
NOISE REDUCTION IN THE GAMMA-RAY LOG

BY MEANS OF NONLINEAR FILTERING

By

LARRY J. PADEN

Bachelor of Science
Oklahoma State University

Stillwater, Oklahoma
1979

Master of Electrical Engineering
Oklahoma State University

Stillwater, Oklahoma
1980

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
May, 1991

The,$ iS
lt4'1 \ D
Pl~3h
c.op. 4

COPYRIGHT

BY

LARRYJ.PADEN

MAY, 1991

NOISE REDUCTION IN THE GAMMA-RAY LOG

BY MEANS OF NONLINEAR FILTERING

Thesis Approved:

.;

~:1 j, ~~

Dean of the Gmduate College

11

1402224

PREFACE

In January 1983, I returned to OSU to begin formal work on the

degree of Doctor of Philosophy. My personal goal was to take a number of

courses which I knew from experience would be useful in the burgeoning

information age. Luckily for me, since without it I might never have

collected and produced enough material to write this dissertation, I became

involved with the Oklahoma State University Consortium for Enhancement

of Well Log Data via Signal Processing. (We call it the Well Log Project for

brevity.) This wonderful group of companies gave us much needed contact

with researchers from companies such as Amoco Production Company;

Arco Oil and Gas Company; Cities Service Oil and Gas Corporation;

Conoco; Dresser-Atlas Company; Exxon Production Research Company;

Gearhart Industries, Inc.; Halliburton; International Business Machines;

Mobil Research and Development Corporation; Phillips Petroleum

Corporation; Seismograph Service Corporation; Sohio Petroleum Company;

Texaco Corporation; and the Oklahoma State University Center for Energy

Research. My graduate research assistantship was funded by this

consortium, and the support is gratefully acknowledged.

Ironically, some experts, along the very helpful and extremely detailed

discussions, also advised that everything possible had been done for the

gamma-ray log, and that I should pursue a more fruitful avenue of research.

Instead of the desired effect, this made me more determined to do something

which, I hope, is useful in the field. After all, the history of technology is

iii

filled with ironies like Einstein working at a patent office during an era when

serious suggestions were being made that patent offices be closed since

everything possible had been invented. One thing for which I feel indebted

to these researchers is that in spite of any doubts as to the fruitfulness of this

field of my endeavor, they did their utmost to assist me in every way

possible.

After reading a large amount of literature on gamma-ray logging, I

knew that the issue of what to do about the Poisson noise inherent in

radioactive decay is an important problem to investigate. The problem is that

this noise is small in comparison with the uncertainties involved in physical

logging, so by late spring 1983 I began using the synthetic logs described

here and measuring the results in Monte Carlo simulations. This was the

turning point because it provided me with a relatively objective figure of merit

of a filter.

And, although I touch on the subject of what input parameters should

be provided to the synthetic log generator, I have never changed them from

that first spring day when the program ran. This I have purposely not

experimented with for fear of coming up with an optimized log instead of an

improved filter. The question of how the different synthetic log parameters

affect filtering may provide another interesting topic of research if couched

in slightly different tenns.

The advent of the synthetic log brought with it some startling conclusions:

Ordinary median filters increased the noise; recursive median filters improved

the noise level more than did the optimal time-invariant linear filter; but my

own best filter thus far did little in comparison. That filter has long since

been confined to mass storage, but it did introduce me to a useful methodology

in inventing filters. One indication of the pathological features of this filter

iv

appears to be that the histograms results of the Monte Carlo simulation are

multimodal. By keeping a record of the input seeds to the random number

subsequently be regenerated and examined manually for the features that

cause unusually beneficial or pathological behavior. This may seem like it

would produce an unwieldy quantity of output, but for any filter that

improved the results, less than 10% of the histogram's data points fell

outside the Gaussian-like center hump, and often the examination of only a

few of these would be sufficient to conjecture what might be improved.

Once the histogram began to appear Gaussian, the filters often began to

produce reasonable results on actual log data, also. Perhaps the process

could be repeated with the tails of the histograms, but this is left as a

potentially interesting problem for future work.

In addition to acknowledging the helpful discussions with the various

members of the OSU Well Log Consortium, I would especially like to thank

Eric Pasternak of Arco for providing suitable gamma-ray log data on which

to illustrate the results. To all the faculty members at OSU I wish to extend

my heartfelt thanks since I cannot think of a single class in which the professor

did not take time to explain some question that I had which might not even

be particularly related to the subject. In particular, and not necessarily in

any particular order, I wish to thank certain members of that faculty for their

special help. Dr. James Rowland made computer simulations a very exciting

part of all his classes, and serving on my committee. Dr. Gary Stewart of the

Geology Department spent many hours defining salient features in various logs

and ultimately examining the results of the more meritorious filters to see if

they made gross blunders. Dr. Stewart also served on my committee. Dr.

David Soldan initially got me started in the gamma-ray log and helped with

in the numerous discussions that save many precious hours when learning a

v

new subject and initially acting as my thesis advisor. Dr. Allen Steinhardt

came up with challenging problems that were, at the same time, unusual,

relevant, and interesting. He subsequently served as my thesis advisor before

joining MIT Lincoln Labs (now at Cornell University) and is especially

remembered for good mathematically correct and relevant answers to many

of my badly posed questions.

My debt of gratitude to the chairman of my committee, Dr. Rao Yarlagadda

can never be repaid. He has contributed in so many ways to my education

that I doubt I can name them all. He instigated the OSU Wellog Consortium,

which has been so important, taught numerous courses, answered many

questions, provided many books, and provided continuity in the mist of the

many changes my committee has undergone. Without his patience and persistent

encouragement, this work might have died on the verge of completion.

In my personal life, I must thank my loving wife Carol for her

patience with all days I spent away from home in pursuit of this project. My

father, Jack T. Paden, Jr. has also provided much needed encouragement to

overcome those many petty adversities that once seemed too onerous to

endure. My grandfather, Jack T. Paden, Sr. always encouraged me by

instilling the philosophy that the purpose of education is to enable one to

fmd that employment which best suits that particular individual, in order that

she or he may get the most out of life. (Or, as I have come to think of it:

The only real success in life is to be able to do exactly what one wants.)

Last, but not least, I express my heartfelt thanks to the many, many

other people, going as far back as my school days in Sand Springs, Oklahoma,

in Stillwater, and other places, who have assisted me over the years both in

obtaining the requisite education for this research, as well as in the research

itself.

vi

TABLE OF CONTENTS

Chapter Page

I. INTRODUCfiON ········· .. . 1

1.1. The Model of Gamma-Ray Logging 3
1.1.1. Poisson Noise .. 3
1.1.2. Factors Affecting the Recorded Signal.4

1.2. Linear Filters for Noise Removal 7
1.3. Nonlinear Filters for Noise Removal. 8

1.3.1. Median and Recursive Median Filters 8
1.3.2. Generalized Median Filters 1 0

1.4. The Monte Carlo Method ... 12
1.4.1. Theoretical Basis ... l3
1.4.2. Other Uses for these Results 14

1.5. Survey of Dissertation .. 14
1.5 .1. Summary of the Introduction 14
1.5 .2. Outline of Dissertation .. 15

n. SYN"THEnc LOOs ... 17

2.1. Construction of Synthetic Logs .. 18
2.2. Measurement of Noise on a Linear Scale 22
2.3. An Unattainable Minimum Noise Level. 23
2.4. The Wiener Filter Applied ... 25
2.5. Chapter Summary .. 26

m. MONTE CARLo SIMULA noN ... 28

3.1. Results of Recursive Median Filtering 29
3.2. Linear Combinations of Recursive Median Filters 30
3.3. Optimal Weighting for RM Filters 31
3.4. Twin Window Filtering .. 33
3.5. Monte Carlo Simulation of the Twin Window Filters 36

3.5.1. Mean Values for Synthetic Log 36
3.5.2. Standard Deviation for Synthetic Log 38

vii

Chapter Page

3.5.3. Results for Synthetic Log with Slopes 39
3.6. Twin Window Filtering Applied to Actual Logs41
3. 7. Chapter Summary .. 41

IV. OPTIMIZATION OF THE TWIN WINDOW AVERAGE FILTER44

4.1. A Special Synthetic Log .. .44
4.2. Monte Carlo Simulation .. .4 7

4.2.1. Program Description .. .4 7
4.2.2. Checking the Simulation49
4.2.3. Consolidation of Data ... 50

43. Results of the Improved Filter .. 51
4.4. A Method for Using the Filters ~ 52
4.5. Chapter Summary .. 54

V. CONCLUSIONS AND FUTURE WORK •.•.....................................•....... 56

5 .1. Recursive Median Filters ... 57
5 .2. Twin Window Filters ... 57
5.3. Future Work ... 58

BmLIOGRAPHY .. 61

APPENDIX A - PROGRAM TO EVALUATE THE TWIN WINDOW
AVERAGE FILTER•........•......••.•.......•....••..............••.. 68

APPENDIX B - PROGRAM TO CONSOLIDATE THE DATA•......••......•... 85

APPENDIX C - RESULTS OF RUNNING THE TWIN WINDOW
AVERAGE FILTER•..•..... 94

APPENDIX D - HISTOGRAMS OF TWIN WINDOW AVERAGE
FILTER FOLLOWED BY A RECURSNE MEDIAN
3 FILTER ...•...............•.......•.......••......•.............................. . 1 07 .

APPENDIX E - PROGRAM TO OPTIMIZE THE TWIN WINDOW
AVERAGE FILTER •...•......••....•.•••...•.•.•...••••..................•. 119

viii

LIST OFT ABLES

Table Page

1. The means and standard deviations of the histograms of RMS
error of selected RM filters ... 29

2. The average values and standard deviations of RMS errors of
1000 runs of combinations of RM filters 33

3. Designation for seven different TW filters .. 36

4. RMS errors for seven different TW filters for nine different
values of the filter parameter c ; .. 38

5. The standard deviations of the results of Monte Carlo
simulation of the seven filters in Table 3 for selected filter
parameters ... 41

6. Average RMS errors for six of the filters in Table 342

7. Standard deviations for the data in Table 642

8. Number of files created for each bed length49

9. Optimal values of the TW filter parameter for selected signal
levels. . .. 51

ix

LIST OF FIGURES

Figure Page

1. Model of gamma-ray logging .. 6

2. One of the 1000 different ideal synthetic logs used here. On the
average, each of these 2048-point logs has 273 beds 18

3. Part of the sample ideal log at an expanded scale ~ 19

4. The noisy synthetic log ... 20

5. Part of the noisy log on the expanded scale 21

6. The autocorrelation function of the ideal synthetic log 26

7. lllustration of the operation of the twin window filter 34

8. Histogram of the RMS difference in 1000 synthetic logs filtered
with TW AF (c=3.15625) ... 38

9. Schlumberger gamma-ray log, the log of the same borehole
processed by another tool and TW filters, and a composite
1 og with differences shaded .. .4 2

10. Most (97 .6%) of the revised ideal log, showing the extra beds at
V=50 with L=5 . .. 45

11. The frrst 256 points (12.5%) of the revised ideal log, with the
added beds of length 5 46

12. The frrst 256 points (12.5%) of the revised noisy log, with the
added beds of length 5 46

13. The center curve is RMS error plotted against variation of the
optimal curve. The two outside lines are ±1 standard
deviation. The value 3.10 is nominally optimal. 51

X

NOMENCLATURE

b

jf(x)dx Defmite integral of f(x) from a to b with respect to x
a

I z I
a,

ai
Jl

llx

<.0

Cl>(z)

N

flf(k)
.... ,
N

:Lf(k)
.... ,

ASSP

Absolute value of z

Parameter in Conway's GIR approximation

Variance of the random variable x

Linear attenuation coefficient of gamma-rays

Mean of the random variable x

Frequency

Geologic impulse response as a function of the depth, z

Product of f(k) over the range k=l, 2, 3, ... , N

Summation of f(k) over the range from k=l, ... , N

Acoustics, Speech, and Signal Processing (an IEEE society), now
simply Signal Processing.

e Mean square error

00

E1(x) Exponential integral of order l, Je;1dt

X

xi

H(ro)

IEEE

K0(x)

K1(x)

GIR

0

R

RMn

Snn(ro)

sss(ro)

SPWLA

STM

TW

TWAF

z

Wiener filter as a function of frequency

Institute of Electrical and Electronics Engineers

Modified Bessel function of the second kind

Modified Bessel function of the second kind

Geologic Impulse Response

Order of the run time of a program

Borehole radius

Recursive Median of length n

Noise power spectrum, as a function of frequency

Cross-spectrum of the ideal and noisy signals, as a function of

frequency

Ideal signal power spectrum, as a function of frequency

Society of Professional Well Log Analysts

Standard type M filter

Twin Window

Twin Window Average Filter

Sequence of input data points, as a function of k

Sequence of output data points, as a function of k

Depth (domain of a well logging function)

xii

COLOPHON

Normally, a colophon tells how a document was typeset, but since

understanding the programs used to produce this is important, the definition ·

is used in a very broad sense here. Various editions of this work have been

on DEC Runoff and AT&T Troff, but it may be of interest that the final edition

was produced on a Gateway 2000 with a Micronics 80486 motherboard and

12 MB of DRAM. The display was a NEC 3DTM and hardcopy on a TI

MicroLaserTM with 1.5 MB of DRAM and the PostScriptTM option. The

compiler for the C programs was Borland's Turbo C++ ProfessionalTM, with

C++ turned on for its superior type-checking capabilities. Word processing

was done in the Microsoft OfficeTM which includes Word for WindowsTM,

ExceiTM for plots, and PowerPointTM for slides. The type used is 14-point

Times-Roman set at 24-point pitch which gives approximately the same

character density as double-space Elite typewriter output with much

improved readability. The selection of capitalized titles set in the same size

type is enforced by the OSU Graduate College which also mandated the

removal of bold and italics which were originally used in the style common

to current engineering texts. Finally, the character spacing was adjusted by

hand on about 3 lines per page to avoid hyphenated words.

xiii

CHAPTER I

INTRODUCTION

At least two major types of gamma-ray logging tools are widely used

in the oil field. The first of these, which produces what is known as the

gamma-gamma log, has a radioactive source as well as a transducer that

converts gamma-rays into electrical impulses. The second, which produces

the gamma-ray log, has only the transducer, and will be discussed here. It is

often used to study geologic fonnations involving highly radioactive elements

such as those containing Uranium, as well as to do ordinary oil field logging.

This tool is also made with multiple transducers, each sensitive to gamma­

rays of particular energy. Due to the penetrating nature of gamma-rays,

these tools are usually made cylindrically symmetric. As the tool is pulled

up a borehole, the naturally occurring radiation is converted to electrical

pulses, which are integrated by a simple RC circuit known as the ratemeter,

and the result then recorded for subsequent interpretation. This produces

relatively large signals for beds of shale, which are more radioactive

than beds of sand.

The underlying cause of the problem is that the needs of the oil field

are much different than the needs of Uranium mining. In Uranium mining,

boreholes are often drilled solely for exploratory purposes preparatory to

mining. These holes are available for many hours for logging purposes, and

consequently the logging may be done much more slowly than in oil fields.

This need for rapid logging in oil fields, along with the fact that uranium ore

1

2

and other ore mined for radioactive elements are many times more radioactive

than common shale or sand, produces a log at least an order of magnitude

less noisy than that found in oil field logs. On the other hand, in the oil

field, the time spent logging the well may often come at the expense of idle

drilling equipment, costing many tens of thousands of dollars per day. Many

of the researchers working with gamma-ray logs come from the mining

environment, so they have little motivation to reduce the greatly increased

variance associated with the rapidly done oil field log.

At first it may seem that logging the well more slowly is a reasonable

solution, but in the oil field are a number of tools producing useful information

when run at a rapid pace. These include sonic tools, resistivity tools,

induction tools, borehole televiewers and others. Consequently, the choice

invariably made is to run the log rapidly and process the results numerically.

The other important observation in this scenario is that the driving function

of this system-the relative radioactivity of each geologic bed-cannot be

accurately deduced from other logs. This lack of knowledge of the input to

the system and the desire to estimate it more precisely leads to the construction

of synthetic logs in order to be able to evaluate the results precisely.

To lay the framework for this work, a model of gamma-ray logging is

developed which takes into account the previous efforts in this field. Next a

method of synthetic log construction is proposed that is rich in the smaller ·

beds which most interest geologists. Having thus ascertained the driving

function of the system, the measurement of the error of the filtered signal is

defmed. Then, since the filters of interest are nonlinear and have no closed

form equation representing their capability for noise reduction, the Monte

Carlo method is advocated, along with applications of the relevant equations

to other parts of this work. After that, an unattainable minimum noise level

3

is derived below which no filter can achieve additional noise reduction. And

last, an introductory summary is given, along with an outline of the

remainder of this work.

1.1. The Model of Gamma-Ray Logging

The model of gamma-ray logging used is highly dependent on research

in that field. The first reference to practical gamma-ray well logging was

published by Howell and Frosch (1939) at the annual meeting of the board of

directors of the Humble Oil & Refining Co. in Oklahoma City. They first

used an ionization chamber, which led to the construction of a more rugged

apparatus containing two Geiger counters. This instrument was about 12

feet long and 3.5 inches in diameter, similar in size to modem instruments

which often make use of scintillation counters.

1.1.1. Poisson Noise

The radioactive decay which drives these detectors has associated

with it a phenomenon known as Poisson noise. This can be derived

mathematically, as in Haight (1967), which starts with the basic physics in

Evans (1955). Haight includes other important facts about the Poisson

distribution and an extensive bibliography. If the mean of the Poisson

distribution is sufficiently large, it may be effectively modeled by a Gaussian

distribution with its mean and variance set equal to the mean of the Poisson

distribution. The error in this approximation is derived and is discussed

extensively in §119 and §120 of Fry (1965), which gives the warning that

the largest percentage error is in the tails of the distribution, a caveat that

does not apply here. The noisy signal is then affected by interaction with a

number of parameters such as the borehole diameter, the length of the

4

Geiger counter tubes, the absorption of gamma radiation in the drilling mud,

and a number of other factors.

1.1.2. Factors Affecting the Recorded Signal

Scott and his colleagues (1961) mention borehole diameter, medium filling

the borehole, borehole casing, water content of ore, and the nonuniform

distribution of radioactive material within a layer and give standard conditions

for U. S. Atomic Energy Commission logging. However, such standarp

conditions are virtually impossible to achieve in an oil well. Rhodes and

Mott (1966) quantify the effects of such less-than-ideal factors in oil well

logging. This is largely based on work done around 1961. They quantify the

effects of the borehole diameter, mud density, casing and cement thickness, bed

thickness, and detector eccentricity. This is done for a number of different

gamma-ray energies. By using these differing characteristics, the log analyst

may determine the interactions of these different effects. The capability to

do this demonstrates the usefulness of the spectral gamma logs.

Mathematical investigation of the effects of the ratemeter, the length

of the detector, the size of the borehole, and the absorption of the drilling

mud was done by Czubek (1964, 1971, 1972). Davydov (1970) investigated

the one-dimensional problem in gamma-ray logging. Czubek and Zorski

(1976) present a method of accounting for the above effects as well as logging

velocity, absorption in the rock, and rock porosity. They present tables of

the mathematical coefficients required for practical application of the

method.

From the standpoint of signal processing, this is all greatly simplified

by Conaway and Killeen (1978). These researchers defme the geologic

impulse response (GIR) as the response produced by infmitesimally thin bed

5

on a one-dimensional detector. If this is done under the ideal conditions of

noise-free counts, and infmitesimal sample inteiVal, then the GIR, <1>, as a

function of depth z is

<l>(z) = ~-alzl, (1)

where the infmitesimal bed is assumed to be at z = 0 and a, a constant to

determine the shape of the double exponential. Essentially, this equation is

the one found in Davydov (1970), who refers Suppe and Khaikovich (1960).

They go on to derive the inverse digital operator for the GIR as

(2)

The issue of how to relate a to Czubek's work is further examined by

Conaway (1980). He points out that Czubek's expression for the GIR may

be written:

<I>(J..L,Z) = [co] '

2!JR K1(!l.R) - !:0(x)dx

(3)

where J.l is the linear attenuation coefficient, R is the borehole radius, K0(x)

and K1(x) are modified Bessel functions of the second kind, and E1(x) is the

exponential integral of order 1 defmed by

00

E1(x) = Je;'dt. (4)

X

Both the exponential integral and the modified Bessel function of the second

kind are tabulated in Abramowitz and Stegun (1964). Czubek (1971) suggested

approximating the GIR with the double-sided exponential and gave an

6

expression for obtaining a from the borehole radius R and linear attenuation

coefficient ~'

E1(~R)
a=--~--~~------~

!lR [Kl(J.tR)-to(x)dx]
(5)

Although Czubek suggests obtaining a from normalizing the two curves,

Conaway (1980) uses what he terms the semilogarithmic slope method. It

turns out that either of these methods is more than what is required for the

logs discussed later.

Poisson

Noise

1 Geologic Deconvolve Filter

:@-Shale Beds Impulse
... GIR - Noise ... - - ...

Response (GIR)

Figure 1. Model of gamma-ray logging.

Combining the various pieces gives a model for gamma-ray logging as

illustrated in Figure 1. The shale beds generate the signal, which, by virtue

of the discrete nature of the constant process of radioactive decay, has Poisson

noise added to it. This, of course, neglects the extremely small second order

effect that as decay occurs, a miniscule amount of material is transmuted to

another element, thereby changing the rate. This combined signal then

7

passes through the geologic features at various angles to strike the detector.

Neglecting the second-order effects of the various beds having different

attenuations of gamma-rays and assuming a two-dimensional problem as in

the literature cited, implies convolution with a linear geologic impulse

response (GIR). This may then be deconvolved by means of the three-point

inverse function previously discussed and the noise subsequently filtered,

giving the desired signal. The novel contribution of this thesis is in filtering

Poisson noise added to a signal containing many discrete jumps, so

techniques for filtering such noise that were found in existing literature will

now be discussed.

1.2. Linear Filters for Noise Removal

Papoulis (1977) gives an account of the Wiener filter, which is the

optimal linear filter for noise removal. If the signal and noise are uncorrelated,

and the noisy log to be filtered is the sum of the signal and noise, then in

terms of the ideal signal power spectrum Sss(ro), the cross-spectrum of the

ideal and noisy signals Ssx(ro), and the noise power spectrum Snn(ro):

Sxx(ro) = Sss(ro) + Snn(ro)

Then the Wiener filter is given by

Sss<ro)
H(ro) - --­

- S (ro) + S (ro)' ss nn

and the resulting mean square error, e, is given by

(6)

(7)

(8)

8

00

(9)

-oo

This shows that once certain statistics of the signal and the noise are

known, the noise level after filtering with the optimal linear filter may be

obtained without actually implementing the filter. However, as will be

shown later, linear filters are of limited use due to the sharp changes in the

desired signal, so the literature concerning nonlinear filters is discussed next.

1.3. Nonlinear Filters for Noise Removal

Many different nonlinear filters are discussed in various widely

different publications. The median filter is the most widely used of the

nonlinear filters, so first it and the operationally similar recursive median

filter (RM filter) are defmed. But although the operations appear very

similar, the results will later appear to be vastly different. After the median

filter is presented, some generalized nonlinear filters will be presented.

