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THE ALGEBRAIC PARTITIONING OF
FACTORTAL ARRANGEMENTS

CEAPTER I

INTRODUCTION

The body of knowledge of medical and health-related phenomena
is continually augmented by man's striving for an optimum state of health.
Although new knowledge of such phenomens may arise from dreams as well as
from scientific facts and logic, it proceeds further when guided by the
rational framework of scientific investigation. The planned experiment
is a common characteristic of scientific investigations in the health
field. The design of the experiment plays a determining role in the suc-
cess of each endeavor to obtain new knowledge or ascertain the validity
of existing knowledge. A crucial aspect of medical and health-related
experiments is the statistical design and analysis of the experiment and
it is this phase of the scientific method to which the content of this
dissertation addresses itself.,

A common experimental situation might involve the applieation of
a specified set of treatments to a group of experimental units with the
objective of comparing the effects of the treatments on the units. Two
méin elements of the statistical design of an experiment are the physical
design necessi‘té.ted by the experiment and the treatment design. The

1
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analysis procedure for an experiment is dependent upon the design of the
experiment and a set of theoretical assumptions about the experimental
units and the experimental process. For example, a clinical investiga-
tién might be designed to compare the effect of a new drug with the ef-
fect of a standard drug for reducing blood pressure in hypertensive pa-
tients. In this case the experimental unit would be the human being, or
patient, and the treatment would be a2 predetermined dose Sf either the
standard or test drug. Another comparative experiment might be designed
to investigate several factors which are believed or kmown to have an
effect on the experimental units. An example could occur in a setting
similar to the above experiment except that the standard and test drugs,
such as a diuretic or tranquilizer, are to be administered at various
times of the day, say 9 A.M. and 7 P.M. The experiment now has two fac-
tors of interest. Factor one might be labeled medicine and it consists
of two levels, where one level refers to the standard drug and the other
level refers to the test drug. Factor two might be labeled time of day
and it consists of two levels, represented by 9 A.M., and 7 P.M. A patient
will randomly receive on of the four treatments,

(1) test drug dose at 9 A.N.,

(2) test drug dose at 7 P.M.,

(3) standard drug dose at 9 A.¥. or

(4) standard drug dose at 7 P.K.
For an experiment designed this way it is possible to obtain information
relating to differences between the standard drug and the test drug, to
differences between the 9 A.M. administration and 7 P.M. administration

and information concerning the relationship between the standard drug and
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the test drug remain the same for both periods of administration. Thus,
the scope of the experiment now includes the investigation of inter-
factor and intra-factor relationships. The experimental unit is still
fhe human being, or patient, but the treatment or treatment combination
that each patient receives is a combination of levels, one level from
each factor.

By the use of the treatment design known as the "factorial
arrangement", effects corresponding to inter-factor and intra-factor
relationships can be investigated.

Definition 1 : The treatment design of an experiment is said to be
factorial if each treatment combination consists of a combination
of levels, one level from each factor in the experiment.
Experiments tﬁat have a factorial treatment design are sometimes called
factorial experiments. The design and analysis of factorial experiments
was first described by Fisher (24)in 1926 and Yates (47). Since then
most of the standard experimental design textbooks, such as Fisher (25),
Cox (17), Davies (20), Cochran and Cox (13), Kempthorne (34) and Winer
(46) have d?tailed accounts of the various statistical aspects of fac-
torial experiments.
Definition 2 : If all factors in a factorial arrangement of treat-
ments have the same number of levels, then it is referred to as being a
symmetrical factorial arrangement of treatments, otherwise, if two or
more factors have a different number of levels, then it is referred to
as an asymmetrical or mixed factorial arrangement of treatments.
If one can apply all possible combinations of factor levels to the

experimental material, the experiment is said to have a full replicate




N
of factorially arranged treatments. In the examples mentioned earlier,
the treatment design which involved two drugs at two time periods is an
example of a factorial arrangement while the treatment design of the
example involving only two drugs is not factorial.

If, in the designing of an experiment, the situation arises
where each experimental unit can receive only one treatment combination,
then the problem may arise that a full replicate will require too many
experimental units (where the number of units is restricted by size,
obtainébility or some other environmental or economic characteristic of
the unit)., For example, consider example 12.1 in Cox (17) where eleven
essential amino acids are incorporated in a chemical medium in which the
rate of growth of embryonic chick bones is measured. In this example
each of the eleven amino acids is considered as a factor and each factor
has two levels, those levels being the presence or absence of the amino
acid. Consequently, a full replicate of the factorially arrangsd trsat-
ments would consist of 21t = 2,048 treatments, which, as is mentioned in
example 12.1, is "quite impractible."” One way to reduce the size of the
experiment is to reduce the number of factors or the number of levels of
some or all of the factors. However, this is not always possible., An-
other way to reduce the size of an experiment with a factorial arrange-
ment of treatments is to consider only a subset of a full replicate of
treatment combinations. The general idea is to obtain a subset of the
treatment combinations that will yield a maximum amount of information
about the effects of treatments that are considered important. When a
subset of a full replicate of factorially arranged treatments is used,

that subset of treatment combinations is usually referred to as a fract-
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ional replicate (indicating that it is a fraction of the full treatment
replicate).

Another common situation is where an experiment cannot be per-
formed at one time, although it is possible to perform the entire experi-
ment in parts, where each part might be performed at a different time or
location. In this case a method is needed to separate the full treatment
replicate into disjoint subsets so that one or more of the subsets can
be chosen to represent each part of the experiment. So, if one is in a
fractional replicate situation or a situation where the full treatment
replicate is to be performed in parts, one must have a method to separate
the full replicate into disjoint subsets. Preseﬂt methods for obtaining
disjoint subsets of the factorially arranged treatment combinations rely
on the fact that certain comparisons among the treatments (most often
the high order interactions) are of relatively little importance. Then
one makes use of the well developed statistical theory (related to con-
founding schemes) to separate the full replicete of treatment combinations
into subsets in such a manner that comparisons among the subsets are also
comparisons among the treatments that are of little interest. The basis
for the method of obtaining fractions of factorial arrangements was first
introduced in 1945 by Fimey (23) and an elementary account of confounding
schemes for factorial experimenis was described by Kempthorne (33) in
1947. Since then, descriptions of these methods and extensions of the
methods are found in most experimental design textbooks.

There is also literature concerning fractional replicates of
experiments with factorially arranged treatments that is not documented

in the standard textbooks. A comprehensive account of fractional
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replicate plans for the case where all the factors have two levels was
published by the National Bureau of Standards (36) and Connor and Zelen
(16) published fractional replicate plans for the case where all factors
have three levels. Comnor (14), Bose and Connor (8) and Connor and Young
(15) published plans for the case where each factor has either two or
three levels., Fractional replication was handled in general by Chakravarti
(12) ard Morrison (35). Recently, Daniel (19), Bose and Srivastava (9),
Box and Hunter (10,11), John (30), Addelman (1), Banerjee (3), Dykstra
(22), Banerjee and Federer (5) and Westlake (43) have published plans
and methods concerning irregular fractions of factorial arrangements.,
Addelman (2) summarized many of the techniques for obtaining fractions of
symmetrical and asymmetrical factorial experiments with orthogonal and
non-orthogonal plans. Various properties of estimation procedures for
factorial experiments were considered by Banerjee and Federer (4,6), Zacks
(48,49), Addelmen (2) end Shah (41). Sequential sstimation problems in
factorial experiments were considered by Huster (31) and sequential proce-
dures are discussed for fractional replicates in the 2P"2 case by Daniel
(19). Prairie and Zimmer (38,39) discussed plans and methods for the
sequential treatment of factorial arrangements when the factors are ap-
plied sequentially. Confounding schemes for assigning a full replicate
of factorially arranged tireatment combinations to a set of blocks are
discussed throughly in textbooks, such as Kempthorne (3%4), for pPl-fac~-
torial experiments, where P is a prime or prime power mumber. Confounding
schemes for symmetrical factorial arrangements are mentioned in Addelman
(2), Kempthorne (34,33), White and Hultquist (44) and Raktoe (40).

Most of the methods to generate fractional replicate plans and
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confounding plans are indicated in the references in the preceding para--
graph, however, these methods are not always satisfactory. For example,
one may not want to sacrifice interaction information to arrive at a
fraction of the treatment combinations. It might be that the investigator
can place an interest priority in certain subsets of the levels of some
or all of the factors in the experiment. If this is the case, the usual
design procedures are not particularly adaptable to the investigation of
intra-factor and inter-factor relationships and at the same time retain
the priority desires. One might also be confronted with the situation

of having the experimental units grouped in blocks of unequal size, which
is not a very desirable situation since the usual confounding procedures
generally require equal block sizes. Thus, there exists a need for other
methods that will allow the partitioning of a full replicate of factorial-
ly arranged treatments into disjoint subsets so that some of these sub-
sets can be run in the sense of a fractional rerlicate, or so that the
entire experiment can be performed by assigning ths cubsets to blocks

of experimental units.

Consider an experiment with factorially arranged treatments that
is designed to investigate n factors, where each factor has P levels of
interest. A full replicate of this experiment is referred to as a P"-
factorial arrangement of treatments. There are P" distinet treatment
combinations in a full replicate of this experiment. Algebraically, one
can express P" as

P' = (P, + P,)", where P= Py +P,. 1)
This expression gives a method to partition the full treatment replicate

into subsets by consideration of the 2% terms that appear on the right-
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side of the equation (1). Each term in the algebraic expansion will de-~
fine a subset of the treatment combinations. The subsets defined in this
manner are disjoint and the union of all subsets will give us the set of
all PP treatment combinations. Examples to illustrate this concept are
given in the next chapter.

Now, consider the more general asymmetrical case where there are
n factors and the i-th factor has Pi levels, for i = 1, sseyn. Let Pi;éPj

n
for at least one i and j such that i#j. The set of T\ Pi distinct treat-

n i=1
ment combinations can be partitioned into T['si subsets by the eguation
i=1
Te, = T A
P. = (P_. + oe0e + P. ), P- 2 = P- . (2)
211 i M is;7 3 W1

The first mention of this concept in the literature was made by Morrison
(35)s In 1961 Fry (27) used this method for the 32 = (2 + 1) factorial
arrangement of treatments. In the unpublished doctoral theses of Williams
(45) in 1963 and Thomas {42) in 1964, the cases P* = (P1+P2)n ard P" =
(Pl 4+ see + Pk)n respectively, were considered in detail. This thesis
will investigate the algebraic partitioning of experiments with symmetri-
cal and asymmetrical factorial treatment arrangements. The following
chapters will discuss notation schemes, methods for obtaining and combin-
ing subsets of treatment combirations, estimates of effects among the
treatments, sequential methods for applying the subsets, analysis of
variance methods for partitioned factorial treatment arrangements for the
completely random and randomized block designs along with examples to

illustrate relevant points and concepts.




CHAPTER II

BASIC CONCEPTS AND NCTATICN

In this chapter the notation and basic concepts concerning the
algebraic partitioning of a factorial arrangement of treatments is devel-
oped. lLet the factorial arrangement of treatments consisting of n

factors, where the first factor has P. levels, +.., and the n-th factor

1
n
has P levels, be denoted by (Pl"-Fn)-FAT or by TtPi-FAT. As mentioneu
i=1
in chapter I, if P, = *** = P_ the ﬁP.-FAT is a symmetric factorial
1 L n
arrangement and if P, # Pj for some i # j, the T[Pi-FAT is referred to
i=1

as a asymmetrical or mixed factorial arrangement of treatments.

n n
The T[Pi-FAT is a collection of T[Pi different treatment

i=1 i=1 n
corbinations that represent the n factors. The number TU Pi may be
i=1
written n n sy
nP- = n(P. + ese + P- )’ 2 P--‘: P- (3)
57 2 521 i1 isy = ij i

The expression (3) can be used to define an algebraic partition on the
n

set of TU P; factorially arranged treatment combinations. The subsets
i=1

of treatment combinations resulting from such a algebraic partitioning

are denoted by the abbreviation "s-FAT." The algebraic partitioning of

n
a TU Pi-FAT is denoted by the expression
i=1

n n
le_Pi_FAT__’-ﬂg(Pil+ 0so «#Piai)-s-FAT's . %)
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The partitioning given by (4) indicates that the P; levels of the i-th
factor, for 1 = 1; «¢sy n , are separated into S; groups or subsets, where
the subsets are disjoint and are of size Pil’ ooy Pisi . Consider the
i-fh factor in the partitioning (4). The actual assigmment of the Py
levels into the S3 disjoint subsets is somewhat arbritrary and is mainly
the choice of the investigator. For example, suppose the i-th factor ir
a medical experiment represented a certain amount of radiation the unit
is exposed to, where there are seven levels of radiation exposure. The
seven levels of radiation exposure can be grouped into two subsets of
three and four levels the following ways. Let the seven levels of radia-
tion exposure be represented by 0,1,2,3,4,5 and 6, where the higher
numbers represent larger amounts of exposure., If the investigator knew
very little about the effects of the different doses of radiation, then
he might select the 0,2,4 and 6 levels for the levels in the subset of
size four and the 1,3 and 5 levels for the other subset. It might also
be the situation where the investigator knows that the very low dose
levels will have slight effect and he is more concerned about the effects
of the high dose levels, In this case the investigator might choose to
group the four highest dose levels, 3,4,5 and 6, in one subset and
group the three lowest dose levels, 0,1 and 2, in the other subset.
Statistically, the important concept is that, say for the i-th factor in
2, there are sidisjoint subsets, where the first subset consists of
Pil levels, +¢s, and the si-th subset consists of the remaining Pis.
levels, *

Definition 3 : Denote the n factors of the partitioning (4) by

Ays eeey Ao (Note: these letters will also be used to identify
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sources of variation in an analysis of variance table).

n
Definition 4 : Consider the i-th factor, Ai in a TUP;-FAT. Tt has
i=1

Pi levels and this set of levels is denoted by the symbol 'I‘i and
7 = {01, «ouy P-1} i
Definition 5 : For the FPi-FAT define the set of design points
correspording to a full tiitment combination replicate to be the set
D, where D ={(x1, veey xn) : x;€ Ty for i=1, ,..,n}.
Example 1 3+ For the 4x5-FAT there are two factors, 4, ard 4,,
where Al has % levels denoted by the elements of the set Tl’ and
b
design points, D, are given by
7, ={0,1,2,3}
T, = {0,1,2,3,4}
D ={(0,0),(0,1),(0,2),(0,3),(0,%),(1,0),(1,1),
(1,2),(1,3),Q,%),(2,0),(2,1),(2,2),(2,3),
(2,4),(3,1),(3,0),(3,2),(3,3),(3,4) } .

For apartitioning given by (&) the i-th factor level set, Ti, is separated

has 5 levels denoted by the elements of T2. Tl’ T2 and the set of

into s i subsets., Each of these subsets will be referred to as a pseudo-

level, or more briefly, p-level. Thus, the i-th factor will have S5

p-levels, where the first p-level represents a subset of size P.., of the

il
original Pi levels, s+ses 5 and the si-‘th subset represents a subset of

size Pis of the original Pi levels.,
i

Definition 6 : For the s; p-levels of the i-th factor in the

partitioning (4) define the s. subsets T.., .eep, and T.  to be the
1 il isy
sets of levels corresponding to each p-level.

T - _m ~ — 3 ’ -
Thus, T = *iIUTiZU"'U ’is_; and Tikn Tik' = ¢ if k#k', or else = Tyk
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n
The partitioning (4) separates tne full replicate of th& treatment

i=1 n
combinations represented by the set of design points D, into T{si
i=1

subsets (see remark 1).

n

Definition 7 : Consider the T\ P;-FAT and the associated set of
T i=1

design points, D. Given the algebraic partitioning (¥) and by con-

sidering only the p-levels for each factor, define the set of pseudc-
design points, SD, to te the set of n-tuples

S, = (y seey V. ): y-E{_O,l, seey S~-1} ard. for} .
o= oo TR A a4, Gy n

Each element in SD represents an s-FAT and is described by the n-tuple

(yl, ooy yn), where s indicates which of the Sy p-levels of the i-th

factor is being used to construct the particular s-FAT, for i = 1, «seyn.
Example 2 : Corresponding to example 1, consider the partitioning
4x5=FAT > (2 + 2)(2 + 3)-s-FAT's , or more explicitly,
4152-FAT-——--e>(211+212)(221+322)-S-FAT'S. The four s-FAT's that
result from this partitioning are obtained from the algebraic

expansion of the right hand side of the partition expression, namely

(291%2)2)(214355) = 297257427735 4295255 4215395
Now, SD = {(0,0),(0,1),(1,0),(1,1)} and each element in Sp indicates

a s~-FAT by the following correspondence scheme: for each (yi,yé)ESD

let ¥y = 0 refer to the p-level indicating 2 = 1 refer to the

11’ 1
p-level indicating 212, Yy = 0 refer to the p-level indicating 221

and ¥5-= 1 refer to the p-level indicating Thus, (O,O)ESD

3000

- - -7 3 -
indicates the 211221 s=FAT, (O.I)GSD indicates the 211322 s=FAT,

(1,0)€SD indicates the 212221 s=-FAT and (1,1)€SD indicates the 212322

S-FAT L]

n
Given a partitioning scheme for a 7T:Pi-FAT and an element (yl, ...,yh)
i=1
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in SD’ the set of design points of the corresponding s-FAT can be found
by the cartesian product, Tl(yl+l)x ere X Tn(yn+1), where Tjks Tj for

j= 1, seeyn and for k = 1’ eeeyS

J
.En.mple 2 (continued) : If Ty = {0,1}, Typ = {2,3}, T21 = {0,1}
and Ty, = {2,3,4} then

(0,0)¢ SD is equivalent to Tu)('l‘21 and the 211221 s=FAT,

(0,1)esp is equivalen‘l:. to T11XT,, and the 211322 S-FAT,

(1,0)€35 is equivalent to le Ty ard the 212221 s-FAT and

(1,1)¢3; is equivalent to T12XT22 and the 212322 s-FAT,
If a 4 by 5 square is used to represent the 20 treatment combinations
of the 4x5-FAT, then the &4 s-FAT's are indicated in Figure 1.

where rows represent levels of Az and columns represent rows of Ay.

Full Rep.  2,,2,,5-FAT 2,3, s-FAT = 2,,2,,8-FAT 2,3, s-FAT
0123 0123 0123 0123 0123
Oixixixix Oixix 0 0 xix 0
lixix]x|x lix]x 1 1 xix 1
2ixixixlx 2 2ixix 2 2 x|x
xixixlx 3 3ixix 3 3 x}x
Lixixixix ) Llxix L L X< 1%

Figure 1. - The full replicate and four s-FAT's of example 2.

Remark 1 : Consider the partitioning

n n
TU P, ~FAT ————>T[ (P;7 + oo + P, )-s-FAT's.

n i=1 i=1 i n

If a T[Pi-FAT is partitioned this way, then a total of T{ s, s-FAT's
i=1 i=1

is obtained.

Proof: Consider the set of pseudo-design points, SD.

SD = {(yl, see ,yn) H yie{o,l, Xy} ,Si‘l}’ for i = i, e 'n} .
Since each element in SD describes exactly one s~FAT and

no two elements in SD describe the same s-FAT, the number



14

of s=-FAT's is equivalently the size or number of elements
in Sy. Clearly, the size of SD is ."r}[si .
n i=1
For a T[Pi-FAT the set of design points D, is given by D= TX «ea XTp,
where ilrepresents the set of levels for the i-th factor. At times it
may be desirable to express the set of levels of each factor in vector
form.
Definition 8 : The vector of levels, @ iy for the i-th factor, for
i=1, seeyny in a ﬁPi-FAT is the P; by one vector whose (k,1) entry
is k=1, for k=1, :I:%'Pi' The components of 8; are elements of Tj.
Definition 9 : Let A be an n by m matrix and B be a p by q matrix.
Define the matrix component composition, ebbreviated "ICC," of A and

B to be the np by mq matrix A*B, where

(31113) e v o (alm’B)

A*B . . and

,_(an;_,B) o« o o (am,B)

{
\aij,bll) * e 0 (aij’blq)

( B)'—‘- [ . .

8430 : .

(aij,bpl) T e e (aij’bm)
Definition 10: If Aisnby 1l and Bis p by 1 (A and B are vectors)
then A*B shall be called the vector component composition, VCC, of

A and B rather than the MCC of A and 3.

W N O
.

Example 3 ¢t For the 3x4-FAT we have g1 = E.] and 85 =

Now, (21*22)' = [(0,0)’(091)i§g’

2),(003)1(190)1(1!1),(1’2),(193),(2’0)I
(2,1),(2,2),(2

3)1"

and it represents the full replicate of treatment combinations.

bo! n
In general, for a il[lPi—FAT, _9_1* ‘e *gn is the i";g,Pi by 1 vector whose
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corponents comprise a full replicate of factorially arranged treatment
combinations.

Definition 1ll: The j=-th factor, AJ,for i=1, ¢eey, n, in the

:ﬂ:

algebraic partitioning Tt?i-?ﬁ (Fyq#e0etPy )-s-FAT's,
i i

i=1
has level set Tj which is separated into sub-level sets le""’Tjs
J
by the partitionine. In a similar manner, define gjk to be the
has

vector of levels where the levels are elements of ?jk' If Tjk
ij elements, then gjk is a ij by 1 vector.
Definition 12 : Let A be an n by one vector and B be an n by one

vector. By the Hadamard product (see Halmos (30)), abbreviated HP,

of A and B, and denoted by the symbol A@B, we mean the n by one vector

é‘;’_= (albl, s ,anbn)'
Remark 2 : If A, B and C are n by 1 vectors, then

(1i1) A" (34C) = (A92)'C = (AeC)'E = B'(A®C) = C*(A<R)

(A#B) , where J1 is a 1 by n row vector
of ones.

