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THE ALGEBRAIC PARTITIONING OF 
FACTORIAL ARRANGEMENTS

CHAPTER I 

INTRODUCTION

The body of knowledge of medical and health-related phenomena 
is continually augmented by man's striving for an optimum state of health. 
Although new knowledge of such phenomena may arise from dreams as well as 
from scientific facts and logic, it proceeds further when guided by the 
rational framework of scientific investigation. The planned experiment 
is a common characteristic of scientific investigations in the health 
field. The design of the experiment plays a determining role in the suc­
cess of each endeavor to obtain new knowledge or ascertain the validity 
of existing knowledge. A crucial aspect of medical and health-related 
experiments is the statistical design and analysis of the experiment and 
it is this phase of the scientific method to which the content of this 
dissertation addresses itself.

A common experimental situation might involve the application of 
a specified set of treatments to a group of experimental units with the 
objective of comparing the effects of the treatments on the units. Two 
main elements of the statistical design of an experiment are the physical 
design necessitated by the experiment and the treatment design. The
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2
analysis procedure for an experiment is dependent upon the design of the 
experiment and a set of theoretical assumptions about the experimental 
units and the experimental process. For example, a clinical investiga­
tion might be designed to compare the effect of a new drug with the ef­
fect of a standard drug for reducing blood pressure in hypertensive pa­
tients. In this case the experimental unit would be the human being, or 
patient, and the treatment would be a predetermined dose of either the 
standard or test drug. Another comparative experiment might be designed 
to investigate several factors which are believed or known to have an 
effect on the experimental units. An example could occur in a setting 
similar to the above experiment except that the standard and test drugs, 
such as a diuretic or tranquilizer, are to be administered at various 
times of the day, say 9 A.K. and 7 P.M. The experiment now has two fac­
tors of interest. Factor one might be labeled medicine and it consists 
of two levels, where one level refers to the standard drug and the other 
level refers to the test drug. Factor two might be labeled time of day
and it consists of two levels, represented by 9 A.F. and 7 P.P. A patient
will randomly receive on of the four treatments,

(1) test drug dose at 9 A.F.,
(2) test drug dose at ? P.P.,
(3) standard drug dose at 9 A.F. or
(4) standard drug dose at 7 P.M.

For an experiment designed this way it is possible to obtain information 
relating to differences between the standard drug and the test drug, to
differences between the 9 A.K. administration and 7 P.K. administration
and information concerning the relationship between the standard drug and
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the test drug remain the same for both periods of administration. Thus, 
the scope of the e]qperiment now includes the investigation of inter­
factor and intra-factor relationships. The experimental unit is still 
the human being, or patient, but the treatment or treatment combination 
that each patient receives is a combination of levels, one level from 
each factor.

the use of the treatment design known as the "factorial 
arrangement", effects corresponding to inter-factor and intra-factor 
relationships can be investigated.

Definition 1 : The treatment design of an experiment is said to be 
factorial if each treatment combination consists of a combination 
of levels, one level from each factor in the experiment.

Experiments that have a factorial treatment design are sometimes called 
factorial experiments. The design and analysis of factorial ejqperiments 
was first described by Fisher (24)in 1926 and Yates (4?). Since then 
most of the standard experimental design textbooks, such as Fisher (25), 
Cox (17), Davies (20), Cochran and Cox (13), Kempthorne (34) and Winer 
(46) have detailed accounts of the various statistical aspects of fac­
torial experiments.

Definition 2 : If all factors in a factorial arrangement of treat­
ments have the same number of levels, then it is referred to as being a 
symmetrical factorial arrangement of treatments, otherwise, if two or 
more factors have a different number of levels, then it is referred to 
as an asymmetrical or mixed factorial arrangement of treatments.

If one can apply all possible combinations of factor levels to the 
experimental material, the experiment is said to have a full replicate
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of factorially arranged treatments. In the examples mentioned earlier, 
the treatment design which involved two drugs at two time periods is an 
example of a factorial arrangement while the treatment design of the 
example involving only two drugs is not factorial.

If, in the designing of an experiment, the situation arises 
where each experimental unit can receive only one treatment combination, 
then the problem may arise that a full replicate will require too many 
experimental units (where the number of units is restricted by size, 
obtainability or some other environmental or economic characteristic of 
the unit). For example, consider example 12.1 in Cox (1?) where eleven 
essential amino acids are incorporated in a chemical medium in which the 
rate of growth of embryonic chick bones is measured. In this example 
each of the eleven amino acids is considered as a factor and each factor 
has two levels, those levels being the presence or absence of the amino 
acid. Consequently, a full replicate of the factorially arranged treat­
ments would consist of 2 ^  = 2,048 treatments, which, as is mentioned in 
example 12.1, is "quite irapractible." One way to reduce the size of the 
experiment is to reduce the number of factors or the number of levels of 
some or all of the factors. However, this is not always possible. An­
other way to reduce the size of an experiment with a factorial arrange­
ment of treatments is to consider only a subset of a full replicate of 
treatment combinations. The general idea is to obtain a subset of the 
treatment combinations that will yield a maximum amount of information 
about the effects of treatments that are considered important. When a 
subset of a full replicate of factorially arranged treatments is used, 
that subset of treatment combinations is usually referred to as a fract-
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ional replicate (indicating that it is a fraction of the full treatment 
replicate).

Another common situation is where an experiment cannot be per­
formed at one time, although it is possible to perform the entire experi­
ment in parts, where each part might be performed at a different time or 
location. In this case a method is needed to separate the full treatment 
replicate into disjoint subsets so that one or more of the subsets can 
be chosen to represent each part of the experiment. So, if one is in a 
fractional replicate situation or a situation where the full treatment 
replicate is to be performed in parts, one must have a method to separate 
the full replicate into disjoint subsets. Present methods for obtaining 
disjoint subsets of the factorially arranged treatment combinations rely 
on the fact that certain comparisons among the treatments (most often 
the high order interactions) are of relatively little importance. Then 
one makes use of the well developed statistical theory (related to con­
founding schemes) to separate the full replicate of treatment combinations 
into subsets in such a manner that comparisons among the subsets are also 
comparisons among the treatments that are of little interest. The basis 
for the method of obtaining fractions of factorial arrangements was first 
introduced in 19^5 by Finney (23) and an elementary account of confounding 
schemes for factorial experiments was described by Kempthorne (33) in 
194-7. Since then, descriptions of these methods and extensions of the 
methods are found in most experimental design textbooks.

There is also literature concerning fractional replicates of 
experiments with factorially arranged treatments that is not documented 
in the standard textbooks. A comprehensive account of fractional
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replicate plans for the case where all the factors have two levels was 
published by the National Bureau of Standards (36) and Connor and Zelen 
(16) published fractional replicate plans for the case where all factors 
have three levels. Connor (14-), Bose and Connor (8) and Connor and Young 
(15) published plans for the case where each factor has either two or 
three levels. Fractional replication was handled in general by Chakravarti 
(12) and Morrison (35)* Recently, Daniel (19)» Bose and Srivastava (9)»
Box and Hunter (10,11), John (30), Addelman (1), Banerjee (3), Dykstra 
(22), Banerjee and Federer (5) and Westlake (4-3) have published plans 
and methods concerning irregular fractions of factorial arrangements. 
Addelman (2) summarized many of the techniques for obtaining fractions of 
symmetrical and asymmetrical factorial experiments with orthogonal and 
non-orthogonal plans. Various properties of estimation procedures for 
factorial experiments were considered by Banerjee and Federer (4’»6), Zacks 
(48,4-9), Addelman (2) and Shah (4-1). Sequential estimation problems in 
factorial experiments were considered by Huster (31) and sequential proce­
dures are discussed for fractional replicates in the 2^° case Daniel 
(19)' Prairie and Zimmer (38,39) discussed plans and methods for the 
sequential treatment of factorial arrangements when the factors are ap­
plied sequentially. Confounding schemes for assigning a full replicate 
of factorially arranged treatment combinations to a set of blocks are 
discussed throughly in textbooks, such as Kempthorne (34), for P“-fac- 
torial experiments, where P is a prime or prime power number. Confounding 
schemes for symmetrical factorial arrangements are mentioned in Addelman
(2), Kempthorne (34,33), White and Hultquist (44) and Eaktoe (40).

Most of the methods to generate fractional replicate plans and
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confounding plans are indicated in the references in the preceding para—  

graph, however, these methods are not always satisfactory. For example, 
one may not want to sacrifice interaction information to arrive at a 
fraction of the treatment combinations. It might be that the investigator 
can place an interest priority in certain subsets of the levels of some 
or aT 1 of the factors in the experiment. If this is the case, the usual 
design procedures are not particularly adaptable to the investigation of 
intra-factor and inter-factor relationships and at the same time retain 
the priority desires. One might also be confronted with the situation 
of having the e:q>erimental units grouped in blocks of unequal size, which 
is not a very desirable situation since the usual confounding procedures 
generally require equal block sizes. Thus, there exists a need for other 
methods that will allow the partitioning of a full replicate of factorial­
ly arranged treatments into disjoint subsets so that some of these sub­
sets can be run in the sense of a fractional replicate, or so that the 
entire experiment can be performed by assigning the subsets to blocks 
of experimental units.

Consider an experiment with factorially arranged treatments that 
is designed to investigate n factors, where each factor has P levels of 
interest. A full replicate of this experiment is referred to as a P^- 
factorial arrangement of treatments. There are P^ distinct treatment 
combinations in a full replicate of this experiment. Algebraically, one 
can express P® as

P" = (P]̂ + Pg)^, where P = P^ + P^ . (1)
This expression gives a method to partition the full treatment replicate 
into subsets by consideration of the 2” terms that appear on the right-
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side of the equation (1). Each term in the algebraic expansion will de­
fine a subset of the treatment combinations. The subsets defined in this 
manner are disjoint and the union of all subsets will give us the set of 
all treatment combinations. Examples to illustrate this concept are 
given in the next chapter.

Now, consider the more general asymmetrical case where there are
n factors and the i-th factor has P. levels, for i = 1, ...,n. Let P.^P.

^ n
for at least one i and j such that î j. The set of TT P̂  distinct treat-

n i=l
ment combinations can be partitioned into JTs- subsets by the equation

i=l

T Ü = IT (Pj-i + ... + p ), 2̂  ̂P<4 ” ̂ i *i=l  ̂ i=l ^®i j=l ^
The first mention of this concept in the literature was made by Morrison 
(35)» In 1961 Fry (2?) used this method for the 3^ = (2 + 1)^ factorial 
arrangement of treatments. In the unpublished doctoral theses of Williams 
(43) in 1963 and Thomas (42) in 1964, the cases P” = (P^+P^)^ and P^ =
(P̂  + ... + Pjç)” respectively, were considered in detail. This thesis 
will investigate the algebraic partitioning of experiments with symmetri­
cal and asymmetrical factorial treatment arrangements. The following 
chapters will discuss notation schemes, methods for obtaining and combin­
ing subsets of treatment combinations, estimates of effects among the 
treatments, sequential methods for applying the subsets, analysis of 
variance methods for partitioned factorial treatment arrangements for the 
completely random and randomized block designs along with examples to 
illustrate relevant points and concepts.



CHAPTER II

BASIC CONCEPTS AND NOTATION

In this chapter the notation and basic concepts concerning the 
algebraic partitioning of a factorial arrangement of treatments is devel­
oped. let the factorial arrangement of treatments consisting of n
factors, where the first factor has P levels, . and the n-th fact or

n
has P levels, be denoted by (?_•••? )-FAT or by J^P.-FAT. As mentioned1 n 1=1
in chapter I, if P, = ••• = P the P.-FAT is a symmetric factorial

^ * i=l n
arrangement and if P. ^ P. for some i ̂  j, the JT P.-FAT is referred to

 ̂ i^l ^
as a asymmetrical or mixed factorial arrangement of treatments, 

n n
The 7TP^-FAT is a collection of TIP- different treatment 

i=l i=l  ̂ n
combinations that represent the n factors. The number 71 P. may be

i=l
written n n s^

TIP. = TTCp.-, + ... + Pis ). Z  Pii = Pi (3)
i=l  ̂ i=l j=l ^

The expression (3) can be used to define an algebraic partition on the 
n

set. of 71 p. factorially arranged treatment combinations. The subsets 
i=l

of treatment combinations resulting from such a algebraic partitioning
are denoted by the abbreviation "s-FAT." The algebraic partitioning of

n
a 71 P.-FAT is denoted by the expression 
ial ^

n n
TIP -FAT------ >-71 (P., + tP. )-s-FAT»s . (M
lal ^ 1=1 ^»i
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The partitioning given by (̂ ) indicates that the levels of the i-th 
factor, for i = 1, n , are separated into ŝ  groups or subsets, where
the subsets are disjoint and are of size P..̂ , ..., P^^ . Consider the
i-th factor in the partitioning (4). The actual assignment of the P̂  ̂

levels into the s^ disjoint subsets is somewhat arbritrary and is mainly 
the choice of the investigator. For example, suppose the i-th factor ir 
a medical experiment represented a certain amount of radiation the unit 
is exposed to, where there are seven levels of radiation exposure. The 
seven levels of radiation exposure can be grouped into two subsets of 
three and four levels the following ways. Let the seven levels of radia­
tion exposure be represented by 0,1,2,3,^.5 and 6, where the higher 
numbers represent larger amounts of exposure. If the investigator knew 
very little about the effects of the different doses of radiation, then 
he might select the 0,2,4 and 6 levels for the levels in the subset of 
size four and the 1,3 and 5 levels for the other subset. It might also 
be the situation where the investigator knows that the very low dose 
levels will have slight effect and he is more concerned about the effects 
of the high dose levels. In this case the investigator might choose to 
group the four highest dose levels, 3i^»5 and 6, in one subset and 
group the three lowest dose levels, 0,1 and 2, in the other subset. 
Statistically, the important concept is that, say for the i-th factor in 
2, there are s- disjoint subsets, where the first subset consists of 
?il levels, ..., and the s^-th subset consists of the remaining P̂ ^̂ 
levels.

Definition 3 : Denote the n factors of the partitioning (4) by
Â , ..., A^. (Note: these letters will also be used to identify
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sources of variation in an analysis of variance table).

n
Definition 4 : Consider the i-th factor, A. in a TC P.-FAT. It has

 ̂ i=l
levels and this set of levels is denoted by the symbol and
— £0,1, •«., iV .

n
Definition : For the IT P.-FAT define the set of design points

i=l ^
corresponding to a full treatment combination replicate to be the set 
D, where D = £ (x̂ , x^) : x^E for i = 1, ...,nj- .
Example 1 t For the 4x5-FAT there are two factors, A^ and Ag, 
where A^ has 4 levels denoted by the elements of the set T^, and 
Ag has 5 levels denoted by the elements of T̂ . T^, and the set of 
design points, D, are given by

={0,1,2,3}
Tg ={0,1,2,3,4}
D ={ (0,0),(0,1),(0,2),(0,3),(0,4),(1,0),(1,1), 

(1,2),(1,3),(1,4),(2,0),(2,1),(2,2),(2,3). 
(2,4),(3,1),(3,0),(3,2),(3,3),(3,4) } .

For a partitioning given by (4) the i-th factor level set, T ,̂ is separated 
into s^ subsets. Each of these subsets will be referred to as a pseudo­
level, or more briefly, p-level. Thus, the i-th factor will have s^ 
p-levels, where the first p-level represents a subset of size of the 
original levels, ... , and the s^-th subset represents a subset of
size P. of the original P levels, 

i
Definition 6 : For the s^ p-levels of the i-th factor in the
partitioning (4) define the s^ subsets .. ., and to be the
sets of levels corresponding to each p-level.

Thus, = "iiUT^U...OT^g and T^kAT^^, = 0 if k^k’, or else =
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n

The partitioning (4) separates the full replicate of TX p  ̂treatment
i=l n

combinations represented by the set of design points D, into TTs.
i=l

subsets (see remark 1).
n

Definition 7 : Consider the TtP^-FAT and the associated set of
i=l

design points, D. Given the algebraic partitioning (4) and by con­
sidering only the p-levels for each factor, define the set of pseudo- 
design points, Ŝ , to be the set of n-tuples 

S-. =. = {(y , ..., y ): yze(0,l, ..., s--l} and for} . 
^ ^ all i= 1, ..., n

Each element in represents an s-FAT and is described by the n-tuple
(ŷ f . y^), where y^ indicates which of the Sj_ p-levels of the i-th 
factor is being used to construct the particular s-FAT, for i = 1, ...,n. 

Example 2 : Corresponding to example 1, consider the partitioning 
4x5-FAT . > (2 + 2)(2 + 3)-s-FAT's , or more explicitly,
^i52“?'AT----- ^(2|jĵ+2̂ 2 (̂222̂ +322)-s-FAT*s. The four s-FAT's that
result from this partitioning are obtained from the algebraic 
expansion of the right hand side of the partition expression, namely

(2ii+2i2 ) (221+322) = ^11^21+^11^22 + % 2^22 +^12^22 *
Now, = {(0,0),(0,1),(1,0),(1,1)} and each element in Sg indicates
a s-FAT by the following correspondence scheme: for each (y^,y2)6Ŝ
let y^ = 0 refer to the p-level indicating 2̂ ^, y^ = 1 refer to the
p-level indicating 2^2»  ̂refer to the p-level indicating 2g2
and Yg: = 1 refer to the p-level indicating ?22' (0,0)fSp
indicates the (0,l)fS2 indicates the s-FAT,
(1,0)«3q indicates the s-FAT and (l,l)eS^ indicates the 2^2^22
s-FAT. n

Given a partitioning scheme for a -FAT and an element (y,, .,.,y )i=l i n
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in S , the set of design points of the corresponding s-FAT can be foundD
by the cartesian product, T-Kyi+I)'^ 'n(y^+D
j —  If «ttfii &nci for k —  % $ * # # * s j #

Example 2 (continued) : If = {0,1}, = {2,3}, = {0,1}
and ?22 = {2,3,4} then

(0,0)6 3̂  is equivalent to T ^ ^ X a n d  the 2^^22^ s-FAT,

(0,l)eSjj is equivalent to l]jXl22 ^11^22 '
(1.0)eSg is equivalent to and the

(1.1)E3p is equivalent to ^12^22
If a 4 by 5 square is used to represent the 20 treatment combinations
of the 4x5-FAT, then the 4 s-FAT's are indicated in Figure 1. 
where rows represent levels of Ag and columns represent rows of Â .

i, where T^j^ST^ for

Pull Rep. 2^22^s-FAT 2i222iS-FAT 2^322=-FAT
0 1 2 } 0 1 2  3 0 1 2 3 0 1 2  3 0 1 2  3

0 X X X X 0 X X 0 0 X X oi
1 X X X X 1 X X 1 1 X X 1
2 X X X X 2 2 X X 2 2 X X
3 X X X X 3 3 X X 3 3 X X
4 X X X X 4 4 X X 4 4 X X

Figure 1. - The full replicate and four s-FAT's of example 2.

Remark 1 : Consider the partitioning
n n
%[P.-FAT------ »-T[ (P.n + ... + P. )-s-FAT's.

n i=l ^ i=l ^ 1 n
If a "JYP--FAT is partitioned this way, then a total of 7t s. s-FAT's 

i^l  ̂ i=l ^
is obtained.

Proof; Consider the set of pseudo-design points, Ŝ .
Sg = { (y^,'''*7^): y\({0,l,...,s^-l), for i = i,...,n}. 
Since each element in describes exactly one s-FAT and
no two elements in describe the same s-FAT, the number
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of s-FAT's is equivalently the size or number of elements

n
in Sg. Clearly, the size of is .

n i=l
For a P.-FAT the set of design points D, is given by D = T^X . . X  T̂ ,

i=l ^
where T^ represents the set of levels for the i-th factor. At times it 
may be desirable to express the set of levels of each factor in vector 
form.

Definition 8 : The vector of levels, for the i-th factor, for
n

i = 1, ...,n, in a P -FAT is the F- by one vector whose (k,l) entry
i=l ^

is k-1, for k = 1, The components of are elements of T\ «
Definition 9 : Let A be an n by m matrix and B be a p by q matrix.
Define the matrix component composition, abbreviated "KCC,” of A and
B to be the np by mq matrix A*B, where

A*B
(q-)-) »5) ...

and
. . . (a^,B)

i^,bii) . . .

■ • • (^ij'^pq!
Definition 101 If A is n by 1 and B is p by 1 (A and 3 are vectors) 
then A*B shall be called the vector component composition, VCC, of 
A and 3 rather than the :'’CC of A and B.

Ü ■O'
= 1 and ̂  = 1

22 3
Now,(e,*e-)' = [(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0), 

^  (2,1),(2,2),(2,3)]'
and it represents the full replicate of treatment combinations, 

n n
In general, for a %[P.-FAT, ... *ê is the %[?. by 1 vector whose 

i=l  ̂ ^ i=l
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components comprise a full replicate of factorially arranged treatment 
combinations.

Definition 11 : The j-th factor, A.,for .1 = 1, ..., n, in the
n  ̂ n

algebraic partitioning P.-FAT .+P. )-s-FAT's,
i=l  ̂ i=l i

has level set T. which is senarated into sub-level sets T . T .J - 3S.

by the partitioning. In a similar manner, define 9^^ to be the 
vector of levels where the levels are elements of 7%̂ . If has
P., elements, then©., is a P., by 1 vector.jk -jk jk
Definition ^  : Let A be an n by one vector and B be an n by one
vector. the Hadamard product (see Halmos (30))» abbreviated HP,
of A and B, and denoted ^  the symbol A®B, we mean the n by one vector

A^B = (â b]_, ...
Remark 2 : If A, 3 and C are n by 1 vectors, then

(i) A.«?B = B4A
(ii) (A + B)iÇ = (AÿÇ) + (%Ç)
(iii) A' (34Ç) = (A»3)’C = (A«C)‘P = B* (A«C) = C« (A^P''
(iv) A'B = (A#B) , where is a 1 by n row vector— — n — — nof ones.

I odels
In order to talk about models for an experimental situation, the 

following quantities are given the appropriate meanings. Capital letters, 
except for those previously defined, will denote a matrix and capital 
letters underscored with a bar will denote column vectors. Certain 
vectors and matrices occur quite frequently and for this reason the 
following vectors and matrices are given special meaning. Let ^  be the k 
by one vector of zeros (each element is zero), let 0^ be the a by b matrix
of zeros, let be the n by n identity matrix (diagonal elements are ones
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and off-diagonal elements are zero) and be the a by b matrix where 
each entry is one. Furthermore, let M be a m by 1 vector of unknown 
constants and £ an m by one vector of random error terms. Some of the 
usual assumptions concerning the distribution of e are that E(e) = ̂  

and E(e e') = (<| is an unknown constant).
The initial process of describing an experimental situation in 

terms of a model involves the specification or defining of a set of 
(unknown) parameters that can be used to describe the basic experimental 
phenomena. This set of parameters will be components of the vector £.
Once the elements of 8^are specified, the next step in constructing a 
model is to assume the existence of a vector M that is some function of 
the vector of parameters,

Definition 13 : If there exists a function f such that f ;g_ ■ >1, 
then the function f is said to define the population model f(g.) = M. 

