
A STUDY OF RED D E ORY PAIR�

ALGORITHM�

By�

SO GGAO�

Bachelor of dicine�

Beijing Medical niversity�

Beijing, P. R. China�

1999

Submitted to the Faculty of the�
Graduate allege of the�

Oklahoma tate niversity�
in partial fulfillment of�

the requirements for�
the Degree of�

MA TER OF IEN E�
May 2003�

e

A STUDY OF A REDUNDANT MEMORY REPAIR

ALGORITHM

Thesis Approved:

-~~

v{2-L-~ ~

~ j .6&.----
---{;;in of the Graduate College

11

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major advisor, Dr.

Nohpill Park for his intelligent supervision, constructive guidance, inspiration

and friendship. My sincere appreciation extends to my other committee

members Dr. J. P. Chandler and Dr. G. E. Hedrick,. whose guidance,

assistance, encouragement, and friendship are also invaluable.

More over, I wish to express my sincere gratitude to those who

provided suggestions and assistance for this study: Ms. Nin Jing, Ms. lingyan

Li, Mr. LingFa Kong and Mr. Zou Zhen.

Finally, I would like to thank the Department of Computer Science for

the excellent advanced education.

111

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II. LITERATURE REViEW 3

2.1 Memory redundancy architecture 3

2.2 Memory redundancy repair algorithms " 5

2.3 Memory defect models 5

III. PRELIMINARIES 8

3.1 Existing base algorithms 8

3.1.1 Repair-Most. 8

3.1.2 Heuristic Approximation Algorithm 9

3.1.3 Exhaustive algorithm , !O

3.2 Proposed algorithm) 1

IV. PRELIMINARY SIMULATION RESULTS)5

V. CONCLUSiON 29

REFERENCE ~s

APPENDDCES 47

IV

LIST OF FIGURES

Figure Page

1.	 Repair-Most algorithm .14

2.	 Repair Most Algorithm Repair Process .15

3.	 Heuristic approximation algorithm 16

4.	 Bipartite graph representation of the memory faulty pattern 17

5.	 Heuristic Approximation Algorithm Repair Process 18

6.	 Random Fault Distribution.Map (Random Distribution) 19

7.	 Clustered Fault Distribution Map (Negative Binomial Distribution) 20

8.	 Two-Dimensional Array of Linked List Representation of the

Memory faulty pattern 21

9.	 Modified Heuristic Approximation Algorithm for repairing large

size of memory. (part 1) 22

10.	 Modified Heuristic Approximation Algorithm for repairing large

size of memory. (part 2) 23

11.	 Proposed Algorithm Repair Process 24

12.	 Yield Analysis of Repair Most Vs. Proposed Repair Algorithm

on Redundant Memory with Random Fault Distribution 31

13.	 Accumulated Average Yield Analysis of Repair Most Vs. Proposed

Repair Algorithm on Redundant Memory with Random Fault

Distribution .32

14.	 Yield Analysis of Repair Most Vs. Proposed Repair Algorithm

on Redundant Memory with Clustered Fault Distribution 33

v

15.	 Accumulated Average Yield Analysis of Repair Most Vs. Proposed

Repair Algorithm on Redundant Memory with Clustered Fault

Distribution 34

16.	 Yield Analysis of Repair Most Vs. Proposed Repair Algorithm on

Redundant Memory with Identical Random Fault Distribution

Patterns 35

17.	 Yield Analysis of Repair Most Vs. Proposed Repair Algorithm on

Redundant Memory with Identical Clustered Fault Distribution

Patterns '" " 36

18.	 Running Time Analysis of Repair Most Vs. Proposed Repair

Algorithm on Different sizes of Redundant Memories with Fixed

Defects and Spare Lines .37

19.	 Theoretical Repair Process Memory Utilization Analysis of Repair

Most Vs. Proposed Repair Algorithm on Different sizes of Redundant

Memories with Fixed Defects and Spare Lines 38

20.	 The influence of Defect Number's on Repair yield 39

21.	 Yield enhancement of the proposed algorithm in contrast with repair

most algorithm ~O

22.	 Yield analysis results of Repair-Most with different size of memory

and different repair redundancy under random fault Distribution4t

23.	 Yield analysis results of Repair-Most with different size of memory

and different repair redundancy under clustered fault Distribution .42

24.	 Relationship between Repair Redundancy and Repair yield ~3

25.	 Relationship between Memory Size and Repair yield ~4

VI

Chapter I

Introduction

As VLSI technology advances, the number of devices per chip and the

chance of having device failures on the chip increases dramatically. Including

redundant rows and columns that can be used to replace defective rows or

columns, so-called row/column deletion technique, is a standard practice to

enhance memory yield substantially. However, the overhead of utilization of

redundant elements and its cost-benefit is still an open problem due to its high

computational complexity.

The problem, repairing reconfigurable memory array with optimal spare

rows and spare columns, is NP-complete [7]. There have been extensive

researches on the redundant memory repair algorithms, such as repair-most

[12], polynomial approximation algorithm [7] and comprehensive approaches

[2]. However, none of them can generate an optimal repair solution [7,12,2].

Due to time and space limitation of the testing equipment, the polynomial

approximation algorithm and comprehensive algorithm are also not time

efficient [7].

In this thesis, we propose a new two-dimensional array of linked list

representation of defective memory cells to implement an approximation

algorithm, which wiB greatly decrease the space required to represent the

memory cells. Also, we will modify the polynomial approximation algorithm [9]

and use it for our memory-repair yield estimation. Comparing with Kuo and

Fuchs' algorithm (7], our proposed algorithm is easier to implement and saves

computational spaces by about one half.

The objective of this thesis is to use our proposed repair algorithms to

study the relationship among memory size. repair redundancy and fault rates.

Also, we will study the impact of different fault models such as random

distribution model and negative binomial distribution model on memory yield.

This proposal is organized as follows. In the following section, literature

review related to this research work will be given. In section III and IV,

preliminary results and conclusions are addressed. Section V summarizes the,

proposed work and points out its future application.

2

Chapter II

Literature Review

2.1 Memory redundancy architecture

Memory plays an important role in today's computer systems. With the

advent of deep submicron technology and system-an-chip (SoC) design

methodology, heterogeneous cores from different sources can be integrated

in a single chip that contains multi-million gates [1}. Embedded memory is one

of the most widely used cores 'for SoC, and memory cores usually dominate

the silicon area and yield of the chip [1]. Increasing the memory on a SoC

adds layers, complicates the manufacturing processes, and increases cell

density [14,13]. In fact, because of their high cell density, embedded

memories are more prone to defects than any other component on the chip

[14].

One solution to minimizing the occurrences of faults is to improve the

manufacturi ng and testing processes (fault-avoidance technique) [1). However,

this can't be considered as a viable alternative because it can be very costly

and also quite difficult (or even impossible) to implement. On the other hand,

we can now afford to put redundancies on the IC to make fault-tolerant design

viable by setting aside some of the chip/wafer area to this purpose (fault

tolerance technique) [12].

3

There are several redundancy architectures existing in large memory

cores to facilitate repair and maintain an acceptable manufacturing yield to

date, such as spare rows, columns, and/or banks.

In addition to the traditional spare rows/columns configuration of memory

arrays, Park and Lombardi [10] have proposed the laser physical cutting of

spare rows/columns, thus increasing the spare units and the yield without

increasing spare redundancy.

Moreover, multichip module technology [16] has also employed

redundancy techniques. However, conventional redundancy methods cannot

always generate acceptable repair solutions for multichip memories. For

example, in order to decrease" the current and reduce the access time by

shortening the length of the bit and word lines [16). the large size of the

memory array are often partitioned into several sub-arrays. Using the

conventional redundancy methods, each sub-array will have its own

redundant rows and columns, leading to situations where one sub-array has

an insufficient number of spare lines to handle local defects while others still

have several unused redundant lines. Also, the higher density of the new sub

micron memory ICs drastically decreases the yield loss due to chip-kill defects,

e.g., defects in core circuits like sense ampliers and line drivers, while the

conventional technique using spare rows and columns is incapable of dealing

with such defects [17].

Koren et al [5] proposed a Hybrid defect-tolerance scheme for high

density memory ICs by using smaller sub-array redundancy containing

modules. Kikuda et al [4] introduced the failure-related yield model, based on

which they generated an optimized redundancy scheme for 64-Mb DRAM. It

4

shows that memory with 1-MB or smaller subblocks containing more than two

spare rows and two spare columns in each subblock can increase yield

greatly.

2.2 Memory redundancy repair algorithms,

The redundancy analysis algorithm also has been addressed extensively.

The algorithm proposed by Day [2] is an exhaustive search algorithm

that generates the entire tree of all possible solutions. This approach is not

acceptable when the array size is large.

The repair-most algorithm [12] proposed by Tarr et al. is a greedy

method, which repetitively choose the row or column that has the most

number of faulty cells. Though the repair-most algorithm is simple and easy to

implement, its yield calculation is far more than satisfactory. For example, it

may not generate a solution for a theoretically repairable defective array [2];

also the solution it generated may not be optimal [7].

Kuo and Fuchs [7] have stated that the problem is NP-complete and

proposed a branch-and-bound algorithm which is actually a modified

comprehensive algorithm and a heuristic polynomial approximation algorithm.

The branch-and-bound approach is not efficient as the problem becomes

large. The heuristic polynomial approximation algorithm [7] and its modified

version [9] suffer from implementation complexity. However, they are the most

accurate approximation algorithms for yield improvement of reconfigurable

arrays to date.

2.3 Memory defect models

Not only the algorithms are important for yield estimation, the faulty

memory cell distribution models also play an important role. In order to

5

evaluate the manUfacturing yield of fault-tolerant VLSI chips, different defect

models have been proposed.