1.3.1. Median and Recursive Median Filters

J. W. Tukey (1971) is the frrst to revive the median filter as a tool for

time series analysis. Given the input sequence Xk and output sequence Y k·

the output of the median filter of length W = 2N+ 1 is defined as

Yk =median of {Xk-N• Xk-N+t. Xk-N+2• ... , Xk-1• Xk, Xk+b

(10)

The first and the last points of a noisy sequence are usually replicated before

filtering to minimize end effects. The output of the recursive median filter is

similarly defmed as:

9

(11)

where the first N points of the median operator are now previously filtered

points. These filters have been successfully applied in areas such as speech

processing by Jayant (1976) and in digital image processing by Huang, et al.

(1979). Huang suggests an algorithm for implementing a fast median filter,

which is similar to that in Ataman, et al. (1980). This algorithm is shown by

Bednar and Watt (1984) to reduce the computer time required from O(L312.)

to O(L) where 0() is the order as given by Aho, Hopcroft, and Ullman

(1983) and Lis the length of the median filter. The actual time saved is even

greater than this seems to indicate, since every full sort routine must examine

every element to be sorted, but the fast median algorithm needs, on the

average, to examine only ~ of the elements.

Literature on the theory of median filters is less well-developed than

that of linear filters. The typical techniques, such as superposition for linear

systems, do not exist, making design difficult. However, knowledge of

some of the published properties can greatly reduce the number of trials

required to find useful filters. Some interesting signal structures and properties

of median filters are given in Nodes and Gallagher (1982). These structures

include:

1. A constant neighborhood is a region of at least N+ 1

consecutive points, all of which are identically valued.

2. An edge is a monotonically rising or falling set of points

surrounded on both sides by constant neighborhoods.

3. An impulse is a set of Nor less points whose values are

different from the surrounding regions and whose surrounding

regions are identically valued constant neighborhoods.

4. A root is a signal which is not modified by filtering.

Useful properties are:

1. Impulses are eliminated by both ordinary and recursive

median filters.

2. Constant neighborhoods and edges are unperturbed.

3. Only signals composed solely of constant neighborhoods

and edges are roots.

4. Any signal of length L is reduced to its root after at most

~(L-2) successive passes by any median filter.

5. A signal is invariant to recursive filtering if and only if it

is invariant to standard filtering.

6. Any signal will be reduced to a root after one pass of a

recursive median filter.

10

These properties are used extensively to make decisions regarding what

nonlinear filters might reduce the noise level without significantly degrading

the signal.

1.3.2. Generalized Median Filters

Other useful facts about nonlinear filters are given the paper by Peterson,

et al. (1988). This work uses two- broad generalized classes of median

filters, called L filters, and standard type M filters (STM filters). As before

if Xk is the input and Y k is the output, then the L filter is defmed as

w

yk = LAj~)· (12)

j=l

11

Here X~) is the jth smallest sample from the W samples inside the window

centered at k. A certain choice for the Aj coefficients yields an a-TM filter,

given by

(13)

j=T+l

where T is the largest integer which is less than or equal to aW, with a

being constrained by 0 $;a$; 0.5. As in Bednar and Watt (1984), when a=O

the a-TM filter becomes the running mean filter; when a=0.5 it becomes the

median filter. The output Y k of an STM filter solves the equation

k+N
I,\f(Xj-Y k) = 0, (14)

j=k-N

where

{ 1, x>p
'P(x) = x/p, I xI $;p (15)

-1, x<-p

with p some positive constant. This filter approaches the running mean filter

asp approaches infmity or the median filter asp approaches 0. Peterson, et

al. (1988) go on to derive a relation for the root mean square (RMS) error of

the a-TM and STM filters, which are then graphed for W=5. This is done

for signals containing a single edge, constructed as follows: The notable

feature of these graphs is that

(16)

in which

{ S, Ic:;;O
Sk = S+H, k>O

12

(17)

and H is the height of a step at time k. The edge height of the filter and the

RMS error are both normalized to the standard deviation of the zero-mean,

Gaussian white noise. All the filters graphed in Figure 4 and Figure 7 in

Peterson, et al. (1988), including the median, running mean, a-TM with T=1

and STM with p=1, 2, 3, 4, 5, and W=5 produce a greater RMS error after

the operation for a normalized edge height of more than approximately 2.5.

This means that the noise is greater in the output than the noise in the input.

In terms of approximated Poisson noise, if the mean level is 100, the standard

deviation is 10, so this represents a jump from 100 to 125, which is a relatively

small change in the gamma-ray log. The typical gamma-ray log is filled

with much larger changes, which as the graphs show, cause these filters even

more problems. Although this does not rule out some other, probably

heavily center-weighted combination of Aj coefficients for the L filter, it

does eliminate all the nonlinear filters for which substantial published data is

known.

1.4. The Monte Carlo Method

As can be seen in the derivation of Peterson's results, the algebra is

extensive, and yields results which must be integrated numerically. In order

to avoid such problems, especially when the results may not show improvement by

lowering signal noise, a method of evaluation more dependent on machine

computation is required. The method which is used is known as the Monte

Carlo method after the famous gambling resort in Monaco. This method

depends, as does the profit in such an establishment, in running the trials a

large number of times, thereby reducing the variance of the simulated result.

13

1.4.1. Theoretical Basis

This result is important m a number of applications, as well as

explaining a part of the practicality of the scientific method in general. The

derivation given is due to Bendat and Piersol (1971). Given N uncorrelated

random variables xi> the expected value of the sample mean x is

(18)

(19)

Since the observations Xi are uncorrelated, the cross product terms in the last

expression will have an expected value of zero. It then follows that

In terms of a Monte Carlo simulation, this demonstrates that the average of

many trials is an unbiased estimator of the mean of the random variable

being simulated. Further, in N trials, the variance is reduced by ~. Bendat

and Piersol continue with the remark that this estimate of the mean is consistent

and can be shown to be efficient.

1.4.2. Other Uses for these Results

These results have many uses. Aside from being the basis of Monte

Carlo simulation, they assure that independent trials by different scientists or

at different times will reduce the variance of the estimate of the mean of the

distribution of the random variable under investigation. This is true regardless

14

of the distribution, so long as the samples are uncorrelated. Later, after the

synthetic log is defmed, the result will be used again to show that if N

samples from the same level are corrupted with white noise, that the estimate

of the level has a variance reduced by ~' when compared to the variance of

the noise.

1.5. Survey ~f Dissertation

The material covered so far is the background for this dissertation. l:p.

order to give a clear exposition, this background is summarized, and the

remainder of the dissertation described.

1.5.1. Summazy of the Introduction

The basic method of gamma-ray logging was explained. The problems

of logging in the oil field versus logging for rare earth mining have been

discussed and provide the motivation for the balance of this work. The work

done by Davydov, Czubek, Conaway, and others effectively gives the model

of gamma-ray logging described. The true driving function of this model is

the distinct beds of different types of sands and shales which each produce a

characteristic signal level. These sharp boundaries produce a signal with

unusually sharp changes in level. This signal is corrupted with the Poisson

noise inherent in the process of radioactive decay. Deconvolution of the

GIR can be done quickly with Conaway's method, leaving only the Poisson

noise to corrupt the signal. These facts motivate the remainder of this

dissertation.

15

1.5 .2. Outline of Dissertation

Due to the probabilistic uncertainty associated with the true driving

function of an actual gamma-ray log, a method of creating stochastic

synthetic logs is given in Chapter IT. A figure of merit is then presented,

which when combined with the synthetic log and the Monte Carlo method,

enables objective evaluation of novel filters. The same equations on which

the Monte Carlo method is based are also used to calculate an unattainable

lower bound for noise removal. The effects of different bed widths on the

unattainable minimum noise level is then discussed. Chapter IT closes with

the evaluation of the prescribed figure of merit for the optimum stationary

linear filter.

Within the framework for evaluation defmed in the previous chapter,

Chapter ill evaluates the numerous filters. Median filters and a-trimmed

mean filters are then evaluated by simulation, or the published literature.

These filters are found to be worse on the average than no filter, at least for

the synthetic log used. Recursive median filters are then shown in simulation to

outperform the Wiener filter, and further reduction is achieved by the novel

approach of simple (unity weighted) linear combinations of recursive median

filters. Attention is then focused ·on the optimal linear combination of

selected recursive median filters and it is shown that very little additional

improvement is obtained.

Having exhausted all the traditional filters which are computationally

simple to use, as well as the linear combination of recursive median filters,

Chapter ill continues by defming a novel class of filters named twin window

filters. This method can be used with a number of more traditional filters as

kernels, and these are shown in Monte Carlo simulation to achieve superior

noise reduction. Cascading certain twin window filters with recursive

16

median filters of length 3 achieves still better results. Attention is then

focused on mathematical optimization of the twin window filter parameter

with the running av~rage as kernel. To produce this result, several different

functions must be integrated numerically since the closed-form results are

unknown. After avoiding many potential numerical traps involving loss of

precision, the result is obtained. Unfortunately, this yields only a slight

improvement in the figure of merit. Chapter N presents a method of analysis

for the Twin Window Average Filter (TW AF) and uses it to optimize the filter

parameter with respect to signal level. The fmal chapter, Chapter V draws

conclusions and makes suggestions for future work.

CHAPTER IT

SYNTHETIC LOGS

Because the true input function-the shale beds in the model of

gamma-ray logging given in the last chapter-is unknown, a method for

constructing synthetic logs is developed. In order to use this to evaluate the

effectiveness of the novel filters, a figure of merit is next devised. Before

making use of these results in the next chapter, an unattainable minimum

noise level is derived, below which no filter can reduce the noise. This and

the residual noise level of the Wiener filter represent the greatest and least

amount of noise reduction which filters of interest can achieve. The novel

filters must do better than the relatively simple optimal stationary linear filter

to be of interest. At the other end of the scale, the optimal nonstationary

filter, the Kalman filter cannot do better than the relatively simply-derived

unattainable minimum bound.

To compute the Kalman filter, full information regarding the method

by which the ideal log is constructed must be used as input. This is, of

course, absurd, since the synthetic log is not that closely modeled after

actual logs. Also, the Kalman filter requires many more computations than

any of the proposed filters, so even if it could reduce the noise to the

unattainable minimum bound (which is impossible,) it is doubtful that it

would be used when the novel filters presented here come relatively close.

Note that in most of the proposed work linear filters are not as useful as the

17

18

nonlinear filters for reasons to be discussed later. With the path to take thus

carefully outlined, the construction of the synthetic log is now considered.

2.1. Construction of Synthetic Logs

Literature discussing the statistics of the distribution of shale, sand,

and other geologic beds is unknown. Even if such data existed, it might not

give sufficient correlation information between beds to enable construction

of a realistic log. Therefore, in order to construct a random synthetic log, the

desired properties are first enumerated, then a method proposed. From the

viewpoint of the geologist, the salient features which must be preserved as

much as possible are the bed boundaries, since these are often the basis for

Counts
300

250

200

150

100

50

1 251 501 751 1001 1251 1501 1751 2000
Samples

Figure 2. One of the 1000 different ideal synthetic logs used here. On the
average, each of these 2048-point logs has 273 beds.

19

judgment on the best means of augmenting oil production.

Also, the differences in counts produced by adjacent beds are large;

instantaneous changes by factors of two, three, or even more are not rare.

To simulate these features, the ideal synthetic log is generated by taking the

bed width to be an independent, unifonnly distributed random variable

between 5 and 10 samples in duration. The amplitude of each bed is also an

independent, unifonnly distributed random variable between 50 and 288

counts and is constant throughout the bed. Note that this is an idealizeq

version. Every synthetic log in this dissertation contains 2048 samples

which is equivalent to 1024 feet at 6 inches per sample. This is illustrated in

Figure 2, but, for clarity, only an eighth of the log is shown in Figure 3.

Counts
300

250

200

150

100

50

1 33 65 97 129 161 193 225 257
Samples

Figure 3. Part of the sample ideal log at an expanded scale.

20

Logs constructed in this manner were used to evaluate proposed novel

filters. However, in actual logging, the bed breaks do not occur in such

precise synchronization with the sampling. So to help ensure that this does

not unduly influence the figure of merit of a filter, another synthetic log is

constructed with the same parameters, but is moved back in time ! sample

interval so that each and every pair of beds has a point between them in what

is assumed to be the worst possible place: the average of the signal levels.

Whichever ideal log is used, the next step is the same. Simulated

Poisson noise is added by using Gaussian noise with the variance set equal

to the average signal level, as is illustrated in Figures 4 and 5. This is a

reasonably good approximation for signals having a minimum level of 50

counts, as discussed in Haight (1967). h1 the present case, a large part of the

error is exemplified by the possibility _that the signal level of a bed will be

reduced to a negative value, which is a physical impossibility. This

Counts
350

300

250

200

150

100

50

0
_,

1 251 501 751 1001 1251 1501 1751 2000
Samples

Figure 4. The noisy synthetic log.

21

Counts
350

300

250

200

150

100

50

0
1 33 65 97 129 161 193 225 257

Samples

Figure 5. Part of the noisy log on an expanded scale.

possibility is extremely remote. In the worst case of a bed with an ideal

signal of 50 counts, one standard deviation is ..J5o ~ 7.071. So the

impossible case occurs only when the noise is beyond 7 standard deviations,

an exceedingly rare event.

Equation (20) shows that given N samples, each from a certain population

with a standard deviation of O'v, that the mean value of the samples is a

0'
random variable with a standard deviation of~ . Moreover, this is true

regardless of the distribution of the population from which the samples were

drawn. To give a concrete example, if 1000 logs are processed by a certain

filter, and the results have a mean of 9.00 and a standard deviation of 0.31,

then the uncertainty associated with the estimate of the mean is~~ 0.01.

This assures us that, if the same experiment is performed a sufficiently large

number of times, the results may be ascertained to any desired precision.

22

In the case of the gamma-ray logs, the Monte Carlo approach was

used to obtain results sufficiently precise to distinguish between the various

filters. More specifically, 1000 different noise sequences were each added

separately to 1000 different synthetic logs to ensure that a particular pattern

in a synthetic log would not give misleading results. All the logs were

filtered with each of the proposed filters, and the mean and variance of each

filter tabulated. Fortunately, the standard deviation associated with the best

filters ranged from 0.27 to 0.32 and even the worst filter had a standard

deviation of only 0.38. So the results given below are accurate ±0.03 in the

worst cases. But before this principle can be used as assurance that the

simulation is representative of the overall population of filtered logs, a figure

of merit for noise reduction must be defmed.

2.2. Measurement of Noise on a Linear Scale

One possible figure of merit is the signal-to-noise ratio (SNR) of the

log. The noisy log constructed above has a SNR of 14.5 dB. To calculate

this SNR, the expected value of the power of the zero-mean ideal log was

divided by the expected value of the power of the noise. The logarithm of

the result was then multiplied by ten. This is, of course, the typical way to

figure the SNR and is certainly useful in comparing high quality signals in

which the ratio might range over several decades.

Gamma-ray logging, however, does not produce the typical signal. It

is strictly positive, often of short duration, and it will soon be shown that the

SNR only ranges over a fraction of a single decade. Although the SNR is

highly useful in many fields, the RMS error is more directly related to the

visual noisiness in which we are interested, so it is the figure of merit used

23

here. The RMS error of a filtered log, Y k' with N points, whose ideal log is

~' is defmed by:

RMS error=
1 N
N~)Gk-Yk]2

k=l

(21)

The RMS error of the noisy log is 13.000 (22.2789 dB) which compares

favorably with the simulated result of 12.995 (22.2755 dB).

2.3. An Unattainable Minimum Noise Level

Another use of Equation (20) is to compute a lower limit to which the

RMS error can be reduced. Assuming that the bed boundaries are known

precisely and because the log has a constant value within each bed,

Equation (20) applies. To make use of this, first note that since the number

of each of the six different sizes of layers is equal, the proportion of the total

number of points contained in the wide layers is greater than that in the

narrow beds. The fraction of the total number of points contained in each

layer is proportional to the width of the layer. For instance, in the model

used here, the bed widths are unifonnly distributed between 5 and 10

samples, so is of the total number of samples are contained in beds of width

5, 46s of the samples are contained in beds of width 6, and so on through 10.

However, Equation (20) assures us that the noise variance of each point in a

bed of width n can be reduced by an average factor of ~. fu our example is
of the beds may achieve reduction by k. This continues for each bed width

up to the example of !~ of the beds may achieve reduction by 1~. For this

particular example, the total factor by which the noise is reduced is

5 1 6 1 7 1 8 1 9 1 10 1
45 5 + 45 6 + 45 7 + 45 8 + 45 9 + 45 10"

24

In general, for uniformly distributed beds of constant amplitudes between n1

and n2 inclusive, the variance can be reduced by a factor of

n1 n1+1 n2-1 n2
fit+n;+~+ ... +~+ii;

n1 + n1+ 1 + ... + n2-1 + n2'

Maki , f th 'd · ~ k n(n+ 1) d I · 1 · ng use o e I entity k = 2 an ettmg n3 = n2+ gives

k=1

2(n3-n1) 2(n3-n1)

n3(n3-1)-n1(ni-1) :- n32-n3-n12+n1

2(n3-n1)
= n3+n1-1'

Finally, substituting for n3 gives a noise reduction factor of:

n2-1 n2
+--+-

n2-1 n2 2
n1 + n1+1 + ... + n2-1 + n2 = n2+n1'

(22)

(23)

which is the minimum, and unattainable, factor by which the variance can be

reduced by any filter. Curiously, this happens to be exactly the same reduction

that would be achieved in a log in which all beds are the same width: the

average of the smallest and largest bed.

Returning to our particular example of n 1 = 5 and n2 = 10 and making

use of the fact that the original noise variance is 169 gives a minimum

unattainable noise variance of

25

2
169 = 25.53.

n2+nt
(24)

This is equivalent to an RMS error of 4.75, or 36.5% of the original noise.

This minimum value of noise can only be attained, on the average, when the

bed boundaries are known. If they are not known, then some beds may be

close enough together to allow the noise of one bed to raise its amplitude to

that of the other bed. Therefore, the minimum value of residual noise

represented by Equation (23) cannot be attained consistently and no filter of

any type can be expected to achieve this level of noise reduction. Now that

we have a bound on the maximum noise reduction, let us consider what can

be achieved by the optimum linear filter, thereby establishing a benchmark

that nonlinear filters must exceed to compensate for their added complexity.

2.4. The Wiener Filter Applied

As seen from Equation (9), the power spectral density is required to

compute the residual error in the Wiener filter. To compute this, note that 45

different types of points exist in the synthetic log, each with equal probability.

This makes it apparent that the autocorrelation function R00(x) starts out

dropping by 4~ until the points of beds of width 5 are exhausted, then drops

by is with each successive drop likewise decreasing. This is shown in Figure 6.

This function was then transformed and numerically integrated:

00

(25)

--oo

So the mean square error of the residual noise after Wiener filtering is 136.

This means that the optimum linear filter (which may not even be practical

to implement) can only reduce the RMS error from 13 to 11.7, leaving 90%

Roo (-r)
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

j \
I \ v \

I \
I \

I 1\
v \

1\.

/ \
/

"""
L '

/
v " ~'--.. - -

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
Figure 6. The autocorrelation function of the ideal synthetic log.

26

of the noise. The fact that this is still a large proportion of the original noise

shows that nonlinear filters are attractive alternatives. While the computation

of the residual error of the Wiener filter is comparatively simple, involving

but one numerical integration, the corresponding calculations for the

nonlinear filters to be discussed is many times more cumbersome, so the

Monte Carlo method is used. Before examining these simulations, the

chapter summary is given.

2.5. Chapter Summary

Due to the extreme difficulty of determining the true driving function

of an actual gamma-ray log, a method of constructing synthetic logs was

given. This method is readily applicable to a digital computer and can be

used to generate an arbitrary number of ideal synthetic logs for study. The

27

RMS error was selected as the figure of merit for computer simulation, and

its relative merit over measuring noise in decibels was discussed. This figure

of merit was then used to quantify the unattainable minimum noise level,

beyond which no filter of any type can, on the average reduce the noise in

the synthetic log. At the other end of the scale, the Wiener filter quantifies

the noise reduction expected from the optimum stationary linear filter.

These two bounds are important since they represent the range of interesting

novel filters. If a new filter cannot do better than the Wiener filter, it might

be just as well to use a linear filter, while it is utterly futile to search for a

filter to attempt to achieve an unattainable goal. With these results clearly in

hand, Monte Carlo simulation will now be used to establish performance

against these established benchmarks.

CHAPTER ill

MONTE CARLO SIMULATION

Given the two important bounds of the previous section; and the fact

that the true driving function of the system is known only for a synthetic log,

at least for the immediate future; and the fact that an objective figure of

merit is needed to access the results of the filtering in an unbiased measure;

leads to the use of Monte Carlo Simulation. When this was applied to ordinary

median filters, it was discovered that the noise increased, at least on this

particular log with this particular type of noise. Therefore, these filters will

not be discussed further. The filters that do show promise are the closely­

related recursive median filters. These are evaluated, along with a filter

comprised of a linear combination of RM filters. This brings up the question

as to the best weighting for the linear combination, but multiple linear

regression is used to show that optimal weighting will not produce much

more than marginally better results, at least for this particular log and this

particular type of noise. A novel filter, the Twin Window Filter is then

introduced, and further simulation reveals that it performs the best thus far.

This filter is then applied to actual data to show that, in addition to working

well as measured by the chosen figure of merit, it also appear to visually

improve actual data. Each of the nonlinear filters which lowered the RMS

error of the synthetic log will now be defmed and the significant results of

the Monte Carlo simulations described.

28

29

3.1. Results of Recursive Median Filtering

One thousand noisy synthetic logs, each of 2048 points, were each

filtered with RM filters of odd lengths up to 13. The mean and standard

deviation of each resulting histogram is given in Table 1. For convenience

in notation, an RM filter of length 1 is defmed as the original, unfiltered

data. As the window length of the· RM filter increases, its performance

deteriorates due to the inclusion of an increasing proportion of data points i:p

the window that are not highly correlated with the data point being

estimated. Although the results are significantly better than the optimal

linear filter, they are not very close to the minimum noise level (36.5%)

derived above. Even though this minimum is unattainable, we continue the

search for a superior nonlinear filter by testing linear combinations of RM

filters.

TABLE 1

'DIE MEANS AND STANDARD DEVIATIONS OF Tiffi lllSTOORAMS
OF RMS ERROR OF SELECTED RM FILTERS.

Length Average Percent of
Original

RMS Error
100%
73%
77%
91%

104%
180%
238%

Standard

3.2. Linear Combinations of
Recursive Median Filters

30

Because median filters of different lengths pass different value

through at the same point, an investigation of linear combinations of RM

filters was undertaken. This method can take advantage of some of the noise

suppressing benefits of moving average filters while retaining the full

advantage of preserving sharp edges in the data. To describe this let Y'(k) be

the fmal result of a linear combination of RM filtered data Y3(k), Y5(k), and

Y7(k). That is.