The population model should describe the basic or fundamental phenomenon 
that is under investigation in the experiment.

Definition 14 : If f:g_— where X is a known matrix of constants, 
the model M = %  = f (g_) is called a linear population model.

To further describe the model of an experimental situation,the vector of 
observations (or numerical results from the experiment), Y, must be relat­
ed to the population model.

Definition l6 ; If there exists a function h such that h : (F,£)— >J, 

then h is said to define the observational model Y = h(M,£). 
Definition 3^ : If Y = h(K,e) = 1 + e_, and 1 = %, then Y = + e
is said to be a linear observational model or simply linear model.

When defining a linear model Y = %  + £ the matrix X, the vector £ and
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the distributional properties of e (and the joint distribution of £ and 
e and the distribution of £ if appropriate) must be specified.

Remark £: Let ̂  be a p by one vector of parameters and let be the
generalized inverse of the matrix X in the linear model Y = X£ + £.
If K = )3 is consistent then, (1) XX^M = M and

(2) £ = X+W + (Ip - X*"X)a , where a is 
an arbritrary p by one vector.

Proof; The proof follows from theorems 6 and ?, appendix I, by
letting C = K, A = X, and X = £. (See also Gateley (28)).

In the linear model Y = )(£ + e let £ be a p by one vector of
parameters, Y be an m by one vector of observations, e be an m by one * 
vector of random error terms and X an n by p matrix of known constants.

The distributional properties of e will be stated later. E(y remark 
3 I ë. = X*M + (Ip - X^X)a, for arbritrary a. Obviously £ is not unique 
since it is a function of ç̂, which can be arbritrarly chosen, unless the 
rank of the matrix X is p, and then by theorem 8 in appendix I, X^X = Ip 
and £ is unique.

Definition 17 ; The vector of parameters, £, in the linear model 
Y = X§_ + e, where £ is p by one, Y and e are m by one and X is m by 
p,is said to be intrinsically defined if and only if the rank of X 
is p or if and only if (1^ - X*"X) = 0̂ . (See Gateley (28)).

In the linear model X = ^  £ suppose X is m by p and the rank of X is
p.
Definition 18 ; If q = p, then the model Y = X£ + £ is said to be 
a full rank linear model.
Definition 19 ; If q < p, then the model Y = X£ + e is said to be
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less than full rank.

The observational model vn.ll always be a linear model, % = K + G#
where £ is a vector of random error terms. Since the only treatment

n
design under consideration is the factorial arrangement, say a TT f.-FAT,

i=l ^
the elements of M shall be called population means or cell means, indicat-

n
ing that they represent population means for the m = treatment

i=l
combinations. The vector of population means, K, is intrinsically defined 
in the full rank model % = M + = 1 ^  + e (see definition 1? and
let £ = M, X = ]^ and p = m). The vector M is estimable, (see Graybill (29)). 
and therefore any linear function of the elements of K is estimable. 
Consequently, in the sequel the effects or comparisons of interest shall 
be defined as linear functions of the elements of M rather than as linear 
functions of the elements of (if M = %), thus avoiding some problems 
of estimability that occur in less than full rank design models, such as 
T = X§_ + e, where X is a design matrix.

Effects
Attention is now focused on certain linear functions of the 

elements of K that are useful in the analysis of observations.
Definition 20 : An effect of the population model K = Xg is a linear 
combination of the elements of K. Effects will be denoted by vector 
products where X is a m by 1 vector that is said to define the 
effect.
Definition 21 : Two effects XJM and are orthogonal if and X„---------  —  —g'— —1 —2
are orthogonal (X̂ X̂  =0).
Definition 22 : A set of vectors is said to be orthogonal if every 
pair of distinct vectors in the set is an orthogonal pair. Two sets



19
of vectors are said to be orthogonal if every pair of vectors, taking
one vector from each set, is an orthogonal pair.

n
Definition 23 : The overall mean effect of a 7T P.-FAT is given by

n i=l
the effect J M, where m = TC F..

^  i=l n
Associated with the j-th factor in a ]TP^-?AT are P. levels and P.

i^l  ̂ J
level totals. The k.-th level total of factor j, for k . = 1, . is

J u
the sum of all elements in M that are designated by k^-1 in the j-th 
position of the subscript. Thus, each level total is a sum of specified 
elements in M. To define an effect on the level totals will be equival­
ent to defining an effect, X'îi* the elements of K so that all elements 
composing a particular level total are assigned the same number in the 
appropriate positions of the vector X. Consequently, an effect defined
on the level totals corresponds to an effect, ^'M, defined on M.

n
Definition 24 : A main effect of the j-th factor in a TC P -FAT is

tel ^
a set of Pj-1 orthogonal effects defined on the Pj level tota.ls (and 
therefore on the elements of M) and such that each of these effects 
is orthogonal to the overall mean effect. The Pj-1 effects shall be 
referred to as components of the main effect.

For identification purposes in analysis of variance tables,let the symbol 
Aj designate the source of variation due to the main effect of the j-th 
factor.

n
Definition 25 : A simple effect for the j-th factor in a TC P.-FAT

i=l
is an effect orthogonal to the overall mean effect and defined on 
only two elements of M such that the subscripts of those two elements 
differ in only the j-th position. Thus, a vector X that defines a 
simple effect ̂ 'K will contain zeros in all positions but two, and
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those two positions will contain the numbers +9 and -0 (usually 0=1). 

By the above definitions it is easy to show that some combination of 
simple effects id.ll result in components of a main effect. Consider two 
simple effects

=m. . . . - m .  . • j and
± j k **** n 1*"'"* j *"*"* k^*"'** n

1/%)̂ = m " * • • “ mz  ̂ M-Z— i-|,...,i. ,...,1, ,...,1 ii,'"',!;jl 1̂2 *̂2 2
among the j^+1 and j^+l levels of the j-th factor where one simple 
effect is at the (k^+l)-st level of factor k and the other is at the 
(kg+l)-st level of factor k.

Definition 26 ; Given two simple effects X^K and the effect
that represents the difference between these two simple effects,
(X̂  - X2)'?l t is called the simple interaction effect among levels 
j^+l and jg+l of factor j and levels k^+1 and k^+l of factor k.

Let the orthogonal sets of vectors {X (i )]_,••. ,X(i)p and {\(j)^,...,
i~ n

XXj)p -i} define main effects for factors i and j of a TC P.-FAT. These 
j" i=l ^

two orthogonal sets of vectors can be utilized to construct a third orth­
ogonal set of (Pĵ -1) (Pj-1) vectors by construction of all vectors of the 
form h^^{l,...,P^-l for k = i,j}.

Definition 2? : The two factor interaction effect between factor i
n

and factor j of a TCP--FAT, given the main effects for factors i and 
i=l ^

j, is the orthogonal set of (P^-1)(P^-1) effects

{X' (ij)^^ M : A(ij)b_h. ” * {l, •..
^ J  ̂J A J

and hj ( {l,... ,P̂ -1}J-. 
For identification purposes in analysis of variance tables the symbol 
A^xAj will designate the source of variation due to the two factor
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interaction effect between factor i and factor j. The effect given by

(ij)h 1, M will be referred to as a component of the two factor inter- 
i j

action effect.
n

Definition 28 % Factor (main or interaction) effects of a P.-FAT
1=1

are orthogonal if the orthogonal sets of vectors that represent them
are orthogonal.

n
Remark 4 ; Factor main effects for a 7X Pĵ -FAT are orthogonal.

Proof: Without loss of generality, the factor one and factor two 
main effects will be shown to be orthogonal. Let (1)M 
and A' (2)M be two arbritrary components of the factor one 
and factor two main effects, respectively, where

1(1) =

«0 “ (0 ...............0 )

Co V “ (0 , . . . , P  -1 )  n

“ (1. . . . ,  0 )I» 1(2) =
(I; •••»Fjj”l )

#
“ (P ^ -1 ,. . . ,  0 )

K - i _ • • • *p^l)_

are the vectors. Since 1*(1)M and 1*(2)M are components
of the main effects, X* (1)J? = X* (2)J? = 0 and, stated in 

Pi-1 Po-1 ^
other terms, =

S l
gj = 0. Now,

P]̂—1 P2”l Pj-l Prt—1
X*(1)X(2) = ( K p j j X S  è  = T C P k d l d±)i Z

1=0 j=0  ̂ ks=3 i<=e j=p ^

0,
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and the components k' (l)M and X* (2)M are orthogonal. This
is obviously true for a U  choices of X' (1) and X' (2) in
the factor one and factor two main effects, respectively.
Thus, the factor one and factor two main effects are
orthogonal and it follows that any two distinct factor
main effects are orthogonal.

Remark ^ ; The two factor interaction effect between factor i and 
n

factor j of a /^F.-FAT is orthogonal to the main effect of factor i 
i=l ^

and is orthogonal to the main effect of factor j.
Proof: It suffices to show orthogonality of the interaction
effect and either main effect. Let (ij)K = (X(i) ®
be a component of the factor 1 - factor 2 interaction effect and
let X' (i' be a component of the factor one main effect. Desig­
nate components of ̂  by a's, X̂ , by 6's and elements of Xj by g's.
It follows that (k ̂  i and j)

X’(i')X(ij) = X*(i’)(X̂  ® Xj) 
n P.-l P.-l

= (ÏÏP^)(S ±
k=l ^ i=0 j=0 ̂  ^ J
n 1 5  —1

= (7TPj.)(2  a.6.)( Z  0.) = 0.
k=l i=0 j=0 J

Thus, the components are orthogonal and the factor i main effect
is orthogonal to the factor i - factor j interaction effect.
Similarly, the factor j main effect is orthogonal to the factor
i - factor j interaction effect.

Sy remark 5 all two factor interaction effects between factors i and j
are orthogonal to the factor i main effect and factor j main effect, for
all i,j = 1, ...,n. It can also be shown that an interaction effect
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between factors i and j (j ^ i) is orthogonal to each factor k main 
effect, for k = 1, ...,n.

Definition 29 : For k = 2, ...,n, the k-factor interaction effect
n

between factors i, , ... and i in a TTF.-FAT is the orthogonal set 
k ^ K i=l -

of 7T (F- -1) effects, where the effects are determined by the vectors 
h=l ^  

in the set

...h. ' ® ••• ® ̂ (-k^h.
^1 -k ^1 ^k

h. e{l, ...,P̂  -l} for j = 1, ...,k}
y  "j

n
remark 6 : In a TX̂ .-FA'.', all k-factor interaction effects and

i=l ^
k'-factor interaction effects are orthogonal.

Proof: The method of proof is equivalent to the proof of
remarks 4 and 5*

For the following definition two levels are chosen for each of k specified
n

factors (k<n) in a "JX P.-FAT and one level is chosen for each of the
i=l ^ ,

remaining n-k factors. Consider the 2 design points that are composed 
of the chosen levels for each factor and call this subset of design points

Definition 30 « A simple k-factor interaction effect among 2^ chosen 
levels of k specified factors (two levels per factor) is I'M, where 
the elements of X are zero if the design point corresponding to the 
element (in is not in H and plus or minus one if the design point 
corresponding to the element (in is in H and such that the sum of 
the elements in \ corresponding to each level of each of the k spec­
ified factors is zero (X contains m-2^ zeros, 2^"^ plus ones and 2̂ ~̂  

minus ones).
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To facilitate the analyses of observations (chapter V) of an experiment
n

with a partitioned P -FAT, the following quantities are defined. Let
1 5=1 ^ 5-L, = J , the one by m row vector of ones, where m = P.. Let Lp bem fbrl ̂  ^i

the (P̂ -1) by m matrix that is determined by a set of (P̂ -̂l) row vectors
that define a main effect for the i-th factor, for i = i, ««.,n. Like-

k
wise, let Lp « be the 7T (P- -1) by m matrix whose rows are the set 

il" ij, j=l jof vectors defining the k-factor interaction effect between factors i^,
ig, ... and î . Now, let L be the matrix, m by m, given in Figure 2.

L =
V „ - i

(overall mean effect)
(factor 1 main effect)

(factor n main effect)
(2-factor interaction effect between 

factors 1 and 2)

(2-factor interaction effect between 
factors n and n-1)

((n-l-factor interaction effect between 
factors 1, 2, ... and n-1)

( (n-1 )-factor interaction effect between 
factors 2, 3» ... and n)

(n-factor interaction effect between 
factors 1, 2, ... and n)

n
Figure 2. - The matrix defining effectsfor a P.-FAT.

Remark 7 t ?y construction, L*L = D, an m by m diagonal matrix.
Let ĥ , the i-th row of the m by m matrix H, be the normalized i-th row 

of the matrix L. The matrix H is similarly partitioned in Figure 3.
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H  =

%
“f.n

V n - 1

F igur e  3* ~ The m a t r i x  H  corresponding 
to  the m a t r i x  L  o f  figure 2.

Remark %- construction, H is orthogonal (H* H = HH' =
Now, H'H = + ... + H|,Hp + ...+ ****
letting Bg = H^Hg, term-wise substitution yields the following result,
H* H = Bn + Brn + * « « + Bp + B-rp p + • • • + Bp p + • • • + Bp p» •^  F]_Fg V n - 1  ^l'*-^n

R e ma r k The matrices Bg, f o r  9 = 1 ,  F^, ..., F^, ... a nd (F^^.e.F^),

f o r m a n  orth o go n al  i dempotent d e c o m p o s i t i o n  f c r  th e  i d e n t i t y  matrix, 

3^, or (1) each Bg is a n  i d empotent matrix,

(2) th e r a n k  of Bg is the n u m b e r  o f  rows i n Hg,

(3) BgBg. =  Jl” , f or a l l  0 #  0' a n d

W 2 B g =  V
9

Proof ; Statement (4) is t r u e  b y  remark .

Since BgBg =  HJHgHJHg .  B, (letting r
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be the number of rows in Hg)» statement (1) is proven. 

Now, rank(Bg) = rank(H*Hg) = rank (Hg) = tg, where Tg is 
the number of linearly independent rows or columns, which­
ever is fewer. For each Hg there are fewer rows than 
columns, and since the rows are orthogonal the rank of 
Hq is clearly the number of i*ows of Hg. Also, for 8 ^ 0',

= S- ( % .  = (Ç. where a le the rank 
of Hg and c is the rank of Hg,. Thus statements (2) and 
(3) are proven.



CHAPTER H I

PLANS USING SOME OR ALL OF THE s-FAT's
n

In the preceding chapter a total of 7T s. s-FAT's are obtained
i^l ^

from the algebraic partitioning 
n n
TCP.-FAT > % ( P . .  + ... + P., )-s-FAT's. (5)
i=l ̂  i=l ^  ""̂ i

n
Definition 31: For a TUP^-FAT the set of design points, D, repres-

i=l
ents one full replicate of the treatment combinations. Let F be a set 
composed of elements of D so that argr element in D may not occur, may 
occur once or may occur more than once in F. The set F shall bt 
called a PLAN.
Definition 32: For the algebraic partitioning (5), a subfactorial 
plan, denoted sPLAN, is the set of treatment combinations that is 
represented by aiqr nonempty subset of S^. In other words, an sPLAN 
is a set of s-FAT's generated by the algebraic partitioning (5).

An sPLAN can consist of one s-FAT or, if enough experimental units are 
available, an sPLAN can consist of two or more s-FAT's. Methods are 
developed in this chapter for sPLANs when the entire sPLAN can be per­
formed at one time (with one block of units) or when the sPLAN consists 
of two or more s-FAT's that are performed in a sequence or in blocks. 
Methods that separate a set of treatment combinations into subsets, so 
the subsets can be assigned to blocks, are given in Chapter IV.

27
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K-dimensional Rectangles

n
Consider a full treatment replicate of a TTp.-FAT and the

i=l ^
associated set of design points D, where D is given by

D = ^(x^i •••! Xjj): = {0,1, ..., F^-l} for i = 1, ..., n } .
D e f i n i t i o n  33 s The subset C of d e s i g n  points is said to b e  a

k -d i me n si o na l  rectangle, abbreviated " k - d i m - r e c t .", fo r  k  =  1, ...,n,

i f  C  consists of 2 ^ d i s t i n c t  elements such that the n -tuples that 

re p re s en t  t h e m  d i f f e r  o n l y  i n  some k  specified positions, wh e re  in 

each of  the k  p o sitions only one of t w o  numbers occurs.

For example, if k = 2, the design points (x̂ , ..., x̂ , ..., x̂ , x̂ ),

> • • • » , • • •, X J , • • • I Xjj ), (x^ t • • • » , • • •, Xj f • • • f S’Jxi

(x̂ , ..., xi, ..., Xj, ..., x^) differ in the i-th and j-th positions and 
in the i-th position either x̂  ̂or x^ occurs while either Xj or xl occurs 
in the j-th position. This set of four distinct design points forms a 
2-dim-rect. and a specified linear combination of the observations cor­
responding to these design points will yield an estimate of a 2-factor
simple interaction effect, 

n
For a TT P.-FAT the vectors 9- are defined in definition 11 for 

1=1 ^ n
i = 1, ..., n. Let ra = TTP- and let D beanm by one vector such that

i=l ^

D = * ... * 8* .
Let V beanm by one vector of zeros, plus ones and minus ones and let |V| 
be the m by one vector where each entry in |V| is the absolute value of 
the corresponding entry in V. If C is a subset of the set of design 
points, let a zero in the i-th position of V indicate the i-th component 
of D is not in C and a plus or minus one in the i-th position of V indi­
cate the i-th component of D is in C. An element of |V| ® D of the type
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0'(%2, ••• , x^) will be written as 0, indicating that (x̂ , ... , x^) is
not in C and an element of the type 1* (x̂ _ x^) will be written as
the symbol (x]_, ... , x^) indicating that the treatment combination
(x̂ , ... , x^) is in C. Thus, the non-zero entries of V ® D are the
elements of the subset C.

If the subset C represents a k-dim-rect. then a method is needed
to select the elements of V so that V'M is a k-factor simple interaction
effect and so the non-zero components of |V|® D are the elements of C.
Each of the m positions in V relates to an n-tuple or design point in
D. Assign a 0 to those positions in V that correspond to design points

ÎCthat are not in C. Since C represents a k-dim-rect., C consists of 2 
n-tuples that differ in k of the n positions in such a way that in each 
of the k positions either one of two numbers occurs. Choose any four of 
the 2^ n-tiiples that form a 2-dim-rect. Of these four n-tuples choose 
two that do not form a 1-dim-hect. and assign the value +1 to the corre­
sponding positions in V and assign a -1 to the positions in V correspond­

ing to the other two n-tuples. There remain 2^ ^ positions in V to 
assign a +1 or -1. Choose a second set of four n-tuples such that they 
differ from the first set in only one position. For example, say the
first four n-tuples chosen were (x-, x_, x_, ..., x )J- 2 i n

(x̂ , Xg, x̂ , ..., x^)
(x̂ I XgI x̂ I ..., x^)
(x̂ f x^, x̂ , ...f x^).

Next, (x^.Xg',x^, ...,x̂ ) and (x^.XgiX^, ...,x̂ ) are selected because 
they do not form a 1-dim-rect. and a +1 is assigned to the corresponding 
positions in V. The number -1 is assigned to the positions in V corres­

ponding to the n-tuples ...,xj and (x{, x̂ , xi.....x^).
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Now, a set of four n-tuples that differ from the first set in only one 
position could be

(x̂ , x̂ , x^)

(x̂ , Xg, Xy •••» x^)
(x̂ , Xg, x̂ , x^)
(x̂ , x̂ , x^ x^).

For each n-tuple in the second set there is exactly one n-tuple in the 
first set that is nearly identical. To each position in V corresponding 
to an n-tuple in the second set assign a -1 times the entry in V that 
corresponds to the nearly identical n-tuple in the first set selected. 
Thus, in the example mentioned, the numbers 1, -1, -1, and 1 would be 
assigned to the positions in V corresponding to the second set of four 
n-tuples in the order they were mentioned. The procedure of selecting 
a set of 2^ n-tuples nearly identical with the set of previously selected 
2^ n-tuples (to which +1 or -1 are already assigned to positions in V) 
is continued until all the elements of V are determined. The procedure 
will yield a vector V that has 2^ non-zero entries and m-2^ zero entries. 
Since there are as many entires that are +1 as -1 and since +1 and -1 
are the only non-zero entries, it is clear that J^V = 0.

Example 4 : For the 3x4-FAT the vector of design points, D, is
obtained by D = ^  * 0^ , where ^  = (0,1,2) and ^  = (0,1,2,3).

D'= ((00),(01),(02),(03),(10),(11),(12).(13),(20),(21), 
(22) ,(23))'

If C = {(00),(03),(10),(13)} then V’ = (l,0,0,-l,-l,0,0,l,0,0,0,0)'
and £• = (|Vj«D)’ = ((00),0,0, (03), (10),0,0, (13),0,0,0,0)' .

n
Remark 10 ; If a 7T P. by 1 vector V consisting of zeros and +1 or -1 

1=1
entries, then D does not necessarily represent a k-dim-rect. for
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k = 1, n. For example, if Y' = (1,0,0,-1,0,-1,0,0,0,0,+1,0)' in
example 4 , then (|V|@ D)' = ((00),0,0,(03),0,(11),0,0,0,0,(22),0)' 
and the design points (00), (03), (11) and (22) do not represent a 
2-dim-rect.

If the non-zero elements of |Vj® D represent a k-dim-rect., then 
V*Y is an estimate of some linear combination of population means (ele­
ments of M) that corresponds to a simple interaction effect among k of 
the factors at two specified levels of each of the k factors and one 
fixed level of the other n-k factors. The existence of a k-dim-rect. 
is a necessary condition for the existence of an estimate of a k-factor 
simple interaction effect among the population means. The existence of 
a k-dim-rect. is not in general a sufficient condition for existence of 
an estimate of a k-factor interaction effect among the population means. 