Because of the inherent fluctuations in an Ie fabrication process, defects

may be independently introduced during any of the many processing steps

that a VLSI chip undergoes. Thus, chip yield is the product of the yields of the

individual processing steps. The random defect model (The Flat(Uniform)

Distribution. p(x) dx = {1 \over (b-a)} dx, if a <= x < band 0 otherwise) [14]

assumes that defects occur randomly on a wafer. This yield model observes

the Poisson random variable distribution. However, simple random defect

model is widely criticized as being too pessimistic for single chips [1], because

the defects are often not randomly distributed across a wafer, but rather are

clustered in certain regions.

Fault clusters in integrated circuits can be roughly categorized into four

classes [1]. The first class is that the fault clusters must be larger than the

chip size (large-size clustering); the second class is that the fault clusters

must be smaller than the chip size (small-size clustering); the third class is

that the fault clusters must be with the same dimension as that of the chip

area (medium-size clustering); and the fourth class is that the clusters vary in

dimension.

To account for nonrandom defect distributions, different models have

been proposed for the first three classes of fault clusters. The unified negative

binomial distribution model(p(k) = {\Gamma(n + k) \over \Gamma(k+1)

\Gamma(n)} p"'n (1-p)"'k) proposed by Koren et al [6), the model of compound

Poisson distribution with gamma function, is the best frit for the experimental

data in the case of large-size fault clustering, medium-size fault clustering as

6

well as small-size fault clustering [1]. It proposed that the number of faults in a

block has the negative binomial distribution, while the defects in each block is

distributed randomly. This block-sized negative binomial distribution model

has three parameters: the average number of faults A, the clustering

parameter a, and the block size B.

7

Chapter III

Pre-liminaries

3.1	 Existing base algorithms: There are three kinds of algorithms exist to

date, however, none of them has a good performance when repairing a

large size of redundancy memory.

3.1.1	 Repair-Most [12, Figure 1, Figure 2]: Repetitively chooses and

replaces the row or· column that has the most number of faulty

cells to cover.

1)	 Computational Time Complexity: O(M+N) where M is the

number of rows that have defects and N is the number of

columns that have defects. Proof: as each time, the process will

repair one row or one column, there are at most (M+N) iterations,

so the computational time complexity is O(M+N).

2)	 Computational Space Complexity: O(R*C) where- R is the

number of rows of the memory, and C is the number of columns

of the memory. Proof: because the algorithm is using array

[Figure 3b] to represent the defective memory, and the array has

C columns and R rows, so the computational time complexity is

O(WC).

8

3) Yield Optimization: Not optimal. Proof: some defective memory

patterns can't be repaired by using this algorithm but can be

repaired by using optimal algorithm.

4)	 Implementation: Easy. Proof: the implementation is

straightforward, and we only need to keep the number of

defective cells in each row and in each column.

5)	 Repair Process: greedy method, repeatedly choose the row or

column that has the most number of faulty cells.

6)	 Disadvantage: It may not generate a solution for a theoretically

repairable defective memory array [2]; also the solution they

generated may not be optimal [7]. Its yield is far more than

satisfactory.

3.1.2	 Heuristic Approximation Algorithm [7, Figure 3, Figure 5]:

Optimally finds and replaces the defect that has only one defect in

a particular row or column. If there is no single defect in a row or

column, it finds and replaces the row or column that has the

greatest repair effect.

1)	 Computational' Time Complexity: O«SR+SC)*(M+N» where M is

the number of rows that have defects, and N is the number of

columns that have defects. SR is the number of spare rows, and

SC is the number of spare columns. Proof: as there are only SR

spare rows and SC spare columns, there are at most O(SR+SC)

iterations. For each iteration, the algorithm will search all the

rows and columns that have defects to decide which one to be

9

replaced, and there are (M+N) rows and columns to be

compared. So the total computational time complexity is

O«SR+SC)*(M+N)).

2) Computational Space Complexity: O(R+C+2E), where R is the

number of rows of the memory, C is the number of columns of

the memory, and E is the number of defects in the memory.

Proof: the algorithm is using bipartite graph [Figure 3a) to

represent the defective memory, that is, it needs row array of

linked list and column array of linked list. For row array of linked

list, we need a row array (size R) and R linked lists. The total

number of nodes of R linked lists is the total number of defective

memory cells represented as edges. The column array of linked

list is represented similarly. So the total computational space

complexity is O(R+C+2E).

3)	 Yield Optimization: Not optimal, however, optimal solutions have

been generated for most of cases [7]. Proof: in Fuchs' paper [7],

there are comparisons between exhaustive algorithm and the

approximation algorithm, and for most case, the approximation

algorithm can generated optimal solutions.

4) Implementation: complex. Proof: as the algorithm uses set and

graph theory, it is difficult to be understood and implemented.

5) Repair Process: greedy method, repetitively chooses the row or

column that has the greatest repair effects.

lO

6) Disadvantage: lit may not generate a solution for a theoretically

repairable defective memory array [2J; also the solution they

generated may not be optimal [7].

3.1.3	 Exhaustive algorithm [2]: Generates a tree of all possible

solutions and finds the optimal repair solution.

1) Computational Time Complexity: NP-complete [7]. Proof: Fuchs

has proved that the problem is NP-complete [7].

2) Computational Space Complexity: O(R+C+2E), where R is the

number of rows of the memory, C is the number of columns of

the memory, and E is the number of defects in the memory.

Proof: the algorithm is using bipartite graph [Figure 3a] to

represent the defective memory, that is, it needs row array of

linked list and column array of linked list. For row array of linked

list, we need a row array (size R) and R linked lists. The total

number of nodes of R linked lists is the total number of defecti,ve

memory cells represented as edges. The column array of linked

list is represented similarly. So the tota,l computational space

complexity is O(R+C+2E).

3)	 Yield Optimization: Optimal. Proof: the algorithm generates all

the repair solutions and finds the optimal.

4) Implementation: Hard. Proof: the algorithm uses set and graph

theory, and generates all the possible combinations of spare

rows and spare columns, it ,is difficult to be understood and

implemented.

ii

5) Repair Process: Exhaustively test all the possible spare row and

column repair combinations to find the optimal one.

6)	 Disadvantage: Time inefficient (as the problem is NP-complete,

it is not efficient for even moderate size of memory).

3.2 Proposed algorithm: We propose the two-dimensional array of linked

list representation of the memory with defects. Our proposed algorithm

searches the two-dimensional array of linked list represented memory

repeatedly to repair the row or column that has the greatest repairing

effects. The algorithm we propose in this thesis shows both

computational space and time efficiency [Figure 7, Figure 8, Figure 11].

1) Computational Time Complexity: O«SR+SC)*(M+N)) where M is

the number of rows that have defects, and N is the number of

columns that have defects. SR is the number of spare rows, and SC

is the number of spare columns. Proof: as there are only SR spare

rows and SC spare columns, there are at most O(SR+SC) iterations.

For each iteration, the algorithm will search all the rows and

columns that have defects to decide which one to be replaced, and

there are (M+N) rows and columns to be compared. So the total

computational time complexity 'is O«SR+SC)*(M+N».

2)	 Computational Space Complexity: O(R+C+E), where R is the

number of rows of the memory, C is the number of columns of the

memory, and E is the number of defects in the memory. Proof: the

algorith m is using Two-dimensional .array of linked list [Figure 6] to

represent the defective memory, that is, each defective memory cell

is only represented once. In addition, the algorithm needs one row

12

array of size R, and one column array of size C. As there are total E

defective memory cells, the total computational space complexity is

O(R+C+E).

3) Yield Optimization: Not optimal, however, optimal solutions can be

generated for most of cases. Proof: this feature is teste,d and

conformed by experiments.

4) Implementation: the proposed algorithm is not as simple as the

repair-most algorithm to be implemented. However, it is easier to

implement than comprehensive and heuristic approximation

algorithms. Proof: the algorithm uses two-dimensional array of

linked list to represent the defective memory, and this

representation requires only constant time to access each defective

memory cell's defective neighbors. For heuristic approximation

algorithm and exhaustive algorithm, it will search all the

corresponding linked lists to find and update its neighbors' cost and

degree.

5) Repair Process: greedy method, repetitively chooses the row or

column that has the greatest repairing effects.

6) Disadvantage: It may not generate a solution for a theoretically

repairable defective memory array; also the solution they generated

may not be optimal.

13

1.	 For i=O to Row

Save the number of Faults in Row i in RowCount[i)

For j=O to Column

Save the number of Faults in Column j in ColCountOl

2.. Find the row i or column j that have the biggest number of faults.

3.	 If(SR>O and RowCount[i] is the biggest) Then

Repair the Memory with a Spare Row;

Update RowCount[] and ColCountD;

SR:=SR-1;

Else Repair The Memory With a Spare Column

Update RowCountD and ColCountD;

SC:=SC-1;

4.	 Repeat step one until no spares or faults remain.

5.	 If (SR=O and SC=O and faults remain), then this device cannot be

repaired using this algorithm.

6.	 If no fault remains, then the device can be repaired.

Figure 1. Repair-Most algorithm [1].