(1v) 4'B = J;

In order to talk about models for an experimental situation, the
following quantities are given the appropriate meanings. Capital letters,
except for those previously defined, will denote a matrix and capital

\ letters underscored with a bar will denote column vectors. Certain
vectors and matrices occur quite frequently and for this reason the
following vectors and matrices are given special meaning. Let Qk be the k
by one vector of zeros (each element is zero), let ¢§ be the a by b matrix

of zeros, let I, be the n by n identity matrix (diagonal elements are ones
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and off-diagunal elements are zero) and Ji be the a by b matrix where
each entry is one. Furthermore, let M be a m by 1 vector of unknown
constants and e an m by one vector of random error terms. Somé of the
usual assumptions concerning the distribution of e are that E(e) = !m
and E(e e') = g%Im (qge is an unknown constant).

The initial process of describing an experimental situation in
terms of a model involves the specification or defining of a set of
(unknown) parameters that can be used to describe the basic experimental
phenomena. This set of parameters will be components of the vector g.
Cnce the elements of 8 are specified, the next step in construeting a
model is to assume the existence of = vector )M that is some function of
the vector of parameters, 3.

Definition 13 : If there exists a function f such that f:i3—>1,
then the function f is said to define the population model £(g) = M.
The population model should describe the basic or fundamental phenomenon
that is under investigation in the experiment.
Definition 14 : If f:3 —>X3, where X is a known matrix of constants,
the model M = X3 = f(8) is called a2 linear population model.
To further describe the model of an experimental situation,the vector of
observations (or numerical results from the experiment), ¥, must be relat-
ed to the population model.
Definition 16 : If there exists a function h such that h:(M,e)—>%,
then h is said to define the observational model Y = h(M,e).
Definition 15 : If Y=h(¥,e) =)L + e, and } = X8, thenY = X8 + ¢
is said to be a linear observational model or simply linear model.

When defining a linear model Y = X8 + e¢ the matrix X, the vector 8 and
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the distributional properties of e (and the joint distribution of g and
e and the distribution of 3 if appropriate) must be specified.
Remark 3: ILet p be a p by one vector of parameters and let Xt be the
generalized inverse of the matrix X in the linear model Y = X8 + e.
If ¥ = X3 is consistent then, (1) XM = ¥ and
(2) g=xM+ (Ip - ®X)a , vhere q is
an arbritrary o by one vector.
Proof: The proof follows from theorems & and 7, appendix I, by
letting C =¥, A= X, and X = 8. (See also Gateley (28)).
In the linear model Y = X8 + ¢ 1let 3 be a p by one vector of
parameters, Y be an m by one vector of observations, e be an m by one*
vector of random error terms and X an n by p matrix of known constants.
The distributional properties of e will be stated later. By remark
3, B=%XY+ (Ip - ¥X)a, for arbritrary g. Obviovsly g is not unique
since it is a function of g, which can be arbritrarly chosen, unless the
rank of thematrix X is p, and then by theorem & in appendix I, X = Ip
and 3 is unique.
Definition 17 : The vector of parameters, 3, in the linear model
I=X3 + e, where 3 is p by one, Y and e are m by one and X is m by
Pyis said to be intrinsically defined if and only if the rank of X
is p or if and only if (Ip - %) = ¢g- (See Gateley (28)).
In the linear model ¥ = X8 + e suppose X is m by p and the rank of X is

q<p.
is said to be

|o

Definition 18 : If q = p, then the model ¥ = X3 +

a full rank linear model.

S
1

Definition 19 : If q<p, then the model ¥ = 78 + e is said to be
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less than full rank.
The observational model will always be a linear model, ¥ = M + e,
where e is a vector of random error terms. Since the only treatment

n
design under consideration is the factorial arrangement, say a TYPi-FAT,

the elements of ¥ shall be called population means or cell meanf,-lindicat-
ing that they represent population means for the m = ftPi treatment
combinations. The vector of population means, ¥, is ;%rinsically defined
in the full rank model Y=Y¥ 4+ ¢ or T = T M + ¢ (see definition 17 and
let =¥, X=1 and D = m). The vector M is estimable. (see Graybill (29)).
and therefore any linear funct.ion of the elements of ¥ is estimable.
Consequently, in the sequel the effects or comparisons of interest shall
be defined as linear functions of the elements of M rather than as linear
functions of the elements of 3 (if M = X8), thus avoiding some problems
of estimability that occur in less than full rank design models, such as
I = X8 + e, where X is a design matrix.
Uffects
Mttention is now focused on certain linear functions of the

elerents of ¥ that are useful in the analysis of observations.

Definition 20 : An effect of the population model I = Xg is a linear

combination of the elements of M. ZIffects will be denoted by vector

nroducts A'M, where A is a m by 1 vector that is said to define the

effect.

Definition 21 : Two effects _)a'_g and AJ¥ are orthogonal if Ay and A,

are orthogonal (_):]'_2\_2 = 0).

Definition 22 : A set of vectors is said to be orthogonal if every

vair of distinet vectors in the set is an orthogonal pair. Two sets
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of vectors are said to be orthogonal if every pair of vectors, taking
one vector from each set, is an orthogonal pair.

n
Definition 23 : The overall mean effect of a TfPi-FAT is given by

1 n i=1
the effect J°M, where m = TLF..
m— Lot i
i=1 n
Associated with the j-th factor in a n ?i-FAT are Pj levels and Pj
i=1

level totals. The kj-‘th level total of factor j, forkj= 1, ...,Pj, is
the sum of all elements in M that are designated by kj—l in the j-th
position of the subscript. Thus, each level total is a2 sum of specified
elements in M. To define an effect on the level totals will be equival-
ent to defining an effect, A'M, on the elenents of ¥ so that all elements
composing a particular level total are assigned the same number in the
appropriate positions of the vector A. Consequently, an effect defined
on the level totals corresponds to an effect, A'M, defined on M.
Definition 24 : A main effect of the j-th factor in a 'Ft Pi-FAT is
a set of Pj-l orthogonal effects defined on the Pj 1eve§.=?t-.ota.ls (and
therefore on the elements of 1\_'.-') and such that each of these effects
is orthogonal to the overall mean effect. The Pj-l effects shall be
referred to as components of the main effect.
For identification purposes in analysis of variance tables,let the symbol
Aj designate the source of variation due to the main effect of the j-th
factor.
n
Definition 25 : A simple effect for the j-th factor in a Tt Pi-FAT
is an effect orthogonal to the overall mean effect and defi;:é on
only two elements of M such that the subseripts of those two elements
differ in only the j-th position. Thus, a vector L that defines a

simple effect A'M will contain zeros in all positions but two, and
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those two positions will contain the numbers 48 and -8 (usually @=1).
By the above definitions it is easy to show that some combination of
simple effects will result in components of a main effect. Consider two

simple effects

M=, . : . = m . : and
.).‘.._ m]_l,oo.,ljl,'ouylkl,oo-,ln 11’...,1.].2’.."11(]-’...'12'1
M= m, . . = m. . . s
Z\‘Z- mll,.-',ijl,.'-,lkz,t-0,1n mll,...’ljz’...’lk ,.n;,ln

among the j1+l and j2+1 levels of the j-th factor where one simple
effect is at the (k1+1)-st level of factor k and the other is at the
(x +1)-st level of factor k.

Definition 26 : Given two simple effects klr and ) _éﬁ, the effect
that represents the difference between these two simple effects,

(Ll - Lz)'g_, is called the simple interaction effect among levels

j1+1 and Jotl of factor j and levels k1+1 and k2+1 of factor k.

Let the orthogonal sets of vectors {A(l)l,...,k( )P 1} and A(J)l,...,
n
A(3)p 1} define main effects for factors i and j of a 'T[P -FAT. These
J

1—1
two orthogonal sets of vectors can be utilized to construct a third orth-
ogonal set of (Pi-l)(Pj~l) vectors by construction of all vectors of the

form L(ij)hihj = Mi)hi C Mj)hj where hy ¢{1,...,F -1 for k = 1,j},

Definition 27 : The two factor interaction effect between factor i

n

and factor j of a 'T[P ~-FAT, given the main effects for factors i and
j=1 *

j» is the orthogonal set of (Pj-l)(Pi-l) effects
{x (13)h hj L(lJ)hihj = L(z)hi@ L_(j)hj for h, ¢ {l,...,Pi-l}
arﬁ hje {l,c.t,Pj-l}}l
For identification purposes in analysis of variance tables the symbol

AixAj will designate the source of variation due to the two factor
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interaction effect between factor i and factor j. The effect given by
A'(1j), y ¥ will be referred to as a component of the two factor inter-
action efgect.
Definition 28 : Factor (main or interaction) effects of a T[P -FAT
are orthogonal if the orthogonal sets of vectors that repre:;it them
are orthogonal.
Remark 4 : Factor main effects for a T[ P;~FAT are orthogonal.
Proof: Without loss of generalityj,—%he factor one and factor two
mein effects will be shown to be orthogonal. Let A'(1)¥
and A'(2) be two arbritrary components of the factor one

and factor two main effects, respectively, where

-(-::.0 ] -?o ] B0, veey 0 )
;;o épz_l‘ ’;(o, eeesP 1)
! 'fo A eey 0)
AQ) = :.Ll » A(2) = épz.]_’ Y= %(1, eeeyP -1)
:pl 1 %o rE‘(Pl-l,..., 0 )
_.Pl -1 _éPz-l f’(Pl-l....,Pn-l)_

are the vectors. Since A'{1)M and L'(2)M are components

of the main effects, A' (l)Jm =2 (2)Jm = 0 and, stated in

Py-1
other terms, é 5 B = 0. Now,

n P-1Pp-1 n 31 Bl
Al (l)L(z) = (Ttpk)( 2 2 aiBj) = T[Pk( z ai)( Z B
k=3 . 1=0 3=0 k=3 © 10

= 0,
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and the components )A'(1)M and )\'(2)M are orthogonal. This
is obviously true for all choices of )'(1) and A'(2) in
the factor one and factor two main effects, respectively.
Thus, the factor one and factor two main effects are
orthogonal and it follows that any two distinct factor
main effects are orthogonal.
Remark 5 : The two factor interaction effect between factor i and
factor j of a i%I‘ -FAT is orthogonal to the main effect of factor i
and is orthogo;;% to the main effect of factor j.
Proof: It suffices to show orthogonality of the interaction
effect and either main effect. ILet \'(ij)k = (A(3) ® A(G))'M
be a component of the factor 1 - factor 2 interaction effect and
let Lf(i')g_be a component of the factor one main effect. Desig-

nate components of Li by a's, Li‘ by &'s and elements of ). by B's.

3
Tt follows that (k £ i and k £ 3)

AT (EDAGED)

y(i')(gi@z,)

Ps~1 P.-1
(‘IIP )¢ .5.8.)
k_l Eb E"o facls

s -1
T[Pk)(z 155, >(§: 3,) = 0.

Thus, the components are orthogonal and the factor i main effect

is orthogonal to the factor i - factor j interaction effect.
Similarly, the factor J mein effect is orthogonal to the factor
i - factor j interaction effect.
Ey remark 5 all two factor interaction effects between factors i and j
are orthogonal to the factor i main effect and factor j main effect, for

all i,j =1, «esyne It can also be shown that an interaction effect



23

between factors i and j (j # i) is orthogonal to each factor k main

effect, for Xk = 1, +esyn.

Definition 29 : For k = 2, ...,n, the k-factor interaction effect

n
between factors il’ ses and ik in a T(FW.-F:\T is the orthogonal set
k i=1 &
of TY (F. -1) effects, where the effects are determined by the vectors
h=1
in the set

{-)L(il..'ik)hi ...hﬂ. : L(iltuoik) = L(il)h. @ .00 & A"(ik)h. for
1 “k ! X
hije{l’ ...,Pij-l} fOI‘ j — 1’ lll,k}

Temark 6 : Ina Tn[?i-FA'v.’, all k-factor interaction effects and
im]
k'-factor interaction effects are orthogonal.
Froof: The method of proof is equivalent to the proof of
rerarks 4 and 5.
For the following definition two levels are chosen for each of k specified

n
factors (k¢n) in a T[Pi—-AT and one level is chosen for each of the
i=1 ¥
remaining n-k factors. Consider the 2® design points that are composed

of the chosen levels for each factor and call this subset of design poinis

g

Definition 30: A simple k-factor interaction effect among 2k chosen
levels of k specified factors (two levels per factor) is A'M, where
the elements of )\ are zero if the design point corresponding to the
element (in \) is not in H and plus or minus one if the design point
corresponding to the element (in )) is in K and such that the sum of
the elements in )\ corresponding to each level of each of the k spec~

ok-1 k-1

ified factors is zero (?: contains m-2k Zeros, plus ones and 2

minus ones).
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To facilitate the analysis of observations (chapter V) of an experiment

n
with a2 partitioned T[Pi-FAT, the following quantities are defined. Let
i=1
L.L = Jl, the one by m row vector of ones, where m = T[P o Let LF be
i=1
the (P -1) by m matrix that is determined by a set of (P -1) row vectors

that define a main effect for the i-th factor, for i = i, seeyn. Like-

k
wise, let LF g, be the TV (7, .-l) by m matrix whose rows are the set
i, 1 75

of vectors de.]::.ning the k-factor interaction effect between factors i,,

iyy eee and ik' Now, let L be the matrix, m by m, given in Figure 2.

B L, (overall mean effect)

LF (factor 1 main effect)

LF (factor n main effect)
n

LF F (2-factor interaction effect between

. 1°2 factors 1 and 2)

L = LF F (2-factor interaction effect between

n n-l factors n and n-1)

LF F {(n-1-factor interaction effect between
1°° " 'n-1 factors 1, 2, +¢s and n-1)

LF F ((n-1)-factor interaction effect between
2°°"n factors 2, 3, ++s and n)

LF F (n-factor interaction effect between
1°°*"n | factors 1, 2, «ve and n)

n
Figure 2. - The matrix defining effectsfor a T[Pi-FAT.
i=1

Remark 7 : By comstruction, L'L = D, an m by m diagonal matrix.

Let ll_i, the i-th row of the m by m matrix H, be the normalized i-th row

25s of the matrix L. The matrix H is similarly partitioned in Figure 3.




o,

1'..Fn J

L.

Figure 3. -~ The matrix H correspording
to the matrix L of figure 2.

Remark By construction, H is orthogonal (H'H = HH' = Im).

-

Now, H'H = H! + HE + see + H. H + oee + HE B and
’ P&%- FlHF‘l anFn nFl. L] an nFlt [} .Fn '
letting Be = HéHB , term-wise substitution yields the following result,
H' H - + 4+ o0e + + B + ecoe + 4+ o0 + °
B+ 3p Br, * BRyF, 5 F 1oy

Remark The matrices Be, for 8 =1, Fy, eeey Fpy oee and (Fl...Fn),

form an orthogonal idempotent decomposition fer the identity matrix,
I,» or (1) each Be is an idempotent matrix,

(2) the rank of Be is the mumber of rows in He,
m
3) BeBe, = ¢m’ for al1 6 # 8* and

) §89 = Im.

Proof : Statement (4) is true by remark .

Since B8, = HE,HE, = BTE, = BE= By (letting r
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be the mumber of rows in HO)' statement (1) is proven.

- ' = ”
Now, rank(Be) = rank(HeHa) = rank (HB) = T, where r, is

the number of linearly independent rows or columns, which-

ever is fewer. For each He

columns, and since the rows are orthogonal the rank of

there are fewer rows than

He is clearly the number of rows of E,. Also, for 8 # o',

— ] - m a -
BBy = HBHGHQ'HQ' = He (¢c)H , = ¢$, where a is the rank

of Hy and ¢ is the rank of He, . Thus statements (2) ard

(3) are proven.



CHAPTER ITI

PLANS USING SOME OR ALL OF THE s-FAT's

n
In the preceding chapter a total of TY{ S5 s-FAT's are obtained
i=1
from the algebraic partitioning
n n
TUP,-FAT —-—>1'C(Pil 4 oeo + P._ )-s-FAT's, (5)
. . is.
i=1 i=1 i

Definition 31: For a ?{nCPi-FAT the set of design points, D, repres-
ents one full replicateho% the treatment combinations. Iet F be a set
composed of elements of D so that any element in D may not occur, may
occur once or may occur more than once in ¥. The set F shall be
called a FLAN.
Definition 32: For the algebraic partitioning (5), a subfactorial
plan, denoted sPLAN, is the set of treatment combinstions that is
represented by any nonempty subset of SD. In other words, an sPLAN
is a set of s-FAT's generated by the algebraic partitioning (5).
An sPLAN can consist of one s-FAT or, if enough experimental units are
available, an sPLAN can consist of two or more s-FAT°s. Methods are
developed in this chapter for sPLANs when the entire sPLAN can be per-
formed at one time (with one block of units) or when the sPLAN consists
of two or more s-FAT's that are performed in a sequence or in blocks.
Methods that separate a set of treatment combinations into subsets, so

the subsets can be assigned to blocks, are given in Chapter IV,

27
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K-dimensional Rectangles

n
Consider a full treatment replicate of a T[Pi-FAT and the
i=1
associated set of design points D, where D is given by

D= {(Xl, ssey H): xiETi={0,l, XY Pi—l} fori:l, seey n} .
Definition 33: The subset C of design points is said to be a
k-dimensional rectangle, abbreviated "k-dimerect.", for k =1, ...,n,

if C consists of 2k

distinct elements such that the n-tuples that
represent them differ only in some k specified positions, where in
each of the k positions only one of two numbers occurs.

For example, if k = 2, the design points (K.L' ceey X

i, seo0y xj' esey xn),

(xl’ seey x:!‘, seey X seey xn). (x1, ceey Xi, seey X"’ veey )S)) and

3’ J

(xl, cony Xy eeey xa.. ceny xn) differ in the i-th and j-th positions and
in the i-th position either x; or x:,'L occurs while either xj or xs. occurs
in the j~th position. This set of four distinct design points forms a
2-dim-rect. and a specified linear combination of the observations cor-
responding to these design points will yield an estimate of a 2-factor

simple interaction effect.

n
For a JUP.-FAT the vectors 8, are defined in definition 11 for

i=1 % n
i=1, eeeyn. Letm= T‘fl"‘:.L and let D beanm by one vector such that
i=1
2'—'-‘&1*.--*%0 (6)

Let V beanm by one vector of zeros, plus ones and minus ones and let |V|
be the m by one vector where each entry in |V| is the absolute value of
the corresponding entry in V. If C is a subset of the set of design
points, let a zero in the i-th position of V indicate the i-th component
of D is not in C and a plus or mimus one in the i-th position of V indi-

cate the i-th component of D is in C. An element of |V|] @ D of the type
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O-(xl, ves g xn) will be written as 0, indicating that (xl, cee xn) is
not in C and an element of the type l*(xl, oo xn) will be written as
the symbol (xl, ess xn) indicating that the treatment combination
(Xyy oes xn) is in C. Thus, the non-zero entries of V @ D are the

elements of the subset C.

If the subset C represents a k-dim-rect. then a method is needed
to select the elements of V so that V'M is a k-factor simple interaction
effect and so the non-zero components of |V|@ D are the .elements of C.
iach of the m positions in V relates to an n-tuple or design point in
D. Assign a O to those positions in V that correspond to design points
that are not in C. Since C represents a k-dim-rect., C consists of Zk
n-tuples that differ in k of the n positions in such a way that in each
of the k positions either one of two numbers occurs. Choose any four of
the 2k n-tuples that form a 2-dim-rect. Of these four n-tuples choose
two that do not form a l-dim-fect. and essign the value +1 to the corre-
sponding positions in V and assign a -1 to the positions in V correspond-
ing to the other two n-tuples. There remain 2k—2 positions in V to
assign a +1 or -1. Choose a2 second set of four n-tuples such that they
differ from the first set in only one position. For example, say the
first four n-tuples chosen were (x.l, xz, x3, ceeey xn)

(X:'L, Xp1 Xgp eves xn)

(xl, X5 Xqy ey x,)

(x—i. X3 Xg1 eees xn).
Next, (xl,xz',xy ...,n%) and (xi,xz,xy «+syX,) are selected because
they do not form a l-dim-rect. and a 41 is assigned to the corresponding

positions in V. The number -1 is assigned to the positions in V corres-

ponding to the n-tuples (xy, x,, Xqy eeeXy) and (x{, x5, X5y eeeiXp)e
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Now, a set of four n-tuples that differ from the first set in only one

position could be
(xl, X, xé, coey xn)

(xl, xé, XY, eeey xn)

(JS'_, X, xé, cosy xn)

(x_l'_, xé, xé, N xn).
For each n-tuple in the second set there is exactly one n-tuple in the
first set that is nearly identical. To each position in V¥ corresponding
to an n-tuple in the second set assign a -1 times the entry in V that
correspords to the nearly identical n-tuple in the first set selected.
Thus, in the example mentioned, the numbers l, -1, -1, and 1 would be
assigned to thé positions in V corresponding to the second set of four

n-tuples in the order they were mentioned. The procedure of selecting

a set of 20 n-tuples nearly identical with the set of previously selected

h

2" n-tuples (to which 41 or -1 are already assigned to positions in V)

is ccntinued until all the elements of V are determined. The procedure
will yield a vector V that has 2X non-zero entries and m-2¥ zero entries.
Since there are as many entires that are +1 as -1 and since +1 and -1
are the only non-zero entries, it is clear that JT:!'I_\[ = 0.
Example 4 : For the 3x4-FAT the vector of design points, D, is
obtained by D = 21 * _6_2 , Where Q_i = (0,1,2) and gé = (0,1,2,3).