Example ^ : Consider a 2^-FAT. The set of design points, D, is 
D = { (000), (001), (010), (Oil), (100), (101), (110), (111) } . Now, let

V' = ( 1, -1, -1, 1, 0, 0, 0, 0)' and

'£ = ( i f  i f  ~ i t  - i t  - i t  i t  f)' •
The non-zero elements of |V(@ D correspond to the subset of design 
points {(000),(001),(010),(Oil)} and these design points form a 2-dim- 
rect. Also, assuming the observational model is Y = K + £ and E{e) =

we obtain E(Y'Y) = V’M = ~™H2 ~™121 ”̂ 2 2  represents a
2-factor simple interaction effect between factors one and two at level 
one of factor one. The set of design points indicated by the non-zero 
elements of |W|® D does not represent a 2-dim-rect. but

E(V'Y) = -«21. -«12. +^2.
which represents the 2-factor simple interaction effect between factors
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one and two averaged over levels of factor three.
Definition The set of vectors is said to be a linearly
dependent set if there exists scalars (real nimbers) a^, â , not
all zero, such that

a^V^ + ... + a^]^ = ^ is the vector of zeros).

In the contrary case, the vectors V^, ... are said to be linearly
independent, in other words, if i + ••• + then the scalars
a^, ..., aĵ  must all be zero.

n
Definition 35: For a TTP^-FAT let the vectors V^, ..., be such

i=l
that the non-zero elements of |V^|® D, ... and D represent
k-dim-rect.*s for some k, k = 1, ...,n. The set of k-dimirect.'s is 
said to be a set of h linearly independent k-dim-rect. *s if and only 
if the vectors V^, ...and are linearly independent.
Definition 3§_: The set of vectors V^, ... and is said to be an 
orthonormal set of vectors if it is an orthogonal set and if (V̂ Vĵ )̂ =l 
for all i = 1, ...,h.
Remark 11 : It can be shown that an orthonormal set of vectors is a 
linearly independent set of vectors, an orthogonal set of vectors not 
containing the zero vector is a linearly independent set of vectors 
and a linearly independent set of vectors may or may not be an ortho­
gonal set of vectors.

n
Definition 37: For a 7X Pj_-FAT let the vectors V̂ , ...and be such

i^l
that the non-zero elements of jV^j® D, ••• and D all represent
k-dim-rect.'s for some k = 1, ...,n. This set of k-dim-rect.'s is said 
to be a set of h orthogonal (orthonormal) k-dim-rect,'s if and only if 
1^, ... and is a set of orthogonal (orthonormal) vectors.
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Connected PLANa

For the following definitions let F be a nonempty subset of D,
n

the set of d e s i g n  points of a 7 T P - - F A T .  Also, l et d. b e  the number of
i=l

distinct elements (representing distinct levels) in where is a
subset of T., for i = 1, n (T\ is the set of levels for the i-th

n
factor in a P.-FAT). 

i=l
Definition 38: A PLAN F is said to be connected, denoted cPLAN, if 
for every pair of design points, f^ and f̂ , in the PLAN F there exists 
a sequence of design points = h^, h^, .. h^ = f^ in F such
that every two adjacent design points in the sequence differ in exact 

ly one position.
Definition 39; A PLAN F is said to be a complete PLAN if

F =  D^X---XD^ •
Remark 12 : Every complete PLAN is also a cPLAN, however a cPLAN is
not necessarily a complete PLAN.
Definition 40 ; The PLAN F is a weak-k-cPLAN, denoted w-k-cPLAN, if 
F is connected and if F contains at least one k-dim-rect. and if F 
is also a w-k'-cPLAN for k' =1, ..., k-1.
Definition 4l ; The PIAN F is a strong-k-cPLAN, denoted s-k-cPIAN, if 
F is connected, if every point in F belongs to a k-dim-rect. and if 
F is also a s-k'-cPLAN for k’ = 1, ..., k-1.
Definition 42 : A PLAN F is said to be a complete-k-PLAN at a given
k factors (ktn) if d^>l for those k factors,and if PLAN F is complete.
Definition 43 : A PLAN F is said to be a completely connected PLAN,
denoted ccPLAN, if d^>l for i = 1, ...,n, and if F is complete.
Remark 1^ : If k = 1, then a w-l-cPLAN and a s-l-cPLAN are referred to 
as a cPLAN, since in reality they are the same.
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EyawiplA 6 : In Figure 4 let FLANs (a), (b) and (c) be taken from 
a 3^-FAT, FLAN (d) from a 3^-FAT and PLAN (e) from a ^^-FAT.

PLAN (a) PLAN (b) FLAN (c) PLAN (d) PLAN (e)
(00) (00) (00) (012) (200) (00)
(01) (01) (01) (Oil) (202) (02)
(10) (10) (02) (020) (210) (11)
(12) (11) (10) (022) (211) (13)
(21) (12) (11) (100) (220) (20)
(22) (21) (12)

(20)
(21)

(102) (221) 
(120) (222) 
(122)

(22)
(31)
(33)

Figure - PLANs involving FATs.

PLAN (a) is a cPLAN; PLAN (b) is a cPLAN that is also a w-2-cFLAN but 
not a s-2-cFLAN; PLAÎÎ (c) is a cPLAN that is also a s-2-cPLAN but not 
a ccPIAN; PLAN (d) is a s-3-cPLAN but not a ccPLAN and PLAN (e); al­
though at first it may appear to be a s-2-cFIAN, it is not even a 
cHAN.

The set of design points for a complete PLAN is given by D^X
if d^ is the number of distinct elements in D., this PLAN can be thought

n ^
of as a full replicate of a 'J\d.-FA1. A matrix similar to the matrix L

i=l
of chapter II can be constructed, where the rows define the overall mean 
effect, factor main effects (if d^^2) and factor interaction effects. If 
d^ = 1 for the i-th factor, then, obviously, no main effect can be de­
fined for factor i and there will be no interaction effects involving 
the i-th factor.

Example 7 : For a ^^-FAT let a partitioning be given by

I,et 2^2 and 2g2 refer to the lowest two levels of factor one and factor 
two and let 2^2 and 2^2 refer to the two highest levels of factor one
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and factor two. If the treatment combinations from the Z^Zg^^-s-FAT 
and the are considered as a PLAN, then the PLAN is not
connected.
Definition 44 i A set of s-FAT's from a partitioning of the type

n n
71 P.-fat ^  K  (P<i + ... + P., )-s-FAT's
i=l i=l i

is said to form a csPLAN (complete sPIAN,w-k-csPLAN, s-k-csPLAN,
complete-k-sPLAN or ccsPLAN), if the set of pseudo-design points in
that represent them form a cPLAK (complete PLAN, w-k-cPLAN, s-k-cPLAN,
complete-k-PLAN or ccPLAN).

If the pseudo-design points that represent a set of s-FAT's form a ccsPLAN
(or complete-k-sPLAN, s-k-csPLAN, w-k-csPLAK, complete sPLAN or csPLAN),
then the set of design points that the s-FAT's represent also form a
ccPLAN (complete-k-PLAN, s-k-cPLAN, w-k-cPLAN, complete PLAN or cPLAN),
since each s-FAT is a ccPLAN.

A full treatment replicate that can not be run at one time might 
be run in parts, where each part is a s-FAT or group of s-FAT's that 
result from a partitioning of the original FAT. The sequence of s-FAT's 
is important. The sequence of s-FAT's should be chosen so that if the 
experiment is terminated prematurely, then the s-FAT's that have been 
run form at least a cPLAN of some type. For example, complete preferable 
to not complete and completely connected preferable to strong connected 
preferable to weak connected and the degree of connectedness (k) as 
high as possible. The concepts of connectedness and completeness can 
also be applied to sequences of pseudo-design points.

Example 8 : For the algebraic partitioning
82̂82—FAT ^  (2-[•̂•f-2-j ̂+2̂  (222+222+22^+22̂ )—s—FAT's
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the set of pseudo-design points is

= {(00) , ( 01) , ( 02) , ( 03) , ( 10) , (11) , ( 12) , ( 13) , ( 20) , ( 21),
(22),(23),(30),(31),(32),(33)} .

The sequence (00),(03),(33),(30) is preferable to the sequence
(00),(11),(22),(33) because,if the experiment is ended after step
h (or 3 or 2) in the sequence, then the first sequence is a ccsPLAN
(or a csPLAN (representing a s-2-cPLAN) for termination after either
3 or 2) while the second sequence is not a connected PLAN and not a
complete PLAN.



CHAPTER IV 

BLOCKING AND MULTIPLE PARTITIONING

A usual blocking procédure consists of assigning a set (or sets) 
of treatment combinations to a group (or groups) of the same nunber of 
experimental units. The entire set of treatment combinations is separated 
into subsets in such a manner that the nomber of treatment combinations 
in each set will also be the number of units in the blocks. It is desir­
able, if possible, to randomly assign the sets of treatment combinations 
to the blocks. The method by which the full set of treatment combinations 
is separated into subsets is now of extreme importance. If there is no 
reason to consider the blocks of units as an additional source of var­
iation which must be accounted for in the analysis of the experiment, 
then a random assignment of subsets of treatment combinations to the 
experimental units is adequate. However, if there is reason to consider 
the blocks as a source of variation, then some of the comparisons among 
the observations that estimate certain treatment effects will also esti­
mate certain block effects. In this case those treatment effects are 
said to be confounded with block effects. The manner in which the set of 
treatment combinations is separated into subsets can dictate the treat­
ment effects that are confounded with block effects. Methods that allow 
one to separate the full set of treatment combinations into subsets so 
the subsets may be assigned to blocks of units are henceforth called

37
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blocking procedures. Fost of the current blocking procedures require
blocks of equal size and this is a desirable condition simply from an
analysis point of view.

n
kVhen a 71 - F AT  is algebraically partitioned via, 

i=l
n n
T T p .-FAT--------------------- +  ••• +  P-io )-s-FAT's, (7)
i=l i=l  ̂i

n
into 7 T  Si s - F A T 's, then parts of individual s-FAT's or one or more of 

1=1
the s-FAT's can be assigned to a block of units. I'ethods developed in
this chapter will allow the assigning of groups of treatment combinations
to a set of blocks, where the blocks may or may not be of the same size.
The main method of separating the full set of treatment combinations into
appropriate subsets, given the available blocks and block sizes, is to

n
algebraically partition the 7 T  P--FAT via (7) and arrive at a method of

3=1 ^
assigning the s-FAT's to the available blocks by consideration of con­
founding schemes involving the set of pseudo-design points, Sg. There 

n.
are ]Xs. elements in 3^ and these pseudo-design points designate a

i=l  ̂ ^
pseudo-factorial arrangement of treatments, hereafter denoted as a 
n n
7 %  s.- p - F A T. The treatment combinations of a 71 s.-FAT can be assigned
i=l ^ i=l n
to blocks and similarly, the oseudo-design points of a 71 s.-p-FAT can be

i=l ̂
assigned to blocks, or more properly labeled, pseudo-blocks. Since the
set of all pseudo-design points is a complete PIAN, main effects and

n
interaction effects can be defined for the factors in the 7 T s.-p-FAT.

i=l
■//hen components of these main effects and interactions are confounded with 
pseudo-block effects, blocking procedures for partitioned FAT's result. 
Blocking procedures are considered for partitioned FAT's for the case 
when s^ = ... = s^ and when s^ 4 Sj for at least one pair i ̂  j.
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Definition ̂  * If = ... = in the partitioning (7 ), the partit­
ioning is called an equal partitioning. Othei-wise, if ^ s^ for 
some i ̂  j, the partitioning is referred to as an unequal partitioning. 

In the case where all the partition numbers are equal, for the i-th fac­
tor, let P = P = ... = P. , and denote the sum (P +...+ P )Xel xJ. xs^ XX i
by s^(P^ ^). Thus, if P^ = ... = Pj,g_ = P^^^' i = 1; •••» n, the
algebraic partitioning (?) is written as follows 

n n
7X p -fat  >7T (s. (P, T ) )-s-FAT• s . (8 )
i=l i=l

Blocking Precedures for Equal Partitionings
For an algebraic partitioning of the type (7) the set of pseudo-

n
design points representing a J\ s.-p-FAT can be used to formulate con-

i=l ^
founding schemes and blocking procedures. If the algebraic partitioning 
(?) is an equal partitioning, then s = s^ = ... = s^ and the set of pseudo­
design points represents a s"-p-FAT. Since it is usually desirable to 
confound high order interaction effects with blocks, we shall try to con­
found interaction effects in the s^-p-FAT with pseudo-blocks as a means 
of arriving at a blocking procedure. If interaction effects in the s"-
p-FAT are confounded with pseudo-blocks, then some of the interaction 

n
effects in the TC P.-FAT are confounded with blocks. In some cases the 

i=l
confounding of some of the components of factor main effects with block 
effects is unavoidable, as is the case where each s-FAT is assigned to a 
block of units. Blocking procedures are now discussed for equal partitions 
where s is an arbritrary integer greater than one.

Confounding schemes for s^-FAT*s where s is a prime or prime 
power number are given in Kempthorne (3̂ ). If blocks of size s™ (m<n)
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are available for confotmding effects of a full replicate of a s^-FAT with
block effects, then a total of s^ ̂  blocks are required. To separate the
set of s^ treatment combinations into sets of size ŝ , one must choose n-m
linearly independent effects to confound with blocks. Counting these n-m
linearly independent effects and their generalized interactions, a total
of (ŝ  ™)/(s-l) effects are confounded with blocks. For blocks of size

n—m—1
s™ there are a total of ”7^ ( (s^-s ̂ ) / (ŝ ""™-ŝ  ) ) systems of confounding

i^O
to choose from (see Kempthorne (34)). Usually a system where the high
order interactions are confounded with blocks is preferable to a system
where the main effects or components of main effects are confounded with
blocks. Examples of equal partitionings when s is a prime and prime
power number are given in the sequel.

Once the set of pseudo-design points is separated into subsets
these subsets can be randomly assigned to blocks of the appropriate size.
Assigning subsets of pseudo-design points to pseudo-blocks is essentially

n
the same as assigning subsets of the %  P. treatment combinations to

3=1 ^
blocks of appropriate size. The confounding schemes are used to separate 
the set of treatment combinations into subsets and the subsets are rand­
omly assigned to the blocks of esqjerimental units.

If s in the s^-p-FAT is a prime power number then additional 
methods labeled pseudo-factorials in Kempthorne (34) can be used to 
obtain conofunding schemes for a s^-FAT. If s is a product of prime 
numbers, then the theory recently developed by White and Hultquist (44) 
and Eaktoe (40) can be used to construct confounding schemes.

Whether or not blocks of equal size can be accommodated depends 
entirely upon the algebraic partitions + ... + P̂ ĝ , for all
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i = 1, . n. The size of  a s- FA T  is de termined b y  the numbers o f th e  

n
type 71 P. . f wh e r e  s.}. I f  P., = ... =  P. , f o r  a l l  i =  1,

i_l i J i  ^ i
n, i t  is obvious t ha t  bl ocks a d m i t t i n g  the same n u mber o f  s-FAT*s ar e  

o f equal size. However, it is not n e c e s s a r y  that P ^^ =  ... =  P^^ f o r  i 

=  1, .. n, i n  order t o  arrive a t  a P L A N  involving equal b l o c k  sizes 

(an example is given in t he sequel). As  w il l  b e  s e en  later, i t  is a l s o 

possible t o  have s^ ^  s^ for i ^  j a nd arrive at equal b l o c k  si z es  w h e n  

the s-FAT's o f  a n  a l gebraic p a r t i t i o n  a r e  applied t o  bl ocks o f  e x p e r im e n­

t a l  units.

It is also p o s s ib l e t h at  b l o c k i n g  procedures c a n  b e  o b t a in e d b y  

constructing c onfounding schemes i n  e a ch  s-FAT. This wo u l d  n o r m a l l y  b e  

th e case w h e n  the r e ar e  a lot o f  b l o c k s  available a n d  the b l o c k s  h a v e  a 

r e l a t i v e l y  small number o f  expe r im e nt a l units. If confou nd i ng  schemes 

w i t h i n  e a c h  s-FAT a r e  u s e d  a nd i f  a combi n ed  analysis o f the o b s er v at i on s  

of  a l l  t h e  s-FAT's is t o  b e  performed, t h e n  the confounding s chemes i n 

each s-FAT m u s t  b e  c h o s e n  so a n  ov e r a l l  analysis is possible. For e xa m ­

ple, one m i g h t  confound i n t e ra c ti o n effects in a U  o f  th e  s -FAT's or  on e  

might c o nf o un d  m a i n  e ffects or c o mp o n e n t s  o f  m a i n  effects i n  a l l  of the  

s-FAT's, b u t  confou n di n g c omponents o f  m a i n  effects in  some o f  the s-FAT's 

an d i nteractions in some of  the s-FAT's w i l l  pr o b a b l y  lead t o  compli c at e d 

analysis procedures, if a n y  anal ys i s procedure exists fo r a l l  t h e  s -FAT's 

as a  whole.

D e f i n i t i o n  4 6  : To d e n o t e  a p a r t i t i o n e d  factorial a rr a ng e me n t of 

t re atments that is a p pl i e d  to a  set o f  blocks, t he symbol A  : B w i l l  

b e  used, w h e r e  the s y mb o l A  d e n o te s  t he algebraic part i ti o ni n g a n d  th e 

symbol B  is a set o f  numbers i n d ic a ti n g bl oc k  sizes.
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Thus, for n = 2, the expression (2(P^ ̂ ))(2(?2 ^)):2P^ ^Pg ^ indicates 
that a P2P2-FAT is partitioned according to

P^P^-FAT-------------+ Pi.i)(P2.i + P2.i)-s-FAT's,
and the whole set of treatment combinations is assigned to two blocks, 
where both blocks are of size 2P^^2^2.1* For the algebraic partitioning

P2P2-FAT (s (?2̂ 2) ) (^2.1 ) )-s-FAT ' s (9)
the possibilities for blocking PLANs are enumerated in Table 1, The

0first column in table 1 indicates pseudo-block size in the s -p-FAT: the 
second column indicates the block size in terms of the original full rep­
licate of the P2P2-FAT: the third column indicates the number of blocks 
required for a full treatment replicate and the fourth column gives the 
blocking PLAN notation. The four PLANs in column four are henceforth 
referred to as blocking PLANs (a), (b), (c) and (d). The number of 
pseudo-blocks is equal to s divided by the pseudo-block size. The de­
grees of freedom available for confounding is the number of blocks minus 
one. In blocking PLAN (a) there are s pseudo-blocks and a suitable con­
founding scheme can be obtained by confounding components of either fa- 
tor main effects with pseudo-blocks, or if s is a prime or prime power 
number, by confounding components of interaction effects with pseudo­
block effects. If s is not prime or prime power or equal to one, effects 
corresponding to interaction might be confounded with block effects.
In blocking PLAN (a) there are s s-FAT's that are assigned to one block 
of units. In blocking PLAN (b) all effects in the p-FAT are confounded 
with pseudo-block effects. Blocking PLANs (c) and (d) are obtained by 
confounding all effects of the p-FAT with pseudo-block effects (as in 
blocking PLAN (b)) and then confounding effects within each s-FAT with
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TABLE 1
SCKE BLOCKING PLANS F O R  T H E  PART IT I ON I NG  (9)

Block size 
s^-p-FAT

Block size 
P^Pg-FAT

nianber of 
blocks

Blocking PLAN

s ®^1.1^2.1 s (s:(P]^^l))(s(P2.i))*sP^^lP2^1 (a)
1 ^1.1^2.1 =2 ( " )( " ):fl.lf2.1 (b)
1 ^1.1 s^%%l ( " )( " ):Pi.i (c)
1 ^2.1 s'fl.l ( " )( " ):P2.i (d)

OTHER
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block effects. The confounding schemes available within each s-FAT depend 
upon the numbers j and thus, the word "other" appears in the table to 
allow for schemes confounding other effects (whenever possible) with block 
effects. No PIANs are developed that would result in assigning parts of 
different s-FAT*s to the same block of units.

Example 9 : Consider the algebraic partitioning

82^42“F A T -------^  ̂ ^11 ^12^^^21 ^22^"^"^^^'^'
Let 4^̂  and 2^g refer to the lowest four and lowest two levels of
factors one and two respectively. Likewise, let 4 ^  and 2g2 refer to 
the highest four and highest two levels of factor one and factor two 
respectively. For this example, the p-FAT is equivalent to a 2 -FAT. 
The blocking PLANs are given in table 2, which follows the form of 
Table 1. Blocking PIANs (a), (b), (c) and (d) are obtained by con­
founding the effects of the 2^-p-FAT with pseudo-block effects. Block­
ing PLAN (a) is obtained by confounding the pseudo-factor one main 
effect with pseudo-block effects ; blocking PLAN (b) by confounding 
the pseudo-factor two main effect with pseudo-block effects and block­
ing PLAN (c) by confounding the pseudo-interaction effect with pseudo­
block effects. Blocking PLAN (d) is obtained by confounding all effets 

2of the 2 -p-FAT with pseudo-block effects. Once the p-FAT confounding 
procedure separates the elements of into subsets, each element, or 
pseudo-design point, is replaced by the design points it represents. 
These sets of design points are then randomly assigned to the blocks.
In Figure 5 the blocking PLANs (a), (b), (c) and (d) are represented. 
The numbers in Figure 5 indicate which subset that particular treat­
ment combination is assigned to. Rows represent levels of factor one
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TABLE 2
SOKE BLOCKING PLANS FOR EXAMPLE 9

Block size 
2^-p-FAT

Block size 
e%4-FAT

Number of 
Blocks

Blocking PLANs

2 16 2 (a)
(b)
(c)

1 8 4 (d)
1 4 8 (s): (fl); (f2): (f̂ ); 

(si), (gz), (#3)
1 2 16 (hg), (ho), (ĥ ), 

(ĥ ), (hg), (hy)
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PLAN (a) PIAN (b) PIAN (c) PIAN (d)
iO 1 0 1 G 1 G 11

P-FAT Oil 1 G 1 2 0 1 2 G 1 2
l|2 2 1 1 2 1 2 1 1 J 4

8x4-FAT

0  1 2 3 G 1  2  31
'Ô 0 1  1 2  2
1 1 1 1 1 1 1 1 2  2
2 1  1 1 1 2 1 1 2  2
3 1 1 1 1 3 1 1 2  2
4 2  2 2 2 4 1  1 2  2
5 2  2 2 2 5 1 1 2  2
6 2  2 2 2 6 1 1 2  2
7 2  2 2 2 7 1 1 2  2

G 1  2 3 G 1  2 3
0 1  1 2 2 G 1  1 2 2
1 1  1 2 2 1 1  1 2 2
2 1  1 2 2 2 1  1 2 2
3 1  1 2 2 3 1  1 2  2
4 2 2 1  1 4 3 3 4  4
5 2 2 1  1 5 3 3 4  4
6 2 2 1  1 6 3 3 4  4
7 2 2 1 1 7 3 3 4  4

Figure 5* ~ Illustr&tion of blocking PIANs (a), 
(b), (c) and (d) for example 9,
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and columns represent levels of factor two. The blocking PLANs for block 
sizes four and two are obtained by first separating the full replicate of 
32 treatment combinations into four sets by blocking PLAN (d) and then 
separating each of the four sets into either two or four smaller sets, 
depending upon the block sizes. Each of the four sets is an s-FAT ob­
tained from the partitioning. Each s-FAT is equivalent to a 4x2-FAT. 
Confounding schemes for a 4x2-FAT, labeling the factors as and can 
be obtained from confounding schemes in a 2^-FAT, labeling the factors as 
A, B and C. The correspondence between the 2^-FAT and 4x2-FAT factors is

(1) A represents B2
(2) B, C and BC represent B^
(3) AB, AC and BC represent B̂ B̂g.

