 

where, prime denotes vector transpose. 

as 
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0 

0 

(4.3lb) 

(4.32) 

The coefficients of ai and bj, for i=O,l, ... ,m and j=l,2, ... ,n, are 

determined as: 

a0 =co =1, 

b Z -1 =- t - -' (4.33) 

4.3.2 State Space Model 

The Pade approximant models the delay as a finite dimensional 

dynamic system given· by Equation (4.28) where its parameters are 

determined by Equations (4.33). By referring to Figure 4.6, we may 

develop the state space model for time delay 't as follows. 
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__ u_ ..... ~~.__e_'t_s _ _:-y----t•~ := _u_ ..... ~.,. .__H_(s_) _ _;--y-~• 
H(s) = y(s) = ao +als+ ... +amsm 'm::; n 

u(s) 1+ b1s+ ... +b 0 s0 

Figure 4.6. Input/output Relationship For Delay 't 

H(s) implies the following differential equation 

(4.34) 

We can choose different state variables to describe the system 

given in Equation (4.34). Here, a systematic state variable procedure 

is shown for development of a state space model for the transfer 

function H(s) or Equation (4.34). H(s) may be decomposed into two 

blocks as. 

w(s) y(s) 1 ( m) H(s)=--X--= . x a 0 +a1s+ ... +ams 
u(s) w(s) 1+ b1s+ ... +b 0 s0 

where 

w(s)= 1 'y(s)=(ao+als+ ... +amsm) 
u(s) 1+ b1s+ ... +b 0 s0 w(s) (4.35) 

u(s) w(s) y(s) 1 .. ... a0 +a1s+ ... +ams m ... 
1+ b1s+ ... +b0 s0 



Equation (4.35) implies 

n-1 
b 0 S 0 w(s) = u(s)- L hi si w(s) 

0 

m . 
y(s)=a0 w(s)+ L ai s1w(s) 

1 

with the following ordinary differential equations 
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(4.36a), 

(4.36b) 

From Equations (4.36), we may set up the following set of first order 

di w(t) . 
differential equations by letting x1 = w, xi = . , 1 = 1, 2, ... , n -1 . de 

xi = xi+1 ' i = 1, 2, ... 'n -1 
1 n-1 h· 

x =-u-l',-1 X· 
n bn 1 bn 1 

m 
y(t)=a 0 x1 (t)+ 1: ai xi 

1 

(4.37a) 

(4.37b) 

The differentiated variables are called the state variables. In vector-

matrix notation, Equation (4.37) becomes 

~d =Ad ~d +Qd u 

y =£'d ~d +dd u 

where 

(4.38) 
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Xt 0 1 0 0 0 

x2 0 0 1 0 . 0 

!fd = ,Ad= ,:Qd = 
0 . . 0 1 0 1 bl bn-1 

Xn --- 1 bn bn bn nxl nxn 

and 

ao 

. r llm<n} 
£d = am ,dd = :: llm=n · 

0 

0 nxl (4.39) 

In summary, a Pade approximant , state space model, Equation 

( 4.38), has been developed for the tilpe delay 't, where Equations 

(4.33) determine the constant coefficients of the Pade approximant 

defined in Equation (4.28). 

4.3.3 Solution Of The Modified' OCM 

This section replaces the Equations (4.38) for the time delay 't 

imbeded within the state equations and solves . the OCM problem. Let 

us assume that we have the controlled system given in Equations 

(4.1) and (4.3) and the following Pade approximant for the delay 't. 

I 

ud =£ d !fd +dd u, (4.40) 
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where ~d is a p-dimensional state vector, Ad is a square constant 

matrix of dimension p, Cd is a column vector of dimension p, dd is a 

constant scalar, scalars u, and Ud, are respectively the input and the 

output of the system. Figure 4. 7 represents the equivalent 

configuration of Figure 4.5 where Equation (4.40) is used for delay 't. 

b 

D 

w 

-1 
(sl-A) 

Figure 4. 7. Equivalent Configuration Of Figure 4.5 

Let us augment the controlled system by the delayed state Xd 

and denote the combined state x 1· The augmented system is 

represented by 

v 
y 

y 
p 

0~n ]l&! +[!!~:J u+[Op~nw Jw(t) (4.41a) 

C ]~1 + Qdd u+yy (4.41b) 
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where 

l\1 ( t) = [ "':( ~ ;) ]. nw=N o. of external state disturbance inputs 

and 
~(t) =A?f(t)+ QUd (t)+Ew(t) 

~(t) =C~(t)+Q ud (t). 

Let us define the new augmented matrices 

A1 =[A~ 
Q£d 

c1 =[Q£~ 

Onxn] b =[ Qd J E =[Opxnw J 
A '-1 bd ' 1 E ' 

- d 

c ],Q1 = Qdd. 

(4.42) 

In terms of the above matrices, we can write the augmented state 

Equations ( 4.41) as 

~1 (t)=A1 ?ft +Q1 u(t)+E1 w(t) 
~P (t)=C1 ~1 (t)+Q1 u(t)+Yy (t). ( 4.43) 

Now, we wish to find an optimal controller for the system (4.43) 

which minimizes the cost functional of the form 

(4.44) 

where 

with Q is given in Equation (4.4). 
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By comparing Equ~tions (4.43) with (4.7), we can see that in 

this case, there exists no delay between perceived output variables 

and the state variables (the estimate of x 1 is at time t not at time t-'t). 

Consequently, we have no need of having a predictor for the modified 

OCM. Hence, for modified OCM, the cascaded combination of the 

Kalman filter and controller gains are the means by which the human 

operator optimizes his performance. Figure 4.8 illustrates the 

modified OCM for the human operator as an optimal controller. 

From the proceeding section 4.2.4, we may have the following 

equations which can be solved for the optimal controller. 

I 1 I 

PA2 +A2P+Q2- -PJ22 :!!2 P=O(n+p)x(n+p) 
g 

F = .!_ J22P = [ f1 . . fn+p fn+p+l] 
g 

1 
't =---

n fn+p+1 

F* = [fl* f* f* ] f* f . 1 2 · · n+p-1 n+p ' i = 't n X i '1 = , , · .. , n + P 

where 

A3= 

with 

[ 
A1 

01x(n+p) 

o(n+p}xl] 
1 . 
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W(t) 

, r-----.--------~ 
u ~~ lli~~ ~ 

- it (t) =At:Kt +bt u(t) +Et1Y(t) r ~ =CtJh(t)+lh u(t) l 
.------------------------------------------------------ • 

Human Operator 

• 
• 
• 
• 
1 

1 

• 
1 
1 

1 

• 
1 
1 

1 

• 
1 u 
• 

~1 (t) 

• 
1 Operator 
1 

• Output 

Yy : Kalman Filter 
Or ~~._ ____________ ~+ ~ 

State Estimator 

N eurontuscular 
System 

.... Controller 
-F 

Neuro-motor 
Dynamics 

Observation : 
Noise : 

• 

,, 
1 ....-1-----------------\ + 

Manipulator 

jv u (I) 

Motor noise 

• 
·------------------------------------------------------· 

Figure 4.8. Modified OCM Structure 
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4.4 Model Validation 

We are given the variables A, Q., C, d, and E which characterize 

the behavior of the controlled system given in Equations (4.1) and 

(4.3) and we assume that the cost weightings in the index of 

performance J, Equation (4.4), are known. 

In order to implement the OCM, we have to know the human 

response parameters 't, 'tn, Vy. and Vu. As mentioned earlier, there 

are reasonable approximations for the effective time delay 't=0.15-

0.25s and for the neuromotor lag 'tn=0.1s. For a given 'tn, we can 

simply determine a control rate weighting, g, in Equation (4.4) so that 

the corresponding control gain matrix F determined by Equations 

(4.9)-(4.12) yields 'tn as required. 

1 
't =--

n fn+l 

Once the values of 't and g are specified, starting with initial 

guesses for intensities Vy and V u, one may proceed with an iterative 

procedure to adjust Vy and V u in such a way that 

i = 1,2, ... ,tn 

where the noise-to-signal ratios Pu and Py1 have been provided from 

empirical data, and their typical values are 0.003 and 0.01 
. 

respectively. 
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After adjusting the intensities Vy and V u, we are ready to apply 

the OCM model to predict different facets of human behavior. For 

example, the closed loop human performance can be predicted by 

Equations (4.24)-(4.26). A computer program which implements the 

OCM has been developed [8]. 

Kleinman et al. [55] have shown that their optimal control 

model works well for both simple and complex tracking tasks. In 

simple tracking, they considered three sets of plant dynamics 

k k K, -, 2 in validation experiments. The state disturbance was a 
s s 

sum of 13 sinusoids whose amplitudes were selected to simulate a 

first order noise spectrum having a break frequency of 2 rad/s; the 

noise is applied as a velocity disturbance to the plant as depicted in 

Figure 4.9. The subjects were instructed to minimize the following 

mean square index of performance 

(4.45) 

The values of 't, 'tn, Vy and Vu we~e computed from matching 

empirical data as mentioned before. Nominal values of 't and 'tn were 

0.15 and 0.1 second, respectively. The value of control rate in (4.45), 

g =0.00017, was adjusted by the selection of 'tn=O.ls. After several 

optimization iterations, the following values of intensities of V y and 

V u were chosen, 

[
0.0037051 0 ] 

vu = o. 048143, vy = o o. 0968629 
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with signal-to-noise ratios 

[
-20.0002] 

Pu =- 25.0002 dB and Py = dB. 
-20.0003 

Figure 4.10 shows a comparison of the frequency-response plots 

of the measured and predicted results for simple tracking Y c=1/s. As 

seen, they agree with the empirical data completely. Table 4.1 also 

compares measured and predicted values of the variances of error, 

error rate and control input. 

4.4.1 An Example of Aircraft Landing Approach 

The following example illustrates the application of the 

(modified) OCM in controlling aircraft during landing and shows the 

qualitative comparison of the OCM with the Cross-Over model for the 

human operator (pilot). 

Figure 4.11 shows a block-diagram representation of pilot­

vehicle system for this example. This is an example of controlling 

aircraft against wind gust during landing approach. The external 

input is injected as though there were a disturbance noise such as 

gust wind acting on the aircraft. The vehicle dynamic, He, is such that 

the human operator (pilot) needs to provide some amount of lead 

compensation. 

The values for 't and 'tn are chosen as 0.15s and 01 s, 
. -4 

respectively. The values of control rate factor, g=3. 98 x 10 , and 

intensities V u=0.9826, Vy =0.2174 are adjusted so as to produce 

'tn=0.1s and noise-to-signal ratios Pu =-25.0006 dB, Py=-20.0004 dB, 

respectively. 
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white noise 

1 
s+2 

Plant 

u 1 

s 

H(s) 

OCM 

Figure 4.9. Block Diagram of Example One of Ref. [55] 

TABLE 4.1 

MEASURED AND THEORETICAL MEAN SQUARE VALUES OF ERROR, 

ERROR RATE AND CONTROL INPUT. FROM TABLE 1 REFERENCE [55]. 

M.S. Error 

Meas. 
0.13 

Theor. 
0.12 

M. S. Error Rate 

Meas. 
3.1 

Theor. 
3.06 

M. S. Control 

Meas. Theor. 
4.2 3.83 
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1 
Frequency (rad/s) 
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a. Results Using Pade Approximation 
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FIGURE 4.10. Experimental Validation Of KBL1S Model in a simple 

Tracking Task, Yc=l/s. 
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white noise 

1 

Plant 

5 
s(s+ 1) 

OCM 

H(s) 

Figure 4.11. Controlling Aircraft Against Wind Gust During Landing 

The frequency response (magnitude & phase) plots of the 

modified OCM solution for the open loop transfer function G = H x H c 

are depicted in Figure 4.12, where H is the pilot transfer function 

linking y to u. The transfer function G, represents approximately oc ! 
s 

form in the cross-over region and a resonant peak (not explicitly 

shown in Figure 4.12) and a high frequency effective time delay 

resulting from the dynamics of the Pade approximation used for 

delay 't . As seen, the OCM yields a solution that may be compared 

qualitatively with the Cross-Over model, but with different dynamic 

modes. 



The following transfer function has been obtained for the 

human operator (pilot) in Figure 4.11. 
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H(s) = (s + 5)(s + 5. 3809)(s + 10. 0255)(s + 13. 33) 

(s + 4. 8904 )(s + 5)(s .+ 10. 0076)(s + 18. 8807)( s2 + 11. 435s + 154.13) 

(4.46) 

As seen, the OCM tends to have near ·and exact pole & zero 

concellations. Figure 4.13 shows that the human operator, as an 

optimal controller, acts like a lead compensator for the vehicle, as 

illustrated in Figure 4.11. 

60 

0 
20 

~ s· 
-20 --~ ,__., 
-60 

-100. 
100 

~ 
::r' 50 
~ en 

0 (1) --0.. 
-50 (1) 

~ 
'-"' -100 

-150 

-200 0.01 0.1 1 10 
Frequency /Rad. 

Figure 4.12. Frequency Plots For Open Loop System Figure 4.11 
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Figure 4.13. The Human operator As a Phase Lead Compensator 
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The effect of the Pade approximant model used for time delay 't 

on human performance is illustrated in Figure 4.14. As the order of 

Pade approximant increases, the resonant peak will increase. 

15 

10 

a 5 
~ ...... 
::s 
,-... 0 

~ 
-5 '--" 

-1 0 

-1 5 

-20 

-25 

-30 
0.01 

p=l 

p: The order of Pade approximant for 
delay 't 

0.1 1 

Frequency (rad/s) 

Figure 4.14. Resonant Peak In Human Operator Transfer Function 

4.5 Summary 

In this chapter we considered the Optimal Control Model (OCM) 

as a powerful tool in predicting human performance in manually­

controlled sytems. We saw that the objective of the OCM is to 
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maximize the adaptive characteristics of the human operator 

subjected to his own constraints, which are represented by visual and 

motor lag delays, and by some sources of remnants (motor and 

observation noises). 

The Kleinman-Baron-Levison model of the human operator, 

known as the standard OCM, has been discussed in section 4.2. This 

section first outlines the general description, main assumptions and 

basic structure of the OCM and then presents the solution of the OCM 

in time domain as well as in frequency domain. It has been concluded 

that the OCM (as a cascaded combination of three key elements, 

Kalman filter, minimum mean square predictor, and optimal 

controller gain factor) is completely determined by the human 

operator's inherent limitations ( time delays and intensities of the 

observation and motor noise). 

Section 4.3 considered the modofied OCM which has the basic 

structure of the standard OCM, except that the delay elements are 

modeled as finite order dynamic systems by using the Pade 

approximant technique. Hence, for the modified OCM, the delays are 

imbedded within the state equations, and there is no need of having a 

predictor. Section 4.3 also presents the solution of the modified OCM. 

It has been shown that the cascaded combination of the Kalman filter 

and the controller gains are the means by which the human operator 

optimizes his performance; Finally, the OCM model validations have 

been discussed in section 4.4. 



CHAPfERV 

DUAL OCM 

5.1 , I:ntroduction 

As disc'ussed in the preceding chapter, because of its predictive 

capability, the OCM has been used as a powerful analytical tool to 

predict and analyze the closed-loop perform~ce of man-machine 

systems for well-trained operators. Some of the applications of the 

OCMs are listed below. 

1 - Display design & evaluation [74-77] 

2 - Prediction of the pilot ratings of aircraft handling qualities [79] 

3- Supervision of several semi-automated subsystems [71] 

4- Workload estimation [78] 

5- Simulator design and flight simulation tasks [2,4,7] 

6- Networked simulator problems [8] 

This chapter presents one of the applications of the OCM in a 

networked aircraft simulator problem (Formation Flight Task). The 

general problem in networking multiple simulators is the 

determination of the maximum amount of inter-simulator 

communication time delay. Moreover, it has been shown [8] that the 

network delays are problematic in any of the following networked 

flight simulator tasks. 

5-1 



1. Formation flight 

11. Air-to-air combat 

111. Air-to-air refueling 

1v. Target hand off 
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This chapter · considers th~ formation flight task developed in 

[8]. The effects of network delays on a simplified formation flight task 

will be discussed in chapter VI. The formation flight task is formulated 

as a Dual OCM model which is fully discussed in the next section. 

5.2 The Dual OCM and its Solution 

This section presents the solution of the dual OCM for Formation 

Flight tasks. Figure 5.1 shows a block diagram representation of the 

dual OCM. As indicated in Figure 5.1, there are two aircraft; one IS a 

Lead pilot who maintains the level of flight while experiencing 

turbulence (e.g., wind gust), and one is a Wingman who is attempting 

to mimic the lead pilot while being affected by the same turbulence, 

w(t). Here, it is assumed that the first OCM (lead pilot) does not need 

to interact with the second OCM (Wingman). Therefore, the first OCM 

can be developed independently as discussed in the previous chapter. 
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yl 
... Vehicle 1 

ul 

- , 
,~ > Lead Pilot (') -'t3S 

w e e ------------ ... 
OCM 1 ~ e. 

~~ + 
~ 

,~ Q yl 
d 

y2 1~ .. 
Vehicle 2 +. ... r 

u2 

--!".:4.tSJP~- - ..... Delayed Error 
OCM2 

Figure 5 .1. Dual OCM STructure for Formation Flight 

5.2.1 OCM1 Development 

We assume that the operation of the first vehicle IS described 

by the following time-invariant linear equations 

~1 (t) =A1 ~1 (t)+ Q1 ud1 (t)+E1 w1 (t) 

~ 1 (t) =C1 ~ 1 (t)+sh ud1 (t) 

and the Lead pilot perceives the variables 

~Pt (t)= ~1 (t)+yYt (t)= 

(5.1) 

(5.2) 
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It is assumed that we have the following Pade approximation 

for the time-delay 't 1 • 

where 

~d, (t)=Ad, ~dJ (t)+Qdt ul (t) 

udt (t)=Cdt ~d, (t)+Qdt udt) 

~1- nxl-dimensional state 

u - scalar 
1 

ud,- scalar 

w - nw -dimensional column 

vector 

vector 

y - llyl -dimensional output vector 
1 

~d1 - nxd1 -dimensional state vector 

A 1 - flx 1 X flx 1 -dimensional constant matrix 

Q1 - nx - dimensional column vector 
1 

E1 - nx1 X nw -dimensional constant matrix 

Cl - lly1 X llx1 -dimensional constant matrix 

!!1 - ny1 -dimensional constant column vector 

Qd1 - nxd1-dimensional constant column vector 

Ad1 - nxd1 X nxd1 -dimensional constant matrix 

edt - flXdl -dimensional COnStant rOW VeCtOr 

dd1- scalar 

:~n 
if i = j} 

if i:;ej 

(5.4) 

(5.5) 



~y 11 denotes the i-th component of the vector ~y1 • 

or 
0 

0 w 2 0 0 

E{w(t)w'('t)}=Wo(t-'t), W= 0 

0 

0 0 

Vy2 0 0 

E{~y1 (t)~~~ ('t)}=Vy1 o(t-'t), Vy 1 = 0 
0 

0 

0 

0 
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Further, it is assumed that the lead pilot tries to minimize the 

index of performance 

(5.6) 

where Q1 is a nonnegative definitive symmetric matrix. The first term 

in (5.6) represents the mean square error and the second term 

represents the mean square of the control rate. 

By substituting (5.5) into (5.1) and (5.2), we will have the 

following equations 

~1 (t)=A1 ~1 (t)+ Ql edt ~dt (t)+ Ql ddt u1 (t)+El w(t) 

rt (t)=e1 ~1 (t)+~!t edt ~d~ (t)+9:t ddl ul (t). 

Let us define the following new quantities 

(5.7) 

(5.8) 



In terms of the above augmented state and matrices, the 

Equations (4.7) and (4.8) are rewritten as 

~3 (t)=A3 ~ 3 (t)+ !b u1 (t)+E3 w(t) 

I 1 (t)=C3 ~3 (t)+~b u 1 (t). 

The performance index J(u), Equation (4.6), becomes 
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(5.9) 

(5.10) 

(5.11) 

Now, we augment the state ~3 by Ul and denote the new state 

~4(t), 

[~3 ( t )] ~4 (t)= ul (t) . 

In terms of ~4 ( t), Equations ( 5. 9) and ( 5.11) become 

~4 (t)=A4 ~4 (t)+ !2 4 J.t(t)+E 4 w 

J(ul )=E{~~ (t)Q4 ~4 (t)+gl J.ti} 

(5.12) 

(5.13) 
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where 

and 

For the system (5.12) , the following equations solve for the 

optimal controller gain matrix, Ft, minimizing the index of 

performance J(u1) given in Equation (5.13). 