D'= ((00),(01),(02),(03),(10),(11), (12}, (13),(20),(21),
(2),(23))"

If € ={(00),(03),(10),(13)} then ¥’ = (1,0,0,-1,-1,0,0,1,0,0,0,0)"
and C' = (|vj®@ D)' = ((00),0,0,(03),(120),0,0,(13),0,0,0,0)" .

n
Femark 10 : If a TfPi by 1 vector V consisting of zeros and +1 or -1

i=1
entries, then lzj@ D does not necessarily represent a k-dim-rect. for
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k=1, ..., n. For example, if V' = (1,0,0,-1,0,-1,0,0,0,0,41,0)" in

example &4 , then (|V|@ D)' = ((00),0,0,(03),0,(11),0,0,0,0,(22),0)*

and the design points (00),(03), (11) and (22) do not represent a

‘2-d:’un-rect.

If the non-zero elements of |V|® D represent a k-dim-rect., then

V'Y is an estimate of some linear combination of population means (ele-
ments of M) that corresponds to a simple interaction effect among k of
the factors at two specified levels of each of the k factors and one
fixed level of the other n-k factors. The existence of a k-dim-rect.
is a necessary condition for the existence of an estimate of a k-factor
simple interaction effect among the population means. The existence of
a k-dim-rect. is not in general a sufficient condition for existence cf
an estimate of a k-factor interaction effect among the population means.

Example 5 : Consider a 23_FAT. The set of design points, D, is

B = §{{000),{001), (010),(011},(200),(201),(120),(311) } . Now, let

Y" ( 1, -1, "1’ l, O' O, 0, 0)' and

y 2.

The non-zero elements of |[V|@ D correspond to the subset of design

(VS

2
29

N1l-l

m‘u

e 1 1 1
_'i=('z's Zy T2 ’ ’

points {(000),(001),(010),(011)} and these design points form a 2-dim-
rect. Also, assuming the observational model is Y = ¥ + e and E(e) = ¢,
we obtain E(V'Y) = V'M = Mgy By Moy s which represents a
2-factor simple interaction effect between factors one and two at level
one of factor one. The set of design points indicated by the non-zero
elements of |W]@ D does not repeesent a 2-dim-rect. but

EW'Y) =By Ey M, D,

which represents the 2-factor simple interaction effect between factors
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one and two averaged over levels of factor three.
Definition 341 The set of vectors 11, ooy \_Ih is said to be a linearly
dependent set if there exists scalars (real numbers) 899 eeey 8, N0t
all zero, such that

a.V. + oo +a V. =@ (P is the vector of zeros).

1 h—h
In the contrary case, the vectors 11, ""y-h are said to be linearly

independent, in other words, if aqV; + ... + aply = @, then the scalars
87y eeey 8y must all be zero.

Definition 35: For a ﬁPi-FAT let the vectors V3, ..., V; be such
that the non-zero eleme;:ti of |§l| @D, ... and |_’\[h|© D all represent

k-dim-rect.'s for some k, k= 1, «ee,n. The set of k-dimirect.'s is
said to be a set of h linearly independent k-dim-rect.'s if and only

if the vectors 11, eesand are linearly independent.

%
Definition 36: The set of vectors V,

orthonormal set of vectors if it is an orthogonal set and if (y_iy_i)il

y ves and Y, is said to be an

for all i = 1, +ee,h.

Remark 11 : Tt can be shown that an orthonormal set of vectors is a
linearly independent set of wvectors, an orthogonal set of vectors not
containing the zero vector is a linearly independent set of vectors
and a linearly independent set of vectors may or may not be an ortho-
gonal set of vectors.,

Definition 37: For a Tnt Pi-FAT let the vectors !1’ eseand V_h be such
that the non-zero elem::%s of |V;]/@D, ... and |V, |@ D all represent
k-dim-rect.'s for some k = 1, ...yn. This set of k-dim-rect’)s is said

to be a set of h orthogonal (orthonormal) k-dim-recte's if and only if

Y—l' eve ard Eh is a set of orthogonal (orthonormal) vectors.
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Connected PLANS

For the following definitions let F be a nonempty subset of D,
the set of design points of a ﬁPi-FAT. Also, let di be the number of
dis.tinct elements (representingkgl-istinct levels) in Di’ where Di is a
subset of Ti’ fori=1, sesp, n (Ti is the set of levels for the i-th
factor ina ﬁ Pi-FAT).

i=1
Definition 38: A PLAN F is said to be connected, denoted cPILAN, if
for every pair of design points, fi and fj, in the PLAN F there exists
a sequence of design points f, = h‘.l.' hz, sy hr-l' hr = fj in F such
that every two adjacent design points in the sequence differ in exact
ly one position.
Definition 39: A PLAN F is said to be a complete PLAN if

F=DyX+esXD, -

Remark 12 : Every complete PLAN is also a cPLAN, however a cPLAN is
not necessarily a complete PLAN.
Definition &40 : The PLAN F is a weak~k-cPLAN, denoted w-k-cPLAN, if
F is comnected and if F contains at least one k-dim-rect. and if F
is also a w=k'-cPIAN for k' = 1, .., k-1,
Definition l&_l : The PLAN F is a strong-k-cPLAN, denoted s-k-cPIAN, if
F is connected, if every point in F belongs to a k-dim-rect. and if
T is aglso a s-k'-cFIAN for k' =1, .., k-1.
Definition 42 s A PLAN F is said to be a complete-k-PLAN at a given
k factors (k¢n) if di>1 for those k factors,and if PLAN F is complete.
Definition 43 : A PLAN F is said to be a completely connected PLAN,
denoted cePLAN, if di>1 for 1 =1, «seyn, and if F is complete.
Remark 13 : If k = 1, then a w-1-cPLAN and a s-1-cPLAN are referred to

as a cPLAN, since in reality they are the same.
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Example 6 : In Figure 4 let FLANs (2), (b) and (c) be taken from

a 32-FAT, FIAN (d) from a 33—FAT and PIAN (e) from a 42_FAT.

FLAN (a) PLAN (b) PLAN (¢) PLAN (d) PLAN (e)

(00) (00) (00) (012) (200) (00)
(o1) (01) (o1) (011) (202) (02)
(10) (10) (02) (020) (210) 1)
(12) (11) (10) (022) (211) (13)
(21) (12) (11) (100) (220) (20)
(22) (21) (12) (102) (221) (22)

220) (120) (222) (31)

21) (122) (33)

Figure 4. - PLANs involving FATs.

PLAN (a) is a cPLAN; PLAN (b) is a cPLAN that is also a w-2-cPLAN but
not a s-2-cPLAN; PLAN (c¢) is a cPLAN that is also a s-2-cPLAN but not
a ccPIAN; PIAN (d) is a s=3-cPLAN but not a ccPLAN and PIAN (e); al-
though at first it may appear to be a2 s~2-cPLAN, it is not even a

cPIAN,

The set of design points for a complete PLAN is given by DlX s+ XDy and

if di is the number of distinct elements in Di’ this PLAN can be thought

n
of as a full replicate of a T[di-FAT. A matrix similar to the matrix L
i=1

of chapter II can be constructed, where the rows define the overall mean

effect, factor main effects (if di>'2) and factor interaction effects. If

di = 1 for the i-th factor, then, obviously, no main effect can be de-

fined for factor i and there will be no interaction effects involving

the i-th faector.

Example 7 : For a B2_FAT let a partitioning be given by
- - ]
4142 FAT——>(211 + 212)(221 + 222) s=FAT's .
Let 211 and 221 refer to the lowest two levels of factor one and factor

two and let 2¢, and 222 refer to the two highest levels of factor one
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and factor two. If the treatment combinations from the 211221-S-FAT

and the 212222-5-FAT are considered as a PLAN, then the PLAN is not

connected.

Definition 44 3 A set of s-FAT's from a partitioning of the type

n n
TUP.-FAT—— 3= JU(P.q 4 +ee + P, )-s=FAT's
4=1 T i=1 T iss

is said to form a csPLAN (complete sPIAN,w-k-cSPLAN, s-k-csPLAN,
complete-k-sPLAN or ccsPLAN), if the set of pseudo-design points in SD
that represent them form a cPLAN (complete PLAN, w~k-cPLAN, s-k-cPLAN,
complete-k-PLAN or ccPLAN).
If the pseudo-design points'that represent a set of s~FAT's form a ccsPLAN
(or complete-k-sPLAN, s-k-csPLAN, w-k-csPLAN, complete sPLAN or e¢sPLAN),
then the set of design points that the s-FAT's represent alsoc form a
ccPLAN (complete-k-PLAN, s-k-cPLAN, w-k-cPLAN, complete PLAN or cPLAKN),
since each s-FAT is a ccFPLAN.

A full treatment replicate that can not be run at one time might
be run in parts, where each part is a s-FAT or group of s~FAT's that
result from a partitioning of the original FAT. The sequence of s-FAT's
is important. The sequence of s-FAT's should be chosen so that if the
experiment is terminated prematurely, then the s~FAT's that have been
run form at least a cPLAN of some type. For example, complete preferable
to not complete and completely commected preferable to strong connected
preferable to weak connected and the degree of connectedness (k) as
high as possible. The concepts of connectedness and completeness can
also be applied to sequences of pseudo-design points.

Example 8 : For the algebraic partitioning
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the set of pseudo-design points is

The sequence (00),(03),(33),(30) is preferable to the sequence
(00),(11),(22),(33) because, if the experiment is ended after step

4 (or 3 or 2) in the sequence, then the first sequence is a cesPLAN
(or a csPLAN (representing a s-2-cPLAN) for termination after either
3 or 2) while the second sequence is not a connected PLAN and not a

complete PLAN,



CHAPTER IV
BLOCKING AND MULTIPLE PARTTITIONING

A usual blocking procedure consists of assigning a set (or sets)
of treatment combinations to a group (or groups) of the same mnumber of
experimental units., The entire set of treatment combinations is separated
into subsets in such a manner that the number of treatment combinations
in each set will also be the number of units in the blocks., It is desir-
able, if possible, to randomly assign the sets of treatment combinations
to the blocks. The method by which the full se‘t; of treatment combinations
is separated into subsets is now of extreme importance. If there is no
reason to consider the blocks of units as an additional source of var-
iation which must be accounted for in the analysis of the experiment,
then a random assigmment of subsets of treatment combinations to the
experimental units is adequate. However, if there is reason to consider
the blocks as a source of variation, then some of the comparisons among
the observations that estimate certain treatment effects will also esti-
mate certain block effects, In this case those treatment effects are
said to be confounded with block effects. The mammer in which the set of
treatment combinations is separated into subsets can dictate the treat-
ment effects that are confounded with block effects. Methods that allow
one to separate the full set of treatment combinations into subsets so

the subsets may be assigned to blocks of units are henceforth called

37
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blocking procedures. }ost of the current blocking procedures require
blocks of equal size and this is a desirable condition simply from an
analysis point of view.

n
When a TUP4-FAT is algebraically partitioned via,
3=1

n n
TUp,-FAT——TU (Pyy + +vo + By )-s-FAT's, 7)
i=1 i=1 i

into 'FY S5 s-FAT's, then parts of individual s-FAT's or one or more of
the si;i’f's can be assigned to a block of units. Iethods developed in
this chapter will allow the assigning of groups of treatment combinations
to a set of blocks, where the blocks may or may not be of the same size.
The main method of separating the full set of treatment combinations into
approp.riate subsets, given the available blocks and block sizes, is to
algebraically partition the TnY P;-FAT via (7) and arrive at a method of
assiéning the s~FAT's to thel:}railable blécks by consideration of con-
founding schemes involving the set of pseudo-design points, SD. There
are fgsi elements in SD- and these pseudo-design points designate a

i=

pseudo~factorial arrangement of treatments, hereafter denoted as a
n .

n
ﬂsi-p-FAT. The treatment combinations of a ﬂsi-FA’? can be assigned

i=1 i=1 n
to blocks and similarly, the pseudo-design points of a nsi-p-FAT can be
i=1

assigned to blocks, or more properly labeled, pseudo-blocks. Since the
set of all pseudo-design points is a complete PIAN, main effects and
interaction effects can be defined for the factors in the -F(si-p—FAT.
‘Ahen components of these main effects and interactions arel:z;nfoumied with
pseudo-block effects, blocking procedures for partitioned FAT's result.
Blocking procedures are considered for partitioned FAT's for the case

when sy = «vo = s and when s, # S5 for at least one pair i # j.
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Definition 45 ¢ If s; = ... = s_in the partitioning (7), the partit-
ioning is called an equal partitioning. Ctherwise, if s; # S5 for

some i £ j, the partitioning is referred to as an unequal partitioning.
In the case where all the partition numbers are equal, for the i-th fac-

= = o000 = t P XX P
tor, let Pi.l Pil Pisi’ and denote the sum ( 11 Fooot iSi)

by si(Pial). Thus, if Pil = eee = Pis- = Picl, for i = l' essy Iy the
1

algebraic partitioning (7) is written as follows

n n
Tt Pi-FAT—————>T[ (s (Py 1))-s=FAT's . (8)
i=1 i=1 *

Blocking Precedures for Equal Partitionings

For an algebraic partitioning of the type (7) the set of pseudo-
design points representing a 'ﬁ si-p-FAT can be used to formulate con-
founding schemes and blockingl;iocedures. If the algebraic partitioning
(7) isanequal partitioning, then s = sy = ... = s_and the set of pseudo-
design points represents a s"-p-FAT. Since it is usually desirable to
confound high order interaction effects with blocks, we shall try to con-
found interaction effects in the sn-p-FAT with pseudo-blocks as a means
of arriving at 2 blocking procedure. If interaction effects in the sP-
p~FAT are confounded with pseudo-blocks, then some of the interaction
effects in +ihe :f%ngFAT are confounded with blocks. In some cases the
confounding of ::ie of the components of factor main effects with block
effects is unavoidable, as is the case where each s-FAT is assigned to a
block of units. Blocking procedures are now discussed for equal partitions
where s is an arbritrary integer greater than one.

Confounding schemes for s"-FAT's where s is a prime or prime
g P

power number are given in Kempthorne (34#). If blocks of size s™ (m<n)
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are available for confounding effects of a full repiicate of a sP-FAT with
block effects, then a total of s blocks are requireds To separate the
set of s® treatment combinations into sets of size s, one must choose n-m
linearly indeperdent effects to confound with blocks. Counting these n-m
linearly indeperdent effects and their generalized interactions, a total
of (s ™)/(s-1) effects are confounded with blocks. For blocks of size
s® there are a total of n?’n}t-l ((sP-s1)/(s"™-s1)) systems of confounding
to choose from (see Kemptl:l;gne (34)). Usually a system where the high
order interactions are confounded with blocks is preferable to a system
where the main effects or components of main effects are confounded with
blocks. Examples of equal partitionings when s is 2 prime and prime
power mumber are given in the sequel.

Once the set of pseudo~design points is separated into subsets
these subsets can be randomly assigned to blocks of the appropriate size.
Assigning subsets of pseudo-design points to pseudo-blocks is essentially

n
the same as assigning subsets of the 7T’Pi treatment combinations to

blocks of appropriate size. The confﬁding schemes are used to separate
the set of treatment combinations into subsets and the subsets are rand-
omly assigned to the blocks of experimental units.

If s in the sn-p-FAT is a prime power number then additional
methods labeled pseudo-factorials in Kempthorne (34) can be used to
obtain conofunding schemes for a sT-FAT. If s is a product of prime
mumbers, then the theory recently developed by White and Hultquist (44)
ard Raktoe (40) can be used to construct confounding schemes.

Whether or not blocks of equal size can be accommodated depends

entirely upon the algebraic partitions Pi = Pil + oeo + Pis » for all
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i =1, eeey ne The size of a s-FAT is determined by the numbers of the
type jitlpiji’ where jif:{l, oy si}. If Pyq = eee = Pisi’ for all i =1,
eesy N, it is obvious that blocks admitting the same number of s-FAT's are
of equal size. However, it is not necessary that Pil = ees = Pisi for i
= 1, «eey n, in order to arrive at a PLAN involving equal block sizes

(an example is given in the sequel). As will be seen later, it is also
possible to have s; # s'j for 1 £ j and arrive at equal block sizes when
the s-FAT's of an algebraic partition are applied to blocks of experimen-
tal units.

It is also possible that blocking procedures can be obtained by
constructing confounding schemes in each s-FAT. This would normally be
the case when there are a lot of blocks available and the blocks have a
relatively small number of experimental units. If confounding schemes
within each s-FAT are used and if a combined analysis of the observations
of all the s-FAT's is to be performed, then the confounding schemes in
each s-FAT must be chosen so an overall analysis is possible. For exam-
ple, one might confound interaction effects in all of the s-FAT's or one
night confound main effects or components of main effects in all of the
s-FAT's, but confounding components of main effects in some of the s-FAT's
and interactions in some of the s=-FAT's will probably lead to complicated
analysis procedures, if any analysis procedure exists for all the s-FAT's
as a whole.

Definition 46 : To denote a partitioned factorial arrangement of
treatments that is applied to a set of blocks, the symbol A : B will
be used, where the symbol A denotes the algebraic partitioning and the

symbol B is a set of numbers indicating block sizes.
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Thus, for n = 2, the expression (2(P1.1))(2(P2'1)):2P1.1P2.1 indicates
that a PlPZ-FAT is partitioned according to

Ple-FA’I‘ ——)—(Pl.l + 1:’1.1)(P2.1 + Pz.l)-s-FAT's,
and the whole set of treatment combinations is assigned to two blocks,
where both blocks are of size 2P1.1P2.1. For the algebraic partitioning

PlPZ-FNT-—————e»(s(Pl.l))(s(Pz.l))-s-FAT's (9)
| the possibilities for blocking PLANs are enumerated in Table 1. The
first column in table 1 indicates pseudo-block size in the sz-p-FAT: the
second columm indicates the block size in terms of the original full rep-
licate of the PlPZ-FAT: the third column indicates the number of blocks
required for a full treatment replicate and the fourth column gives the
blocking PLAN notation. The four PLANs in column four are henceforth
referred to as blocking PLANs (a), (b), (c) and (d). The number of
pseudo-blocks is equal to s? divided by the pseudo-block size. The de-
grees of freedom available for confounding is the number of blocks minus
one. In blocking PLAN (a) there are s pseudo-blocks and a suitable con-
founding scheme can be obtained by confounding components of either fa-
tor main effects with pseudo~blocks, or if s is a prime or prime power
nmumber, by confounding components of interaction effects with pseudo-
block effects. If s is not prime or prime power or equal to one, effects
correspording to interaction might be confounded with block effects.
In blocking PLAN (a) there are s s-FAT's that are assigned to one block
of units. In blocking PLAN (b) all effects in the p~FAT are confounded
with pseudo-block effects. Blocking PLANs (c¢) and (d) are obtained by
confounding all effects of the p-FAT with pseudo-block effects (as in

blocking FLAN (b)) and then confounding effects within each s-FAT with



43

TABLE 1

SOME BLOCKING PLANS FOR THE PARTITIONING (9)

—_— e — — . .
Block size | Block size | number of Blocking PLAN
s2-p-FAT | PyP,-FAT blocks
s sPy 1P s (6(Py 1)) (s(Py 1))1sPy 1Pp 4 (o)
1 Pafea SO O (R B N
1 Py, Py |C " (¢ ):P) 4 (c)
2 " (1] . -
1 Pra P ¢ )( )P, 4 (@)

OTHER
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block effects. The confounding schemes available within each s-FAT depend

upon the numbers P; ; and thus, the word "other" appears in the table to

J
allow for schemes confounding other effects (whenever possible) with block
effects. No PLANs are developed that would result in assigning parts of
different s-FAT's to the same block of units.
Example 9 : Consider the algebraic partitioning
8142—FAT ——>(1+11 + 412)(221 + 222)-s-FAT's.
Let 411 and 212 refer to the lowest four and lowest two levels of
factors one and two respectively. Likewise, let 412 and Zéz refer to
the highest four and highest two levels of factor one and factor two
respectively. For this example, the p-FAT is equivalent to a 22—FAT.
The blocking PLANs are given in table 2, which follows the form of
Table 1., Blocking PLANs (a), (b), (¢) and (d) are obtained by con-
founding the effects of the 22-p-FAT with pseudo-block effects. Block-
ing PLAN (a) is obtained by confounding the pseudo-factor one main
effect with pseudo-block effects; blocking PIAN (b) by confounding
the pseudo-factor two main effect with pseudo-block effects and block-
ing PLAN (c) by confounding the pseudo-interaction effect with pseudo-
block effects. Blocking PLAN (d) is obtained by confounding all effets
of the Zz-p-FAT with pseudo-block effects. Once the p-FAT confounding
procedure separates the elements of SD into subsets, each element, or
psepdo—design point, is replaced by the design points it represents.
These sets of design points are then randomly assigned to the blocks.
In Figure 5 the blocking PLANs (a), (b), (c) and (d) are represented.
The numbers in Figure 5 indicate which subset that particular treat-

ment combination is assigned to. Rows represent levels of factor one
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TABLE 2