This correspondence procedure is the procedure labeled "pseudo-factors" 
in chapter seventeen of Kempthorne (34). From the correspondences (1), 
(2) and (3) above, the treatment combination relationships in Figure 6 
result. From these correspondences in Figure 6, it is easy to conclude 
that a main effect defined for factor A is equivalent to a main effect 
defined for factor Bg; a main effect for factors B and C and a 2-factor 
interaction effect for factors B and C is equivalent to a main effect de­
fined for factor B^ and the interaction effects defined for AB, AC and 
ABC are equivalent to a two factor interaction effect defined for factors 
B^ and Bg. To obtain blocking PIANs for eight and sixteen blocks the 
blocking PLAN (d) is first performed. Now, to obtain blocking PLAN (e), 
the main effect of factor A in the 2^-FAT is confounded with pseudo­
blocks of size four, and consequently, Bg or a component of the factor 
two main effect in the P2P2-FAT, is confounded with block effects (the
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Ign Point in Design Point in
2x2x2-FAT 4x2-FAT

(000) (00)
(001) (10)
(010) (20)
(011) (10)
(100) (01)
(101) (11)
(110) (21)
( H I ) (31)

Figure 6. - Treatment combination correspondences.
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confounding of factor A is carried out in each of the 2^-FAT*s represent­
ing the 4x2-FAT's or s-FAT's). Similarly, components of the factor one 
main effect will be confounded with block effects if either of B, C or 
BC is confounded with pseudo-blocks in each of the s-FAT*s. These three 
schemes represent blocking PLANs (f̂ ), (fg,) and (f̂ ). Blocking PLANs 
(g]_)» (gg) (ey) are those obtained by confounding components of the 
two factor interaction with block effects, and thus, can be obtained by 
confounding either of AC, AB or ABC with pseudo-blocks of size four in 
each s-FAT. For those blocking PLANs incorporating sixteen blocks, the 
methods to obtain the PLANs are given in Figure 7. Blocking PLANs (ĝ ) 
and (hp) are chosen as representatives of the blocking PLANs for block 
sizes four and two. For blocking PLAN (ĝ ) there are eight sets of four 
treatment combinations each (two sets per s-FAT) and for blocking PLAN 
(hy) there are sixteen sets of two treatment combinations each (four sets 
per s-FAT). These blocking PLANs are represented in Figure 8.

Table 3 represents a summary of the blocking PLANs for the
equal partitioning

n n
TtP.-FAT ►Tt (s(P. J)-s-FAT's. (10)
i=l ^ i=l

In Table 3 the first n blocking PLANs are obtained by confounding the 
effects of the s^-p-FAT with pseudo-block effects. The remaining blocking 
PLANs are arrived at by first invoking the blocking PLAN with pseudo­
block size one and then separating each set by further confounding effects 
within each s-FAT with block effects. The word "other" appears in the 
table to indicate that there might be other confounding schemes available 
that would lead to other blocking PLANs, but the availability depends
largely upon the numbers P, ,, ... and P . The greater the number ofn.l
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Pseudo-block
size

Effects confounded in the
=UN2^-FAT 4x2-p-FAT 8x4-FAT

4 A,B,AB
part of 
part of B^Bg

a component of 
a component of 
a component of

(g]̂ )

4 B,C,BC Bl a component of (22)
4 A,C,AC

part of B, 
part of Bĵ Bg

a component of ̂  
a component of Fz 
a component of

(gy)

4 A,BC,ABC %part of R  
part of ^Bg

a component of F„ 
a component of ^  
a component of F^Fg

(gq,)

4 B,AC,ABC part of Bj_ 
part of B^Bg

a component of F̂  
a component of F^F2 (24)

4 C,AB,ABC part of B^ 
part of B^Bg

a component of Fn 
a component of F^g

(25)
4 AC,BC,AB part of B^ 

part of B^Bg
a component of Fn 
a component of F^£

(g^)

Figure ?. - Methods to obtain blocking PLANs consisting of l6 
blocks for the partitioned 8%4-FAT of example 9»
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Factor
one

Blocking PIAN (ĝ ) 
Factor two

Blocking PIAN (by) 
Factor two

0 1 2 3 0 1 2 3
0 1 2 3 4 0 1 4 5 8
1 2 1 4 3 1 3 2 7 é
2 1 É 3 4 Factor 2 1 4 ? 8
3 T 1 4 3 one 3 3 2 7 é
4 5 é 7 p. 4 9 12 13 16
5 I 5 i- 7 5 i; 19 1*? 34
6 5 é 7 <4 6 9 12 13 16
7 6 5 p ? 7 11 10 15 l4

Figure 8. - Blocking PIANs "(ĝ ) and (ĥ ) of example 9-
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TABLE 3
SOME BLOCKING PLANS FOR THE PARTITIONING (10)

Block s iz e Block s iz e I'hmber o f  blocks

s ”-p-FAT P^..Pn-FAT
n-1s ^ ^ 1 .1 " '^ n .l s

s2

s ® ^ l.l* '*^ n .l
> 1

1 ^ l . l ’ **^n.l s^

1 P l . l • ®̂‘"2.1***"n.l

1 ^2.1 ®”" l . l" 3 .1 “ ’^ n .l

: :

1 " n .l ® ^ i . i * ’ * V i . i
CTHEP
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blocks the nore difficult it is to find a blocking PLAN in which compo­
nents of main effects remain unconfounded with block effects• For this 
reason, blocking PLANs with a few large sized blocks are often preferable 
to blocking PLANs with relatively small sized blocks.

So far, only blocking procedures for partitions of the type (10) 
have been mentioned. In the general partitioning expression (7) it might 
be the case that P. . ^ P. . , for the i-th factor and j ^ j.,. Con-
sequently, the s-FAT's do not necessarily have to be the same size. For 
n = 2 and s^ = s^ = s, assume that the numbers P^, ... and P^^ are not 
all equal in the partitioning

P^P^-FAT------> ( P ^  + ... + P^^ )(Pg^ + ... + P2g^)-s-FAT's. (11)

For the partitioning (11) the s^ s-FAT's are of sizes P^^P^^, ... and
P. P„ . For a matter of simplicity, let s = 2 and h. . = PP.., for 2  ̂ XI ^J
i = 1,2 and j = 1,2. Blocking PLANs derivalbe from confounding schemes 
in the 2^-p-FAT are given in Table 4. PLAN (a) of Table 4 and PLAN (b) 
of table 4 are obtained by confounding factor main effects with pseudo- 
block effects in the 2 -p-FAT. PLAN (c) is obtained by confounding the 
two-factor interaction effect of the 2 -p-FAT (which is a component of 
the two-factor interaction effect in the P^P^-FAT) with pseudo-block ef­
fects. PLAN (d) results from confounding all effects of the 2^-p-FAT with 
pseudo-block effects. Thus, for PLAN (d) one component of each of the 
factor main effects will be confounded with block effects and one compo»- 
nent of the two-factor interaction effect in the P^P^-FAT will be con­
founded with block effects.

For the case when s = 3i the partitioning

P^P^-FAT------^(^11+^12 +^13^ ̂^21 +^22 +^23)-^"^^-'^ (12)
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TABLE 4
SOIS BLOCKING PLANS FOR'THE CASE s^=S2=2 OF THE PARTITIONING (11)

Block size 
2^-p-FAT

Block size in the 
P^Pg-FAT

Number of blocks PLANS

 ̂' ̂ 2̂l"̂ 2̂2 ̂ 2 (a)

2 (h^l+hgi),(^22+^22^ 2 (b)

(hii+h22 ). (1̂ 12‘*’̂21 ̂ 2 (c)
1 ^11' ^12* ^21’̂ 22 4 id)
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results in nine s-FAT's of sizes for i = 1,2,3 and j = 1,

22,3, Table 5 gives the blocking PLANs derived from the 3 -p-FAT. In 
Table 5 there are four PLANs available for a partitioned factorial ar­
rangement of treatments of the type (12), if the partitioned factorial 
is to be run in three blocks. Two of these PLANs ((c) and (d)) result

Pfrom confounding a factor main effect in the 3 -p-FAT with pseudo-block 
effects and the other two PLANs ((a) and (b)) are obtained by confounding 
components of the two-factor interaction effect in the 3^-p-FAT with 
pseudo-block effects. PLAN (e) results from confounding all the effects 
of the 3^-p-FAT with pseudo-block effects.

Example 10 ; Consider the algebraic partitioning

10i92-FAT ^  +^12 ■‘■̂13̂ ^̂ 21 ■*■̂22 "^23^"^"^^'^'
For simplicity, let 2^^ and 2^^ refer to the lowest two levels of
factors one and two; let 5^^ and 4^^ refer to the highest five and
four levels of factor one and factor two, respectively, and let 3^2
and 3g2 correspond to the three middle levels of factors one and two.

2In this example corresponds to a 3 -p-FAT, so confounding schemes 
2for a 3 -FAT will be used to arrive at some of the blocking PLANs.

The nine s-FAT's resulting from the partition are of sizes h ^  = 4,

h^2 — ^22 ~ ^23 ~ ^^2 ~

h^^ = 20. Some of the blocking PLANs are given in Table 6. Blocking 
PLAÎÎS within the s-FAT's are omitted at this point because the s-FAT's 
are of different sizes. For blocking PLANs (a), (b), (c) and (d). 
Figure 9 illustrates how the confounding schemes in the 3^-p-FAT de­
signate blocking PLANs for the 10x9-FAT. As before, the rows of the 
squares in Figure 9 represent levels of factor one and the columns of
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TABCE 5

SOME BLOCKING PLANS FOR THE PARTITIONING (12)

Block size Block size in P^Pg-FAT Nunber of 
. blocks

PLAN3^-p-FAT
Ck]j+h2 +̂h|j2 ) I (̂]_2̂ ^ 1^^33 ̂ ’ ̂ 1̂3"*’̂ 22"̂ 3̂1 ̂ 3 PLAN (a)

3 (1111+1122+1133), (hi^+hgi+h^g) * (^2"‘'̂ 3'*'̂ 31̂ 3 PLAN (b)

(kii+h.2i+h 2̂ ) 1 (k-j 2+^igp+hy ) » (ĥ i+b.̂ 2+h^^ ) 3 PLAN (c)

(hii+hi2+hi3), (h2i+h22+n23^ » ̂ 3̂1'*'̂ 32"*'̂ 33̂ 3 PLAN (d)

1 ^ll'^12'^13'^l'^2'^3*^31'^32'^33 9 PLAN (e)
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TABLE 6
SOME BLOCKING PLANS FOR EXAFIPLE 10

Block size 
3^-p-FAT

Block size in 10x9-FAT Number of 
blocks

Blocking PLAN

31, 32, 27 3 PLAN (a)
O 33, 2P, 29 3 PLAN (b)
J 20, 30, 40 3 PLAN (c)

18, 27, 45 3 PLAN (d)

1 4,6,6,e,9,10,12,15,20 9 PLAN (e)
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0
1
1
34
5
6
78
9

PLAN (a)

0 1 2  3 4 5 6 7 8

PLAN (b) 
0 1 2 3 4 5 6 7 8

6
7

PLAN (c) PLAN (d)
0 1 2 3 4 5 6 7 8
0 11
2
3 2

1 2 3 4
5
6
7 3
8
9

Figure 9. - Illustration of blocking PLANs (a), (b), (c) and (d) 
example 10.
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the square represent levels of factor two. The numbers 1, 2 and 3 
indicate the three sets of treatment combinations that result from the
various blocking PLANs. Blocking PLAN (e) is obtained by confounding

2all effects in the 3 -p-FAT with pseudo-blocks. A diagrammatic rep-
sentation of blocking PLAN (e) is omitted.

n
For the partitioning of a P.-FAT when n = 3 and s_ = s_ =

i=l 1
s^ = 2, or more explicitly,

P1P2P3-FAT------- >  (^U+^12) ( % + ^ 2 2 )  (P3i+P32)-s-F^' s , (13)

and, letting h^j^ = P^^P^^P^^, for i = 1,2, j = 1,2 and k = 1,2, the block­
ing PLANs listed in Table 7 can be obtained from confounding schemes in 
the 2^-p-FAT. PLANs (a), (b) and (c) result from confounding factor main 
effects with pseudo-block effects; PLANs (d), (e), (f) and (g) result 
from confounding interaction effects of the 2^-p-FAT with pseudo-block 
effects; PLANs (h), (i) and (j) result from confounding two distinct 
factor main effects and their generalized interaction effect with pseudo­
block effects; PLANs (k), (1) and (m) result from confounding one factor 
main effect, the three-factor interaction effect and their generalized
interaction effect with pseudo-block effects and PLAN (n) is obtained by

3confounding the two-factor interaction effects of the 2 -p-FAT with pseudo­
block effects. PLANs (d), (e), (f), (g) and (n) are the only PLANs in 
which interaction effects are confounded with block effects.

For the general partitioning 
n n
7X P - F A T ------- >TT(P-t + ... + p . )-s-FAT's (14)
i=l ^ i=l ^®i

where, for at least one i{l, ... ,n} , the numbers P. , ... and P. areil
not all equal, blocking PLANs can be obtained from confounding schemes in 
n
TCs.-p-FAT. Naturally, it is easier to obtain PLANs if all the s. are 
i=l ^



60

TABLE 7
SOME BLOCKING PLANS FOR THE PARTITIONING (13)

Block size 
2̂ -p-FA7'

Block size in P^PgP^-FAT No» of
Blocks

PLAN

’ ̂ 2̂1l'̂ 2̂12'̂ 2̂2l'̂ 2̂22 ̂ 2 (a)
(^111+^112+^211+^212 ) ' (^121"^^122+^221+^222 ̂ 2 (b)
(hiii+hi2i+h2ii+h22i), (^H2‘''̂ 122‘‘'^12'^^222 ̂ 2 (c)

4 (h-, n+h^i ?+hppi +hpp2 ) » (^121+^122‘‘’̂11'*’̂212^ 2 (d)
(^111+^222+^121+^212)’(^112+^122+^211+^221^ 2 (e)
(hii^+h^22+^H'‘‘̂222^ ’ ̂ ^ 2 ‘‘’̂ 21+^12+^221^ 2 (f)
\̂ll'*'\22'̂ 2̂12'*'̂ 221̂  ' ̂ ^12‘*’\2l‘‘’̂2H'*'̂ 222̂ 2 (g)
(hm+hn?) f (^21+^22^ ’ (̂ 22l‘*’̂222^ '^^H+^212^ k (h)
(h^ll+hi2i), (^12+^22^ ’ (^212+^222^ ' ̂ ^211+^221^ 4 (i)
(\ 11+^211 ), (5̂ 212+̂ 212̂  ’ ̂ 2̂2'*'̂ 222̂  ' ̂ 2̂l'*'̂ 221̂ 4 (j)

2 (\n+^22^ ' (^12+^21^ ' ̂ 2̂1l'*'̂ 222̂  ’ ̂^212‘*‘̂221 ̂ 4 (k)
(5̂ 212+̂ 111̂ » (h-n?+hpT) ), (̂ 121+^222) ' (5̂ 122+5̂ 221̂ 4 (1)
(5̂ 111+5̂ 21 ) ' (5̂ 121+5̂ 211̂  * (5̂ 112+5̂ 222̂  ' (5̂ 122+5̂ 212 ̂ 4 (m)
(5̂ 111+̂ 222̂ , (̂ 112+5̂ 221̂  ' (5^22+5^11^ ’ (5̂ 212+5̂ 121̂ 4 (n)

1 hill' ^112» 5̂ 121» 5̂ 122» 5̂ 211» h2i2» ^221» 2̂22 8 (r)
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some power of a specific prime number • If the Sĵ are powers of different 
prime numbers or products of different prime numbers, then the theory of 
White and Holtquist (#-) and Eaktoe (40) might be used to develop a con­
founding scheme that confounds interactions of the p-FAT with pseudo­
blocks. Perhaps it might be easier and quicker to partition the original 
s-FAT so that the set of pseudo-design points representing the s-FAT's 
is easier to separate into subsets that can be assigned to blocks of 
units. Whether or not more than one partitioning of a FAT is possible 
depends upon the way each set of levels for each factor is separated into 
subsets and, in a blocking situation, upon available block sizes.

Blocking and Unequal Partitionings
n

An algebraic partition of a P. -FAT of the type (7) is called
i=l ̂

an unequal partition if s^ ̂  Sj for some i ̂  j, i = l,...,n and j = 1, 
...,n. The set of pseudo-design points, Ŝ , now corresponds to a mixed 
or asymmetrical factorial arrangement of treatments. The statistical 
theory that leads to confounding schemes in mixed factorial treatment 
arrangements has been developed in various ways. Geometrical methods 
have been used to obtain a mathematical basis for the development of con­
founding schemes. The use of the mathematical properties of finite fields, 
or Galois fields, also leads to confounding schemes for prime symmetrical 
factorial treatment arrangements. Recently, White and Biltquist (44) and 
Raktoe (40) present methods to combine Galois fields with a different 
number of prime elements in such a manner as to retain the properties of 
a finite field, thus, providing a mathematical basis for mixed factorial 
condounding schemes. A method of blocking can also be obtained by con­
founding procedures that take into account only a subset of the factors
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n

that make up a treatment combination. For example, in a TCP.-FAT rep-
i=l

resenting factors Â , ... and Â , confounding methods can be used on the
set of treatment combinations forming a P^P^-FAT (factors A^ and Ag) to
arrive at a confounding scheme in the JYP.-FAT. Each treatment combi-

i=l ^
nation in the P^P2~FAT is replaced by a set of treatment combi­
nations designated by and x in the first and second positions of the

n
n-tuples representing the treatment combinations in the P^-FAT.

n i=l
The confounding schemes for a "JT P- -FAT depend largely upon the

i=l
set of pseudo-design points, Ŝ . Attention is now directed to the situat­
ion where 5^ represents a mixed p-FAT. If a P̂ P̂g-FAT is partitioned

P^P^ -FAT 9»(Sl(Pl.l))(s2(f2.i))-s-FAT's, (15)
then the possibilities for blocking PLANs for the partitioned P^P^-FAT 
are given in Table 8. The word "other" appears in Table 8 to allow for 
other confounding schemes concerning the s-FAT's that might lead to block­
ing PLANs. Kore can be said about blocking procedures for the partition 
(15) if ^ Sg and if s^ and s^ are powers of the same prime number.
For this case, the methods mentioned in Kempthorne (3̂ ) concerning pseudo- 
factors are appropriate for confounding schemes in the p-FAT of the part­
ition. Also, if each s-FAT represents a q^-FAT, where q is a prime power 
number, then confounding schemes within each s-FAT are easily constructed 
by the pseudo-factor method mentioned in Kempthorne (3̂ ). An example of 
these concepts is now provided.

Example 11 : Consider the unequal algebraic partitioning
6x6x4-FAT >(3i(\^3_))(32(22,3_))(23(2^^^))-s-FAT's.