(5.14) 

(5.15) 

i = 1, 2, ... , n x4 - 1 

(5.16) 

where 
1 

't 01 = -f- , motor lag delay for lead pilot 
DX4 

(5.17) 

To determine the optimal estimate of the augmented state ~4 , 

we use the following Kalman filter. 



where 
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~4 (t)=As &4 (t)+Kl c4 L~:4 (t)-&4 (t)]+ Qs Ucl (t)+Kl ~Yl (t) 

(5.18) 

The augmented state ~4 satisfies the dynamical equation 

(5.19) 

where 

[ w(.)] 
wl(.)= vu(.) ,Es= 

olxn w 

and 

(5.20) 

The estimator gain, K1 is determined by 

(5.21) 

where, the positive definite symmetric matrix S 1 is the solution of the 

Riccati equation 

(5.22) 

where 



-------------
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and 

E{vu (t)vu ('t) }=Vu o(t-'t). 
1 1 1 

To find the overall closed-loop system containing the first OCM 

(lead pilot), we may proceed as follows. By using Equation (5.20) in the 

Equations (5.18) and (5.19), we will have the following equations. 

~4 (t)=A5 ~4 (t)-Q5 Ft &4 (t) +E 5 w 1 (t) 

* 4 (t)=A 5 & 4 (t)+K1 C4 [~ 4 (t)-& 4 (t)] 

-Q5 &4 (t)+Kl ~y1 (t). 

(5.23) 

(5.24) 

Now, we define the new augmented state ~ 5 (.) and new external 

input vector w 2 (.) as 

where 

2f 5 -is a 2 X n x4 -dimensional column vector, 

n x 4 = n x t + n x dt + 1 

(5.25) 

w 2 -is an nw2 -dimensional column vector, fiw 2 = nw + 1 + nvr1 • 

In terms of 2f 5 (.), the combined Equations (5.23) and (5.24) becomes 

(5.26) 



and E6=[o Es 
DX4 x(nw+l) 

The output of the vehicle 1, 

where 

ODX4XDVyt] 
K . 

1 

in terms of ~ 5 ( t) becomes 
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(5.27) 

The Equations of (5.26) and (5.27) describe the closed loop dynamics 

of vehicle 1 (see Figure 5 .1). 

5.2.2 OCM2 Development 

The second pilot (Wingman) observes the delayed error (and 

error rate). In order to determine the delayed errors, we may proceed 

as follows. We assume that the following equations model the 

intrasimulator time delay 't3. 

where 

xd =Ad xd +bd u - 3 3- 3 - 3 't3 

Yd =Cd xd +dd u ... 3 3 - 3 3 •3 

~ d3 - an nxd3 -dimensional state vector 

u 't3 - a scalar input 

y d3 -a scalar output 

Ad -an nx x nx -dimensional constant matrix 
3 d3 d3 

b d -an nx -dimensional constant column vector 
- 3 d3 

C d -an nx -dimensional constant row vector 
3 d3 

d d3 -a scalar 

(5.28) 

(5.29) 
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Becuase we have nvyi displayed variables, ~ 1, each passes 

through delay -r3 , the following augmented state equations relate the 

output vector ~ 1, as an input to the delay element 't 3 , to the delayed 

output ~ ~ which is the output of the time delay -r 3 (see Figure 5.2). 

where 

Xo = - 3 

and 

Co= 
3 

~ o3 ( t) =A o3 ~ o3 ( t) + B o3 C 5 ~ 5 

~ ~ ( t) = C o3 :?f o3 ( t) + D o3 C 5 ~s 

Ao = ' 3 

:?f d3nyl ( ) l Dyt•Dxd3 X 

Do= 
' 3 

(5.29a) 

(5.29b) 



C X =y = 
5-5 -1 

.... .. .................. "" ................ .. 
' ' ............. ............ ................... 

't3 

....... .... 
........ ..... ... 

.. ....... ............ .. ..... 

Figure 5.2. Input/Output Relationship For Model (5.29) 
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Let us combine the closed-loop system ~ 5 and the delayed 

states ~ 03 in an augmented state ~ 6· 

[ ~s(.)] ( ) 
x 6 (.)= () ,nx =2 nx +nx +1 +ny ·nx . 
- X D • ·· 6 1 d1 1 d3 

- 3 DX6 X 1 

In terms of ~ 6 (.), we may have the following augmented system 

where 

and 

~6(t)=A7 ~6 +E7 w2(t) 

~~(t)=C62f6 
(5 .30a) 

(5.30b) 
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Now, we have a special tracking problem illustrated in Figures 

5.3 & 5.4, where the state disturbance noise of the reference model 

and that of the plant model are correlated. 

As seen in Figure 5.4, n x 6 states of the overall closed-loop 

system are uncontrollable from uz. These uncontrollable states are 

asymptotically stable because the matrix A 7 is asymptotically stable 

(see Appendix B). Therefore, we may develop an optimal controller for 

this tracking problem as follows. 

Let us assume that the operation of the second vehicle Is 

defined by the equations (see Figure 5.4) 

where 

~ 2 (t)=A 2 ~ 2 (t)+!2 6 ud 2 (t)+E 2 w(t) 

I z (t)=C 2££2 (t)+Q 2 u d2 (t) 

~ 2 - an n x 2 - dimensional state vector 

u d 2 -a scalar input to the vehicle 2 

I 2 -an n y 1 - dimensional output vector 

A - n x X n x -dimensional constant matrix 
2 2 2 

b 2 - n - dimensional column vector 
- x2 

E 2 - n x 2 X n w -dimensional constant matrix 

C 2 - n y 1 X n x 1 .-dimensional constant matrix 

Q 2 - n Y 1 -dimensional constant column ·vector 

(5.31a) 

(5.31b) 
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- ... 
~6(t)=A 7 ~ 6 +E 7 w 2 (t) 

a.6 c6 ... .... ... 

-w ,, .. r2 +_ 
u .. Vehicle 2 

... 

Wingman 

OCM2 --

Figure 5.3. Tracking Configuration Of The Dual OCM 

w -2 
a.6 188&. 

~ 6 (t)=A 7 ~ 6 +E 7 w 2 (t) ... c6 ·-F"' 

yd 
-1 

-w r Y.y .. l2 t. . 
Vehicle 2 

!..... .. - .. 
+ 

2 

ud 
2 

yP 
u2 Optimal Filter 

Pade Model -2 .... And --For Delay 't z .... 
Optimal Controller 

Figure 5.4. Using Modified OCM In Figure 5.3 



5-15 

Now, we combine the reference model (5.30) and plant model 

(5.31) in an augmented system in order to develop the second OCM. In 

terms of the augmented state "" 7 (.): [: : i: n ' we write 

where 

with 

T = e 

1 0 0 

1 0 . 0 

1 0 

The output variables for the augmented system are 

(5.32) 

(5.33) 

In order to change the above tracking problem to a standard 

OCM problem, we need to change the output variables (5.33) as 

E r ( t) = ~ 2 ( t)- ~ ~ ( t) = [ C 2 -C 6 ] ~ 7 ( t) + Q 2 u ct 2 ( t) (5.34) 
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r ~ (t)=E r (t)+y y 2 (t)= 

=[Cz -c6]2S7(t)+Qz udz (t)+yYz (t). 
(5.35) 

The displayed variables g1ven m (5.35) are perceived by the human 

operator in the second OCM (Wingman). 

Now, As illustrated in Figure 5.5, we wish to develop a modified 

OCM for the controlled system described by Equation (5.32) with 

displayed dynamics given in (5.35). Let us assume the following Pade 

approximant for delay 't 2. 

where 

~d2 (t)=Act2 !Sct2 (t)+Qd2uz(t) 

ud2 (t)=Cct2 !Sct2 (t)+dd2uz(t) 

2S d 2 - an n x 2 -dimensional state vector 

u 2 - a scalar input 

u d 2 - a scalar output 

Ad 2 -an n x X n x -dimensional constant matrix 
d2 d2 

Q ct 2 -an n x 2 -dimensional constant column vector 

C d 2 -an n x 2 -dimensional constant row vector 

d d 2 -a scalar. 

(5.36a) 

(5.36b) 

Further, it is assumed that the Wingman 1s attempting to minimize the 

following cost function. 

(5.37) 
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Where e(t) denotes the error function which can be defined as an 

actual error (an element of vector quantity ~ 2 ( t)- ~ 1 ( t )) or a delayed 

error (an element of ~ 2 (t)-~~). Hence, the error function, e(t), can 

be defined appropriately as a function of components of the 

augmented state ~ 7 (t), and Equation (5.37) can be rewritten as 

(5. 38) 

where Q7 is an appropriate compatible nonnegative definite symmetric 

constant matrix. 

2 
~ 7 .. .. i 7 (t)=A8 ~7(t)+1:> 8 ud 2(t)+E8~2 (t) cs ... ... 

r 

,, 
Yy2 .. .. + ... 

r g2 
-.. 

I yP 
-2 

ud 
Pade Model 

u2 Optimal Filter 
2 ... And i._ 

For Delay 't 2 Optimal Controller 

Figure 5.5 Block-Diagram Of Modified OCM For Wingman 
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The external inputs w 2 ( t ), ~ y 2 ( t) and v u ( t) are assumed to be 

independent white Gaussian noises with 

w 

0 
, D Yl XDw 0 n y 1 xl 

where 

and 

E{v (t)v' ('t)}={vYz,i 8(t-'t) if i=j} 
-Yz1 -YzJ O if i :;t j ' 

~Yzi denotes the i-th component of the vector ~y2 • 

Now, in order to develop the Wingman's OCM, we may proceed 

as just described for the first OCM. The Equations (5.1) through (5.27) 

remam the same except that A1 ,!21 ,E1 ,C1 ,~ 1 ,Ad1 ,Qd1 ,Cd1 .~d, ,Ql 

and ~(t) are respectively replaced by A8, !2 8 ,E 8 ,C 8 ,~ 2 ,Ad2 ,Qd2 ,Cd
2

, 



Qdz •Q7 and W2 (t)· Below, we summarize the main results. 

where 

~T(t)=AT~T(t)-QTF;&T(t) +ETwT(t) 

~T(t)=AT gT(t)+K2 CT [~T(t)-&T(t)] 
-QT &T(t)+K2 ~Y2 (t) 

~d2 (t) 
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(5. 39a) 

(5.39b) 

~ T ( t) = ~ 7 ( t) , AT = !!s cd2 

u 2 (t) 
1 1 

1 

and 

with 

llx7 =2(nxl +nxdJ +1)+nYl ·nx7 +nxz 

~Tis the closed-loop state, of order nxT =nx 7 +nxd 2 +1. 

Equations (5.39) describe the overall closed-loop dual OCM 

* system. The optimal controller gain factor, F 2 , minimizes the 

performance index J(u2) given in Equation (5.38) and K 2 denotes the 
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* estimator gam matrix. The matrices F 2 , K 2 and the motor lag for the 

Wingman, 't 0 , are respectively determined by Equations (5.14), 
2 

(5.15), (5.17) and (5.21), with new matrix replacements mentioned 

above. The overall system performance (closed loop transfer function), 

the mean square error and the mean square control input can be 

determined just as discussed in chapter IV. 

5.3 Summary 

In thj.s chapter we considerd and solved the dual OCM 

problem.in general for the case in which the first OCM does not need to 

interact with the second OCM. The solution of this problem may be 

best summarized in Figure 5.6. Here, we assumed that the dynamics of 

both vehicles (system matrices and input statistics) and the 

parameters of both OCMs are are given. The corresponding state 

dynamics for time-delays can be developed by knowing their 

numerical values. 

Based on the above given parameters and some matrix 

transformations, we determined the adaptive elements of the OCMs 

(Filter & controller gains). By appropriate choices of system 

parameters, the Equations (5.14)-(5.16) can be used to solve for 

optimal controller gains Ft and F;, and equations (5.20)-(5.22) solve 

for optimal filter gains K 1 and K 2 . 
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w .. ~1 (t) = A1~1 ( t )+!?tudl (t) +~ ~1 ( t) 

__. l-1 ( t) = c 1 !1 ( t) + q 1 u dl ( t) 

udl Dynamics For I~ 1;:.<· 

Delay 't1 ...... p. ..9 ,.::;:. ._ .-;:;. 

idt (t) =Ad1~dl (t) +,2d1ul ( t) 
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~ 
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n1 .... ·~ 
w yd 

-1 ... ... ! z(t) =A 2! 2(t)+~ 2u d2 (t)+E 2 ~( t) ,-
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~ /t)=C 2-?f 2(t)+s! 2 u d2(t) 

ud2 Dynamics For Er 
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~d2 (t)=A <h! <h ( t)+.Q d2u 2 (t) 

ud2 (t)=C <h! ~ (t)+dd2u 2 (t) 
Yy 

2 

u2 t 
1 ucz 

* ... -F ~ Optimal Filter .... + ... 
'tn2s +I 

... 2 k2 -

Figure 5.6. Reconfiguration Of Figure 5.1 



CHAPTER VI 

ANALYTICAL RESULTS 

Chapter V considered the formation flight task (a special class 

of networked flight simulator problems) as a dual OCM and 

represented its analytical solution in detail. In this chapter we 

discusse the effects of network delays on the pilot performance m a 

simplified formation flight task. 

This chapter is organized as follows. Section 6.1 outlines the 

main simulation results obtained from a simplified formation flight 

task. In order to explain these results, sections 6.2-6.4 consider some 

simple optimal tracking problems. Section 6.5 considers some simple 

dual OCMs and summarizes their analytical results. Finally, section 

6.6 concludes this chapter. 

6.1 Analytical Results of a Formation 

Flight Task 

This section considers the effects of time-delays (mainly inter­

simulator time delay 't3) on the human operator (pilot) performance 

in a simplified formation flight problem. Figure 6.1 shows a block­

diagram representation of the dual OCM for this problem. The vehicle 

dynamics diagrammed in Figure 6.2 represent a first approximation 

of the roll axis of an F-16 flying at 100 ft. at 250 knots together with 

a first order gust model appropriate to the vehicle speed and 

6-1 



6-2 

altitude. The gust state is filtered at 2.86 rad/sec by a first order 

filter. As indicated in Figure 6.1, the displayed variables are the 

error and error rate. The error is selected to be the roll angle (actual 

or delayed) mismatch between the two aircraft as displayed to the 

Wingman (second human operator). The disturbance intensity, W, is 

chosen to guarantee an rms , gust level of 3 deg/s and the control 

stick generates a 16 deg/s command for one pound of force input. 

In the analysis of any of the experimental cases in this study, 

the cost functional of the. form J ( u) = E{ e 2 ( t) + g u 2 ( t) } was taken 

for both OCMs (lead pilot and , wingman) in the dual OCM, with 

appropriate definition of the error quantity e and the control input u. 

The normalized observation noises op. error and error rate for both 

OCMs are adjusted to -20 dB and the normalized motor noise is 

adjusted to -25 dB. The nominal values for motor lags 

't01 = 't02 = O.ls for OCMs are adjusted by selecting the appropriate 

control rates, g1 and g2, equal to 0.0363. A computer program has 

been developed [87] for implementing the dual OCM. 

As shown in Figure 6.1, the error, e, can be chosen to be one of 

two things: 1) the difference between the roll angle of the second 

vehicle I 2 and that of the first vehicle ~1 ; or 2) the difference 

between ~2 and the delayed output of the first vehicle, ~~. The 

former is called the actual error and the latter is called the delayed 

error. 



.. 
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Figure 6.1 Dual OCM For a simplified Formation Flight Problem 
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White Noise 

, 
1 

Gust Filter 
s + 10.36 

2.86 ... ... 
s + 2.86 

~ 2.86 1 
+ 

_... ... ... 
j~ s + 2.86 s 

""0 :::0 :::0 ..... 0 0 -0 - -- -~ 

:::0 ,~~ ~ ,, s-
= -~ G 

Figure 6.2 Vehicle Dynamics In The Dual OCM 

In this study, the following notation is used extensively. 

D d : Delayed error while minimizing delayed error 

Ad: Actual error while minimizing delayed error 

D a : Delayed error while minimizing actual error 

Aa: Actual Error while minimizing actual error 

H 1 (s ): Transfer function linking w to ~ 1 

Ht ( s ): Transfer function linking w to yd 
-1 

H 2 (s ): Transfer function linking w to ~2 

't;q: Stationary point of the error 
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In this analysis, the mam concern is to investigate the effects of 

inter-simulator delay 't 3 on the overall system performance and to 

determine the possible range of the delayed variables. The impact of 

the delay 't 3 on the overall system performance is illustrated in 

Figure 6.3. It is a plot of mean square error as a function of 't3 , 

0.001s~'t3 ~0.6s. Note that 't1 was set to 0.15 sand 't 2 was set to 

0.05s and 0.15s. The top part of Figure 6.3 represents actual error 

and delayed error for the case where the delayed error is minimized. 

The bottom part of Figure 6.3 represents these errors when the 

actual error is minimized. 

As shown in Figure 6.3, the delayed error drops initially to 

reach a minimum before increasing and the actual error goes up 

initially to reach a maximum before decreasing. These opposite 

trends of errors don't agree with our expectation of monotonically 

increasing errors. Furthermore, Figure 6.3 shows that the delayed 

error (actual error) will reach its minimum (maximum) later for 

larger 't2 . 

Figure 6.4 compares the errors illustrated in Figure 6.3. At the 

top of Figure 6.4, we see the actual and delayed errors while delayed 

error is minimized, and the bottom of this figure shows the errors 

when actual error is minimized. We should expect, as indicated in 

Figure 6.4, Dd ~ Da and A a ~Ad for almost all 't 3 E [0. 001, 0. 6l, that 

delayed (actual) error while minimizing delayed (actual) error should 

be less than delayed (actual) error while minimizing actual (delayed) 

error. 
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Figure .6.3 Effect Of Intra-simulator Delay On System Performance 
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Figure 6.4. Comparison Of The Errors Plotted In Figure 6.3 
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The basic conclusions of these experiments are as follows: 1) 

the errors are non-monotonic as a function of 't3 , and 2) the 

stationary point (minimum or maximum) varies as a function of 

internal delays. 

In order to check the above results and explore the effects of 

time delays on tracking performance, several test experiments have 

been made. In these tests the intra-simulator delay 't3 was varied 

over the range 0.0001 to 0.6 sec and internal delays 't1 and 't2 were 

varied over the range from 0.05 to 0.55 sec. The results are 

illustrated in Figures 6.5 through 6. 7 which give the mean square 

error versus system delays. 

These Figures show three trends. First, if the first internal time 

delay 't 1 is increased, while the second internal time delay 't 2 is held 

fixed, the delayed error (actual error) is increased and will reach its 

minimum (maximum) sooner (Jater). In other words, for a fixed 't 2 , 

as 't 1 is increased the minimum delayed error occurs at a smaller 't 3 

and the maximum actual error occurs at a larger 't3• Figures 6.5 

illustrate this trend best. 

Figure 6.5a represents a two-dimensional plot of the rms 

tracking error as a function of 't 3 and 't1 for a fixed 't2 =0.25s. As 

seen, the delayed error drops initially and reaches its minimum at 

't;q('t1) before incresing. As 't1 increases, 't;q('t1) becomes smaller. On 

the contrary, the actual error starts increasing and will reach a 

maximum at 't;q ( 't 1) before decreasing. In this case, 't~q ( 't 1) becomes 

bigger as 't 1 increases. 
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It might be helpful to see this trend in a three-dimensional 

plot. Figure 6.5b displays the delayed error as a function of 't 3 and 't1 

for 't 2=0.05s and 't 2=0.35s. For these two values of 't 2 , the 

corresponding actual errors are plotted in Figures 6.5c. 
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Figure 6.5a. The Effect of 't1 on Mean for a fixed 't2=0.25s 
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Figure 6.5c. The Effect Of 't1 On Mean Square Error 
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These figures verify the trends observed in Figure 6.5a. The 

effect of 't1 on rms tracking error is best summarized in Figure 6.5d. 

This figure is obtained by cross-sectioning Figures 6.5b and 6.5c at 

the stationary points. For example, the upper left of Figure 6.5d 

ilustrates the effect of 't 1 on the delayed error while minimizing 

delayed error for a fixed value of 't2 =0.35s. As seen, the point at 

which the minimum of Dd occurs, 't;q, becomes smaller as 't 1 

increases. 
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Figure 6.5d. The Effect Of 't1 On Mean Square Error 
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Secondly, if 't 2 is increased while 't 1 is held fixed, then delayed 

(actual) error is increased and will reach its minimum (maximum) 

later (sooner). In other words, for any fixed 't1 as 't2 is increased the 

minimum delayed error occurs at a larger 't 3, whereas the maximum 

actual error occurs at a smaller 't3 . This trend is seen in Figures 6.6. 

Figure 6.6a represents a two-dimensional plot of the rms 

tracking error as a function of 't3 and 't2 for a fixed 't1=0.25s. As 

illustrated, the delayed error drops initially and reaches its minimum 

at 't;q ( 't 2) before incresing. As 't 2 mcreases, 't;q ( 't 2) becomes bigger. 