SOME BLOCKING PLANS FOR EXAMFLE 9

Block size Block size Number of Blocking PLANs
22 _p-FAT 8xl4-FAT Blocks
(a)
2 16 2 (b)
(e)
1 8 4 (@)
1 4 8 (e)a (r )9 (£ )a (f )9
(51)s B)r (B3) °
1 2 16 (hy), (hp), (h3), (hy),
(h)s (bg); (b
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Figure 5. - Illustration of blocking PLANs (a),

(b), (c) and (&) for example 9.
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and columns represent levels of factor two. The blocking PLANs for block
sizes four and two are obtained by first separating the full replicate of
32 treatment combinations into four sets by blocking PIAN (d) and then
sepéra.ting each of the four sets into either two or four smaller sets,
depending upon the block sizes. Each of the four sets is an s-FAT ob-
tained from the partitioning. Each s-FAT is equivalent to a 4x2-FAT.
Confounding schemes for a 4x2-FAT, labeling the factors as Bl and BZ' can
be obtained from confounding schemes in a 23-FAT, labeling the factors as
A, Band C. The correspondence between the 23-FAT and Ux2-FAT factors is

Q) A represents B,

(2) B, C and BC represent Bl

(3) AB, AC and BC represent BJ_B .
This correspondence procedure is the procedure labeled "pseudo-factors"
in chapter seventeen of Kempthorne (34). From the correspondences (1),
(2) and (3) above, the treatment combination relationships in Figure 6
result. From these correspondences in Figure 6, it is easy to conclude
that a main effect defined for factor A is equivalent to a main effect
defined for factor BZ; a main effect for factors B and C and a 2-factor
interaction effect for factors B and C is equivalent to a main effect de-
fined for factor Bl é.nd the interaction effects defined for AB, AC and
ABC are eaquivalent to a two factor interaction effect defined for factors
Bl and BZ' To obtain blocking PLANs for eight and sixteen blocks the
blocking PLAN (d) is first performed. Now, to obtain blocking PLAN (e),
the main effect of factor A in the 23-FAT is confounded with pseudo-
blocks of size four, and consequently, B2 or a component of the factor

two main effect in the P,P,-FAT, is confounded with block effects (the



Design Point in Design Point in

2x2x2-FAT 4x2-FAT
(000) (00)
(o01) (10)
(010) (20)
(011) (30)
(200) (01)
(101) (1)
(110) (21)
(111) (31)

Figure 6. - Treatment combination correspondences,
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confounding of factor A is carried out in each of the 23-FAT's represent~
ing the 4x2-FAT's or s-FAT's). Similarly, components of the factor one
main effect will be confounded with block effects if either of B, C or
BC is confounded with pseudo-blocks in each of the s-FAT's., These three

schemes represent blocking PLANs (fl), (fz) and (f Blocking PLANs

30
(g1)» (gz) and (gj) are those obtained by confounding components of the
two factor interaction with block effects, and thus, can be obtained by
confounding either of AC, AB or ABC with pseudo-blocks of size four in
each s-FAT. For those blocking PLANs incorporating sixteen blocks, the
methods to obtain the PLANs are given in Figure 7. Blocking PLANs (gl)
and (h?) are chosen as representatives of the blocking PLANs for block
sizes four and two. For blocking PLAN (gl) there are eight sets of four
treatment combinations each (two sets per s-FAT) and for blocking PLAN
(h7) there are sixteen sets of two treatment combinati§ns each (four sets
per s-FAT). These blocking PLANs are represented in Figure 8.

Table 3 represents a2 summary of the blocking PLANs for the
equal partitioning

7nt P;~FAT ——->‘[nt (s(P, ,))-s-FAT's. (10)

i=1 i=1 1.1
In Table 3 the first n blocking PLANs are obtained by confounding the
effects of the sn-p-FAT with pseudo-block effects. The remaining blocking
PLANs are arrived at by first invoking the blocking PLAN with pseudo-
block size one and then separating each set by further confounding effects
within each s-FAT with block effects. The word "other" appears in the
table to indicate that there might be other confounding schemes available
that would lead to other blocking PLANs, but the availability depends

largely upon the numbers Pl.l' ese and Pn 1 The greater the number of
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Pseudo-block | Effects confounded in the

size 29-FAT l2-p-FAT 8xl4~FAT PLAN

4 A,B,AB By, a component of F (gl)
part of By a component of F.?
part of B2 a component of Fi'sz

L B,C,BC B, a component of F, (32)

L 4,C,AC B, a component of F (g7)
part of Bl a component of F2
vart of 3132 a component of F‘i‘Fz

L A,BC,ABC 3, a component of F (g.)
part of a component of F2 3
part of B2 a component of F’g:Fz

L B,AC,ABC part of By a component of Fy (gy,)
pert of BlBZ 2 component of F1F2

L C,AB,ABC part of By a component of F. (gs)
part of 313, | a component of F’;L_Fz

L AC,BC,AB part of By a component of F. (gé)
part of Ble a component of F?L’FZ

Figure 7. - Methods to obtain blocking PLANs consisting of 16
blocks for the partitioned 8x4-FAT of exarmple 9.
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Blocking PLAN (gq) Blocking PLAN (h'Z)
Factor two Factor two
0 1 2 3 01 2 3
0TI Zz]3% O[ I B[ 5[ &
112p11413 1] 3] 2 6
Factor 2 21314 Factor 21 1 5] 8
one 32 %4 one 31 31 21 7] 6
4|5 712 Lt 9]12§13{16
AIERE s[i E%‘Tlﬂ
651617 |6 &} 9]1213]1€
716151°¢ 713113043511

Figure 8. - Blocking PLANs '(gl) and (h7) of example S.
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TABLE 3

SOME BLOCKING PLANS FOR THE PARTITICNING (10)

—_

=
Mumber of blocks

Block size | Block size
sU-p-FAT | Py..P-FAT
n-1 n-1
s ' s Pl.l"‘Pn.l s
n-2 n=-2 2
s s Pl.l‘ . 'Pn.l s
: ' ‘n-1
S SP11v v Pna s
34}
l Pl.l..'Pnol S
1 Pl.l san,l...Pn.l
n
1 P2.1 s Pl.lPB.l"'Pncl
1 n L X}
a1 SE e
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blocks the more difficult it is to find a blocking PLAN in which compo-
nents of main effects remain unconfounded with block effects. For this
reason, blocking PLANs with a few large sized blocks are often preferable
to blocking PLANs with relatively small sized blocks.

So far, only blocking procedures for partitions of the type (10)
have been mentioned. In the general partitioning expression (7) it might
be the case that Pij. + Pij

i it
sequently, the s-FAT's do not necessarily have to be the same size. For

, for the i-th factor and ji # ji .+ Con-

n=2and s = 52 = s, assume that the numbers P]J.' ees ard Plsl are not

all equal in the partitioning

P P "'FAT—>‘(P 4+ eses + P )(P 4+ see + P )“S‘FA.T'SQ (11)

12 11 151 21 2s,
For the partitioning (il) the s? s-FAT's are of sizes P11P21, ees and
Pls]_PZsz' For a matter of simplicity, let s = 2 and hij = PliPZj’ for

i=1,2 and j=1,2. Blocking PLANs derivalbe from confounding schemes
in the 22-p-FAT are given in Table 4. PLAN (a) of Table 4 and PLAN (b)
of table 4 are obtained by confounding factor main effects with pseudo-
block effects in the 22-p-FAT. PLAN (c) is obtained by confounding the
two-factor interaction effect of the 22-p—FAT (which is a component of
the two-factor interaction effect in the Png'FAT) with pseudo-block ef-
fects. PLAN (d) results from confounding all effects of the 22-p-FAT with
pseudo-block effects.. Thus, for PLAN (d) one component of each of the
factor main effects will be confounded with block effects and one compo~
nent of the two-factor interaction effect in the Ple-FAT will be con-
founded with block effects.

For the case when s = 3, the partitioning
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TABLE &4

SOME BLOCKING PLANS FOR'THE CASE sl=52=2 OF THE PARTITIONING (11)

cmvenmey
e

mm:
Blgck size Block size in the ¥Number of blocks | PLANSs
2

“p-FAT P, P,~FAT
(hyq+hy5) s (hyy+hy, ) 2 (2)
2 (B ), (hy p#0p5 ) 2 (®)
(hyy+hop)s (By oty ) 2 (e)
1 hyys hyps Bqahiy, 4 (d)
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results in nine s-FAT's of sizes hij = PliPZj’ for i =1,2,3and j=1,
2,3. Table 5 gives the blocking FLANs derived from the 32-p~F1T. In
Table 5 there are four PLANs available for a partitioned factorial ar-
rangement of treatments of the type (12), if the partitioned factorial
is to be run in three blocks. Two of these PLANs ((c) and (d)) result
from confounding a factor main effect in the 32-p-F1T with pseudo-block
effects and the other two PLANs ((a) and (b)) are obtained by confounding
components of the two-factor interaction effect in the 32-p-FAT with
pseudo-block effects. PILAN (e) results from confounding all the effects
of the 32-p—FAT with pseudo-block effects.

Example 10 : Consider the algebraic partitioning

10192-FAT —_— (211 +312 -;-513)(221 +322 ‘E-L"ZB)-S-FAT'S.

For simplicity, let 2., and 2. refer to the lowest two levels of

11 21

factors one and two; let 513 and 42 refer to the highest five and

3
four levels of factor one and factor two, respectively, and let 312
and 322 correspond to the three middle levels of factors one and two.
In this example SD corresponds to a 32-p-FmT, so confounding schemes
for a 32-FAT will be used to arrive at some of the blocking PLANs.
The nine s-FAT's resulting from the partition are of sizes hll =4,
h12 = 6, h13 = 8, h21 = 6, h22 =9, h23 = 12, h31 = 10, h32 = 15 and
h33 = 20, Some of the blocking PLANs are given in Table 6. Blocking
PLANs within the s-FAT's are omitted at this point because the s-FAT's
are of different sizes. For blocking PLANs (a), (b), (c¢) and (d),
Figure 9 illustrates how the confounding schemes in the 32-p-FAT de~
signate blocking PLANs for the 10x9-FAT. As before, the rows of the

squares in Figure 9 represent levels of factor one and the columns of
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TABLE 5

SOME BLOCKING PLANS FOR THE PARTITIONING (12)

Hlock size| Block size in P.P.-FAT

32—p-FAT re 'Tugt{:Zk:f A
(hyq+hpgthay )y (hy pthoy+has), (hy g#hopthyy )| 3 PLAN (a)
; (h11+h22+h33),(h13+h21+h32) , (h12+h23+h31) 3 PLAN (b)
(h11+h21+h31)’ (h12+h22+h32),(h31+h32+h33) 3 PLAN (c)
(By#hypthy )y (b +hoothyg), (B +hapdhas 3 PLAN (d)
1 Dy shy 291y 3017 s hpp s hygshay by has 9 PLAX (e)
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TABLE 6

SOME BLCCKING PLANS FOR EXAMPLE 10

——
Block size | Block size in 10x9-FAT | lumber of Blocking PLAN
32-p-FAT blocks
31, 32, 27 3 PLAY (a)
3 33, 28, 29 3 PLAN (b)
20, 30, 40 3 PLAN (c)
18, 27, 45 3 PLAN (d)
1 4,6,6,8,9,10,12,15,20 9 PLAN (e)
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PLAN (a) PLAN (b)
01234567E¢€ 012345678
0 o
NER R 3 1113 2
2 2
3121 3 1 32l 1l 3
iy B
5 5
6 6
713 1 2 7A3] 2 1
& 8
9 9

PLAN (c) PLAN (d)
012345678 012345678
0 0 1
1 1
2 2
: ] -
J1] 2 3 p
6 6
7 7 3
e 8
9 9

Figure 9. - Illustration of blocking PLANs (a), (b), (c) and (d)
example 10.



59

the square represent levels of factor two. The numbers 1, 2 and 3
indicate the three sets of treatment combinations that result from the
various blocking PLANs, Blocking PLAN (e) is obtained by confourding
2ll effects in the 32-p-FAT with pseudo-blocks. A diagrammatic rep-

sentation of blocking PLAN (e) is omitted.

n
For the partitioning of a ]TPi-FAT when n = 3 and 5, =5, =
i=1
53 = 2, or more explicitly,

ing PLANs listed in Table 7 can be obtained from confounding schemes in

for i=1,2, j=1,2 and k = 1,2, the block-

the 23-p-FAT. PLANs (a), (b) and (c¢) result from confounding factor main
effects with pseudo-block effects; PLANs (d), (e), (f) and (g) result
from confounding interaction effects of the 23-p-FAT with pseudo-block
effects; PLANs (h), (i) amd (j) result from confounding two distinet
factor main effects and their generalized interaction effect with pseudo-
block effects; PLANs (k), (1) and (m) result from confounding one factor
main effect, the three-factor interaction effect and their generalized
interaction effect with pseudo-block effects and PLAN (n) is obtained by
confounding the two-factor interaction effects of the 23-p-FAT with pseudo-
block effects. PLANs (d), (e), (f), (g) and (n) are the only PLANs in
which interaction effects are confounded with block effects.

For the general partitioning

n n

JUP.~FAT —————>TU (P.. + eee + P._ )=-s=FAT's (1s)
. i . il is.

i=1 i=1 i

where, for at least one ie¢{1, ...,n} s the numbers P'l’ vee ard Pis are
1 -

not all equal, blocking PLANs can be obtained from confounding schemes in
n

'ﬂ'si-p-FAT. Naturally, it is easier to obtain PLANs if all the s; are
i=1
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TABLE 7

SOME BLOCKING PLANS FOR THE PARTITIONING (13)

Block size Block size in P PZPB-. FAT No., of | PLAN
23-p-FA'.T’ Blocks

(By )9 +0q9 5% 5 h122) (hyp1#hy5 h221 ho22) 2 | (

(hyq1+hq oy +ha12) s (By oy +hy oothoon +haps) 2 | (®)

(hyq 70y o1 +hoyy+ho5n )y (Byy oy oothny 055 2 | (@

b (b7 #0y9+hp01 +0p05 ) (By gy #hy oo thiny 1 +15y 5) 2 | @)

(h111+h222+h121*h212) (hyy ¥y opthnyy+hopy ) 2 | (o)

(hy1¥hy pp#hon #0505 ) (Byy h121?h212+h221) 2 | (D)

(hy gy +hy pothpg 5 thpon )s (g oty o 4h 4y ) 2 | (@

(hyq7#hy15)s (g gy 5 ) s (g #0505 ), (g #1505 | ()

(hyg7¥hy 97 )5 (Byg oty 55 ) s (pqpthyss ) (hpy g+ )} 5 | (1)
(By19#Bp99 ) s (B p#ho o) s (b oty ) (g oy 40 L@

2 (hy99+hy 5p) s (Byg 4y 5y Ds (g #hpps ) s (B p#hyy )| B | (k)
(hpya#hy9q s (Byyothng ) (hy gy #hnsn ) s (g ot ) B ] (1)

(hy11+h201 ) s (B +hpyq ) s (Bygp¥hnnn ) s (Byppthnyp)) & (m)
(hy1y+hopn)s (Bygpthon ) (By pothg )y (hpypvhy 5y )] & | (m)

1 hy170 Pyizs Pioys Bipps Bp1ns Baizs Bpps Bppp| & | (7)
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some power of a specific prime mumber. If the s; are powers of different
prime numbers or products of different prime numbers, then the theory of
White and Hultquist (44) and Raktoe (40) might be used to develop a con-
founding scheme that confounds interactions of the p-FAT with pseudo-
blocks. Perhaps it might be easier and quicker to partition the original
s=FAT so that the set of pseudo-design points representing the s-FAT's
is easier to separate into subsets that can be assigned to blocks of
units., Whether or not more than one partitioning of a FAT is possible
depends upon the way each set of levels for each factor is separated into

subsets and, in a blocking situation, upon available block sizes.

Blocking and Unegual Partitionings

An algebraic partition of a ﬁPi-FAT of the type (7) is called
an unequal partition if sy # S 5 for s:;i i# jyi=1210eeynand j=1,
eseyne The set of pseudo-design points, SD’ now corresponds to a mixed

or asymmetrical factorial arrangement of treatments. The statistical
theory that leads to confounding schemes in mixed factorial treatment
arrangements has been developed in various ways. Geometrical methods

have been used to obtain a mathematical basis for the development of con-
founding schemes. The use of the mathematical properties of finite fields,
or Galois fields, also leads to confounding schemes for prime symmetrical
factorial treatment arrangements. Recently, White and Hultquist (44) and
Raktoe (40) present methods to combine Galois fields with a different
mumber of prime elements in such a mammer as to retain the properties of

a finite field, thus, providing a mathematical basis for mixed factorial
cordounding schemes. A method of blocking can also be obtained by con-

founding procedures that take into account only a subset of the factors
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n
that make up a treatment combination. For example, in a T(Pi-FA'I‘ rep-
i=1
resenting factors Al, eee and An, confounding methods can be used on the

set of treatment combinations forming a PlPZ-FAT (factors A1 and Az) to
: n

arrive at a confounding scheme in the TfPi-FAT. Each treatment combi-
i=1

nation (xl,xz) in the P P,-FAT is replaced by a set of treatment combi-

nations designated by % and X, in the first and second positions of the

n
n-tuples representing the treatment combinations in the T[Pi-FAT.
n i=1
The confounding schemes for a ﬂPi-FAT depend largely upon the

i=1
set of pseudo-design points, SD' Attention is now directed to the situat—

ion where S represents a mixed p~FAT. If a PlPZ—FAT is partitioned

D
- —C \J
P1P2 FAT—-)(sl(Pl'l))(sz(Pz.l)) s-FAT's, (15)
then the possibilities for blocking PLANs for the partitioned PP, -FAT

12

are given in Table €. The word "other" appears in Table & to allow for
other confounding schemes concerning the s-FAT's that might lead to block—
ing PLANs. lore can be said about bloeking precedures for the pertition
(15) if s, # s, and if s; and s, are powers of the same prime number.
For this case, the methods mentioned in Kempthorne (3%) concerning pseudo-—
factors are appropriate for confounding schemes in the p-FAT of the part-
ition. Also, if each s~FAT represents a qn-FAT, where q is a prime power
number, then confounding schemes within each s-FAT are easily constructed
by the pseudo-factor method mentioned in Kempthorne (34). An example of
these concepts is now provided.

Example 1l : Consider the unequal algebraic partitioning

6x6e=FAT ——3(3) (27 1))(3,(2, 1))(25(25 1 ))-s-FAT's,
Let the sets of six levels for the first and second factors be part-

itioned into low two, intermediate two and high two level subsets and
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TABLE 8

SCME BLCCKING PLANS FCR THE PARTITIONING (15)

3lock size| Slock size | Number of
slsz-p—FAT PlPZ-FAT blocks

F, .F s (sl(Pl.l))(SZ(P l)):s P, _F

h Blocking PLANs

51 5171.172.1 2 2. 171.1°2.1
s |spPaFa| s om0 " DespPy 9P
1 P1a1P1 | 5152 C " )0 " )R 3P,

1 Ha SysoFpp | O 0" )R

1 Pr1 R AT L /9P

CTHER
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let the third factor level set be partitioned into two subsets, one
subset representing the low two levels and the other representing the
high levels. The set of pseudo-design points is equivalent to a
3x3x2-FAT. Each s-FAT represents a 23—FAT. For this example, con-
founding schemes in a 3x3x2-FAT and 23-FAT lead to the blocking PLANs
listed in the fourth éolumn of Table 9. To obtain the blocking PLANs
mentioned in Table 9, some of the components of the main effects and
some of the components of the interaction effects of the 6xOx4-FAT
mist be confounded with block effects. let those components of factor
main effects and components of interaction effects attributed to be-
'. tween s-FAT effects be represented by A for factor one; B for factor
two; C for the third factor; BC for the factor 2 - factor 3 inter-
action and AB1 and A32 for the usual components of the factor 1 -
factor 2 interaction effects. Table 10 indicates the confourding
schemes that are needed to obtain the blocking PLANs mentioned in
Table 9. Single letters in Table 10 indicate that components of factor
main effects are confounded with block effects. Two or more letters
indicate that a component of an interaction effect is confounded with
block effects. For example, FDE in blocking PLAN (q) indicates that
the 3-factor interaction effect among factors one, two and three in
each s-FAT is confounded with block effects. The subsets of treat-
ment combinations are given in Figure 10 for blocking PLANs (e) and
(x), where the numbers in the boxes indicate which subset the treat-
ment combination defined by the row and column indices is placed. For
blocking PLAN (x) in Figure 10, the confounding of all effects in the

3x3x2-p-FAT with pseudo-block effects results in eighteen different
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TABLE 9

BLOCKING PLANS FOR EXAMPLE 11

—_

Number of

Blocking PLAN

Block size | Block size
3%x3%2-p=-FAT | 6x6x4-FAT blocks

9 72 2 (a)

6 ue 3 (®),(c),(@),(e)

3 2 6 (£), ()

2 16 9 (h)

1 8 18 (1)

1 4 36 (3)»(k), (1), (m),
(n),(p),(q)

1 2 72 (r),(s),(t), (u),

(V) ] (V) [ (X)
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TABLE 10

CONFOUNDING SCHEMES USED IN EXAMPLE 11

———

i |

Blocking PLAN | Effects to confound with block effects
3x3x2-p-FAT 2x2%2=s-FAT

(2) c none
gb; A none
¢ B none
@) aBt none
(e) AR? none
() A, C, AC none
(g) B, C, BC none
(r) A, B, ABY, AB? none
(i) all none
(3) all F
(k) all D
(1) all E
(m) all FD
(n) all FE
(p) all DE
(a) all FDE
(r) all F, D, FD
(s) all F, E, FE
(t) all D, E, DE
(u) all F, DE, FDE
(v) all D, FE, FDE
(w) all E, FD, FDE
(x) all ¥D, DE, FE
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Blocking PLAN (x) Blocking PLAN (e)

3x3x2-p-FAT 3x3x2~p-FAT

factor 1 factor 1

1

factor 3 0 L 2 factor 3

0 1 5 9 0

131 171 21
254 291 33

7 R factor 2 1

491 53] 57 2
61| 65 9

factor 2 1

W] w]

2

L Laaed (AN 13V (V) (W) IR AV

N VAW ©

E

IO OO

[ et (=) Ll (=) | el =)

6x64-FAT 6x6x=FAT

factor 1 factor 1
Ll s |1

3
719 |11]
8 110112
8
5

0 0 00 0D D D D DL A W W W W w Wl W

factor factor

12 |10

2 45 11
31315]17 [19]21
15| 16] 18| 202272
16| 141 20 [ i8[207122
15113119 17{23 |21
gg 271291 31[33]35
26 | 281 30 | 32| 3% | 36 >
28| 26| 327 30[36 | 34|

3

o-

1

2]

(o 3
23 ]
1]

2-

3

o-

l-

2-

35 | 33 3
0]

1

2-

3

0-

1]

2—

3

o—

1-

2]

3

1
-~

37 | 391 &1 | 43155 147

38 140) 42 | Bh1L6 148
50 | 3 | ub | 42|us |6 3
39| 37| 43 [ bi[L7 | &5
D91 51| 53 | 55|57 | 59
50 | 52 | 54 | 56]5€ |60 N
52 | 50 | 56 | 54{60 |58

51 | 491 55 | 5359 [ 57]
61 163]65]67|69 |71
62 | 6|86 [ 6870 |72, P
eh 6268 166|72 |70

63161167 |65|71 169

W N, oo, o ofw, - oflw. v I ohw, N H, oluw, b, 0w

N

N

[3%)

N

)

|—J

N

O]
DR OO WWWWWWWUWHHHREHFHH o
N NN NN TN DL W W W W W W W H
WWWWWWWWHHERHHFE DD DD DD D
A0 W0 0 W0 W0 W AW Wl - 2 1 - 1 1 0 - D DD D 0 o 0 D o] W
HEFHFRFPHEFFEFDDDODDND D MNwwwwwwww] &

Figure 10. - Tllustrations of the subsets of treatment combinations
for blocking PLANs (x) and (e).
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sets (one pseudo-design point per set), represented by the numbers 1,
5, 9, ese ard 69, Next, within each of the eighteen s-FAT's the FD,
DX and FE interaction effects are confounded with block effects. Thus,
subset 1 in the 3x3x2-p-FAT is replaced by the four subsets 1, 2, 3
and 4 in the 6xtxi-FAT.