Let the sets of six levels for the first and second factors be part­
itioned into low two, intermediate two and high two level subsets and
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TABLE 8
SCKE BLCCKTOG PIANS FGR THE PARTITIONING (15)

Block size
SiSg-p-FAT

Block size 
FlPg-FAT

Ivumber of 
blocks

Blocking PLANs

® A . 1^2.1 .l))(̂ 2 (̂ 2.
®2^1.A.1 ®1 ( ** )( II ):S2fl.1^2.1

1 ^l.A.l ®1®2
/  II )( II

1 ^1.1 ®1®2^2,1 ( ** )( II

) A . i
1 ^2.1 ®1®2^1.1 ( " )( II

):^2.1
OTHER
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let the third factor level set be partitioned into two subsets, one 
subset representing the low two levels and the other representing the 
high levels. The set of pseudo-design points is equivalent to a 
3x3x2-FAT. Each s-FAT represents a 2 -FAT. For this example, con­
founding schemes in a 3x3x2-FAT and 2^-FAT lead to the blocking PLANs 
listed in the fourth column of Table 9« To obtain the blocking PLANs 
mentioned in Table 9, some of the components of the main effects and 
some of the components of the interaction effects of the 6x6x4-FAT 
must be confounded with block effects. Let those components of factor 
main effects and components of interaction effects attributed to be­
tween s-FAT effects be represented by A for factor one; B for factor 
two; C for the third factor; BC for the factor 2 - factor 3 inter­
action and AB^ and AB^ for the usual components of the factor 1 - 
factor 2 interaction effects. Table 10 indicates the confounding 
schemes that are needed to obtain the blocking PLANs mentioned in 
Table 9» Single letters in Table 10 indicate that components of factor 
main effects are confounded with block effects. Two or more letters 
indicate that a component of an interaction effect is confounded with 
block effects. For example, FDE in blocking PLAN (q) indicates that 
the 3-factor interaction effect among factors one, two and three in 
each s-FAT is confounded with block effects. The subsets of treat­
ment combinations are given in Figure 10 for blocking PLANs (e) and 
(x), where the numbers in the boxes indicate which subset the treat­
ment combination defined by the row and column indices is placed. For 
blocking PLAN (x) in Figure 10, the confounding of all effects in the 
3x3x2-p-FAT with pseudo-block effects results in eighteen different
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TABLE 9
BLOCKING PLANS FOR EXAKPLE 11

Block size 
3x3x2-p-FAT

Block size 
6x6x4-FAT

Number of 
blocks

Blocking PLAN

9 72 2 (a)
6 48 3 (b),(c),(d),(e)
3 24 6 (f),(g)
2 16 9 (h)
1 8 18 (i)
1 4 36 (j),(k),(l),(m),

(n),(p),(q)
1 2 72 (r),(s),(t),(u), 

(v), (w), (x)
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TABLE 10
CONFOUNDING SCHEMES USED IN EXAMPLE 11

Blocking PLAN Effects to confound with block effects in
3x3x2-p-FAT 2x2x2-s-FAT

(a) C none
(b) A none
(c) B _ none
(d) ASi none
(e) AB^ none
(f) A, C, AC none
(g) B, C, BC none
(h) A, B, ABI, AB^ none
(i) all none
(j) a n F
(k) a n D
(1) a n E
(m) a n FD
(n) a n FE
(p) a n DE
(q) a n FDE
(r) a n F, D, FD
(s) a n F, E, FE
(t) a n Dp Ep DE
(ti) a n F, DEp FDE
(v) a n D, FE, FDE
(w) a n Ep FD, FDE
(x) a n FD, DEp FE
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Blocking PLAN (x) Blocking PLAN (e)

3x3x2-p-FAT

factor 1
3x3x2-p-FAT

factor 3 0 1 2 factor 3 0 1 2
0 T 5 9 0 0 1 2 3U 1 17 21 1 1 & 3

:.or 2 1 0 25 . 2? V factor 2 1 0 3 1 2
1 37 41 45 1 3 1 2

O 0 4? 33 57 2 0 2 3 1C 1 él 65 69 1 2 3 1

factor 1

6x6x4-FAT 6x6x4-FAT
factor 1

factor 3 n
10 12
12 10
21
22
2020 22

21

2 5ZT
6 T  37 35 71

factor

1 
2 
3

factor 1 
1 1  2 1

1 
1 
1 

3 1 1

ÏÏ
1 
2 
3

“Tïïl 
1 
2 
3

1
1
1
1
1
1
1
1T
3
3
3
3
3
3
32
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1T
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
T
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1

Figure 10. - Illustrations of the subsets of treatment combinations 
for blocking PLANs (x) and (e).
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sets (one pseudo-design point per set), represented by the numbers 1,
5, 9, ••• ard 69* Next, within each of the eighteen s-FAT*s the FD,
DS and FE interaction effects are confounded with block effects. Thus, 
subset 1 in the 3x3x2-p-FAT is replaced by the four subsets 1, 2, 3 
and 4 in the 6x6x4-FAT,

Let a P^P^-FAT be partitioned according to (where s^ ̂  ŝ )

P^Pg-FAT ------------- ••• +Pis. )(P21+ "  +P2s2)"S-FAT's.
For simplicity, let h^^ = P̂ ^̂ Pgj, for i«{l, and je{l,...,S2} .
The blocking PLANs that are obtained by confounding methods in the
SiS2"P-FAT are given in table 11. Also, let

h . =]Fh. . and h. = Z  h. . .• J i 1. i

In Table 8 there can be more than one PLAN that will give the indicated 
number of blocks for the partitioned factorial arrangement. The number 
of PLANs depends upon the numbers s^ and Sg. For example, if s^ = (ŝ )̂ , 
where k is some positive integer, then there are

7T C( - 3 )/(s^'”̂ ^ - sj))
i=0 ^ 1 1 1

confounding schemes for pseudo-block size s® that will lead to blocking
PLANs requiring s^ blocks. For the more general algebraic partition

n
(7), the set of pseudo-design points represents a TT^.-p-FAT. The block-

i=l ^
ing procedures depend mainly upon the availability of confounding schemes
for the p-FAT, which depends upon the numbers ŝ , ... and s^ and the sizes
of the 7T s . s-FAT's . Consequently, there is no general statement that 

i=l ^
is made concerning blocking procedures for unequal partitioned FAT's.
The concept of multiple partitioning, first mentioned by Thomas (42), is 
now briefly discussed.
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TABLE 11
SOŒ BLOCKING PLANS FOR THE CASE n=2 and

Block size 
s^Sg-p-FAT

Block size in P^Pg-FAT Number of blocks in
P P-FAT 1 2

®1 h -, h «, ... and h "2
h-m f hrt I • • • ând h JL # C» 1* ®1

1 hii, ĥ 2» ••• %
OTHER
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Multiple Partitioning

Consider the special case of the algebraic partitioning 
n n
71 P.-FAT----- >71 (P,i+ ... +?., )-s-FAT*s, (16)
i=l i=l ^  î i

where P = ... = P , for i = 1, ...,n. As mentioned earlier, thisÎJL X
partitioning is denoted

n n
TTP.-FAT----- »^7[ (s. (p. ,))-s-FAT's. (17)
i=l ^ i^l ^

It might be the case that the s-FAT's furnished by the partitioning (17)
are still prohibitive for some reason. The size of each s-FAT might be
reduced by partitioning it algebraically and thus, it is replaced by two
or more smaller s-FAT's. In the partitioning (17), if P. - = s. (P. ),i.c i.6
for i = 1, ...,n, then each s-FAT can be partitioned according to

71 P. 1------ > 7 T  (s. g))-s-FAT's, (18)
i=l i=l n

since each s-FAT represents a factorial arrangement of size 7T P- t •
i=l I'-L

Definition 46 ; The expression P̂  = s, ,ŝ  ^...s^ ,_(P̂  ,.) indicates
n

that the i-th factor in a JYP.-FAT is equally partitioned k times.
i=l ^ n

Definition 4-7 : If each factor in a 71 P.-FAT is equally partitioned
i=l

k times, then the partitioning 
n n
T^p fat ------>71 (s. T...s. , (P. ))-s-FAT's, (19)
i=l ^ i=l n

is said to be an equal k-order multiple partitioning of the 7C P.-FAT.
i^l 1

If k = 1, the partitioning is of the type previously mentioned and ^
is written as s . For an equal k-order multiple partitioning (19)

^ n
there are a total of 7T(s- , ) s-FAT's and each s-FAT consists of
n 3=1 ^ ^ n

ir treatment combinations. In the general situation, a 7[P.-FAT 
i=l i^l ^
may be multiply pairtitioned according to 

n n
71 P.-FAT >7T(P._ + ... + P, )-s-FAT's, (20)
i=l ^ i=l ^®i
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where one, some or all of the numbers may be expressed as

’’ih = ^ih.i +

If this is dome for each i and h, i = 1, ..., n and h = 1, ..., ŝ , the 
partitioning (20) is a 2-order multiple partitioning and is denoted by

7XP -FAT  >71 (II" (P^ 1 + ••* + M V  - ))-s-FAT's. (21)
i=l ^ i=l k=l

If P., . ^ P., , for some h = 1, . s. and for some j, k l,...,t., ,iri»3 in#K x
j ^ k, then the expression

^ih ̂  ^ih.l + ••• +

indicates that the i-th factor is unequally partitioned two times, or
just partitioned two times. The concept of an unequally k-partitioned
factor is a direct generalization of the 2-order partitioning of a factor.

n
A k-order multiple partitioning is a nartitioning of a 7T P.-FAT, where

i=l ^
each factor level set is partitioned k times and at least one factor 
level set is unequally partitioned k times.

n
Remark 14 : For the 2-order multiple partitioning of a JY P.-FAT

n ^i i=l 1
given by (21), there are a total of TT ( X  t_ ) s-FAT's.

i=l k=l
Proof : The P^ levels of the i-th factor are separated into
t., + ... + t. sets of levels. Proceeding to treat the part-iX X
itioning as if s. = t, + ... + t. and following the proof of 1 il
remark 1, the result is obtained.

A 2-order multiple partitioning of the type (21) for 2 = t.isi
= tgg and n = 2 is given by
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This indicates that a P^Pg-FAT was first partitioned according to

P^Pg-FAT >(s3̂ (Pi,i ))(s2(P2̂ i ))-s-FAT*s. (23)

Then, since P^^^ = ^2.1 " ^®2.2^^2.2^^’ ^ach
s-FAT in (23) represents a P^ ̂ P^ ^-FAT, each s-FAT is subjected to a 
partitioning of the type

^1.1^2.
Now, combining (23) and (2̂ ), (22) is obtained. For (22) the possible 
blocking PLANs are listed in Table 12. The first fourteen blocking PLANs 
in Table 12 are obtained by confounding main effects or interaction ef­
fects in the s.s^ _s_s_ «-p-FAT with pseudo-block effects. The fifteenth J. J.#6 6
PLAN is obtained confounding all effects in the p-FAT with pseudo-block 
effects and the remaining PLANs are obtained by confounding all effects 
in the p-FAT with pseudo-block effects and by confounding effects within 
each s-FAT with block effects.

It is not necessary that all factors be equally k-ordered, mult­
iply partitioned. For example, consider a P^P^-FAT where the first 
factor of P^ levels is 2-order partitioned and the second factor of P^ 
levels is 1-order partitioned. This partitioning is given

P^P2«FAT (25)
The blocking PLANs for the partitioned FAT in (25) are given in Table 13* 
The first seven blocking PLANs of Table 13 are obtained tqr confounding 
schemes applied to the s^s^ 2̂ 2"P"FAT and the remaining blocking PLANs 
are obtained by confounding all effects of the p-FAT with pseudo-block 
effects and confounding effects within each s-FAT (the same effects 
for all s-FAT's) with block effects. A brief example of some of these 
concepts is now given.
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TABLE 12
SOIffi BLOCKING PLANS FOR THE 2-ORDER MULTIPLE PARTITIONING (22)

Block size 
=1=1.232:2.2-P-FAT

Block size 
P1P2-FAT I^ber of blocks in P^Pg-FAT

=1 =1^1.2^2.2 =2=1.2=2.2

=1.2 =1.2^1.2^2.2 =1=2=2.2
=2 =2^1.2^2.2 =1=1.2=2.2
=2.2 =2.2^1.2^2.2 =1=1.2=2

=1=1.2 =1=1.2^1.2̂ 2.2- =2=2.2

% =1=2^1.2^2.2 =1.2=2.2
=1=2.2 =1=2.2^1.2^2.2 ®1.2®2

=2=1.2 =2=1.2^1.2^2.2 SIS2.2
=2=2.2 =2=2.2^1.2^2.2 =1=1.2
=1.2=2.2 =1.2=2.2^1.2^2.2 =1=2

Vl.2=2 =1=1.2=2^1.2^2.2 =2.2
=1=1.2=2.2 =1=1.2=2.2^1.2^2.2 =2
=1.2=2=2.2 =1.2=2=2.2^1.2^2.2 =1
=1=2=2.2 =1=2=2.2^1.2^2.2 =1.2
1 Pi.2^2.2 =1=1.2^2=2.2
1 >1.2 =1=1.2=2=2.2>1.2
1 >2.2 =1=1.2=2=2.2>1.2

OTHER



TABLE 13
SCM BLOCKEffi PLANS FOR THE PARTITIONING (25)

Block size Block size No. of Blocks
P^Pg-FAT P^Pg-FAT

®1 ®1^1.2^2.1 ®1.2®2
®1.2 ®1.2^1.2^2.1 ®1®2
=2 ®2^1.2^2.1 ®1®1.2
®1®1.2 ®1®1.2^1.2^2.1 ®2
®1®2 ®1®2^1.2^2.1 21.2
®1.2®2 ®1.2®2^1.2^2.1 =1
1 ^1.2^2.1 ®1®1.2®2
1 ^1.2 Vl.2®2^2.1
1 ^2.1 ®1®1.2®2^1.2
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EvflTnpl ft 12 : Consider the algebraic partitioning

8^6g-FAT------)-s-FAT's.
This partitioning yields four s-FAT's of size twelve and will admit 
blocking PLANs with block sizes 3» 12, 24 and 48. Since 4 = 2x2,
the number 4^ ^ can be represented by ̂ ^.l “ ^1 2^1 2̂ * "hus, the 
partitioning mentioned above becomes the partitioning

8]_6g-FAT------> (2^2^.2 ̂ 1̂.2) ̂ ̂ 2̂ ̂ 2̂.1 ) )-s-FAT ’ s.
This partitioning now admits blocking PLANs with block sizes 2, 3, 6, 
12 and 24.

n
It is not necessary that all factors in a TC P. -FAT be multiply

i=l
partitioned. If the level sets of some (not necessarily all) factors are 
multiply partitioned, then the entire partitioning is referred to simply 
as a multiple partition. For example, an unequal 2-order partition on 
factor one and a 1-order partition on factor two is indicated by the 
multiple partition

P̂ P2-FAT ( (P̂ i. 1+^11.2)+(̂ 12. l‘‘'̂ 12.2)) ̂ 2̂l‘*'̂22  ̂*
Letting h^j^ = P^^ jP^^ for i,j,k = 1,2, it is seen that corresponds 
to a 4x2 FAT. The blocking PLANs obtained by confounding procedures in 
the 4x2-p-FAT are given in Table 14. In this case s^ = Sg = g = 2 
and s^s^  ̂= s^s^ = s^ ^s^ = 4. The methods to obtain the blocking PLANs 
in Table 14 are indicated by the arrangements of x's is the last four 
columns of Table 14. The x's indicate that effects in the 4x2-p-FAT are 
confounded with pseudo-blocks. An x in column one indicates that the 
entire factor one main effect of the 4x2-p-FAT is confounded with pseudo­
block effects; an x in column two indicates that a component of the fac­
tor one main effect of the 4x2-p-FAT is confounded with pseudo-block
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TABLE 14
SOME BLOCKING PLANS FOR AN UNEQUAL MULTIPLE PARTITION

Block size Block size in Number Methods
4x2-p-FAT slocks 1 2 J 4

4 (h^l+h^2i+^12"^^2^, ) 2 X
4 (hiii+hii2+h2i2̂ +h2i2), (^l21+^122'^^21+^222^ 2 X
4 ^ ^ U ‘̂ ^21‘̂ 2̂21'̂ 2̂11̂  ’ ̂ 2̂22"̂ 2̂12'*'̂ 2'''\l2 ̂ 2 X
4 (^111+^112+^1+^222 ) » (^121+^122+^211+^212 ̂ 2 X
4 (^111+^121+^12+^22 ) » (^122+^112+^11+^221 ̂ 2 X
4 (^111+^122+^11+^22 ) ' (^112+^121+^212+^221 ̂ 2 X
4 (^111+^122+^12+^21 ) ' (^112+^11+^121+^222^ 2 X
2 (̂ 111+^112) » (̂ 121+^122) » (̂ 211+ ^ 12) 2 X

(̂ 221+ ^ 22)
2 (^^111+^21^’( ^ 2 + ^ 2 ^ ’̂ ^212+^22^ 4 X X X

(^11+^221)
2 (̂ 111+^211) » (̂ 121+^221) » (̂ 112+^212) 4 X X X

(̂ 122+^222)
2 (̂ 111+^122) » (̂ 112+^121) » (̂ 221+^222) 4 X X

(̂ 212+^221)
2 (̂ 111+^212) ' (̂ 112+^211) » (̂ 121+̂ 222̂ 4 X X

(hi22+h2n)
2 (hiii+h22i), (11112+̂ 222̂  » ( 1̂21+̂ 221̂ 4 X X X

(11212+^122)
2 (^111+^2 ) ' (^12+^21 ) ' (^21+^12 ) 4 X X

(hi22+li2ii)
1 ^111 » ̂112 » ̂ 1  ' ̂122 ' ̂ 11 ' ̂212 ’ ̂221®”̂  ̂ 222 8 X X X
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effects; an x in column three indicates that a component of the factor 
two main effect is confounded with pseudo-block effects and an x in column 
four indicates that a component of the factor one - factor two interaction 
effect is confounded with pseudo-block effects. An example is now given 
of an unequal multiple partition of a FAT so that the blocking PLANs the 
partitioning admits will be analogous to those presented in Table 14. 

Example I3 ; First consider the partitioning of a 12x$-FAT given by

122$2-FAT >   ̂̂ 2̂1‘*‘̂ 22 ® • This partitioning
results in four s-FAT*s of sizes 10, 14 I5 and 21. The blocking PLANs 
admitted by this partitioning by confounding effects in the 2 -p-FAT 
will have block sizes (i) 25 and 35i (ii) 24 and 36, (iii) 31 and 29 
and (iv) 10, 14, I5 and 21. A second order partition can be performed 
on the first factor by the following

"̂̂ 11 ^  ̂ (^11.1 ^11.2^ ^^2,1 ^12.2^^*
The partitioning is now represented by

12i52“FAT ^  ((^li.l‘‘‘\l.2^‘*‘̂ ^2.2‘‘’̂ .2^^  ̂ 2̂1**’̂22̂ '"®"̂ '̂̂ ’®*
From this partitioning there result eight s-FAT's of sizes 4, 6, 6, 6, 8, 
9, 9 and 12. This partitioning admits blocking PLANs with block sizes

(i) 24 and 36 (vi) 14, 10, 21 and I5
(ii) 35 and 25 (vii) 12, 12, 18 and 18
(iii) 30 and 30 (viii) 20, 10, 15 and I5
(iv) 29 and 31 (ix) 17, 18, 13 and 18
(v) 14, 15, 16 and 15 (x) 4, 6, 6, 6, 8, 9, 9 and 12.



CHAPTER V 

STATISTICAL INFERENCE

It is possible to obtain observations from one or more of the
s-FAT's of an algebraic partitioning 

n n
71 P.-FAT------ ►TTCP.n + ... + Pz, )-s-FAT’s.
i=l i=l

Given a set of observations the problems of statistical inference, namely 
estimation and significance testing, are now discussed• In this chapter 
methods are given for unbiased estimation of certain functions of the
unknown parameters and methods are developed for constructing tables
appropriate for the analysis of variance as a means for significance 
testing under noinnal theory and approximate significance testing under 
randomization theory.

Brief Results for the General Case
In the following discussion let Y be an m by one vector of 

observations, M an m by one vector of population means and let e be an 
m by one vector of error terms such that E(£) = 0® and var(£ £’) = ô Î « 
It shall also be assumed that the observational model, Y = h(M,e), is a 
linear model, in other words, % = ^ + 2" ^  be an m by one vector of
constants, for k = 1, ...,m, such that, for k ̂  k'

= 0 (26) 
The choice of for k = 1, ...,m, can be made so they define a set of

78
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effects among the elements of K that correspond to components of factor
main effects and factor interaction effects.

Theorem 1 ; If is the effect of interest, then is an
unbiased estimate of that effect and var(^Y) =

Proof: (1) E(^Y) = ^E(Y) = ̂  and
(2) var(^'Y) = y  var(Y)b = Vvar(e)b = y  (cr̂ I )b =-ic— -k — — ----k m —

=

In general, cov( ^Y, ^,Y) = ;^cov(Y,Y)^, = If = 0,
then the estimates ^ Y  and ̂ , Y  are uncorrelated and if e is normally
distributed, the estimates are independently (and normally) distributed. 
Now assume that e is normally distributed, or e % N(^, o'̂ Î ). It is
easily shown that Y « N(M, c^l^) and ^ Y  « N(b^,

Theorem 2 ; If ̂ Y  « N (^K, then

Proof: Since ̂ Y  « it is also known that

= 1).
J 7 ^

Using theorem 4,1 in Graybill (29) and noting that and 
^ Y  are scalars, it follows that

where q is the noncentrality parameter.
The statistic of theorem 2 can be expressed the following way:

r ^ i  , 1= Y'B^Y ( -^) where
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B^= Thus, (1/(,2))Y'B^Y «OC'd, q =2̂ % ) ' ( % M )  )
and the tenn Y'B^Y shall be referred to as the sum of squares correspond­
ing to the effect b^ .

Theorem 3 : If = 0 for all k ̂  k' and k,k' =1, ...,m, then

r ï =  r ( \  + ... + B^)I, where
mProof: T'Y = Y'l Y , so it remains to be shown that 2 B. = I .  — mr- ' i_i 1 m

Since 0 if k ̂  k', let R be a m by m matrix where
the i-th row of R is given by R* = (1/^ b^b^)b^» Now, for 
± 4  j, it follows that R^Rj = 0 , R^R^= 1 and that R is
an orthogonal matrix. Thus,

R'R = :m = ..... i
- Ll-i-i "

In the analysis of variance tables the total sum of squares can always
be represented by Y'Y, and the usual correction factor can be represented
by Y' ( — )Y. Thus, the total corrected sum of squares is Y' (I_- —J™)Y.— in la — — m Di in —n
Let Y be a vector of m = ]X observations from a completely random

i=l n
design where the treatment design is a P.-FAT. In chapter III the

i=l 1
matrices L^, Lp , ..., Lp , ..., and Lp p and the matrices B̂ , Bp ,
.., and B„ „ were defined for factor main effects and factor inter-
action effects. In this case B, = and I = R , + B „  + ... + EL, „.1 m m m i f\..1 i n
Let dg be the rank of Bg.

Theorem 4 : If Y « N(M, or̂ Î ) then, for 9^ 9 ' and 9,9' = 1,F^,...,

^n ^

(ii) I'BqY and Y'Bg,Y are independent.
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Proof: = H-(H^h;)B^ = H^d )H, . B, , so B,

0
is an idempotent matrix, and by using corollary 4.7.1 in 
Graybill (29), the result (i) is easily verified. Also, 
since = 0®, where a = dg and c = d̂ ,, and by using
theorem 4.15 In Graybill (29) the result (ii) is easily 
verified.

The term Y'BgY is referred to as the sum of squares corresponding to the 
effect LgM.

Remark 15 : Flackett (37), (see also Addelraan ( 2 )), has shown that 
for a k-way classification the main effects and interaction effects 
are orthogonal if and only if the following condition holds;

^k
n. . = — _—  71 n(j) , where

k ^-1 M l
%  îfc

N — 2  n. ...n.
il ik ^  ^

t

r. is the number of levels for the i.-th factor and
""j ^
n.  ̂ is the number of observations for theil...ik
(in,...,i, )-cell in the k-way classification.

n
If the experiment consists of one or more full replicates of a -FAT

i=l ^
(run in a completely random design) it is easy to see that, in view of
remark 15, there exist orthogonal main effects and interaction effects.».

If the experimental design is a block design then the existence
of orthogonality of main and interaction effects must be investigated.

n
For a partitioned p. -FAT where the blocking PLAN indicates that the 

i=l
s-FAT*s are assigned to blocks, the question immediately presents itself
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as to whether the between block comparisons can be attributed to orthogo­
nal components of factor main and interaction effects. Let the s-FAT's of

n
a partitioning of a TC P.-FAT (or groups of s-FAT's) be assigned to blocks

i^l
by an appropriate blocking procedure. Consider each pseudo-design point
in Sg as being replicated by the number of treatment combinations it

n
represents in the 7TP^-FAT. Thus, 

i=l
n. . = P-. .«tP.. ...P . for i {O, •..,s .—1}
^I'-'ij'-'^n  ̂ ^

n
n = n(i.) = ( JIP. )P.. and

« X=X j
n

N = n = TT P. •

Now, — ( 7T n(k)) = ---    (©) where
k=i^ ( ^ 1 " ' V

9 = (P2'"^n)^li_ ••• (^1'''^n-l^^ni '
± n

after some manipulation,
J r .... ( 7T n(k) ) = n .