Conversely, the actual error starts increasing and will reach a 

maximum at 't;q('t2) before decreasing. In this case, 't;q('t2) becomes 

smaller as 't2 increases. 

Figure 6.6b displays the delayed error as a function of 't3 and 

't2 for 'tt=0.05s and 'tt=0.35s. For these two values of 't2, the 

corresponding actual errors are plotted in Figures 6.5c. These figures 

verify the trends observed in Figure 6.6a. The effect of 't 2 on rms 

tracking error is best summarized in Figure 6.5d. This figure is 

obtained by cross-sectioning Figures 6.6b and 6.6c at the stationary 

points. For example, the lower left of Figure 6.6d illustrates the effect 

of 't 2 on the actual error while minimizing delayed error for a fixed 

value of 't1 =0.35s. As shown, the point at which the maximum of Dd 

occurs, 't;q, becomes smaller as 't2 increases. 



6-14 

5~------------------~ 5~------------------~ 

4.5 

4 

3.5 

3 

2.5 

2 

1.5 

4.5 

3.5 

3 
0.35s D ----------1 a 

"........ 'tz= 0.55s 
'""--.--~ 

... .___ 0.~ ___ ......,... _ ___,..., 

0.35 

0.25s 2.5 t------------
~------------~0.~15~ 

2 

0.05s 1.5 

1L--------, 1~:::....--

4.5 

4 

3.5 

Ad 3 

2.5 

2 

1.5 

1 

5 

4.5 

4 

3.5 

Aa 3 

2.5 

2 

1.5 

1 

't 
3 

0 . 5 0 . 5 L.LL.LL.L.J.J..L..L.1..J..LLJ..LLJ..L.U...L.U..L.LJ...LL.LJ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 

Figure 6.6a. The Effect of 'tz on Mean Square Error for a 

Fixed 't1=0.25s 



6-15 

~----------

1 Dd,'tl =0.35s : 
'-..-.------------.. 6 

0. 

0 0 0 0 

~--·--------· 
I 

: D a, 't 1 = 0.05s 1 - - - - - - - - -- ~ 4 

~---------'"1 

1 Da,'tl=0.35s' .. _________ 1 

4 

3 

a= 3 
(/.) 

2 ti1 a= 
2 (/.) 

ti1 

1 
1 

0. 

Figure 6.6b. The Effect Of 't2 On Mean Square Error 



0. 

~--------" 

: Ad,'tl =0.05s : 
I I 

~- - - - - - - - - -~ 

~ A , 't 1 =0 .05s ~ 
I a I 

----------~~ 

0. 

"--------~ 

~------- -~ 

1Aa, 'tl =0.35s 1 

L--------~ 

0. 

00 

Figure 6.6c. The Effect Of 't2 On Mean Square Error 

6-16 

6 

5 

4 

~ 
Cl:l 

3 tr1 

2 



0. 

't6J. 
3 

' - ' ,D d , 't 1 - 0 . 05 s, 
'----------""' 

0.4 
0.2 't 2 

,----------; 
~ d ' 't 1 = 0 . 35 s : 
,_ --- - ------

3.5 

2.5 
2 

1.5 
1 

0~~ 

5.5 
5 

4.5 

4 
3.5 
3 
2.5 
0.6 

0.4 
0.2 't2 

0.5 

0.6 

;o- :.-'t-1"'=- o.os ~ -: 
... ___________ 1 

'ttq 
3 

I I 

: A a , 't 1 = 0 . 35 s : 

6-17 

3 

2.5 

2 
1.5 

1 

5.5 
5 
4.5 

4 

3.5 
3 
2.5 
0.6 

0.4 

0.2 't 2 

Figure 6.6d. The Effect Of 1:2 On Mean Square Error 



6-18 

Third, the internal time delay 't 2 has a little more effect on 

mean square error (overall system performance) than 't 1. Figure 6. 7 

illustrates this trend best. For example, the upper left of Figure 6. 7 

displays D d as a function of internal delays 't 1 and 't 2 for a fixed 

value of 't 3 =0.15s. As we can see, for a fixed value of 't 1 the rms 

tracking error, as a function of 't2 , will increase much faster than that 

of the error for the case in which 't 2 is held fixed. 
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We propose the following explanations for the trends 

mentioned above. 

i) For rms delayed tracking error 
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The delays 't 1 and 't 3 make the 'reference tracking response, yf, 
slow down. The time delay 't 2 makes the response of the second OCM 

slow down (the plant model is made to respond slower as 't2 

increases). Recalling that the dual OCM is basically a stochastic 

tracking problem (see chapter 5), we may achieve the best closed­

loop performance (the optimum rms delayed error) when there is a 

perfect match between the speed of plant and reference model. In 

other words, we may intuitively say that the sum of time delays 't 1 

and 't 3 must be equal to the delay 't 2 , since the effect of 't 3 on y 2 in 

this case can be ignored in comparison to its effect on reference 

tracking input. 

In other words, when 't 2 is increased, for a fixed 't 1, it is 

expected that 't 3 becomes larger in order to reach an optimum 

tracking performance. In addition, when 't 1 increases, for a fixed 't 2 , 

we expect 't 3 to decrease for achieving a minimum rms tracking 

error. 

ii) For rms actual tracking error 

In this case, the reference tracking signal is the output of the 

first plant, y 1. It becomes slower as 't 1 increases. The delays 't 2 and 

't 3 slow down y2 , the output of the second plant. The actual tracking 

error initially goes up and and reaches its maximum before 
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decreasing. We expect that the maxrmum point will be as small as 

possible in order to have better performance. To do so, the sum of 't2 

and 't 3 should approximately match 't 1. Therefore, for a fixed 't 1, as 

't2 increases, we expect the error to decrease as a function of 't3 , and 

when 't1 increases, for a fixed 't2 , we expect, the error to increase as a 

function of 't 3 . 

In order to comment on the frequency response, which can 

explain the cause-and-effect relationship · between delays and rms 

tracking errors, sections 6.2 through 6.4 consider different simple 

tracking cases and quantify the results which are summarized below. 

To summarize, the time delays have a consistent and significant 

effect on the rms tracking errors. These errors are less sensitive to 

the internal delay 't1. In other words, the rms tracking errors are 

more impacted by the internal time delay 't 2 • The point at which the 

mtmmum (maximum) rms tracking error occurs, as a function of 't3, 

mcreases (decreases) with increasing (decreasing) 't 2 and decreases 

(increases) with increasing (decreasing) 't 1• 

6.2 A Simple Optimal Tracking Problem 

Section 6.1 considered the effects of time delays on pilot 

performance in a formation flight task (see Figure 6.1) and concluded 

that the optimal delayed tracking error, as a function of inter­

simulator time delay 't 3, drops initially to reach a minimum before 

increasing. Furthermore, it has been shown that if we hold the first 

OCM time delay fixed and increase the second OCM time delay the 
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delayed tracking error Is increased and reaches its mmrmum at a 

larger 't 3 . 

To investigate this trend, we considered a simple optimal 

stochastic tracking problem illustrated in Figure 6.8. The upper block 

diagram represents the reference model with external disturbance 

input w, and the lower block diagram represents the plant whose 
' ' 

output tracks the output of the reference model. The plant is 

disturbed by the same external input w. Both reference model and 

plant are represented by first order systems with model parameters 

't3 and 'tz respectively. 

· Reference model 

... 1 
' 't'3 s+ 1 

w 

plant 

-- 1 -- 1 + --u -r2s+l -... .. 

,+ 
Optimal ... /"'........_- vy 

Filter/Controller + 

Figure 6.8. Simple optimal tracking problem 
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The optimal mean square tracking errors versus 't 3 are plotted 

m Figure 6.9 for different values of 't 2 = 0.15,0.25,0.35,0.45 and 0.55. 

In other words, Figure 6.9 shows the effect of 't 2 on the plant 

performance. The error as a function of 't 3 decreases initially and 

reaches its minimum at 't 2 = 't 3 before increasing and reaching its 

steady state value (not shown in Figure 6.9). Appendix C presents a 

detailed derivation of this problem and shows theoretically the 

nonmonotonic property of the nns tracking error. 
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Figure 6.9. The effect of plant parameter 't2 on optimal mean square 

tracking error 



This is exactly the same trend which is observed for the 

formation flight task experiment. As 't 2 is increased the optimal 

tracking error is increased and will reach its minimum later (at 

larger 't3). The reason why this trend happens may be stated as 
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follows. As we increase 't2 , the plant will react more slowly, and its 

response cannot track the desired output. Therefore, we observe a 

larger tracking error. For a fixed 't2 , as 't3 increases, the reference 

model becomes slower, which yields a smaller tracking error, since 

the plant is able to track the output of reference model. At 't2 = 't3 

the error becomes zero, since we have a perfect match. In this case 

the optimal feedback will be zero, since the plant and the reference 

model match. 

For 't 3 bigger than 't 2 , the plant is responding to the same 

disturbance faster. Therefore the error starts to rise. As 't3 becomes 

much bigger than 't2, the output of the reference model is effectively 

constant, and the tracking problem is reduced to an optimal regulator 

problem with an external input w. The MSE in this case is exactly the 

variance of the plant, which is independent of 't 3 • This variance will 

increase as 'tz decreases. 

As discussed in chapter 5, the formation flight task, in which 

the wingman tries to mimic the ideal pilot, is itself a tracking 

problem in a complex form. The trends mentioned above and fully 

discussed in section 6.1 are related to the nature of the general 

tracking problem. 



6.3 A Simple Tracking Problem with 

Inter-simulator Delay 
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There have been two analytical results of the networked 

simulator formation flight problems (discussed fully in section 6.1) 

which were unexpected and initially puzzling. The first was that the 

error perceived by the wingman (labeled "Delayed Error" in Figure 

6.1) decreases initially as· the inter-simulator time delay 't 3 increases 

(see Figure 6.3). This non-monotonic behavior was considered in 

section 6.2 where a simple optimal stochastic tracking problem was 

applied to illustrate why this behavior occurs. 

The second unexpected result was that the actual tracking 

error between the lead position arid the wingman (labeled "Actual 

Error" in Figure 6.1) behaves in an opposite way than does the 

delayed error, as indicated in Figure 6.3. The mean square delayed 

error is decreasing while the mean square actual error is increasing. 

The objective of this. section is to illustrate, with a simple 

example, why this behavior occurs. The example is a simple optimal 

tracking problem depicted in Figure 6.1 0. This problem is similar to 

the one used in section 6.2, except that an inter-simulator delay 't 3 

has been added. In Figure 6.10, the upper block diagram represents 

the reference model with external disturbance input w(t), and the 

lower block represents the plant model. The plant is disturbed by the 

same external input w(t). Both the reference model and the plant are 

represented by first order systems with model parameters 't1 and 't2 

respectively. 
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Figure 10. Simple Optimal Tracking Problem With An Intra-Simulator 

Time Delay 't 3 

In this problem, the error can be chosen from the difference 

between the output of the plant, y 2 , and that of the reference model, 

y 1, or from the difference between y 2 and the delayed-output of the 

reference model, yf. The former is called the actual error and the 

latter is called the delayed error. As in the previous sections, the 

following notation is used extensively. 
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D d Delayed error while minimizing delayed error 

Ad Actual error while minimizing delayed error 

D a - Delayed error while minimizing actual error 

A a Actual error while minimizing actual error 

H 1 ( s) - Transfer function linking w to y 1 

Ht (s )- Transfer function linking w to Yt 
H2 (s) - Transfer function linking w to y 2 

Three cases have been considered with three different 

combinations of values for 't1 and 't2 , and with 't 3 ranging between 0 

and 0.25 seconds for each case. Here, we will discuss only one case, 

since it illustrates the basic pattern. 

CASE 1. 't1 = 0.25, 't 2 = 0.15, 't3 = 0, 0.05, 0.1, 0.15, 0.25 

Figure 6.11 displays the actual error and the delayed error for 

the case where the delayed error is to be minimized. Notice that the 

delayed error increases while the actual error decreases with 't 3. This 

pattern is similar to that found in the dual OCM problem (see Figure 

6.3). 

The effect illustrated in Figure 6.11 can be understood by 

looking at the behavior of some of the transfer functions. Figure 6.12 

represents the magnitude and phase plots of Ht (s). As 't 3 increases, 

Ht (s) will have more phase lag due to pure intra-simulator delay, 

't3 .. The gain and phase plots of H 2 (s), are depicted in Figures 6.13, 

for the above different values of 't 3. Figure 6.13a represents the 

frequency plots when the delayed error is minimized, and Figure 
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6.13b represents the same plots for the case in which the delayed 

error is minimized. 

Keep in mind that smce we are minimizing (y2 - Yt) the 

optimal controller will attempt to make H 2 (s) match Ht (s); if they 

are equal, y 2 will equal y t . If H 2 ( s) matches H d s), then y 2 will 

equal y1. 

By comparing the gain plots' of Figure 613 with the gain plot of 

Figure 6.12, we can see that as 't 3 increases, the gain of H 2 ( s) is 

approaching the gain of H 1 (s) (which is the same as the gain of 

Ht (s)). Moreover, as we compare the phase plots of Figure 13 with 

the phase plot of Figure 6.12, it is seen t~at the phase of H 2 (s) is 

moving toward that of H 1 (s) (which is equal to the phase of Ht (s) 

when 't3 =0). These trends say that the actual error as a function of 

't 3 has to drop initially. 

The delayed error (Dd or Da) behaves differently; it increases 

monotonically (see Figure 6.11). The reason why the delayed error 

is monotonically in<:;reasing may be stated as follows: by increasing 

't3, although the gain of H 2 (s) is approaching that of Ht (s), we still 

have more phase lag in Ht ( s) than that of in H 2 ( s). It means that 

even though y 2 is getting closer to y 1, as 't 3 increases, the phase lag 

imposed by the pure time delay 't3 can not be fully compensated for. 
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Figure 6.13b. Phase And Magnitude Of H 2 (s) (actual error is 

minimized) 
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To summarize, this section considered a simple optimal 

tracking problem with an inter-simulator time delay, 't 3. The 

behavior of the actual and delayed errors have been analyzed as a 

function of 't 3. We observed that the actual error and delayed error 

show two exactly opposite trends (which have been seen in the 

formation flight task) as a function of 't3 As shown in chapter 5, the 

formation flight task is itself a special tracking problem (in which the 

reference model and the plant model experience the same 

disturbance) in a complex form. The opposite trends mentioned 

above are related to the nature of the general tracking problem. 

6.4 Simple Tracking With OCM 

The two unexpected properties of the rms error curves of the 

networked simulator formation flight tasks, non-monotonic and 

opposite trends of actual and delayed error, have been discussed in 

sections 6.2 and 6.3, respectively. These sections used simple optimal 

tracking problems to illustrate the non-monotonic and opposite 

behavior of errors. 

This section considers a simple tracking problem with an OCM 

depicted in Figure 6.14. As indicated in chapter V, this problem may 

represent a simple form of the dual OCM. The upper block diagram 

represents the reference model with external disturbance w and the 

lower path contains the plant model and the OCM structure. The 

purpose of this section is to illustrate the effect of internal delay, 't 2 

on OCM model and to describe the effect of the OCM, as a special class 

of optimal filter and controller, on overall system performance. 
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As discussed in chapter IV, the know ledge of the human 

parameters 't 2 , 't n , v Y and v u are necessary in order to implement the 

OCM. Here, the values of internal time-delay, 't2 and motor lag, 't 0 

are 0.15 and 0.1 second respectively. The value of control rate, 

g=0.003275 was adjusted in order to have the required 1' 0 = 0.1s. 

The arbitrary values of the intensities for the observation nOise, 

v Y _ 0.1, and motor noise, v u = 0.1, were chosen. 
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Figure 6.14. A simple Tracking Problem With OCM 
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Figure 6.15 displays the optimal mean square errors versus 't 1 

for different values of the plant parameter a, and with intrasimulator 

delay 't 3 = 0. The error as a function of 't 1 drops initially and reaches 

its minimum at 't 1 =a before increasing. 
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Figure 6.15. The Effect Of Plant Parameter "a" on MSE 

By Comparing Figure 6.15 with Figure 6.9 (simple optimal 

control problem), we can see the effect of internal delay 't 2 and 

motor noise v 0 (human operator limitations) on MSE. Here, we cannot 

have a zero error for the case in which 't 1=a (perfect match) because 

of human operator's limitations. The gain and phase plots of H 2 (s) 
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are depicted in Figure 6.16 for different values of 't 1. As seen, the 

optimal controller attempts to make H 2 (s) match H 1 (s). As 't1 

increases, the gain of H 2 ( s) increases and phase of H 2 ( s) decreases. 

The frequency plots H 2 ( s) match those of H 1 ( s) best when 

't1 = a= 0.15. 
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Figure 6.16. Frequency Plots of H 2 ( s) & H 1 ( s )vs. 't 1 

(a= 't2 =0.15, 't 3 =0) 
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6.4.1 Effect Of 'tz On OCM Response 

The effect of internal delay 't 2 on human operator frequency 

response is best illustrated in Figure 6.17. Bigger delay 'tz yields 

smaller gain and bigger phase shift (especially at lower frequencies). 

It means that the human operator tries to deal with the increased 

system lags by adapting his behavior in order to make the overall 

system stable. 
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Figure 6.17. Frequency Plots of OCM (a='t1=0.15, 't3 =0) 



6-37 

In other words, when 'tz, the man-machine phase lag, 1s 

increased, the human operator reduces his gain in order to guarantee 

closed-loop stability (The feedback controller becomes sluggish, and 

therefore the controller input becomes less significant). He also 

produces more phase lead in order to compensate for the lag 

introduced by 't z. 

As 't1 increases, the gain of Hz (s) increases and the phase of 

Hz (s) decreases. The frequency plots Hz (s) match those of H 1 (s) 

best when 't 1 = a = 0.15. 

6.4.2 Effect Of 't 2 on MSE 

Figure 6.18 shows the effects of 't z on mean square tracking 

error. The errors show different trends. Dd decreases initially and 

reaches its minimum at 'tz = 't3 , before increasing. Aa mcreases 

monotonically with 't 2 • D a and Ad are monotonically decreasing as 

'tz mcreases. 

The reason why D d behaves non-monotonically can be stated 

as follows. Figure 6.19 represents a reconfiguration of the block­

diagram of Figure 6.14 when the delayed error is minimized. As 

indicated in Figure 6.19, for the case in which the inter-simulator 

delay 't 3 is equal to internal delay 't z, we will return to the case in 

which the delay 't3 =0 (see Figure 6.14). This case has been discussed 

earlier in this section (see Figure 6.15). For 't1 =a , as 'tz increases, 

the control input u becomes less significant, and both the reference 

model and the plant respond to the same external input, w. 
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Therefore, D d should drop initially when -r2 < -r3 and reach a 

mm1mum at 't 2 = 't 3 before increasing. One can use the same 

argument and explain why the other trends occur. 
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6.5 Lower Order Dual OCM Results 

Vy 

Section 6.1 considered the effects of intra-simulator time­

delay, 't 3 , on pilot performance in a formation flight task, and it has 

been concluded that the minimum (maximum) value of mean square 

tracking error as a function of 't 3 , increases (decreases) with 

increasing 'tz and decreases (increases) with decreasing -r1. The 



OCMs in the formation flight task controlled vehicles which were 

modeled by fourth order dynamic systems. 
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Knowing that the behavior of -the human operator is strongly 

dependent on the dynamics of the vehicles which he manipulates, 

this section considers dual OCMs with lower order vehicle dynamics, 

in order to check further the behavior of rms tracking errors. 

Sections 6.5.1 and 6.5.2 summarize the analytical results obtained 

from a dual OCM with first order and second order vehicle dynamics, 

respectively. 

For the experimental cases in this section, the intrasimulator 

delay 't3 was varied over the range 0.001 to 0.6 seconds and internal 

delays 't1 and 'tz were varied over the range 0.05-0.55 seconds. For 

both OCMs, the normalized observation noises on error and error rate 

are adjusted to -20 dB by appropriate choices of observation noises 

V Yl and V Y2 . The normalized motor noises are adjusted to -25 dB by 

selecting the right values for motor noise intensities V01 and V02 • 

The nominal values for motor lags 't 01 = 't 02 = 0.1 s are chosen by 

adjusting control rates g 1 and g 2 . 

6.5.1 Analytical Results of a 

First Order Dual OCM 

The dynamics of both vehicles in dual OCM (see Figure 6.1) are 

governed by the following first order dynamical equations 

x(t)= -x(t) + u(t) + w(t) 

y( t) = x(t), 



with the following block-diagram. 

w 

u 
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Figure 6.20 illustrates the effects of time-delays on the mean 

square tracking errors. As a function of intra-simulator delay 't 3 , the 

delayed error increases monotonically and the actual error drops 

initially to reach its minimum before increasing. As shown in Figure 

6.20, for a fixed second internal delay 't 2 , as the first internal delay 

't 1 increases the actual error decreases, and its minimum occurs at a 

smaller 't 3. If we hold 't1 fixed and let 't 2 increase, the actual error is 

increased and will reach its minimum later (at a larger 't 3). 