14

CD
cv

®

CD
CD

I

q
q

q
q

I

I

R
o

w
:

C
o

lu
m

 n:
R

o
w

:
C

o
lu

m
n

:
R

o
w

:
C

o
lu

m
n

:
R

o
w

:
C

o
lu

m
n

:
D

o
n

e
1-7

3
-

1
-7

2

3
7

J
1-7

I
3-7

I
J-7

l
3-7

J
J-7

\.
I

V
)

3
-7

I
3

-7 I
e;

4
-7

3
-

3
7

1

e;
7

-7
2

-
4

-7
1

q

q
4

-7
3

-
4

7
3

·
7

-7
2

4

7
2

9

7
\

7
-7

2

7-7 I
7-7 J

9
-7

2

9
7

1

S
C

=
2

S
R

=
O

S
R

=
3

S

R
=

2
S

R
=

l
5

C
=

3
S

C
=

3

S
C

=
3

5

C
=

3

F
igure 2. R

epair M
ost A

lgorithm
 R

epair P
rocess

Begin
Begin

For each vertex v in row vertices A and column vertices B
Calculate the cost cc(v) and degree dc(v).

End
Success := false;

While defects exist and (SR>O or SC>O) do Begin
If there are nodes with degree one and it is selectable, then

Select the vertex v with the minimum cc(v)/dc(v);
Else

Select the selectable vertex v with minimum cc(v)/dc{v) over all
vertices

If v EA and SR>O then Begin

Success := true;

SR:= SR-1;

For each (u,v) E E do Begin

cc(u) := cc(u) - 1;

dc(u) := dc(u) -1;

End;

End;

Else If v EB and SC>O then Begin

Success := true;

SC:= SC-1;

For each (u,v) E E do

Begin

cc(u) := cc(u) - 1;

dc(u) := dc(u) -1;

End;

End;

If Success then Begin
cc(v) :=0, add v to repair-solution Rh,
delete v, all incident edges to v, and resulting isolated
vertices.
Success := false;

End;
Else if v E A then

Mark the remaining vertices in A unselectable.
Else mark the remaining vertices in B unselectable

End;
If there are still defects then

Return fail;
Else return Rh;
End;

Figure 3. Heuristic approximation algorithm [8].

16

(b)

(a)

Figure 4. Bipartite graph (a) representation of the memory
fa~lty pattern (b).

17

CD
CD

CD
CD	

®

@
	

@

@

@

@

@
	

@
@

@
@

@

@

@

@

-
@

@

C

4
@

q@
	

q@
-
\
~

q
@
~

c1@
@

@

@

@

A
@

	
@

@

@

@

@

@

@

@

@
	

0
0

R

o
w

:
C

o
lu

m
n

:
R

o
w

:
C

o
lu

m
n

:
R

o
w

:
C

o
lu

m
n

:
R

o
w

:
C

o
lu

m
n

:
D

one

I: 2
~
2

I:
I
~

 1 c:1l: 2-.73
1:
I
~

 1* e
l
l
:
 2
~
2
*

 4: 2
~
2

 e
l7

:
1
~
2
*

 4:
I
~

 1 q
3:
2
~

 1
3
:
3
~
1

3
:
2
~
1

4
:
2
~
1

7
:
2
~
2

9
:2

-)2
	

9
:
1
~
1

4
:
1
~
2
*
4
:
2
-
)
1

7:
2
~

 2
9:
2
~

 I

7:
2
~

 1
7:
3
~

 I

9:
2
~

 I

S

R
=

3

S
R

=
2

S

R
=

2

S
R

=
1

S

C
=

2

S
C

=
3

5C

=
3	

5C
=

2
S

C
=

2

F
igure 5. H

euristic A
pproxim

ation A
lgorithm

 R
epair

P
rocess

Fig. 6 Random Fault Distribution Map (Random Distribution)
with Row=Column=128, Faulty Rate=l %

19

• •

I

:

•
...-

,;' "

f
\

• ,

'. ; 1
. .'

4 ;.

..................

/
~.

I ..

.. .",.. .. -
,'"..

......-...
,. .

\
'.

f,
\

'. . • . ., I.
./

,,,',/
~ .. --'

...

•
.' ---
-: './. . ..

\ .,~
 , .

, a

,,;•• . ,',
I .. ,

• ,. : 1o

I
\ • '0 • i\.

", ./
: .,. /

:

'-,._a·" """""" ...
.

Fig. 7 Clustered Fault Distribution Map (Negative Binomial distribution) with
Row=Column=128, Faulty Rate=1%. a=3.8274, A=1.934.

20

4 ~

'0
f-

I
f

2i'-(.9
f-

':::, 'A
3
f

4
f
5
f

'::.6
f-

J...

Figure 8. Two-Dimensional Array of Linked List (a)
Representation of the memory faulty pattern (b).

21

Begin

For each row v in R or column v in C

Calculate cost cc(v), degree dc{v), and counter n(v);

End;

Success := false;

While defects exist and (SR>O or SC>O) do Begin

If there is row or column v with cc(v)=1, then Begin

For all rows and columns with cc(v)=1.

Select the row/column v with maximum n(v);

If more than one maximum n(v) exist, then

Select v with the maximum dc(v);

End;

Else Begin

Select the selectable row or column v with minimum cc(v);

If more than one minimum cc(v) exist, then Begin

Select the row/column v with maximum n(v) and minimum

cc(v);

If more than one maximum n(v) exist, then

Select v with the maximum dc(v);

End;

End;

If v E Rand SR>O then Begin

Success := true;

SR := SIR-1;

For each u in v do Begin

dc(u) := dc(u) -1;

dc(v) :=0;

if(n(v) =cc(u)) then Begin

n(u) := n(u) - 1;

Recalculate cc(u);

Figure 9. Modified Heuristic Approximation Algorithm for repairing large

size of memory. (part 1)

22

End;

End;

End;

Else If v € C and SC>O then

Begin

Success := true;

SC:= SC-1;

For each u in v do

Begin

dc(u) := dc(u) -1;

dc(v) :=0;

if(n(v) = cc(u)) then Begin

n(u) := n(u) - 1;

Recalculate cc(u);

End;

End;

End;

If Success then

Begin

cc(v) :=0, add v to repair-solution Rh,

delete v, all u in v

Success := false;

End;

Else if v ER then

Mark the remaining vertices in R unselectable.

Else mark the remaining vertices in C unselectable

End;

If there are still defects then

Return fail;

Else return Rh;

Figure 10. Modified Heuristic Approximation Algorithm for repairing large

size of memory. (part 2)

23

CD
CD

CD
CD

CD

0 1 21'-1.}
) c

c
s

q
10

0 I 2~1 ~

) 4

2
4

0 I 2) 4

q
-10.~

1
0

,

,
,.1

T
 q
~

, [

rn

rT
T

5
T

6

q
~

10
L

L
lfD

 14
1

5
1

6
 I 71

8 I

S 6 7

S 6 7

~

5 6
I.l

'<

t
C

'l

R
ow

:

0:
2
~
2

2:
2
~

 1

3: 1
~
2
*

C
olum

n:

0:
I
~

 1

2:
3
~

 I

3: 2
7

1
 q

R
ow

:

0: 2
~
3

2:
2
~

 1

6: 2
~
2

C
olum

n:

0:
I
~

1
*

 q
3
:
2
~
1

8:
2
~

 1

R
ow

:

0
:2

7
2

*

6
:
2
~
2

C
olum

n:

3: 2
~
2

8:
2
~
2

 q
R

ow
:

6:
1
~
2
*

C
olum

n:

3: 1
7

1

8: 1
7

1

q
D

on
e

6:
2
~

 I
6:
3
~

 1

8
:2

7
1

S
R

=
3

S
R

=
2

S
R

=
2

SR
=O

S

C
=

2

S
C

=
3

S
C

=
3

S
C

=
2

S
C

=
3

F
iaure 11. P

rooased A
laarithm

 R
e

o
a

ir P
rocess

Chapter IV

Preliminary Simulation Results

Theoretically, the algorithm we propose will reduce either time or space

requirement to generate the repair solution. We will justify this by comparing it

with the Repair-Most algorithm, which is still one of the widely used algorithms.

The exhaustive search algorithm surely will be the best algorithm to generate

the repair solutions, however, it is not practical for repairing even moderate

size of memories. Moreover, it is difficult to implement. Our proposed

algorithm is based on the same logic as the heuristic approximation algorithm

but with different memory representations to generate repair solutions, thus,

the yield of our proposed algorithm will be exactly the same as the yield

generated by the heuristic approximation algorithm. While the Repair-Most

algorithm is using different approaches to address this issue, it win be more

practical to do comparison with Repair-Most algorithm.

1.	 Our proposed algorithm can repair the redundant memory effectively.

[Figure 12, Figure 13, Figure 14, Figure 15].

Figure 12 and 14 show that the yields of our proposed algorithm have

nearly the same yields as the Repair Most algorithm no matter th.e

faults are randomly distributed or clustered. Sometimes, Repair Most

algorithm has higher yield than our proposed algorithm. This is

because that the faults in memories are randomly generated, so the

25

defect numbers and positions are not constant. The higher yield

generated by Repair Most algorithm on some cases does not indicate

that the same defect patterns repaired by our proposed algorithm will

generate lower yield.

2.	 For the same fault pattern, the yield generated by proposed algorithm

is nearly always higher than the one generated by Repair Most

algorithm [Figure 16, Figure 17]. However, on some fault patterns,

Repair Most algorithm will generate higher yield than our proposed

algorithm. In our test cases of randomly distributed fault patterns, only

2% of memories willi get higher yield when they are repaired by

Repair Most algorithm rather than our proposed algorithm [Figure 16].

It is around 4% higher when the faults are clustered [Figure 17].

3.	 Statistically, our proposed algorithm will generate higher yield than

Repair Most algorithm [Figure 13, Figure 15]. Figure 13 shows that

for memories with randomly distributed faults, the yield repaired by

our proposed algorithm is around 4% higher the yield repaired by

Repair Most algorithm. For memories with clustered fault distribution,

the yield increase is about 2.5% [Figure 15].