This indicates that main effects and interaction effects can be defined 
n

in the TC s.-p-FAT that retain the orthogonality properties, regardless 
1̂ :1

of the size of the s-FAT's, consequently, regardless of the equality of 
block sizes. If the blocks are of equal size it is possible to confound 
the s-FAT's with blocks in such a way that only interaction effects are 
confounded with block effects. If the blocks are of unequal size, then 
in most cases main effects and interaction effects will have to be con­
founded with block effects and the number of confounding schemes is 
limited (as the number of confounding schemes for asymmetrical factorials 
is limited) as was observed in chapter IV,
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For significance testir^ the highest order interaction can be as­

sumed to be zero (i.e., assume M = 0^, where d = (P,-l)... (P -1))^2* • J- n
to obtain an error term in the AOV table. Now, letting 9 = F^...F^,

E(Y'BgY) = ^'BgM + tr(B^(<r:^)) = 0 + g^rank(Bg) = d^T^, since 
Bg is idempotent. Thus,

0
Now, consider some other factor main effect or interaction effect L,K.X-
The null hypothesis that L^M = = 0̂ is equivalent to the hypothesis
that M'B^K = ^ since,

if ^ then D^l^M = 0̂

= 0- 
M'B^M = 0 ,

and, consequently; the statistic

«

provides a means for siginficance testing, for X = F^,...,F^,...,(F2...F̂ ). 
By the remark in appendix II, if defines an effect L^M and if can 
be expressed as = GL^, then Y'B^Y = Y'B^Y and the hypothesis that 
M*B^ = 0 is equivalent to the hypothesis that = 0. A statistic
that provides a significance test for K^: K'B^K = 0 also provides a sign- 
ficance test for the hypothesis M*B^M = 0. Also, if the conditions 
in the remark of appendix II are satisfied, it makes no difference if 
either or was chosen to define the effect because the sum of squares 
corresponding to and L^K are equal. In the sequel, sums of squares 
will be computed by the easiest method.
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Analysis of Variance for Full Heplicates
Kethods are now developed that will allow the construction of

analysis of variance tables for full treatment combination replicates of
partitioned FAT's in the absence of block effects. This case reduces to
the analysis of unpartitioned factorial arrangements, since there is no
importance associated with the fact that the full treatment combination
replicate was performed in pieces, or in s-FAT's.

n
The set of 7C s.-s-FAT*s resulting from the partitioning 

i=l  ̂
n n
71 F.-FAT  ►Tl (P.n + ... + P. )-s-FAT's
i=l ^ i^l ^  ^®i

n
is considered as a full replicate of the 7^ P.-FAT. In this case,

i=l
n. . = 1 
" l ' " \  _

n(k) =71?.
M k ^
n

n = 71 P< and 
i=l

' _  n _  V, ^(1/H"-^)(7T n(k)) = 1 =  n.
Ifeî  ^""^n

so, when n is any positive integer, by remark 15, there exists orthogo­
nality of ma.in effects and interaction effects. The matrix L of chapter
III defines factor main effects and factor interaction effects and the

n
overall mean effect for a full replicate of a 7\P.-FAT. Since E(LY) =

2Df, LY is an unbiased estimate of the effect IM, and var(LY) = <r LL*.
n

Given a vector Y of observations of the 7t Pĵ -FAT (run in a completely 
random design) and since

^  ’ Bl * \  * Y  V z  " * Vn-l"
the following abbreviated analysis of variance (first three columns) 
table is easily constructed (see Table 15).
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TABLE 15
ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR A

FULL REPLICATE OF A ...P -FAT± n

Source DF Sum of Squares
Total ® = 7C Y'Y

(overall)mean 1 V \ 1

(factor 1 main effect) (Pi-i)

A^ (factor n main effect) (p̂ -i) Y'B I 
n

A^xAg (Pl-l)(P2-l) Ï'% iF2Ï

(Pn-1)(F̂ _1-̂ )
A^xAgXA^ (P^-1)(P^-1)(P^-1)

A _xA _xA n-2 n-1 n (Vl)(Pn_l-^)(Pn-2-:-) -®"nFn-lV2^

-V  ••• "'n-1 (Pl-l)'"(f»-l-l)

A_x ... xA 2 n (Pg-l)...(P^-l)
A^x ... xA^ (P^-1)...(P^-1)
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Example 14 : For n = 3 and = 2 the sets of levels for
each of the three factors are T^= = {0,1} and it follows that
T = T^X TgX T = {(000), (001), (010), (on), (100), (101), (110), (111)} . 
Each element of T designates a treatment combination and specifically, 
a 0 denotes the low level of the first, second or third factor and a 
1 denotes the high level of the first, second or third factor. To 
build the matrix L the first row is chosen to be Jg and the next three 
rows are chosen so they represent main effects for the first, second 
and third factors. The last four rows are obtained by taking the 
appropriate HD of rows 2 and 3» 2 and 4, 3 and 4 and 2, 3 and 4, The 
matrix L is given in Figure 11, where the columns correspond to the 
design points (000), (001), ... and (111).

1 1 1 1 1 1 1 1 4
1 1 1 1 -1 -1 -1 -1 %
1 1 -1 -1 1 1 -1 -1 %
1 -1 1 -1 1 -1 1 -1

"̂ 31 1 -1 -1 -1 -1 1 1
1 -1 1 -1 -1 1 -1 1

V 31 -1 -1 1 1 -1 -1 1 \ ^ 3
1 -1 -1 1 -1 1 1 -1

= L

Figure 11. - The matrix for example 14.

To obtain H from 1 the rows of L must be normalized. In this case the 
problem of normalization is easy because each row contains a plus one 
or minus one in each position, so, if 1^ is a row of L, then (1/48)1^ 
is the normalized row (=ĥ ). Thus, H = (1/^8)L. The matrices
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\  = W ’ *’*’ %
constricted. If this is done, the following matrices are obtained.

%  = (l/8)j| Bp = (1/8)

= I

'4 -4 
" 4  4

\ h

1
8

B.
%

1
8

f l 1 -1 -1 1 1 -1 -1 r 1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1 -1 1 -1 1 -1 1 -1 1
-1 -1 1 1 -1 -1 1 1 1 -1 1 -1 1 -1 1 -1
-1 -1 1 1 -1 -1 1 1 Bp = 1 -1 1 -1 1 -1 1 -1 1
1 1 -1 -1 1 1 -1 -1 O 1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1 -1 1 -1 1 -1 1 -1 1
-1 -1 1 1 -1 -1 1 1 1 -1 1 -1 1 -1 1 -1
-1 -1 1 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1

’ 1 1 -1 -1 -1 -1 1 1 " 1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1 -1 1 -1 1 1 -1 1 -1
-1 -1 1 1 1 1 -1 -1 1 -1 1 -1 -1 1 -1 1
-1 -1 1 1 1 1 -1 -1 -1 1 -1 1 1 -1 1 -1
-1 -1 1 1 1 1 -1 -1 Bp p = 1 -1 1 -1 1 1 -1 1 -1
-1 -1 1 1 1 1 -1 -1 % c 1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1 -1 1 -1 1 1 -1 1 -1

_ 1 1 -1 -1 -1 -1 1 1 _ 1 -1 1 -1 -1 1 -1 1

1 -1 -1 1 1 -1 -1 1 ’ 1 -1 -1 1 -1 1 1 -1
-1 1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1
-1 1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1
1 -1 -1 1 1 -1 -1 1 Bp p p = JLg- 1 -1 -1 1 -1 1 1 -1
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1
-1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
-1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1

The first three colnmns of an analysis of variance table are presented 
in Table l6.

For the partitioning
7T F.-FAT—  
i^l ^

n
^71 (p., + ... +P. )-s-FA?'s
i=l ^®i

the i-th factor main effect consists of (P̂ -1) components, for i = l,...,n.
To facilitate analysis procedures a set of orthogonal components for each
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TABLE 16
ABBREVIATED ANALYSIS OF VARINACE TABLE FOR A 

FULL REPLICATE OF A 2x2x2-FAT

Source DF
Total

(corrected) 7

h 1 T \ 1  =

4 1 2’V  '
A3 1
A3X/I2 1
AjXAj 1

^ ' ^ 3 -  '
4 ^ 3 1 T B p  p Ï  =

AiXAjXAj 1

Suit, of Sqiiares

-  (1/8)(ï...)2

= (1/8)(T 1.-Î 0.)^

= &/s)(ïoo.-%.-ïio.+'%.)‘ 
tt/8)Ci.oo-ï.oi-Y.io+̂ '.n)‘
a/8)(ï(,.o-ïo.l-\.0*’̂ l.l)

(1/8 ) (^ooo"^ooi““oio‘‘‘̂ o n ”\oo‘‘'̂ iio
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factor main effect are chosen the following way. First, choose a set

n
of orthogonal comnonents of the factor main effect in the TXP.-FAT that

n i=l 1
represents a main effect in the TT s.-p-FAT. For the i-th factor, for

1=1
i = 1, ...,n, there will be (ŝ -l) components of the i-th factor main
effect that represent effects defined between the p-levels of the i-th

n
factor (ie; the main effect in the TC s.-p-FAT). Now, within the k-th

i=l ^
p-level of the i-th factor, there are levels and consequently, (P^^rl) 
components of the factor i main effect can be defined, for i = 1, ...,n
and k = 1, ...,s^. Thus, a total of (s.-l) + S  (F̂ -̂1) = (Ph-l)

3=1
components of the factor i main effect have been defined, and this set.
if it is an orthogonal set, is a main effect for factor i.

The source of variation in an analysis of variance table due to
the factor i main effect has been denoted by A^, for i = 1, ...,n. Now,
in view of the partitioning (28), A^ can be separated into a between
p-level source of variation, denoted by A. ,, and a within p-level source
of variation for each p-level, denoted by A^ k) the k-th p-level
of factor i. Since there are s^ p-levels for factor i, the sources of
variation i)» ••• and A^ (Is.) he combined into one quantity
representing those components of the factor i main effect attributable to
the within p-level effects and it will be denoted by A. /n \. The1.1,1;. ;
matrices Lp , Hp and can be expressed as follows

h- 1̂  = [\.i 1"iL fi.(l,.)J L ^i.(l,.)J

(29)

The sum of squares corresponding to the i-th factor main effect, Y,
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can be expressed as follows

I'B„ Y = Y'B, Y + Y'B, Y. (30)

As a matter of computational convenience it is suggested that Y'B, Y is
i

first computed and then Y'B, Y is computed (using totals corresponding
i.l

to p-levels) so that Y'B, Y is then obtained by subtraction,
■  ^ . a , . r

“ (1,. r  ■ '
Since the factor main effects are expressed as the sum of between 

and within p-level effects, a k-f actor interaction effect, L, K
V V " \is expressed as the sum of 2 sets of effects defined by

the 2 matrices V 8 • • • 8 L.
^1^1

For example, if k = 2, then

, where = .1 or .(!,.) for all 
h — If

%

^1.1 '2.1

1.1 2. (1, . )
8

1. (1, . )  2.1
8

2. (1, . )

Of the 2 sets of components of the k-factor interaction effect only the
set of components defined by L, _ 8 ... 8 1, completely represents.1

n
a k-factor interaction effect among k factors in the TT s.-p-FAT. The

i=l ^
sum of squares corresponding to a k-factor interaction effect is typically 
Y'B, Y and it can be separated into a quantity corresponding to

n
a k-factor interaction effect in the TCs^-p-FAT, denoted by

1=1
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T'Bp Y, ani a quantity corresponding to the other components

V I "  V I
of the interaction effect, which is computed

For the partitioning (28) when n = 2, an abbreviated analysis of variance
table (first three columns) can be constructed according to Table 17,
letting m = P^Pg. Considering the s^Sg s-FAT's of the partitioning,
the first three columns of an analysis of variance table can be written
in the form of Table 18 (for the partitioning (28) and n = 2). The symbol
"A^xAg" in Tables 17 and 18 denotes the source of variation for all
components of the factor one factor two interaction effect except that
set of components that is also a between s-FAT effect (Â  2^2 1̂ *
19 is the abbreviated analysis of variance table for the partitioning 

3 3
Tt P.-FAT------^71 (P., + ... + P. )-s-FAT's,
i?l ^ i=l ^  i

letting m = P̂ PgP-j.
Abbreviated analysis of variance tables for full replicates of

partitionings of the type (28 ) involving more than three factors is a
direct generalization of Tables 18 and 19.

Analysis of Varinace for Multiple Full Replicates
The construction of analysis of variance tables is briefly exam-

n
ined for the situation where the full treatment replicate of a IX Pj -FAT

i^l
is performed r times. The general method is to construct the abbreviated 
analysis of variance table for each of the r repititions of the experiment 
and then to add corresponding degrees of freedom and sums of squares in 
the r tables. This addition of the sum of squares for factor main effects 
or factor interaction effects gives a sum of squares corresponding to a
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TABLE 17

ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR THE 
PARTITIONING (28) (for n=Z)

Source DF Sum of Squares

Total
(corrected) P1P2- I

4.1
4.(1,.)

(P]̂ -l)
(S]̂ -l)

(4 -4 ) r % i  - 1 ' \  1

4
4.1
4.(1,.)

(Pg-l)
(Sg-l)

(?2-:2)

4%Ag

4 .1 ^ 2 .1

4 . A . ( i , . )
4.(l,.)*^2.1
4 . ( 1 , . ) " ^ 2 . ( 1 , . )

( p ^ - D ( P g - i )

(s^ -l)(s2 -l)

(4 -^) (4 -4 )
(P^-s^)(»2"^) ” \.(i,.)4.i"

Y'B, , Y
4.(i,.)4.(i,.)

4 . A . 1
"A^xA^”

(s-ĵ -1) (s^-l)

(P^-1)(P2-1)-

(»1-I)(s2-1)“
r  -
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TABLE 18
ABBREVIATED ANALYSIS OF VARIANCE TABLE 

FOR A PARTITIONED P^Pg-FAT

Sonrce DF Sum of Squares

Total (corrected) V 2-I r  - eC):
Between all s-FAT's S1S2-I

*1.1 s^-1

*2.1 S2-I

*1.1^.1 (s^-l)(s2-l)
Within all s-FAT’s 

*2. (1, . )

Y*B_ J - ï’Bj, Ï
- V  - ^i.r
Y'&r Y - Y'Bp Y
- ̂ 2 "  - ^2.1"

(^DCPg-D-l y,B Y - Y'B Ï- F^Fg- -
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TABLE 19
ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR A 

FULL REPLICATE OF A P^PgP^-FAT

Source DF Sum of Squares
Total (corrected) W 3 - ^ y  (I - i J®)Y — m m m —
Between all s-FAT's Y' (â +a2+*̂ 3+®i|.+®̂ 5+®6‘*^7^-

■^.1

S.i
4.l"^2.1

^.1^3.1

4 .1^.1^3.1

S2-1

"3-^
(s^-l)(s2-l)
(s^-D(s^-l)

(Sg-ljfSj-l)
(s^-l)(s2-l)(s^-l)

/  = “2 
= ‘3

-  \.1^2./3.1- '
Within all s-FAT's ^1^2^3“®1®2®3

*1.(1,.)
*2.(1,.)

*3.(1,.)
”\ ^ Z

"A^xA^"
"A^xA^"
"A^xAgXA^"

h'^1

^ = 2
P^-S3

(P^-1) (Pg-D- (S]̂ -l) (Sg-l ) 
(P2-l)(P^-l)-(s2-l)(s^-l) 
(P^-1) (P-j“l)-(S|ĵ -l) (s^-l) 
(P^-1)(P^-1)(P^-1) -

(s^-l)(s2-l)(s2-l)

l ' \ l  - ^

Î ' V  " 2

ï ' V a -  ■

- “6

ï ' V 3 - ‘ "5 

- “7
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factor main effect in replicates (hereafter abbreviated "Rep.s'')» or 
factor interaction effect in Rep.s. Next, assuming each of the n factors 
is a fixed effect factor and since the same set of factorially arranged 
treatment combinations appears in each of the r repitions, the factor ef­
fect in Rep.s sum of squares can be separated into a sum of squares term 
corresponding to the factor effect and a sum of squares term corresponding 
to a factor by Rep.s interaction effect. If there is no reason for treat­
ing the r repititions as a source of variation that must be accounted for 
in the analysis, then all of the sum of squares corresponding to factor 
by Rep.s interaction effects may be pooled to obtain a residual or error 
sum of squares, providing the Rep.s are assumed to be of random effects.
If there is reason to consider the r repititions of the experiment as a 
source of variation to be accounted for in the analysis, say as r random­
ized blocks, then the usual advice is to leave the factor by Rep.s inter­
action terms unpooled. In this case, if the blocks or Rep.s are random, 
then the factor by Rep.s interaction terms can be used as error terms for 
significance testing purposes. The following discussion will serve to 
illustrate the above mentioned concepts. Abbreviated analysis of variance 
tables w i n  contain only the first two columns, however, sum of squares
will be exhibited for a case when n = 2.

n
Consider a 7X P--FAT that is performed r times, or in r Rep.s. 

i=l ^
The abbreviated analysis of variance table for each of the r Rep.s of the 
experiment is given in Table 20. Pooling the r analysis of variance 
tables yields an analysis of variance table of the form given in Table 21. 
Although the means to obtain the sum of squares is probably obvious, the 
special case where n = 2 is examined to illustrate the analysis procedure, 
obtaining the sum of square
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TABLE 20
ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR 

A FULL REPLICATE OF A P^...P^-FAT

Sottrce ■... . ■' " "1DF
Total (corrected) (,Pl. ..Pj,)-1

h

(p^-DCPg-i)
!

• •
• •

A^x...xA^ (P^-1)...(P%-1)
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TABLE 21
ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR r POOLED 

FULL REPLICATES OF A P-ĵ., .P̂ -̂FAT

Sotiree DF
Total

(corrected) (P,...P )-l J- n
Between a U  Replicates r - 1

Within all Replicates r(P^...P^-l)
A^ in Rep.s r(P^-l)

h

A^xRep.s (P^-D(r-l)

A^ in Rep.s r(Pa-l)

An (P̂ -1)
A^xRep.sn (P„-l)(r-l)

A^xA^ in Rep.s rCP^^-lXPg-l)
(Pl-l)(p2“l)

A^xA^xRep.s (p^-DCP^-DCr-i)

A^xA T in Rep.s n n-1 ^

A^xA -xRep.s n n-1 (fn-l)(fn-l-l)(r-l)

A^x. ..xA^ in Rep.s r(Pi-l)...(Pn-l)
Aq̂x . . .xA^ (P^-1)...(P^-1)

A^x.. .xA^xRep.s (R,-l)...(P_-l)(r-l)
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Suppose there are r repititions of a P^P^-FAT. For each repitition the 
matrix I can be constructed, or say T.(i) is the matrix I for the i-th 
replicate, for i = 1, ...,n. Given the matrices L(i), the following 
procedure is used to build a matrix I for the r replicates of the P^P2“FAT.

(1) Let the first row of L be J^p p = = (LCl)̂ ! • • • »L(r)^).
(2) Choose the next r-1 rows of L, call them to be, for m = P^P^

-J^ 0^ ... 0^ 0^m m n
J^-2J^ ... 0^ 0^ m m m m m

'-V -

m m m
(3) Inspect the matrices L(i) to make sure that L(i). = L(j) forÜ “ 9

i ̂  j and 9 = 1 ,  F̂ , F^ and F^Fg.
(4) From the matrices 1(1), ...,and L(r) form the foUorâng,

Lp = (L(1)̂  , ... , Ii(r).p, )
^1 ^1 -1
Lp = (L(l)_ , ... , L(r) )
^2 %  h

V 2 '  “ ■‘V a ’ ■

(5) Let 1^^ = Lg ® Lp for 0 = 1̂» 2̂ 1̂̂ 2* constructing

(6) For notation purposes, let L'9 in P.
L̂ 0R.

for
3=F^,Fg and F^F^

(7) To form the matrix L for all r replicates of the P^P^-FAT, the 
results of steps (2), (4) and (5) are combined with the rP^P^ 
row vector of ones obtained in step one. See Figure 12.
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I. =

b
b

in R =
% "

%  in R %
2̂^

^F,Fo in RJL ^ ~V2

\ ? 2 P

Figure 12. - The matrix 1 for r replicates of a P^Pg-FAT. 
Given I the matrix H is obtained by normalizing the rows of I.-. Ey
partitioning H into ^  g. p/
are constructed by

) the matrices 3. in P A

H'H = "^^^inR^]_inR "̂ F̂ginR ^ P ’ginR

^Fq_ in R '*’ in R "*'̂ 1̂̂ 2 ^

= + 3 + B_ _ + B. + B
'I-' "2 "2-

The first three columns of an analysis of variance Table are given in 
Table 22. The sum of squares may be written in terms of the observations 
in such a way that computation is straightforward. If an element of the 
vector of observations, Y, is represented by y\j^ for the observation of 
the ij-th treatment combination of the k-th replicate, for i = 0,...,P^-1, 
for j = 0,...,P2~1 and for k = l,...,r, then the sums of squares in Table 
22 can be expressed as follows :

Ï'3rÏ
ijk
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TABLE 22
ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR THE 

P^Pg-FAT RUN IN r REPLICATES

Source DF Sum of Squares

Total (corrected) rPiP2-l
A^ in Rep.s r(P^-l) in E Ï

4 (P -̂l) r \ i

A^xRep.s (P^-D(r-l)
Ag in Rep.s rCPg-l) in R I

*2 (Pg-l)
AgXRep.s (P^-DCr-l)

A^xAg in Rep.s rCPi-DfPg-l) E I
(Pi-DfPg-i)

- V r-
A^xAgXRep.s (P^-l)(P2-l)(r-D

1 2
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I'Sp i„RÏ =  ( l / P - ) S ( j ,  - a/P;^P2)2(y..n)
^ ik 1'* _ k

= (l/rP2te(y3^__r - (l/rPiP2)(y...r
= (1/P2)g(yi.i;)^ - a/i-P2)S(yj__)^

- + (l/rPiPgXy^^f

= a/Pi)ffi(y.3k’̂  - WV2)2(y..k>^

= (l/rP2)S(y_j_)^ - (l/rPj^PjXy...)^

= (1/Pi)zẑ y.jk)̂ ' - (i/rPi)ç(y.j.)2
^-(i/p^P2)2(y_k)^ + (i/rPiP2)(y_.f

% ' \ F 2 in î? = % j k  - W'-2>g(Pi.k’' -

in p2

Y-B Y 
2

r % R i

1 %  TT I

+ (l/P-PjsCy .y 1 2 . .K

= (l/r)SE(y,, f  - (l/r?2)2(y, )
T 2 ij iJ

Y' 1 Y
^ V 2’'-

- (l/rPn)S(y . f- + (l/rP.P2)(y,,,)2 ̂j "J" ••*
=  2 %  y^., - (l/r)2Z(y. . fijk ij iJ- ik
- (1/Pn )SE(y ,, )̂  + (1/P P )Z(y , f  jk "JK 1 2 k ..K
+ (l/rP,)2(y . f  + (1/rP )2(y fJL j #J» 6 ^ 1"*