In summary, we saw that the delayed error and actual error, 

for a simple first order dual OCM, show two opposite behaviors, 

which are exactly the same trends which have been observed for a 

simple optimal tracking problem discussed in section 6.3. 

6.5.2 Second Order Dual OCM 

This section summarizes the effects of time-delays on mean 

square tracking errors for a dual OCM whose vehicle dynamics are 

both defined by the following second order system. 
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Figure 6.20. Effects of Delays on MSE in a First Order Dual OCM 
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Figures 6.21 and 6.22 illustrate the effects of time-delays on 

mean square tracking error for this second order dual OCM. As seen, 

as afunction of inter-simulator delay 't3 , the delayed error drops 

initially and reaches a minimum before increasing and the actual 

error goes up initially and will reach its maximum before decreasing. 
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Figure 6.21. Effect of Delay 'tz on MSE for a Second Order Dual OCM 
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The stationary points are varied as a function of internal delays. As 
I 

indicated in Figure 6.21, If we hold the first internal delay 't1 fixed 

and increase the second internal delay 't 2 , the mean square errors 

are increased, and the delayed error will reach its minimum later (at 

alarger 't3), whereas the actual error reaches its maximum faster (at 

a smaller 't3). 
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Figure 6.22. Effect of Delay 't 1 on MSE for a Second Order Dual OCM 
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In short, for second order dual OCMs we have observed that 

the mean square tracking errors possess exactly the same trends 

which have been seen in formation flight task experiments. These 

trends have been discussed in section 6.1. 

6.6 Summary 

In this chapter we investigated the effects of system delays on 

human performance in dual OCM problems. The analytical results 

obtained from a formation flight task showed that the mean square 

tracking errors {perceived and actual errors), as a function of inter­

simulator delay, are non-monotonic, and they behave in two opposite 

ways. The mean square perceived error drops initially to reach a 

minimum before increasing, whereas the mean square actual error 

increases initially and will reach a maximum before decreasing. 

These trends have been investigated in sections 6.2 and 6.3 by 

considering some simple optimal tracking problems, and it has been 

concluded that the non-monotonic and opposite behaviors of errors 

are related to the nature of the general tracking problem, since the 

formation flight task, in which the first pilot tries to mimic the 

second pilot, is itself a tracking problem in a complex form. 

The effect of internal delay on the OCM, as a special class of 

optimal filter and controller, and on mean square tracking error, 

have been discussed in section 6.4 by considering a simple tracking 

problem with an OCM used as an optimal controller feedback. It has 

been shown that by increasing internal delay, the human operator 
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reduces his gam and produces more phase lead m order to guarantee 

the stability of the closed loop system. 

By considering the lower order dual OCMs in section 6.5, we 

observed that although the behavior of human operator is strongly 

affected by the complexity of the vehicles which he manipulates, the 

overall closed-loop performance of a dual OCM problem, where the 

first OCM attempts to follow the second OCM, is govem~d by the 

general nature of the stochastic tracking problem. 



CHAPTER VII 

AN INTRODUCTION TO THE AIR-TO-AIR 

COMBAT TASK 

7.1 Introduction 

So far it has been shown that we can use the optimal control 

model methodology to analyze the adverse effects of the 

communication delay in a formation flight task, a special class of 

problem. The formation flight task is formulated as a dual OCM in 

which the first OCM does not interact with the second OCM. 

The formation flight task, which was analyzed in this report, is 

only one task in which inter-simulator time delay may cause 

problems. The air-to-air combat task, for example, could be even 

more sensitive to the effects of delays between the simulators. The 

next phase of this research should concentrate on this more 

challenging problem. 

The difficulty in analyzing the air-to-air combat task stems 

from the fact that the OCM assumes that each pilot has an accurate 

internal model of the target. In this case the target is another aircraft, 

with a pilot who is also tracking the first aircraft. 

Hence, the air-to-air combat task is basically different from the 

formation flight task discussed in previous chapters Consequently, the 

7-1 
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dual OCM formulated m chapter V can not be applied to an air-to-air 

combat problem. 

The "game of combat", which includes air-to-air combat, is 

referred to as an encounter between hostile players, each of whom 

attempts to capture (destroy) his opponent, while ensuring his own 

survival. The combat game becomes a one-target, pursuer-evader 

game if one of the players has no offensive capabilities so that he can 

never destroy his opponent. The offensive player is called the pursuer, 

and his opponent (the defensive player) is called the evader. The 

pursuer chooses policies to minimize the time of the capture of his 

opponent, and the evader tries to prevent the capture or to maximize 

the time of capture. 

The general mathematical approach for formulating and solving 

pursuit-evasion problems is the theory of differential games due to 

Isaacs, 1954 [81]. Since that time till now, much work has been 

done on games of pursuit-evasion [82-107]. 

This chapter, which considers the feasibility of developing an 

OCM air-to-air combat model is organized as follows. Sections 7.2 

through 7.4 present a review of the literature on differential game 

theory and introduce pursuit-evasion problems. In section 7.5, we 

apply the methods reviewed in the previous sections to an example 

of a stochastic pursuit-evasion game (classical interception problem). 

Section 7.6 investigates the feasibility of applying differential games 

theory to modeling of an air-to-air combat task by considering the 

possibility of combining the optimal control model and differential 

games for a simple task. Finally, section 7.7 concludes this chapter. 
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7.2 Differential Games 

The theory of differential games was invented by R. Isaacs in 

1954 [81]. His study is basically an extension of pursuit problems in 

which the target can control his motion (maneuverable target) and his 

solution is rooted in both game th.eory and modem control theory [90]. 

We proceed the mathematical formulation of the differential game 

theory in section 7 .2.2 after reviewing some concepts of game theory, 

which are necessary in order to have a better understanding of the 

differential games. 

7 .2.1 Game theory 

The theory of games, which was first developed by Jon Von 

Neuman in 1920's, may be viewed as a decision-making processe 

involving two players with the conflicting optimal strategies [80-

83,116]. A strategy is defined as a set of decisions which provide an 

alternative for the player in order to take an action. The players take 

the strategies based on some certain available information, including 

the state of the game and the rules of the game. These rules determine 

the objectives of the game, the end of the game, and present the 

admissible set of strategies of each player of the game. 

The game is called zero-sum if each player's loss is his 

opponent's gain. There are two basic premises of zero-sum two 

player deterministic games: (1) each player is trying to maximize 

his own gains, or to minimize his own losses, (2) both players are 

able enough to evaluate accurately the payoffs associated with both 

opponent's alternative strategies (perfect information game). The 
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payoff is ·a numerical measure which determines the value of a game 

as well as the values of strategies; it is expressed in terms of the 

strategies of both players. 

The payoffs associated with the players' alternative strategies 

are regularly expressed in the form of a payoff matrix. Thus the n x m 

payoff matrix means that the first player, u, can choose a selection of 

pure strategies associated with the m payoff rows, while the other 

player, v, may choose a selection of strategies associated with the n 

payoff columns. The payoff will be the number at the joint point of 

their two choices, for example if the player u chooses the ith row and 

the player v chooses the column j, the payoff is the ij-t~ element of 

the payoff matrix. 

In order to introduce conflict, we assume that the player v tries 

to maximize the payoff by choosing his appropriate choice of strategy, 

while the player u attempts to minimize the same payoff of the game 

by his selection of a strategy. Since it is a perfect information game in 

a sense that u and v know their objectives, v strives for the maximum 

of the minima (maximin), while u strives for the minimum of the 

maxima (minimax.) 

The game has a saddle point if the minimax equals the maximin. 

The solution to a game means a statement of the probabilities which 

each player has to assign to each of his strategies. 

Given a game with a saddle point, finding the solution of the game is 

simply finding the pure single strategy for each player will result in 

the maximin equalling the minimax. Given a game with no saddle 

point, a mixed strategy (i.e., a combination of pure strategies with a 

given frequency) will yield the same stability (i.e., u's minimax 
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equates the v's maximin) as in the games with a saddle point*. This 

payoff is called the value of game which indicates the expected value 

of v's gains and u's losses. 

If the choices of u and v are continuous, the discrete payoff 

matrix is replaced by a continuous payoff function expressed explicitly 

in terms of the strategies of u and v, L(u,v), where L denotes the 

payoff of the game. The main concern in game theory is to find a pair 

of strategies u0 and v0 such that 

(7.1) 

with u e U and v e V, where U and V are the sets of all admissible 

strategies for the minimizing and maximizing players, respectively. 

The pair (u0 ,v0 ) is called a saddle point of the game and J(u0 ,v0 ), 

which is the payoff evaluated at the saddle point, is called the value of 

the game. A game theoretic saddle point exits if the following 

conditions are satisfied [80] 

aL(u, v) = aL(u, v) = O 
a(u) a(v) (7 .2a) 

a 2L(u, v) > O a 2L(u, v) < O 
a( u 2 ) - ' a( v 2 ) -

(7.2b) 

and 

(7.3) 

* This is the result of minimax theorem whichwas proved in 1928 by John von 
Neuman. This theorem says that by introducing mixed strategies we are able to 
find a solution for any two person zero-sum game. 
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where the equations (7 .2) and the equation (7 .3) are respectively the 

necessary and sufficient conditions for u0 and v0 • The equation (7.1) is 

equivalent to the following minimax equation : 

J { u 0 , v 0 ) = Min J { u, v 0 ) = Max J { u 0 , v) 
ueU veV 

=Min MaxJ(u, v) 
ueU veV 

=Max MinJ(u, v) 
veV ueU (7 .4) 

Equation (7.4) is obtained based on the assumption that each player 

takes his optimal strategy while assuming that his opponents plays 

optimally. 

7 .2.2 Differential Games 

A mathematical definition of a general differential game may be 
J 

stated as# : determine a saddle-point pair of pure strategies u 0 and v 0 

of the continuous payoff index 

subject to the state constraints 

# A rigorous formulation of differential games termed as quantitative games is 
given in Chapters 1-V of Ref. 113. 
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One may refer to the differential game as a generalized game 

theory problem. For example, it becomes a game theory problem 

discussed in the previous section if the state x can be solved in terms 

of control inputs u and v. The state constraints given above define the 

rules of the game, i.e., the start, the progress and the end of the game. 

The differential game defined above is called a zero-sum, two person 

game, and its solution has been fully discussed in the literature 

[81 ,84-88]. 

The differential game problem as a 'two-sided' optimal control 

problem [80] becomes an optimal control problem if both players 

minimize (maximize) the payoff index J or if one of the players does 

not play (inactive). Ref. [108] formulates a particular case of 

differential game which can be redeuced and considred as a statndard 

optimal control processes. Conversely, the optimal control problems 

can be generalized to differential games by choosing an opponent 

(max-min control problems or games against nature [109,116]). That 1s 

why the strategies are the control inputs and are defined in the form 

of linear state feedback control laws. 

As we mentioned at the beginning of this chapter, the 

differential games which date back to the 1950's concerned the study 

of the combat problems [81]. These kind of problems can be 

formulated as pursuit-evasion games. The next two sections consider 

deterministic and stochastic linear pursuit-evasion games, 

respectively. 
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' 7.3 Linear Deterministic Pursuit-

Evasion Game [80,82] 

This section considers a class of differential games which is 

interpreted as a pursuit-evasion problem. This problem is formulated 

as follows. Assume that the dynamics of pursuer and evader are 

defined accurately by the following state equations, 

~P (t) = AP ~P (t) + BP !!(t) 

~e (t) = Ae ~e (t) +Be y(t) 

~p (to)= ~PO 

~e{to)=~eo 
(7.5) 

(7.6) 

where subscripts p and e stand for pursuer and evader, respectively. 

It is assumed that xp and ~e are, respectively np -dimensional and ne-

dimensional state vector, and the control vectors u and v are of 

dimension rp and re, respectively. The matrices ~· Ae, BP, and Be have 

the appropriate dimensions. The pursuer manipulates the control 

input u to capture the evader, while the latter tries to avoid capture 

by using the control input, v. These inputs are limited as: 

tr 
J !!' (t)Rp!!(t)d(t)::=;Ep 

to (7. 7a) 
tr 

J y'(t)Rey(t)d(t)::=;Ee 
to (7. 7b) 

where tf is a fixed final time, RP and Re are positive definite, and EP 

and Ee denote the maximum energy sources of pursuer and evader, 

respectively. 

For such linear systems given m (7 .5) & (7 .6), the following 

differential game is considered: 
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index 

(7.8) 

subject to the constraints given in Equations (7 .5) and (7 .6), where the 

matrices of cp and ce yielding the interested sta,tes, are of dimensions 

n X np and n X ne, respectively. Both pursuer and evader are aware of 

the dynamics of both system (they know ~P and ~e at any time t); this 

is a game of perfect information. The positive parameter c2 weights 

the final miss. The case in which c2 is very large corresponds to the 

situation of the pursuer trying to capture the evader using some finite 

energy. The capture occurs if the difference between CP ~P ( tr) and 

ce ~e ( tr) becomes zero. 

As indicated in (7 .8), the objective of the game is that the 

pursuer attempts to J?inimize the final miss in order to intercept the 

evader at some fixed final time tr, while the evader attempts to 

maximize the final miss; the miss is defined as a weighted quadratic 

index. The minus sign in the front of the third term in (7 .8) is due to 

maximization of J with respect to v. 
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7.3.1 The Solution 

Let us define the predicted terminal mtss vector 

~( t) = [ cp Cl> p ( tf 't )~p ( t)- ce Cl> e ( tf 't )~e ( t)] (7.9) 

where Cl> P ( tf , t) and Cl> e ( t f , t) are the transition matrices for the 

pursuer and the evader systems, respectively. 

Cl> P ( t f ' t) = e Ap ( tf -t) 

Cl>e ( tf 't) = eAc(tf-t) 
(7 .1 0) 

From Equation (7.10), we can see that the state vector x(t) is actually 

the weighted difference between homogeneous solutions of (7 .5) and 

(7 .6), due to the initial conditions given at time t. 

Differentiating both sides of (7. 9) and knowing that 

we can write as: 

~(t)=Cp[-APCI>P~P +CI>PAP~P +CI>pBp!!] 

-Ce[-AeCI>e~e +CI>eAe~e +CI>eBey]===> 

(7 .11) 

To obtain (7.11), we used Equations (7.5), (7.6) and the fact that 

eK(.)K=KeK(.). The index (7.8 ) can be written 
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(7.12) 

where 

(7.13) 

Equation (7.13) is obtained by using the property Cl>( tf, tf) =I in (7.9). 

Thus, the problem of determining a saddle point of (7.12) subject 

to (7 .11) is exactly equivalent to the original problem. In order to 

solve the above differential game, one may apply the standard 

variational procedures. By introducing the Hamiltonian 

1 I 1 I 

H(t,~,y,y,A.)= 2 y (t)Rpy(t)- 2 y (t)Rey(t) 

+ ~~ [ P( tf, t )y( t)- E( tf, t )y( t) ], 

the necessary conditions for a saddle point are 

H = aH = R u + pI A, = 0 ::::} u 0 = - Rp-1 pI A, 
u au P- - - -

H = aH = R v + E I A, = 0 ::::} v 0 = - R -1 E I A, 
v av e- - - e -

a 2 a(xlx) 
).,(t) =-H = _!! = 0 A.(t ) = ~ - -
- X ax ' - f 2 ax 

where 

(7 .14) 

(7 .15a) 

(7 .15b) 

(7.15c) 

(7.16a) 
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and 

(7.16b) 

By substituting (7.15a) and (7.15b) into (7.11), we have 

(7 .17) 

Equation (7 .15c) solves for A., 

(7 .18) 

Introducing (7 .18) and integrating both sides of (7 .17), we obtain 

?f( tr)- ?f( t) = c2 (Me ( tr, t)- MP ( tr, t) )?i( tr):::} 

[I+ c2 { MP ( tr, t)- Me ( tr, t)) ]?i( tr) = !lf( t ), 

where 

M p ( t f ' t) = I:f p ( t f ' 't) R; 1 p' ( t f ' 't) d't 

and 

From (7 .19) we can write 

?f( tr) = F-1 ( tr, t) ?f( t):::} A. ( t) = c2F-1 ( tr, t) !( t) 

where the feedback gain matrix F is of the form 

F( tr, t) = [I+ c2 ( MP ( tr, t)- Me ( tr, t)) ]. 

(7 .19) 

(7 .20a) 

(7 .20b) 

(7.21a) 

(7.21b) 
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Here, we assume that the matrix F Is invertible. Substitution of 

(7 .21) into (7 .15a) and (7 .15b) yields 

!! 0 ( t) =-Ku ( tf, t) ~( t) 

and 

where 

Ku ( tr, t) = c 2R~1 P' ( tr, t) F-1 ( tr, t) 

Kv ( tr, t) = c2R;1 E' ( tr, t) F-1 ( tr, t) 

(7.22a) 

(7 .22b) 

(7 .22c) 

(7 .23a) 

(7.23b) 

and x(t) is the predicted terminal miss at any given time t which 

represents the position or the state of the game. 

As seen, the optimal pursuit-evasion feedback controls (optimal 

strategies) are linear combinations of the predicted miss with the 

time-variant gain factors which measure the control capabilities of 

pursuer and evader on the predicted miss x(t). In addition, if a saddle 

point exists or the Equations (7 .22) are to be considered as the 

strategies, then the non-singularities of F( tr, t) for all t E [ t 0 , tr] is a 

sufficient condition for optimality and uniqueness of these strategies 

(movements of the game). The matrix F is invertible if 

Det (I + c 2 ( M P ( t r , t) - Me ( t r , t))) * 0 

or 
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MP ( tr, t)- Me ( tr, t) is a positive definite matrix (see Equation 

(7 .21 b)). The latter says that some states of pursuer which are 

determined by matrix CP (states of interest) must be more positive 

definite (more controllable) than those of the evader which are 

determined by matrix Ce (see Equations (7.16) & (7.20)). The following 

example illustrates the general concept of a (deterministic) pursuit­

evasion problem. 

7.3.2 An Example Guidance Law 

for Tar~et Interception [80] 

We assume that the equations of motion for an interceptor and 

target are described by Equations (7.24) and the payoff criterion ts 

defined by Equation (7.25), 

tP ( t) = v P ( t); v P ( t) = fP + aP ( t) 

fe ( t) = V e ( t) ; V e ( t) = fe + ae ( t) 
(7 .24a) 

(7.24b) 

J( ap, ae) = b [ rp ( tr)- re ( tr) t + _!_ {f [__!__a~ ( t)- __!__a; ( t )] dt 
2 2 o Yp Ye 

(7.25) 

where r and v are the position and the velocity of a body in the space, 

respectively, f is the external force per unit per mass exerted on the 

body, a is the acceleration of the body, and 'Yp and Ye are the energy 

capacity of the pursuer and evader, respectively. It is assumed that 

the altitude difference between the pursuer and the evader is small 

enough that fp=fe and consequently, since only the difference rp(t)­

re(t) is of interest in this problem, the effect of the external forces can 
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be ignored. 

We can develop the following state space models for the pursuer 

and the evader 

~P ( t) = AP ~P ( t) + !2p ap ( t) 

~e(t)=Ae~e(t)+!2e ae(t) 

where 

Equation (7.25) can be written 

(7.26a) 

(7 .26b) 

(7.27) 

Now, in order to obtain the pair of saddle point (a~ , a~ ) , we may 

apply the Equations (7.9), (7.10), (7.16), and (7.20)-(7.23) as follows. 

tf- t][o] _ -tf -t 
1 1 



E(tr,t)=A<r>.(tr,t)Q. =[1 OJ[~ tr ;1~J=tr -t 

MP { tr, t} = Jttf P{ tr, 't )y Pp' ( tr, 't }d't = 

rtf ( )2 'Y P ( )3 'Y P Jt tr - 't d't = 3 tr - t 

Me { tr, t} = Jttf E{ tr, 't} 'Y eE' ( tr, 't }d't = 

'Ye J:• (tr -'t)2 d'C = 'Y; (tr- t)3 

7-16 

F{ tr, t} = [I+ b( MP { tr, t}- Me ( tr, t})] = 1 + b 'Y P ; 'Y e ( tr - t )3 

( ) 
1 ) -1 by p ( tr - t) 

K. tr, t =by P P ( tr, t F ( tr , t) = ( ) 3 
p 1 + 'Y p - 'Y e ( tr - t} b I 3 

( ) 
1 { } -1 { bye { tr - t} 

Ka, tr , t = bye E tr , t F tr , t) = ( ) 3 
1 + 'Y P - 'Y e { tr - t} b 13 

~( t) =A[ 'IJP { tr, t )~p { t)- 'll e { tr, t )~e ( t)] 

=[1 o][1 tr-t][rp(t)-re(t)] 
0 1 vp(t)-ve(t) 

= rp ( t)- re ( t) + { tr - t }[ v P ( t)- v e ( t) ]. 