4.	 Our proposed algorithm is more time efficient than Repair Most

algorithm when the memory size is large [Figure 18]. When the

memory size is small, the Repair Most algorithm is more efficient than

our proposed algorithm. However,. when the memory size is large, the

Repair Most algorithm is extremely inefficient. In our test cases, we

randomly distribute 9000 faults in redundant memories with 100

spare rows and spare columns each. When the memory size is

26

bigger than 168Mb, it is terribly slow, as in this stage, the testing

equipment has run out of real memory, and the slow accessing time

of disk (as virtual memory) compared with the fast access time of real

memory is the confounding factor that account for the slowness.

When the memory size is bigger than 379Mb, it can't allocate enough

memory on the testing equipment to generate the repair solution. Our

proposed algorithm can efficiently generate solution for memories up

to 4.31 Gbs. Since the running time complexity of our proposed

algorithm is O«M+N)*(SR+SC)), and in this test case, we fixed the

SR and SC, the time complexity will be only affected by M and N,

which is the number of rows and the number of columns that has

defects in the memory respectively. As there are fixed 9000 defects in

the simulated memory, and M and N will increase as the memory size

increase. However, there are at most 9000 defective rows and 9000

defective columns, which means that the upper bound of M and N are

9000, this upper bound is corresponded to the stable stage in figure

18.

5.	 Our proposed algorithm repair process will use less memory than

repair most algorithm [Figure 19]. Figure 19 shows the theoretical

memory requirement of repair most process and' proposed process.

6.	 The simulation results under different fault models and different

conditions [Figure 20, Figure 21, Figure 22, Figure 23, Figure 24,

Figure 25] show that the proposed algorithm nearly always has higher

yield than repair most algorithm.

27

7.	 Theoretically the proposed algorithm will have the same yield as

heuristic approximation algorithm, however, the space it required

reduces about one half.

8.	 As the proposed algorithm is a polynomial approximation algorithm

and its computational time complexity is O«SR+SC)*(M+N», it is

more efficient than the exhaustive algorithm whose computational

time complexity is NP-complete.

28

Rand m F.ul! Distribull II 0 Id Jl I ohm R pa,r M t Aig rilhm

1--Proposed Igorithm····· Rep.iT

0.8

0.7 -- -

0.6

0.5

-0
U 0.4;,;:

0.3

0.2

0.1

5 9 13 \7 2\ 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 5 89 93 97 101

S3J11l'le pace(n)

Figure 12. Yield Analysis of Repair Most Vs. Proposed Repair

Algorithm on Redundant Memory with Random Fault Distribution

(Row=Column=100, Spare Row=Spare Column=20, P=O.6%)

29

Random Fault Di mbuli 11 A cumulated Av rnge Yield 1al is

or Repair Most I orithm Vs. Proposed Aig rilhl11

1--Proposed Algorithm •••• - •Repair M t Ig rilh;;;]

0.64 ~-------------------------------,

0.62 n.---------------------------------i

0.6 -I-.\.--------------------------------i

~ 0.58.J.----------------------------------l
;,:

!
~

0.56 t..-_-'-r·_'_:_.. --= .•--.:.!....'-.-.~....--~------------------__1....=..'.-.

....................
] ,'. : _- - .

-3 ~ : ::
§ :: .
~ 054 +-.;;~-----------------------------__I

0.52 -1-------------------------------__1

0.5 -1-------------------------------1

0.48 l..u..J.J..L.J.J..L.L.U..J..L.L..L.U.JU-U..L.U..J.J..L.L.U..L.U.JU-U.J.J..L.L.U..J..L.L..L.U.J..L.U............L.U..J.J..L.L.U..L.U.JU-U..L.U..L.U..J..L.L..L.U.J..l..u..J.J..L.L.U..J..L.L..u..I

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 8\ 85 89 93 97

Sample Space(n)

Figure 13. Accumulated Average Yield Analysis of Repair Most Vs.

Proposed Repair Algorithm on Redundant Memory with Random

Fault Distribution (Row=Column=100, Spare Row=Spare

Column=20, P=O.6%)

30

lu leT Faull Di tribulion Yield naly i fProp d J nthm Repair Most Ig rilhm

1--Proposed Algorithm •••• - .Rep ir M 1 Algorithm I

0.9

0.7.!--------------------------------f

0.6.!--------------------------------t

'"C
]i 0.5 J--------------- _
>

0.4 .1------------~------------------l

0.3 -1-------------------------------1

0.2.1--------------------------------1

0.1 +----------------

5 9 13 17 21 25 29 J3 37 41 4S 49 53 57 61 65 69 73 77 81 85 89 93 97

Sample Spacc(n)

Figure 14. Yield Analysis of Repair Most Vs. Proposed Repair

Algorithm on Redundant Memory with Clustered Fault Distribution

(Row=Column=100, Spare Row=Spare Column=20, P=0.6%,

0=3.8274,).=1.934)

31

'luSler ault Oi tnbuti n cumulated ernge Yield nalysis
of Proposed Igoritbm Vs. R pair Mo t Alg rilhrn

--Proposed Algorithm •••••.Repair Most

0.87 ~-------------------------------,

0.86 -U--------------------------------i

0.85 ll----------7"......="''''';..~o;oo'''<:::_---------------____1
/ ~---.......... _---.....--_I
,;A ~J __A 'V

"'" 0.84 :: W V
u .:.>= • I

~ I'.~.;.::••~.~.-------------------------------1
"
e 0.83'"

..(",':
"'0 • , ."

~ ".,..... "'...
"3 0.82 ~------=..:~--.........'-----:..,~_'=------____::_;••.....-:.-.,.,-;-;........--......<.:....-....:...--....-:..__j

S '. .- •••.••••§ _..... '

-0::

0.81 -l---------------------------------j

0.8 -!--------------------------------l

0.79 -1------------------------- _

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 9 97

ample Space(n)

Figure 15. Accumulated Average Yield Analysis of Repair Most Vs.

Proposed Repair Algorithm on Redundant Memory with Clustered

Fault Distribution (Row=Column=100, Spare Row=Spare

Column=20, P=0.6%, 0=3.8274, 1..=1.934)

32

Repaire Vi Id Anal i rRepair Mo t . Prop sed I nlhm
on Idenli al Randomly Distributed Fault Pall ms

1--Proposed Algorithm ••••• 'Repair M t IgoritltnJ

0.8

0.7

0.6

0.5

"0
-;:; 0.4;;::

0.3

0.2

0.1

0

6 II 16 21 26 3'I 36 41 46 51 56 61 66 71 76 81 86 91 96

Sample pa,ce(n)

Figure 16. Yield Analysis of Repair Most Vs. Proposed Repair
Algorithm on Redundant Memory with Identical Random Fault
Distribution Patterns (Row=Column=100, Spare Row=Spare
Column=20, P=O.6%)

33

Repaire Yield nal si' r RepaIr Most V . Propo ed IgOrilhlll
on Idenlical Iu Icred Fault Panem

I--Proposed Algorithm' ••••.Repair Mo I Aig rithm I
0.95 -y------------------------------,

0.9 -1----------------------------------1

"'0
';) . ,0.8 , ~ ",:;: .', " " •," \," "

"

0.75

0.7 f--------------------:.--------------l

6 11 16 21 26 3 I 36 41 46 51 56 61 66 71 76 81 86 91 96

Sample Space(n)

Figure 17. Yield Analysis of Repair Most Vs. Proposed Repair
Algorithm on Redundant Memory with Identical Clustered Fault
Distribution Patterns (Row=Column=100, Spare Row=Spare
Column=20, P=O.6%, 0=3.8274, A=1.934)

34

Running Time Anal i fRep, ir M 51 Igorilhm V Prop sed Ig rilhm

I--prop d AI!: rilhm ••••• 'RepairM 51 Igorithm I
200

.
I 0

160

· 140 I-- · ·
~ 8 .120

~
Ii 100 · i=
.E"" ·
§ 80

· /e>: · · · 60 }/
40

--/
20 .

~o
10 12 14 16 18 20 22 24 26 28 30 32

Log2(MemorySize)

Figure 18. Running Time Analysis of Repair Most Vs. Proposed
Repair Algorithm on Different sizes of Redundant Memories with
Fixed Defects and Spare Lines. (Defects=9000, Spare Row=Spare
Column=100)

35�

Theoretical Memory Utilization ofRepair-Most Algorithm Vs. Proposed Algorithm

I·Repair Most Algorithm ---Proposed Algorithgm I
12 ii

10 II

~ 8I
.gci

oI
~

j
C

6I

£::l ·· I
1.l ·
.~ 4I I
~ .

2 I:

"

J ...<

.