Let a P.P_-FAT be partitioned according to (where S, # 52)

1°2
-Sas T
PIPZ-FAT ———-%(Pll‘f- see +Pisi)(P21+ eee +PZSZ) s-FAT's,
For simplicity, let hij = Plisz, for ie{l, ...,sl} and je{l,...,sz} .

The blocking PLANs that are obtained by confounding methods in the

slsz-p—FAT are given in table 11. Also, let

h.j=§hij and hi.=§hij .

In Table 8 there can be more than one PLAN that will give the indicated
number of blocks for the partitioned factorial arrangement. The number
of PLANs depends upon the numbers S and Spe For example, if S, = (sl)k,

where k is some positive integer, then there are

k-m k+l k-m+1

I GEAREESICa o)
confounding schemes for pseudo-block size sgf that will lead to blocking
PLANs requiring slfm*’l blocks. For the more general algebraic partition
(7), the set of pseudo-design points represents a -']r'lg-si-p-FAT. The block-
i=

ing prccedures depend mainly upon the availability of confounding schemes

for the p-FAT, which depends upon the numbers sl, ees and S and the sizes
n

of the T[si s-FAT's, Consequently, there is no general statement that
i=1

is made concerning blocking preccedures for unequal partitioned FAT's.

The concept of multiple partitioning, first mentioned by Thomas (42), is

now briefly discussed.
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TABLE 11

SOME BLOCKING PLANS FOR THE CASE n=2 and 51¥52

e

Block size| Block size in Ple-FAT Number of blocks in
sls z-p-FAT Ple—FA.L
s h_., h,_,, ¢eee and h s
1 '1 02 .sz 2
Sy hl.’ h2.’ eee ard hsl' Sy
1 hll’ h12’ ees and hslsz 5152
CTHER




70

Maltiple Partitioning

Consider the Special case of the algebraic partitioning

T{P -FAT———>T\Z (P voe +Py )-s—FA’I"s, (16)
i=1 1 i=1
where P'l = ees = Pi y for i =1, esesyn. As mentioned earlier, this
i Sy
partitioning is denoted
ﬂ P, ~FAT ——>T[ (s; (P; ))-s-FAT's. (17)
i=1 1 i=1

Tt might be the case that the s-FAT's furnished by the partitioning (17)
are still prohibitive for some reason. The size of each s-FAT might be

reduced by partitioning it algebraically and thus, it is replaced by two
or more smaller s-FAT's. In the partitioning (17), if Pi.l = s, (Pi. 2),

i.2
for i =1, «.eyn, then each s-FAT can be partitioned according to

n n
TP, . ——> Tl (s, ,(P. ,))-s-FAT's, (18)
=1 i.l =1 1.2 1.2 n
since each s-FAT represents a factorial arrangement of size ')'[Pi 1°
i=1

Definition 46 : The evpress:.on P. S5 151.2°°°5; .k i ) indicates

that the i-th factor in a TY P -FAT is equally partitioned k times.

i=1 * n
Definition 47 : If each factor in a T[P -FAT is equally partitioned
i=1 %

k tlmes, then the partlt:.on:l.ng
‘ﬁp ~FAT ———>T[ (s; qoees5 1 (P, k))-s-FAT's, (19)
i=1 * i=l o de n
is said to be an equal k-order multiple partitioning of the T[Pi-FAT.
i=1
If k = 1, the partitioning is of the type previously mentioned and 51.1

is written as s For an equal k-order multiple partitioning (19)

there are a total of 'F['(s 105y, k) s-FAT's and each s-FAT consists of
if[lp k treatment com‘;—ii-at:.ons. In the general situation, a iEP =FAT
may be mltiply partitioned according to

T[P ~FAT —-—->'nf (g + ore + B, )-s-FAT's, (20)

I i=1 Sy
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where one, sorme or all of the numbers P, may be expressed as

ih

Pih = Pih,]_ + eee + Pih,tih.

If this is dome for each i and h, 1 =1, «ee, nand h =1, ..., Si9 the

partitioning (20) is a 2-order multiple partitioning and is denoted by

S

- ~-FAT's. (21
T[P FAT——-)T[(Z (Pypq + voe + Py o ))-s-FAT's. (21)
i=1 i=1 k=1 ik

it Pih.j # Pih.k
j # k, then the expression

for some h = 1, «os, si and for some j, k 1""’tib ’

P "'P. +.-U+P

ih ih.1 ihctih
indicates that the i-th factor is unequally partitioned two times, or

Just partitioned two times. The concept of an unequally k-partitioned

factor is a direct generalization cf the 2-order partitioning of a factor.
n

A k-order rmltiple partitioning is a partitioning of a 7[2Pi-FAT, where
i=1

each factor level set is partitioned k times and at least one factor

level set is unequally partitioned k times.

Remark 14 : For the 2-crder multlple partltlonlng of a 'T[P ~FAT
i=1
given by (21), there are a total of T[( Z t ) s-FAT's.
i=1 k=1 1K
Proof : The Pi levels of the i-th factor are separated into

til T ese & tis sets of levels. Proceeding to treat the part-
i
itioning as if s, =t _ 4 «ee + t. and following the proof of
i i1 is,

remark 1, the result is obtained.

A 2-order multiple partitioning of the type (21) for 2 = tls
1

= tZSZ and n = 2 is given by

Ple-FNT-—--—e»(slsl.z(Pl.z))(szsz.z(PZ.Z))-s- AT's, (22)
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This indicates that a P,P,-FAT was first partitioned according to

1°2
Py P,~FAT -—-—a'(sl(Pl.l))(sz(Pz.l) )~-s~FAT's. (23)
Then, since P, ; = Sl.Z(Pl.Z) and P, q = (SZ.Z(PZ.Z))' and since each

s-FAT in (23) represents a P1.1P2.1-FAT’ each s-FAT is subjected to a
partitioning of the type

Py P, q-s-FAT ———9(51.2(P1_2)) (sz.z(Pz.z))-s-FAT's. (24)
Now, combining (23) and (24), (22) is obtained. For (22) the possible
blocking PLANs are listed in Table 12, The first fourteen blocking PLANs
in Table 12 are obtained by confounding main effects or interaction ef-
fects in the S987,25555,
PLAN is obtained by confounding all effects in the p-FAT with pseudo~block

z-p-FAT with pseudo-block effects. The fifteenth

effects and the remaining PLANs are obtained by confounding all effects
in the p~-FAT with pseudo-block effects and by confounding effects within
each s-FAT with block effects.

t is not necessary thet all factors be equally k-ordered, mult-
iply - partitioned. For example, consider a P P, ~FAT where the first

12
factor of P, levels is 2-order partitioned and the second factor of P2

1

levels is l-order partitioned. This partitioning is given by

P,Po=FAT ————3-(5157 (P 5))(55(P, ))-s-FAT"s. (25)
The blocking PLANs for the partitioned FAT in (25) are given in Table 13.
The first seven blocking PLANs of Table 13 are obtained by confounding
schemes applied to the slsl.zsz-p-FAT and the remaining blocking PLANs
are obtained by confounding all effects of the p~-FAT with pseudo-block
effects and by confounding effects within each s-FAT (the same effects
for all s-FAT's) with block effects. A brief example of some of these

concepts is now given.
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TABLE 12

SCME BLOCKING PLANS FOR THE 2-ORDER MULTIPLE PARTITIONING (22)

—_— .
gi:;%zzziz.z'P'FAT gi;:sz%ze Number of blocks in PyP,=FAT
S $171.2%2.2 $251.252.2
51,2 S1.2M1.2%2.2 $15252,2
S2 S2P1.2%2.2 $151,252.2
2.2 S2.2M.2%2.2 $151,252
151.2 $151.2%1.2F2.2. $252.2
5152 S152%1,2F2,2 51,2522
$152.2 $152,2F1,2F2.2 51,252
%2%1.2 S281.251.2%2.2 $152.2
S252,2 $252,2F1,2F2,2 $151.2
$1.252.2 $1.2%2.2M1.2%2.2 $152
5151.2% $151.25271.2%2.2 $2.2
$151,2%2.2 $151,252,2F1.2F2.2 S2
$1.252%2,2 $1,25252,271,2%2.2 51
$15252.2 $15252,2F1.2F2.2 1.2
1 Py.2P2.2 $151.25252,2
1 Fl.2 $151,252%2,2F1,2
1 P22 $151.25252,2F1,2
CTHER




i

TABLE 13

SCME BLOCKING PLANS FCR THE PARTITIONING (25)

Block size Block size No. of Blocks

slsl.zsz-p—FAT Ple-FAT Ple-FAT
51 $1P1.2P2.1 $1.252
1.2 $1.2F1.2%2.1 S5,
S2 SpF1.2%2.1 1°1.2
51%1.2  [%151.2F1.2F2.1) S
152 $152P 2P0, 51.2
$1.25%  [51.2%2R1.2F2,1] s1
1 P 2P21 $151,252
1 P2 5151.252F2.1
. P $187,252P1,2
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Example 12 : Consider the algebraic partitioning

816,=FAT ——— (2, (4; 1))(2,(3, ;))-s-FAT's.

This partitioning yields four s-FAT's of size twelve and will admit
blocking PLANs with block sizes 3, 4, 12, 24 and 48. Since 4 = 2x2,
the number L"l.l can be represented by 41.1 = 21.2(1.2). Thus, the
partitioning mentioned above becomes the partitioning

8162—FAT —_— (2121.2(21_2) ) (22(32.1) )-s=FAT's.,

This partitioning now admits blocking PLANs with block sizes 2, 3, 6
12 and 24, '

It is not necessary that all factors in a T['P ~FAT be multiply
partitioned. If the level sets of some (not necess;.;}.ly all) factors are
multiply partitioned, then the entire partitioning is referred to simply
as a multiple partition. For example, an unequal 2-order partition on
factor one and a l-order partition on factor two is indicated by the
multiple partition

P, P ~FAT——>((P.

1P, )-s-FAT's,

11.17F11.20 (Pyp 33P0 2)) (Byy#Pp,

15k = Pll JPZk for i,j,k = 1,2, it is seen that SD corresponds

to a 4x2 FAT. The blocking PLANs obtained by confounding procedures in

Letting h.

the 4x2-p-FAT are given in Table 14, In this case s =2

15 52% 81,2

and s = 4, The methods to obtain the blocking PLANs

151.2 = 5152 7 51,252
in Table 14 are indicated by the arrangements of x's is the last four
columns of Table 14. The x's indicate that effects in the 4x2-p-FAT are
confounded with pseudo-blocks. An x in column one indicates that the
entire factor one main effect of the 4x2-p-FAT is confounded with pseudo-

block effects; an x in column two indicates that a component of the fac-

tor one main effect of the 4x2-p-FAT is confounded with pseudo-block
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TABLE 14

SOFE BLOCKING PLANS FOR AN UNEQUAL MULTIPLE PARTITION

Block size Hlock size in Ple-FAT Number]| Methods
bx2-p-FAT blocks|1l 2 2 L

& (hyqq#hy oy +hy g pthy 50 ) (g g+l +ho oty o0 )l 2 x

b (hyqq+hyg othn g +hyy o)y (hy gy thy pothy g +hop) )l 2 x

b (hy g9+ Hhgpy Hhigq )o (Bppothy oty oy ) ) - 2 x

b (hyq+hyg +hooy +hons ) s (g oy +hy pothngy +hay0)| 2 x

4 (hyq9+hy oy +hoy othoss )y (hy pothy g pthag g o0y )T 2 x

b (hy99+hy pothog g +hops ) s (hyq pthy oy +hog othosg )] 2 x

b (hyq9+hy oothog othong )y (hy g pthog g +hy 51 +ho00)| 2 x

2 (hy13+hy72) s (b 2y #hy 25) s (Bpyq#hpy ) amd S
(hppq+hop)

2 (Byy9+hy59) 5 (hyq p#hy 55) 5 (o #hsy50 ) and nd x| x|x
(hppy+hooy
(h122+h222)

2 (hy17+hy25) s (g p¥hy 27 ) 4 (oo +hppp) and N X| %
(hpypths o )

2 (hy3+hp72) s (hyyo+hn1 )y (B 2y +hops) and b x| %
(h122+h211)

2 (hy17+hp21 )4 (B p+hpp2) s (bypy+hppy ) and A IS EES
(hoyo+hy 27)

2 (hy97+h522) 5 (b1 pHhpzy )5 (hy 5y #hipy ) and 4 X)X
(hyppthiyy)

1 hyq7 207725027 1By 2250097 s hpg 5 hppgand Byt € X x|x
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effects; an x in column three indicates that a component of the factor
two main effect is confounded with pseudo-block effects and an x in column
four indicates that a component of the factor one - factor two interaction
efféc't is confounded with pseudo-block effects. An example is now given
of an unequal multiple partition of a FAT so that the blocking PLANs the
partitioning admits will be analogous to those presented in Table 14.
Example 13 : First consider the partitioning of a 12x5-FAT given by
12,5,-FAT ———> (711+512) (221+322)-s—FAT' s. This partitioning
results in four s-FAT's of sizes 10, 14 15 and 21. The blocking FLANs
admitted by this partitioning by confounding effects in the 22-p—FAT
will have block sizes (i) 25 and 35, (ii) 24 and 36, (iii) 31 and 29
and (iv) 10, 14, 15 and 21. A second order partition can be performed
on the first factor by the following
(733 # S1p) > (g 5 + 3130 + Bz 5 * 315500
The partitioning is now represented by
12, 5,=FAT 3 ((lhyy 14317 .2 )+(2)5. 5#312.2)) (20735 )-S-FAT's.
From this partitioning theee result eight s-FAT's of sizes &4, 6, 6, 6, 8,

9, 9 and 12. This partitioning admits blocking PLANs with block sizes

(1) 24 and 3% (vi) 14, 10, 21 and 15

(31) 35 and 25 (vii) 12, 12, 18 and 18
(iii) 30 and 30 (viii) 20, 10, 15 and 15
(iv) 29 and 31 (ix) 17, 18, 13 and 18

(v) 14, 15, 16 and 15 (x) 4, 6, 6, 6, 8, 9, 9 and 12,



CHAPTER V

STATISTICAL INFERENCE

It is possible to obtain observations from one or more of the
s=-FAT's of an algebraic partitioning

n n
."T Pi-FAT—".Tt (Pil ¥ ses + Pis )-S"FA.T' Se
i=1 o i=1 i

Given a set of observations the problems of statistical inference, namely
estiration and significance testing, are now discussed. In this chapter
methods are given for u.ﬁbiased estimation of certain functions of the
unknown parameters and methods are developed for constructing tables
appropriate for the analysis of variance as a means for significance
testing under normal theory and approximate significance testing under
randomization theory.

Brief Results for the General Case

In the following discussion let Y be an m by one vector of
observations, M an m by one vector of population means and let e be an
m by one vector of error terms such that E(e) = ¢I{ and var(e e') = c'zIm.
It shall also be assumed that the observational model, Y = h(g,g), is a
linear model, in other words, Y =M + e. Let ’gk be an m by one vector of
constants, for k = 1, +..,m, such that, for k £ k'
%'('Ek =0 (26)

The choice of b, , for k = 1, ...,m, can be made so they define a set of

__k)
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effects amonz the elements of M +that correspond to components of factor
main effects and factor interaction effects.
Theorem 1 : If 1_)_{(}_1 is the effect of interest, then E;{X is an
unbiased estimate of that effect and var(gl'(:f_) = o"byb .
Proof: (1) E(’p_f(z) = BrE(Y) = E'(}{_ and
2
] - - [ ] - L —
) var(gk}’_) = b'var(Y¥)b = b'var(e)b = Ek(o' Im)'_Q =

% 2
= o?byb.
In general, cov( ‘p_}'cz, P-!'c'z) = El'ccov(_Y_,Z)‘gk, =0 1' o If bi'bi , =0,

then the estimates b ¥ and by,I are uncorrelated and if e is normally
distributed, the estimates are independently (and normally) distributed.
Now assume that ¢ is normally distributed, or ¢ ~ N(fT, ?I). It is
easily shown that ¥ =~ N(, 0?1 ) and DY ~ N(BLM, o2biby ).

Theorem 2 : If biY =~ N('l_')l'(l_'I_, o __l'c'gk) then

( IY)Z M) '
S e
(o<biby ) (o<byb, )
Proof: Since bpY =~ N('gl'é{_, 6213125() it is also known that
1
— E;(.Y_ ~
chgggk

Using theorem 4.1 in Graybill (29) and noting that biM and

N((1/ ooy Ve, I, = 1)

bX are scalars, it follows that

(orD)? 2 ()2
—— (1, = % .
(oL, TP 7

where g is the noncentrality parameter.

The statistic of theorem 2 can be expressed the following way:

()? (bL)* (oY) ' bpY

= = = Y'BY ( 2.) where
(b Pyb) P i
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Be= (U/(m) BBy, s, O/ @@NIBRE XU L, a =2 (00" () )
and the term Y' BKX shall be referred to as the sum of squares correspond-
ing to the effect byM.
Theorem 3 : If bib, = 0 for all k # k* ard k,k' = 1, ...,m, then
Y=Y + oo + B,)I, where B, = (1/ (biby ) (by g ) e
Proof: Y'Y =Y'L Y, so it remains to be shown that En.:lBi =1 .
Since bpb, =0 if k # k', let R be a m by m matrix where
the i-th row of R is given by R' = (1/ \I—Eigl)gi. Now, for
i # 3j, it follows that gi_fgj =0, RIR=1and that R is

an orthogonal matrix. Thus,

R'R--%ﬂ. (_R_].’ seey _B-m) :
En
=% RR =% B..
g§1=1-1-5- i-11
In the analysis of variance tables the total sum of squares can always

be represented by Y'Y, and the usual correction factor can be represented

. im ce vO(T o LYy
by I'( Z J )X. Thus, thentotal corrected sum of squares is Y'(L - 23 JT.
Let ¥ be a vector of m= T{ P; observations from a completely random

i=1 n
design where the treatment design is a T\ Pi-FAT. In chapter III the
i=1

matrices Ll’ LFl, ey LFn, eeey and LFl"'Fn and the matrices Bl’ BFl,

ees and BF were defined for factor main effects and factor inter-
1... n
1 -
action effects. In this case Bl = ﬁJ;’ and ]’7‘,1 = B1 + BFl + ooe + BFl"'Fn.
let de be the rank of BG'

Theorem 4 : If I = N(Y, 0‘2%) then, for 6 # ' and 6,0' = I,Fl,...,
F s veey (FpeesF)
(1) $T'B.Y = X (d,, —=0)'B, () and
FL'BT =X (4, o2 = 8-

(i1) I'ByY and X'Be,_Y_ are independent.
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. - |t [ - . — -
Proof: BQBG = HGHGHGHG = HG(HGHG)HG = He(Ide)H6 =By 4 s0 BB

is an idempotent matrix, and by using corollary 4.7.1 in
Graybill (29), the result (i) is easily verified. Also,
since BeBe, = §#3, where a = dq ard ¢ = d;y, and by using
theorem 4,15 in Graybill (29) the result (ii) is easily
verified.