Thus, the pair of saddle points becomes 

a~(t)=-Kap {tr,t}~(t) 

by P { t f - t }{ rp ( t) - re ( t) + ( tr - t }[ v P ( t) - v e ( t)]} 
=-------~----------~------~ 

1 + ( 'Y p - 'Y e )( tr - t }3 b I 3 

(7 .28a) 

a~ ( t) =-Kae { tr, t} ~( t) 

bye { tr - t }{ rp ( t)- re ( t) + ( tr - t }[ v P ( t)- v e ( t)]} 
=-----~~----------~------~ 

1 + ( 'Y P - 'Y e){ tr - t } 3 b 13 
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(7.28b) 

From Equations (7 .28) it can be seen that the existence and 

uniqueness of the optimal strategies are assured if 

Let us determine under what condition the above equation becomes 

zero, 

1 + { 'Y p - 'Y e){ tr - t )3 b I 3 = 0, Vt E [ 0, tr] => 
3 

t = tr + 3 { ) • 

b 'Yp -re 

If 'Y P > 'Y e' then t > tr and for ')' P < ')' e' t becomes less than tf. Therefore, 

for the case in which the pursuer has more energy than the evader, 

')' P > ')' e' the feedback gain matrix F is always positive in the range 

between 0 to tf and the interception is guaranteed, especially for large 

b. But for the second case, 'Y P < ')' e , there is no guarantee for the 

interception, especially for large tf the interception is impossible. 

Figure 7.1 illustrates a computer simulation of the target 

interception problem discussed above. The top path, represents the 

case in which 'Y P < 'Y e. We can see the impossibility of interception. 

The bottom paths of Figure 7.1 represent the cases in which 'Y P > 'Y e 

As seen the interception is guaranteed by increasing Y P which 

indicates the attempts of the pursuer by spending more energy m 

order to capture the evader. The experimental results totally meet 

the theoretical results which we discussed in this section. 
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Figure 7.1 Simulation of a Simple Pursuit-Evasion 

(Target Interception) Problem, b=l; tr:lsec. 
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7.4 Linear Stochastic Differential Games 

7.4.1 Introduction 

The prev1ous section considered a linear deterministic two­

player, zero-sum pursuit-evasion differential game in which each 

player is assumed to have perfect knowledge of his and his opponent's 

states (dynamics). This section considers a linear stochastic quadratic 

pursuit-evasion game in which the system may be disturbed by 

additive noise and both the evader and pursuer have access to noise­

corrupted measurements. 

Reference [81] initiated the concept of stochastic differential 

game by presenting some results under the general subject of 

differential games with incomplete information. Ref. [99], by 

investigating a minimax index of performance for designing a filter to 

estimate a noisy signal with bounded accelerations, actually solved a 

simple stochastic differential game. A more general stochastic linear 

differential game in which only one player controlled the state was 

formulated by authors of references [97] and [98] by applying calculus 

of variation optimization techniques. References [101-102] present the 

most important results for stochastic differential games in which one 

player has access to measurements corrupted by white noise and the 

other one has perfect measurements. For the case in which both 

players have noisy-measurements, references [104] and [105] present 

a solution. The next section reviews the stochastic differential games 

considered by references [101] and [105] because of their important 

results. 
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7.4.2 Problem Statement 

In this section, we review the main results of References [101] & 

[105]. Consider the linear systems given in (7-5) & (7-6) which define, 

respectively the dynamics of pursuer and evader. It is assumed that 

the pursuer knows the dynamics and states of both himself and his 

opponent, while the evader has imperfect knowledge of his and his 

opponent's state and dynamics. The measurements available to the 

evader are assumed to be of the form 

(7 .29) 

where x(t) is the terminal mtss whose dynamic is gtven m (7.11) 

which defines the pursuit-evasion system, and v !K(t) is a Gaussian 

white noise with zero mean and covariance matrix V x· From (7 .9) and 

(7 .29), we may write 

~P ( t) = HP ?fp ( t) + Yp ( t) 

~e ( t) =He ?fe ( t) + Ye ( t ), 

which reflect the imperfect measurements of the evader on his and 

the pursuer's state, where v P and Ye are white, zero mean Gaussian 

noise vectors. Therefore, the class of evader's admissible strategies at 

time t is based on the measurement ~( 't), 't e [ t 0 , t]. Based on these 

measurements, let the optimal mean squared linear estimate of x(t) 

and the estimation error be denoted as : 



~( t) = E{2£( t) given~( 't ), t 0 :s; 't :s; t} (7 .30a) 

(7.30b) 

The stochastic pursuit-evasion problem Is defined as: for 

the linear system defined in (7 .11) with the evader having noisy 

measurement given in (7 .29) and the pursuer having perfect 

knowledge of x(t), find a pair of saddle points (uO ,vO) such that the 

following quadratic criterion is minimized 

(7. 31) 

where !( tr) is a random variable, because the initial state !( t0 ) for 

the evader is assumed to be a Gaussian random vector, uncorrelated 

with v(t) for all t e [ t 0 , tr ]. with a mean !o and a covariance p0 . 

It is assumed that the optimal strategies are of the structural 

form 

(7 .31a) 

y 0 ( t) = Ke ( t, tr )&( t ). (7.31b) 

Equation (7.31a) says that we implicitly assume that to the pursuer, 

the error of the evader's estimate is available at time t. In order to see 

under what conditions the pursuer is able to obtain the exact value of 
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the error, we may consider the following equation which is obtained 

by substitution (7.31) into (7.11) 

E( tf, t )Ke ( tf, t )&( t) = P( tf, t )!!( t)- ~( t) (7.32a) 

where E and P are given in (7.16). 

Figure . 7.2 illustrates the realization of the above control 

strategies for the stochastic pursuit-evasion problem. By looking at 

Figure 7.2, we can write the following equation which produces u(t), 

(7 .32b) 

From equations (7 .32) we can see that the pursuer can obtain R ( t) if 

the gain matrices E and Ke and the. ~atrix (I - K;1 E -l p) are 

nonsingular. We shall discuss these conditions after the determination 

ofKe. 

7 .4.3 The Solution 

This section presents the solution of the stochastic differential 

game stated in the previous section. Introducing Equations (7 .16), 

(7 .30b) and using (7 .31), the pursuit-evasion system equation (7 .11) 

and the index (7 .30) become 

(7.33) 
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(7.34) 

By letting X(t)=E{~(t) ~'(t)} and knowing x'AX=Tr{XX'A}, the index 

J in (7.34) and X(t) can be rewritten as: 

2 

~X(tr )+.!_ fr[x(t)(K~RPKP -K~ReKe )dt] 
J =Tr 2 2 to 

+ ~ Jtt:[ Q( t )( K~RPLP + L'PRPKP + L'PRPLP + K~ReKe} ]dt 

X( t) = p KPX +X K~P· + QL'pp' + PLPQ 

+EKe (Q- X}+ (Q- X)K~E·, 

(7.35) 

(7.36) 

where Q(t) is the covariance matrix of the evader's estimate error 

Q ( t) = E { ~ ( t) ~' ( t)} = E { ~ ( t) ~' ( t)}, sin ce E { & ( t) ~' ( t)} = 0, (7. 3 7) 

and it satisfies the following Riccati equation 

(7. 38) 

Based on the system given in (7.33) & (7.29), the following Kalman 

filter defines the evader's estimate 

~(t) = [ PKP- EKe]&( t) + QH'v;1 [~(t)- H~(t)). (7.39) 
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Figure 7 .2. Stochastic Pursuit-Evasion Structure 
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The original stochastic pursuit-evasion problem is now 

equivalent to the deterministic problem which is stated as: For the 

linear systems given in (7.36) & (7.38), find a saddle point which 

minimaximizes the index given in (7 .35). 

As discussed in the previous sections, this problem may be 

solved by defining · the Hamiltonian 

(7.40) 

By defining sl = Al + A'l and Sz = Az + Az, it can be shown that 

the following matrix differential equations solve for optimal strategies 

as: 

S1 =St(PR~1P-ER;1E')s1 
S2 =S2PR~1PS2 +S2 (PR~1PS1 +QH'Q-1H)+ 

( S 1PR~1P+ H'Q-1HQ) S2 + S1ER;1E'S1 

Q(t)=P(KP +Lp)Q+Q(K~ +Lp)p' -QH'V~1 HQ 

KP =-R~1PS1 
Ke =-R;1ES1 

L =-R-1PS2 p p 

with the boundary conditions 

(7.41a) 

(7.4lb) 

(7.41c) 

(7.42a) 

(7.42b) 

(7.42c) 

(7 .43) 



Therefore, the optimal strategies are obtained as: 

!! 0 ( t)-:- KP ( tf, t )~( t) + LP ( tf, t) R( t) 

= -RP1P' ( tf, t) S1 ( t )~( t)- R;1E' ( tf, t) S2 R( t ), 

Y0 {t)-:- -R;1E' (tr, t}S1 {t)~(t), 
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(7 .44a) 

(7 .44b) 

where E(.) and P(.) are given in (7.16) .. Finally, by substituting the 

optimal values KP' LP, and Ke given in (7.42) into the payoff index 

(7 .35) and after some algebraic manipulations and simplifications, we 

can find the optimal expected cost expression as: 

(7 .45) 

By introducing (7.43) and comparing (7.22c) and (7.45), we can 

see that the first term in (7 .45) corresponds to the total value for the 

index in the deterministic case ( since it can be shown that S1=F-1), 

and the second and third terms represent the total uncertainty of 

the evader's estimate initially and during the play of the game. 

It can be shown that these two terms are negative, since S2 is a 

negative definite matrix. Therefore, the last two terms in (7.45), 

which is called the relative or reduced payoff, represent the reduction 

in the capability of the evader. 
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From Equations (7.42a) and (7.32), we can conclude that the 

pursuer can be given R if 1) the interested states and the evader's 

control input, v, are of the same dimension, and 2) the matrices E and 

S 1 are invertible. 

Equations (7.41) through (7.42) with boundary conditions given 

in (7.43) present the solution for the· stochastic differential game 

defined by Equations (7 .11) and (7 .29-31 ). This solution is called the 

prior commitment type [ 1 06] and it is based on the assumptions that 

1) the pursuer is given, or can determine exactly, the error in the 

evader's estimate (i.e., the pursuer takes the advantage of this error), 

and 2) the evader's control is of a feedback form based on the 

estimate of the pursuit-evasion system's state, x(t). This is not an on­

line solution because of the uncoupled nonlinear differential equations 

(7.41) with two different boundary conditions given in (7.43). These 

nonlinear differential equations can be solved by methods presented 

in the References [110-112]. The following section presents an on-line 

solution to the same differential game and the games where both 

players have access to noisy measurements. 

7.4.4 Delayed Commitment Solution 

Consider the pursuit-evasion system whose dynamics Is defined 

by 

~( t) = P( t )!!( t)- E( t )~( t ), 

~P ( t) = HP ~( t) + ~P ( t ), 

~e ( t) =He~( t) + ~e ( t ), 

(7 .46a) 

(7 .46b). 

(7 .46c) 
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where the zero mean, white noises ~ P ( t) and ~ e ( t) are Gaussian and 

independent, with covariance matrices V P and Ve, respectively. It is 

assumed that the initial state x ( t0) is a Gaussian white noise, 

uncorrelated with both measurement noises, and it has a mean of A() 

and a covariance matrix Pxo- The pursuer, the minimizer player 

controlling u, has available measurements given in (7 .46b) and the 

available measurements for the evader, the maximizer player 

controlling v, is given in (7.46c). The payoff criterion· to the game is 

assumed to be of the quadratic form given in (7.31). 

By following the procedure given in [105], the pursuer's optimal 

strategy is obtained by solving of the following set of nonlinear 

equations: 

!!* (t)= -RP1p' (t)S(t)~p (t), (7.47a) 

(7.47a) 

(7 .47c) 

tp ( t) = -N P ( t)E( t)R;1E' ( t)rp (t)- N P ( t)P( t)Rp1p' ( t)S( t) + 

rp(t)[P(t)Rp1P' (t)-E(t)R;1E' (t)]S(t), rp(tr )=0 

(7.47d) 

. [P( t)Rp-1P' ( t)S( t) + E( t)R;1E' ( t)N P ( t)],.. 
& (t)= I ~ (t)+ 

P -E(t)R;1E (t)rp(t) P 

Qpdt)H~ vp-1 [ ~P (t)- HP &p (t) ], &p (to)= 2So, (7.47e) 

QP1 ( t) = E( t)R;1E' ( t)N P ( t)Qp2 ( t) + QP2 ( t )N P ( t)E( t)R;1E' ( t)-

Qpdt)H~ Vp-1HPQP1 (t}, Qpl (to)= Pxo, 
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I -1 I -1 
QP2 (t)Hp VP HPQP2 ( t) + QP1 (t)He Ve HeQp1 (t)-

The corresponding equations which solve for the optimal strategy of 

the evader are: 

~ * ( t) =-R;1 E 1 
( t )S( t )~e ( t ), (7 .48a) 

S(t) = S(t)( E(t)R;1EI (t)- P(t)R~1PI (t) ]s(t), S(tr) = c21, 

(7 .48b) 

(7 .48c) 
te ( t) = -N e ( t)P( t)R~1 PI ( t)re ( t)- N e ( t)E( t)R;1EI ( t)S( t) + 

re(t)[E(t)R;1EI (t)-P(t)R~1 PI (t)]S(t), re(tr )=0, 

(7 .48d) 

. [E( t)R;1EI ( t)S( t) + P( t)R~1PI ( t)N e ( t)]" 
~ ( t) = I ~e ( t) + 

e -P(t)R~1P (t)re (t) 

Qe1 ( t )H~ V;1 [~e ( t)- He ~e ( t) ], ~e (to)= ~o, 
(7 .48e) 

Qe1 (t) = P(t)R~1 PI (t)Ne (t)Qe2 (t) + Qe2 (t)Ne (t)P(t)R~1 PI (t)-

Qe1 (t)H~ V;1HeQe1 (t), Qe1 (to)= Pxo, 
(7 .48f) 
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Qe2 (t) = P(t)R~1P' (t)Ne (t)Qe2 (t) + Qe2 (t)Ne (t)P(t)R~1P' (t)-
' ~ ' ~ Qe1 (t)He Ve HeQe2 (t)- Qe2 (t)He Ve HeQe1 (t) + 
' -1 ' -1 Qe2 (t)He Ve HeQe2 (t) + Qe1 (t)Hp VP HpQe1 (t)-

The Equations (7.47) & (7.48) represent an on-line solution of 

the differential game defined in Equations (7.46), because the above 

nonlinear matrix differential equations can ~e solved by applying 

either forward integration or backward integration. 

In the case where the pursuer has perfect information of the 

state vector x(t) and the evader has measurements given in (7.47c), it 

can be shown that the following equations solve for the optimal 

strategies for both players 

!!* (t)=-R~1 P' (t)S(t)~(t)+R;1 P' (t)N(t)~(t), 

y* (t)=-R;1E' (t)S(t)~(t), 

N(t) = N(t)P(t)R~1 P' (t)N(t), N{tr )=1, 

Q(t) = -P( t)R;1p' (t)N( t)Q(t)- Q( t)N( t)P( t)R;1P' (t)­

Q(t)H~ v;1HeQ(t), Q( to)= Pxo, 

~(t)=(E(t)R;1E' (t)-P(t)R;1p' (t)]S(t)~(t) 

+Q(t)H~ V;1 [~e(t)-He~e(t)], ~{to)=!fo· 

(7 .49a) 

(7 .49b) 

(7.49c) 

(7 .49d) 

(7.49e) 

(7 .49f) 
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The optimal payoff for the evader is: 

J (!! * ( t), y * ( t)) = ~ ~' ( t) S ( t) ~ ( t) + ~ Tr ( N ( t) Q ( t)) 

+ ~ Tr(fttf [N ( 't)- S( -t) ]Q( -t )H~ ve-l He Q( 't) d't ). 

(7 .49g) 

7.5 An Example of a Stochastic 

Differential Game 

In this section we apply the two types of solutions reviewed in 

the previous sections to an example of a stochastic pursuit-evasion 

game taken from [ 1 01] and compare the prior-commitment and the 

delayed-commitment results. This is a game in two-dimensional 

Euclidian space, where the pursuer, the minimizer player, has perfect 

information of his and his opponent's system, while the evader, the 

maximizer player, is given only noise-corrupted measurements. 

The dynamics of the pursuer and the evader are given by 

~P (t) = AP ~P (t)+ BP !!(t) 

~e ( t) = Ae ~e ( t) +Bey( t) 

where 

0 0 1 0 

0 0 0 1 
A =A= p e 0 0 0 0 

,Bp=Be= 

0 0 0 0 

and the sate vectors of the pursuer and 

~p(to)=~Po 

~e (to)= ~eo 

0 0 

0 0 

1 0 

0 1 

the evader are 

(7 .50a) 

(7.50b) 

(7 .SOc) 
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!p=[~ 
Position 

xp3 xp4]·,andJ>e =[~ 
'----v---' p .. 

Velocities osttton (7 .SOd) 

For this game the terminal position miss is of interest. Therefore, 

the matrices cp and ce which give the reduced (interested) state 

vectors are 

C =C =[1 0 0 OJ 
p e 01 oo' 

and the payoff index for this game can be written as: 

where, it is assumed that the energy weighting matrices are of the 

form 

r~J 
Using (7.10) & (7.16), it can be shown that 

and the Equation (7 .9), reduced pursuit-evasion system, becomes 



[
1 0 

~(t)= 0 1 
tr- t 

0 
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(7.52) 

Since E(.) in invertible for all t less that tr and since x(t) and control 

vectors are of the same dimension 2, we can apply the prior­

commitment solution to the problem given in . equations (7 .52) and 

(7 .29) with criterion J given ib. (7 .51). 

In this example th~ constants and the parameters are: 

t0 = Initial time 

tr = Final time 

c2 = Terminal miss weighting factor 

r lp = Pursuer control weighting factor 

r le = Evader control weighting factor 

Q0 = Initial covariance of error 

V x = Measurement noise intensity 

=0 sec. 

=10 sec. 

=10 ft- 2 

=0.4 ft· 2 sec3 

=1 ft· 2 sec3 

=1 ft2 

=1,10,100 ft2• 

By letting r1P < r1e, we guarantee the possibility of the interception by 

satisfying the relative controllability requirement discussed in the 

previous sections. Figure 7.3 shows the feedback gains KP' LP' and Ke 

versus time. As seen, all gains become zero at t=tr= 10 seconds. This 

implies a zero terminal miss (the occurrence of the interception) by 

referring to the Equation (7.11), see Figure 7.4. All curves in Figure 7.3 

show that the gains are independent of measurement noise intensity, 

V x· By introducing Equations (7.31), (7.41) and (7.42), of course KP and 

Ke are independent of V x• but for this example, we have found that LP 

which is actually a function of V x was also insensitive to the variations 

of Vx. 
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Figure 7.3. The Feedback Strategy Gains 

Figure 7.5 shows the estimation error vanance of the evader 

versus time for the same values of V x. The top path represents the 

error variance of the evader, Q 11, in the prior-commitment game and 

the bottom path represents that of the delayed-commitment 
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game. As indicated in Figure 7.5, first, the error variances of the prior­

commitment and delayed-commitment are almost the same and 

secondly, by increasing V x the corresponding error variance curves 

become less distinguishable. 

lr---------~------------~--------~------------~--------~ 

0.8 

~ 0.6 -e 0.4 

0.2 

2 4 6 8 10 

Time 

Figure 7 .4. Terminal Miss Versus Time, V x= 1. 

The curves in Figure 7.5 agree with the fact that 1) the error 

must become larger as V x increases, i.e. the variance of error will 

converge to zero slower, 2) with very large V x the control strategies 

become basically a function of initial estimate !(O} (see Equations 

(7.39 & 7.49f)), i.e. the pursuer can not take advantage of the evader's 

estimate any more; this fact is illustrated in Figure 7 .6. 
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The relative payoffs* as a function of time for a fixed Vx =100 

are displayed in Figure 7.7. They are always negative which indicate 

the reduction m capability of the evader. Moreover, the relative payoff 

* The relative payoff is the difference between the evader's payoff and the 
payoff of the perfect information game, and it represents the the direct effect 
of the evader measurement noise on the payoff of the game. 
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associated with the delayed-commitment game is more negative than 

that of the prior-commitment game. These facts about relative payoffs 

have been discussed in reference [105] in detail. 

0 x10-3 
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& -0.5 
;i 

i -1 

Prior-Commitment 

-1.5 .__ ________________ _.... 