,L
I

1 2 3 4 5 6 7 8 9lOll12131415161718192021222324252627

Log,(Memory Size)

Figure 19. Theoretical Repair Process Memory Utilization Analysis
of Repair Most Vs. Proposed Repair Algorithm on Different sizes of
Redundant Memories with Fixed Defects and Spare Lines.
(Defects=9000, Spare Row=Spare Column=1 00)

36

Defects Number's influcnce on Repair Yield

---Random Dislri-Proposed ••••• 'Random Distri-RepairMosl

-Clustered Dislri-Proposed ---Cluster Dislri-RepairMosl

0,9

0.8

0.7

0.6
-0

:;:: " .!:: 0.5
0. '"
~

0.4

0.3

0.2

0.\

0

3040506070 RO90

Number of defects(n)

Figure 20. The influence of Defect Number's on Repair Yield.
(Random Distribution Parameter: Row=Column=100, SR=SC=20;
Clustered Distribution Parameter: Row=Column=100, SR=SC=20,
0=3.8274, A=1.934)

37

Yield Enhancement of Proposed Aig. Vs. Repair Most Aig. with Random and Clustered Faull

Distribution

-•• ---Random Distribution ----Clustered Distribution

0.07

0.06

0.05

0.04
0;
0)

e 0)
<.>

.g"'" 0.03
0)

"0
03
;;:

0.02

0.01

0

-0.01

I

"
"

· ·'
'

·'
' ,

· '
· ' , . · ·
·

' ,
..' ,

· . : rI

!1\ \
./ I\.\
J \,.~

20 40 60 80 100 o 1 I

Defect Numbers(n)

Figure 21. Yield enhancement of the proposed algorithm in contrast
with repair-most algorithm (Random Distribution Parameter:
Row=Column=100, SR=SC=20; Clustered Distribution Parameter:
Row=Column=100, SR=SC=20, 0=3.8274,),=1.934)

38

Memory Size and Repair Redundancy's Influence on Repair Yield Under Random Fault
Distribution with Repair Most Algorithm and Proposed Algorithm (p~0.5%)

---Repair Most with 9%Redundancy ----• 'Repair Most with 12%Redundancy
-• -• Repair Most with I6%Redundancy --• -Repair Most with 20%Redundancy

-Proposed with 9%Redundancy • Proposed with 12%Redundancy
-• Proposed with 16%Redundancy -• Proposed with 20%Redundancy

~

~

:;;

" ;;::

100

90

80

70

60

50

40

30

20

10

o

"', 1·' '\ -. \ '," \ '
\\' ' ,,'\

,
\ ' ,
\ .. ' . , \ . \\' ,

\
\ \ '

'\ ' , \" . \ \ ,
\\ , , \

'\
,

\} .. \ \ , II , ,
\ ",

, \ , , \ '\ . , , '\

\
\ \

\ ... , ,

\
, ,

\ \ , , ,
, , \ , , , ,

\
,

\ \
, , \ , " , \ ,

\
, , . , , , ,

\' , , , \.... \

\
'-, ,

-................ , , ' , ' ,\. -.. ,

o 50 100 150 200 250 300 350 400

Memory Size(Kb)

Figure 22. Yield analysis results of Repair-Most with different size of
memory and different repair redundancy under random fault
Distribution. (P=O.5%)

39

Memory Size and Repair Redundancy's Influence on Repair Yield Under Clustercd Fault
Distribution with Repair Most Algorithm and Proposed Algorithm (P=0.5%)

---Repair Most with 9%Redundancy ••••• 'Repair Most with 12%Redundancy

-• -• Repair Most with 16%Redundancy -•• -Repair Most with 20%Redundancy

-Proposed Repair with 9%Redundancy • Proposed Repair with 12%Redundancy

--• Proposed Repair with 16%Redundancy --Proposed Repair with 20%Redundancy

100 -, ..,.. \ , '\ t" , .. ,,'\,", , 90 ,.,.'\\
,,

\

, '\,
 t \ '. 80 , , \ \\
,., ,

. \
70 \, \ ,, \

\\ ,
,

\
.

\
, \

,

~\ , \, ,. \
 60 , \T \
~

,., ~ h .
,
, 0; , \,,\ I. >= SO

, \T '@ I[\
~

., Q, , \, ~ "~\ ., \,-IT
\, 40

,
~\ , .,

\

\
\ , \, \ \,

30 .,
;\

~

,,., \
. I\ • \, \ . \ ~

20 ,. . ., \• .,
\\ • \

10 " . '-\\ \
,,\~ ., \ ,
" . \.. ., ,,\'-.,. ~. •••I ...1 . o

o 100 200 300 400 500 600

Memory Size(Kb)

Figure 23. Yield analysis results of Repair-Most with different size of
memory and different repair redundancy under clustered fault
Distribution. (P=O.5%)

40

Relationship Between Repair Redundancy And Yield (p~O.5%)

--Repair Most, 10K Memorysize, Random ---Repair Most, 40K Memorysize, Random

-Proposed, 10K Memorysize, Random --Proposed, 40K Memorysize, Random

-••• 'Repair Most, 10K Memorysize, Clustered -• -• Repair Most, 40K Memorysize, Clustered

• • • Proposed, 10K Memorysize, Clustered -• Proposed, 40K Memorysize, Clustered

100
........

90 .
 .. I

I. '" 80 I.

I. , I

,
 I'
70

•,
•

60 ,
, •, '<;'<.

~

, ~ • 50 0;I :;: •,
• t' 40
,,

;• " t 30

•
,

;
20 I

10

o
o2 4 6 8 10 12 14

Spare Redundancy(%Memorysize)

Figure 24. Relationship between Repair Redundancy and Repair
Yield. (P=O.5%)

41

Relationship Between Memory size and Repair Yield (P=0.5%)

o 0 0 'RepairMostoRandom ---Proposed-Random 00

---RepairMost-Cluster --Proposed-Cluster

100	
I lY',., \ -"1.' 90	

~ "
\
'.

80 ,.--\'
\
t \ ~

70 ,------l

\ \

\\

60 1---i .i

t ,
\

t
~

ci'!.
:01 0; I

>:
50

"	 \\
\
'l t .~

40
L ..,	

'\ ',\ ~ ,
30	 -\,

",\ '",
"
,

\
\ \', 20	

." ".
\ "	

\ ., \
-	------- 10 , \

",\

'\:"::..:0_ ... 1 o	 ~

o	 10 20

Memory Size(Kb)

Figure 25. Relationship between Memory Size and Repair Yield.
(P=O.5% SR=SC=l%MemorySize)

42

Chapter V

Conclusion

The algorithm presented in this thesis is efficient and effective by using

two-dimensional array of linked list to represent the memory with defects. The

algorithm also employs a greedy approach to repeatedly find and repair the

row or column for the greatest yield. The computational space complexity of

the proposed algorithm is O(R+C+E), (where Rand C are the number of rows

and columns of redundancy memory, respectively, and E is the number of

nodes, or the number of edges in graph representation). This shows that the

computational space is bounded either on the number of defects on the

memory when the memory cell defective rate is not very small (Le. E»R+C);

or is bounded on the sum of the number of rows and columns when the

memory cell defective rate is small (R+C»E). Even though the solution

generated by the proposed algorithm is not always optimal, its computational

time complexity is O((SR+SC)*(M+N)) (where SR or SC are the number of

spare rows or spare columns respectively, and M or N are the number of rows

or columns that have faulty memory cells, respectively). Hence, the proposed

algorithm can compute the repair process in polynomial time, which is a great

accomplishment compared with the conventional NP-complete exhaustive

algorithms. The proposed algorithm has revealed a significant yield

improvement by up to 5% compared with another polynomial approximation

algorithm, the repair-most algorithm.

43

~-~ ~ -r-~ ... _•

When there are spare rows or spare columns, and there are defective

memory cells, the proposed algorithm greedily finds the rows or columns in

polynomial time for the greatest repair yield without checking whether the

solution is optimal or not.

44

Reference

[1]	 Ciciani, B., "Manufacturing yield evaluation of VLSIIWSI systems" IEEE

Computer Society Press, Los Alamitos, CA, 1995.

[2]	 Day, J., "A Fault-Driven Comprehensive Redundancy Algorithm," Design

& Test of Computers, IEEE, vol. 2, pp. 35-44, Jun. 1985.

[3]	 Ernst, R., P. Nowottnick, "Fault Tolerant VLSI Design With Functional

Block Redundancy", Computer Design: VLSI in Computers and

Processors, 1991. ICCD '91. Proceedings., 1991 IEEE International

Conference on, Cambridge, MA, USA, pp 432 -436, 1991.

[4]	 Kikuda, S., et aI., "Optimized Redundancy Selection Based on Failure

Related Yield Model for 64Mb DRAM and Beyond", Solid-State Circuits

Conference, 1991. Digest of Technical Papers. 38th ISSCC., 1991 IEEE

International, San Francisco, CA, USA, Feb. 1991.

[5]	 Koren I., and Z. Koren, "Analysis of a Hybrid Defect-Tolerance Scheme

for High-Density Memory Ics", Proceedings of the 1997 Workshop on

Defect and Fault-Tolerance in VLSI Systems, Mar. 1997.

[6]	 Koren I., et aI., "A Unified Negative Binomial Distribution For Yield

Analysis of Defect Tolerant Circuits." IEEE Trans. Computers, Vol. 42,

No.6, pp: 724-733, June 1993.

[7]	 Kuo, S.Y. and W. K. Fuchs, "Efficient Spare Allocation for Reconfigurable

Arrays," Design & Test of Computers, IEEE, vol 4, pp.24-31, Jan. 1987.

[8]	 Kuo, S.-Y., W. K, Fuchs, "Modelling and Algorithms for Spare Allocation

in Reconfigurable VLSI." Computers and Digital Techniques, lEE

Proceedings, Vo1.139, pp: 323 -328, July 1992.

45

[9]	 Kuo, S.-Y., and W. K. Fuchs, "Modelling and Algorithms for Spare

Allocation in Reconfigurable VLSI," Computers and Digital Techniques,

lEE Proceedings, Vo1.139, pp.323-328, July 1992.

[10]	 Park, N., E. Lombardi, "Repair of Memory Arrays by Cutting," Memory

Technology, Design and Testing, pp. 124 -130, Aug. 1998

[11]	 Park, N., F. Lombardi, V. Piuri, "Testing and Evaluating the Quality-level

of Stratified Multichip Module Instrumentation," IEEE Transactions on

Instrumentation and Measurement, Vol 50, pp. 1615 -1624, Dec. 2001.

[12] Tarr, M.,	 D. Boudreau, and R., Murphy, "Defect Analysis System Speeds

Test and Repair of Redundant Memories," Electronics, pp.175-179, Jan.