(26)

where the an's are the weighting parameters. If computer time is crucial in

an application, it is good for the an's to be small and add up to a power of 2

for scaling. Another program was constructed to evaluate selected linear

combinations (small integral weights) of the most promising lengths of 3, 5,

and 7. It showed that some improvement could be made over the simple RM

filter. Due to the results of previous experiments with RM filters, the

original data was added as yet another term in the linear combination. This

produces a reduction of RMS error by another 4% for a1 = a2 = a3 = 1 in the

1000 log simulation.

If noncausal filtering is allowed, the data can be fed in reverse through

the RM filters. If a RM filter of length 3 in reverse is denoted by Y 3r(k),

then

(27)

where Y 1 (k) is the unfiltered noisy file and again the an's are the weighting

parameters. This combined forward/reverse technique offers additional

31

noise suppression. In a Monte Carlo simulation of 1000 logs, it produces an

average improvement of 3% for a0= 1.

3.3. Optimal Weighting for RM Filters

It is difficult to derive the best linear combination of RM filters on a

theoretical basis. To calculate a lower bound on the performance of a

selected combination of RM filters, we use multiple linear regression, as in

Devore (1982). This procedure fits, by the least squares method, a linear

equation of the form:

(28)

where G(k) is the ideal log, Y 0(k) is a filtered sequence and bi are the regression

coefficients to be determined by solving the following system of equations:

N N N. N

L1 LY3(k) :LYs(k) LY7(k)
k=l k=l k-1 kzl

N N N N

bl LY3(k) LY3(k)Y3(k) LYs(k)Y3(k) LY7(k)Y3(k)
I<= I k=l k=l I<= I bz
N N N N b3

!Ys(k) I,Y 3(k)Y sCk) I,Y s(k)Y s(k) I,Y7(k)Y5(k)
b4

k=l k•l k•l I<= I

N N N N

LY7(k) I,Y3(k)Y7(k) I,Y5(k)Y7(k) I,Y7(k)Y7(k)
k•l k-1 k-1 k•l

N

LG(k)
kzl

N

LY3(k)G(k)
k=l

N (29)
LY5(k)G(k)
I<= I

N

I,Y7(k)G(k)
k•l

32

Of course, since this requires the ideal log as input, it cannot serve as a

practical filter. It is used only to compute a bound for a particular collection

of RM filters. This can be expanded to any number of independent

variables, so long as the number of data points, N, is sufficiently large. This

was done with the noisy file and the four most promising filters, those of

lengths 3, 5, 3r, and Sr. For the usual thousand files, multiple linear

regression achieves a result of 8.16 RMS which is only 62.8% of the original

noise. No linear combination can produce a better result than this, and since

the weights were allowed to be different for each of the thousand files, a

fixed combination will not do as well. Setting the weights to 1 gives:

Y 1 (k)+ Y sCk)+ Y 7(k)+ Y 9(k)
Y'(k) = 4 (30)

, Y lr(k)+ Y 5r(k)+ Y 7r(k)+ Y 9r(k)
Y(k)= 4 (31)

Y 1 (k)+ Y 7(k)+ Y 7r(k)+ Y 9(k)+ Y 9r(k)
Y'(k) = S (32)

The results for these· linear combinations are summarized in Table 2.

Note that the spread of the histograms is reduced along with the reduction of

the average value. Note that the spread of the histograms is reduced along

with the reduction of the average value. However promising this result

appears, a class of filters does exist which consistently does better than this

unattainable minimum for linear combinations of RM filters of 8.16 RMS

which is only 62.8% of the original 13 RMS error. For this new class, we

have chosen the name twin window (TW) filters.

33

TABLE2

THE AVERAGE VALUES AND STANDARD DEVIATIONS OF RMS
ERRORS OF 1000 RUNS OF COMBINATIONS OF RM FILTERS.

Average Percent of Standard Description
ofRMS Original Deviation
errors RMS Error

13.00 100% 0.278 The original noisy log.
9.54 73% 0.284 RM filter of length 3.
9.091 70% 0.276 Linear combination of Equation (30).
9.087 70% 0.279 Linear combination of Equation (31).
8.64 66% 0.248 Linear combination of Equation (32).
8.16 63% 0.266 Multi le linear re ression.

3.4. Twin Window Filtering

The advantages of the twin window filter are that it produces

significantly better results on the synthetic logs than the various RM filters

discussed, and it can be implemented in a fast method similar to that in

Huang (1979), Ataman (1980) and Bednar (1984). Also, the computer time

required is less than that required by the averaged recursive median filters.

Similar filters are given by Pomalaza-Raez (1984) and Schultz (1981). The

outer window (of length nine throughout this paper) moves along one point

at a time, centered about the point to be estimated. The points in this

window are sorted, which may not be necessary for computation, but is a

convenient mechanism to portray the operation. Next, an inner window is

formed by including the points which lie a certain number of standard

deviations above and below the point being estimated. The number of

34

standard deviations in half of the inner window defines the filter parameter c.

As an example, Figure 7 illustrates how the TW filter operates .

... [19 20 15 12 50 45 49 68 93] .. .
... [12 15 19 20 45 49 50 68 93] .. .

... [12 15 19 20 (45 49 50 68) 93] .. .
49~50 = 49.5

Figure 7. Illustration of the operation of the twin window filter.

The first line in Figure 7 represents the original data, a sequence of three

noisy steps in the middle of other data,. with the point to be estimated having

the value 50, shown in boldface. The second line shows the data sorted. In

the third line, the inner window is represented by the parenthesis. This

window uses the filter parameter c = 3, and thus includes all points within

50±c -{50, or approximately between 29 and 71. If, for example's sake, the

ordinary twin window is used, which applies a median filter to the inner

window, then because the window is already sorted and has an even number

of points, the average of the two innermost points is used as the estimate.

Note that the point being estimated, 50 in this case, may not be in the center

of the window, as happens here. Instead of the median being applied to the

inner window a variety of other methods may be applied to the inner window

to obtain the estimate of the selected point.

Methods tried so far include the simple, unweighted average; the

median; maximum likelihood; a method which allows the internal window to

move based on the latest estimate of the selected point; and each of the first

35

three followed by a three point RM filter. The RM filter can improve the

RMS error by removing spikes caused by noise which exceed the bounds of

the inner window. Continuing this example for each method, an unweighted

f th . . th . . d . ld 45+49+50+68 53 0 F average o e pomts m e mner wm ow y1e s 4 = . . or

the median, since the window is an even number of points, the average of

th . . d . . 49+SO F . lik lib d e two center pomts IS use , g1vmg 2 . or maxnnum e oo ,

Equation (33) is used and gives

k

l+~I,xJ- 1
i=l

---~-------- = 53.2.
2

(33)

The possibility also exists that a 3cr window centered around the newly formed

estimate would add or omit one or more points compared with those in the original

window. We will refer to this as a moving internal window. In this example, none

of the estimates cause a point to be added to or deleted from the internal window, so

no movement of the window would occur. If the internal window does change, the

estimate calculated from the new window is used It will be shown in Monte Carlo

simulation that a moving internal window does not, in itself, reduce the RMS error.

However, it does allow similar results using smaller internal windows as evidenced

in the Monte Carlo simulation. This may prove to be useful in processing certain

types of data. For instance, in the section which follows on the optimization of the

twin window filter with respect to the filter parameter, it is found that larger values

of c wmk better at low signal levels. So for a log of lower overall level, this filter

should be more beneficial. Such investigation, however, would require altering the

36

synthetic log, and so is considered beyond the scope of this worlc, therefore we

return to the original log and simulation of the various twin window filters.

3.5. Monte Carlo Simulation of the Twin Window Filters

As was done with the RM filters, 1000 different 2048-point noisy

synthetic logs were constructed and filtered. In order to express these results

in uncluttered tables, the designations in Table 3 will be used.

TABLE 3

DESIGNATIONS FOR SEVEN DIFFERENT TW FILTERS.

Desi nation
A
B
c
D
E
F
G

T e of Filter
TW using average.
With maximum likelihood (ML).
Median.
Moving internal window.
Average followed by 3-point RM.
ML followed by 3-point RM.
Median followed b 3- oint RM.

3.5.1. Mean Values for Synthetic Log

For the seven cases of TW filters described, the average RMS error

for various filter parameters is given in Table 4. In these tables, "low" is the

minimum value; "loc" is its filter parameter. The range of 7.49 to 6.87 is

equivalent to 57.6% to 52.8% of the original noise. The fact that these are

smooth, broad curves shows that selection of the filter parameter is not

37

critical to filter petformance. Further evidence that these filters are well­

behaved is given in the histograms and examples in the Appendices of Paden

and Steinhardt (1984). This work is further expanded in Paden (1985), and

histograms are given in the Appendix C and Appendix D. An example

histogram is shown in Figure 8. The filename, D3 _15, in this figure is the

result of the truncation of 33
52, which is the same filter parameter which gave

the best result for twin window average filters in Table 4 where it was

rounded to 3.16. The Gaussian cUive in the figure is the curve implied by

estimates of the mean and variance of the data in the histogram. Results

based on only a single synthetic log indicate that another 2% reduction in

noise may be gained by using averages of different filters as discussed under

linear combinations of RM filters.

TABLE4

RMS ERRORS FOR SEVEN DIFFERENT TW FILTERS FOR
NINE DIFFERENT VALVES OF THE Fll.. TER PARAMETER C.

c A B c D E F G
2.00 8.76 8.82 9.02 8.06 7.42 7.48 7.88
2.25 8.17 8.23 8.47 7.60 7.13 7.18 7.61
2.50 7.74 7.79 8.05 7.34 6.94 6.99 7.42
2.75 7.46 7.50 7.77 7.27 6.87 6.91 7.31
3.00 7.32 7.35 7.59 7.36 6.90 6.93 7.26
3.25 7.31 7.33 7.51 7.56 7.02 7.03 7.27
3.50 7.41 7.41 7.49 7.20 7.20 7.30
3.75 7.59 7.58 7.51 7.45 7.44 7.37
4.00 7.84 7.82 7.57 7.75 7.72 7.46
low 7.30 7.33 7.49 6.86 6.91 7.26
loc 3.16 3.19 3.47 2.81 2.81 3.06

60
55
50
45

Histogram of Twin Window Average
Filter (03_15}

40 -1------llll
35
30
25
20 +-----,-
15
10

5 +-----nl
0 +-r-.......-riiJIII'i'o

6 6.5 7 7.5 8 8.5 9 9.5 10

Figure 8. Histogram of the RMS difference
in 1000 synthetic logs filtered
with TW AF (c=3.15625).

3.5.2. Standard Deviation for Synthetic Log

38

Another measure the reliability of TW filters with regard to filtering

the Poisson noise is the standard deviation of the RMS error measurements

from the Monte Carlo simulation. This data is in Table 5. No filter produces

much more spread in the error than that of the original data (0.267), and the

spread associated with the lowest RMS averages is generally below that

average spread. This is fortunate because it implies that the best filters also

are the most dependable. As clearly seen in Table 4, the best filters are the

TW using either the average or the maximum likelihood, followed by a

three-point recursive median.

3.5.3. Results for Synthetic Log with Slopes

Before giving an example of an actual log filtered with a TW filter, let us

consider one of the drawbacks of the above simulation. The original problem

39

was that linear filters do not do well on logs with sharp comers. Consequently,

the synthetic log was created to emphasize this problem. If another rule is used

to construct the synthetic logs used in the simulations, substantially

different results might be obtained. One very obvious problem with

the log constructed of discrete levels (Figure 3) is that it implies that

the bed boundaries always break synchronously with the sampling. In

order to simulate this problem, the synthetic log was reconstructed

with one point added between each bed, precisely half way betweel)

layers. The average RMS errors for 1000 of these logs are given in

Table 6. Although this is higher that the corresponding table for the

first synthetic log, it is comparable to the best RM filters. The spread

of the data is given in Table 7, and while it shows somewhat less

dependable filters, they should still be quite useful. The best of these

TABLES

THE STANDARD DEVIATIONS OF THE RESULTS OF MONTE
CARW SIMULATION OF THE SEVEN FILTERS GIVEN IN

TABLE 3 FOR SELECTED FILTER PARAMETERS.

c A B c D E F G
2.00 .300 .300 .310 .332 .303 .305 .318
2.25 .290 .290 .303 .322 .296 .298 .311
2.50 .284 .285 .296 .313 .292 .294 .304
2.75 .274 .275 .288 .307 .288 .290 .301
3.00 .268 .268 .. 281 .302 .285 .286 .297
3.25 .270 .271 .277 .312 .286 .286 .291
3.50 .274 .274 .274 .290 .291 .288
3.75 .281 .281 .274 .298 .297 .286
4.00 .295 .295 .278 .310 .309 .290

40

filters are applied to real gamma-ray logs in the next section to further

illustrate their usefulness.

TABLE6

AVERAGE RMS ERRORS FOR SIX OF THE FILTERS IN TABLE 3.

c A B c E F G
2.00 9.73 9.78 10.0 8.55 8.60 8.99
2.25 9.37 9.42 9.71 8.46 8.50 8.96
2.50 9.15 9.19 9.56 8.47 8.50 9.02
2.75 9.06 9.09 9.53 8.56 8.59 9.15
3.00 9.08 9.10 9.61 8.72 8.74 9.35
3.25 9.19 9.20 9.78 8.94 8.95 9.58
3.50 9.36 9.36 9.99 9.19 9.19 9.85
3.75 9.59 9.58 10.24 9.47 9.46 10.06
4.00 9.85 9.83 10.50 9.78 9.75 10.42
Low 9.05 9.08 9.53 8.45 8.49 8.96
Loc 2.84 2.84 2.72 2.34 2.38 2.19

TABLE7

STANDARD DEVIATIONS FOR THE DATA IN TABLE 6.

c A B c E F G
2.00 .286 .287 .293 .288 .291 .299
2.25 .286 .288 .295 .287 .290 .302
2.50 .286 .286 .297 .287 .289 .302
2.75 .292 .293 .307 .296 .298 .312
3.00 .293 .293 .316 .299 .300 .322
3.25 .300 .301 .329 .306 .307 .334
3.50 .309 .310 .343 .316 .317 .347
3.75 .317 .317 .354 .323 .323 .356
4.00 .330 .330 .376 .337 .336 .379

41

3.6. Twin Window Filtering Applied to Actual Logs

In order to evaluate the results of filtering properly, two tools were run

simultaneously in the same hole. One was processed through Schlum­

berger's filtering and is a conventional gamma-ray data curve; the other was

not filtered and represents raw data. The raw data was then deconvolved

using a=O.l 0 and for ease of comparison, scaled by a small constant to give

a good match with the Schlumberger data. This was then filtered by a twin

window filter using the average of the internal window. The filter parameter

was 2.50 and the length of the outer window fixed at 9 points. The results

are shown in Figure 9. The RMS difference between the filtered log and the

Schlumberger log is only 7.23 and occurs primarily at the peaks and valleys.

This is even slightly less than the RMS difference between the ideal and

noisy logs with the same filter (7 .30). Since visual inspection shows that

this method of filtering produces sharper bed boundaries, substantiating the

results of the Monte Carlo simulation, it indicates that the twin window filter is

superior.

3.7. Chapter Summary

Monte Carlo simulation was applied to evaluate the results of the

various nonlinear filters discussed. First, it was discovered that on this

particular type of synthetic log that ordinary median filters do not improve

the RMS error. However, recursive median filters of lengths 3, 5, and 7 do

show varying degrees of improvement with respect to this figure of merit.

Linear combinations of these recursive median filters were shown to

decrease the error even more. In the quest for the perfect weighting for the

linear combination, multiple linear regression was used to show that the

optimal weighting produces only slight improvement over uniform weighting

(1)
V>

64

128

192

320

384

448

512

0
Counts

100 200 300 0

Schlumberger
Tool

Counts
100 200

Raw Log
Alpha= 0.10
Filtered by
T1~i n Ui ndow
c = 2.5

300 0
Counts

100 200 300

Both Logs \'lith
Differences
Shaded

42

Figure 9. Schlumberger gamma-my log, the log of the same borehole processed
by another tool and TW filters, and a composite log with differences
shaded.

43

for the particular filters used. The reduction in noise obtained by multiple

linear regression is, in fact, impractical to implement as a filter since the

weights obtained were allowed to, and did in fact, vary from log to log.

Next, a novel filter, the twin window filter, was introduced and shown to be

superior to even the impractical, but promising, results of the multiple linear

regression. Further, the twin window offers the frame work in which to

implement a number of different filters, which each produce better results on

the synthetic log than any of the filters related to the recursive median~.

This type of filter also has a filter parameter which can be adjusted to suit

particular needs, or simply to improve the RMS difference. The most

promising of these filters was applied to raw gamma-ray log data and seen to

produce good results. Having used multiple linear regression to show how

little optimal weighting improves linear combinations of recursive median

filters, the twin window filter will, in the next chapter, be optimized with

respect to the filter parameter and signal level.

CHAPTERN

OPTIMIZATION OF THE TWIN WINDOW
AVERAGE FILTER

The Twin Window Average Filter (TW AF) is defmed such that the

width of the internal window W = 2c ~ where c is the filter parameter

and Xn is the value of the point in the center of the window as in the

previous chapter. This leads to the observation that this window includes

relatively fewer uncorrelated points when Xn is small than when it is large.

Therefore making the inner window smaller for small Xn should improve

the filter performance. This will be first be done using the Monte Carlo

method.

4.1. A Special Synthetic Log

Since the idea behind the optimization is that the filter parameter may

be beneficially adjusted for each level, a new type of synthetic log is

constructed. Central to this new log is that it contains an excessive number

of beds of a particular level which is denoted by V, for value. Each of the

added beds in the synthetic log is the same length, L, to allow the statistics

to be tabulated not only by level, but also by location within a particular bed.

The first extra bed is after the end of the bed containing the 25th point of the

log. The extra bed is generated again after the bed containing the 75th point

of the log and the remaining log has an extra bed after the bed containing

point at position 50N-25. The extra bed is only generated at the end of the

44

45

bed at a particular position to preserve, to the greatest extent possible, the

remaining characteristics of the synthetic log. So for the 2048-point logs

used here, the new log will contain at least 41 beds of level V. Because the

level of the random beds is a random double-precision floating point

number, the chances of one of the other beds being generated at precisely

that level are vanishing small. This special synthetic log with V =50 and L=S

is shown in Figure 10. For the purpose of showing greater detail, the first

256 points of same log are shown in Figure 11. The 256-point noisy log is

shown with noise added in Figure 12.

Counts
300

250

200

150

100

50

1 251 501 751 1001 1251 1501 1751 2000

Figure 10. Most (97.6%) of the revised ideal log, showing the extra beds at
V=SO with L=S.

Counts
300

250

200

150

100

50

1 33 65

46

97 129 161 193 225 2_57

Figure 11. The frrst 256 points (12.5%) of the revised ideal log, with the added
beds of length 5.

Counts
350

300

250

200

150

100

50

1 33 65 97 129 161 193 225 257
Samples

Figure 12. The first 256 points (12.5%) of the revised noisy log, with the added
beds of length 5.

47

4.2. Monte Carlo Simulation

As in the previous cases, Monte Carlo simulation was used to model

1000 of these 2048-point logs. This undertaking was considerably complicated

by the fact that statistics were collected for the mean and standard deviation

for each individual point location in a bed for a particular signal level V and

bed length L. This involved hundreds of files on disk for each level V,

which each contain 4000 bytes. Each of these files was then summarized by

its data count, mean, and standard deviation using the program a vg, given

in Appendix B. This summary was then further consolidated to produce the

desired results. This results were then used to construct a modified version

of the Twin Window filter which does, in fact perform better than the original.

Taking these topics in order, the program to create the special synthetic log

will now be explained.

4.2.1. Program Description

A suitable program was written to create the special synthetic log and

was run to evaluate the mean and variance for all combinations of the values

of these parameters:

1 2 6 7
c = 2, 2g, 2g, ... , 3g, 3g, 4

L = 5, 6, 7, 8, 9, 10

v = 50, 60, 90, 120, 150, 180, 210, 240, 270, 288

where c is the filter parameter, L is the width of the bed, and V is the level of

the bed to be examined. It was run separately for each value of V since a

run takes between 3 and 4 days, depending on how much cpu time was

siphoned off for other activities. fu addition to separate runs for each value

V, a separate directory was used, although the file names are distinct.

48

As an example, let V=50 and L=5, for each of the 17 values of c, 12

files are populated with the results from 1000 different synthetic logs, giving

a total of 204 files. Each set of 12 files includes the mean and standard

deviation of these 6 results:

1. RMS difference of the ideal and filtered values of the

first point in each bed of width 5. (Each log has 41 of this type

of point.)

2. Similarly, the RMS difference concerning the second

point.

3. Contains similar RMS difference for the third point.

4. Contains similar RMS difference for the fourth point.

5. Contains values for the fifth point.

6. RMS difference of the entire ideal and filtered log. (Each

log has 2048 points, and each of them impact this evaluation.)

In addition to these important files of interest, 18 other files were

created with various other values to check the results, for a total of 222 files.

TABLES

NUMBER OF FILES CREATED FOR EACH BED LENGTH.

BedLen th Number of Files B es
5 222 909,312
6 259 1,060,864
7 296 1,212,416
8 333 1,363,968
9 370 1,515,520
10 407 1,667,072

Total 1887 7,729,152

49

The number of files created for each bed length is given in Table 8. Because

each file has one 4-byte floating point number for each of the usual 1000

logs, it is 4000 bytes long. Assuming a cluster size on MS-DOS of 4096, or a

block size on UnixTM, gives the total disk space consumed by the file, 4096

bytes, as in the third column. This excludes the space the directory entries

require, which amounts to a little more than a single file in itself. For the ten

values of V under consideration, the total requirement is well over 73 megabytes.

4.2.2. Checking the Simulation

Returning to the example with V=50 and L=5, one check that was

made was the new mean value of the noisy synthetic log. Considering that

each log has 2048 points, and 41 special beds of 5 points each, gives 1843

points uniformly distributed between 50 and 288, and 205 points having a

mean value of 50. The expected mean value is

184350~288 + 205·50
2048 ~ 157.0884. (34)

The square root of this value, 12.5335 is the expected RMS difference

between the ideal and unfiltered noisy synthetic log. From the selected

example file, for the 1000 logs, the mean RMS difference is 12.5265 with a

standard deviation, per Equation (20), of 0~2 ~ 0.0083, certainly a

positive indication. In like manner, the mean value of the ideal log is

157.211 and the standard deviation is ~ = 0.1229, so the Monte Carlo

result is approximately 1 standard deviation from the expected result.

Similarly, for the unfiltered noisy synthetic log, the numbers are remarkably

close: 157.210 and ~1 = 0.1234, a remarkable one standard deviation

50

from the expected. The overall result for the filtered log (c = 2.00),

however, is 156.83 and ~4 :::. 0.1234, a little over 2 standard deviations

from the expected result, but in the opposite direction, the first subtle hint of

a possible bias in the estimator. This same bias in similar quantity is also

seen across all the filter parameters (c=2.00 to 4.00). Cancelling this bias

may be another means of improving filter performance, but frrst a means of

consolidating this detailed, but imponderably large mass of data is given.

4.2.3. Consolidation of Data

The consolidation of this data occurs in two phases, the first combines

the statistics of various points within a particular length bed, at a particular

signal level, and the second combines the various length beds at a particular

TABLE9

OPTIMAL VALUES OF THE TW FILTER
PARAMETERFORSELECTED

SIGNAL LEVELS.