10-2 10-1 100 101 102 103 
y 

X 

Figure 7 .6. The Relative Payoff as a Function of V x 
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Figure 7.7. The Relative Payoff 
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7. 6 Differential Games & OCM 

In this section we investigate the feasibility of applying differe­

ntial game theory to modeling of an air-to-air combat task. To do so, 

we consider the possibility of ·combination of the optimal control mod­

el discussed in chapter IV and pursuit-evasion differential game theo­

ry discussed in the previous sections. Because we have seen the 

applicability of the optimal control tool which can be recognized as a 

one-sided differential game in manual control· systems, it seems logic­

al to consider differential game theory as an analytical tool to analyze 

the performance of the human operator in an air combat task. 

In order to apply the approaches developed in the previous sec­

tions, we model human operator as an optimal controller with a lump­

ed time-delay element 't as its only limitation and observation nOise as 

its remnant. Section 7.6.1 formulates a simple air-to-air combat task. 

In section 7.6.2 we present a computer simulation of a missile-aircraft 

problem in which the missile (pursuer) has perfect knowledge of his 

state as well as that of the aircraft (evader), while the evader, which 

includs an OCM, is given delayed noise-corrupted information. 

7 .6.1 Development of a Simple 

Air-to-Air Combat Task 

In this section we formulate a simple air-to-air problem depict­

ed in Figure 7 .8. The top path represents the pursuer and the bottom 

one represents the evader. Each player is given delayed noise-
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corrupted information about his opponents. The controller 1 and the 

controller 2 are determined by m1mmax1m1zmg the payoff perform­

ance index of the form 

(7.53) 

where ~(.) 1s the predicted terminal miss which shall be defined later. 

r-------------------------------------------
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I 
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I 
I 
I 

u 
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~-------------------------------: Pilot 1 ~ 
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! 
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~ 

Figure 7 .8. Block Diagram of a Simple Air-to-Air Combat Task 
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We assume that the operation of the first vehicle (plantl) is 

described by the following linear equations 

~dt)=A1 !1 (t)+]2 1ud1 (t) 

~~ (t)=Cl!l(t), 
(7. 54) 

(7.55) 

where x 1 (t) is an n-dimensional state vector and y 1 (t) is an m­

dimensional output (interested state) vector. It is assumed that we 

have the following Pade approximant for the time-delay 't 1 , 

~d1 (t)=Ad1 !d1 (t)+Bd1 u(t) 

udt (t)=Cdt !dt (t)+gdt u(t) 

where !d1 is a p-dimensional state vector. 

(7.57) 

(7 .58) 

By letting ~2 (t)=[! 1 !d1 J, from equations (7.54)-(7.58) we have 

~2 ( t) = A 2 ! 2 ( t) + ]22 u 

~2 ( t) = C2 !2 ( t ), 

where 

A2= [ 
A1 

opxn 

(7. 59) 

(7 .60) 

(7 .61) 

Let us assume that the following linear equations define the 

dynamic of the second vehicle (plant 2), 

~3 (t)=A3 !3 (t)+]23vd1 (t) 

~3 ( t) = c3 !3 ( t ), 

(7.60) 

(7.61) 

where x 3(t) is an n-dimensional state vector and y3 is an m-dimensi­

onal output vector. The second internal delay 't2 is modeled by the 



Pade approximant 

id (t)=Ad xd {t)+Bd v(t) -2 2-2 2 

vdl (t)=Cd2 ~d2 {t)+gd2 v(t), 

where ~d2 ( t) is a p-dimensional state vector. 

Let 
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(7 .61) 

(7.62) 

The augmented state ~, satisfies the following augmented equation 

and 

!4 {t) = A4 ~4 {t) + Q4V 

~3 {t) = c4 ~4 (t), 
(7 .63) 

(7.64) 

(7 .65) 

Further, we assume that the following equations model the intra­

simulator delay t3, 

id =Ad xd +bd u - 3 3- 3 - 3 't3 

y d3 = C d3 ! d3 + d d3 u't3 

where !d3 is a p-dimensional state vector. 

(7 .66) 

(7.67) 

In the light of the above augmented state equations and equati­

ons (7.66)-(7.67), we wish to convert our original problem to an 

equivalent pursuit-evasion problem. This can be done as follows. 



7.6.1.1 Evader Development 

Letting 

we can write the following equations 

~s (t) =As !s (t) + ~sv, 

I3(t)=Cs!s(t), 

I~(t)=[Dd3c4 Cn3 ]!s(t), 

where 

0 nxmp ] [ ~4 ] [ ] A ' ~ 5 = 0 ' C 5 = C 4 0 mxmp ' 
D3 mpxl 

and 
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!n3 (.) is an augmented, state vector of dimension m*p with consisting 

of xd (.) repeated m times, A 0 , Bn , Cn and Dd are block diagonal 
-3 . 3 3 3 3 

matrices with Ad3, ~d3 , cd3 and dd3 as their diagonal elements, 

respectively (see Chapter V). Finally, by augmenting ~5 with v and 

letting v( t) = Ue ( t ), we can have the following equations describing 

the evader, 

~e ( t) = Ae !e ( t) + ~e Ue ( t ), 

Ie (t) = ce !e (t), 

I: (t) =He ~e (t), 

where 

(7.68) 

(7.69) 

(7. 70) 



xe(t)=-5 ,Ae= [
x (t)] [ As 

- v( t) olx(n+mp+p) 

and 

b = [O(n+mp+p)xt ],c = [C 5 O],He = [od C 4 C03 o]. 
-e 1 e 3 

The evader is given the information of the form 

~el ( t) = ~~ ( t) + W el ( t) 

~e2 ( t) = ~e ( t) + W e2 ( t ), 

where w el ( t) and w eZ ( t) are independent additive white nmse 

processes. 

7 .6.1.2 Pursuer Development 

and 

By letting 

[ l\2 ( t) ] 
~6 (t) = !n3 (t) ' 

using equations (7 .59)-(7 .61), 

~6 ( t) = A 6 ~6 ( t) + Q6 u, 

~~ (t)=C6~6 (t), 

~~(t)=[Dd3 C2 C03 J~6 (t), 

where 

we may write 

0 nxmp] [ Qz ] [ ] A ' Q 5 = 0 ' C 6 = C 2 0 mxmp · 
D3 mpxl 
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(7. 70) 

(7. 71) 

(7. 72) 

(7. 73) 



By defining the augmented state vector 

[~6 ( t)] ~p(t)= u(t) ' 

and letting u ( t) = uP ( t), we can write the pursuer equations as: 

~p (t) = Ap ~p (t) + QPUP (t), 

~P(t)=Cp~p(t), 

~:(t)=Hp~p(t), 

where 

[ 
A6 

A -
p - 0 lx( n+mp+p) 

Q6] b = [0 (n+mp+p)xl J 
0 '-P 1 

and 

The pursuer has access to the following information 

?;p1 (t)=~:(t)+wp1 (t), 

?; p2 ( t) = ~ p ( t) + w p2 ( t)' 
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(7. 74) 

(7. 75) 

(7. 76) 

(7. 77) 

(7. 78) 

(7. 79) 

where noise processes w pl ( t) and w P2 ( t) are independent and white. 

7.6.1.3 Development of the Pursuer-Evader System 

In order to be able to apply the method discussed m section 

7.4.4 (delayed-Commitment solution), we need to develop a stochastic 

pursuer-evader system. To accomplish that, we define the predicted 

terminal miss as: 
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(7.80) 

where 

By differentiating both sides of (7.80) and using (7.68) & (7.74), as 

discussed in section 7.3, we can obtain the following differential 

equation which describes the dynamics of the pursuit-evasion system 

~( t) = P( tf, t )up ( t)- E( tf, t )ue ( t ), (7 .81) 

where 

In order to convert the measurements of the two players to 

measurements on terminal miss x(t), we may define 

# # 

~P ( t) = CP<l>PCp ~pl ( t)- Ceel>eCe ~p2 ( t), (7.82) 
# # 

~e (t)=CP<l>PCp ~el (t)-Ce<l>eCe ~e2 (t), 
(7.83) 

where ~el (t), ~ez (t) and ~pl (t), ~pz (t) are defined in equations 

(7. 72-7.73) and (7. 78-7. 79), respectively and L # denotes the general 

pseudo-inverse of L. The equations (7 .82) & (7 .83) can be rewritten 

~p(t)=~(t)+wp(t), 

~e (t) = ~(t) +We (t), 

where 

(7.84) 

(7.85) 
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# # 

w P ( t):::::: CPct>PCp w pl ( t)- Ceel>eCe w P2 ( t) 

and 

Now, we have converted our original air-to-air combat problem to the 

stochastic pursuit-evasion problem which is defined by equations 

(7.81), (7.84) and (7.85) with the payoff index 

(7. 86) 

This problem was discussed in section 7 .4. The next section illuminates 

the above results by analyzing a simple missile-aircraft problem m 

which the evader contains the OCM and the pursuer has perfect 

information of the game. 

7.6.2 A Missile-Aircraft Example 

This section presents a computer implementation of a missile­

aircraft problem taken from [106] in which the missile (pursuer) has 

perfect knowledge of his state as well as that of the aircraft (evader), 

while the evader including an OCM is given noise-corrupted inform­

ation. The operation of the minimizer player (missile) is described by 

(7.87) 
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(7.88) 

where k1 is a constant number depending on the initial angle of 

velocity of the missile and 't 1 is the missile time constant. For the 

maxim-izer player (aircraft), the following equations are obtained 

(7. 89) 

(7.90) 

where k2 is a constant number depending on the initial angle of 

velocity of the aircraft and 't 2 is the aircraft time constant. The 

equations (7.88) and (7.90) give the position of the missile and the 

aircraft, res-pectively. Further, the payoff index is given by 

A, general class of this problem was formulated in the previous 

section. We solved this problem for the following constants and 

parameters listed bellow, 

tr Final time 
t0= Initial time 

c2= Terminal miss factor 
rp:;= Missile control factor 
re= Airplane control factor 

=2 sec. 
=0 sec. 

=0.04 n- 2 

=0.1 (ft-2 sec.3) 

=10 cn-2 sec.3) 



't 1 = Missile time constant 

't2= Aircraft time constant 
Q0= Initial error variance 

We= Evader measurement noise vanance 

=1 sec. 
=1 sec. 
=1 ft2 

=10 ft2 . 
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Figure 7. 9 shows the effect . of the intersimulator delay 't 3 on the 

overall system performance measured by the covariance of the 

terminal miss given the measurements of the evader, X(tr). This is 

actually, the mean square of terminal miss and it can be viewed as the 

mean square actual error between the position of the missile and the 

aircraft. As indicated in the figure 7 .8, X(tr) initially increases and will 

reach a maximum before decreasing. This is exactly the same 

interesting trend which is observed for the formation flight task (see 

Chapter VI). This results could be expected to be in full agreement 

with our previous results obtained in the formation flight problem, 

because the differential game is actually a two-sided optimal control 

theory. 

In addition, it seems that the internal delay 't 2 does not have 

significant effect on mean square of the terminal miss, X(tr), especially 

for larger 't3• The effect of the internal delay on X(t) is shown in Figure 

7.10. As seen, X(t) will increase with 't2 , however the amount of 

increase is not significant. 
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Figure 7.10. The Effect of 'tz on Missile-Aircraft Problem, 't3=0. 
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7.7 Summary 

In this chapter we first introduced air-to-air combat tasks which 

can be considered as the game of combat, and they may be formulated 

as pursuit-evasion differential games. Sections 7.2 through 7.4 present 

a review of literature on differential game theory and introduce the 

pursuit-evasion problems. Section 7.2 presented a general view of 

differential game theory. Pursuit-evasion problems have been 

discussed in sections 7:3 and 7 .4. 

In section 7 .5, we applied the methods reviewed in the previous 

sections to a classical interception problem as an example.of a 

stochastic pursuit-evasion game. In section 7 .6, by applying pursuit­

evasion differential game theory, we first developed a model for a 

simple air-to-air combat task and then we analyzed a missile-aircraft 

problem in which the aircraft (evader) is given noisy delayed 

information. We observe that the mean square terminal miss, as a 

function of intersimulator delay, is nonomotonic; it initially increases 

and will reach a maximum before decreasing. This was exactly the 

same trend that has been observed for formation flight task problems 

discussed in Chapter VI. 



CHAPTER Vlll 

CONCLUDING REMARKS 

8.1 Conclusions 

Time delays can cause significant prob~ems m the simulation of 

highly responsive systems, such as fighter aircraft. It is very 

important to analyze the adverse effects of these delays. Several 

efforts have been made to analyze the effects of delay in single flight 

simulators, but there has been nothing found in the literature for 

analysis of the delay in networked flight simulators. This study 

provides an analytical method to show the effects of certain time 

delays, in particular inter-simulator delay, in some networked flight 

simulators. 

The first phase of this study has investigated the effect of the 

length of the inter-simulator delay on pilot performance in a simple 

formation flight task. For this task there are two aircraft: a lead pilot 

and a Wingman. The lead pilot is attempting to maintain level flight 

while experiencing turbulence. The Wingman is trying to follow the 

lead, and is experiencing the same turbulence. 

There were several interesting, and unexpected, results from 

the analysis of this task. The first was that the tracking error is not a 

monotonically increasing function of the time delay between the two 

simulators, as might be expected. The error perceived by the 
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Wingman decreases. initially as the inter-simulator delay is increased. 

After reaching a minimum, the error then increases. In addition, the 

actual error (by-passing the inter-simulator delay) has the opposite 

pattern. It increases first, then decreases after reaching a maximum. 

It was also found that the point at which the perceived error 

reaches a minimum (as a function of inter-simulator delay) will 

increase as the intra-simulator delay of the Wingman increases, but 

will decrease as the intra-simulator delay of the lead pilot increases. 

In order to explain these results, several simple optimal 

tracking problems were analyzed. These studies showed that, indeed, 

it is the nature of the optimal tracking problem which brings on the 

phenomena seen in the formation flight task. 

As a logical extension, the second phase of this study investig­

ated the feasibility of applying differential game theory to the 

modeling of an air-to-air combat task by considering the possibility 

of combination of optimal control model and differential games for a 

simple task. After introducing a model for a simple air-to-air combat 

task, we analyzed a missile-aircraft problem in which the aircraft 

(evader) is given a noisy delayed information. Again, we observed 

that the mean squared terminal miss, as a function of intersimulator 

delay, is non-monotonic; it initially increases and will reach a 

maximum before decreasing. This was exactly the same trend that has 

been observed for the formation flight task problems discussed in 

Chapter VI. 



8.2 Suggested Topics for Further 

Research 

The previous chapter considered a simple case of a combat 

game formulated as a zero-sum, two-person pursuit-evasion 

differential game with the following characteristics: 
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1. There was a single payoff index of performance, which was a 

quadratic of the terminal miss and the time of the capture, 

assigning a unique number (value of the game) to each pair of 

the strategies of the pursuit-evader game. 

2. It was a single target for the combat game. 

3. The evader (the maximizer player) had no offensive 

capabilities; he only strived for maximizing the time of capture 

from an initial state to the target state. The pursuer attempted 

to minimize the the time of the capture. 

4. The external state disturbances have been neglected. 

The pursuer-evader model developed in chapter VII is not accurate 

for a general air-to-air combat task (Dogfight problem*> in which the 

evader also has offensive capabilities. However, an encounter 

between aggressive aircraft may end in a misille-aircraft problem 

discussed in the previous chapter. For further research, the following 

extensions are recommended. 

* According to the terminology of Isaacs [81]. 



8.2.1 Noisy-State Pursuit-Evasion 

Differential Games 
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Consider the following state-differential equations which define 

the dynamics of pursuer and evader, 

~P (t) = AP ~P (t) + BP !!p (t) + EP w P (t), 

~e (t) = Ae ~e (t) +Be !!e (t) + Ee We (t), 
(8.1) 

(8.2) 

where subscripts p and e stand for pursuer and evader respectively, 

and w P and ~ are independent white Gaussian noise. It is assumed 

that the initial states xp(t0) and ~(t0) are Gaussian white noise 

vectors, uncorrelated with both state disturbances, and the available 

measurements for the pursuer and the evader are given in Equations 

(8.3) and (8.4), respectively, 

~pp ( t) = c pp ~ p ( t) + y pp ( t)' 

~pe(t)=Cpe~e(t)+ype(t),' 

~ep ( t) = Cep ~P ( t) +Yep ( t ), 

~ee ( t) = Cee ~e ( t) + Yee ( t ). 

(8.3a) 

(8.3b) 

(8.4a) 

(8.4b) 

where independent noise processes Y(.) are white, Gaussian, and 

uncorrelated with initial states and state noises. For the linear 

systems given in (8.1) through (8.4), the following differential game 1s 

defined: Determine a saddle point ( !!; , !!: ) of the payoff criterion of 

the form 
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( ) _ 1 { . 1 [~~ (T)Rc ~(T) + ]} 
J up , ue - - E hm - T , 

- - 2 T~oo T 1 1 j0 [ !!p ( t )Rp !!p ( t)- !!e ( t )Re !!e ( t)] dt 

(8.5) 

subject to the constraints given in (7.1) and (7.2), where the matrices 

CP and Ce yielding the interested states, the matrices Rc, RP and Re are 

positive definite, and the terminal miss x(T) is of the form 

~(T) = CP ~P (T)- Ce ~e (T). (8.6) 

This is exactly a zero-sum, two person stochastic differential 

game with the noisy measurements given in equations (7.3) & (7.4). 

As discussed in section 7 .6, in order to develop a complete OCM 

model, which includes the motor noise, for an air-to-air combat 

task,.the solution of the above general stochastic differential game is 

necessary. As selected bibliographies, references [103], [105] and 

[ 1 06] are suggested for future study. 

8.2.2 Non-Zero Sum Differential Games 

As mentioned earlier, in real air-to-air combat, each aircraft 

strives to destroy its encounter aircraft, while ensuring his survival. 

To be so, before missile launch each aircraft by right maneuvering 

has to bring its hostile opponent inside its weaponry range so that its 

missile can reach the opponent. In addition, after missile launch each 

aircraft must maneuver such that the missile of its opponent will not 

reach it. Therefore, we may say that the first player (the first 

aircraft) strives to minimize the distance from its missile to its 

opponent (the encounter aircraft), 11' and to maximize, at the same 
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time, the distance from its opponent's missile to its current position, 

12 , while the second player (the second aircraft) behaves the opposite 

way; he attempts to minimize 12 and maximize 11. In this case, one 

may first suggest two different performance indices J 1 (11 ,12) and 

h(l1 ,12), then determine the optimal strategies (the controllers) by 

minimaximizing the indices J 1 and J2• This is exactly a two-person, 

non-zero-sum differential game. 

Therefore, in order to include the offensive behavior of the 

evader (the opponent), we may have to consider non-zero sum 

differential games, since the zero-sum pursuit-evasion differential 

games emphasize the non-offensive maneuvering of the evader. 

Further research needs to be done on this kind of game, in particular 

on the determination of the appropriate choices of the cost indices J 1 

and J2, especially when each player includes an OCM which models 

the pilot with different subjective performance indices. 

References [ 114] & [ 115] analyzed some air-to-air combat 

problems and addressed the problem of optimal missile firing which 

is based on the solutions of non-zero sum differential games. For 

preliminary background about non-zero sum differential games and 

their properties, References [ 116-117] are suggested. 

8.2.3 Two-Tar~et Qualitative Games 

As mentioned earlier, chapter 7 concentrated on single-target 

pursuit-evasion differential games which can be used to modeling 

"idealized" air-to-air combat problems. In a single-target differential 

game, there is actually no winner because of the a priori compromise 
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between the two players. This is called the role determination [81] 

problem which is a preassigned roles for the two-players (pursuer 

versus evader) and its limitations has been discussed in Ref. [118]. 

Although the role determination problem may be resolved by 

considering two simultaneous pursuit-evasion games, the two target 

qualitative games seems to be more promising [ 113]. 

In a two-target differential game, each player (each aircraft 

with offensive missile) strives to bring the state of the game from 

any given initial condition to its own target set, while not letting his 

opponent (the encounter aircraft with offensive capabilities) drive 

the game to his target set. For problem formulation and the 

determination of the optimal strategies in a two-target qualitative 

differential games, Refs. [119]-[123] are suggested. 
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APPENDIX A 

OCM SOLUTION [49,70] 

A.l Introduction 

This appendix presents a detailed solution of the OCM (optimal 

controller for the systems with time delay and observation and motor 

noise) which was outlined in Chapter IV. Here, we investigate the 

problem of controlling a linear system to minimize a quadratic index of 

performance for the cases in which the output of the system is a 

delayed linear combination of system states corrupted by additive 

white observation noise. 

In chapter III, we have seen that the optimal controller for 

linear stochastic system is produced by a linear feedback link 

consisting of optimal controller gains and a Kalman filter. This 

appendix will show how to modify this optimal controller for 

acceptance of the human's inherent constraints. In other words, we 

will see that the optimal control is generated by a linear feedback 

loop consisting of a cascaded combination of a Kalman filter, a least 

mean squared predictor, and a set of optimal controller gains. The 

effects of the human operator's limitations (time-delay, observation 

noise), which reduce system performance, will be seen explicitly in 

the deriyed expressions for the optimal performance in time domain 

as well as in frequency domain. 