- (l/rPiP2)(y...f.
2Example 15 : Suppose a 2 -FAT is run in a completely random design and

that it was repeated three times. For each repitition the matrix L(i) 
that defines the effects is, for i = 1,2 and 3,

1(1) = 1(2) = 1(3) =
1 1 1 1  
1 1 - 1 - 1  
1 - 1  1 - 1  
1 - 1 - 1  1

‘"o construct an analysis of variance table for all three replicates 
the matrix 1 must be formed. Following the aforementioned procedure
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the matrix I- is given by

L =

I..'V

TgR

L,
%

1 -1 —1 -1 —1 0 0
1 -2 —2 —2 —2

1 -1 -1 1 -1 -1 1 -1 -1
1 —1 —1 —1 —1 0

1 1 - 1 - 1  1 1 -1 -1 -2 -2 2 2
1 - 1  1 - 1  1 - 1  1 - 1  1 - 1  1 - 1
1 -1 1 -1 -1 1 -1 1 0 0 0 0 
1 - 1  1 - 1  1 - 1  1 - 1 - 2  2 - 2  2

11 -1 -1 1 -1 -1 1 -1 -1
1 -1 0 0 0 0 

1 -2 2 2 -2
1 - 1 - 1  1 - 1  1
_1 - 1 - 1  1 1 -1 -1

n
If there are r replicates of a P.-EA.T, where in each replicate the 
n i=l
7T P^-FAT is partitioned via : 
i=l n n

71 P.-FAT >Tt(Po + ... + P. )-s-FAT's,
i=l  ̂ tel ^  ^®i

then an appropriate abbreviated analysis of variance table is given in
n

Table 23, letting m = 7t P.; • ^  Table 23 the symbol Y(j)
tel

denotes the sum of squares due to the factor k main effect in the j-th
r

replicate, for j = i, ...,r. Thus, the teim S Y(j)'3 Y(j) is the sum
j=l ^k

of the sums of squares due to the main effect of factor k for all r
replicates of the experiment and this source of variation was previously

r
denoted A, in Rep.s. In a similar manner, 2 Y(j)'B„ „ Y(j) is the

0= 1“  \‘"V
sum of the sums of squares due to the k-factor interaction effect among 
factors î , ... and i^ for all r replicates of the experiment.
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TABLE 23
ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR A 
r REPLICATES OF A PARTITIONED P^...P^-FAT

Source DF Sum of Squares

Total (corrected) rr. - 1 r O m  -
Replicates r — 1 ï 'BrÏ
Between s-FAT's in Rep.s r(s^...s^-l)

A^ 2 in Rep.s r(s^-l)

■̂ 1.1 (ŝ -l)
A^ ^xRep.s (r-l)(s^-l)

• • •
A T in Reo.s n.l r(s^-l)

\.l
A_ -jxRep.s n.l ^ (r-D(s^-l)

A^ ^x.. .xÂ ]̂_in Rep.s r(s^-l)...(s^-l)

Al.l^..*^n.l (s^—1)...(ŝ —l)

■̂ 1.1̂ * * (r-1) (s^-l)... (Sjj“l)
Vithis all s-FAT's in Rep.s r(Pi...Pn - S3_...ŝ )

*1.(1,.) V ® 1 - h

*l.(l,.)=3eP'S (r-l)(P^-s^) Ç[(j)'B Y(j) - (ag+a. )
' ' - r \ %

*n.(l,.) I'Bp I - 3̂n
*n.(l,.)=K*p.s (r-l)(?n-®n) ZY(j)'B^ Y(j) - (a^+a^) 

j -Y’Bt, Y
■ V

"A^x...xÂ " (Pn-1)... (Pĵ -1)- 
(s^-l)...(s^-l) r % , . . . F Ï - » 51 n

"A^x.. .xA^"xEep.s (r-l)((P,-l)..(P -1)
-(s,-l%..(s -Ï))J- n
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Analysis of Variance in the Presense of Blocks 

Analysis of variance tables can be constructed for the blocking 
PLANS mentioned in chapter IV. In general, the total (corrected) sum of 
squares is expressed as the sum of (1) the sum of squares due to between 
block effects (this source of variation will be denoted B.A.B. (between 
all blocks)) and (2) the sum of squares due to within block effects (this 
source of variation will be denoted VJ.A.B. (within all blocks)). The 
3.A.3. sum of squares is obtained from the block totals. This B.A.B. sum 
of squares may be expressed (if desired) as the total of the sums of 
squares representing all effects that are confounded with block effects. 
The W.A.3. sum of squares can be expressed in terms of sums of squares 
corresponding to factor main effects and factor interaction effects (or 
unconfounded components of the main or interaction effects). The follow­
ing examples serve to illustrate relevant concepts.

Example 16 : For the partitioning of example 4.1,
?-[4p—FAT —  — ^  (4̂  ̂+ ̂ *"22̂ ^̂ 21 ^22)—s-FAT's
the blocking PLANs (a), (b), (c), ... and (hp) are obtained by con­
founding the components of main and interaction effects indicated in 
Table 24. Each s-FAT is equivalent to a 4x2-FAT. The source of 
variation due to the effects that are components of the factor one main 
effect are denoted by B, C and BC, the component of the factor two main 
effect is denoted by A and the components of the factor one-factor two 
interaction effect by A3, AC and ABC. The sum of squares for these 
components are given by

Vf
+ 2’Bbc2
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TABL2 24
SOME BLOCKING PLANS FOR EXAMPLE 16

Blocking
PLAN

Comnonents confounded with block effects
between s-FAT effects within s-FAT effects

(a) ^1.1 none

(b) *2.1 none

(c) *1.1=*2.1 none

(d) *1.1» *2.1» *1.1^2.1 none

(e) all A

(fl) all 3

(fg) all C

(fg) all 30

(5%) an AB

(53) all AC

(S3) an ABC

(hi) an A, B and AB

(hg) all B, C and BC

(ĥ ) all A., C and AC

(hẑ ) all A, BC and ABC

(he).J all B, AC and ABC

(ĥ ) all C, AB and ABC

(hy) all AC, AB and BC
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The abbreviated analysis of variance tables are given for blocking PLANs 
(a), (d), (g^) and (hr,) in Tables 25 , 26 , 2? and 28, respectively, The 
letters b^ in tables 25, 26, 2? and 28 represent block totals of obser­
vations , where the blocks received the treatment combinations in Figure 13<

PIAN (a) PIAN (b) PLAN (ĝ ) PLAN (hy)
0 1 2  3 0 1 2 3 0 1 2 3 0 1 2 3

0 O' Ü T O 3 u 0 1 2 6
1 % 1 1 2 1 J. Hr 1 3 4 7 8
2 2 2 O T 3

2 4 3 è 7
3 3 3 3 2 1 é 54 4 4

5 7 S 4 9 10 13 l4
5 2 5 3 4 5 5 11 12 15 lé
6 6 6 6 5 c 7 612 11 lé IS
7 7 7 7 10 9 l4 13

Figure 13» - Allocation of treatment combinations to blocks.

Also, the sums of squares in Table 27 are
a^ = (1/I6)((b2 +bg +b^ +b^)^ + +b^ +by +bg)̂
ag = (1/I6)((b^ +bg +b^ +b^)^ + (b̂  +b^ +by +bg)''
a^ = (1/16) ((b^ +bg +by +bg)^ + (b̂  +b^ +b^ +bg)‘"
a^ = (1/16 )((b^ +hj +b^ +by)^ + (bg +b^ +bg +bg)̂
a^ = (1/16 )((b^ +b^ +bg +bg)^ + (b̂  +b^ +b^ +b̂ )'
ag = (1/16 )((b^ +b^ +b^ +bg)2 + (bg +b^ +bg +br,)'
ay = (1/I6)((b]̂  +b^ +bg +by)^ + (b£ +b^ +b^ +bg)'

and the sums of squares for table 28 are Sqy *2' ***

(jg) ( (b2+b2+b<j+b/|,+b̂ +bg+by+bp)̂ +(bç+b̂ Q+b̂ 2+b2̂ 2+b̂ 3+b2̂ /̂ +b̂ +̂b̂ g)̂ ) 

(^) ( (b̂ +b2+bp+b2̂ +̂bq+b̂  p+b  ̂+b-| p )̂ + (b̂ +bg+by+bg+b̂ -j+b-ĵ +̂b̂ +̂b̂ g )̂  )

(1/32)(y 
(1 /3 2 )(y 

(1 /32 )(y 

(1/32) (y 

(1/32) (y 

(1 /1 6 )(y 

(1/16)(y

*16'



107 

TABLE 25
ABBREVIATED AOV FOR BLOCKING PIAN (a) OF EXAMPLE 16

Source DF Sum of Squares

Total (corrected) 31 X'(l32 - (1/32) jg)ï = SS y y  -
B.A.B,

^.1

1
1

~ ’\ . r  "
iV.A.B. 30

6

3
21

-  »i '
T'Bp Y =(l/8)Z(y_j f - (l/32)y^^ 
y*Bp T = S ÿ L  - - (1/8)2^^
~ 4 4  ij , j "J 

+(l/32)y_

TABLE 26
ABBREVIATED AOV FOR BLOCKING FLAN (b) OF EXAMPLE 16

Source DF Sura of Squares
Total (corrected) 31 r(i32-(i/32) j^)î
B.A.B.

4.1
4.1
4 . A . 1

3
1
1
1 Y’B^ p Y = (1/8)(b^+bg+b^+b^) -a^ ~

W.A.S.

4.(1,.)
4.(1,.)
"4:^4"

28
6
2
20

r \ i  - »i

V  ■ "2
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TABLE 27
ABBREVIATED AOV FOR BLOCKING PLAN (g^) OF EXAMPLE 16

Source DF Sum of Squares
Total (corrected) 
B.A.B.

\.l
^2.1

AC
Al.l^C
Ag^^xAC 

^1.1^2.1^^

31
7
1
1
1
1
1
1
1

W.A.B.

*1.(1,.)
*2. (1 , . )

24
6
2
16

2^14 - (l/32)(v .)2 
ij ?
(1/4 )Sb^ - (1/32) (y,)'

I'hci-

- ^AC-
r < >
Y ’B- Fi.1^2.1*C-

= ^1
= ^2 
= 83

=  %  

=

=
Y = a„

-  "2
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TABLE 28
ABBREVIATED AOV FOR BLOCKING PLAN (ĥ ) IF EXAKPLE 16

Source DF Sum of Squares
Total (corrected) 31 r(i32-(i/32)j^|)i
B.A.B. 15 isb^ - (1/32)(y..)^

\.l 1 a^ in table 2?

^2.1 1 &2 in table 2?

■'^l.l^.l
BC

1
1

in table 27
*j/^k-i*"2k)'- ü/32)(y

AC 1

AB 1
1

1
1

A^_lXBC
1
1 *5 = - W * 3 ‘“b ■

1
Aĵ .lXAB 1

1
1

iV .A.3. 16

*1.(1,.) 2

*2.(1,.) 5 - - 2 - %

"A^xAg" 9 V 2- ■ ‘3 - “5



110

='3=‘è ’“VVV^'*13*VV‘’l6> *̂<VVVVVl0'*'‘’ai*12>̂ ^
1 \2x,.= ( ^+bg+b̂ +b22+b̂ +̂b̂  ̂) + (bg+b̂ +b̂ +b̂ +b̂ Q+b̂ +̂b̂ ĵ +b̂  ̂) )
J/" ') ' . .9

Xc;= v2  1\ - (1/32) (y.. )̂  - -&2 -^9 ~ H
l:=l '

■1 -

^2 -
= x,^ -

^4 = 4̂ "

"5 *

)2
)2
)'
.2

ffyytnplfl 1? I Consider the partitioning of example 10,

10x9-FAT------»»(2^ + 3]̂ 2 + 5i^) (^21 + ^22 + ̂ 23 ® *
The abbreviated analysis of variance table for blocking PLANs (a), (b), 
(c), (d) and (e) of Table 9 are given in Tables 29, 30, 31, 32 and 33.

The letters a^, a^, a^ and a^ will have the same meaning in all tables,
An analysis of variance table can be constructed from a matrix L. In the
following example the matrix L is given for a less than full replicate of 
a partitioned FAT.

Example 18 : Consider the partitioning

y^é^—FAT ^  (2-|i +3]_2 '*■̂13)^^21 '*’̂22 +22^)~s—FAT's.
Let 2̂ 2 and refer to the two lowest levels of factors one and two, 
let and 22^ refer to the two highest levels of factors one and two 
and let 3̂ 2 2g2 refer to the middle levels of factors one and two.
A matrix L is given for two PLANs, where the PIJlNs are defined by the 
subsets and of Ŝ , in Figure 14 and I5, respectively,

= ( ( 00), (01), (10), (11), (12), (21)} 

Si = {(00), (01), (10), (11), (12), (20), (21)}.
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TABLE 29
ABBREVIATED AOV TABLE FOR BLOCKING PLAN (a) OF EXAKPLE 1?

Source DF Sum of Squares
Total (corrected) F:9 I' (Tgo - (1/90)J^°)Y = a  - (1/90)/
B.A.B. 2 ^1 ”

2 ( (b2̂ tb2+b̂ )̂ +(b̂ ,+b̂ +b̂  )^+(by+bg+b^)^)-^^.

V.A.3. 87

*2
A^xAg

7
8
72

Y'B_ Y - a, = (l/9)2(y. f  - (l/32)(y )̂
1 i 2 "Y'B, Y =(l/lO)Z(y y- - (l/32)(y )
2 j "0 ’*

Y'BL ^  -(1/10)2(y .)̂  - (l/9)2(y. )̂  
^lâ ij j i 

+ (1/90 )(y_)^

TABLE 30
ABBREVIATED AOV TABLE FOR BLOCKING PLAN (b) OF EXAMPLE 1?

Source DF Sum of Squares
Total (corrected) 89 I'dgo- (V9o)j^)y
B.A.B. 2

*2.1 2 &2 “ (b^+b^+by) +(b2+b^+b0)^+(b^+b^+b^) )
-d/90)(y,.)^

V.A.B. 87

*1 9 (1/9) Z(y. f  - (1/32)(y f  = Y'B Y• * 1
*2.(1,.) 6 (l/10)Z(y,j)^ - (l/32)(y,,)Z - a^ = I'B^ Y-a^

A^xAg 72
k— ï ' V a "
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TABLE 31
ABBREVIATED AOV TABLE FOR BLOCKING PLAN (c) OF EXAKPLE 1?

Source DF Sum of Squares
Total (corrected) 89 rClço - (1/90)j9“)ï
B.A.B.

part of
4.1^2.1

2
2

(b^+bg+bgf (bj+b^+bç)^ (b^+bj+b^)^ y^. 
® r  31 32 ^ 27 90

W.A.B.

4
87
9
e
70

r \ i

-  " ^3

TABLE 32
ABBREVIATED AOV TABLE FOR BLOCKING PLAN (d) OF EXAKPLE 1?

Source DF Sum of Squares
Total (corrected) 89 rttço - (1/90)J^)T
B.A.B.

part of
*1.1^2.1

2
2

(b^+b^bç)^ (b^+b^+bç) (b2+bg+b^) y,.
% =  33 ‘‘ 29 ‘ 28 90

W.A.B.

^1

"A^xA^"

87
9
8
70

I'BpI

ï’V
-  %
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TABLE 33
ABBREVIATED AOV TABLE FOR BLOCKING PLAN (e) OF EXAMPLE 1?

Source DF Sum of Squares
Total (corrected) 89 l'Oço - a/9o)j^)ï
B.A.B. P

4.1 2 ^1

4.1 2 4
4 . A . 1 4 4  + 4

iV.A.B. 81

4.(1,.) 7 r \ i - 4
4.(1,.) 6
"Â x-Ag" 68

~  ^ l 4 "  ” ®3 " 4



00 01 02 03 10 11 12 13 20 21 22 23 24 25 30 31 32 33 34 35 40 41 42 43 44 45 52 53 62 63
"l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 "Ll
9 9 9 9 9 9 9 9 —4 —4 -4 -4 -4 -4 -4 -4 -4 -4 -4 ..4 -4 -4 _4 -4 —4 —4 0 0 0 0 T.r,2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2-13-13-13-13 *1.1
1 1 1 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 J.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 0 0 0 0 ^1.(1,.)0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1
7 7 -5 -5 7 7 -5 -5 7 7 -5 -5 0 0 7 7 -5 -5 0 0 7 7 -5 -5 0 0 -5 -5 -5 -5 Lr,1 1 1 1 1 1 1 1 1 1 1 1 -4 -4 1 1 1 1 -4 -4 1 1 1 1 -4 -4 1 1 1 1 ^2.1
1 -1 0 0 1 -1 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 0 0 0 0

^^2.(1,.)0 0 1 -1 0 0 1 -1 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 1 -1 1 -1
0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0
1 -1 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -1 0 0 1 -1 0 0 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -1 0 0 1 -1 0 0 1 -1 0 0 0 0 -3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -1 0 0 1 -1 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 -4 4 0 0 0 0 0 0 0 0
1 1 -2 0 -1 -1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 -2 0 1 1 -2 0 -2 -2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 -2 0 1 1 -2 0 1 1 -2 0 0 0 -3 -3 6 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 -2 0 1 1 -2 0 1 1 -2 0 0 0 1 1 -2 0 0 0 —4 —4 8 0 0 0 0 0 0 0
1 1 1 -3 -1 -1 -1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lp x F
1 1 1 -3 1 1 1 -3 -2 -2 -2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
1 1 1 -3 1 1 1 -3 1 1 1 -3 0 0 -3 -3 -3 9 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 -3 1 1 1 -3 1 1 1 -3 0 0 1 1 1 -3 0 0 -4 -4 -4 12 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 -1 -1 -1 2 2 1 1 1 1 -2 -2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 -1 -1 -1 2 2 -1 -1 -1 -1 2 2 2 2 2 2 -4 -4 0 0 0 0
0 0 -2 2 0 0 -2 2 0 0 -2 2 0 0 0 0 -2 2 0 0 0 0 -2 2 0 0 5 -5 5 -5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 -2 2 0 0 0 0

Figure 14, - A matrix L for the PLAN defined by subset in example 18.



10 01 02 03 10 11 12 13 %0 21 22 23 2U 2f. 30 31 32 33 34 35 41 42 43 44 45 50 51 52 53 60 61 62 63
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1'
9 9 9 9 9 9 9 9 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 0 0 0 0 0 0 0 0
4 4 k 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4-•13-13-13-13-13-13-13-13
1 1 1 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 G 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 c 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 -1 -1 -1 -1
1 -1 0 0 1 -1 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 1 -1 0 0
0 0 1 -1 0 0 1 -1 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 1 -1
0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 0 0 1 1 -1 -1 0 0 1 1 -1 -1 0 0 1 1 -1 -1 1 1 -1 -1
3 3 3 3 3 3 3 3 3 3 3 3-14-14 3 3 3 3--14-14 3 3 3 3-14-14 3 3 3 3 3 3 3 3
1 -1 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -1 0 0 1 -1 0 0 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -1 0 0 1 -1 0 0 1 -1 0 0 0 0 -3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -1 0 0 1 -1 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 -4 4 0 0 0 0 0 0 0 0 0 0 0 0
1 -1 0 0 1 -1 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 -5 5 0 0 0 0 0 0
1 -1 0 0 1 -1 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 -6 6 0 0
1 1 -2 0 -1 -1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 -2 0 1 1 -2 0 -2 -2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 -2 0 1 1 -2 0 1 1 -2 0 0 0 -3 -3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 -2 0 1 1 -2 0 1 1 -2 0 0 0 1 1 -2 0 0 0 -4 -4 B 0 0 0 0 0 0 0 0 0 0 0
1 1 -2 0 1 1 -2 0 1 1 -2 0 0 0 1 1 -2 0 0 0 1 1 -2 0 0 0 -5 -5 10 0 0 0 0 0
1 1 -2 0 1 1 -2 0 1 1 -2 0 0 0 1 1 -2 0 0 0 1 1 -2 0 0 0 1 1 -2 0 -6 -6 12 0
1 1 1 -3 -1 -1 -1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 -3 1 1 1 -3 -2 -2 -2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 -3 1 1 1 -3 1 1 1 -3 0 0 -3 -3 -3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 -3 1 1 1 -3 1 1 1 -3 0 0 1 1 1 -3 0 0 -4 -4 -4 12 0 0 0 0 0 0 0 0 0 0
1 1 1 -3 1 1 1 -3 1 1 1 -3 0 0 1 1 1 -3 0 0 1 1 1 -3 0 0 -5 -5 -5 15 0 0 0 0
1 1 1 -3 1 1 1 -3 1 ]. 1 -3 0 0 1 1 1 -3 0 0 1 1 1 -3 0 0 1 1 1 -3 -6 -6 -6 18
0 0 0 0 0 0 0 0 1 ]. 1 1 —4 —4 -1 -1 -1 -1 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 ]. 1 1 -4 -4 1 1 1 1 -4 -4 -2 -2 -2 -2 8 8 0 0 0 0 0 0 0 0

Figure 15. - A matrix L for the PLAN defined by subset Sg in example 18.



CHAPTER VI

DISCÜSSION OF AN EXAMPLE

In this ch apt er a n  example is presented to illu str ate  h o w  the 

u s e  o f methods de vel ope d i n  the preceding chapters c a n  a i d  i n  t h e  d e s i g n  

a n d  analysis of a  r ea l e xpe rimental situation. The m a i n  prerequisite 

fo r  t h e  u s e  of par t i t i o n e d  f a c t o ria l arrangement schemes is t h a t  the o b ­

jective of t he exper ime nt b e  t o  investigate inter-factor a n d  in tra ­

factor relationships a m o n g  two or more factors.

Consider a n  experiment desig ned  to investigate t h e  m e t a b o l i s m  

of  prot ein  i n  rats w i t h  induced pse udo -phenylketonuria, w h i c h  is a  condi­

t i o n  ass ume d t o  b e equi val ent  to phenylketonuria. Various amounts of the 

amin o acids tyrosine a n d  pherylalanine are add ed or d e l ete d f r o m  the diets 

of t h e  rats f or a  two  w e e k  period. The two amino aci ds a re t o be studied 

a t  three levels: a l m ost  absent, normal and large amounts. A f t e r  the t w o  

w e e k  feeding period, amounts o f  homogentisic acid (a mea sur e o f  protein 

metabolism) a re m e a s u r e d  i n  d a i l y  urine samples for a  se v e n  d a y  period. 