Si al Level
50
60
90
120
150
180
210
240
270
288

Filter Parameter
3.67
3.62
3.33
3.15
3.10
3.10
3.10
3.20
3.28
3.28

51

signal level. Once the data is consolidated, the required optimal values can

be interpolated. These values are given in Table 9. So, as anticipated, the

best values for the filter parameter are larger for the low signal levels, and

smaller for high signal levels. But the optimal filter parameter also increases

slightly again near a signal level of 240, for reasons, as yet, undetermined.

Nevertheless, the above table was implemented in a Monte Carlo simulation

and found to improve the results.

4.3. Results of the Improved Filter

To implement the improved filter, the existing code was modified by

RMS Error

7.6

7.55 ~

' 7.45

7.5

'\
7.4

7.35

7.3

7.25

7.2
2.5

~ ~

' ~ ~
~

2.75

h

J
~ ~

~ Ld ??' -- !--""

I
3 3.10 3.25 3.:

Cwve Bottom Parameter

Figure 13. The center curve is RMS error plotted against variation of the
optimal curve. The two outside lines are ±1 standard deviation.
The value 3.10 is nominally optimal.

52

adding a subroutine called optl vl which given a signal level, returns the

best filter parameter, interpolated from the data in Table 9. The altered

routines are given in Appendix E. This program not only implements the

filter, but varies the data in Table 9 by effectively adding a constant and

evaluating the results. The data in Table 9 has the filter parameter value

3.10 as the bottom of a bathtub-shaped curve, so this value was selected as

nominally optimal and a constant was added to the entire curve by the

program. For instance, if the program parameter is 3.25, the entire curve is

shifted upward 0.15. The program used parameters valued at every 3~
between 2.5 and 3.5, and the results are shown in Figure 13. While the

graph of Figure 13 does not have its extremum precisely over 3.10, it is well

within the ±1 standard deviation lines. It also clearly shows that the filter is

somewhat tolerant to variation from the optimal in that perturbation of the

optimal curve by as much as 0.10 produces only 0.02 change in RMS error,

although further perturbation may cause substantially greater error.

The other thing to note is that, similarly to the optimization of the

linear combinations of recursive median filters, the optimized filter only

performs slightly better than the original. In the present case, the improved

filter has an RMS error of slightly less than 7.25 while the original was 7 .30.

Since the standard deviation is approximately 0.009, these two estimates are

less than 6 standard deviations apart. However, the improved filter requires

only one additional subroutine call, which could easily be avoided by inline

code, or the inline declaration in C++, and a table lookup. For such a small

price, the improvement is probably worth the effort. With the improvement

completed, let us summarize the steps involved to make practical use of the

optimized twin window average filter.

53

4.4. A Method for Using the Filters

To make practical use of this filter, and to compare it to another log as

done in the previous chapter, several steps are required. The first step is to

scale the data in terms of depth to assure that similarly-numbered points

correspond to the same geologic beds. This allows for the fact that even

though the tool is frrst lowered and the well logged only as the tool is lifted,

it may snag on the sides of the borehole and cable stretch may cause disparities

in the data. This was not a problem in the previous chapter since both tools

were run simultaneously. The second step is the selection of a in Equation

(1). The exponential, when convolved with the log, gives the log the general

appearance of indistinct beds, or sloping bed boundaries. Although scientific

analysis based on the properties of the material surrounding the borehole

may yield a proper value for a, simply applying different values and observing

which value yields beds that appear distinct seems to work well. This was

the method used in the previous chapter, and can be accomplished quite

rapidly if the observer attachs a numeric value to the slope of the beds and

tries to center the optimum a between values of a which gave similar slopes

on opposite sides on the optimum.

The third problem is to relate the ordinate of the graph to the number

of counts. This, too, turns out to be surprisingly simple if approached in the

correct manner. The technique is to use the largest unchanging bed to

approximate the mean, J.!, and standard deviation, cr, for that one particular

bed. If that bed is so narrow as to make the estimates uncertain, then several

beds may be used, yielding the estimates J.ln, and 0'0 • Once these are found,

0'
the required scaling factors, ~0, may be estimated as ~n = --1! • These may be

J.ln

averaged using a weighted average which considers the number of points in

54

. the bed and the level of the bed, but for the data in the last chapter, the first

two ~0's calculated were in close agreement, so this did not seem to be

necessary in practice. Of course, if it is only desired to scale two logs of the

same borehole to be equal, the scale factor may be taken as the square root

of the ratio of the total power of each log.

The filter must then be selected. This should be done on the basis of

the filters and parameters that appear to work best on the synthetic logs. The

optimization of the filter parameter accomplished after the large expenditure

of computer time in this chapter has two problems in practice. It is highly

dependent on the distribution of geologic beds, which implies that a large

number of actual logs are needed to estimate that distribution; and once the

optimization is performed, it changes the performance of the filter only

slightly. Therefore, the optimization is of little value unless one has a large

quantity of data stored on a very large and fast computer. That is the reason

that the log was filtered in the previous chapter, before obtaining this

optimization.

4.5. Chapter Summary

Upon observation that due to· the fact that the inner window of the

Twin Window filter includes relatively more uncorrelated points for large

signal values than small, a corresponding optimization of the filter with

respect to the filter parameter was sought. The optimization was determined,

in addition to numerous other statistics which, it was hoped, would be useful

in better understanding the filter. After determining the optimal relationship

between the filter parameter and the point to be estimated, the optimized

filter was run over the usual 1000 synthetic logs to verify that it did, in fact,

improve the performance. Also, the optimization function was perturbed,

55

and it was shown that the perturbations degraded the performance within the

certainty allowed by the Monte Carlo simulation. This simulation also

showed that the improved version only did very slightly better than the

original filter. However, the cost at execution time to implement the

optimized filter is very low, so it is a worthwhile improvement, if the initial

cost of finding the optimization can be justified.

CHAPTERV

CONCLUSIONS AND
FUTURE WORK

As Isaac Newton (1675) said, "If I have seen further than the others it

is by standing on the shoulders of giants." From the literature, a basic model

of gamma-ray logging was derived which showed how the Poisson noise

could be viewed as adding to the signal emitted from the geologic beds.

This is then convolved with the geologic impulse response which can be,

with suitable restrictions, deconvolved to remove its effects. The

problem of how to remove the Poisson noise without seriously degrading the

signal which is composed of the sharp transitions representing the distinct

layers of sand and shale was then addressed. The optimal stationary linear

filter, designed by Wiener, removes only 90% of the noise, in the RMS

sense.

Because so much noise remained, nonlinear filters were sought to

improve the problem. The first of these, the median filters, actually made

the noise worse. This was measured in Monte Carlo simulation, using a

synthetic log due to the uncertainty associated with the true driving function

of the physical system. The RMS difference was selected as the figure of

merit. This made objective evaluation possible, and enabled the computer to

evaluate large numbers of logs quickly. To quantify the amount of noise that

it is possible to remove, an unattainable minimum noise level was derived,

the value of which marked the best that could be achieved at 36.5% of the

56

57

original noise. After ascertaining these two limits, work turned to finding

filters which produced better results than linear filters. The first improvement

was seen in the recursive median filters.

5 .1. Recursive Median Filters

The recursive median filters which improve the noise level are the

recursive medians of length 3, 5, and 7 with the RMS noise remaining of

73%, 77%, and 93%, respectively. Since these are not linearly dependent,

linear combinations of these filters were tried and found to improve the noise

level, leaving only 70% of the original noise. Also, since recursive median

filtering in reverse does not produce the same result as forward filtering, the

linear combinations were augmented with reverse recursive median filters

for a greater improvement in noise level, with 66% of the noise remaining.

So far, the weighting of the linear combinations has been uniform, so in an

attempt to determine the optimum linear combination, a simulation was

made with multiple linear regression used on each individual log. Even

allowing the weights to change independently for each log only reduces the

noise to 63%. This method is impractical to implement as a filter, and shows

very little improvement over the simple unifotm weights used previously. It

has no known practical value, but it does demonstrate a limit to the amount

of noise reduction available by means of such linear combinations. Having

come to the apparent limit as to what can be expected in the realm of median

filters, a novel filter, called the twin window, is introduced.

5 .2. Twin Window Filters

The twin window filters were defmed as a framework to surround

various kernels, namely the average, maximum likelihood, and median,

58

although others could easily be added in the future. These reduce the noise

to 56.2%, 56.4%, and 57.6% of its original value, respectively. The inner

window of the filter was allowed to vary, improving its position according to

the best estimate of the current point, and reduced the noise to 55.9%, as

well as producing these with a smaller value of filter parameter. Upon

observation that the worst errors often occurred at single points, a 3-point .

recursive median was run after each of the first three twin window filters to

achieve noise levels of 52.8%, 53.2%, and 55.8% respectively.

The observation that the twin window methodology allows more the

uncorrelated points in the inner window at high signal level than at low

levels leads to the optimization of the filter with respect to the filter

parameter. This was carried out for the twin window average filter. The

function of signal level versus filter parameter thus generated was found,

when reapplied to the usual Monte Carlo simulation to reduce the noise to

55.7%. The optimal curve was then perturbed by adding a global constant

and, within a fraction of 1 standard deviation, found to be consistent with the

premise that the curve was indeed optimal. So a novel filter was introduced,

investigated, optimized to a limited extent, and found to compare reasonably

well to the unattainable minimum noise level of 36.5%.

5.3. Future Work

The state of knowledge on twin window filters presently is analogous

to that of recursive medians before the investigation turned to multiple linear

regression. However, the TW filter has a filter parameter, and thus, along

with the various different kernels which may be used in the filter, leads to a

larger system of regression equations. Once the resultant value is known, a

decision to whether the potential reduction in noise is worth the added

59

complexity of the filter. This complexity might be reduced by studying how

much the filter parameter has to change to produce a filtered log of diversity

sufficient to change the result of the regression.

Many times in the course of this work, investigation of the synthetic

logs associated with the extreme tails of the histograms has provided insight

into improvements in the filters. Often, this is because these logs represent a

caricature of the important features which cause the extreme (good or bad)

results. This will probably continue to be an important investigative tool. In

addition to this, since the twin window filters have parameters, the histograms

for different filter parameters could, in effect, be lined up and the little boxes

reassigned to their particular log. Boxes from each histogram pertaining to

the same log could be connected, and the correspondence of log to box

rearranged within the column of each histogram to minimize the length of

the connecting lines. Once this is done properly, if any long lines between

boxes remain, they would be investigated individually to determine what

physical features in the original log caused the sudden change in result. This

method of investigation has been made practical only recently by the

combination of high resolution graphics and fast processors on personal

workstations.

Another aspect of the histograms that seems to demand investigation is

the fact that reduced variance in the histogram seems to correlate with the

greatest noise reduction. Further work in this area may lead to a simple

heuristic to fmd the optimal filter parameter, or may lead to some totally

unforeseen and better filter. Understanding of why this should be so certainly

seems, at least at this point, to have some fundamental impact on nonlinear

filters.

60

Leaving Poisson noise totally behind could also result in a very

interesting investigation. The gamma-ray tool basically has not changed

much since it was invented in 1939. A updated digital version could register

every decay detected by sending the digitally-encoded time between decays.

This leads to a different noise distribution, but has the advantage of less

reduction of data before filtering, effectively destroying the role of the

unattainable minimum bound, so prominently unassailable in this work.

The work of optimizing the twin window filter may be done analytically,

although with numerous numerical integrations and convolutions, much more

accurately and in less time. However, checking out such a program is very

time-consuming and requires, among other things, functions which in fact

evaluate accurately to nearly the full machine precision, unlike the error

function often implemented on Unix™, which for some values, only produces

nine or ten significant digits. An example of a correct function is given in

Hart (1967), and is used here in the program avg for the more mundane and

less demanding task of calculating the Gaussian curves approximating the

histograms in the appendices. The time for such a program to do the same

job, when carefully written, might be reduced by a factor of 25 or more for

the 3-digit precision given, and would not increase as rapidly as the required

precision increased. This method has the added advantage of generating

intennediate results which might prove useful. in improving the twin window

filter in ways not now foreseen.

BffiLIOGRAPHY

Abramowitz, M. and Stegun, I.A. (1964), Handbook of Mathematical
Functions with Formulas. Graphs. and Mathematical Tables, National
Bureau of Standards, Applied Math Series, No. 55.

Aho, Alfred V., Hopcroft, John E., and Ullman, Jeffrey D. (1983), Data
Structures and Al~orithms, Addison-Wesley, Reading, Massachusetts.

Arce, G.R., and Gallagher, N.C., Jr. (1982), State Description for the Root­
signal Set of Median Filters, IEEE Transactions on Acoustics. Speech.
and Signal Processing, Vol. ASSP-30, No. 6, pp. 894-902.

Astola, J., and Campbell, T.G. (1989), On Computation of the Running
Median, IEEE Transactions on Acoustics. Speech. and Signal
Processing, Vol. ASSP-37, No.4, pp. 572-574.

Astola, J., Heinonen, P., and Neuvo, Y. (1989), Linear Median Hybrid
Filters, IEEE Circuits and Systems, Vol. 36, No. 11, pp. 1430-1438.

Ataman, E., et al. (1980)~ Fast Method for Real-time Median Filtering
Algorithm, IEEE Transactions on Acoustics. Speech. and Signal
Processing, Vol. ASSP-28, pp. 415-420, August 1980.

Bednar, J.B., and Watt, T.L. (1984), Alpha-trimmed Means and Their
Relationship to Median Filters, IEEE Transactions on Acoustics.
Speech. and Signal Processing, Vol. ASSP-32, pp. 145-153, February
1984.

Bendat, Julius S., and Piersol, Allan G. (1971), Random Data: Analysis and
Measurement Procedures, Wiley, New York, Chapter 4.

Berezin, I.S., and Zhidkov, N.P. (1965), Computing Methods. Vol. 1.
translation of the Russian, Pergamon Press, Oxford, and New York, or
Addison-Wesley Publishing Co, Inc, Reading, Massachusetts.

61

62

Billinton, Roy (1970), Power System Reliability Evaluation. Gordon and
Breach, New York, p. 28.

Conaway, John G. and Killeen, P.G. (1978), Computer Processing of
Gamma-ray Logs: Iteration and Inverse Filtering, Current Research,
Part B, Geological Survey of Canada, Paper 78-1B, pp. 83-88.

Conaway, J.G. and Killeen, P.G. (1978), Quantitative Uranium Determinations
from Gamma-ray Log by Application of Digital Time Series Analysis,
Geophysics, Vol. 43, No.6, pp. 1204-1221, October 1978.

Conaway, J.G., Bristow, Q., and Killeen, P.G. (1979), Optimization of Gamma­
ray Logging Techniques for Uranium, draft, Geophysics, Vol. 45.

Conaway, J.G. (1979), Problems in Gamma-ray Logging: The Effect of
Dipping Zones on the Accuracy of Ore Grade Determinations, Current
Research, Part A, Geological Survey of Canada, Paper 79-1A, pp. 41-
44.

Conaway, J.G. (1979), The Effects of Borehole Diameter, Borehole Fluid,
and Casing Thickness on Gamma~ray Logs in Large Diameter Boreholes,
Current Research, Part C, Geological Survey of Canada, Paper 79-1 C,
pp. 37-40.

Conaway, J.G. (1980), Uranium Concentrations and the System Response
Function in Gamma-ray Logging, Current Research, Part A, Geological
Survey of Canada, Paper 80-A, pp. 77-87.

Conaway, J.G. (1980), Exact Inverse Filters for the Deconvolution of Gamma-ray
Logs, Geoexploration, Vol. 18, pp. 1-14.

Conaway, J.G. (1980), Direct Determitiation of the Gamma-ray Logging
System Response Function in Field Boreholes, Geoexploration, Vol.
18, pp. 187-199, January 1980.

Conaway, John G. (1981), Deconvolution of Gamma-ray Logs in the Case of
Dipping Radioactive Zones, Geophysics, Vol 46, No. 2, pp. 198-202,
February 1981.

Conaway, John G. (1980), Uranium Concentrations and the System Response
Function in Gamma-ray Logging, Current Research, Part A, Geological
Survey of Canada, Paper 80-A, pp. 77-87.

63

Czubek, J.A. (1961), Some problems of the Theory and Quantitative Interpretation
of the Gamma Ray Logs, Acta Geophysica Polonica, Vol. 9, No. 1/2,
pp. 121-137.

Czubek, J.A. (1962), The Influence of the Drilling Fluid on the Gamma-ray
Intensity in the Borehole, Acta Geophysica Polonica, Vol. 10, pp. 25-
30.

Czubek, J.A. (1966), Physical Possibilities of Gamma-gamma Logging,
Radioisotope Instruments in Industry and Geophysics, Vol. 2, International ·
Atomic Energy Agency Proceedings Series, IAEA, Vienna, 1966.

Czubek, J.A. (1969), Influence of Borehole Construction on the Results of
Spectral Gamma-logging, Nuclear Techniques and Mineral Resources,
International Atomic Energy Agency Proceedings Series, IAEA, Vienna.

Czubek, J.A. (1971), Differential Intemretation of Gamma-ray Logs. I. Case
of the Static Gamma-ray Curve. Report No. 160a, Nuclear Energy
Information Center, Polish Government Commission for the Use of
Nuclear Energy, Warsaw.

Czubek, J.A. (1972), Differential lntemretation of Gamma-ray Logs. II. Case
of the Static Gamma-ray Curve. Report No. 793fl, Nuclear Energy
Information Center, Polish Government Commission for the Use of
Nuclear Energy, Warsaw.

Czubek, J.A. (1983), Kernel Functions in Gamma-ray Logs, draft accepted
for publication in Acta Geophysica Polonica.

Davis, Philip J. and, Rabinowitz, Philip (1967), Numerical Integration,
Blaisdell Publishing Company, Waltham, Massachusetts.

Davisson, C.M. and Evans, R.D. (1976), Gamma-ray Absorption Coefficients,
Reviews of Modem Physics, Vol. 24, No.2, pp. 79-107.

Davydov, Y.B. (1970), One-Dimensional Inverse Problem of Gamma Logging
of Borehole (translated from Odnomemaya obratnaya zadacha gamma­
karotazha skvazhin. Izvestiya Vysshikh Uchebnykh Zavedenii.)
Geologiya i Razvedka, No.2.

Elphick, R.Y. (1987), Neutron/Density/OR Interpretation in Shaley [sic] Sands,
Geobyte, Vol. 2(2), pp. 51-54.

64

Devore, J.L. (1982), Probability and Statistics for Engineering and the Sciences,
Brooks/Cole, Monterey, California, pp. 485-491.

Evans, Robley D. (1955), The Atomic Nucleus, McGraw-Hill Book Co., New
York.

Fike, C.T. (1968), Computer Evaluation of Mathematical Functions,
Prentice-Hall, Inc, Englewood Cliffs, New, Jersey.

Flaum, C., Galford, J.E., and Hastings, A., (1989), Enhanced Vertical Resolution
Processing of Dual Detector Gamma-Gamma Density Logs, The Log
Analyst, Vol. 30(3), May-June 1989, pp. 139-149.

Forsythe, George E., Malcolm, Michael A., and Moler, Cleve B. (1977),
Computer Methods for Mathematical Computations, Prentice-Hall,
Englewood Cliffs, New Jersey, pp. 97-107.

Fry, Thornton C. (1965), Probability and Its Engineering Uses, D. Van
Nostrand Company, Princeton, New Jersey, pp. 236-253.

Gallagher, N.C., and Wise, G.L. (1981), A Theoretical Analysis of the Properties of
Median Filters, IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. ASSP-29, December 1981.

Grenander, Ulf (1982), Mathematical Experiments on the Computer. Academic
Press, New York, pp. 430-435.

Hart, John F., Cheny, E.W., et al., (1968), Computer Approximations, John
Wiley & Sons, New York.

Haight, Frank A. (1967), Handbook of the Poisson Distribution, John Wiley
& Sons, Inc., New York.

Howell, Lynn G., and Frosch, Alex (1939), Gamma-Ray Well-Logging,
Paper read at the Annual Meeting of the Board of Directors, Humble
Oil & Refming Co., Oklahoma City, Oklahoma, March 23, 1939.

Huang, T. S., Yang, G. T., and Tang, G. Y. (1979), Fast Two-dimensional
Median Filtering Algorithm, IEEE Transactions on Acoustics, Speech.
and Signal Processing, Vol. ASSP-27, pp. 13-18, February 1979.

Huang, Thomas S. (1981), Editor, Two-Dimensional Digital Signal Processing
II, Springer-Verlag, New York, pp. 161-217.

65

Jayant, N. S. (1976), Average and Median Based Smoothing Techniques for
Improving Digital Speech Quality in the Presence of Transmission
Errors, IEEE Transactions on Communication, Vol. COM-24,
pp. 1043-1045, September 1976.

Hurst, A. (1990), Natural Gamma-Ray Spectrometry in Hydrocarbon-bearing
Sandstones from the Notwegian Continental Shelf. Geological Applications
of Wireline Logs, Geological Society of London Special Publication
No. 48, pp. 211-222.

Karaman, M., and Onural, L. (1989), New Radix-2-Based McGraw for Fast
Median Filtering, Electr. Lett., Vol. 25, No.2, pp. 723-724.

Killeen, P.G. (1983), Borehole Logging for Uranium by Measurement of
Natural Gamma-radiation, International Journal of Applied Radiation
and Isotopes, Vol. 34, pp. 231-260, January 1983.

Koizumi, CJ. (1985), Computer Determination of Calibration and Environmental
Corrections for A Natural Spectral Gamma Ray Logging System,
Society of Petroleum Engineers. 60th Annual Meeting Preprint, Vol.
SPE-14186. Also in SPE Formation Evaluation, Vol. 3, No. 3, 1988,
pp. 637-650.

Kozhevnikov, D.A., and Shagin, V.L. (1989), A Method of Treating the
Spectral Response of a Tool in Open and Cased Boreholes to
Determine the Natural Radioactivity of Rocks, Nuclear Geophysics,
Vol. 3, No.1, pp. 17-29.

Krishnan, Venkatarama (1984), Nonlinear Filtering and Smoothing: An
Introduction to Martingales. Stochastic Integrals and Estimation, John
Wiley & Sons, New York, pp. 245-270.

Leithold, Louis (1972), The Calculus with Analytic Geometry. Second Edition,
Harper & Row, New York.

Longbotham, Harold Gene, and Bov~ Alan Conrad (1989), IEEE Transactions on
Acoustics. Speech. and Signal Processing, Vol. ASSP-37, No.2, February,
pp. 275-287.

Mathis, G.L. (1987), Smoothing Spectral Gamma Logs-A Simple but Effective
Technique, Geophysics, Vol. 52, No. 3, pp. 363-367.

66

Mendel, Jerry M. (1987), Lessons in Digital Estimation Theory, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey.

Milton, Roy C. (1970), Rank Order Probabilities, John Wiley & Sons, Inc.,
New York.

Newton, Isaac (1675), Letter to Robert Hooke, dated February 5.