A-1 
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We consider the system which IS described by the state/output 

equations 

~(t) =A~( t) + QU(t) + Ew(t) 

y( t) = C~( t- 't) + y( t- 't) 
(A-1) 

(A-2) 

where w (t) and v(t) are independent white Gaussian notses with 

intensity matrices 

E[w{t)w' ('t)]=Wo(t-'t) 

E[y(t)y' ('t)]=Vo{t--c). 
(A-3) 

The problem is to determine the control input u(t) which mtmmtzes 

the following performance index 

(A-4) 

where Q is a positive semidefinite matrix and r is a positive scalar. Note 

that the case in which J contains a control rate term is considered later 

in this appendix. 

A.2 Optimal Controller 

A.2.1 Solution of the Time Delay Problem 

First, the following case known as a prediction-control problem 

is solved. 

Problem: For the system defined in (A-1) with the output 

~(t)=~(t-'t), (A-5) 
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find the control input u*(t) which minimizes the index of performance 

defined in (A-4). 

This problem says that at time t we are generating x(t-'t) but not x(t) 

(see Equation (A-5)). In order to solve this problem, we first need to 

predict the current state, x(t), by observin~ the measurements y(o), 

o :S t. The mean square prediction process has the form 

(A-6) 

In order to determine ~( t), we continue as follows. By 

differentiating both sides of (A-5) and using (A-1), we will have 

y( t) = ~( t- 't) =A~( t- 't) + Q u( t- 't) + E w( t- 't) 

= Ay(t) + Qu(t- 't) + Ew(t- 't). 

Knowing that the system (A-7) is linear, we may write 

y(t)=y (t)+y (t) 
- -U -W 

(A-7) 

(A-8) 

where y ( t) and y ( t) are respectively the contribution of y( t) due 
-U -W 

to u(t) and due to w (t). They satisfy the following differential equations 

y (t)=Ay (t)+Qu(t-'t) 
-U -U 

y (t)=Ay (t)+Ew(t-'t). 
-W -W 

(A-9) 

(A-10) 

Because of deterministic input u(t) and randomness of w(t), ~u (t) is a 

deterministic process and y ( t) is a random process. 
-W 

Now, if we write ~(t)=y(t+'t)=y (t+'t)+y (t+'t), then we 
- -U -W 

can find (using (A-6)) 
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~( t) = E{ !f( t)II< cr), cr ~ t} = 

= E{Iu ( t + 't)II( (j)' (j ~ t} + E{Iw ( t + 't )II( (j)' (j ~ t }. 

(A-ll) 

Since y ( t) is deterministic and it is independent of y ( t), we write 
-U , -W 

(A-12) 

From (A-10), we may have 

(A-13) 

Knowing that w(.) is white noise and using the following properties of 

conditional expectation 

E[g(X)IX = x] = g(x) 

and 

E(AXIY= y ]=AE(XIY=y], 

the second term in (A-12) becomes 

Thus, 

~ ( t) = y ( t + 't) + e A1: y ( t) 
-U -W 

is the least mean squared prediction of x(t) with the following 

differential equation obtained from (A-14). 

• A't 
~(t)=y (t+'t)+e y (t) 

-U -W 

Using (A-9) and (A-10) in (A-15) yield 

(A-14) 

(A-15) 



;.., At At 
~(t)=A~0 (t+'t)+!2u(t)+e A~w(t)+e Ew(t-'t). 

A'C A'C 
Knowing that e A = A e , we can write 

· [ At ] · A'C ~(t)=A ~u(t+'t)+e ~w(t) +!2u(t)+e Ew(t-'t) 
, A't 

= A~(t) + !2u(t) + e Ew(t- 't) 

which is of the same form as the system state equation given in 

(A-1). The prediction error is determined as 

A-5 

(A-16) 

(A-17) 

~(t)=~(t)-~(t)=y (t+'t)+y (t+'t)--,y (t+'t)-eAt y (t) 
-U -W • -U -W 

At 

=~w(t+'t)-e ~w(t). (A-18) 

Using (A-13) in (A-18) gives 

ft+'t A(tH-0') 
~(t)= Jt e Ew(cr-'t)d(cr). 

In order to simplify (A-19), let t + 't- cr = 11- This implies 

dcr = -d11 

cr e [t, t + 't]::::} 11 e [ 't,O]. 

Thus, we can write (A-19) as 

fo Af\ f't Af\ 
~(t)=- 'te Ew(t-1l)d(1l)=Joe Ew(t-11)d(11). 

From (A-20), we can see that the control input u(t) has no 

(A-19) 

(A-20) 

effect on the prediction error. Therefore, the minimum mean square 
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error, which is calculated below, becomes independent of the choice of 

u(t). 

( All)' A'Tt 
To obtain (A-21), we use the fact that e = e . 

In order to minimize the index J(u), we first write 

E{~' (t)Q~(t)}=E{!' (t)Q!(t)}+E{~' (t)Q~(t)} 

+E{!I (t)Q~(t)}+E{~' (t)Q!(t)}. 

(A-21) 

(A-22) 

Knowing that the predictor error is uncorrelated to the least mean 

square state estimate, i.e. E{&' (t)~(t)}=E{~' (t)!(t)}=O, the last two 

terms in (A-22) will be zero because of the following identity. 

w I A w = Tr [A w I w] = Tr [ w' w A]= Tr [ w w' A]. 
(A-23) 

Thus, 

(A-24) 

Using (A-23) in (A-4) gives 

J(u) = E{~' ( t)Q~( t) + &' ( t)Q!( t) + ru 2 ( t) }. (A-25) 

Substituting (A-21) and (A-23) into (A-25), we have 
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(A-26) 

where 

J 1 ( u) = E{ &' ( t )Q&( t) + r u 2 ( t) }. 
(A-27) 

To minimize J(u) we only need to minimize the index J1(u) 

defined in (A-27), because the first term in (A-26) is independent of 

the choice of u. In other words, the prediction-control problem changed 

to the problem of finding an input u*(t) for the system given in (A-17) 

so that the index of performance J 1 (u) is minimized. This is a regulator 

problem which was discussed in Chapter Ill. Its solution is 

u* (t) = -F&(t),F = r-1 Q'P 

where P is the unique positive definite solution of the Riccati 

equation 

Q+PA +A'P -PQr-1 Q'P=O 

with the optimal cost 

1; ( u *) = Tr (PW1 ), 

(A-28) 

(A-29) 

(A-30) 

A't I A''t 
where W1 = e EWE e is the intensity matrix of the white process 

At 
w1 (t)=e Ew(t-'t). 

In summary, as illustrated m Figure A-1, the solution of the 

prediction-control problem is given by equation (A-28), where &( t) 

described by Equation (A -17) is the least mean square prediction of 
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w(t) .. I(t) .. 
~(t) =~(t)+bu(t)+ElY(t) ~ 

-st .. e .. .. 
-------------------------------------------

~(t)=y (t+'t) ,, 
y (t) -. - -u -st .. s=As+hu ... u .. ,.. e 

+ 

y (t): 
-w ~ 

u(t) 8(t) r 

0· -F* -- ... .... + 
Controller 

I ----------------------------------------------------
Figure A.1 Optimal Feedback Controller for System With Time 

Delay 

x(t), with the optimal index of performance 

( * ) ( r't AT\ 1 A'T\ ) ( A't 1 A''t ) J u = Tr QJo e EWE e dll + Tr Pe EWE e . 

A.2.2 Optimal Controller for Noisy 

Time-Delay Systems. 

(A-31) 

This section solves for the optimal control for the systems whose 

operations described by equations (A-1) and (A-2) introduced in 

section A.1. Let 
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&( t- 't) = E{ ~( t- 't )ly_( o), o ~ t} 
(A-32) 

be the least mean squared estimate of x(t-'t). As discussed in Chapter 

III, this estimate can be found by means of a Kalman filter as shown 

below, 

&< t- 't) =A&{ t- 't) + Q u( t- 't) + K[y_( t)- C&{ t- 't)] 

where 

y(t) = C~{t- 't) + y(t- 't) 

K=:EC'V-1 

and :E is the covariance matrix of the reconstruction error 

~(t)=~(t)-&(t). 

:E satisfies the matrix Riccati equation 

(A-33) 

(A-34) 

(A-35) 

(A-36) 

Using (A-1) and (A-33) in (A-35), we can have the following 

equation which defines the error ~( t). 

~(t) =[A- KC]~{t)- Ky{t) + Ew{t) (A-37) 

From Equation (A-37) we see that ~(t) is independent of u(t). By 

substituting (A-33) in (A-4) and proceeding as in section A.2.1 (see 

equation (A-25), the performance index J(u) becomes 

J(u) = E{~' {t- 't)Q~(t- 't) + &' (t- 't)Q&{t- 't) + ru2 (t- 't) }. 

(A-38) 
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Knowing that 

E { ~· ( t - 't )Q~ ( t - -r)} = Tr ( Q E { ~' ( t - -r) ~ ( t - 't)}) = Tr ( QL), 

J ( u) is written as 

J(u) = J 1 (u) + Tr(Ql:) (A-39) 

where 

(A-40) 

Therefore, minimizing of J(u) is equivalent to minimizing of J1(u). 

By letting £(t)=R(t--r)lt=t+t' Equation (A-40) and (A-33) can 

be rewritten as 

J 1 ( u) = E{£' ( t )Q£( t) + r u 2 ( t)} 
(A-41) 

E(t) = A£(t) + h u(t) + w(t) (A-42) 

where 

w(t} = K[C~(t) + y(t)]. (A-43) 

It has been shown that w(t) is a white noise process [49] with 

the intensity matrix 

E{ w(t)w(o)} = wo(t- o) 

where 

- ' -1 W=KCl:=l:CV CL. (A-44) 
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From Equation (A-42) we can see that at time t we really 

produce R( t- 't) not R( t). This implies that the control input u(t) can 

only be generated by R(a),a~t-'t. Now, we have the problem of 

minimizing J 1 (u) defined in Equation (A-41) subject to (A-42). This 1s 

exactly the prediction-control problem w}lich was discussed in the 

previous section. Therefore, the control input u*(t) which minimizes 

J 1 (u) is 

u*(t)=-Fy(t) (A-45) 

where y( t) is the output of the least mean squared predictor with the 

input ~(t). y( t) satisfies the following equations 

y( t) = ~( t) +eAt[~( t)- ~( t- 't)] 
. * 
~(t)=A~(t)+Qu (t). 
- -

(A-46) 

(A-47) 

Figure A-2 shows the closed optimal control system for this 

case. As indicated in this Figure, the optimal feedback link is a 

cascaded combination a Kalman filter, a linear mean squared 

predictor, and optimal controller gain factors. 
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. l ~~ -st L---------__;:--1 - Q Fe 

l I 
l I 

~------------------------------~ -----------·----------~ 

Figure A-2. Optimal Controller for Systems with Time-Delay and 

Observation Noise 

A.2.3 The Evaluation of Performance Index 

In order to evaluate the index J(u), we first need to find the 

minimum value of J 1 (u) from Equation (A-40). Using (A-44) in 

(A-31), the optimum of J1(u) is 

( * ) ( rt AT\ - A'11 J ( A't - A''t J J u 1 = Tr QJo e We d11 + Tr Pe We 

( 
rt AT\ , l A'11 J ( At , l A't ) = Tr QJo e :EC v- C:Ee d11 + Tr Pe :EC y- C:Ee . 

(A-48) 
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From (A-36), we can write 

(A-49) 

By substituting (A-49) into (A-48), Equation (A-39) becomes 

J( u *) = J 1 ( u *) + Tr ( Q~) 

( 
r1: Afl I Alfl ) 

=Tr QJ0 e EWE e dll 

+Tr Pe EWE e +Tr PA+AP e ~ e . ( 
A't 1 A''t ) ([ 1 ] A't A1't ) 

(A-50) 

It can be shown that (using power series expansion) 

(A-51) 

Using (A-51) in (A-50), the optimal performance index J(u*) becomes 

( * ) ( r't Afl 1 A
11'\ ) ( A't 1 A

1

't ) J u =Tr QJ0 e EWE e d'T\ +Tr Pe EWE e 

([ 
1 ] A't A''t ) + Tr PA +A P + Q e ~ e . 

(A-52) 

Using (A-29) in (A-52), J(u*) will be 

( * ) ( r't Afl 1 A'fl ) ( A't 1 A''t ) J u =Tr QJ0 e EWE e dll +Tr Pe EWE e 

( 

1 A't A''t) 
+Tr PQr-1Q Pe ~ e . 

(A-53) 
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. At A't 
By lettmg PQ = y, Pe L e = z, and using the trace property 

y'Zy=Tr(y'yz) given in (A-23), the index (A-53) can be 

rewritten as: 

( * ) , ( f't Art, , A'rt , J . 
J u = Tr Q10 e EWE e d11 . + 

( 
At , A't ) , 

+Tr Pe EWE e +Fe LFe· 
(A-54) 

where 

(A-55) 

The effects of human operator's limitations (time-delay and 

observation noise) are explicitly shown in the optimal performance 

index given by Equation (A-55). 

In order to evaluate the closed-loop covanance matrix of 

system state and control input, we may continue as follows. Using 

(A-28) in (A-17) and (A-27), the positive definite matrix P satisfies 

the Lyapunov equation [63] 

with the solution 

(A-56) 

where 

and 
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(A-57) 

After introducing (A-49), (A-52) can be written 

( * ) ( r't AT\ 1 A'T\ ) ( A-r; 1 A''t ) J u =Tr QJ0 e EWE e dfl +Tr Pe EWE e 

( 
A't A''t ) ( A't A''t ) ( A-r; 1 A''t ) + Tr Q e l: e + Tr Pe Al:e + Tr Pe l:A e 

( 
r't AT\ 1 A'T\ ) ( A't A''t ) =Tr QJ0 e EWE e dfl +Tr Qe l: e 

+Tr Pe l:C v-1cl:e . ( 
A't 1 A''t ) 

(A-58) 

Substituting (A-56) into (A-58) gives 

( * ) ( r't AT\ 1 A
1

T\ ) ( A't A
1

't ) J u = Tr QJo e EWE e dfl + Tr Q e l: e 

( 
roo A~cr Ac 0' A't I 1 A''t J 

+Tr Jo e Qc e e l:C v- Cl:e dcr 

( * ) ( r't AT\ 1 A
1

T\ ) ( A't A
1

't ) J u =Tr QJ0 e EWE e dfl +Tr Qe l: e 

( 
roo A~O' A't I 1 A''t Ac 0' J + Tr Qc Jo e e l:C v- Cl: e e dcr . 

(A-59) 

Using (A-57), (A-59) becomes 

't ~ I A~ ~ A~ J0 e EWE e dfl + e l: e + 
J { u * ) = Tr Q I I + 

roo ACO' A't I 1 A 't Ac 0' 
Jo e e l:C V- Cl: e e dcr 

( 

I roo A~cr A't I 1 A1't Ac 0' J +Tr F rFJo e e l:C v- Cl:e e dcr . 
(A-60) 
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By equating the right hand sides of equations (A-60) and (A-4), we 

will have the following identities 

E[ ~~Q!f] = Tr ( QE[ ~~ ~n = 

(A-61) 

[ 2] ( I roo A~CJ At I 1 A't Ac (J ) 
E ru = Tr F rF Jo e e I:C v- CI: e e dcr . 

(A-62) 

From (A-61), the covariance matrix of the closed loop state 1s 

(A-63) 

Another approach for determination of Cov(~ can be conducted 

as follows. Knowing that the least mean squared estimator is 

uncorrelated with its associated error, we can write the covariance of 

the closed-loop system state as 
Cov(~) = Cov(filter error)+ Cov(Pr edictor Error) 

+ Cov (Predictor) = 
(,; Art • 1 A'rt ( ) = I: + Jo e I:C v- Cl:e d11 + Cov y_ • (A-64) 

The last term in (A-64) can be found as follows. By referring to Figure 

(A-2) and introducing (A-10), we can write the following equations. 

A't 
y(t)=~(t)+e y (t), 
- - -W 
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A't A't A'C 
= AX(t)- Ae Iw (t) + e Aiw (t) + e w(t- t)- !!FX(t) 

A'C 
=AcX(t)+e w(t-t). 

with Ac defined in (A-57). For the above differential equation, the 

covariance of X ( t) is [ 63] 

( ) roo A~ a A't - A''C Ac a 
Cov X = Jo e e We e dcr 

(A-65) 

where 

w = Cov(w) = :Ec'v-1c:E. 
Using (A-65) in (A-64), we will obtain equation (A-63), smce from 

Equations (A-49) and (A-51), it has been shown that 

To summarize, so far the problem of finding an optimal 

controller for linear systems with time delay and observation noise 

has been solved and it has been seen that the optimal feedback 

control is a cascaded combination of a Kalman filter, least mean 

squared predictor and optimal controller gain factors. The optimal 

performance index and the covariance of closed-loop system state 

have been determined in their closed forms which explicitly reflect the 

effects of human inherent limitations (time-delay and observation 

noise) on overall system performance. 

As discussed in chapter IV, applying OCM in manual control 

systems requires us to consider a index of performance which contains 
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a control rate term in order to restrict rapid control movements. This 

kind of control problem is discussed in next section. 

A.2.4 The OCM Solution 

In this section we consider the problem stated as: for the system 

defined by equations (A-1) & (A-2), we are looking for a control input 

u*(t) which minimizes the following performance index 

(A-66) 

In order to convert this optimal control problem to the one discussed 

in section (A.2.2), we make the following modifications. 

By letting ~(t) = [~(t) u(t)]' and introducing a new control 

J.l ( t) = u ( t), we will have the (n+ 1 )-dimensional system 

i(t)=A1 X(t)+ .Q 1J.L(t)+E1 w(t) - -
y( t) = C1 x< t- 't) + y( t- 't) 
- -

with the index 

where 

Q], bl = [Onxl ], Ct = [C d], 
0 - 1 

(A-67) 

(A-68) 

(A-69) 

(A-70) 
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Now, we want to determine the control input fl*(t) which 

minimizes (A-69) subjected to (A-67) & (A-68). This is exactly the 

same type of problem discussed in section (A.2.2). In order to apply 

the results obtained in the previous sections, A1, bl> C1, Q1, E1 must 

replace A, b, C, Q, E, respectively. The optimal control input is 

(A-71) 

where 

(A-72) 

The error covariance matrix is determined by Equation (A-36) 

with appropriate matrix replacements mentioned above. 

(A-73) 

Using (A-70) in (A-73) and solving for 1:1, we have 

o~, J 
where 1: satisfies the equation (A-36). This implies 

A A A o 12 
Xn+l = u, Xi =Xi, 1 = , , .. ·, n. (A-74) 

(A-74) says that the consideration of control rate as a new control 

input ha~ no effect on state estimator, &( t) and the Kalman filter 

generates an exact estimate of control input u(t). The latter is 
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unrealistic from a human operator viewpoint, smce he has no perfect 

knowledge of the controlled system input. Thus, as indicated in Figure 

4.1, the motor noise which is white Gaussian process with intensity V u, 

is added to the commanded input signal. The effect of the motor noise 

will be discussed later. 

The human's time constant lag 'tn and optimal controller gam F* 

can be determined as follows. By using (A-72) in (A-71), we can write 

(A-75) 

By taking the Laplace transform of both sides of (A-75), we will have 

1 ( *" ) U(s) = -F X(s) 
'tnS + 1 (A-76) 

where 

1 * [ 'tn =--,F ='tn f1 
fn+l (A-77) 

As seen, both F* and 'tn are only dependent on the system parameters 

A and b and cost weightings introduced in the performance index. For 

fixed values of Q and r there exists a 1-to-1 correspondence between g 

and 'tn. As g becomes smaller the input magnitude becomes larger 

which in tum requests for the larger gain factors (e.g., fn+l ). This 

implies smaller 'tn. Hence, the smaller g yields the smaller 'tn. 

Equation (A-76) shows that the substitution of the control rate 

term in the performance index is equivalent to the introduction of a 

first order lag with time constant 'tn into the optimal controller (as 

indicated in Figure (4.1)). 
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In order to see the effect of the motor noise vu(t), which 

represents the imperfect know ledge of the control input imposed by 

human operator, we assume that the control input u(t) is generated by 

1 1 1 
ii(t) = --u(t) + -uc (t) + -·Vu (t) 

~n ~n ~n (A-78) 

uc(t)=-F*!(t) 

where F* and ~n are c;lefined in (A-77). By combining Equations (A-1) 

and (A-78), we can write 

(A-79) 

where 

A2 =[ OA - ~1 J~2 = 
onxl 

1 lxn 
~n 

~n 

with 
W Onxl 

- (A-80) 

For _the system given by (A-79) and (A-68), we wish to find the control 

inpu,t minimizing the index of performance defined in (A-69). This 

problem has been solved in the previous sections. Using the previous 

results with appropriate matrix replacements, we can write the 

following equations for Kalman filter, least mean squared predictor, 

and the closed loop system state covariance matrix. 
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The state estimate :&( t) is obtained by cascade combination of an 

optimal state estimator (Kalman filter) and a least mean squared 

predictor. The Kalman filter produces a least mean square delayed 

estimate, :&( t- 't) , of the delayed state !( t- 't) by 

(A-81) 

where 

[ :&(t- 't)] 
y(t)= u(t-'t) , c2 =[C f!]. 