1984.

[13] Timothy M.,	 et aI., "A Discussion of Yield Modeling With Defect

Clustering, Circuit Repair, and Circuit Redundancy." IEEE Trans.

Semiconductor Manufacturing, vol. 3, pp.116-127, Aug. 1990

[14]	 Warner R. M., "Applying a Composite Model to The IC Yield Problem."

IEEE J. Solid-State Circuits, vol. SC-9, pp.86-95, June 1974.

[15] Wey, C.L., and F. Lombarrdl,"On The Repair of Redundant RAMs," IEEE

Trans. Computer-Aided Design, pp.222-231, Mar. 1987.

[16] Yamagata T.	 et aI., "A Distributed Globally Replaceable Redundancy

Scheme for Sub-Half-micron ULSI Memories and Beyond," Solid-State

Circuits, IEEE Journal of, vol. 31, pp.195-201, Feb. 1996.

[17]	 Yoo J-H. et aI., "A 32-Bank 1Gb Self-Strobing Synchronous DRAM with

1GB/s Band-width," Solid-State Circuits, IEEE Journal of, vol. 31, pp.

1635-1643, Nov. 1996.

46

Appendix

/*

All the programs are coded in C++ and can be compiled by Visual C++ 6.0

and Visual C++ in Visual studio.net. All the simulations in this thesis are

running under the following conditions. Platform: Command Prompt of

Windows 2000 Professional with SP3. When the program is running, no other

activities are performed until the test process is done.

*/

/*
* Main Procedure "main.cpp"

* by Song Gao

* Graduate Student

* Computer Science Department

* Oklahoma State University

* Stillwater, OK, 74075

*/

#include "iostream.h"

//#include "fstream.h"

//ofstream output("output.txt",ios::outlios::app);

#include "demo.h"

/* See the file README.txt for information on compiling this program */

#include "math.h"

#include "stdlib.h"

47

int main(int argc, char *argvO)

{

unsigned long R,C,SR,SC,seed,count1 ,count2;

float P;

if(argc<5) { cout«"Command Line Parameter Error!"«endl; exit(2);}

R=strtoul(argv[1],NULL,10);

C=strtoul(argv[2],NULL,10);

SR=strtoul(argv[3],NULL,10);

SC=strtoul(argv[4],NULL,10);

P=atof(argv[5]);

seed=strtoul(argv[6],NULL,10);

ArrayOfLinkedList *Matrix1 =new ArrayOfLinkedList(R,C,SR,SC, P);

if((Matrix1 ==NULL))

{

cout«"Out of Memory"«endl;

exit(2);

}

Matrix1->DefectGeneration(0,seed);

Matrix1->DefectParamlnitializationO;

I*Matrix->MemoryDefectDisplayO;*/

count1 =Matrix1->ProposedRepairSolutionO;

delete Matrix1;

MemoryArray *Matrix2=new MemoryArray(R,C,SR,SC,P);

48

if((Matrix2==NULL))

{

cout«"Out of Memory"«endl;

exit(2);

}

RepairMost Solution;

Matrix2->DefectGeneration(O,seed);

/*Matrix->DensityMapO;*/

//Matrix2->MemoryDefectDisplayO;

Solution.lnitialization(*Matrix2);

count2=Solution.RepairMostSolution(*Matrix2);

return count1 *1 0+count2;

}

/*
* Header File "header.h"

* by Song Gao

* Graduate Student

* Computer Science Department

* Oklahoma State University

* Stillwater, OK, 74075

*/

#define NULL 0

#include <stdlib.h>

#include <stdio.h>

49

#include "iostream.h"

#include "fstream.h"

#include <list>

#include <vector>

using namespace std;

class IndexCount

{

public:

IndexCount(void);

-lndexCount(void);

unsigned long Index;

unsigned long Count;

unsigned long Sub;

};

class Node

{

public:

Node(unsigned long x,unsigned long y);

-Node(void);

Node* Left;

Node* Right;

Node* Up;

Node* Down;

50

unsigned long x;

unsigned long y;

Node(void);

};

class ArrayOfLinkedList

{

public:

ArrayOfLinkedList(unsigned long x,unsigned long y,unsigned long

sr,unsigned long sc, float p);

-ArrayOfLinkedList(void);

void DefectGeneration(int mode, unsigned long seed);

IndexCount* FindMinimallndex(unsigned long index, int mode);

int MatrixAddNode(unsigned long x, unsigned long y);

int MatrixDelColNode(unsigned long Col, list<unsigned long> & DOR);

int MatrixDelRowNode(unsigned long Row, Iist<unsigned long>&

DOC);

int MemoryDefectDisplay(void);

unsigned long Row;

unsigned long Col;

unsigned long SR;

unsigned long SC;

float Rate;

unsigned long*RowArray;

unsigned long*CoIArray;

51

Node* Rowlist;�

Node* ColList;�

list<unsigned long> DOR;�

list<unsigned long> DOC;�

int DefectParamlnitialization(void);�

II List Iterator�

Iist<unsigned long>::iterator cl;�

II Proposed Reapir Solution�

int ProposedRepairSolution(void);�

};

class MemoryArray

{

public:

MemoryArray(unsigned long R,unsigned long C,unsigned long

SR,unsigned long SC,float P);

-MemoryArray(void);

public:

/I Memory Representation

unsigned long**MemoryMatrix;

II Number of Rows of the memory

unsigned long Row;

/I Number of Columns of memory

unsigned long Columns;

/I Row Array of defective cells counter

52

unsigned long *RowArray;

II Column array of defective cell counter

unsigned long *CoIArray;

II Spare row redundancy

unsigned long SpareRow;

II Spare Column Redundancy

unsigned long SpareColumn;

II Defective rate

float Rate;

public:

II Generate the memory defect pattern.

int DefectGeneration(int mode,unsigned long seed);

void MemoryDefectDisplay(void);

void Reset(void);

void DensityMap(void);

};

class RepairMost

{

public:

RepairMost(void);

-RepairMost(void);

protected:

II Rows that have defects

Iist<unsigned long> DOR;

53

II Columns that have defects

list<unsigned long> DOC;

list <unsigned long>::iterator c1;

public:

II Initialization of Rowand Column defective array

void Initialization(MemoryArray &Matrix);

II Repair Most Soution of Defective Memory

int RepairMostSolution(MemoryArray& Matrix);

};

I*
* Implementation file "procedure.cpp"

* by Song Gao

* Graduate Student

* Computer Science Department

* Oklahoma State University

* Stillwater, OK, 74075

*1

#include "iostream.h"

#include "fstream.h"

ofstream out("outtxt",ios::outlios::app);

#include "demo.h"

#include <time.h>

#include <stdio.h>

#include <math.h>

#include <gsl/gsl_rng.h>

#include <gsllgsl_randist.h>

54

{

}

(O)A'

(O)X'

(llnN)UMOa '

(llnN)dn'

(11nN)l46!C! '

(llnN)lJal :

(p!OA)apON::apoN

{

}

(p!OA)apON-::apON

{

}

(q)A"

(e)x f

(llnN)UMOa '

(llnN)dn'

(11nN)l46lC! '

(llnN)yal :

(q 6uOI pau6!sun'e 6uOI pau6!sun)apoN::apoN

IndexCount::IndexCount(void)

: Index(O)

, Count(O)

. Sub(O)

{

}

IndexCount::-lndexCount(void)

{

}

ArrayOfLinkedList::ArrayOfLinkedList(unsigned long x,unsigned long

y,unsigned long sr,unsigned long se, float p)

: Row(x)

, Col(y)

, SR(sr)

, SC(se)

, Rate(p)

{

RowArray=new unsigned long [x];

for(unsigned long i=O;i<x;i++)

RowArray[i]=O;

ColArray=new unsigned long [y];

for(unsigned long j=O;j<y;j++)

CoIArrayO]=O;

56

RowList=new Node [x];

ColList=new Node [y];

if(RowArray==NULLIICoIArray==NULLIIRowList==NULLIIColList==

NULL)

{

cout«"Memory Allocation Error!"«endl;

exit(2);

}

}

ArrayOfLinkedList: :-ArrayOfLinkedList(void)

{

delete 0RowArray;

delete 0ColArray;

delete 0RowList;

delete 0 ColList;

}

void ArrayOfLinkedList::DefectGeneration(int mode, unsigned long seed)

{

if(mode==O)//Rondom Distribution

{

//Sampling from a random number generator

//Random: double gsl_rng_uniform (const gsl_rng * r)

57

IIThis function returns a double precision floating point number

Iluniformly distributed in the range [0,1]. The range includes 0.0 but

Ilexcludes 1.0. The value is typically obtained by dividing the result of

Ilgsl_rng_get(r) by gsLrng_max(r) + 1.0 in double precision. Some

Ilgenerators compute this ratio internally so that they can provide

Ilfloating point numbers with more than 32 bits

Ilof randomness (the maximum number of bits that can be portably

Ilrepresented in a single unsigned long int).