The term X'BG_Y_ is referred to as the sum of squares corresponding to the

effect LaM,
Remark 15 : Flackett (37), (see also Addelman (2)), has shown that
for a k-way classification the main effects and interaction effects

are orthogonal if and only if the following condition holds:

iy
n. 5 = 1 TU n(3) , where
1 k Nx-l Fiy
n(j) - " s @ ,
i1= i‘ =1 11."11(
N=Z:.-Znio--ni,
11 lk 1 k
Pi s the number of levels for the ij-th factor and
J
n. . is the number of observations for the
11...11(
(il,...,ik)-cell in the k-way classification.
) n
If the experiment consists of one or more full replicates of a T(Pi-FAT
i=1

(run in a completely random design) it is easy to see that, in view of
remark 15, there exist orthogonal main effects and interaction effects.s.
If the experimental design is a block design then the existence

of orthogonality of main and interaction effects must be investigated.

n

For a partitioned JT Py-FAT where the blocking PLAN indicates that the
i=1

s-FAT's are assigned to blocks, the question immediately presents itself
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as to whether the between block comparisons can be attributed to orthogo-
nal components of factor main and interaction effects. Let the s-FAT'sof
a partitioning of a .ﬁ:Pi-FAT (or groups of s-FAT's) be assigned to blocks
by an appropriate blzziing procedure. Consider each pseudo-design point

in SD as being replicated by the number of treatment combinations it

n
represents in the TTPi-FAT. Thus,

i=1
n. - = Pl. .ocP-i ...Pni for i.e{o,occ's.-l‘}
H".lj'.'il’l 11 J j n J J
n
. = n(i.) = ( P.)P.. and
.,o.o,lj,..." J i7=.%. 1 Jlj

143

n
= P. .
n.yo.-'. ij':rl 1

=y
4
]

in 1
Now 1 ( TN nk)) = —=aor 1(6) where
nn-1 =iy (Fpee P )

6 = (PZ'"Pn)Pl ses (Plno‘Pn_l)Pnin, and

after some manipulation,

1 ﬁ
——( U n) ) = n. e
Nn-l k=1 1ll . tln

This indicates that main effects and interaction effects can be defined
in the 7{1[ si-p—FAT that retain the orthogonality properties, regardless
of the :zi-e of the s-FAT's, consequently, regardless of the equalitly of
block sizes. If the blocks are of equal size it is possible to confound
the s-FAT's with blocks in such a way that only interaction effects are
confounded with block effects. If the blocks are of unequal size, then
in most cases main effects and interaction effects will have to be con-
founded with block effects and the number of confounding schemes is

limited (as the number of confounding schemes for asymmetrical factorials

is limited) as was observed in chapter IV.
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For significance testing the highest order interaction can be as-
sumed to be zero (i.e., assume Lp M= ¢d, where d = (Pl-l)...(P -1))
l.QOFn l n
to obtain an error term in the AOV table. Now, letting ¢ = Fl"'Fn’
- 2 _ 2 _ 2 .
n.(szeg_) = ZE'BQE + tr(Be(e- ]'m)) =0 + ¢ rank(Be) = dec' , Since

B

N is idempotent. Thus,

B(FI'BY) = o°
8

Now, consider some other factor main effect or interaction effect L. M.

X
The null hypothesis that L. = Q.ik = § 1is equivalent to the hypothesis
that M'B ¥ = ¢ since,
if L¥= § then D,LM=§
5y = g
MEIEYN = ¢
WBN=g,

and, consequently, the statistic

dI'BY
irBY 7 &),dq )
2L Ped

provides a means for siginficance testing, for \ = Fl,....Fn,...,(FZ...Fn).
By the remark in appendix II, if L, defines an effect Lwl_{_ and if L, can

be expressed as L = GL,» then ¥'B Y = X'Ba_‘:{ and the hypothesis that

M'BM = § is equivalent to the hypothesis that M'BY = §. A statistic

ve

that provides a significance test for Hy: E'Bwy = § also provides a sign-
ficance test for the hypothesis H : M'BM = $. Also, if the conditions

in the remark of appendix II are satisfied, it makes no difference if
either Lw or La was chosen to define the effect because the sum of squares

corresponding to LY and LM are equal. In the sequel, sums of squares

will be computed by the easiest method.
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Analysis of Variance for Full Replicates

Fethods are now developed that will allow the construction of
analysis of variance tables for full treatment combination replicates of
partitioned FAT's in the absence of block effects. This case reduces to
the analysis of unpartitioned factorial arrangements, since there is no
importance associated with the fact that the full treatment combination

replicate was performed in pieces, or in s-FAT's,

n
The set of [ si-s-FAT's resulting from the partitioning
i=l
n n
.r[ P."FAT ""_+n (P. + see + P. )"S"FAT'S
31 * =1 isy
n
is considered as a full replicate of the T(Pi-»FA’I. In this case,
i=1
n. . =1
].lo--ln
n(k) = KP.
itk *
n
n = % P, and
i=1
1 i
QI ak) =1=n,_ _,
k___il 11."11’1

so, when n is any positive integer, by remark 15, there exists orthogo-
nality of rain effects and interaction effects. The matrix I of chapter
137 defines factor main effects and factor interaction effects and the

n
overall mean effect for a full replicate of a T‘,Pi-FAT. Since E(1LY) =
i=1
I¥, LY is an wibissed estimate of the effect IM, and var(LY) = o°LL'.
n
Given a vector Y of observations of the T{ Py ~FAT (run in a completely

random design) and since =1

Im=Bl+B + «eo + B_+ B + ese + B 4+ LeetB
B Fn FF FnFn-1 Fpeeedy

the following abbreviated analysis of variance (first three columns)

table is easily constructed (see Table 15).
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TABLE 15

ABBREVIATED ANATYSIS OF VARIANCE TABLE FOR A

FULL REPLICATE CF A P,.. .Pn-FAT

1
Source DF Sum of Squares
Total m= T{ P, Y
(overall)mean 1 I'BY
Ay (factor 1 main effect) | (P;-1) I'Bp X
. . 1
A, (factor n main effect) (Pn—l) Y BF Y
n
Ayxh, (Py-1)(Pp-1) I'Bp, !
Aphna (Bp1) (P 4-1) z BFnFn_lg-

P - - - ] hid
fhaxhs (¢ 1_1) (P-1)(P;-1) 1 BFIFZFB;
A2 An1%y (B 1) (B 3-1) (P p-1) FFrlFyoos

Alx see XAn_l (Pl-l) see (Pn"l—l) X' BFl e Fn_lY
- - hid ]

AZX eee xA.n (PZ l)cto(Pn 1) BFZ...F Y

Alx see XAn (Pl-l)o e (Pn'l) Y'B Y
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Example 14 : For n= 3 and P, = F, = P3 = 2 the sets of levels for
each of the three factors are Ty= T2 = T3 = {C,1} and it follows that
T= T1X T2X T3 = {(000), (001), (010), (011),(100), (101),(110),(111)} .
Each element of T designates a treatment combination and specifically,
a 0 denotes the low level of the first, second or third factor and a
1 denotes the high level of the first, second or third factor. To
build the matrix L the first row is chosen to be J% and the next three
rows are chosen so they represent main effects for the first, second
and third factors. The last four rows are obtained by taking the
appropriate HD of rows 2 and 3, 2 and 4, 3 and 4 and 2, 3 and 4. The

matrix L is given in Figure 11, where the columns correspond to the

design points (000), (001), ... and (111)..

1 1 1 1 1 1 1 1 L]

1 1 1 1 -1 -1 -1 -1 i

1 1 -1 -1 1 1 -1 -1 I,

1 -1 1 -1 1 1 1 -1 Iy,
T NN B BN I
1 -1 1 -1 -2 1 -1 1 I:F1F3

1 -1 -1 1 1 -2 -1 1 LF2F3

1 1 24 1 a1 1 - 'LF].FZFB'

Figure 11, - The matrix for example 14.

To obtain H from I. the rows of L rmust be normalized. In this case the
problem of normalization is easy because each row contains a plus one
or minus one in each position, so, if 1, is a row of L, then /e 1y

is the normalized row (=hk)' Thus, H= (1/ V8)L. The matrices B = B
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- are
FBHFerF3

b |
'IFIFZ

If this is done, the following matrices are obtained.
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in Table 16.

g

For the partitionin

n

FAT ———T (

n

n
i=1

the i-th factor main effect consists of (Pi-l) components, for i

)-s=FAT's

P
isy

%1+“.+.

i=1

F.-
1

l,...,n.

o facilitate analysis procedures a set of orthogonal components for each

m
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TABLE 16

ABBREVIATED ANALYSIS OF VARINACE TABLE FCR A

FULL REPLICATE OF A 2x2x2-FAT

Scurce DF . Sum of Squares - |
(czs‘::%ted) 1Y (IB%JS)§= Yijk - (/8)(X...)2
B ol I 1/8)(x, -1, )%
Ay RS = (/8)(T, T  )°
A3 Y EEE S A, ot o)
M | [ EREE ot (1/8) (Zg0, %01, ~Y10. 711,
by | 1| Tl = 8)(F, 00T, 01-¥, 10+ 120
by | 1 IBppX =/ 8)(%y,0-%0,1- M. 011,10
Mgty | | EPrret C @/ 8)<Yooo'Yogl‘301o+Yo%1‘ 10077110
*01711)
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factor main effect are chosen the following way. First, choose a set

n
of orthogonal components of the factor main effect in the TUP.-FAT that
n i=1l
represents a main effect in the T{ si-p—FA'I. For the i-th factor, for

i=1
i=1, +esyn, there will be (si-l) components of the i-th factor main

effect that represent effects defined between the p-levels of the i-th
n
factor (ie: the main effect in the TL si-p—FAT). ¥ow, within the k-th
i=1
p-level of the i-th factor, there are Pik levels and consequently, (Pik-l)
components of the factor i main effect can be defined, for i = 1, «eeyn
53
and k= 1, ¢se,S.. Thus, a total of (s:-1) + B (F::~1) = (P.-1)

i 1 j:l 1] 1
components of the factor i main effect have been defined, and this set,
if it is an orthogonal set, is a main effect for factor i.

The source of variation in an analysis of variance table due to
the factor i main effect has been denoted by Ai' for i=1, ec.yn. Now,
in view of the partitioning (28), A; can be separated into a between
p~level source of veristion, denocted by ‘A‘i 1 and a within p-level source
of variation for each p-level, denoted by A; . (1,k) for the k-th p-level
of factor i. Since there are S; p-levels for factor i, the sources of
variation Ai.(l,l)’ ess and Ai. a, Si) will be combined into one gquantity
representing those components of the factor i mein effect attributable to

the within p-level effects and it will be denoted by Ai 1,.)" The
L] t] L[]

_. can be expressed as follows
Juky

matrices I"F ’ HF and B
i i i

Nally

L = i 1 Hﬂ = 1.1
SR |
i.(1,.) i.(1,.)
and B =3 3
F_ . + . (29)
i Fa R,
The sum of squares corresponding to the i-th factor main effect, I's. 7,

B

i



can be expressed as follows

¥B.Y = I'B, Y + I'B Y. (30)
SRS T TR, 5.@,.)

As a matter of computational convenience it is suggested that Y'B; Y is
i

first computed and then I'B Y is computed (using totals corresponding

F
i.l
to p-levels) so that I BF Y is then obtained by subtraction,
il (1’ ] )
I'B Y=YB.Y - Y'B Y.
=R, 7 Fy )

Since the factor main effects are expressed as the sum of between

and within p-level effects, a k-factor interaction effect, LF F M
is expressed as the sum of Zk sets of effects defined by :L'L x
the 2k matrices LF @ coe @ LF s where j, = o1 or .(1,.) for all
1y ek
h = 1, ooo,k.
For example, if k = 2, then
[ L. 8L ]
11 faa
e,  ®1F
1.1 2.(1,.)
L =
F.F L @
12 f.a,.) o
L C LF
F.
L "1.(3,.) 2.(1,.) |

Of the Zk sets of components of the k-factor interaction effect only the

set of components defined by Ly 1 ® eee @® LF completely represents
iy° 1,1
n
a k-fector interaction effect among k factors in the T['si-p-FAT. The
j=1
sum of squares corresponding to a k-factor interaction effect is typically

X'BF 7 Y and it can be separsated into a quantity corresponding to
i se 0 i
1 k

n
a k-factor interactlion effect in the T[si-p-FAT, denoted by
i=]1
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z'BF F Y, and a quantity corresponding to the other components
il.l' it C9PY §
k

of the interaction effect, which is computed

'8, g L - IB I.
4

3 B
For the partitioning (28) when n = 2, an abbreviated analysis of variance
table (first three columns) can be constructed according to Table 17,
letting m = Ple. Considering Eh.e S48, s-FAT's of the partitioning,
the first three columns of an analysis of variance table can be written
in the form of Table 18 (for the partitioning (28) and n = 2). The symbol
"AleZ" in Tables 17 and 18 denotes the source of variation for all
components of the factor one factor two interaction effect except that

set of components that is also a between s-FAT effect (A1 lez 1). Table

19 is the abbreviated analysis of variance table for the partitioning

3 3
T P.-FAT ————T( (Pil + eee + Pyl )-s-FAT's,
3=1 * 3=1 i

letting m = P1P2P3.

Abbreviated analysis of variance tables for full replicates of
partitionings of the type (28) involving more than three factors is a
direct generalization of Tables 18 anmd 19.

Analysis of Varinace for Multiple Full Replicates

The construction of analysis of variance tables is briefly exam-
ined for the situation where the full treatment replicate of a ﬁ Py -FAT
is performed r times. The general method is to construct the a;'zieviated
analysis of variance table for each of the r repititions of the experiment
and then to add corresponding degrees of freedom and sums of squares in

the r tables. This addition of the sum of squares for factor main effects

or factor interaction effects gives a sum of squares corresponding to a
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TABLE 17

ABBREVIATED ANALYSIS OF VARIANCE TAELE FOR THE
PARTITIONING (28) (for n=2)

Source DF Sum of Squares
Total _ , -1
(corrected) it I an -
]
Al (Pl-l) b4 BFll
(s4-1) I'Bp Y
Ma 1 Fa
(P,-s I'Bp -8, ¥
A.a,d 171 20 Fa
A, (Pz-l) i BFZZ
2.1 (271) 2, o
s (.-s.) T'B, Y- B ¥
2.(1y4) 272 Fy 2,1
A, (D) o3 o ¥
A, _xA (s,-1)(s,-1) I'B 4
.71 1 2 Fy.1F2,1
XA, (s,-1)(P,-s,) '8, I
Altl Z.(l,-) 1 (2 2 rl'le.(l’.)
xA (Py-s, ) (8,-1) I'B I
Aoa, 020 ( 1 3;( 2 ) Fi.a, 0.0
A P.-s. )(P_-s Y'B Y
M., 0., 17177272 = Ha,0F.a,0”
XA (s-1)(s,-1) i'B b4
A 1*a 17722 Faf2a
" " - -] Y= v -
-y OV T
(37-1)(s,-1) Y Y

'B
Fy 2™
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TABLE 18

ABBREVIATED ANALYSIS OF VARIANCE TABLE
FOR A PARTITIONED P1P2-FAT

Source DF Sum of Squares
Total (corrected) | PyP,-1 X' (I, - %Jg)z
Between all s-FAT'S sys,-1 [T (BFl.l + BFZ.l + BF]_.]_FZ.].)_Y'
Ma I S
AZ.]. 82-1 Z'BFz,]_I
Ay ¥, 4 (59-1)(s,-1) E'BFl.le.lz
Within all s-FAT's | PyPy - sys4 I' (Im"Bl'BFl.l-BFZ. l'BFL le.l)l
AM.a, sy (T8 - LB L
2.1, P | IP L - L%, 2
"Ay XA, [(R-1) (Py-1)- IBppXI - ¥, . I
(,1.1)(,2.1)1 12 1.1°2.1




TABLE 19

ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR A
FULL REPLICATE OF A PlePB-FAT

Source DF Sum of Squares
Total (corrected) P,P,Py-1 (I - 13; Si)
Between all s-FAT's $1Sp8571 Y {ay+atagtaytactagtas )Y
Na 571 % 2 =%
Aa sp-1 %, 2 =2
. 551 L =2y
ha*a (s3-1)(s,-1) DB Rt %
A (52)(s572) TR afys T
A a3 (s,-1)(s31) T p, L "%
b oo™ (5)-1)(s5-1) (s5-1) B .
Within all s-FAT's P1P2P3-513253
Ao P8y I8l - 3
A2, ) L I i -2
A5.,.) 3755 e T
" " (7y2) (2,2 (3pmL) | T8 X - o
“hyeh (P,-1)(P51)-(s,-1) (s571) | X° Bl %
.-AleB" (Pl-l)(PB-l)-(sl-l) (53—1) by BFlFBZ - a
A3 A" Ve - |4, gl 4

(sl-l) (52-1) (53-1)
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factor main effect in replicates (hereafter abbreviated "Rep.s"), or
factor interaction effect in Rep.s. Next, assuming each of the n factors
is a fixed effect factor and since the same set of factorially arranged
tre;atment combinations appears in each of the r repitions, the factor ef-
fect in Rep.s sum of squares can be separated into a sum of squares term
corresponding to the factor effect and a sum of squares term corresponding
to a factor by Rep.s interaction effect. If there is no reason for treat-
ing the r repititions as a source of variation that must be accounted for
in the analysis, then all of the sum of squares corresponding to factor
by Rep.s interaction effects may be pooled to obtain a residual or error
sum of squares, providing the Rep.s are assumed to be of random effects.
If there is reason to consider the r repititions of the experiment as a
source of variation to be accounted for in the analysis, say as r random-
ized blocks, then the usual advice is to leave the factor by Rep.s inter-
action terms unpooled. In this case; if the blocks or Rep.s are random,
then the factor by Rep.s interaction terms can be used as error terms for
significance testing purposes. The following discussion will serve to
illustrate the sbove mentioned concepts. Abbreviated analysis of variance
tables will contain only the first two columms, however, sum of squares
will be exhibited for a case when n = 2.

Consider a 7!'1[ Pi-FAT that is performed r times, or in r Rep.s.
The abbreviated anal;:%s of variance table for each of the r Rep.s of the
experiment is given in Table 20. Pooling the r anslysis of variance
tables yields an analysis of variance table of the form given in Table 21.
Although the means to obtain the sum of squares is probably obvious, the

special case where n = 2 is examined to illustrate the analysis procedure.

obtaining the sum of square
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TABLE 20

ABBREVIATED ANATYSIS OF VARTIANCE TABLE FCR
A FULL REPLICATE OF A P, .. .Pn—FAT

1
Source DF
Total (corrected) (Pl. - P, )-1
A1 Pl-l
An Pn-l
Alez (Pl -1) (P?_—l)
AxA (P,-1)(P,_,-1)
Aj-x. L] -JCAn (Pl_l) s s e (Pn-l)
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TABLE 21

ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR r POOLED
FULL REPLICATES OF A P;.. +P,~FAT

Souree DF
Total N
(corrected) FPl' "P!;) 1

Between all Replicates
Within all Replicates
Al in Rep.s
A
AlxRep.s

A, in Rep.s

A

Aanep.s
Alez in Repe.s

hxh,
Aleszep S

AnxAn-l

AnXAn-l

AnXAn-

in Rep.s

1xRep. s

Alx...xﬁ.n in Repe.s

Alx. . o}:l%,1

Alx. . .xAanep.s

R | T
r(Pl. . .Pn-l)
r (Pl—l)
(Pl-l)
(Bl-l) (r"l )

r(p,-1)
(B,~2)
(P,-1)(r-1)
r(P;-1)(P,-1)
(2,-1)(R,-1)
(P-1)(P,-1)(r-1)

r(e -1 -1)
(2 -1)(p,_ 1)
(P_-1) (P, _3-1)(r-1)

r(Py-1)sss (B,1)
(P-1).e0 (P,-1)

(Py=1)ee (P,-1)(r-1)
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Svppose there are r repititions of a Ple-FAT. For each repitition the
matrix I can be constructed, or say I.(i) is the matrix T for the i-th

replicate, for i = 1, sseyn. Given the matrices L(1), the following

procedure is used to build a matrix L for the r replicates of the Ple-FAT.