The optimal estimator gain matrix, K is 

(A-82) 

where r is the error intensity matrix and the umque symmetric 

positive definite solution of the Riccati equation 

(A-83) 

The predictor yields the optimum estimate & ( t) = [ !~: ~] from the 

Kalman filter output y( t) . The following equations define the linear 

dynamics of the predictor 

&(t) = ~(t) + eA21: [y( t)- ~(t- 't)] 
. * 
~(t) = A2 ~(t) +!hUe (t) (A-84) 

and the optimal commanded input is 

(A-85) 
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The following expression ts a closed-loop form for the covanance 

matrix of x(t). 

X=E{x(t)~(t)'}=eA2 't reA~'t + J eA2o E2W1E~ eA~o dcr+ 
0 

where 

. [~(.)] 
Smce ~ (.) = u (.) , the vartance of the system quantities are: 

E[x~(t)]=Xii Fori=l, ... ,n 

E[y; ( t)] = { [ C !!]X[~: JL Fori= 1, ... ,m 

E( u 2 ( t)] = x<n+l),(n+l). 

(A-86) 

(A-87) 

The effects of human limitations on the overall closed-loop man­

machine system are explicitly reflected in the equations (A-86) & (A-

_87). 

Being linear and time-invariant, the structure of the OCM can be 

formulated in the frequency domain by a linear transfer function 

linking y to u in the form 
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U(s)=h(s)Y(s)= [h1 (s) . . hm (s)] 

m 

= I hi ( s) Yi ( s) 
1 

where Ti (s) denotes the Laplace transform of ti (s). The next section 

develops the vector transfer function h ( s). 

A.3.,. Human Operator's Transfer 

Function Development 

The linear and time-invariant structure of optimal controller has 

been expressed in the time-domain by the Equations ( A-79)-(A-85). 

This section presents the frequency domain structure of feedback 

controller by a vector transfer function which relate the input, y, to the 

output, u, of the human operator, e. g., 

u(s)=h(s)~(s). 

Here, we derive the expressiOn for h(s) from block-diagram 

manipulations as follows. Figure A-3 represents a frequency domain 

representation of the human operator. In order to simplify the block­

diagrams shown in Figure A-3, we use the block-diagram reduction 

rules given in table 1. By applying the reduction rules of table 1 to 

Figure A-3, we can determine the transfer function h(s) linking y to u. 

Initially, we use Rule (a) to move the summing point (labeled with *) to 
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Aft 
the left of the block which contains e Next, we use Rule (b) to move 

the block labeled with # to the right of the first summing point from 

left. The results of these block transformations are shown in Figure A-

4. Finally, we use Rule (c) to obtain the equivalent transfer function 

block in Figure A-4.c. 

# * i}(s) 
"' -! 1 --'tS K (SI-A) e 

'tnS +1 

! -C/.:1 
t---4 

~(s) > -1S 
£1e ~(s) 

N u(s) 
'-"I -t:r 
N 

Figure A.3. Frequency Domain Representation of Human Operator 
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Table A.l 

Block-Diagram Matrix Reduction Rules 

B 

.__-I E ~-_._--10 

(a) 

~ 

~ 
(b) 

p 

+ _,: lj 
-1 

q=[I-AB] Ap 
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~(s) 
--t•~• K 

-st [ (SI-A2)t] _1 
T(s)=e 1-e (SI-A2 ) 12! 

u(s) 

(a) 

~(s) lvl.. 
--4·~~~ + 

,.. -1 -S't 

(SI- A) e 

.____I 2z I· 
, [ " ~t J-1 "' A2t T1(s)=- 1-Fe T(s) Fe 

(b) 

~(s) , I u(s) 
~ h(s) • 

u(s) 

(c) 

Figure A-4. Application of Rules Given in Table A-1 to Figure A-3 
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T 1 (s) and T2(s) can be simplified as: 

[ ] -1 "' -Att 
T1{s)=- 1-q>(s) Fe 

{ 1 ,.. (Az-sl)'t ( ,.. )-1 }-I T2{s)=- 1+[1-q>{s)r Fe SI-A Q2 x 

[1-q>{s)r Fe SI-A { 1,.. (Az-sl)'t ( ,.. )-1} 

where 

,.. (Az-sl)'t ( (sl-Az)'t )( )_1 q>(s)=Fe 1-e SI-A2 Q2 
(A-88) 

and 

Since q>(s) is scalar, T2(s) can be written 

{ 
,.. (Az-sl)'t ( ,.. )-1 }-1 ,.. (Az-sl)'t ( ")-1 T 2 { s) = - 1- q> { s) + Fe SI - A Q2 Fe SI - A . 

(A-89) 

By Substituting (A-88) into (A-89), we will have 

,.. (Az-sl)'t ,.. -1 1 1 { [ J }-1 

T2{s)=- 1+F e ((si-A) -(SI-Azr )+(SI-Azr Q2 X 

,.. (Az-sl)'t ( " )-1 
Fe SI -A . 
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Finally, the vector transfer function h(s) becomes 

h(s)=- 1 {Fe(A2-si)'t{SI-A)-1 K}x 
'tns+l 

{ 1+ F[ e (A,-si)'t ( (si- Af -(SI- A, r' )+ {SI- A, r' ]11, r 
(A-90) 

To summarize, the OCM consists of three key elements: Kalman 

filter, mm1mum mean squared predictor, and the optimal controller 

which assigns a set of control weights to the the elements of the 

predictor. For a given controlled system the OCM is completely 

determined by the quadratic cost weightings, the time delay 't, and the 

intensities of the observation and motor noise; the effects of human 

limitations on the overall closed-loop man-machine system in time 

domain as well as in frequency domain are explicitly reflected in the 

equations (A-86) & (A-90). 
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STABll..IZABll..ITY OF THE SYSTEM 

Here, we shall show that the system defined by the state equation of 

the form 

(B-1) 

where 

(B-2) 

IS stabilizable. The matrices and parameters m (B-2) were defined in 

section 5.2.2. 

To show the stabilizability of the system (B-1), the following 

theorem taken from [79] is used. 

B-1 
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Theorem. Consider the time-invariant linear system 

(B-3) 

where the pair { A 21 , B} is completely controllable. The system (B-3) 

is stabilizable iff the matrix A 12 is asymptotically stable (all its 

eigenvalues have negative real parts). 

The system (B-1) is a special case of (B-3). Because, the pair 

{ A 2 , Q2 } is completely controllable (see Equation (5.31a), we can 

apply the above theorem. The system (B-1) will be stabilizable iff the 

matrix A 7 is stable. Therefore, we need to show that all the 

eigenvalues of A 7 have negative real parts in order to prove the 

stabilizability of the system (B-1). 

A 7 defined in Equation (B-2) is a lower triangular matrix. 

Hence, the set of its eigenvalues consists of the eigenvalues of the 

matrices A 6 and A 03 . As discussed in chapter III, the closed-loop 

matrix A 6 defined in Equation (5.26) is stable. The matrix A 03 is also 

stable, since each of its main diagonal elements defined by Equation 

(5.28) is stable. Therefore, all the eigenvalues the two matrices A 6 

and A 03 have negative real parts. This implies the stability of the 

matrix A 7 • 
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SOLUTION OF A SIMPLE OPTIMAL 

TRACKING PROBLEM 

In this appendix we present a detailed solution of the tracking 

problem discussed in section 6.2, where we observed that for a fixed 

plant parameter, the error, as a function of reference parameter, 

monotonically decreases and will reach a minimum at point where the 

reference parameter equals the plant parameter and then 

monotonically increases to reach a steady state value. This non­

monotonic trend of the rms tracking error will be shown theoretically 

in this appendix. 

C.l The Problem 

Consider the simple optimal stochastic tracking problem 

illustrated in Figure C.l. The upper block diagram represents the 

reference model with external disturbance input w and the lower 

block diagram represents the plant whose output tracks the output of 

the reference model. The plant is disturbed by the same external input 

w. Both reference model and plant are represented by first order 

systems with model parameters 't 3 and 't 2 , respectively. For this 

system, we wish to find the steady state rms tracking error as a 

function of model parameters 't3 and 't2 . As seen in Figure C.l, this 

C-1 
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Reference model 

- 1 
'f3 s+1 

w 

plant 

- , -
1 + .. 

u -r2s+ 1 
~ .. ... 

, + 
vy Optimal - "'\.-

Filter/Controller + 

Figure C.l A Simple Optimal Tracking Problem 

C.2 The Solution 

The reference model is defined by the following state equations 

i 1 ( t) =-a x1 ( t) +a w( t) 

y 1 (t)=x1 (t) 

and the plant is described by the state differential equations. 

where 

i 2 (t) = -b x 1 (t) + bu(t)+ bw(t) 

y 2 (t) = x 2 (t) 

(C-1) 

(C-2) 
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1 1 
a=- and b=-

"t 3 "t 2 

and w(t) is a Gaussian white nOise with intensity W. 

We wish the plant output y 2 to track the reference variable y 1 as 

closely as possible by choosing the input u *{t) which minimizes the 

performance index J. 

(C-3) 

The plant equation and the reference model equation can be combined 

by defining the augmented state x3(t) which satisfies 

with 

The observed variable for the augmented system Is 

where v yCt) is a Gaussian white noise process with intensity V y· 

In terms of ~3 , the performance index J becomes 

J = E{~~ (t)Q~ 3 (t) + gu2 (t)} 

with 

-[ 1 -1] Q- . 
-1 1 

(C-4) 

(C-5) 

(C-6) 

Now, we have a linear stochastic optimal regulator problem with 

the augmented plant defined by Equations (C-4)-(C-5) and the index of 
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performance J given in Equation (C-6). By referring to chapter III, we 

can determine the optimal linear controller as: 

(C-7) 

where the optimal controller gain F is 

(C-8) 

and the positive definite matrix P is the steady state solution of the 

Riccati equation 

The following nonlinear equations solve for P. 

b2 2 
1--p12 -2ap11 =0 

g 
b2 

-t--P12 P22 -(b+a)p12 =0 
g 

b2 2 
1--p22 -2bp22 =0 

g 

The last Equation in (B-10) solves for p22 . 

p 22 must be positive, then 

P22 = ~ [ -g + ~g(l +g)]. 

(C-9) 

(C-10) 

(C-11) 
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As seen, p22 is independent of reference model parameter 't 3 . It 

yields a feedback link of the optimal controller (see Equation C-8) 

which is independent of the reference model parameters. This 

property of tracking problems has been fully discussed in section 3.8. 

Using (C-11) in the first two Equations (C-10), we can solve for 

p 11 and P 12 as: 

with 

P12 =-.!_, Pu =.!_[1-JC_] 
'Y 2 gy2 

y=(a+b)+ b(-g+~g(l+g)). 
g 

(C-12) 

(C-13) 

By using (B-11)-(B-13) in (B-8), we can write optimal controller gains 

as: 

where 

b 
fl =-­

g 

(C-14) 

Figure C.2 illustrates the optimal tracking control of the 

augmented system ~ 3 when we have perfect measurement. For the 

system depicted in Figure C.2, we wish to show that under what 

conditions the tracking error will be zero (perfect match). In other 

words, we need to check that when the the transfer function x2/ w 

equals x 1/w. This can be done as follows. Let us denote 



G= 1 
't3 s + 1 

and H=--1-
't2 s + 1 

C-6 

Now, we can write the transfer functions x2/w and x1/w in terms of G, 

F, and Has: 

w 

xl =G 
w 

H(1-f1G) 
-= 
w 1+Hf2 

1 ... ... 
't 3 s+1 

xl ... fl 

w 

1 .. .. .. + ... 
't 2 s+1 

~ 

-f2 
.. -

Figure C.2 Optimal Tracking Control of the System ~ 3 

x2 

By equating the right hand sides of the above two equations, we 

will have 

or 
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By simplifying the above equation, we can have the following 

identity. 

This will be satisfied iff 't2='t3 & f1+f2=0. From (C-14), we can see that if 

't2='t3 then we can write 

. 1-~1+ 1 
1 1 1 g 

g 1+~1+ ~. =- g 1-1+ ~ =-fz· 

Therefore, in order to have a zero rms tracking error, the plant 

parameter 't 2 must be equal to reference model parameter 't 3 . 

C.2.1. Controller Poles: 

The controller poles are the eigenvalues of the closed loop matrix 

A c is a diagonal matrix. Its eigenvalues are the main diagonal 

elements. Therefore, closed-loop poles will be -a and -b(l +f2) or 

Controller poles = 1 

(C-15) 
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C.2.2 Observer Poles: 

The estimate of the augmented state ! 3 is determined by the 

following Kalman filter (see section 3.6): 

(C-16) 

where 

and the covariance positive definite symmetric matrix R Is the solution 

of the Ricaati Equation 

(C-17) 

with 

- [
rll f12] Let us denote R _ . 
f12 f22 

By expanding (C-17), we will have the following equations which 

solve for R. 

2 1 2 Wa --a -2ar11 =0 vy 
1 

Wab--a~-(a+ b)r12 =0 vy 
2 1 (.t2 Wb --p -2br22 =0 vy 

where 

(C-18a) 

(C-18b) 

(C-18c) 
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(C-18d) 

From (C-18b), we can write 

WabVY -0 r ___ _:_____ 
12 - (a+ b )Vy 

(C-19) 

where al3 = 0. 

By substituting (C-19) into (C-18a) and (C-18c), we can have the 

following nonlinear equations. 

13 2 (a+ b)- 2b(a + b )Vyl3- Wb 2 (b- a)Vy- 2o = 0 

a 2 (a+ b)+ 2a(a + b)Vya+ Wa 2 (b- a)Vy -2ao= 0 

(C-20a) 

(C-20b) 

Equations (C-20) solve for a and j3. Knowing these two values, we can use 

(C-18d) and (C-19) to determine R. It can be shown that the following 

fourth order equation solves for l3. 

[-(a + b) 3 + 4 ab (a + b) ]13 4 + 

[ 4ab(a + b )2 Vy + 4b(a + b )3 VY- 8b 2a(a + b )Vy ]13 3 + 

[-4b2a 2 W(b-a)Vy -4b2 (a+b 3 )v: +2(a+b)2 b 2W(b-a)Vy-

8b2 a(a + b )2 v: -4b3a(b- a)WVY ]132 + 

-4b3 (b 2 - a 2 )v: [a-t (a+ b )W]I3 + 

(C-21) 

As seen, we should deal with highly nonlinear equations in order 

to determine R. Let us determine the corresponding values of R for the 

following interesting values of reference parameter, 't 3 . 
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It can be shown that we can obtain the following results. 

a 0 = lim,,_,o a= av, ( -1 + ~1 +;, ) 
(C-22a) 

~0 = lim,3_,0 ~ = bV, ( -1 + ~1+;,) 
(C-22b) 

Knowing that 't 3 ~ 0 ==*a~ oo, from (C-18d) and (C-22) we will have 

0 [
00 R = 
r~ 

where 

(C-22c) 

(C-22d) 

For this case the covariance matrix R becomes 

(C-23a) 

IV - -a=b pa=b 0 
\.A.t - - • (C-23b) 
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For this case, we can have the following error covariance matrix. 

- [0 0] R == lim't3~00 R == O -~ 

where 

~=hvy(l-R} 

The observer gain is calculated as: 

The observer poles are the eigenvalues of the matrix 

The eigenvalues of the observer matrix A 0 are the roots of 

characteristic polynomial 

').,2 + a + b + A + ab + - - 2- == 0. ( a-~J ba-a~ 2a~ 
vy vy vy 

(C-24a) 

(C-24b) 

(C-25) 

(C-26) 
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Now, let us determine the observer gams and observer poles for 

the cases mentioned before. 

(C-27a) 

(C-27b) 

(C-27c) 

From Equations (C-27), we can see that for small -r3 one of observer 

poles occurs on the left half of s-plane at a point far from the 

imaginary axis corresponding to K0 (2)=-a0/V Y which is a big negative 

number and the other pole occurs at a point on the left which is closer 

to the imaginary axis because of K0(2)=-~0/V y· For -r3=-r2, both observer 

poles occur at -l/'t2. As -r3 approaches infinity one pole goes to origin 

and the other pole approaches -b +~Ivy. 

C.2.3 Evaluation of the Performance Index 

The following dynamical equation describes the reconstruction 

error ~(t)=~3 (t)-&3 (t). 

~( t) =A 0 ~( t) + ~ 3 w 3 ( t)- K v y ( t) (C-28a) 

The estimator can be written in terms of ~( t) as: 

(C-28b) 



C-13 

By combining equations (C-28a)and (C-28b), we will have 

(C-29) 

The covariance matrix of the above augmented vector can be 

found and all mean square of interest can be calculated from this 

covariance matrix. Since ~3 and ~ are uncorrelated regardless of input 

of u(t), we may denote the covariance matrix of the above augmented 

vector as 

(C-30) 

where 'Y = E[ ~3 ( t )~~ ( t)] and it can be determined as the steady state 

solution of the matrix equation (see Theorem 1.52 of [67]) 

where 

By letting 

r=['Yu 
'Y12 

'Y12 ], 
'Y22 

(C-31) 

(C-32) 



and using Equations (C-25) and (C-32) in Equation (C-31), the 

following equations solve for y. 

Equations (C-33) yield 
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(C-33a) 

(C-33b) 

(C-33c) 

(C-34a) 

(C-34b) 

To obtain Equations (C-34), we used the fact that l+f2=R (see 

Equation (C-14)). Let us determine y for the following cases. 

1. 't3 ~ 0. 

As 't3 approaches zero both a and a. approach infinity, f 1 goes to 0, 

and ~ approaches ~0 • Using (C-22), then we can 
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write 

0 1' 'Y11= lffi'Y11= 00 

't3-+0 (C-35a) 

(C-35b) 

(C-35c) 

This implies that a=b which in tum yields (see Equation (C-14)) 

For a=b, the observer gain is zero (see Equation (C-27b)). Therefore, we 

will have 

'Y a=b = 02x2 • (C-36). 

111. 't3 ~ oo. 

For this case, "a" goes to zero, ~ approaches J3, and a tends to 0. 

Then, we can write 

y 11 =lim 'Y 11 = 0, y 12 =lim 'Y 12 = 0 
(C-37a) 



C.2.4~ Evaluating of the Mean Square Error. E. 
I 

Knowing that ~ ( t) and & 3 ( t) are uncorrelated and 

:?b ( t) = ~ ( t) + ~ 3 ( t), the covariance of ~ 3 ( t) is 

E[ ?f 3 ?f~] = E[ ~ 3 ~~] + E[ &3 ~~] = R + 'Y. 

E r is found as 

( ) • [ J[r11+'Y11 r 12 +"{ 12 ][1] Er = C3 R + 'Y C3 = 1 -1 = 
r12 + 'Y 12 r22 + 'Y 22 -1 

= r11 - f12 + f22 - f12 - 2 'Y 12 + 'Y 22 + 'Y 11 = 
=a- f3- 2"{ 12 + 'Y 22 + 'Y 11 • 

Let us evaluate the mean squared error for the following cases. 

1. 't3 ~ 0. 

For this case, usmg (C-22) and (C-35), Equation (C-38) becomes 

Eo li E o A o 2 o o o _ 
r = m r =<X -p - "112 +"fll +"f22 = 00 

'tJ~O 
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(C-37b) 

(C-38) 

(C-39) 
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11• 't 3 = 't 2 • 

For this case, the mean square error is zero; use (C-23) and 

(C-36) in (C-39). 

(C-40) 

Using (C-24) and (C-27) in (C-39), the error becomes 

Er = lim E r = a- ~- 2 Y 12 + Y u + Y 22 
't3-+oo 

(C-41) 

From Equation (C-41), we can list the following two properties for E 1 • 

1. Er ( 't 2 ) is always positive because ~ is negative (see Equation 

(C-24b)). 

2. As 'tz increases, E r ( 't 2 ) will decrease. 

Th~refore, for a fixed plant parameter 't2 the mean square error, 

Er, as a function of 't3 is expected to have the shape of response 
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depicted in Figure 6. 9. It starts with a big positive number (when 't 3 is 

very small) and decreases monotonically till becomes zero at 't3='t2 

before increasing and reaching its steady state value, E r. This value is 

dependent only on 't 2 and will decrease as 't 2 increases. 
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