I*srand(seed);

for(unsigned long i=O;i<this->Row;i++)

for(unsigned j=O;j<this->Col;j++)

if(randO%10000<this->Rate*1 0000)

this->MatrixAddNode(i,j);*1

const gsLrng_type * T;

gsLrng * r;

/* create a generator chosen by the environment variable

GSL_RNG_TYPE *1

srand(seed);

gsl_rng_env_setupO;

T = gsLrng_default;

r = gsl_rng_alloc (T);

gsl_rng_set(r,rand());

double u;

for(unsigned long i=O;i<this->Row;i++)

58

for(unsigned long j=O;j<this->Col;j++)

{

u = gsLrng_uniform (r);

if(u*1 0000<this->Rate*1 0000)

this->MatrixAddNode(i,j);

}

gsLrng_free (r);

}

else /*Random Fault Cluster Distribution: unsigned int

gsLran_negative_binomial (const gsLrng * r,

double p, double n) This function returns a random integer from the

negative binomial distribution, the number of failures occurring before

n successes in independent trials with probability p of success. The

probability distribution for negative binomial variates is, p(k) =

{\Gamma(n + k) \over \Gamma(k+1) \Gamma(n) } pAn (1-p)Ak Note

that n is not required to be an integer. This routine is from The GNU

Scientific Library (GSL). Version 1.1, March 2000 Copyright? 2000

Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston,

MA 02111-1307, USA */

{

const gsLrng_type * T;

gsl_rng * r;

/* create a generator chosen by the environment variable

GSL_RNG_TYPE */

srand(seed);

59

gsl_rng_env_setupO;

T = gsLrng_default;

r = gsl_rng_alloc (T);

gsl_rng_set(r,rand());

double p,n,alpha,lamda;

lamda=1.2934;

alpha=3.8274;

int y;

unsigned long a,b;

p=alpha/(alpha+lamda);

a=(unsigned long)(floor(sqrt(lamda/this->Rate)));

b=(unsigned long)(ceil(sqrt(lamda/this->Rate)));

n=alpha;

unsigned long i,j;

for(i=O;i«unsigned long)(this->Row/a);i++)

forU=O;j«unsigned long)(this->Col/b);j++)

{

y=gsl_ran_negative_binomial(r,p,n);

int m=O,n=O;

for(m=O;m<a;m++)

for(n=O;n<b;n++)

if((gsLrng_uniform(r)*(a*b))<y)

this->MatrixAddNode(a*i+m,b*j+n);

}

60

}

IndexCount* ArrayOfLinkedList::FindMinimallndex(unsigned long index, int

mode)

{

IndexCount *ldxCnt=new IndexCountO;

if(ldxCnt==NULL)

{

cout«"Memory Allocation Error!"«endl;

exit(2);

}

IdxCnt->Sub=index;

Node *p;

if(mode==O)

{

IdxCnt->Index=this->CoIArray[this->RowList[index]. Right->y];

IdxCnt->Count=1 ;

p=this->RowList[index].Right;

p=p->Right;

while(p)

{

if(this->CoIArray[p->y]<ldxCnt->lndex)

{

IdxCnt->lndex=this->CoIArray[p->y];

61

IdxCnt->Count=1 ;

}

else if(this->CoIArray[p->y]==ldxCnt->lndex)

IdxCnt->Count+=1 ;

p=p->Right;

}

return IdxCnt;

}

else

{

p=this->CoIList[index].Down;

IdxCnt->1 ndex=this->RowArray[p->x];

IdxCnt->Count=1 ;

p=p->Down;

while(p)

{

if(this->RowArray[p->x]<ldxCnt->Index)

{

IdxCnt->lndex=this->RowArray[p->x];

IdxCnt->Count=1 ;

}

else if(this->RowArray[p->x]<ldxCnt->lndex)

IdxCnt->Count+=1 ;

p=p->Down;

}

62

return IdxCnt;

}

}

int ArrayOfLinkedList::MatrixAddNode(unsigned long X, unsigned long y)

{

Node *p=new Node(x,y);

if(p==NULL)

{

cout«"Memory Allocation Error!"«endl;

exit(2);

}

this->CoIArray[y]+=1 ;

this->RowArray[x]+=1 ;

if(this->RowList[x].Right==NULL)

{

this->RowList[x].Right=p;

p->Left=&this->RowList[x];

}

else

{

p->Right=this->RowList[x].Right;

this->RowList[x].Right->Left=p;

this->RowList[x].Right=p;

p->Left=&this->RowList[x];

63

}

if(this->CoIList[y).Down==NULL)

{

this->CoIList[y).Down=p;

p->Up=&this->ColList[y);

}

else

{

p->Down=this->ColList[y).Down;

this->CoIList[y).Down->Up=p;

this->CoIList[y).Down=p;

p->Up=&this->CoIList[y);

}

return 0;

}

int ArrayOfLinkedList::MatrixDeICoINode(unsigned long Col, list<unsigned

long> & DOR)

{

this->CoIArray[Col)=O;

Node *N;

Node *p=this->CoIList[Col).Down;

while(p)

{

64

if(p->Down==NULL)

{

this->CoIList[Col]. Down=NULL;

}

else

{

this->CoIList[Col].Down=p->Down;

p->Down->Up=&this->CoIList[Col];

}

if(p->Right==NULL)

{

p->Left->Right=NULL;

}

else

{

p->Left->Right=p->Right;

p->Right->Left=p->Left;

}

this->RowArray[p->x]-=1 ;

if(this->RowArray[p->x]==O)

DOR.remove(p->x);

N=p;

p=p->Down;

delete N;

}

65

return 0;

}

int ArrayOfLinkedList::MatrixDeIRowNode(unsigned long Row, Iist<unsigned

long>& DOC)

{

this->RowArray[Row]=O;

Node *p,*N;

p=this->Rowlist[Row].Right;

while(p!=NULL)

{

if(p->Right==NULL)

{

this->RowList[Row].Right=NULL;

}

else

{

this->Rowlist[Row]. Right=p->Right;

p->Right->Left=&this->RowList[Row];

}

if(p->Down==NULL)

{

p->Up->Down=NULL;

}

else

66

{

p->Up->Down=p->Down;

p->Down->Up=p->Up;

}

this->CoIArray[p->y]-=1 ;

if(this->CoIArray[p->y]==O)

DOC.remove(p->y);

N=p;

p=p->Right;

delete N;

}

return 0;

}

int ArrayOfLinkedList:: MemoryDefectDisplay(void)

{

unsigned long count=O;

unsigned long i;

Node *p;

for(i=O;i<this->Row;i++)

if(this->RowArray[i])

{

p=this->RowList[i].Right;

67

while(p)

{

out«"("«p->x«","«p->y«") ";

count++;

p=p->Right;

}

out«endl;

}

for(i=O;i<this->Row;i++)

out«this->RowArray[i]«" ";

out«endl;

for(i=O;i<this->Col;i++)

out«this->CoIArray[i]«" ";

out«endl«endl;

return 0;

}

int ArrayOfLinkedList::DefectParamlnitialization(void)

{

unsigned long i;

for(i=O;i<this->Row;i++)

if(this->RowArray[i]) this->DOR.push_back(i);

for(i=O;i<this->Row;i++)

if(this->CoIArray[i]) this->DOC.push_back(i);

return 0;

68

}

II Proposed Reapir Solution

int ArrayOfLinkedList:: ProposedRepairSolution(void)

{

IndexCount *RowCount, *CoICount, *Rtemp;

while(this->DORsizeO)

{

RowCount=this->FindMinimallndex(*DORbeginO,O);

for(c1=DORbeginO;cl!=DORendO;c1++)

{

Rtemp=this->FindMinimallndex(*c1,O);

if(Rtemp->Index<RowCount->Index)

{

RowCount->lndex=Rtemp->lndex;

RowCount->Count=Rtemp->Count;

RowCount->Sub=*cl;

}

else if(Rtemp->lndex==RowCount->lndex)

{

if(Rtemp->Count>RowCount->Count)

{

RowCount->lndex=Rtemp->lndex;

RowCount->Count=Rtemp->Count;

RowCount->Sub=*cl;

69

}

}

}

CoICount=this->FindMinimallndex(*DOC.beginO.1);

for(cl=DOC.beginO;cl!=DOC.endO;c1++)

{

Rtemp=this->FindMinimallndex(*cl,1);

if(Rtemp->lndex<CoICount->Jndex)

{

CoICount->lndex=Rtemp->lndex;

CoICount->Count=Rtemp->Count;

CoICount->Sub=*cl;

}

else if(Rtemp->lndex==CoICount->lndex)

{

if(Rtemp->Count>CoICount->Count)

{

CoICount->lndex=Rtemp->lndex;

CoICount->Count=Rtemp->Count;

CoICount->Sub=*c1;

}

}

}

if((RowCount->lndex<CoICount->lndex)II(RowCount->

Index==CoICount->lndex)&&(RowCount-> Count>=

70

CoICount->Count))

{

if(this->SR>O)

{

//cout«/lRow:/I«RowCount->Sub«endl;

this->SR-=1 ;

this->MatrixDeIRowNode(RowCount->Sub,DOC);

DORremove(RowCount->Sub);

}

else if(DOC.sizeO<=this->SC)

{

for(cl=DOC.beginO;cl!=DOC.endO;cl++)

this->MatrixDeICoINode(*cl,DOR);

DOC.clearO;

DORclearO;

return 0;

}

else

{

for(cl=DOC.beginO;c1!=DOC.endO;cl++)

this->MatrixDeICoINode(*cl,DOR);

DOC.c1earO;

DORclearO;

return 1;

}

71

}

else

{

if(this->SC>O)

{

Ilcout«"Col:"«CoICount->Sub«endl;

this->SC-=1 ;

this->MatrixDeICoINode(CoICount->Sub,DOR);

DOC.remove(CoICount->Sub);

}

else

if(DOR.sizeO<=this->SR)

{

for(cl=DORbeginO;cl!=DORendO;cl++)

this->MatrixDelRowNode(*cl,DOC);

DOC.c1earO;

DORclearO;

return 0;

}

else

{

for(cl=DORbeginO;c1!=DORendO;cl++)

this->MatrixDelRowNode(*cl, DOC);

DOC.c1earO;

DORclearO;

72

return 1;

}

}

}

return 0;