Analysis o f  these m e a su rem ent s c a n  determine wh eth er the r e s pon se is 

affected b y  d iff erent levels of e a ch amino acid, a n d  if t h e  response 

p a t te rn f o r  levels o f  on e amino a c i d  is the same a t each l e v e l  of the 

other amino acid. I f  t h e  results of this stu dy indicate t ha t the response 

is not di ffe ren t f o r  t h e  various levels of the amin o acids, t h e n  the study

116
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c a n  be terminated. On t he other hand, if  the results o f this s t u d y  in­

dicate t h a t  the  r e s p o n s e  is significantly a f f ect ed b y  the var iou s amounts 

of amino acids i n  the diet, t hen  the investigator m i g h t  d es ire  to enlarge 

u p o n  the ejqjeriment, u t i l i z i n g  ad ditional levels (say five) to  obtain 

m or e defi nit ive  information. I n  the enlarged experiment, the five 

levels c o u l d  be, a l m o s t  absent, b e l o w  normal, normal, above n o r m a l  and 

extremely large.

Since var iou s amounts o f  t he amino acid s c a n  b e  ad ded  or deleted 

from the diets, t h e  fa cto ria l arrangem ent  is a n  obvious choice f o r  the 

treatment design. The fact ori al treatment d e s i g n  w i l l  a l l o w  t h e  investi­

gation o f  inter-amino a c i d  and intra-amino a cid  relationships. The experi­

menta l u n i t  is the rat and, since groups of h om o g e n e o u s  rats a r e  readily 

available, a  c o m p l e t e l y  r a n d o m  assig nme nt of t h e  t r e a t m e n t  combinations 

to units is sufficient. W i t h  t h e  a i m  o f  studying a l l  five level s of each 

amino acid, t h e  total n u m b e r  o f  different t r e a t m e n t  combinations (or 

diets) i n  a factorial a rr a n g e m e n t  i s  25, wh e r e  e a c h  tre atm ent  c ombination 
is a  c o m b ina tio n o f  levels, one level (amount) of  e a c h  amino acid. In 

the context of t h is dissertation, the 25 diets a r e  analogous to  the 25 
treatment combinations o f  a  5]_52” ^AT. In the 5]_52"F^1» f act or is the

phenylalanine a n d  the o t h e r  factor is the tyrosine. The levels of the 

two ami no acids a r e  represented b y  the numbers 0, 1, 2, 3 a n d  where

0  represents almost absent,

1  represents b e l o w  normal,

2  represents normal,

3  represents above normal, a n d

^  represents extremely large.
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The 25 diets composed of the varyiîîg amoimts of the two amino acids, are 
represented by the 25 individtial cells in Figure 16.

Factor 2 (Tyrosine)

Factor 1 
(Phenylalanine)

0 1 2 3 4
0 1 2 3 4- 5
1 6 7 8 9 10
2 n 12 13 l4
3 16 17 18 19 20
4. 21 22 23 24 25

Figure l6. - A representation of the 25 food diets.

In view of the investigator's desire to run an initial experiment to de­
termine the first objective, namely whether there are significant effects 
with the three different levels of each amino acid, the investigator could 
partition the experiment utilizing only the lowest and highest levels 
along with the middle level, as one set (this set would correspond to 
levels 0, 2 and 4). The second set would include the other two levels,
1 and 3» Thus, the five levels for each factor have been separated into 
two subsets. These sets of levels are represented by 3-,-| and 2̂ ^ for 
factor one and 2^^ for factor two. The algebraic partitioning

5i52“FAT------>-( %  + 2 ^  )( 321 + ^22 )-s-FAT's (30)
results in the four s-FAT's 3ii32i“S-FAT, ^12^21"®”^̂ "̂  and
2^p2p2-s-FAT. These s-FAT's are represented in Figure 1? by the letters 
"a", "b", "c" and "d". The nine a's represent the 3i232i“S-FAT, which is 
a combination of the lowest, middle and highest levels of each factor; 
while the four d's represent the 2i2222“S-FAT, which corresponds to the 
combinations of the remaining two levels of each factor. The letters b 
and c correspond to the 3n222“S-FAT and 2i232i-s-FAT. These s-FAT's are
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Factor 1 
(Phenylalanine )

0
factor c. viyrosine; 
0 I 1 I 2 I 3 , 4

T

Figure 1?. - A representation of the four s-FAT's»

composed of treatment combinations of the three levels of one amino acid 
and the two levels of the other amino acid» Thus, the 3^^2p^-s-FAT, 
designated by the letter "b", represents combinations of the low, middle 
and high levels of phenylalanine with the one and three (below normal and 
above normal) levels of tyrosine ; while the 2̂ p3?-|"S-FAT, designated by 
the letter "c", represents combinations of the two levels (1 and 3) of 
phenylalanine with the low, middle and high (0, 2 and 4) levels of tyr­
osine.

The initial experiment is equivalent to running the 3-̂ 3p-,-s-FAT. 
Since rats are likely to be readily available, the statistician can sug­
gest that two rats receive each treatment combination. The urine of each 
rat is measured each day for seven consecutive days. The seven days can 
be considered as seven levels of a third factor and, in view of this 
third factor, the partitioning (30) can be expressed as

5i5273-FAT------^(3ii + 2]2)(221 + Zgg)? -s-FAT's, (31)
so the experimental situation is more adequately described. The parti­
tioning (31/ results in the four s-FAT's ^n^zq^^-s-FAT, 3]j_2227^-s-FAT, 
2i232i73“S-FAT and The initial study is now equivalent

to running two replicates of a 3%3%7-FAT, where the factors one and two
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represent, the amino acids (at levels 0, 2 and 4) and factor three is 
number of days after the initial two week feeding period (letting 0 
represent day one, 1 represent day two, ««», and 6 represent day ?).
The analysis of the observations of the 3^2^21^^-s-FAT are summarized in 
Table 34. In the experiment, reasonable statements to investigate are 
that the effects of the three levels of phenylalanine are not different 
with respect to the response measured (amounts of hcmogentisic acid) and 
that the effects of the three levels of tyrosine are not different with 
respect to the response measured. In statistical terminology, these 
two statements are equivalent to hypotheses of zero main effects for 
factors one and two. Another aim of the initial study is to determine 
whether or not the pattern of response for one factor is the same at 
each level of the other factor. This aim can be statistically investi­
gated by obtaining evidence for or against a hypothesis of zero inter­
action between factor one and factor two.

If, in fact, the three levels of factor one (phenylalanine) do 
affect the response measured, then, hopefully, the results of the initis.l 
experiment will produce evidence for rejecting the hypothesis of a zero 
factor one main effect. A similar statement can be made for factor two 
(tyrosine); factor three (days); and for the factor interactions. The 
fact that each rat is measured on seven consecutive days puts the experi­
mental design in a repeated measures situation. Since each treatment 
combination is applied to two units, the MS(e) of Table 34 is an appro­
priate term for significance testing purposes (because it is a measure 
of the failure of units (rats) treated alike to respond alike, which is 
experimental error). In Table 34, for i = 1, 7, the significance
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TABLE 34
ANALYSIS OF VARIANCE TABLE FOR THE INITIAL EXPERIMENT

Source MS MSR SL
Total (corrected) 125
Phenylalanine (0,2,4) 2 ss(.;p) MS(P) MS(P)/MS(e) ®1
Tyrosine (0,2,4) 2 SS(T) MS(T) MS(T)/MS(e) ^2
Days 6 SS(D) ES(D) MS(D)/MS(e) "3
Phenylalanine x Tyrosine 4 SS(PxT) MS(PxT) MS(PxT)/MS(e) ®4
Phenylalanine x Days 12 SS(PxD) MS(PxD) MS(PxD)/MS(e) "5
Tyrosine x Days 12 SS(TxD) MS(TxD) MS(TxD)?MS(e)
Phenyl, x Tyrosine x Days 24 SS(PxTxD) MS(PxTxD) MS(PxTxD)?MS(e) "7
Residual 63 SS(e) MS(e)
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levels indlcat.e the strength of tne evidence against the hypothesis 
that main effects or interaction effects, whichever the case may be, are 
zero. If either a^ or a^ is judged significant (about ,05 or smaller), 
while â , â , a^ and a^ are judged not significant, then there is evidence 
for a difference in response due to difference in effects of levels of
factor one or two. Of course, the experiment can be continued for other
reasons (to study the phenylalanine by tyrosine interaction, if a^ is 
judged significant) and the experiment can be terminated for other rea­
sons (although there may be statistical evidence for differences, the 
differences exhibited by the data are so small that they are of no 
practical importance).

Suppose the decision is made to continue the experiment by 
running the three remaining s-FAT*s, The sequence or order in which the 
three s-FAT's are run might or migh" not be important. The three s-FAT’s 
might be run at one time in a completely random design. Perhaps the 
investigator can run only one s-FAT at a time. If this is the case, then 
the followir^ sequenced PLANs exist:;
PLAN (l) : T s—FAT — ^  ^12^22^^-s—FAT,
PLAN (2 ) ; 3-| s—FAT —'>■ ̂ 2 ^ 2 2 ^ s—FAT ->* 2  ̂?3?.1 ̂ FAT,
PLAN (3)î 2^32i73“S-FAT— ^ 3 i3_22273-s-FAT-^2^2222?3“S“FAT,
PLAN (̂ ) • 2-) 7^~s—FAT— ^  2-| p2/;?73'"S—’ AT— ^  ̂ 11^22^s—FAT,
PLAN (5): 23_222273-s-FAT— ^3ii22273-S“FAT— ^2^32i73-s-FAT and 
PLAN (6)s 2-̂ p.2227 3~s—fat— ^  2-[ p32i ?3~s—FAT— 3̂") 12p27 3—s—FAT »
Writing these PLANs, including the initial experiment ((00)), in terms 
of pseudo-design points, one obtains

PLAN (1): (00)-->(01)— >(10)--->(11),
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PLAN (2): (00)-- >(01)— ►( H )-->(10),
PLAN (3): (00)— >(10)— >(01)-->(11),
PLAN (4): (00)— >(10)— >(11)— >(01),
PLAN (5): (00)— >(11)— >(01)— >(10) and
PLAN (6): (00)— >(11)— >(10)— >(01).

In the context of this dissertation, it is easy to see that all six PLANs, 
if they are performed as an entire experiment, are complete PLANs, and 
consequently, are connected PLANs. If the sequence of application is 
taken into account, then only PLANs (2) and (4) are connected. If fore­
sight indicates the experiment run in sequence might be prematurely ended, 
then either PLAN (2) or PLAN (4) is a suitable choice, since they are
step-wise connected. Moreover, if the analysis of the initial experiment
indicates that the factor one main effect is highly significant while 
the factor two main effect is not significant, then it seem reasonable 
that additional levels of factor one should be next in order of investi­
gation. Thus, PLAN (4) is preferable to PLAN (2) since the application 
of the second s-FAT involves different levels of factor one, while ap­
plication of the second s-FAT in PLAN (2) involves different levels of 
factor two.

Now, suppose all four s-FAT's had been run. The entire experi­
ment is now equivalent to a run in two replicates. The results
of the experiment can be summarized in the analysis of variance table 
given in Table 35» Ih a manner similar to the analysis of the initial 
experiment, the significance levels a^ through a^ in Table 35 can be used 
to assess the strength of the evidence against hypotheses of zero main 
effects and zero interaction effects. Of course, it must be realized that
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TABLE 35
ANALYSIS OF VARIANCE FOR TWO REPLICATES OF TRY

5x5x7-FAT

Source DF
Total (corrected) 349
Phenylalanine (0,1,2,3,4) 4-
Tyrosine (0,1,2,3,4) h

Days (0,1,2,3,4,5,6) 6
Phenylalanine x Tyrosine 16
Phenylalanine x Days 24
Tyrosine x Days 24
Phenylalanine x Tyrosine x Days 96
Residual 1?5
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inferences concerning the factor one and two main effects and interaction 
effects are made with respect to the five levels for each factor.

Next, suppose that some distinguishing characteristic of the
nnits (rats), such as type or strain, can be used to separate the group
of fifty rats into two smaller groups. A rat is either of strain A or
strain B, and thus, the experimental units can be divided into subgroups
according to this characteristic. For this illustrative example, these
groups are labeled and Gg. In the context of this thesis, the groups
G and G are referred to as blocks (of rats). If the strain of rat isA D
known or suspected to have an effect on the ellicited measurement, then 
the rats of the two strains will respond differently to the treatments.
The difference in response due to strain is automatically a part of the 
experiment and must be dealt with in the designing and analysis of the 
experiment.

Precaution must be taken in the assignment of treatment combi- 
mations to rats so that the between strain (or between groups) effect will 
not bias any of the between level comparisons for either factor one or 
factor two. In other woi-ds, the experiment must be designed so factor 
effects can be investigated irrespective of the strain effect. To illus­
trate why this precaution must be taken, suppose the rats of strain A 
receive all the treatments involving the 0 and 1 levels of factor one 
and the rats of strain B receive all the treatments involving the 2, 3 
and 4 levels of factor one. Now, the difference between, (1) the average 
of the responses for the rats receiving treatments involving the 0 and 1
levels of factor one and, (2) the average of the responses of the rats
receiving treatments involving the 2, 3 and 4 levels of factor one, is
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a measure of the strain effect and also, a measure of the effect of levels 
0 and 1 versus levels 2, 3 and 4 of factor one. A difference between the 
averages (1) and (2) (say (1) minus (2)) is hard to intrepret because one 
cannot be sure whether this difference is due to strain, levels of factor 
one or a combination of strain and levels of factor one. In this situa­
tion and in the context of this thesis, the strain effect (block effect) 
is said to be confounded with a component of the factor one main effect 
(average of levels 0 and 1 versus average of levels 2, 3 and 4). Since 
the purpose of the ejqseriment is to investigate the effects of different 
levels of factors one aixi two, it is imperative not to confound the strain 
effects with the two factor (main) effects.

Suppose there are 24 rats in (strain A) and 26 rats in 
(strain B). Previously, the experiment was described as two full repli­
cates of a 5^5^ the partitioning mentioned earlier, namely

5 3 _ 5 2 ? 3 - F A T -------- ►  (3ii+2i2) ( 3 2 i + 2 2 2 ) 7 3 - s - ? A T ' s  ,
four s-FAT's resulted. methods developed in chapter four, one can 
obtain a scheme that assigns the treatments of the 3̂  3 -̂, -s-FAT and the 
2^p2pp-s-FAT to the group of 26 rats and the treatments of the 3^1^22" 
s-FAT and 2^^3pi-s-FAT to the group of 24 rats. Figure 18 gives a more 
detailed of the assignment of treatments to rats. The result of this 
assignment scheme is that the strain effect is not confounded with any 
part of a main effect for factor one or two. However, to obtain this 
clarity on the information relating to the effects of levels of the 
factors, one must sacrifice clarity in some other aspect of the experi 
ment. In this case, the strain effect has been confounded with a 
component of the interaction between factors one and two. Analytical
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Block 1 (group of 26 rats)

(000) (001) (002) (003) (004) (005) (006)
(010) (OH) (012) (013) (014) (015) (016)
(020) (021) (022) (023) (024) (025) (026)
(100) (101) (102) (103) (104) (105) (106)
(110) (111) (112) (113) (114) (115) (116)
(120) (121) (122) (123) (124) (125) (126)
(200) (201) (202) (203) (204) (205) (206)
(210) (211) (212) (213) (214) (215) (216)
(220) (221) (222) (223) (224) (225) (226)
(330) (331) (332) (333) (334) (335) (336)
(340) (341) (342) (343) (344) (345) (346)
(430) (431) (432) (433) (434) (435) (436)
(440) (441) (442) (443) (444) (445) (446)

Block 2 (group of 24 rats)
(030)
(040)
(130)
(140)
(230)
(240)
(300)
(310)
(320)
(400)
(410)
(420)

(031)
(041)
(131)
(141)
(231)
(241)
(301)
(311)
(321)
(401)
(411)
(421)

(032)
(042)
(132)
(142)
(232)
(242)(302)
(312)(322)
(402)
(412)
(422)

(033)
(043)
(133)
(143)
(233)
(243)
(303)
(313)
(323)
(403)
(413)
(423)

(034)
(044)
(134)
(144)
(234)
(244)
(304)
(314)
(324)
(404)
(414)
(424)

(035)(045)
(135)
(145)
(235)
(245)
(305)
(315)
(325)
(405)
(415)
(425)

(036)
(046)
(136)
(146)
(236)
(246)(306)
(316)(326)
(406)
(416)
(426)

Figure 18. - Scheme assigning treatment combinations to blocks.
A rat in a block is randomly assigned all treatment combinations in a row.
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procedures for this kind of situation are developed in Chapter five of 
this thesis. For this particular situation, an analysis of variance 
table will be identical to Table In Table 36 attention is directed
to the fact that one degree of freedom of the phenylalanine by tyrosine 
interaction is lost (compare with Table 35)» This one degree of freedom, 
is now attributed to the between groups source of variation. Information 
on the other sources of variation (factor main effects and interaction 
effects) is the same as in Table 35*
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TABLE 36
ABBREVIATED AOV TABLE FOR TWO REPLICATES OF A PARTITIONED 

5i52?3-FAT RUN IN TWO BLOCKS

Source DF
Total 3^9
Between Groups (blocks) 1

part of (Phenylalanine x Tyrosine) 1
Within Groups (blocks) 348

Phenylalanine 4
'fyrosine 4
Days 6
Phenylalanine x Tyrosine 15
Phenylalanine x Days 24
T^osine x Days 24
Phenylalanine x Tyrosine x Days 96
Residual 175



CHAPTER VII 

SWI ART

This dissertation investigated some of the statistical design 
and analysis problems occurring in comparative experiments that are form­
ulated to study inter-factor and intra-factor relationships among several 
factors of interest. I'ore specifically, experiments having a factorial 
treatment design and a completely random (unit) design or block design 
were considered in detail, Fethods were developed that allow the part­
itioning of a full replicate of factorially arranged treatment combinat­
ions (referred to in this study as a FAT) into disjoint subsets of fact­
orially arranged treatment combinations (referred to in this study as 
s-FAT's). These procedures can be used for experiments that cannot be 
performed at one time or in one place and must therefore be performed in 
parts. The generating of partitioned factorial arrangements is especially 
suited for experimental situations in which a priority of interest can be 
placed on the levels of some or all of the factors under investigation. 
These methods can also be used to combine experiments that investigate 
the same factors, but not necessarily the same levels. This is accomp­
lished by treating the separate experiments as parts or pieces of a larger 
experiment in a manner such that the separate experiments can be obtained 
by some partitioning of the larger experiment. Schemes incorporating 
various combinations of the s-FAT's were developed for completely random

130



131
designs (no blocks) and for experimental situations where blocks were 
present (these schemes were referred to as PLANs or blocking PLANs, which­
ever the case may be).

If the order in which the groups of s-FAT's are performed is 
important, then the concepts of complete and connected designs were 
found to be useful in selecting a sequence of s-FAT*s that assures the 
attainment of statistical information about inter-factor and intra-factor 
relationships. The methods and analysis procedures required the assump­
tion of a linear observational model.*. The statistical concepts of effects, 
factor main effects and interaction effects among factors were given mean­
ing with respect to population means and unbiased estimates of these 
effects were given. Methods were developed that led to the construction 
of analysis of variahce tables for full replicates, multiple full repli­
cates and full replicates of partitioned factorial arrangements performed 
in the presence of blocks (with confounding of various treatment effects 
with block effects). A specific example was given for a situation having 
observations of a less than full replicate of a partitioned factorial 
arrangement. In Chapter VI an example was presented to illustrate the 
use of methods that were developed in preceding chapters.

There are several problems concerning partitioned factorials that 
remain uninvestigated. The running of s-FAT*s in sequence and the sequ­
ential analysis of this sequence needs statistical inquiry. Associated 
with this sequential aroblem are problems of response surface methodology. 

The use of partitioned factorial arrangements for combining experiments 
needs to be expanded as does further investigation of analysis procedures 
for the case where some, but not all, of the s-FAT's have observations.
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In particular, ê q>eriiaents in which a large number of factors and levels 
make full replicates of the treatment combinations virtually impossible 
or impracticable, need more thorough investigation. Finally, it is sug­
gested that the use of graph theory in a more thorough study of connect» 
edness and tensor products in investigating the structure of design 
matrices may prove profitable.
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APPENDIXES



Appzan 1

ELH^ENTARI M T R H  CONCEPTS 

Let A be an n by m nontrivial matrix and let A' be the transpose
of A.

Theorem 1; If the rank of A is r, then A = BC, where B is an n by r
matrix and C is an r by m matrix. (This factorization is not neces-
arily unique).
Definition 1; The generalized inverse of A, denoted by A"*", is 
A+ = C’(CC')“^CB'B)"^B' if A = EC. (See Gateley(28)).
Theorem 2: A+ is unique.
Theorem 3: Given A, if there exists X such that AXA = A, XAX = X,
AX = (AX)' and XA = (xa)', then X = A"̂ .
Theorem 4: (A"*")' = (A' )+«
Theorem Let the rank of A be denoted by r(A). Then r(A) = r(A^) = 
r(A"*"A) = r(AA+) = tr(A^A) = tr(AA^), where tr(A) denotes the trace 
of the matrix A.
Theorem 6: AX = C is consistent if and only if AA"*"C = C.
Theorem 7; If AX = C is consistent, then the general solution is
X = A"̂ C + (I - A^A)T, where I is the identity matrix and Y is 
arbritrary.
Theorem 8: If r(A) = m, then A'*' = (A'A)~^A* and A'̂ A = Î .

If r(A) = n, then A+ + A' (A'A)"^ and AA+ - Î .
138



APPENDIX 2

A RESULT CONCERNING THE SUN OF SQUARES 
DUE TO CERTAIN EFFECTS

Let T be an m by one vector of observations from the linear ob­
servational model T = M + e and assume that E(Y) = M. Also, let Lj, be a 
d by m matrix defining the effect L ^  and such that the rows of L̂ . form 
an orthogonal set of one by m vectors. The matrix Ĥ . is the row-wise
normalized matrix L^, therefore (D is diagonal). Let =
H^J^ and suppose is a d by m matrix and let

Theorem 1: For all m by one vectors Y, Y*B̂ pC = Y'B^Y if and only if 
there exists an orthogonal matrix G such that = GĤ .
Proof: Y'B^Y = Y'B^Y if and only if (for all Y).

Now, Ĥ Hg, = %  and = GH^, since is
d by d of rank d. So far, a matrix G exists, namely 
G = G is orthogonal since

%Ha = %G'GE^ = W ’G W  = W w %  = %  ^nd G«G=I.
Now assume there exists a G such that = GH^.

Ba = % %  = Y'B^Y = Y'B^ for all Y.
Remark 1: In the context of the theorem, note that H.H! = Ij." ■■■ — ' a. a u.
Remark 2 : If H. is written as H_ = D L,, where D is diagonal and L■“ a a a a a a
is row-wise orthogonal, then it can be shown that L̂  ̂= CL^, where 
C = G is nonsingular and (CD;^)(CD^-)' = D%^.
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