Nodes, T.A., and Gallagher, N.C., Jr. (1982), Median Filters: Some Modifications
and Their Properties, IEEE Transactions on Acoustics. Speech. and
Signal Processing, Vol. ASSP-30, No.5, pp. 739-746, October 1982.

Paden, Larry J., and Steinhardt, Allan 0. (1984), Reduction of Poisson Noise
in the Gamma-ray Log, 1983-84 Program Final Report, Oklahoma State
University Research Consortium for Enhancement of Well Log Data
via Signal Processing, Stillwater, Oklahoma, pp. 2.1-2.53.

Paden, Larry J. (1985), Reduction of Noise in the Gamma-Ray Log, SPWLA
Symposium Record, Dallas.

Papoulis, Athanasios (1977), Signal Analysis, McGraw-Hill, New York, pp.
337-339.

Park, S.Y. and, Lee, Y.H., Double Smoothing of Images Using Median and
Wiener Filters, IEEE Transactions on Acoustics, Speech. and Signal
Processing, Vol. ASSP-37, No.6, pp. 943-946.

Peebles, Peyton Z. (1987), Probability. Random Variables. and Random
Simal Principles, McGraw-Hill, New York.

Peterson, S.R., Lee, Y.H., and Kassam, S.A. (1989), Spectral Performance
Characterizations of Some Generalized Median Filters, The Journal of
the Franklin Institute, Vol. 326, No.2, pp. 151-166.

Prudnikov, Anatolii Platonovich (1986), Trnnslation of (1983) Integraly I Ryady,
Gordon and Breach Science Publishers, New York.

Pomalaza-Raez, Carlos A., and McGillem, Clare D. (1984), An Adaptive,
Nonlinear Edge-preserving Filter, IEEE Transactions on Acoustics.
Speech. and Signal Processing, Vol. ASSP-32, pp. 571-576.

Ruckebusch, Guy (1983), A Kalman Filtering Approach to Natural Gamma
Ray Spectroscopy in Well Logging, IEEE Transactions on Automatic
Controls, Vol. AC-28, pp. 372-380.

67

Richards, D.S., (1990), VLSI Median Filters, IEEE Transactions on Acoustics.
Speech. and Signal Processing, Vol. 38, No. 1, pp. 145-153.

Schlumberger (1982), Fundamentals of Natural Gamma Ray Spectrometry and
Essentials of NGS Interpretation, Schlumberger Technical Services,
Document number M -081025, Paris.

Schultz, Ward E. and Thadani, Suresh G. (1981), Applications of Digital
Filtering Techniques to Nuclear Well Logs, SPWLA Logging Symposium
Transactions.

Scott, J.H. (1963), Computer Analysis of Gamma-ray Logs, Geophysics,
Vol. 28, pp. 457-465.

Scott, J.H., et al. (1961), Quantitative Interpretation of Gamma-ray Logs,
Geophysics, Vol. 26, pp. 182-191.

Sinha, P.K. (1990), An Improved Median Filter, IEEE Transactions on Medical
Imaging, Vol. 9, No.3, pp. 345-346.

Snyder, Donald L. (1975), Random Point Processes, John Wiley & Sons,
New York.

Tukey, J.W. (1971), Exploratory Data Analysis (preliminary ed.), Addison­
Wesley, Reading, Mass.

Wang, D.J. (1990), On the Max Median Filter, IEEE Transactions on
Acoustics. Speech. and Signal Processing, Vol. 38, No. 8, pp. 1473-
1475.

Yung, W.F., Yuen, Y.K., Koh, S.N., and Lee B.S., Implementation of a
Pseudo 2-D Median Filter for Image-Enhancement, IEEE Transact.ions
on Consumer Electronics, Vol 35, No. 4, pp. 901-906.

Zorski, Tomasz (1980), Application of Discrete Fourier Transform in
Solving the fuverse Problem in Gamma-Ray Logging, Acta Geophysica
Polonica, Vol. 28, No. 1, pp. 57-66.

APPENDIX A

PROGRAM TO EVALUATE
THE TWIN WINDOW

AVERAGE FILTER

The program in this appendix is typical of those used to evaluate the

filters presented here. It was originally written for a DEC Vax 11nso, then

ported to an AT&T 3B2/400, and fmally to an mM AT clone from Gateway

housing a Micronics motherboard with an Intel 80486 processor. The V ax

was, of course, multiuser, so typically a run would actually get less than

30% to 50% of the total CPU time. The 3B2 was also multiuser, but due to

lack of after hours use, often runs would get 90% to 95% of the CPU time.

The overall performance was approximately half the speed for a given

amount of CPU time. The AT runs Microsoft Windows/386 and the

program approximately 10 to 12 times the speed of the Vax, a much needed

improvement for some of the more complex programs.

The routines required to make a complete working program are:

twaf.c, bubble.c, cputime.c, daytime.c, flush.c, gamgev2.c, gauss.c, ncproces.c,

poisnois.c, randb.c, reload.c, rmfilt.c, rmssub.c, twaffilt.c.

The main routine is twaf. c and the others are subroutines listed in

in alphabetical order for the convenience of the reader, although it may not

be the most efficient from a machine's point of view. In order to assist the

potential programmer to understand the dependencies, the following

topological sort may be helpful:

68

69

twa f. c calls:
cputime.c, daytime.c, flush.c, gamgev2.c, ncproces.c, poisnois.c, reload.c, rmfilt.c,

rmssub.c, twaffilt.c.
cputime.c calls nothing.

daytime.c calls nothing.
flush.c calls nothing.

gamgev2.c calls
gauss.c, randb.c.

ncproces.c calls nothing.
poisnois.c calls

gauss.c.

reload.c calls nothing.

rmfilt. c calls

bubble. c.

rmssub.c calls nothing.
twaffilt.c calls:

bubble.c.
bubble.c calls nothing.

gauss.c calls:
randb.c.

randb.c calls nothing.

This source code, when compiled with Borland's Turbo C++

Professional, combines to produce an executable program. Its original form

was that of 14 separate source files and a projectfile which compiled each

into an object file, then linked these 14 object files together to produce an

executable. When run, produces 67 files requiring over 300k bytes of disk

space. One file, called datatext, is a text file which gives a running

account of the time at which the program last added to its data files. When

run under a multitasking operating· system, this file may be checked to

monitor the progress of the program. A second file, called dataseed,

contains the seed of the multiplicative congruential random number

generator before the synthetic log was generated. It is often useful for

reconstructing the log for which a given filter produces an exceptionally

large or small result. The remaining 65 files are the results of varying the

filter parameter between 2.00 and 4.00 by 3~, which corresponds to the file

names d2_0 0. ot, d2_03 . ot, ... , d4_0 0. ot, respectively.

70

This last group of 65 files represents the data central to the theme of the

program. Each file consists of 1000 single-precision floating-point numbers

stored in binary format. Each of these numbers represents the RMS average

difference between an ideal synthetic log and the corresponding filtered

noisy synthetic log. As an example, consider the file d3_15. ot. From the

file name, the filter parameter can be deduced as 3i2, which, although

somewhat cumbersome written on paper, has an exact, and simple, binary

representation. Each set of four bytes in the file is the binary representation

of a single-precision floating-point number. So bytes 9 to 12 represent a

number (say 7 .26, for example's sake.) This means that when the third

2048-point noisy synthetic log was filtered, that the RMS difference between

it and the original ideal synthetic log was 7 .26. Of course reading this

binary data is somewhat difficult, so in Appendix B is the program listing for

a utility that assists in this endeavor.

The main program twaf. c:

/* program otwl !Ordinary twin window. (Uses median without RM3.)

Ideal gamma-ray log generator.
Makes multiple runs with different noise files. Finds the RMS average of

the difference between the ideal log and a simple combination of recursive

median filters. Larry Paden 3/30/84.

Changed to print out the seed before each pass. LJP 8/23/83.
synthetic log generator changed to produce small layers. LJP 10/5/83.

Prints the unformatted files directly. LJP 8/30/84.

Some subroutines are in [LARRY.PADEN]LIBRARY

RELOAD subroutine added to pick up where it left off. LJP 10/2/84.

PHOENIX added. LJP 10/4/84.
Converted to c. ljp 4/5/87.*/

iinclude <stdio.h>
iinclude <sys\stat.h>
/* The directory for a RAM disk to cut down on hard disk use. */
idefine DIR 'D:\\twaf'
/* Signal length in samples. */
#define LENSIG 2048
/* Number of noisy logs. */

#define RUNS 1000

/* Controls verbosity of text output. */

#define IRMSVERB 0

/* The number of points in the outer window. */
idefine LARGE 9

/* Lowest filter parameter. */
#define BOTTOM 2.0
/* Highest filter parameter. */
#define TOP 4.0
/* Filter parameter increment. Change filename in sprintf %.2f below.*/
#define DELTA 0.03125
/* Minimum time in seconds between harddisk writes. */
#define TIMEALL (600.0)
/* Minimum slope. */
#define SLPMIN 0.0

/* Maximum slope. */
#define SLPMAX 0.0
/* Name of file for text output. */
#define LUWNAME 'datatext'
char datafile[128] = 'data'; /* Place to store a data file name. */
void main() {

FILE *luwrite,
*tempfile,
*hardfile;

void flush();

I*
/*

I*
I*
/*

Logical unit for writing text. *I
LU for other files. *I
LU to copy to hard disk. *I
For MS-DOS fflush only. *I
CPU (?) time used. MS-DOS elapsed time. *I double cputime();

double lasttime;
static double param,

/* Save the last time files were transfered. */
/* Filter parameter. */

rmsdiff, /* RMS difference. */
rmsavgl, rmsavg2, /* RMS average of the two logs. */
signal[LENSIG], ideal[LENSIG], xplt[LENSIG];

float wrflt;
int limit;
int irun;
int junk;
int kk;

/* convert to single prec1s1on. */
/* Length of a log in points. */
I* Log suite sequence number. */
/* Info returned, but not used. */
I* Loop counter through a log. */

int errtmp; /* Error message data. */
unsigned short iseed[3]; /*Random number generator seed. */
int sprflng, sprfsht, sprfint; /* For checking sprintf results. */

int readdesc, writdesc, nitems, nindx, errnbr; /* For copying files. */
limit = LENSIG;
/* Write various input parameters. */

luwrite = fopen (LUWNAME, 'a+');
daytime (luwrite);
fprintf (luwrite, 'Hard disk is updated every %g seconds from %s.\n',

TIMEALL, DIR);
fprintf (luwrite, 'The outer window is length: %d.\n', LARGE);
fprintf (luwrite, 'Bottom, top, delta: %g, %g, %g\n',

BOTTOM, TOP, DELTA);
fprintf (luwrite, 'Files have %d points; transitions %g to %g.\n',

LENSIG, SLPMIN, SLPMAX);
flush (luwrite);
/* Initialize seed. */
iseed[O] Oxe66d;

iseed[l] = Oxdeec;
iseed[2] = Ox5;
/* Initialize everyting else */

71

if (stat (DIR, (struct stat *}ideal} == 0} {

fprintf (luwrite, 'Directory %s already exists. DIR);

fprintf (luwrite, 'Are other processes using it?\n');

exit (-8);

if ((errtmp = mkdir (DIR}} I= 0} {

fprintf (luwrite, •cannot make directory %s %d\n', DIR, errtmp);

exit (-9);

sprflng = sprintf (datafile, '%s\\d%d_%.2d.ot•, DIR, 4, 0);

sprfsht = sprintf (datafile, '%s\\d%d_%.2d.ot•, 4, 0};

lasttime = 0.0;

irun = 0;

ncprocessor(};

I* Reload all arrays if data is available. *I
irun = reload (luwrite, BOTTOM, TOP, DELTA, iseed);

fprintf (luwrite, 'Run and seed: %d %ux %ux %ux\n',

irun, iseed[2], iseed[l], iseed(O] l;

daytime(luwritel; flush (luwrite};

I* Do the number of times in RUNS. *I
for (irun=irun; irun<RUNS; irun++}

printf ('%d •, irun};

daytime (stdout};

fprintf (luwrite, '%d • irun);

daytime (luwrite);

flush (luwrite);

I* save the seed. *I
if ((tempfile = fopen ('dataseed', 'a+b'l) ==NULL} {

fprintf (luwrite, 'Stopped by fopen dataseed.\n'};

exit (-10);

if ((errtmp = fseek (tempfile, (long} (3*sizeof(short}*irun), 0})

I= 0) {

fprintf (luwrite, •seek error on dataseed. %d\n', errtmp);

exit (-11);

if (fwrite ((char *} iseed, sizeof(short), 3, tempfile} != 3) {

fprintf (luwrite, 'Write error on dataseed.\n'l;

exit (-12);

if (fclose (tempfile) == EOF) {

fprintf (luwrite, 'Stopped by fclose dataseed.\n'};

exit (-13);

/* Check time. */

if (cputime(}-lasttime > TIMEALL} {

lasttime = cputime();

fprintf (luwrite, 'Appending files.\n'};

fprintf (luwrite, '%g %d %ux %ux %ux\n',

cputime(), irun, iseed[2], iseed[1], iseed[O]);

daytime(luwrite); flush c(luwrite);

!* Append the RAM disk files to the files in this directory. */

for (param=BOTTOM; param<=TOP; param+=DELTA}

sprfint = param;

72

if ((errtmp = sprintf (datafile, '%s\\d%d_%.2d.ot',
•.•, sprfint, (int)(100.*(param-sprfint)))) != sprfsht)

fprintf (luwrite,

'Stopped due to sprintf %d return code -16.\n', errtmp);
exit (-14);

if ((hardfile = fopen (datafile, 'a+b')) == NULL) {
fprintf (luwrite, 'Stopped by fopen %s. \n', datafile);
exit (-15);

if ((errtmp = sprintf (datafile, '%s\\d%d_%.2d.ot',
DIR, sprfint, (int)(100.*(param-sprfint)))) l= sprflng).
fprintf (luwrite,

'Stopped due to spriritf %d return code -14.\n', errtmp);
exit (-16);

if ((tempfile = fopen (datafile, 'rb')) ==NULL) {
fprintf (luwrite, 'Stopped by fopen %s.\n', datafile);

exit (-17);

readdesc = fileno(tempfile);
writdesc = fileno(hardfile);
while ((nitems =

read (readdesc, (float*)ideal, (unsigned)LENSIG)) > 0) {
if ((errnbr = write (writdesc, (float*) ideal,

(unsigned)nitems)) l= nitems) {

if

if

fprintf (luwrite, 'Bad write to %s %d/%d.\n',
datafile, errnbr, nitems);

fprintf (stderr, 'Bad write to %s %d/%d. \n',
datafile, errnbr, nitems);

sleep (600);

nindx = errnbr;

nitems -= errnbr;
/* While hard disk is full, give user a chance to fix. */
while ((errnbr =write (writdesc,

&((float*)ideal) [nindx],
(unsigned)LENSIG)) l= nitems)
fprintf (luwrite, •. •);

fprintf (stderr, •,•);

nindx += errnbr;

nitems -= errnbr;

sleep (600);

(fclose (tempfile) == EOF) {

fprintf (luwrite, 'Stopped by fclose tempfile.\n');
exit (-18);

(fclose (hardfile) == EOF) {

fprintf (luwrite, 'Stopped by fclose hardfile.\n');
exit (-19);

unlink (datafile);

73

I*

I* Create synthetic log. *I
gamgev2 (ideal, limit, iseed, SLPMIN, SLPMAX);

I* Copy the ideal synthetic log and add noise. *I
for (kk=O; kk<limit; kk++l signal[kk] = ideal[kk];

poisnois (signal, limit, iseed);

I* Compute RMS between noisy and ideal. */
rmssub (ideal, signal, 0, limit, IRMSVERB,

&rmsdiff, &rmsavg1, &rmsavg2);

I* Save the RMS value. *I
if ((tempfile = fopen ('datanois', 'a+b')) ==NULL) {

fprintf (luwrite, 'Stopped by fopen datanois.\n');

exit (-21);

if ((errtmp = fseek (tempfile, (long) (sizeof(wrflt)*irun), 0) l

!= 0) {

fprintf (luwrite, •seek error on datanois. %d\n', errtmp);

exit (-22);

wrflt = rmsdiff;
if ((errtmp = fwrite ((char *) (&wrflt), sizeof(wrflt),

1, tempfile)) l= 1) {
fprintf (luwrite, 'Stopped by fwrite datanois. %d\n', errtmp);

exit (-23);

if (fclose (tempfilel == EOFl {
fprintf (luwrite, •stopped by fclose datanois.\n'l;

exit (-24);

I* Copy the data so that the copy can be filtered. *I
for (param=BOTTOM; param<=TOP; param+=DELTA)

for (kk=O; kk<limit; kk++) {

xplt[kk] = signal[kk];

twaffilt (xplt, limit, LARGE, param, &junk, 0, &ideal[1836]);
rmfilt (xplt, limit, 3, &junk, 1);*/
rmssub (ideal, xplt, 0, limit, IRMSVERB,

&rmsdiff, &rmsavg1, &rmsavg2);
sprfint = param;

if ((errtmp = sprintf (datafile, '%s\\d%d_%.2d.ot•,
DIR, sprfint, (int) (100.*(param-sprfint)))) l= sprflng)

fprintf (luwrite,

'Stopped due to sprintf %d return code -30.\n', errtmp);
exit (-30);

if ((tempfile = fopen (datafile, 'a+b'll ==NULL) {
fprintf (luwrite, •stopped by fopen %s.\n', datafile);
exit (-31);

if ((errtmp = fseek (tempfile, (long) (sizeof(wrflt)*irun), 0))

I= 0) {

fprintf (luwrite, 'Seek error on %s. %d\n', datafile, errtmp);
exit (-32);

74

wrflt = rmsdiff;
if ((errtmp = fwrite ((char*) (&wrflt), sizeof(wrflt),

1, tempfile)) 1=1) {

fprintf (luwrite, 'Stopped by fwrite %s.\n', datafile);
exit (-33);

if (fclose (tempfile) == EOF) {
fprintf (luwrite, •stopped by fclose %s.\n', datafile);
exit (-34);

daytime (luwrite);

fprintf (luwrite, 'Finished!!!');

fclose (luwrite);

system ('NEXT.BAT\n');

I* Deal with a peculiarity of MS-DOS. See TUrbo C++ help on fflush(). *I
void flush(FILE *stream)

int duphandle;

I* flush the stream's internal buffer *I
fflush(stream);

I* make a duplicate file handle *I
duphandle = dup(fileno(stream));

I* close the duplicate handle to flush the DOS buffer *I
close(duphandle);

Subroutine bubble. c:

I* Bubble sort. By Larry Paden 5119183. Translated to c 415187. *I
I* This would probably run faster written with pointers. *I
void bubble (double xx[], int istart, int iend)

I* double *xx; I* Data to be sorted. *I
I* int istart;

I* int iend;

double temp;

int ii, jj;

I* First location to be sorted. *I
I* Last location to be sorted.· *I

I* Temporary location. *I
I* Indices. *I

I* Do some parameter checking. *I

if (istart >= iend)

printf ('Bubble did nothing. %d %d\n', istart, iend);
return;

if (iend-istart >= 1024) {

printf ('You could really speed this up with a binary sort.');

I* Sort it. *I

75

for (jj=istart+1; jj<=iend; jj++) {

temp=xx[jj];

ii = j j;

while (temp< xx[ii-1])

xx[ii] = xx[ii-1];

ii = ii-1;
if (ii <= istart) break;

xx [ii] = temp;

Subroutine cputime.c:

I* Returns a double of elapsed time in MS-DOS. Larry Paden 7130190. *I

I* Bugs: not really the cpu time, as on the multi-user systems of old. *I

iinclude cdos.h>
iinclude <math.h>
iinclude csysltimeb.h>
static double basis = 0.0;
double cputime () {

struct timeb timebuf;

ftime(&timebuf);

if (basis l= 0.0) {
return (((double) timebuf.time + (double) timebuf.millitm I 1000.0) -basis);

else {
basis = (double) timebuf.time + (double) timebuf.millitm I 1000.0;

return (0.0);

Subroutine daytime. c:

/* Prints time on.input LU. Larry Paden 4110/86.*1

iinclude cstdio.h>

iinclude <time.h>

iinclude <sysltimeb.h>
void daytime(FILE *lu)

long clock, time();

char *ctime();

struct tm *localtime(), *now;
struct timeb timebuf;
time (&clock);

ftime(&timebuf);
I* fprintf (lu, ctime(&clock)); Somewhat verbose. *I
now= localtime(&clock);
fprintf (lu, '%.2dl%.2dl%.2d %.2d:%.2d:%.2d.%.3d\n',

now->t:m_year, now->tm_mon+1, now->tm_mday.,

now->tiDLhour, now->tm_min, now->tm_sec,
(int) timebuf.millitm);

I* Military dates are readily machine sortable. *I

76

Subroutine flush. c:

/*Deal with a peculiarity of MS-DOS. See Turbo C++ help on fflush(). */

iinclude <stdio.h>

ltinclude <io.h>
void flush(FILE *stream)

int duphandle;

fflush (stream); I* flush the stream's internal buffer */

duphandle = dup (fileno (stream)); /*make a duplicate file handle*/

close (duphandle); /*close duplicate to flush the DOS buffer*/

Subroutine gamgev2. c:

/* Generates random synthetic gamma-ray logs. HIMIN and

* HIMAX are chosen to make the average noise power of the

* generated logs to be 13. Larry Paden 10/5/83.

* WIDMAX and initial width changed 5/17/84. LJP

* Gamge2 created to add random slopes between levels. LJP 6/7/84.

* Gamgevar to allow calling program to select width of slopes. LJP 8/5/84.

* Gamgev2 to tidy up. Parameters are the same, but fewer calls to erand()

* are made, so this will not generate the same synthetic log LJP 9112/90.