(1) et the first row of L be JiPlPZ =1 = L@y, eensllr),)

(2) Choose the next r-1 rows of L, call them I_q to be, for m = Ple

C 1 1 1 1 7T
Jm "Jm ¢T’l LN ) ¢m ¢m
Jl J1-2J1 eose ¢1 ¢1
m m m m m
IP. =
S L JEo(r-1)at
. m m m m n

(3) Inspect the matrices I(i)e to make sure that L(i)e = L(j)e for
(#) From the matrices L(1), seeyand L(r) form the following,

I_F = (L(l)F g e I'(r)F )

1 1 1
L = (L(l) 9 oo ] L(r) )
B B Fy
L = (L(l) 3 veey L(r) ) [
FyF, FyF, Ry Fp
(5) Let Lyg = Le @ Ly for o = Fp, Fé and FyF,, thus constructing
L I. 8nd L .
P’ ™ ™
Fl FéR rlrzR
Le for
(6) For notation purposes, let L9 sinR = . 6=Fi,Fé and Fle
B8R

(7) To form the matrix L for all r repliicates of the PlPZ-FAT, the

results of steps (2), (4) and (5) are combined with the rP1P2

row vector of ones obtained in step one. See Figure 12.
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o

N2
= t
jo s}

I = I, . =
FllnR

-t

H]
pd

L .
F2 in R
L - -T-:\ ?-‘\
Fle in B 3%
b : - L

Figure 12. - The matrix I for r replicates of a Fq Py=FAT.
Ziven I the matrix H is obtained by normalizing the rows of 1. By
) the metrices 3

Fibs o s L= L e
partitioning H into (.Ll, ff, in B’ HFZ in 2’ F1F2 in @

are constructed by

B = S 4B e o 5 Bk B i R B
1Pty 2 2 2 2

= . B. .
B1 + BR + BFl in R + Fy in R +BF1F2 in R

= +B,+ B, +#3; . +73;, +B,_+ 3. + B o .
1 R Fl 1 F2 FZ" rlFZ Fl 1"2@

The first three columns of an analysis of variance Table are given in
Table 22, The sum of squares may be written in terms of the observations
in such a way that computation is straightforward. If an element of the
vector ¢f observations, ¥, is represented by Vs sk for the observation of
the ij~th treatment combination of the k-th replicate, for i = 0,... ,Fl-l,
for j = O,...,P2-1 and for k = 1,...,r, then the sums of squares in Table

22 can be expressed as follows:
(I, p -MEDY =2 yc, - (1
pe, AL = BBy - (/RGP
S - Ol

1 ]
I'3¥
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TABLE 22

ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR THE
P.P,~-FAT RUN IN r REPLICATES

12
Source DF Sum of Squares
Total (corrected) rP Py-1 Y (IrP]_PZ - BEDY
A, in Rep.s r(pP;-1) _‘._f_'BFl sinm X
Ay (P-1) Y'BFlg
AlxRep .S (Pl-l) (r-1) [T BFlRl
A, in Rep.s r(P,-1) ;{_'BFZ snR L
A, (P,-1) p4 BFZ_Y_
A,XRep, s (P,-1)(r-1) [T By pL
A xA, in Rep.s r(P1-1)(P,-1) —Y-.BFlein a X
Ayxhy (P-1)(Px-1) | X Pr Rt
A xhyxRep.s | (P=1)(P,-1)(r-1jX' BF]_FZRX
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'8, s.pl = <1/Pz>§§;‘<yi.k>2 - (l/Ple)i(y._k)z
r'a, ¥ = alrR)s0; _2 - /B PG,
1
T3 - (1/P2)zz(yl W - A/, )2 2
- /7 )Z(y W2 s (1/rP1P2)(y )
% s = (l/Pl)ZZ(Y 507 - (1/P1P2)>(y W
g'BFzg = (1/rP1)§(y. j') - (l/z-PlPZ)(y_“)2
I'5g g = /PG ) - (1/rP1>§(y oL 2
-(l/PlPZ)Z(y k) + (1/rPyP)) (¥, _)
I p, in = E?iy (1/P2)§12{(yi - a/e )ii(y k)
" (1/P1P2)§(y_.k)2
' = ) 2 - r T 2
P4 B-leX = (l/r)zﬁj(yij_) (1/-P2)7(.,i”)
- (1/rP1)‘>‘(y ¥+ /PP, )P
. 2 2
pads! Y B - Q@ - /Py, )
= FlFZR— i-;»:—c- 3. 13k ( /r)lJ 13.) 1/ 2 3 yl.k
- /pEG o)+ /PP Rt X
ko J .ok
2
+ (1/rP1)§(y.j. + (1/rP2)§(yi“)

- (1/rP1P2)(y...)2.

Example 15 : Suppose a 22-"A’.T‘ is run in a completely random design and
that it was repeated three times. For each repitition the matrix L(i)
that defines the effects is, for i = 1,2 and 3,

1 1 1l 1

L) =1(2)=1(3) = |1 1 -1 =-1f.
1 -1 1 -1
[ 2 1 4

"o econstruct an anz2lysis of variance table for all three replicates

the matrix I rust be formed. Following the aforementioned procedure
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the matrix I is given by

rLl'f'111111111111
: 1 1 1 1 -1 -1 -1-1 0 0 0 0
R 1 1 1 1 1 1 1 1 -2 =2 =2 =2
I 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
1
Lo g 1 1 -1 -1-1-1 1 1 0 0 0 0O
1 1 1 -1 -1 1 1 -1 -1 -2 -2 2 2
I = =
Lo 1 -1 1 -1 1 -1 1 -1 1 =1 1 -1
2
Ly p 1 -1 1-1-1 1-1 1 0 0 0 0
2" 1 -1 1 <1 1 -1 1 =1 =2 2 =2 2
L. . 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
FF
L. 1 -1-1 1-1 1 1 -1 0 0 0 0
CRRR 11201 1 a2 a1 2 2 2 -2
n
If there are r replicates of a J[ Pi-FAT, where in each replicate the
n i=1
TU P;-FAT is partitioned via:
i=1 n n
- —Clan ]
TU P, FAT-————)T[(Pil 4 eee + Pis_) s-FAT's,

i=1 i=1 i
then an appropriate abbreviated analysis of wariance table is given in
Table 23, letting m = jr{jlpi. In Table 23 the symbol X(j)'BFkg(j)
denotes the sum of squa;:s’ due to the factor k main effect in the j-th
replicate, for j = i, ees,r. Thus, the term ;lz(j)'Bsz(j) is the sum
of the sums of squares due to the main effectazf factor k for all r

replicates of the experiment and this source of variation was previously

r
denoted Aj in Rep.s. In a similar manner, &£ z(j)'BF P ¥(j) 1is the
=1 il" * ik

sum of the sums of squares due to the k-factor interaction effect among

factors iy eee and i for all r replicates of the experiment.
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TABLE 23

AB3REVIATED ANALYSIS OF VARIANCE TABLE FCR A
r REPLICATES OF A PARTITIONED P,. ..Pn-FAT

1

?—‘

Al.l oo OJCAn.lin Rep.s

A1.1Xo . -X.An.l

Al.lx' . .xAn.lxRep.s

r(sl-li ces (sn-l)

(57-1)e 0 (s 1)

(r-1) (sl—l) vee (sn-l)

Source DF Sum of Squares
Total (corrected) m -1 X’(Im - (1/rm)J$)X
Replicates r-1 I'BpY
3etween s-FAT's in Rep.s r(sl...sn-l)
Ay 1 in Rep.s r(sl-l) X_'BFI 1inR-Y-
Aa (s3-1) TBp I =23
Ay qxRep.s (r-l)(sl-l) _Y_'BF RZ = a,
1.1
A 1 in Rep.s r(s -1) Y BFn.linpz
b1 (5572) ra 1 - e
n.l
A ,xRep.s (r-l)(sn-l) _Y_'BF RX = 3,

Withis all s-FAT's in Rep.s

h.a,0
Al. (l, . >xRep.s

A (1,.)

An.(l,.)xRep.s

"AIXO . -XAn"

" 1Xs o o+ XA "XRep.s

r(Pl. . -Pn - Sloo osn)

Pl—s1
(r-1)(Py-s; )

Phsn

(r-1)(B,s,,)

(Py=1)v.. (P.=1)-
(s1-1).-+ (s-1)

(r-1)((Py-1).. (P _-1)
~(sy-1 ...(sn-i))

I'Bg

Y—a=a

1..-Fn— 5

z¥(3)'B
j Fll.an

()

-a_=-az - Y"B Y]
5 6 - Flo..F—'




104

Analysis of Variance in the Presense of Blocks

Analysis of variance tables can be constructed for the blocking

PLANs mentioned in chapter IV. In general, the total (corrected) sum of
squares is expressed as the sum of (1) the sum of squares dus to between
block effects (this source of variation will be denoted B.A.B. (between
all blocks)) and (2) the sum of squares due to within block effects (this
source of variation will be denoted W.A.B. (within all blocks)). The
B.A.B. sum of squares is obtained from the block totals. This B.A.B. sum
of squares may be expressed (if desired) as the total of the sums of
squares representing all effects that are confounded with block effects.
The W.A.B. sum of squares can be expressed in terms of sums of squares
corresponding to factor main effects and factor interaction effects (or
unconfounded components of the main or interaction effects). The follow-
ing examples serve to illustrate relevant concepts.

Example 16 : For the partitioning of example 4.1,

8142-FAT———> (1411 + 1&12)(221 + 222)-s-FAT's

the blocking PIANs (a), (b), (e¢), ¢e. and (h7) are obtained by con-

founding the components of main and interaction effects indicated in

Table 24. Each s-FAT is equivalent to a 4x2-FAT. The source of

variation due to the effects that are components of the factor one main

effect are denoted by 3, C and 3C, the component of the factor two main

effect is denoted by A and the components of the factor one-factor two

interaction effect by AB, AC and ABC. The sum of sgquares for these

components are given by

'B

14

Y 'B.Y + Y'B.Y + Y'B. .Y
F = = = = -
1.(1,.) 5= c= BC

Y'B Y
=F,a,.)"

1'B,Y and
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TABLE 24

SOME BLOCKING PLANS FOR EXAMPLE 16

—_—— .

Components confounded with block effects

Blocking
PLAN between s-FAT effects within s-FAT effects
(a) A none
(b) Ay q none
() Al.lXAZ.l none
@) A ar f2,10 Mo none
(e) all A
(fl) all B
(f5) all c
(£5) all BC
(57) all AB
(gz) all AC
(24) all ABC
(hy) all A, 3 and AR
(n,) all R, C and BC
(h3) all A, C and AC
(h“’) all A, BC and ABC
(he) all %, AC and A3C
(hy) all C, 4B and ABC
(h7) all AC, AB and BC
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v - ' [ t .
L'Bup pprd I'Bygt + I'BjX + X'Bypel
The abbreviated analysis of variance tables are given for blocking PLANs
(a), (d), (gl) and (h7) in Tables 25, 26, 27 and 28, respectively, The
letters bi in tables 25, 26, 27 and 28 represent block totals of obser-

vations, where the blocks received the treatment combinations in Figure 13.

PLAN (a) PLAN (b) PLAXN (gl) PLAN (h7)
01 2 3 01 2 3 0 1 2 3 01 2 3
0 0 0 oIl 2l5]16
Y I oY I B Y 0 i Y3 E[71¢
3 3 3 F211]6]5
L I 1»5679 49110{13[1
2 2 53 L 5 5113 12[35]1
: 6 665Q7 612§11}16]15
7 7 7 - 7110| 9114|113

Figure 13. - Allocation of treatment combinations to blocks.

Also, the sums of squares in Table 27 are
a; = (1/16)((by +b, +bg 4:%)2 + (bg +bg +b, +b8)2) - (1/32)(y,,,)2

2

= (1/16)((b; +b, +b +b6)2 + (by +b, b, +b8)2) - 1/32)(7,,.)

275

ay = (1/16)((by +b, +b, -»1:8)2 + (by +by, +bg +be)2) - 1/ 32)(y"_)2

8y, = (1/16)((by 4by +bg +6,)° + (b +b, +bg b)) - (1/32)(3,,.)°

ag = (1/16)((by +b5 +bg +b8)2 + (b, +b,, +b, +b7)2) - (1/32)(ym)2

ag = (1/16)((by +b, +bg +b8)2 + (b, +b3 +bg +b7)2) - (1/16)(37”,)2
a, = (1/16)((by +by +bg +b7)2 + (b, +b5 +bs +bg)?) - (1/16)(y,, )

and the sums of squares for table 28 are 8yy 859 oo and 8109 where
ﬁ=(l)((b 454D a#D) 45 4Dz 4brybg Yot (ba#bq nbe 14D e 45 c4b 2 )2
1) { {01 #D2#D 33b1,4b i b4 )74 (bg#by 4Dy 1 4Dy 4Dy 3307 #D1 54D ¢ )°)

X5= (-1]*6) ({by+b,+b ¥Dy#bg#b) (+Dy 14Dy )24+ (b 5+Dg¥Dr+Dg+Dy 3+D 14Dy c4by ¢ 2y
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TABLE 25

ABBREVIATED AOV FOR BLOCKING PLAN (a) OF EXAMPLE 16

S = T —
Source DF Sum of Squares
, _ 32y, _ 2 12
Total (corrected) 31 Y (132 (1/32) J32)Y = ;5:..5; Yi5 = 3.
B.A.B. 1
1 2 -
Ma 1 LBy 27 4 L+ 38 - 2(5’--) =
W.A.B. 30
' - 2 _]___ 2
AL, 6 IBFIE‘al = Ez.(y -5 ) -y
Ay 3 Y'BF Y -(1/8)2(y ) -(1/32)5'
2
A xh, 21 Y'BF P I= sziJ (1/4)?' - (1/8)123&.
+(1/ 32)Y
TABLE 26
ABBREVIATED AOV FOR BLOCKING PLAN (b) OF EXAMPLE 16
Source DF Sum of Squares
' _ 32
Total (corrected) | 31 ' (1,,-(1/32) JBZ)X
B.A.B. 3
2y 1
4 ey = rB L= (G 2)2+(b 40,5 - 3_2Yz
' _ 2
A0 tlepg= LB, X "62&’%‘“’2) Z(bz“*bb,) ) - 323’--
Haha 1 |Z'Bp p I= (1/8)(by#bywbaty) -2y -2, - 2 = B
A3, 28
M., 6 B l-2
A2.(,.) 2 Y'B}?zX T3
"AxA," 20 I'B, Y- I'B X
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TABLE 27

ABBREVIATED AOV FOR BLOCKING PLAN (gl) OF EXAMPLE 16

Source DF ) Sum of Squares
2
Total (corrected) 1 Z}Jy'ij - (1/32)(37“)2
3 )
R.A.3. ? Amz e - 1/3) )
k [ ]
1 Y'B Y = a
Hll - Flol l
: 4 -—
b ! I
xA, 1 Y*'B _'._f_ =a
f.1%%2.1 = "F A% 3
AC l X'BAC"E = ab
xAC 1 Y Y = a
A1 BFl.lAC 5
xAC 1 Y'B Y =a
Ay axA, oxACl 1 I'B Y=a
11720 F) 1Fp qACT 7
W.A.B- 2“
bM.a,0) 6 X'BFIK ]
A (1,.) 2 l‘"P’*Fz}f- )
" [T} 1 - (




109

TABLE 28

ABBREVIATED AOV FOR BLOCKING PLAN (h7) IF EXAMPLE 16

Source DF Sum of Squares
2
Total (corrected) 31 I (I32-(l/ 32)J§5)I
B.A.B. 15 iz bi - (1/32)(y")2
k
Al.l 1 aq in table 27
A2.1 1 a, in table 27
A1.1’°“2.1 1 g a3 in table 27
2 2
B 1 T (b b - (/32)(y =
c $E (o, 10,0 - ARG, e,
AC 1
AR 1
i 1.7 AC 1
\Z 1
’\‘.lx 1
A
1%y 1 XAC 1
A, -xRC 1 16
1.1 4 1 2
a =§'zb -8_=-2,—a,.-a "—(y..)
A, XEC 1 5 Mk 123 3
Al.leZ.IXBC 1
Al.IXAB 1
o
Az.leu 1
Ay 1%hy 1 XAB 1
A3, 16
2 Y¥*'B Y -
M.a,0 !
f2.a,.) 3 T8 i-2" 3y
n ]CA " 9 YlB _Y- - g -a
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2
)((b +b,+b +0,,+ 13+b14+b15+'b16) 2 (b +°6+b7+b8+b9+b +bn+b )4)

3" 3
x,= (ilg\((‘n +b4+b5+b8+b9+b12+b13+b16) +(b2+b -;-b6+b7 10+b1 by,40, q) )
Xe= 1T h,j - (1/32)(y, ) -2y —2, -aq -y

le=).

andt ay = 5y - (1/32)(, )"
=%, - (/32)@F, )

- /)G,

)
L
“

i

a,i = X, -
a =%, - /2, )
aq = X5 .

Example 17 s+ Consider the partitioning of example 10,
The abbreviated analysis of variance table for blocking PLANs (a), (b),

(¢), (d) and (e) of Table § are given in Tables 29, 30, 31, 32 and 33.

3 and 34 will have the same meaning in all tables.

An analysis of variance table can be constructed from a matrix L. In the

The letters 85 8, 8

following example the matrix I is given for a less than full replicate of
a vartitioned FAT.
Example 18 : Consider the partitioning
716,-FAT ——> (297 +315 +213) (237 +2p +23)-s~FAT's.
Let 211 and 221 refer to the two lowest levels of factors one and two,
let 21 3 and 223 refer to the two highest levels of factors one and two
and let 312 and 222 refer to the middle levels of factors one and two.
A matrix L is given for two PLANs, where the PIANs are defined by the
subsets Sl and 52 of SD, in Figure 14 and 15, respectively,
5, = £(00), (01), (10), 1), @2), (21)}

Sy = {(00), (01), (10), (A1), (12), (20), (21)}.
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TABLE 29
FOR BLCCKING PLAN (a) OF EXAMPLE 17

Source FﬁDF Sum of Squares
Total (corrected) | F9 | I'(Tyy = /90MZOL = 5T (y; )% - (1/90)5
1]
B.A. 05 2
1= 2
A 2 (18)( (by+b,+b5) +(bu_+b 5+0g) +(b7+b;+b9) )~y 90 y
W.ALB, &7
ML BB S A ? - /@), )
A, g | I'B I =(1/20)2(y, )Jé - (:L/32)(y”)2
2 3 2
Axh, 72 Y'BFIEX = g:‘z_:y1J -(1/10)a(y ) - /9@, )
ij 2 i
+ (1/90)(y )
TABLE 30
ABBREVIATED AOV TABLE FOR BLOCKING PLAN (b) OF EXAMPLE 17
Source DF Sum of Squares
Total (corrected) |89 _‘{'(I (1/90)J’ Y
B.A.B. 2
A 2 a, = 2 (by+by4b,) 2+ (b+b o+bg )24+ (b_+b_+b )
2.1 = 200 (by#oy+by) +{bytbsthg )4 (B b Dy
-(1/90)(y, ,)?
V,A.B 7
2 2 v 3
Ay 9| 1/9) g(yi_) - @/32)GF, ) = L'Bp L
2 2 -
£ )2 - —a_ =YB Y-
AL, 6 (1/10)§(y,3) 1/32)z ) XBFZX 2,
AyxA 72| ¥'B. _ X
17z FyFp~
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TABLE 31

ABBREVIATED AOV TABLE FOR BLOCKING PLAN (c¢) OF EXAMPLE 17

Source DF Sum of Squares
Total (corrected) |89 | ¥'(Tgy - (1/90)J38)§
BcA;BI 2
part of (b.4b4b )2 (botb,+b.)2  (botb 4b ) ¥2
Ay ¢xA 2| g 208 2, T 57 T
1.1%%2.1 43" 31 32 27 90
W.A.B. &7
A 9 Y'BFlY
A, e Y'BFzg
”n " 1 v_
Alez 7 1Y BFIFZ:_ a 3
TABLE 32

ABBREVIATED AOV TABLE FOR BLOCKING PLAN (d) OF EXAMPLE 17

W

Source DF Sum of Squares
Total (corrected)| 89 | Y' (190 - (1/90)Jgg)_¥_
3.4.8. 2
part of (by4bg4bg)? (b3+b4+b8)2 (oy40g+0,)° ¥,
Maa 2ley=—"335 * 23 tT = "%
W.A,3. 87
) 7| LBl
A, & | T X
Rk 0B p ity

12
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TABLE 33

ABBREVIATED AOV TABLE FOR BLOCKING PLAN (e) OF EXAMPLE 17

Source DF Sum of Squares
90
Total (corrected) 89| I'(Igy - (1/90)J90)}£
B.A-B. 8
Ma 2 2y
Aa 2 )
Ao & 83+ &y
W.A.B. &1
5.4, 7 Z'BFlX -8
A2.1,0) 6 TP L=
"Ayx4," 6|y BFleg -8y -2y,
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Figure 14, - A matrix L for the PLAN defined by subset S, in example 18.
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Figure 15. - A matrix L for the PLAN defined by subset S5, in example 18.



CHAPTER VI

DISCUSSION OF AN EXAMPLE

In this chapter an example is presented to illustrate how the
use of methods developed in the preceding chapters can aid in the design
and analysis of a real experimental situation. The main prerequisite
for the use of partitioned factorial arrangement schemes is that the ob-
jective of the experiment be to investigate inter-factor and intra-
factor relationships among iwo or more factors.