*I
ltinclude <math.h>

ltdefine WIDMIN 5

ltdefine WIDMAX 11

ltdefine WIDE (WIDMAX-WIDMIN)

ltdefine HIMIN 50

ltdefine HIMAX 288
ltdefine HIGH (HIMAX-HIMIN)

void gamgev2 (double xx[], /*Incoming ideal log. */

int isize, /* Length in samples of the ideal log. */

unsigned short iseed[], /*Seed for the random number generator. */

double slpmin, /* Minimum transition between levels. */

double slpmax) /* Maximum transition between levels. */

int ii, jj;

double erand48b(), slpwid, swidth, width, height, oldhi;

slpwid=slpmax-slpmin;

ii = 0;
height= HIMIN+HIGH*erand48b(iseed);

width= WIDMAX*erand48b(iseed);

I* printf ("At %d W1, h1: %g, %g\n", ii, width, height);*/

while (ii < isize) {

/* Generate width points on a level. */

for (jj=ii; jj<=ii+width-1 && jj<isize; jj++) {xx[jj]

ii = ii+Width;

oldhi = height;

height= HIMIN+HIGH*erand48b(iseed);

width= WIDMIN+WIDE*erand48b(iseed);
if (slpmin+slpwid >= 0.0) {

height;}

77

/*

swidth = slpmin + (slpwid==O.O? 0.0 : slpwid*erand48b(iseedll;
printf ('At %d W2, h2: %g, %g\n', ii, swidth, height);*/

/* Generate swidth points on a slope. */
for (jj=ii; jj<=ii+swidth-1 && jj<isize; jj++l

xx[jj] = oldhi + {jj-ii+l)*{height-oldhil/{int) {swidth+ll;}

ii = ii+swidth;

Subroutine gauss. c:

/* Generates Gaussion RV. From Fortran; Larry Paden 4/5/87 */

*include <math.h>
static double twopi = 0.0;

double gauss {

unsigned short seed[],

double s,
double am)

/* Random number generator seed. */
/* Standard deviation. */

/* Mean value. */

double erand48b{), atan(), log(), cos(), sqrt();

if {twopi == 0.0) {
twopi = 8.0*atan(l.Ol;
printf {'Two pi is %18.17lg\n', twopi);

return (sqrt(-2.*log{erand48b{seedlll * s *
cos(twopi*erand48b(seed))+aml;

Subroutine ncproces. c:

/* Tells if a numeric coprocessor is found. Larry Paden 7/30/90 */

*include <dos.h>
int ncprocessor () {

if (_8087 > 0) {
printf ('This program finds an 80%d87.\n', _8087);

else printf ('This program cannot find the 80x871\n');
return (_8087);

Subroutine poisnois. c:

/* Adds Guassian noise to a synthetic gamma-ray log. The noise

*
*
*

variance is set to the square root of the log at each point
to simulate the Poisson distribution. Larry Paden 10/5/83.
From Fortran 4/5/87 ljp. */

iinclude <math.h>
void poisnois (double xx[], int isize, unsigned short iseed[Jl
/*

I*
I*

double *xx;

int isize;

unsigned short *iseed;

int ii;

/* An incoming synthetic log. */
/* Length of this log. */

I* Random number generator seed. *I

/* Array index. */

78

double

whino,
gauss();

I* Gaussian (0, 1) distributed. *I
I* Noise generator. *I

for (ii=O; ii<isize; ii++l

whino =gauss (iseed, 1.0, 0.0);

xx[ii] = whino*sqrt(xx[ii]l + xx[ii];

Subroutine ran db . c:

I* A simple version of the UNIX(tm) 48-bit multiplicative congruential random

*number generator. Takes 1.7 times longer to execute on the i486, but code
* is considerably more readable. Larry Paden 912019.0.
*I

#include <math.h>
#define two_m16 (.(long double) (1. 165536.))

static double
result= ((Ox330eU*two_m16 + OxabcdU) * two_m16 + Ox1234U) * two_m16,

a2 = Ox0005U*65536.*65536., a1 = OxdeecU*65536., aO = Oxe66dU,

carry = Oxb * two_m16 * two_m16 * two_m16;

double drand48b() {

double b2, b1, bO, intprt;

modf (a2*result, &intprt);

b2 = a2*result-intprt; I* Fractional part of 16 by 48 bits. *I
modf (a1*result, &intprt);

b1 = a1*result-intprt; I* Fractional part of 16 by 48 bits. *I
modf (aO*result+carry, &intprt);l* Works if carry< 2A16. *I
bO = aO*result+carry-intprt; I* Fractional part of 16 by 48 bits. *I
result= modf (b2+b1+b0, &intprt); I* Works if sum b[0-2] <= 2.0. *I
return (result);

double erand48b (unsigned short iseed[]) {

a2 = iseed[2]*65536.*65536.; a1 = iseed[1)*65536.; aO
return (drand48b());

iseed[O];

Subroutine reload. c:

I* Checks the length of dataseed, datanois, and dataxxx files.

If they are within one record of being the same length, the

seed is reloaded and the return value is set accordingly. The other

files are not truncated since it is easier to seek to a given position

and write than it is to truncate. Larry Paden 418187. *I
#include <stdio.h>

#include <sysltypes.h>

#include <syslstat.h>
reload (

FILE *luwrite,
double bottom,

double top,

double delta,

I* LU for outputing text messages. *I
I* Least file (of form dataX.XX.) *I
I* Greatest file (of form dataX.XX.) *I
I* Increment from bottom to top. *I

unsigned short iseed[J l I* Random number gene·rator seed. * 1

79

int access(), stat(), open(), close(), seedrecs, records, errtmp;

double param;

char *tmp, filename[20);

FILE *fp;

struct stat statbuf;

if (access (tmp='dataseed', 06) == 0) {

stat (tmp, &statbuf);

seedrecs = statbuf.st_size/(sizeof(short)*3l;

if (seedrecs <= 0) {

fprintf (luwrite, 'Reload: empty seed. %d\n',statbuf.st_size);

exit (-ll;

if ((fp = fopen ('dataseed', 'r'll ==NULL)

fprintf (luwrite, 'Reload: cannot open dataseed.\n');

exit (-2);

if (fseek (fp, (seedrecs-1)*sizeof(short)*3, 0) I= 0) {

fprintf (luwrite, 'Reload: cannot seek on dataseed.\n'l;

exit (-3);

if (fread ((char *l iseed, sizeof(short), 3, fp) I= 3) {

fprintf (luwrite, 'Reload: read wrong number of items.\n'l;

exit (-4);

if (fclose (fp) != 0)

else {

fprintf (luwrite, 'Reload: cannot close dataseed.\n'l;

exit (-5);

return (0); /* No previous data. */

if (access (tmp='datanois', 06) == 0) {

stat (tmp, &statbuf);

records= statbuf.st_size/sizeof(float);

else {
records = 0;

if (records>seedrecs I I records<seedrecs-1) {

fprintf (luwrite, 'Reload failed: datanois %d %d\n',

records, seedrecs);

exit (-6);

for (param=bottom; param<=top; param=param+delta) {

if ((errtmp =sprintf (filename, 'data%.2f', param)) I= 8)

fprintf (luwrite, 'Reload: stopped at sprintf %d\n', errtmp);

exit(-7);

if (access (filename, 06) == 0) {

stat (filename, &statbuf);

records= statbuf.st_size/sizeof(floatl;

if (records>seedrecs I I records<seedrecs-1)

fprintf (luwrite, 'Reload failed on %s: %d %d\n',

80

filename, records, seedrecs);

exit (-8);

else {
fprintf (luwrite, 'Reload: cannot access %s.\n', filename);

exit (-9);

if (seedrecs <= 0) seedrecs 0;

else seedrecs -= 1;

return (seedrecs);

Subroutine rmf i 1 t . c:

I*C Recursive median filter. Larry Paden 6115187.

I*C The filtered data is input and returned in xx. *I
#include <stdio.h>
#include <math.h>

#define BUFLEN 51
void rmfil t (

double xx[),
int last,
int length,

int *differ,
int verbos)

I* The data to be filtered. *I
I* The length of the data. *I
I* The length of the large window. *I

I* Returns the number of points changed. *I
I* Prints certain statistics. *I

int ii, JJ, haflen;

double xsort[BUFLEN];

haflen = length/2;
if (length > BUFLEN) {

/* Buffer for sorting. */

printf ('Rmfilt must be passed length< %d, not %d. Stopped.\n',

BUFLEN, length);

exit (-70);

differ = 0; I Zero the number of differing points. *I
I* Note that if the filter is run with the first and last points

duplicated at the beginning and end, the first haflen points will

always remain the same, but the last point needs to be saved

for future reference. *I
I* The data point numbered 0 remains unchanged. *I
I* For each data point between 1 and haflen-1 filter. *I
for (ii=l: ii<haflen; ii++l {

jj = ii-haflen;
while (jj < 0) {

xsort[jj-(ii-haflen)]

jj++;

while (jj <= ii+haflen) {

xsort[jj] = xx[ii+jj];

jj++;

bubble (xsort, 0, length);

xx[O];

81

if (xx[ii1 l= xsort[haflen1)

*differ+=1;

xx[ii1 = xsort[haflen1;

/*For each data point, filter. (Except for first and last haflen.) */

for (ii=haflen; ii<last-haflen; ii++)

for (jj=O; jj<length; jj++)

xsort[jj1 = xx[ii-haflen+jj1;

bubble (xsort, 0, length);

if (xx[ii1 l= xsort[haflen1)

*differ+=1;

xx[ii1 = xsort[haflen1;

/* Filter last haflen points. */

for (ii=last-haflen; ii<last-1; ii++)

jj = ii-haflen;
while (jj < last) {

xsort[jj-(ii-haflen) 1

j j++;

while (jj < ii+haflen) {

xsort[jj1 = xx[last-11;

j j++;

bubble (xsort, 0, length);

if (xx[ii1 l= xsort[haflen1)

*differ+=1;

xx[ii1 = xsort[haflen1;

xx[ii+jj 1;

/* The last data point (numbered last-1) remains unchanged. */

/* Clean up. */

if (verbos == 1)

if (*differ > 0 J
printf ('%d points changed.\n', *differ);

/*format (1h, i<log10(float(*differ))+1>,' points changed.')*/

else { printf ('0 points changed. No difference in output!'); }

Subroutine rms sub . c:

/* Given real arrays X1 and X2 and range ISTART to LIMIT, this calculates

*the RMS average of the difference (RMSAVG), and the ordinary average

*values of the two input files (AVG1 and AVG2.) The results are labelled

* and printed if VERBOSE > 0. Larry Paden 6/22/83.

* From Fortran. ljp 4/5/87. */

iinclude <math.h>
void rmssub (

double x1[],

82

double x2[],

int istart,

I* Incoming arrays. *I
I* First point in evaluation. *I

int limit,
int verbose,

double *rmsavg,
double *avgl,
double *avg2)

I* Last point NOT in evaluation. *I
I* Print if > 0. *I

I* The three outputs. *I

double total;
int ii;

total = limit-istart;

*msavg = 0. 0;

*avgl = 0.0;
*avg2 = 0.0;
for (ii=istart; ii<limit; ii++) {

*rmsavg = *rmsavg + (xl[ii]-x2[ii]) * (xl[ii]-x2[ii]);

*avgl *avgl+xl[ii];

*avg2 *avg2+x2 [ii] ;

*rmsavg = sqrt (*rmsavgltotal);
*avgl = *avglltotal;

*avg2 = *avg21total;
if (verbose > 0) printf ('RMS

*rmsavg, *avgl, *avg2);
%lg; averages %lg %lg\n',

Subroutine twaffil t. c:

I*C Twin window average filter. Larry Paden 3129184.
c The filtered data is returned in XX.

From twinfilt 9111190. *I
#include <math.h>
#define !ARRAY 2048

#define XSMAX 51
#define XI(qq) xi[(qq)+XSMAX]
void twaffilt (

double xx[l,
int last,

I* The data to be filtered. *I
I* The length of the data. *I

int large,
double range,

I* The length of the large window. *I
I* Maximum distance from the current point *I
I* which is allowed in the little window. *I

int *differ,
int verbos)

I* Returns the number of points changed. *I
I* Prints certain statistics. *I

int ii, jj, top, btm, haflen;
double fmod(), sqrt(), fabs();
static double xi[IARRAY+2*XSMAX],

xsort[XSMAX*2+1], value;

I* Do some parameter checking. *I
if (last > !ARRAY)

I* Orignally xi(-SO:size+Sl) .*1
I* Temporary locations. *I

printf ('Input array is greater than %d.\n', !ARRAY);

return;

if (large > XSMAX*2+1) {

83

large = XSMAX*2+1;

printf ('The maximum filter length is: %d\n', XSMAX*2+1);

I* Initialize and copy the array. *I
differ = 0; I Zero the number of differing points. *I
haflen = large/2; /* Center position in XSORT. */

for (ii=O; ii<last; ii++) XI (ii) = xx[ii];

I* Append end points. */

for (ii=O; ii<haflen; ii++)

XI(-1-ii) = XI(O);

XI(last+ii) = XI(last-1);

/* For each data point, filter. */

for (ii=O; ii<last; ii++) {

!* Initialize and sort the little sort array. */

for (jj=O; jj<large; jj++) xsort[jj] XI(ii+jj-haflen);

bubble (xsort, 0, large);

for (btm=O; btm<large; btm++)

if (fabs(xx[ii]-xsort[btm]) <= range*sqrt(xx[ii]))

break;

for (top=large-1; top>=O; top--) {
if (fabs(xx[ii]-xsort[top]) <= range*sqrt(xx[ii]))

break;

/* Calculate average of inner window. */

value = 0.0;

for (jj=btm; jj<=top; jj++l

value+= xsort[jj];

value I= (double) (top-btm+1);

/* Check for difference and copy the point. */

!* printf ('Value: %lg\n', value); */

if (xx[ii] I= value) {

*differ+=1;

xx[ii] = value;

/* Clean up. */

if (verbos == 1)

if (*differ > 0)

printf ('%d points changed.\n', *differ);
/*format (1h, i<log10(float(*differ)l+1>,' points changed. ')*I

else { printf ('0 points changed. No difference in output!'); }

84

APPENDIXB

PROGRAM TO CONSOLIDATE
THE DATA

The program to consolidate the data produced by the code in

Appendix A is avg. c, and when compiled with the ingenious Turbo C++

provisions for expanding command line arguments, might be invoked by:

avg -a -p d?_??.ot

which would print on its standard output the statistics for each of the files

matching the specification by the wildcard characters. The -p switch

toggles printing of the value of every point and the -a switch toggles

printing of the mean and standard deviation of the set of points represented

in the file. Other switches may be used to select contiguous subsets of the

file. If the switches are forgotten, the program will list them using the - ? , or

any other unrecognized switch. The program to interpret the binary files

produced by the routines in Appendix A is

Program avg. c:

/* Prints out the average and std. dev. of a file. Larry Paden 6/1/87

Handles multiple files. (Use avf data for all.) LJP 6/3/87

* As arguments, -x drops the first x elements and +y stops after
* the yth element in the file and gives the statistics. LJP 6/3/87
* Converted to Turbo C++ LJP 10/10/90.
* Bugs: Only processes file once. For data with mean/std-1e7 all
* significance will be unnecessarily lost.

*I
iinclude <stdio.h>
iinclude <math.h>

iinclude <Values.h>

iinclude <stdlib.h>
iinclude <alloc.h>

idefine ULIMIT 1048576

85

I* Longest file length. *I
*define BIG 1.0e30

idefine LITTLE 1.0e-30
I* Too BIG to square! *I
void main (int argc, char *argv[]}

FILE *tempfile; I* Logical unit for writing text. *I
double sum, square, histlo, histhi, histstep, histmin, histmax, histtmp,

I*

I*

norm (double, double, double, double};
float xinput;

long far *histpnt = NULL, histlen, histcnt, lngtmp;
int errtmp, count, sent, hi, ii, jj, start,

avgflg, histflg, prtflg, newfile, lnnflg, process, zero;

long stop;

avgflg = 1;
histflg 0;

histmin MAXDOUBLE;
histmax - MAXDOUBLE;

process 1;
if (argv[O] [0] I= 'a'} avgflg 0;

if (argv[O] [0] 'P'} prtflg 1;

else prtflg = 0;

lnnflg = 1;

zero = 1;

start = 0;

stop = ULIMIT;

for (ii=1; iicargc• ii++} {
count = start;

newfile = 1;
if (histflg && histpnt == NULL) {

I* Allocate the required array. *I
histlen = (histhi-histlo}lhiststep + 1;
printf(•Available heap is, initially: %lu bytes.\n•,

farcoreleft(});*l

if ((histpnt = (long far*} farcalloc ((unsigned long}histlen,
(unsigned long} (sizeof(*histpnt}}}} ==NULL} {

fprintf (stderr, "Histpnt is %Fp\n •, histpnt} ;

exit (10};

printf ("Available heap is: %lu bytes.\n", farcoreleft());*l

for (histcnt=O; histcnt<histlen; histcnt++} histpnt[histcnt]

if (argv[ii][O] == '-'}

jj=1;

while (argv[ii][jj] I= '\0'} {

if (argv[ii][jj] >= '0' && argv[ii] [jj] <= '9'} {

start= atoi (&argv[ii] [jj]);
while (argv[ii] [jj l >= '0'

&& argv[ii] [jj] <= '9'

I* && argv [ii l [j j l I= '\0' *I l {

jj++;

if (argv[ii] [jj] '\0'} break;

0;

86

else if (argv[ii][jj] =='a')

if (avgflg) avgflg = 0;

else avgflg = 1;

else if (argv[ii] [jj] == 'H')
if (histflg) histflg = 0;

else histflg = 1;

histlo = 0.0;

histhi = 13.0;

histstep = 0.25;

hi = ii;
jj = 2;

histlo = atof (&argv[hi) [jj]);
while (argv[hi) [jj)

&& argv [hi J [j j J

II argv[hi) [jj l

II argv[hi) [jj J
jj++;

>=

<=

'0'

'9'

' '

'e')

if (argv[hi) [jj] == '\0') break;
while (l(argv[hi][jj) >= '0'

&& argv[hi] [jj] <= '9'

I I argv [hi J [j j J ' • ')
&& argv[hi) [jj) I= '\0')

jj++;

if (argv[hi) [jj] == '\0') break;

histhi = atof (&argv[hi) [jj));

while (argv[hi) [jj] >= •o•
&& argv[hil [jj) <= '9'

II argv[hi] [jj]

I I argv[hil [jj 1
jj++;

'e')

if (argv[hil [jj1 == '\0') break;
while (! (argv[hil [jj1 >= '0'

&& argv[hi] [jj) <= '9'

II argv[hi) [jj1 '. ')

&& argv [hi l [j j J ! = ' \ 0 ' l
jj++;

if (argv[hi) [jj1 == '\0') break;

histstep = atof (&argv[hi][jj]);

while (argv[hi] [jj 1 >= '0'

&& argv[hi1 [jj1 <= '9.

II argv[hil [jj1 -- ' '

II argv[hi] [jj] 'e')

jj++;

if (argv[hi)[jj) == '\0') break;

while (I (argv[hi1 [jj1 >= •o•
&& argv[hi1 [jj] <= '9'

II argv[hi) [jj 1 '. • l
&& argv [hi 1 [j j 1 I = ' \ 0 ' l

87

j j++;

if (argv[hi] [jj] '\0') break;

else if (argv[ii] [jj] == 'l')

if (lnnflg) lnnflg 0;

else lnnflg = 1;

else if (argv[ii] [jj] 'P')

if (prtflg) prtflg 0;

else prtflg = 1;

else if (argv[ii][jj] 'z')

if (zero) zero = 0;

else zero = 1;

else {

fprintf (stderr, '%s: Bad switch %s.\n',

argv[O], argv[ii));

fprintf (stderr,

•usage: %s -alp\n\

\ta\ttoggle averaging\n\

\tH\tselect Histogram -Hlo:hi:step\n\

\tl\ttoggle line numbering\n\

\tp\ttoggle printing\n', argv[O]);

/*d toggle float/double

u toggle short

cXX set number of columns */

jj++;

continue;

else if (argv[iil [OJ == '+') {

stop= atoi (&argv[iil [1));

continue;

if (start >= stop)

fprintf (stderr, '%s: %d >=%din %s\n',

argv(O], start, stop, argv[ii));

continue;

if ((tempfile = fopen (argv[ii), 'rb')) ==NULL)

fprintf (stderr, '%s: Cannot open %s.\n',

argv[O], argv[ii]);
continue;

if (start I= 0)
if ((errtmp fseek

(tempfile, (long) (sizeof(float)*start), 0)) l= 0)

fprintf (stderr, '%s: Cannot seek on %s. %d\n',

argv[O], argv[ii], errtmp);

continue;

88

sent = 0;

sum= square = 0.0;

while ((errtmp = fread ((&xinput), sizeof(xinput),

1, tempfile)) == 1 && sent< stop-start) {

I* Don't bother with files with values without physical meaning.*/

if (fabs(xinput) > BIG) {

fprintf (stderr, '%s: fabs(%s(%d)) •,

argv[O], argv[ii], scnt+start);

fprintf (stderr, '= %lg > %g\n', xinput, BIG);

process = 0;

break;

if (fabs(xinput) <LITTLE && xinput != 0.0)

fprintf (stderr, '%s: fabs(%s(%d)) •,

argv[O], argv[ii], scnt+start);

fprintf (stderr, '= %lg < %g\n', xinput, LITTLE);

process = 0;

break;

if ((histflg I I avgflg) && (zero I I xinput != 0)) {

sent++;

sum += xinput;

square += (double)xinput*xinput;

if (histflg) {

lngtmp = (long) ((xinput-histlo)/histstep);

if (lngtmp < 0) lngtmp = 0;

if (lngtmp > histlen) lngtmp = histlen;

histpnt[lngtmp]++;

if (xinput < histmin) histmin xinput;

if (xinput > histmax) histmax xinput;

if (prtflg) {

if (lnnflg)

if (fmod((double)(count), 10.) 0.)

printf ('%.4d', count);

else {

if (newfile) {

printf ('%.4d', count);

for (jj=O; jj<fmod((double.) (count), 10.); jj++) {

printf (• •);

printf ('%7.Slg', xinput);

if (fmod((double) (count), 10.) 9.)

printf ('\n');

count++;

newfile = 0;

if (process)

89

if (prtflg) printf ('\n');
if (Ifeof(tempfile) && sent != stop-start) {

fprintf (stderr, '%s: data missing %sat %d. %d\n',

argv[O], argv[ii], start+scnt, errtmp);

if (sent == 0) continue;

if (avgflg) {

if (sent > 1) {

sum = sum/sent;

else

square= sqrt((square-scnt*sum*sum)/(scnt-1));

fprintf (stdout, '%s. %d %lg %lg\n',

argv[ii], sent, sum, square);

fprintf (stdout, '%s %d %lg\n', argv[iiL sent, sum);

process = 1;
if (prtflg) printf ('\n');
if (fclose (tempfile) == EOF)

fprintf (stderr, '%s: cannot close %s.\n', argv[O], argv[ii]);

continue;

if (histflg) {
printf ('Histogram\t%s\n', argv[ii]);

printf ('%g\t%g\t%g\tlo:hi:step\n', histlo, histhi, histstep);

if (sent > 1) {

else

sum = sum/sent;
square= sqrt((square-scnt*sum*sum)/(scnt-1));

fprintf (stdout, '%d\t%lg\t%lg\tent:avg:std\n',

sent, sum, square);

fprintf (stdout, '%d\t%lg\t0\tent:avg:std\n', sent, sum);

square= 1.0;

printf ('%g\t%g\t\tmin:max\n', histmin, histmax);

printf ('\nValue\tCount\tExpect\n');

for (histcnt=O; histcnt<histlen; histcnt++) {
histtmp = histlo+histent*histstep;

printf ('%g\t%ld\t%g\n', histtmp, histpnt[histcnt],

sent* (norm (sum, square, histtmp, histtmp+histstep)));

Subroutine erfast. c:

/*Returns (2/sqrt(pi)) *integral from 0 to x of exp (-tA2) dt. To avoid

* loss of precision due to subtracting nearly equal numbers, erfc = 1-erf.

*Coefficients are Hart & Cheney *5667 (18.72D). Larry Paden 9/23/90.

* Runs in about 70.8% of the time of its counterpart *5667 on Unix by using

90

* constants, instead of arrays. This version may also be 1 bit (out of 53)

* more accurate. LJP 9123190.

* Testing Clenshaw•s 20D formula from 0 to 0.5 by 0.00001 reveals a maximum

* relative error of only 2.22e-16 and most of the time 0 relative error.