Consider an experiment designed to investigate the metabolism
of protein in rats with induced pseudo-phenylketonuria, which is a condi-
tion assumed to be equivalent to phenylketoruria. Various amounts of the
apino acids tyrosine and phenylalanine are added or deleted from the diets
of the rats for a two week period. The two amino acids are to be studied
at three levels: almost absent, normal and large amounts. After the two
week feeding period, amounts of homogentisic acid (a measure of protein
metabolism) are measured in daily urine samples for a seven day period.
Analysis of these measurements can determine whether the response is
affected by different levels of each amino acid, and if the response
pattern for levels of one amino acid is the same at each level of the
other amino acid. If the results of this study indicate that the response
is not different for the various levels of the amino acids, then the study
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can be terminated. On the other hand, 1f the results of this study in-
dicate that the response is significantly affected by the various amounts
of amino acids in the diet, then the investigator might desire to enlarge
upon the experiment, utilizing additional levels (say five) to obtain
more definitive information. In the enlarged experiment, the five
levels could be, almost absent, below normal, normal, above normal and
extremely large. |
Since various amounts of the amino acids can be added or deleted

from the diets, the factorisl arrangement is an obvious choice for the
treatment design., The factorial treatment design will allow the investi-
gation of inter-amino acid and intra-amino acid relationships. The experi-
mental unit is the rat and, since groups of homogeneous rats are readily
availsble, a completely random assignment of the treatment combinations
to units is sufficient. With the aim of studying all five levels of each
amino acid, the total number of different treatment combinations (or
diets) in a factorial arrangement is 25, where each treatment combination
is a combination of levels, one level (amount) of each amino acid. In
the context of this dissertation, the 25 diets are analogous to the 25
treatment combinations of a 5152-FAT. In the 5152-FAT, one factor is the
phenylalanine and the other factor is the tyrosine. The levels of the
two amino acids are represented by the mmmbers 0, 1, 2, 3 and 4, where

O represents almost absent,

1 represents below normal,

2 represents normal,

3 represents above normal, and

4

represents extremely large.
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The 25 diets composed of the varyinz amounts of the two amino acids, are
represented by the 25 individual cells in Figure 16.

Factor 2 (Tyrosine)
I

9,1 23 3
11 2] 3] 4] 5

0
1151 7] 81 9110
Factor 1 2§11 1121313415
(Phenylalanine) 3116117 (18 [19]20
18

21 |22 [23 |2k | 25 §

Figure 16. - A representation of the 25 food diets.

In view of the investigator's desire to run an initial experiment to de-
termine the first objective, namely whether there are significant effects
with the three different levels of each amino acid, the investigator could
partition the experiment utilizing only the lowest and highest levels
along with the middle level, as one set (this set would correspond to
levels 0, 2 and 4). The second set would include the other two levels,
1 and 3. Thus, the five levels for each factor have been separated intc
two subsets. These sets of levels are represented by 3]_1 and 212 for
factor one and 321 and 222 for factor two. The algebraic partitioning
5955=FAT ——=( 337 + 25 )( 357 + 255 )-s-FAT's (30)
results in the four s-FAT's 311321-5-FAT, 3]_1222-3~FAT. 212321-3—FAT and
212222-5-FAT. These s-FAT's are represented in Figure 17 by the letters
"a", "b", "c" and "d". The nine a's represent the 311321-5-FAT, which is
a combination of the lowest, middle and highest levels of each factor;
while the four d's represent the 2y52p5=s-FAT, which corresponds to the
combinations of the remaining two levels of each factor. The letters b
and c correspond to the 311222-5—FAT and 212321-S-FAT. These s~FAT's are




=
[
\O

Factor Z (Iyrosine}
i 112,34
Ol Y a a
1] 2] dlec|d}e
Factor 1 2f1a] bjfaflbla
(Phenylalanine) 3lc]l dlecld]e
L¥as] bjJalbfa

Figure 17. - A representation of the four s-FAT's.

composed of treatment combinations of the three levels of one amino acid
and the two levels of the other amino acid. Thus, the 3u222°s-FAT,
designated by the letter "b", represents combinations of the low, middle
and high levels of phenylalanine with the one and three (below normal and
above normal) levels of tyrosine; while the 212321-5-FAT, designated by
the letter "c", represents combinations of the two levels (1 and 3) of
phenylalanine with the low, middle and high (0, 2 and 4) levels of tyr—
osine,

The initial experiment is eguivalent to rumning the 33_1 s=FAT.

1"
Since rats are likely to be readily aveileble, the statistician can sug-
gest that two rats receive each treatment combination. The urine of each
rat is measured each day for seven consecutive days. The seven days can
be considered as seven levels of a third factor and, in view of this
third factor, the partitioning (30) can be expressed as
515273-FAT—-—9-(311 + 212)(221 + 222)7 ~s~-FAT's, (31)
so the experimental situation is more adequately described. The parti-
tioning (31} results in the four s-FAT's 31132173-5-FAT, 31122273-5-FAT,
212321?3-s-FAT and 21222273-5-FAT. The initial study is now equivalent
to rumning two replicates of a 3x3x7-FAT, where the factors one and two
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represent the amino acids (at leveis 0, 2 and 4) and factor three ig
mmber of days after the initial two week feeding period (iletting 0
represent day one, 1 represent day iwo, ..., and 6 represent day 7).
The analysis of the observations of the 311321?3-5-FAT are summarized in
Table 3%. In the experiment, reasonabie statements to investigate are
that the effects of the three levels of phenylalanine are not different
with respect to the response measured (amounts of hcmogentisic acid) and
that the effects of the three levels of tyrosine are not different with
respect to the response measured. In statistical terminology, these
two statements are equivalent to hypctheses of zero main effects for
factors one and two., Another aim of the initial study is to determine
whether or not the pattern of response for one factor is the same at
each level of the other factor. This aim can be statistically investi-
gsted by obtaining evidence for or against a hypothesis of zero inter-
action between factor one and factor two.

If, in fact, the three levels of factor one (phenylaianine) do
affect the response measured, then, hopefuliy, the results cf the initisl
experiment will produce evidence for rejecting the hypothesis of a zero
factor one main effect. A similar statement can be made for factor two
(tyrosine); factor three (days); and for the factor interactions. The
fact that each rat is measured on seven consecutive days puts the experi-
mental design in a repeated measures situation. Since each treatment
combingtion is applied to two units, the MS(e) of Table 34 is an appro-
priate term for significance testing purposes (because it is a measure
of the failure of units (rats) treated alike to respond alike, which is

experimental error). In Table ¥, for i = 1, ¢oey 7, the significance



TABLE 34

ANATYSIS OF VARIANCE TABLE FOR THE INITTAL EXPERIMENT

T —— A S R W S

Total (corrected) 125
Phenylalanine (0,2,4) 2 | ss(P) MS(P) MS(P)/Ms(e) aq
Tyrosine (0,2,4) 2 ] 8siT) MS(T) MS(T)/MS(e) 2,
Days 6 | ss¢D) Ms(D) ¥S(D)/us(e) a5
Phenylalanine x Tyrosine | 4 |ss(PxT) [|MS(PxT) [MS(PxT)/¥S(e) 2,
Phenylalanine x Days 12 | sS(PxD) [JMS(PxD) {usS(PxD)/¥S(e) 2y
Tyrosine x Days 12 | ss(TxD) JuS(TxD) [MS(TxD)?MS(e) 2¢
Phenyl, x Tyrosine x Days| 24 | SS(PxTxD)]MS(PxTxD)|MS(PxTxD)MS(e) 5,
Residual 63 | Sste) MS(e)
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levels ay indicate the strength oi ihe evidence against the hypothesis
that main effects or interaction effects, whichever the case may be, are
zero. If either 8 or a, is judged significant (about .05 or smaller),
while a, a5, ag ard ap are judged not significant, then there is evidence
for a difference in response due to difference in effects of levels of
factor one or two. Of course, the experiment can be continued for other
reasons (to study the phenylalanine by tyrosine interaction, if a, is
judged significant) and the experiment can be terminated for other rea-
sons (although there may be statistical evidence for differences, the
differences exhibited by the data are so small that they are of no
practical importance).

Suppose the decision is made to continue the experiment by
running the three remaining s~FAT's. The sequence or order in which the
three s-FAT's are run might or might not be important. The three s-FAT's
might be run at one time in a completely random designe Perhaps the
investigator can run only one s~FAT at a time, If this is the case, then
the following sequenced PLANs exist:

PLAN (1): 3772557 3~s=-FAT —> 2153077 3~s~FAT —32452557 3-s-FAT 0

PLAN (2): 3112,,75~5-FAT —3=2, 2,7 1-5=FAT —>2,,3,174-5~FAT,

PLAN (3)# 2953,974-5-FAT —> 342,57 5-S~FAT —>2, ;2,7 1~s~FAT,

PLAN (4): 21232173—S-FAT —921222273-s-"AT -—>31122273-S-FAT,

PLAN (5): 21222273—5-FAT —>311222',’3-s-FAT —9212321?3-5-1?.1!.'1‘ and
PLAN (6): 21222273-5-FAT —32923p775-S-FAT —> 3772007 3-s=FAT.
Writing these PLANs, including the initial experiment ((00)), in terms
of pseudo-design points, one obtaing

PLAN (1): (00)—>((1) — (10)—>(11),
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PLAN (2): (00)~—>(01)——» (11)—>(20),

PLAN (3): (00)—»(10)—>»(01)——>»(11),

PLAN (4): (00)—>(10)—»(11)—>(01),

FLAN (5): (00)—>(11)—>(01)—~(10) and

PLAN (6): (00)—>»(11)—>(10)—>(01).
In the context of this dissertation, it is easy to see that all six PLANs,
if they are performed as an entire experiment, are complete PLANs, and
consequently, are connected PLANs., If the sequence of application is
taken into account, then only PLANs (2) and (4) are connected. If fore-
sight indicates the experiment run in sequence might be prematurely ended,
then either PLAN (2) or PLAN (&) is a suitable choice, since they are
step-wise connected. lMoreover, if the analysis of the initial experiment
indicates that the factor one main effect is highly significant while
the factor two main effect is not significant, then it seem reasonable
that additional levels of factor one should be next in order of investi-
gation. Thus, PLAN (4) is preferable to PLAN (2) since the application
of the second s-FAT involves different levels of factor one, while ap-
plication of the second s-FAT in PLAN (2) involves different levels of
factor two.

Now, suppose all four s-FAT's had been run. The entire experi-
ment is now equivalent to a 5152?3-FAT run in two replicates. The results
of the experiment can be summarized in the analysis of variance table
given in Table 35. In a manner similar to the analysis of the initial

experiment, the significance levels a, through a? in Table 35 can be used

1

to assess the strength of the evidence against hypotheses of zero main

effects and zero interaction effects. Of course, it must be realized that
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- ™ -~ -
TABLE 35

AXALYSI5 CF VARIANCE FOR TWG PzPLI

5x5x7-FAT
-——-Sturce DF
——
Total (corrected) 349
Phenylalanine (0,1,2,3,4) b4
Tyrosine (0,1,2,3,4) L
Days (0,1,2,3,4,5,6) 6
Phenylalanine x Tyrosine 16
Phenylalanine x Days 24
Tyrosine x Days 24
Phenylalanine x Tyrosine x Days | 96
Residual 175
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inferences concerning the factor one and two main effects and interaction
effects are made with respect to the five levels for each factor.

Next, suppose that some distinguishing characteristic of the
units (rats), such as type or strain, can be used to separate the group
of fifty rats into two smaller groups. A rat is either of strain A or
strain B, and thus, the experimental units can be divided into subgroups
according to this characteristic. For this illustrative example, these
groups are labeled G, and G_.. In the context of this thesis, the groups

A B
G. and G. are referred to as blocks (of rats). If the strain of rat is

A B

known or suspected to have an effect on the ellicited measurement, then
the rats of the two strains will respond differently to the treatments.
The difference in response due to strain is automatically a part of the
experiment and must be dealt with in the designing and amnalysis of the

experiment.

Precaution must be taken in the assigmment of treatment combi-

mations to rats so that the between strain (or between groups) effect will

not bias any of the between level comparisons for either factor one or
factor two. In other words, the experiment must be designed so factor
effects can be investigated irrespective of the strain effect. To illus-
trate why this precaution must be taken, suppose the rats of strain A
receive all the treatments involving the O and 1 levels of factor one
and the rats of strain B receive all the treatments involving the 2, 3
and 4 levels of factor one. Now, the difference between, (1) the average
of the responses for the rats receiving treatments involving the 0 and 1
levels of factor one and, (2) the average of the responses of the rats

receiving treatments involving the 2, 3 and 4 levels of factor one, is
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a measure of the strain effect and also, a measure of the effect of levels
0 and 1 versus levels 2, 3 and 4 of factor one. A difference between the
averages (1) and (2) (say (1) minus (2)) is hard to intrepret because one
cannot be sure whether this difference is due to strain, levels of factor
one or a combination of strain and levels of factor one. In this situa-
tion and in the context of this thesis, the strain effect (block effect)
is said to be confounded with a component of the factor one main effect
(average of levels O and 1 versus average of levels 2, 3 and 4). Since
the purpose of the experiment is to investigate the effects of different
levels of factors one and two, it is imperative not to confound the strain
effects with the two factor (main) effects.

Suppose there are 24 rats in G A (strain A) and 26 rats in Gy
(strain B). Previously, the experiment was described as two full repli-

cates of a 515273-FAT. By the partitioning mentioned earlier, namely

515 27 3-FAT —— (37+215) (357+255)7 3-s-FAT's,
four s-FAT's resulted. By methods developed in chapter four, one can
obtain a scheme that assigns the treatments of the 311321-S-FAT and the
21,255-5-FAT to the group of 26 rats and the treatments of the 319225
s-FAT and 212321-S-FAT to the group of 24 rats. Figure 18 gives a more
detailed of the assigmment of treatments to rats. The result of this
assignment scheme is that the strain effect is not confounded with any
part of a main effect for factor one or two. However, to obtain this
clarity on the information relating to the effects of levels of the
factors, one must sacrifice clarity in some other aspect of the experi

ment. In this case, the strain effect has been confounded with a

component of the interaction between factors one and two. Anglytical
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Block 1 (group of 26 rats)

(000) (001) (002) (003) (O0O0%) (005) (006)
(010) (011) (012) (013) (014) (015) (016)
(020) (021) (022) (023) (024) (025) (026)
(100) (101) (102) (103) (1o4) (105) (106)
(110) (111) (112) (13) (&) (115) (L)
(120) (121) (122) (123) (124) (125) (126)
(200) (201) (202) (203) (204) (205) (206)
(210) (211) (212) (213) (214) (215) (216)
(220) (221) (222) (223) (224) (225) (226)
(330) (331) (332) (333) (33%) (335) (336)
(340) (341) (342) (343) (344) (345) (3#6)
(430) (431) (432) (433) (434) (435) (43%)
(L40)  (b41)  (L42) (443) (444) (445) (446)

Block 2 (group of 24 rats)

(030) (031) (032) (033) (034) (035) (036)
(040) (O41) (o42) (043) (Ou44) (O45) (046)
(130) (131) (332) (133) (Q34) (135) (136)
(140) (A41) (Q42) (wW3) (Q44) (4s5) (Q46)
(230) (231) (232) (233) (234) (235) (236)
(240) (2u1) (2u2) (243) (244) (245) (246)
(300) (301) (302) (303) (304) (305) (306)
(310) (311) (312) (313) (31) (315) (316)
(320) (321) (322) (323) (324) (325) (326)
(400) (401) (402) (403) (4o4) (405) (406)
(410)  (411) (412) (413) (418) (415) (416)
(420)  (421) (422) (423) (424) (425) (426)

Figure 18. - Scheme assigning treatment combimations to blocks.
A rat in a block is randomly assigned all treatment combinations in a row.
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procedures for this kind of situation are developed in Chapter five of
this thesis, For this particular situation, an analysis of variance
table will be identical to Table 36. In Table 36 attention is directed
to the fact that one degree of freedom of the phenylalanine by tyrosine
interaction is lost (compare with Table 35). This one degree of freedom
is now attributed to the between groups source of variation. Informaticn
on the other sources of variation (factor main effects and interaction

effects) is the same as in Table 35.
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TAELE 36

ABBREVIATED AOV TABLE FOR TWO REPLICATES OF A PARTITIONED
515273-FAT RUN IN TWO BLOCKS

P —

L Source DF

Total 349
Between Groups (blocks) 1
part of (Phenylalanine x Tyrosine) 1
Within Groups (blocks} 48
Phenylalanine L
Tyrosine L
Days 6
Phenylalanine x Tyrosine 15
Phenylalanine x Days 24
Tyrosine x Days 24
Phenylalanine x Tyrosine x Days 96

Residual 175




CHAPTER VII
STMARY

This dissertation investiszated some of the statistical desifn
and analysis problems occurring in comparative experiments that are form-
ulated to study inter-factor and intra-factor relationships among several
factors of interest. Yore specifically, experiments having a factorial
treatment design and a completely random (unit) design or block design
were considered in detail. Fethods were developed that allow the part-
itioning of a full replicate of factorially arranged treatment combinat-
ions (referred to in this study as a FAT) into disjoint subsets of fact-
orially arranged treatment combinations (referred to in this study as
s=-FAT's)., These procedures can be used for experiments that cannot be
performed at one time or in one place and must therefore be performed in
parts. The generating of partitioned factorial arrangements is especially
suited for experimental situations in which a priority of interest can be
placed on the levels of some or all of the factors under investigation.
These methods can also be used to combine experiments that investigate
the same factors, but not necessarily the same levels. This is accomp-
lished by treating the seperate experiments as parts or pieces of a larger
experiment in 2 manner such that the seperate experiments can be obtained
by some partitioning of the larger experiment. Schemes incorporating
various combinations of the s-FAT's were developed for completely random
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designs (no biocks) and for experimental situations where blocks were
present (these schemes were referred to as PLANs or blocking PLANs, which-
ever the case may be).

If the order in which the groups of s-FAT's are performed is
important, then the concepts of complete and comnected designs were
found to be useful in selecting a sequence of s-FAT's that assures the
attainment of statistical information about inter-factor and intra-factor
relationships. The methods and analysis procedurcs required the assump=-
tion of a linear observational model. . The statistical concepts of effects,
factor main effects and interaction effects among factors were given mean-
ing with respect to population means and unbiased estimates of these
effects were given. Methods were developed that led to the construction
of analysis of variance tables for full replicates, multiple full repli-
cates and full replicates of partitioned factorial arrangements performed
in the presence of blocks (with confounding of various treatment effects
with block effects). A specific example was given for a situation having
observations of a less than full replicate of a partitioned factorial
arrangement. In Chapter VI an example was presented to illustrate the
use of methods that were developed in preceding chapters.

There are several problems concerning partitioned factorials that
remain uninvestigated. The running of s-FAT's in sequence and the sequ-
ential anglysis of this sequence needs statistical inquiry. Associated
with this sequential aroblem are problems of response surface methodology.
The use of partitioned factorial arrangements for combining experiments
needs to he expanded as does further investigation of analysis procedures

for the case where some, but not all, of the s-FAT's have observations.
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In particular, experiments in which a large number of factors and levels
make full replicates of the treatment combinations virtually impossible
or impracticable, need more thorough investigation. Finally, it is sug-
gested that the use of graph theory in a more thorough study of connecte
edness and tensor products in investigating the structure of design

matrices may prove profitable,
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APPZNDIX 1
ELFMENTARY I“ATRTX CONCEPTS

Let A be an n by m nontrivial matrix and let A' be the transpose
of A.
Theorem 1l: If the rank of A is r, then A = BC, where Bis annby r
matrix and C is an r by m matrix. (This factorization is not neces-
arily unique).
Definition 1: The generalized inverse of A, denoted by At is
a* = cr(cct)L(3'B) 1B if A = BC. (See Gateley(28)).
Theorem 2: At is unique.
Theorenm 3: Given A, if there exists X such that AXA = A, XAX = X,
AX = (AX)" and XA = (xa)', then X = AT,
Theorem 4: (A*)' = (A")*,
Theorem 5: Let the rank of A be denoted by r(A). Then r(4) = r(a%) =
r(A*A) = r(AAt) = tr(AtA) = tr(aAY), where tr(A) denotes the trace
of the matrix A,
Theorem 6: AX = C is consistent if and only if AA*C = C.
Theorem 7: If AX = C is consistent, then the general solution is
X = A*C + (I - A*A)Y, where I is the identity matrix and Y is
arbritrary.
Theorem 8: If r(4) = m, then A" = (A'A)™ A' ard A*A = L.
If £(&) = n, then A* + A*(A'A)™ amd aa* = I,
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APPENDIX 2

A RESULT CONCERNING THE SUM OF SQUARES
DUE TO CERTAIN EFFECTS

Let Y be an m by one vector of observations from the linear ob-
servational model Y = M + e and assume that E(Y) = M. Also, let L, be a
d by m matrix defining the effect Iﬁ,}L ard such that the rows of Iﬁ: form
an orthogonal set of one by m vectorss The matrix H  is the row-wise
normalized matrix L, therefore H, = DL, (D is diagonal). Let B, =
H;sz and suppose Ha is a d by m matrix and let Ba = H;.Ha'

Theorem 1: For all m by one vectors ¥, T'B Y = ¥'BY if and only if
there exists an orthogonal matrix G such that Ha = GH_.
Proof: ¥'B Y = ‘Y_'BWX if and only if By = B, (for all ¥).

Now, H!H, = H'H, and H, = (H)™ H, = GH_, since HH! is

d by d of rank d¢ So far, a matrix G exists, namely

G = (HwH;)-l. G is orthogonal since

BE, = BS'CH, = B, LESCEH, = RERE = I d 0'cT.

Now assume there exists a G such that H, = GH_.

By = Koy = HG'GH, = i, = B and I'B Y = Y'BY for all Y.
Remark 1: In the context of the theorem, note that H H} = I.
Remark 2: If H, is written as H = DaLé.’ where D_ is diagonal and L
is row-wise orthogonal, then it can be shown that I, = CL_,, where

¢ = D7 (EH)™D,, C is nonsingular amd (CDGY)(cDFY)* = D33,

139