* The trouble with #5667 is that the precision is absolute, so #5708 may be

*used instead. Tested from 0 to 8 by 0.001, it is off 13.8e-16 relative to

* to function itself. After 8, it quickly deteriorates so that by 26, it
* only 10D relative accuracy. Between 8 and 100, use #5725, which is faster

* to compute anyway. It is off by 2.2e-16 relative max. Larry Paden 1128/91.

*I

#include <math.h>

I* TOOBIG = sqrt (abs (ln (MINDOUBLE))) to prevent underflow. *I
#define TOOBIG 26.6157

I* From c.w. Clenshaw, 'Chebyshev series for Mathematical Functions, • National

Physical Laboratory Mathematical Tables, London, 1962. *I
#define NUMERATOR1(xx) (((((((\

0.007547728033418631287834e0) * (xx) + \

-0.288805137207594084924010e0) * (xx) + \

0.143383842191748205576712e2) * (xx) + \

0.380140318123903008244444e2) * (xx) + \

0.301782788536507577809226e4) * (xx) + \

0.740407142710151470082064e4) * (xx) + \

0.804373630960840172832162e5)

I* First coefficient of DENOM1 is 1.0. *!
#define DENOM1 (xx) (((((\

I*

(XX) + \
0.380190713951939403753468e2) * (XX) + \
0.658070155459240506326937e3) * (xx) + \

0.637960017324428279487120e4) * (XX) + \

0.342165257924628539769006e5) * (XX) + \

0.804373630960840172826266e5)

J.F. Hart, Computer Approximations, 1968,

idefine N5667(xx) ((((((((\

0.5641877825507397413087057563e0) * (XX)

0.9675807882987265400604202961el) * (XX)

0.7708161730368428609781633646e2) * (xx)

0.3685196154710010637133875746e3) * (xx)

0.1143262070703886173606073338e4) * (XX)

0.2320439590251635247384768711e4) * (XX)

0.28980293292167655611275846e4) * (xx)

0.18263348842295112592168999e4)

#define D5667(xx) ((((((((\

(XX)

0.1714980943627607849376131193e2) * (XX)

0.1371255960500622202878443578e3) * (XX)

0.6617361207107653469211984771e3) * (XX)

0.2094384367789539593790281779e4) * (xx)

0.4429612803883682726711528526e4) * (XX)

0.60895424232724435504633068e4) * (XX)

ERFC 5667, page 293. *I

+ \

+ \

+ \

+ \

+ \

+ \

+ \

+ \

+ \

+ \

+ \

+ \

+ \

+ \

91

0.495882756472114071495438422e4) * (XX) + \

O.l8263348842295112595576438e4)

/* J.F. Hart, Computer Approximations, 1968, ERFC 5708, page 296. */

#define N5708 (XX) (((((((((\

0.5641895867618136136925465862e0) * (xx) + \

0.1006485897490954253550505591e2) * (XX) + \

0.860827622119485951175545307e2) * (xx) + \

0.456261458706092630641800311e3) * (xx) + \

0.163176026875371469635150913e4) * (xx) + \

0.40322670108300497362095728e4) * (xx) + \

0.67582169641104858863327586e4) * (xx) + \

0.7113663246954049873409986e4) * (xx) + \

0.372350798155480672256717e4)

#define D5708 (XX) (((((((((\

(XX) + \

0.1783949843913955652884238734e2) * (xx) + \

0.1530777107503622158569520624e3) * (xx) + \

0.8176223863045440770282502642e3) * (XX) + \

0.2968004901482308716427652719e4) * (XX) + \

0.754247951019347575547208583e4) * (XX) + \

O.l33493465612844573717217317e5) * (xx) + \

0.158025359994020425273588457e5) * (XX) + \

0.11315192081854405468201443e5) * (XX) + \

0.372350798155480654352472e4)

/* J.F. Hart, Computer Approximations, 1968, ERFC 5725, page 297. */

#define N5725 (XX) ((((((\

0. 5641895835477550741253201704e0) * (xx) · + \

0.1275366644729965952479585264el) * (XX) + \

0.5019049726784267463450058el) * (xx) + \

0.61602098531096305440906el) * (XX) + \

0.7409740605964741794425el) * (xx) + \

0.29788656263939928862el)

#define D5725 (xx) ((((((\

(XX) + \

0.2260528520767326969591866945el) * (XX) + \

0.9396034016235054150430579648el) * (XX) + \

0.120489519278551290360340491e2) * (XX) + \

0.1708144074746600431571095e2) * (xx) + \

0.9608965327192787870698el) * (xx) + \

0.33690752069827527677el)

double erf (register double xx)

double erfc (double);

int minusx = 0;

if (XX< 0) {XX= -XX; minUSX++;}

if (XX > 0. 5) {xx = 1. 0-erfc (xx);}

else {

register double x2 = xx * xx;

92

xx *= M_2_SQRTPI * NUMERATOR1 (x2) I DENOM1 (x2);

return (minusx? -xx: xx);

double erfc (register double xx)

if (xx < 0.5) return (1- erf(xx));

if (XX>= TOOBIG) return (0.0); I* exp (-xxA2) will underflow. *I
if (XX< 8.0) return (exp (-xx*xx) * N5708 (xx) I D5708 (XX));
return (exp (-xx*xx) * N5725 (XX) I D5725 (xx));

Subroutine norm. c:

I* The nunit and norm functions. Larry Paden 9121187 MS-DOS ljp 9121190. *I
*include <stdio.h>

*include <math.h>
*define ABS (XX) ((XX>=O)? (XX) :-(XX))
double erf (double), erfc (double);

double nunit (double x1, double x2)

I* Calculates the area under the standard normal curve, avoiding loss of
precision except where both arguments are abs(x[12]) < 0.7. This is

not currently a problem. Note that the returned value is always
positive notwithstanding the definition of erf(3C) and reguardless of

the order of the arguments. *I

if ((X1>0) l= (x2>0)) { I* If signs are different *I
return ((erf(ABS(x2)1M_SQRT2) + erf(ABS(X1)IM_SQRT2))12.0);

else (I* Signs are same *I
I* Need test here for both absolute values <0.7. *I
return ((ABS (erfc(ABS(x1)IM_SQRT2) - erfc(ABS(x2)1M_SQRT2)))12.0);

double norm (double mu, double sigma, double aa, double bb)

I* Calculates the area under the normal curve, with mean mu, variance

sigmaA2, from aa to bb. Uses method of nunit. Larry Paden 1123188. *I

double x1, x2;

if (sigma<=O.O)

fprintf (stderr, 'Norm: Sigma %g!\n', sigma);

sigma = -sigma;

x1 = (aa-mu)lsigma;
x2 = (bb-mu)lsigma;
if ((X1>0) != (x2>0)) I* If signs are different *I

return ((erf(ABS(X2)IM_SQRT2) + erf(ABS(x1)IM_SQRT2))12.);

else { I* Signs are same *I
I* Need test here for both absolute values <0.7. *I
return ((ABS (erfc(ABS(X1)IM_SQRT2) - erfc(ABS(x2)IM_SQRT2)))/2.);

93

APPENDIXC

RESULTS OF RUNNING
THE TWIN WINDOW

AVERAGE FILTER

The Twin Window Average Filter was run on 1000 different synthetic

logs with the filter parameter c varying between 2.0 and 4.0 by 3~. For each

of these logs, the results were displayed in histograms. Care was taken to

produce each of the graphs on the same scale to aid in visual comparison of

the histograms. The filter parameter may be deduced from the title. For

instance, on the second graph is "02_03" which means that the parameter c

was set to 2.03125 or 23~. This was done so that the machine could handle

the important steps in the process, reducing the possibility of human error.

For each histogram, the mean and variance was estimated to use in

computing the nonnal distribution. This distribution cmve was then superimposed

on each plot as an aid in visualizing the mean and standard deviation. It

portrays graphically that the data in each histogram is very close to being

normally distributed. Most importantly, the normal curves illustrate that as

the filter parameter increases to its optimum value, the variance of the

histogram decreases. This might provide insight as to what an appropriate

value of the filter parameter should be in a practical application.

The program that summarizes the data for the histograms is given in

Appendix B. To do this for a single file, it was invoked by:

avg -H6.0:10.0:0.03125 d2 OO.ot > d2_00.txt

94

95

for each of the 65 files. The program has a feature that piles any points

beyond the range of the buckets into the first or last bucket, whichever is

nearer. In this invocation, a point with a value of 5 would show up in the 6

bucket, or a point with a value of 22 would show up in the 10 bucket. The

results are presented such that the diligent reader may verify that each histogram

contains precisely 1000 points.

60
55
50
45
40
35
30
25
20
15
10
5
0

6

60
55
50
45
40
35
30
25
20
15
10
5
0

6

Histogram of Twin Window Average
Filter (D2_00)

6.5 7 7.5 8 8.5 9 9.5

RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average
Filter (D2_06)

6.5 7 7.5 8 8.5 9 9.5

RMS Difference in each of 1 000 Logs

10

10

60
55
50
45
40
35
30
25
20
15
10
5
0

6

60
55
50
45
40
35
30
25
20
15
10
5
0

6

Histogram of Twin Window Average
Filter (D2_03)

6.5 7 7.5 8 8.5 9 9.5

RMS Difference in each of 1 ooo Logs

Histogram of Twin Window Average
Filter (D2_09)

6.5 7 7.5 8 8.5 9 9.5

RMS Difference in each of 1 000 Logs

10

10

96

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D2_12} Filter (D2_15}

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D2_18} Filter (D2_21}

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D2_25} Filter (D2_28}

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

97

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D2_31) Filter (D2_34)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 .10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D2_37) Filter (D2_ 40)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D2_ 43) Filter (D2_ 46)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 ooo Logs

98

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D2_50) Filter (D2_53)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D2_56) Filter (D2_59)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 ooo Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D2_62) Filter (D2_65)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1000 Logs

99

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D2_68) Filter (D2_71)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D2_75) Filter (D2_78)

60 60
55 55
50 50
45 45
40 40
35 . 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D2_81) Filter (D2_84)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

100

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D2_87) Filter (D2_90)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D2_93) Filter (D2_96)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1000 Logs RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D3_00) Filter (D3_03)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

101

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D3_06) Filter (D3_09)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D3_12) Filter (D3_15)

60 60
55 55
50 50
45 45
40 40
35 . 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D3_18) Filter (D3_21)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1000 Logs RMS Difference in each of 1 000 Logs

102

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D3_25) Filter (D3_28)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 ,10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D3_31) Filter (03_34)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1000 Logs RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D3_37) Filter (D3_ 40)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

103

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D3_ 43) Filter (D3_ 46)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D3_50) Filter (D3_53)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1000 Logs RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D3_56) Filter (D3_59)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

104

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D3_62) Filter (D3_65)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D3_68) Filter (D3_71)

60 60
55 55
50 50
45 45
40 40
35 . 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D3_75) Filter (D3_78)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 000 Logs

105

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D3_81) Filter (D3_84)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of Twin Window Average Histogram of Twin Window Average
Filter (D3_87) Filter (D3_90)

60 60
55 55
50 50
45 45
40 40
35 . 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

60
55
50
45
40
35
30
25
20
15
10
5
0

6

Histogram of Twin Window Average
Filter (03_93)

6.5 7 7.5 8 8.5 9 9.5

RMS Difference in each of 1000 Logs

Histogram of Twin Window Average
Filter (04_00)

10

60.--------------------------
55r--------------------------
50r-----------r--------------
45r----------,~~-------------

40+------
35+------
30 +-------n
25 r-----------;;-
20 r-----------1~
15 +------,
10+-----
5 +--------:::~
0 -h--r.........-~'"1"'1111

6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1000 Logs

60
55
50
45
40
35
30
25
20
15
10
5
0

6

106

Histogram of Twin Window Average
Filter (03_96)

6.5 7 7.5 8 8.5 9 9.5

RMS Difference in each of 1 000 Logs

10

APPENDIXD

HISTOGRAMS OF A TWIN WINDOW
AVERAGE FILTER FOLLOWED BY
A RECURSIVE MEDIAN 3 FILTER

The main program given in Appendix A, twa f . c, has one subroutine

commented out. The subroutine is called rmfil t and the parameter 3

means that it implements a recursive median filter of length 3 on the data.

As can readily be detennined from the program listing the RM3 is run after

the TW AF. The resulting histograms have lower means than the TW AF

alone, but do not match the corresponding normal curve as closely. The

filter parameter for the TW AF was explained in the previous appendix. Its

digits give the decimal number truncated to two places for an integral

number of fractional parts whose size is 3
1
2• For instance, D3_09 indicates

3
3.09 or 332•

107

108

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D2_00) Recursive Median 3 (D2_03)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D2_06) Recursive Median 3 (D2_09)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1000 Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D2_12) Recursive Median 3 (D2_15)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

109

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D2_18) Recursive Median 3 (D2_21)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D2_25) Recursive Median 3 (D2_28)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D2_31) Recursive Median 3 (D2_34)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

110

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D2_37) Recursive Median 3 (D2_ 40)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1000 Logs RMS Difference in each of 1 ooo Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (02_ 43) Recursive Median 3 (D2_ 46)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D2_50) Recursive Median 3 (D2_53)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

111

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D2_56} Recursive Median 3 (D2_59}

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D2_62} Recursive Median 3 (D2_65}

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 ooo Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D2_68} Recursive Median 3 (D2_71} .

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

112

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 {D2_75} Recursive Median 3 {D2_78}

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10
'

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D2_81} Recursive Median 3 (D2_84}

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 ooo Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D2_87} Recursive Median 3 (D2_90}

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

113

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D2_93) Recursive Median 3 (D2_96)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1000 Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D3_00) Recursive Median 3 (D3_03)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D3_06) Recursive Median 3 (D3_09)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1000 Logs

114

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D3_12) Recursive Median 3 (D3_15)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D3_18) Recursive Median 3 (D3_21)

60 60
55 55
50 50
45 45
40 40
35 . 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 ooo Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D3_25) Recursive Median 3 (D3_28)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

115

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D3_31) Recursive Median 3 (D3_34)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 ooo Logs RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D3_37) Recursive Median 3 (D3_ 40)

60 60
55 55
50 50
45 45
40 40
35 . 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 . 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D3_ 43) Recursive Median 3 (D3_ 46)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

116

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D3_50) Recursive Median 3 (D3_53)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D3_56) Recursive Median 3 (D3_59)

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by Histogram of TWAF followed by
Recursive Median 3 (D3_62) Recursive Median 3 (D3_65) .

60 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by
Recursive Median 3 (D3_68)

60.--------------------------
55~-------------------------
50~------~-----------------

45~------~r-----------------
40 +---------,
35 +-----
30~---
25~---ih
20 ~-------il
15~--
10 +----
5~--,
0 -h--f~:.wt

Histogram of TWAF followed by
Recursive Median 3 (D3_71)

117

60.--------------------------
55+---------------------------
50~----------il-----------------
45~------~l~---------------
40~------~~~~---------------

35~------~IHII~~~-------------
30 ~-----ill:
25 +-----:-
20 +-------!1~
15 ~-----!ffi
10 +------:

:1r1r 1~:·~~·
'lji 11 '1 1 111 ':.

IIIIi:! I, IIIII Iii .il~lr~~~-5 -1----->1
0 -+--.-.'~~

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 '10

RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by
Recursive Median 3 (D3_75)

RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by
Recursive Median 3 (D3_78)

so~------------------------- so.--------------------------
55~------------------------- 55~-------------------------
50~--------:~--------------- 50~-------------------------
45~----------i~--------------- 45~-------=r----------------

40 . 40+-----
35 35 +------:-
30 30+-----
25 25+-----
20 20 +-------
15 15 +-------
10 10~--
5 5 ~-------2 o o.......,~~

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1000 Logs RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by
Recursive Median 3 (D3_81)

60~-------------------------

55+----------+----------------
50~--------+----------------
45+--------~+----------------
40~------~~---------------

35 +---------
30~---
25 +-----
20 +------11'
15 +-----
10 -!------
5 +------.
0 +-.--. ~

Histogram of TWAF followed by
Recursive Median 3 (D3_84)

60.--------------------------
55~--------~---------------
50~--------r----------------
45+--------~~---------------
40+--------~~~~-------------

35 +------ll
30 ~-------iti
25 +-----flo
20 +------ll'
15 +----.....,
10 -!------
5 +-------,
Q+..............-+0-

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

RMS Difference in each of 1 000 Logs RMS Difference in each of 1 000 Logs

60
55
50
45
40
35
30
25
20
15
10
5
0

6

60
55
50
45
40
35
30
25
20
15
10
5
0

6

Histogram of TWAF followed by
Recursive Median 3 (D3_87)

6.5 7 7.5 8 8.5 9 9.5

RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by
Recursive Median 3 (D3_93)

6.5 7 7.5 8 8.5 9 9.5

RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by
Recursive Median 3 (D4_00)

10

10

60.--------------------------
55r--------------------------
50r---------~~-------------
45r---------~~-------------
40r---------~~._ ____________ _
35 -l-------JI
30 +----------u
25 -l------
20 +---------
15 +----------,
1 0 -l-----ilt
5+----.......
0 -h-.......-r-.....,...,

6 6.5 7 7.5 8 8.5 9 9.5 1 0

RMS Difference in each of 1 000 Logs

60
55
50
45
40
35
30
25
20
15
10
5
0

6

60
55
50
45
40

- 35
30
25
20
15
10
5
0

6

118

Histogram of TWAF followed by
Recursive Median 3 (D3_90)

6.5 7 7.5 8 8.5 9 9.5

RMS Difference in each of 1 000 Logs

Histogram of TWAF followed by
Recursive Median 3 (D3_96)

6.5 7 7.5 8 8.5 9 9.5

RMS Difference in each of 1 000 Logs

10

10

APPENDIXE

PROGRAM TO OPTIMIZE
THE TWIN WINDOW

AVERAGE FILTER

This is the program to optimize the Twin Window Average Filter with

respect to the filter parameter. It requires the following routines from

Appendix A:

bubble.c, cputime.c, daytime.c, flush.c, gauss.c, ncproces.c, poisnois.c, randb.c,

reload.c, rmfilt.c, rmssumb.c, and twaffilt.c.

In addition, to these, the main program 1 v1. c, requires the subroutines:

appendel.c, gamv2lvl.c, rmslvl.c, savedata.c, and savemat.c.

As in Appendix A, the source code was maintained in separate files with a

Turbo C++ project file to compile each into an individual object file. These

were then combined into an executable file.

The main program 1 v1. c:

/* Compiles statistics for a particular level of signal. Larry Paden 9/16/90.
Ideal gamma-ray log generator.

Makes multiple runs with different noise files. Finds the RMS average of
the difference between the ideal log and a simple combination of recursive
median filters. Larry Paden 3/30/84.

Changed to print out the seed before each pass. LJP 8/23/83.
Synthetic log generator changed to produce small layers. LJP 10/5/83.

Prints the unformatted files directly. LJP 8/30/84.

Some subroutines are in [LARRY.PADEN)LIBRARY
RELOAD subroutine added to pick up where it left off. LJP 10/2/84.

PHOENIX added. LJP 10/4/84.
Converted to c. ljp 4/5/87. Reload only protects old data under c.

Reload removed from lvl version; it stopped the bedwid loop. LJP 9/18/90.

*I
*include <stdio.h>

119

iinclude <sys\stat.h>

/* Level to examine. */

!* Width of smallest bed. */

#define LEVEL 288.0

/*#define WIDMIN 5*/

idefine WIDMIN 5

!* Width of widest bed plus one. */ #define WIDMAX 11

/*!*RAM disk. Root \ is limited, so use sub. */ #define DIR 'D:\\lvl' */

!*RAM disk. Root \ is limited, so use sub. */ #define DIR 'D:\\lv2'

!* Signal length in samples. */ #define LENSIG 2048

!*Number of noisy logs. */ #define RUNS 1000

/* Controls verbosity of text output. */ idefine IRMSVERB 0

!* The number of points in the outer window. */ #define LARGE 9

/*Lowest filter parameter. */ #define BOTTOM 2.0

!*Highest filter parameter. */ #define TOP 4.0

/* Filter parameter increment. */ /*#define DELTA 0.03125*/

#define DELTA 0.125

/*Minimum seconds between hard disk writes. */ #define TIMEALL {600.0)

!* Minimum slope. */ #define SLPMIN 0.0

/* Maximum slope. */ #define SLPMAX 0.0

!*!* Name of file for text output. */ #define LUWNAME 'dd\\text'*/

!* Name of file for text output. */ #define LUWNAME 'd2\\text'

char tmpstr[128] = ''; !*Place to store a data file name. */

char dirname[128] = '';
void main {) {

FILE *luwrite,

*tempfile,

*hardfile;

void flush{);

!* Place to store a directory name. */

/* File descriptor for writing text. *I

!* File descriptor for other files. *I
/* File descriptor to copy to hard disk. *I

!* For MS-DOS fflush only. *I
/* CPU (?) time used. MS-DOS elapsed time. *I double cputime();

double lasttime;

static double param,

!* Save the last time files were transfered. */

!* Filter parameter. */

rmsdiff[WIDMAX],

rmsavgl[WIDMAX],

rmsavg2 [WIDMAX],

signal [LENSIG],

ideal [LENSIG],

xpl t [LENSIG] ;

float wrflt;

long longtmp;

int limit,

irun,

junk,

kk,

errtmp,

place,

bedwid;

unsigned short iseed[3];

/* int sprflng, sprfint;

char *strrchr(),

*errstr;

limit = LENSIG;

/* RMS difference between two logs. */

·/* RMS average of the two logs. */

!* Places to put logs. */

/* Convert to single precision. */

/* Temporary storage of a special length. */

!* Length of a log in points. */

/* Log suite sequence number. */

/* Info returned, but not used. */

!* Loop counter through a log. */

!* Error message data. */

/* saves a place, typically in a string. */

/* Bed width under consideration. */

!* Random number generator seed. */

/* For checking sprintf results. */

!* Pointers to a string. */

/* String to print in an error message. */

/* Write various input parameters. */
luwrite = fopen (LUWNAME, 'a+');

daytime (1 uwri tel ;

120

fprintf (luwrite, 'Hard disk is updated every %g seconds from %s.\n',

TIMEALL, DIR) ;

fprintf (luwrite, 'The outer window is length: %d.\n', LARGE);
fprintf (luwrite, 'Bottom, top, delta: %g, %g, %g\n',

BOTTOM, TOP, DELTA);

fprintf (luwrite, 'Files have %d points; transitions %g to %g.\n',
LENSIG, SLPMIN, SLPMAX);

flush (luwrite);

I* Initialize various things. (See discriptions above.) */

iseed[O] Oxe66d;

iseed[l] = Oxdeec;

iseed[2] = OxS;
/* if (stat (•. \\dd', (struct stat *)ideal) != 0 &&

(errtmp=mkdir ('.\\dd')) !=0) {

*I

fprintf (luwrite, •cannot make directory %s %d\n', '.\\dd', errtmp);

exit (-9);

if (stat ('.\\d2', (struct stat *)ideal) != 0 &&

(errtmp = mkdir ('.\\d2')) I= 0) {
fprintf (luwrite, •cannot make directory %s %d\n', '.\\d2', errtmp);

exit (-9);

if (stat (DIR, (struct stat * l ideal) == 0) {
fprintf (luwrite, 'Directory %s already exists. DIR);

fprintf (luwrite, 'Are other processes using it?\n'l;
exit (-8);

if ((errtmp = mkdir (DIR) l I= 0) {

fprintf (luwrite, •cannot make directory %s %d\n', DIR, errtmp);

exit (-9);

sprintf (dirname, '%s*.*', DIR);

lasttime = 0.0;

irun = 0;
ncprocessor {) ;

fprintf {luwrite, 'Run and seed:. %d %ux %ux %ux\n',

irun, iseed[2], iseed[l], iseed[O] l;

daytime(luwrite); flush (luwrite);

I* Do for each bed width. Typically 5 to 10 inclusive. *I
for (bedwid=WIDMIN; bedwid<WIDMAX; bedwid++)

I* Do the number of times in RUNS. *I
for {irun=O; irun<RUNS; irun++) {

/* Report on progress. Make sure things are saved on hard disk. *I
printf ('%dL%d •, bedwid, irun); daytime (stdout);

fprintf {luwrite, '%dL%d •, bedwid, irun);

daytime (luwrite); flush (luwrite);

if ((errtmp = sprintf {tmpstr, errstr='seed%.2d.',

bedwid, (int)LEVEL)) I= 7) {

121

/*

fprintf (luwrite,

'Stopped by sprintf %don format %s.\n', errtmp, errstr);

exit (-28);

savedata (luwrite, DIR, tmpstr, iseed, sizeof(short), 3);

/* Check time. If not written in last TIMEALL seconds, then write. *I
if (cputime()-lasttime > TIMEALL)

lasttime = cputime();

errtmp = appendel (luwrite, dirname, '.\\dd', &longtmp);

errtmp = appendel (luwrite, dirname, '.\\d2', &longtmp);

fprintf (luwrite,

'Appending %d files totalling %ld bytes (%g) .\n',

errtmp, longtmp, errtmp?(float)longtmplerrtmp:O.O);

fprintf (luwrite, '%g %d %ux %ux %ux\n',

cputime(), irun, iseed[2], iseed[1], iseed[O]);

daytime(luwrite); flush (luwrite);

*I

I* create synthetic log; copy it; add noise; measure result; save. *I
gamv2lvl (ideal, limit, iseed, SLPMIN, SLPMAX,

LEVEL, (double)bedwid, 24., 50.);

for (kk=O; kk<limit; kk++) signal[kk] = ideal[kk];

poisnois (signal, limit, iseed);

rmssub (ideal, signal, 0, limit, IRMSVERB,

&rmsdiff, &rmsavg1, &rmsavg2);

I* Save the RMS difference between the ideal and noisy logs. *I
if ((errtmp = sprintf (tmpstr, errstr='diff%.2d%%.2d.%.3d',

bedwid, (int)LEVEL)) != 14)

fprintf (luwrite,

'Stopped by sprintf %don format %s.\n', errtmp, errstr);
exit (-29);

savemat (luwrite, DIR, tmpstr, rmsdiff, bedwid+1, 0, 1);

I* Save the ideal array average value. *I
if ((errtmp = sprintf (tmpstr, errstr='idyl%.2d%%.2d.%.3d',

bedwid, (int)LEVEL)) != 14) {

fprintf (luwrite,

'Stopped by sprintf %don format %s.\n', errtmp, errstr);

exit (-30);

savemat (luwrite, DIR, tmpstr, rmsavg1, bedwid+1, 0, 1);

I* Save the noisy array average value. *I
if ((errtmp = sprintf (tmpstr, errstr='nois%.2d%%.2d.%.3d',

bedwid, (int)LEVEL)) !:.14)
fprintf (luwrite,

'Stopped by sprintf %don format %s.\n', errtmp, errstr);
exit (-31);

saveroat (luwrite, DIR, tmpstr, rmsavg2, bedwid+1, 0, 1);

122

I*

I* Copy the data so that the copy can be filtered. *I
for (param:BOTTOM; param<=TOP; param+=DELTA) {

for (kk=O; kk<limit; kk++l xplt[kk) = signal[kk);
twaffilt (xplt, limit, LARGE, param, &junk, 0);
rmfilt (xplt, limit, 3, &junk, 1);*1

rmslvl (luwrite, ideal, xplt, 0, limit, IRMSVERB, bedwid, LEVEL,

rmsdiff, rmsavgl, rmsavg2);

I* Save postfiltering noisy average array. *I
if ((errtmp = sprintf (tmpstr, errstr='n%.3d%.2d%%.2d.%.3d',

(int) (param*lOO.), bedwid, (int)LEVEL)) != 14)

fprintf (luwrite,

•stopped by sprintf %don format %s.\n', errtmp, errstrl;

exit (-32);

savemat (luwrite, DIR, tmpstr, rmsavg2, bedwid+l, 0, 1);

I* Save postfiltering RMS difference array. *I
if ((errtmp = sprintf (tmpstr, errstr='d%.3d%.2d%%.2d.%.3d',

(int) (param*100.), bedwid, (int)LEVEL)) != 14) {

fprintf (luwrite,

•stopped by sprintf %don format %s.\n', errtmp, errstr);

exit (-33);

savemat (luwrite, DIR, tmpstr, rmsdiff, bedwid+1, 0, 1);

I* Copy all the leftover pieces to hard disk. */

!* errtmp = appendel (luwrite, dirname, '.\\dd', &longtmp); *I
errtmp = appendel (luwrite, dirname, '.\\d2', &longtmp);
fprintf (luwrite, 'Appending %d files totalling %ld bytes (%g) .\n',

errtmp, longtmp, errtmp?(float)longtmplerrtmp:O.O); flush (luwrite);

I* Copy all the leftover pieces to hard disk. (Shouldn't be any now.) *I
I* errtmp = appendel (luwrite, dirname, '.\\dd', &longtmp) ;*/

errtmp = appendel (luwrite, dirname, '."\\d2', &longtmp);

fprintf (luwrite, 'Appending %d files totalling %ld bytes (%g) .\n',
errtmp, longtmp, errtmp?(float)longtmplerrtmp:O.O);

I* Clean up; run next job, if any. *I
daytime (luwrite);

fprintf (luwrite, 'Finished!!!');

fclose (luwrite);

system ('NEXT.BAT\n');

Subroutine appendel . c :

I* Takes a drive, path, and DOS file prototype; appends the files to those of

* the same name in the output directory, or creates them if nonexistent; and

* deletes the original file. All the while doing extensive error checking.
* If the output device is full, it prints a message and outputs a • • every

123

* ten minutes hoping someone will correct the problem. Larry Paden 9114190.

*I
#include <stdio.h>
#include <dir.h>

#include <dos.h>
#include <string.h>

#define BUFLEN 128
int appendel (

FILE *lu,
char *indir, I* Input path and file prototype. *I
char *outdir,
long *count)

I* output directory in which appended or created. */
I* Count of total bytes written. *I

struct ffblk fileblk;

FILE *hardfile,

*tempfile;

int dirstat,

I* Holds file information. *I
I* For writing. *I
!* For reading. *I
I* Zero if another file is found by findnext. *I

errnbr, I* Error number return. *I
filecnt, /* Count the files and return the value. *I
ii, /* Temporary counter. */

nitems, nindX, I* Number of items read in. *I
readdesc,
writdesc; /* File handles for reading and writing. */

char infile [MAXPATH], /*Actual individual input file name. */
outfile [MAXPATH], I* Actual individual output file name. */

buffer [BUFLEN], I* Transfer to this RAM way station. */

*pnt;

*count = 0;

filecnt = 0;

dirstat = findfirst (indir, &fileblk, 0);

while (!dirstat)

filecnt++;

I* Make true name and open the input file for reading. */
strcpy (infile, indir);

if ((pnt = strrchr (infile, '\\')) I= 0) pnt[1] = '\0';

strcat (infile, fileblk.ff_name);

if ((tempfile = fopen (infile, 'rb')) --NULL) {
fprintf (lu, 'Appendel cannot open input %s.\n', infile);

exit (-17);

I* Make true name and open the output file for appending or create it. *I
strcpy (outfile, outdir);

if (outfile[strlen(outfile)-1] 1= '\\') strcat (outfile, '\\');
strcat (outfile, fileblk.ff_name);

if ((hardfile = fopen (outfile, 'a+b')) ==NULL) {
fprintf (lu, 'Appendel cannot open output %s.\n', outfile);
exit (-15);

I* Perform the copy operation with low-level reads and writes. */
readdesc fileno(tempfile);
writdesc = fileno(hardfile);

124

while ((nitems =
read (readdesc, buffer, (unsigned)BUFLEN)) > 0) {

(*count) += (errnbr =write (writdesc, buffer, (unsigned)nitems));

if (errnbr != nitems) {

fprintf (lu, 'Bad write to %s %d<%d.\n',

outfile, errnbr, nitems); flush (lu);

fprintf (stderr, 'Bad write to %s %d<%d.\n',

outfile, errnbr, nitems);
sleep (600);

nindx = errnbr;

nitems -= errnbr;

I* While hard disk is full, give user a chance to fix. *I
(*count) += (errnbr =

write (writdesc, &buffer[nindx], (unsigned)nitems));

while (errnbr != nitems) {

fprintf (lu, '.');
fprintf (stderr, •. •) ;

nindx += errnbr;
nitems -= errnbr;

sleep (600U) ;

(*count) += (errnbr
write (writdesc, &buffer[nindx], (unsigned)nitems));

if (fclose (tempfile) == EOF) {

fprintf (lu, 'Stopped by fclose tempfile.\n');

exit (-18);

if (fclose (hardfile) == EOF) {
fprintf (lu, 'Stopped by fclose hardfile.\n');

exit (-19);

unlink (infile);
dirstat = findnext (&fileblk);

return (filecnt);

Subroutine garnv21 vl. c:

I* Generates random synthetic gamma-ray logs. HIMIN and

* HIMAX are chosen to make
*generated logs to be 13.

* WIDMAX and initial width

the average noise power of the

Larry Paden 1015183.
changed 5117184. LJP

* Gamge2 created to add random slopes between levels. LJP 6/7184.

* Gamgevar to allow calling program to select width of slopes. LJP 815184.

* Gamgev2 to tidy up. Parameters are the same, but fewer calls to erand()

* are made, so this will not generate the same synthetic log. LJP 9112190.

* Gamv2lvl makes logs with extra levels (lvl) every pnts points. LJP 9112190.

*I
iinclude <math.h>
static double next=-1.0; I* Next occurence of extra bed. *I

125

void gamv2lvl (double xx[], I* Incoming ideal log. *I
int isize, I* Length in samples of the ideal log. *I
unsigned short iseed[], /*Seed for the random number generator. *I
double slpmin, I* Minimum transition between levels. *I
double slpmax, /* Maximum transition between levels. */

double lvl, /* Level to use extra times in log. */
double extent, /*Width of lvl; if 0, then range from WIDMIN to WIDMAX-1. */

double init,

double pnts)

/* Where to make the initial point. If <0, set to pnts. */

/* Attempt to produce lvl every pnts points. */

double erand48b (unsigned short[]), slpwid, swidth, width, height, oldhi;

int ii, jj;
void newhw (double[], double[], int, unsigned short[],

double, double, double, double);

next = -1.0;
slpwid=slpmax-slpmin;

ii = 0;
newhw (&height, &width, ii, iseed, lvl, extent, init, pnts);

I* printf ('At %d W1, h1: %g, %g\n', ii, width, height) ;*I
while (ii < isize) {

/*Generate width points on a level. *I
for (jj=ii; jj<=ii+width-1 && jj<isize; jj++) {xx[jj]

ii = ii+width;

oldhi = height;

height;)

newhw (&height, &width, ii, iseed, lvl, extent, init, pnts);
/* printf ('At %d W1, h1: %g, %g\n', ii, width, height);*/

if (slpmin+slpwid > 0.0) {

/*

swidth = slpmin + (slpwid==O.O 7 0.0 : slpwid*erand48b(iseed));
printf ('At %d W2, h2: %g, %g\n', ii, swidth, height);*/

I* Generate swidth points on a slope. */

for (jj=ii; jj<=ii+swidth-1 && jj<isize; jj++)
xx[jj] = oldhi + (jj-ii+1)*(height-oldhill(int) (swidth+1) ;)

ii = ii+swidth;

#define WIDMIN 5
#define WIDMAX 11

#define WIDE (WIDMAX-WIDMIN)
#define HIMIN 50
#define HIMAX 288

#define HIGH (HIMAX-HIMIN)

void newhw
double *height, I* New level to be generated. */

double *width,
int ii,
unsigned short

double lvl.
double extent,

double init,

double pnts)

I* New number of points to be generated at that level. */
/* Counter to determine where in the log. *I

iseed[], /* RV generator seed. */

I* Make extra occurences of this bed. *I
I* Width of lvl; if 0, then range from WIDMIN to WIDMAX-1. */

I* Where to make the initial point. If <0, set to pnts. */

I* Average number of points apart for start of extra beds. */

double erand48b (unsigned short[]);

if (next== -1.0) {

126

next = (init<O) ? pnts - WIDMIN - (WIDE-ll 12.0

if (ii <next) { I* Generate as usual. *I
*height= HIMIN+HIGH*erand48b(iseed);
*width WIDMIN+WIDE*erand48b(iseed);

else I* Generate the special level. *I
*height = lvl;

init;

*width = (extent==O.O) ? WIDMIN+WIDE*erand48b(iseed)

next += pnts;

Subroutine rms 1 v 1 . c :

extent;

I* Given real arrays Xl and X2 and range !START to LIMIT, this calculates
*the RMS average of the difference (RMSAVG), and the ordinary average

*values of the two input files (AVGl and AVG2.) The results are labelled

* and printed if VERBOSE> 0. Larry Paden 6122183.
*From Fortran. ljp 415187. *I

#include <stdio.h>

#include <math.h>
#define TOTLEN 16
void rmslvl (

FILE *lu,
double ideal[],
double noisy [],
int istart,

int limit,

I*

I*
I*
I*

File pointer for messages. *I

Incoming arrays. *I
First point in evaluation. *I
Last point NOT in evaluation.

int verbose,
int max,

I* Print if > 0. *I

double lvl,

double rmsavg[J,
double avgl[],

double avg2 [])

int ii, cnt[TOTLEN], which;

if (max > TOTLEN) {

I* Maximum number of points in a

I* Look for runs at this level.

I* The three outputs. *I

*I

run. *I
*I

fprintf (lu, 'Need more space in rmslvl %d>%d.\n', max, TOTLEN);
exit (110);

for (ii=O; ii<=max; ii++l
rmsavg[ii] = 0.0;
avgl [ii] = 0. 0;

avg2 [ii J = 0 . 0;
cnt[ii] = 0;

cnt[O] = limit-istart;
which = 0;
for (ii=istart; ii<limit; ii++) {

rmsavg[O] += (ideal[ii]-noisy[ii]) * (ideal[ii]-noisy[ii]l;

avgl[O] += ideal[ii];

avg2[0] += noisy[ii];

if (ideal[ii] == lvl) I* Yes, it must be exactly equal! *I

127

cnt[++which]++;

rmsavg[which] += (ideal[ii]-noisy[ii]l * (ideal[ii]-noisy[ii]);

avg1[which] += ideal[ii];

avg2[which] += noisy[ii];

else {
which 0;

for (ii=O; ii<=max; ii++l

if (cnt[ii] > 0) {

rmsavg[ii]

avg1 [ii 1
avg2 (ii] =

= sqrt (rmsavg[ii]lcnt[ii]);

avg1[ii]lcnt[ii];
avg2[ii]lcnt[ii];

if (verbose > 0) fprintf (lu, 'RMS
*rmsavg, *avg1, *avg2);

if (verbose > 1)
for (ii=O; ii<max; ii++l

%lg; averages

fprintf (lu, '%.2d %g %g %g %d\n',

%lg %lg\n',

ii, rmsavg[ii], avgl[ii], avg2[ii], cnt[ii]l;

flush (lu);

Subroutine savedata. c:

I* Lu should be a file descriptor open for writing (possible) error messages.
* creates or appends to file fname in directory dir the data pointed to by

* wrflt which is size bytes long. Larry J. Paden 9114190.

*Example: savedata (stderr, 'D:\\dd', 'datanoi2', &wrflt, sizeof(wrfltl, 1);

*I
lfinclude <stdio.h>
savedata (FILE *fd, I*

char *dir, I*
char *fname, I*
char *wrflt, I*
int size, I*
int number) I*

FILE *tempfile; I*
int place, I*

errtmp; I*
char tmpstr[256]; I*
strcpy (tmpstr, dir);
place=strlen(tmpstrl;

Send error messages to this file descriptor. *I
Open the target file in this directory. *I
Name of target file. *I
Pointer to data ~o write to target. *I
Size of single item of data. *I
Number of data items to be written. *I

File descriptor of the target file. *I
Holds the place in the string. *I
Holds error codes. *I
Place to build up true file name. *I

if (tmpstr[place] != '\\')
tmpstr[place++l = '\\';
tmpstr[place] = '\0';

I* If no \ on directory name, get one. *I

strcat (tmpstr, fname);

if ((tempfile = fopen (tmpstr, 'ab')) ==NULL) {
fprintf (fd, 'Stopped by fopen %s.\n', tmpstr);

exit (101);

128

if ((errtmp = fwrite (wrflt, size, number, tempfilell !=number)

fprintf (fd, 'Stopped by fwrite %s. %d\n', tmpstr, errtmp);
exit (102);

if (fclose (tempfile) == EOF) {
fprintf (fd, 'Stopped by fclose %s.\n', tmpstr);
exit (103);

return (1); I* The number of files written. *I

Subroutine sa vema t . c :

I* Lu should be a file descriptor open for writing (possible) error messages.

* Creates or appends to files in directory dir the data pointed to by
* wrflt which is size bytes long. The names of the (times) number of files
* is created by format varied over the range from start to start+times*incr.
* Larry J. Paden 9114190.
*Example: savemat (stderr, 'D:\\dd', format, data_array, data_length, 0, 1);

*I
iinclude <stdio.h>
savemat (FILE *fd,

char dir[],
char format [],

double data[],

int times,

I* Send error messages to this file descriptor. *I
I* Open the target file in this directory. */

I* Printf style name of target files. *I
I* Pointer to data to_write to target. */

I* Times to use format to create files. *I
int start, I* Starting argument to printf. */

int incrl /* Increment to increase start. */

I* File descriptor of the target file. *I FILE *tempfile;

float wrflt;

int ii,
I* Cast the incoming double into this float. *I

place,

errtmp;
char tmpstr[256];
int value;.

value = start;

I*
I*
I*
I*
I*

strcpy (tmpstr, dir);

place=strlen(tmpstr);

Loop counter. *I
Holds the place in the string. *I
Holds error codes. *I
Place to build up true file name. *I
current value of the start+=incr sequence. *I

if (tmpstr[place] I='\\')

tmpstr[place++l = '\\';
tmpstr[place] = '\0';

I* If no \ on directory name, get one. *I

for (ii=O; ii<times; ii++l
if ((errtmp = sprintf (&tmpstr[place], format, value)) < 3) {

fprintf (fd, 'Stopped by sprintf (\'%s\', \'%s\', %g) .\n',

tmpstr, format, value);

exit (100);

if ((tempfile = fopen (tmpstr, 'ab')) ==NULL) (

fprintf (fd, •savemat cannot open %s.\n', tmpstr);
exit (101);

129

wrflt = data[ii];

if ((errtmp = fwrite (&wrflt, sizeof(wrflt), 1, tempfile)) != 1) {

fprintf (fd, 'Savemat cannot write %s. %d\n', tmpstr, errtmp);

exit (102);

if (fclose (tempfile) == EOF) {

fprintf (fd, •savemat cannot close %s.\n', tmpstr);
exit (103);

value += incr;

return (times);

130

VITA

Larry J. Paden

Candidate for the Degree of

Doctor of Philosophy

Thesis: NOISE REDUCTION IN THE GAMMA-RAY LOG BY MEANS OF
NONLINEAR FILTERING

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Tulsa, Oklahoma; March 21, 1957 to Mary
Lois and Jack Taylor Paden, Jr., the oldest of three children.
Married Carol D. McAlister July 28, 1979. Has three children:
John Lawrence born April25, 1985; Zachary Taylor, September
3, 1987; and Katherine Elizabeth, July 6, 1990.

Education: Graduated valedictorian Charles Page High School at
Sand Springs, Oklahoma in May 1975. Received the Bachelor
of Science Degree in Electrical Engineering in July 1979 from
Oklahoma State University. Received the Master of Electrical
Engineering Degree in May 1980 from Oklahoma State University.
Completed the requirements for the Doctor of Philosophy degree at
Oklahoma State University in May 1991.

Professional Experience: National Science Foundation summer program
at University of Texas at Arlington, 1977. Engineering Intern,
Amoco Production Research Center, Tulsa, Oklahoma May
1978 to January 1979. Teaching Assistant, School of Electrical
Engineering Oklahoma State University, January 1979 to May
1979. Graduate Research Assistant, School of Electrical
Engineering Oklahoma State University, March 1979 to May
1980. Development Engineer, AT&T Western Electric, Oklahoma

City, Oklahoma May 1980 to January 1983. Took two-year
leave of absence to return to Oklahoma State University.
Graduate Research Assistant, School of Electrical Engineering
Oklahoma State University, January 1983 to December 1984.
Development Engineer, AT&T Technologies, Inc. Oklahoma
City, Oklahoma January 1985 to August 1990, where he led the
effort to fund, design, and build a multimillion dollar facility to
test the electromagnetic compliance of the products produced.
University of Oklahoma, School of Electrical Engineering and
Computer Science, Visit.ing Instructor, lectured on Computer
Architecture Spring 1989 and Spring 1991.

Awards/Affiliations: Vocational Industrial Clubs of America Oklahoma
State Electronics Champion, 1975. Valedictorian of Charles Page
High School Class, Sand Springs, Oklahoma, 1975. At Oklahoma
State University, won several scholarships: Regents Distinguished
Scholarship; Sigma Xi Scholarship; Naeter Scholarship. Served
as Secretary 1976-1977, President 1977-1978 of the student
branch of the Institute of Electrical and Electronics Engineers;
where he led the drive .that tripled the membership of that
branch. Won local and district Student Paper contest of the
Institute of Electrical and Electronics Engineers, and placed
fourth in Region V in 1978. Currently a member of the Institute
of Electrical and Electronics Engineers, Eta Kappa Nu, Past
Master of Bethany Masonic Lodge #529, and Life Member of
the American Association of Individual Investors.

Publications: Temperature Dependent Parameter Analysis of
Thermoelectric Devices, Institute of Electrical and Electronics
Engineers Region V Annual Conference Energy '78, Tulsa,
Oklahoma, 1978, pp. 167-170, coauthor K.R. Rao. With Allan
0. Steinhardt, Reduction of Poisson Noise in the Gamma-ray
Log, 1983-84 Program Final Report, Oklahoma State University
Research Consortium for Enhancement of Well Log Data via
Signal Processing, Stillwater, Oklahoma, 1984, pp. 2.1-2.53.
Reduction of Noise in the Gamma-Ray Log, SPWLA
Symposium Record, Dallas, Texas, 1985, Volume I, paper JJ.