}

RepairMost::RepairMost(void)

{

}

RepairMost: :-RepairMost(void)

{

}

II Initialization of Rowand Column defective array

void RepairMost:: Initialization(MemoryArray &Matrix)

{

for(unsigned long i=O;i<Matrix.Row;i++)

if(Matrix.RowArray[i]) DOR.push_back(i);

Ilfor(c1 = DOR.beginO;c1!=DOR.endO;c1++)

II out«"Row Defect array"«*cl«endl;

for(unsigned long j=O;j<Matrix.Columns;j++)

if(Matrix.CoIArray[j]) DOC.push_backU);

Ilfor(cl= DOC.beginO;cl!=DOC.endO;cl++)

73

II out«"Column Defect Array"«*cl«endl;

}

II Repair Most Soution of Defective Memory

int RepairMost::RepairMostSolution(MemoryArray& Matrix)

{

vector<unsigned long> R_V;

Ilout«"Repair Solution"«endl;

unsigned long i=O,j=O;

while(DORsize())

{

i=O;j=O;

for(cl = DORbeginO;cl!=DORendO;c1++)

{

if(Matrix.RowArray[*cl]>Matrix.RowArray[i)) i=*c1;

}

for(c1= DOC.beginO;cl!=DOC.endO;cl++)

{

if(Matrix.CoIArray[*c1]>Matrix.ColArrayUD j=*cl;

}

if(Matrix.RowArray[i]>=Matrix.ColArrayUD

{

if(Matrix.SpareRow>O)

{ 1* out«endl«"Row "«i«" ";*1

74

Matrix.SpareRow-=1 ;

for(c1= DOC.beginO;cl!=DOC.endO;cl++)

{

if(Matrix.MemoryMatrix[i][*c1])

{

Matrix.MemoryMatrix[i][*cl]=O;

Matrix.CoIArray[*cl]-=1 ;

if(Matrix.CoIArray[*c1]==O)

{

R_V.push_back(*c1);

}

}

}

while(R_V.sizeO)

{

DOC.remove(R_V.back());

R_V.pop_backO;

}

Matrix.RowArray[i]=O;

DOR. remove(i);

}

else if(DOC.sizeO<=Matrix.SpareColumn)

{

Matrix.SpareColumn-=DOC.sizeO;

DOC.c1earO;

75

DORclearO;

return 0;

}

else

{

DOR.clearO;

DOC.e1earO;

return 1;

}

}

else

{

if(Matrix.SpareColumn>O)

{ /* out«endl«nColn«j«n n;*/

Matrix.SpareColumn-=1 ;

for(cl= DORbeginO;cl!=DORendO;cl++)

{

if(Matrix.MemoryMatrix[*e1lU])

{

Matrix.MemoryMatrix[*e1]O]=O;

Matrix.RowArray[*cl]-=1;

if(Matrix.RowArray[*cl]==O)

{

R_V.push_back(*cl);

}

76

}

}

while(R_V.sizeO)

DOR.remove(R_V.back());

R_V.pop_backO;

}

//out«endl;

Matrix.ColArrayU]=0;

DOC.removeU);

}

else if(DORsizeO<=Matrix.SpareRow)

{

Matrix.SpareRow-=DORsizeO;

DORclearO;

DOC.clearO;

return 0;

}

else

{

DOR.clearO;

DOC.clearO;

return 1;

}

}

77

}

return 0;

}

MemoryArray::MemoryArray(unsigned long R,unsigned long C,unsigned

long SR,unsigned long SC,float P)

:Row(R)

, Columns(C)

, SpareRow(SR)

, SpareColumn(SC)

, Rate(P)

{

this->RowArray=new unsigned long [R];

if(this->RowArray==NULL)

{

cout«"Out of Memory"«endl;

exit(2);

}

for(unsigned long i=O;i<R;i++)

this->RowArray[i]=O;

this->CoIArray=new unsigned long [C];

if(this->CoIArray==NULL)

{

cout«"Out of Memory"«endl;

exit(2);

78

}

for(unsigned long j=O;j<C;j++)

this->CoIArrayU]=O;

MemoryMatrix=new unsigned long * [R];

if(MemoryMatrix==NULL)

{

cout«"Out of Memory"«endl;

exit(2);

}

for(unsigned long k=O;k<R;k++)

{

this->MemoryMatrix[k]=new unsigned long [C];

if(this->MemoryMatrix[k]==NULL)

{

cout«"0ut of Memory"«endl;

exit(2);

}

}

for(unsigned long I=O;I<Row;I++)

for(unsigned long p=O;p<Columns;p++)

this->MemoryMatrix[I][p]=O;

}

MemoryArray::-MemoryArray(void)

{

79

delete 0this->CoIArray;�

delete 0this->RowArray;�

for(unsigned long i=O;i<this->Row;i++)�

delete 0this->MemoryMatrix[i];�

delete 0this->MemoryMatrix;�

}

II Generate the memory defect pattern.

int MemoryArray::DefectGeneration(int mode,unsigned long seed)

{

if(mode==O)IIRondom Distribution

{

IISampling from a random number generator

IIRandom: double gsLrng_uniform (const gsLrng * r)

IlThis function returns a double precision floating point number

Iluniformly distributed in the range [0,1]. The range includes 0.0

Ilbut excludes 1.0. The value is typically obtained by dividing the

Ilresult of gsLrng_get(r) by gsl_rng_max(r) + 1.0 in double

Ilprecision. Some generators compute this ratio internally so that

Iithey can provide floating point numbers with more than 32 bits

Ilof randomness (the maximum number of bits that can be

Ilportably represented in a single unsigned long int).

const gsl_rng_type * T;

gsLrng * r;

80

/* create a generator chosen by the

environment variable GSL_RNG_TYPE */

srand(seed);

gsLrng_env_se.tupO;

T = gsLrng_default;

r = gsl_rng_alloc (T);

gsLrng_set(r,randO);

double u;

Ilcout«gsLrng_uniform (r)«endl;

for(unsigned long i=O;i<Row;i++)

for(unsigned long j=O;j<Columns;j++)

{

u = gsl_rng_uniform (r);

if(u*10000<this->Rate*10000}

{

this->MemoryMatrix[i]U]=1 ;

this->CoIArrayUJ+= 1;

this->RowArray{i}+= 1;

}

else

{

this->MemoryMatrix[i]O]=O;

}

}

gs'_rng_free (r);

81

return 0;

}

else /*Random Fault Cluster Distribution: unsigned int

gsLran_negative_binomial (const gsl_rng * r, double p, double n)

This function returns a random integer from the negative binomial

distribution, the number of failures occurring before n successes in

independent trials with probability p of success. The probability

distribution for negative binomial variates is, p(k) = {\Gamma(n + k)

\over \Gamma(k+1) \Gamma(n) } pAn (1-pyk Note that n is not

required to be an integer. This routine is from The GNU Scientific

Library (GSL). Version 1.1, March 2000 Copyright ? 2000 Free

Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA

02111-1307, USA */

{

const gsl_rng_type * T;

gsl_rng * r;

/* create a generator chosen by the�

environment variable GSL_RNG_TYPE */�

srand(seed);�

gSI_rng_env_setupO;�

T =gsl_rng_default;�

r =gsl_rng_alloc (T);�

gsl_rng_set(r,randO);�

82

double p,n,alpha,lamda;

lamda=1.2934;

alpha=3.8274;

int y;

unsigned long a,b;

p=alpha/(alpha+lamda);

a=(unsigned 10ng)(floor(sqrt(lamda/this->Rate»);

b=(unsigned long)(ceil(sq rt(lamda/this->Rate»);

n=alpha;

IIcout«gsl_ran_negalive_binomial(r,p,n)«endl;

unsigned long i,j;

for(i=O;i«unsigned long)(this->Row/a);i++)

forO=O;j«unsigned long)(this->Columns/b);j++)

{

y=gsLran_negative_binomial(r,p,n};

int m=O,n=O;

for(m=O;m<a;m++)

for(n=O;n<b;n++)

{

if«gsl_rng_uniform(r)*(a*b»<y)

{

this->MemoryMatrix[a*i+m][b*j+n}=1 ;

this->CoIArray[b*j+n]+=1;

this->RowArray[a*i+m]+=1 ;

}

83

else this->MemoryMatrix[a*i+m][b*j+n]=O;

}

}

gSI_rng_free (r);

return 0;

}

}

void MemoryArray: :MemoryDefectDisplay(void)

{ unsigned long count=O;

for(unsigned long i=O;i<this->Row;i++)

{

for(unsigned long j=O;j<this->Columns;j++)

if(th is->MemoryMatrix[i]Ol==1)

{

out«U(n«i«",u«j«")n«u u;

count++;

}

if(this->RowArray[i]) out«endl;

}

I*for(unsigned long i=O;i<this->Row;i++)

out«this->RowArray[i]«endl;

out«endl«endl;

for(unsigned long i=O;i<this->Columns;i++)

Qut«this->CoIArray[i]«endl;*/

84

out«count«endl«endl;

}

void MemoryArray::Reset(void)

{

for(unsigned long i=O;i<this->Row;i++)

this->RowArray[i]=O;

for(unsigned long j=O;j<this->Columns;j++)

this->CoIArrayOl=O;

for(unsigned long k=O;k<Row;k++)

for(unsigned long I=O;I<Columns;I++)

this->MemoryMatrix[k][I]=O;

}

void MemoryArray::DensityMap(void)

{

for(unsigned long i=O;i<this->Row;.i++)

{

for(unsigned long j=O;j<this->Columns;j++)

if(this->MemoryMatrix[i]U]==1)

out«"*";

else out«" ";

out«endl;

}

out«endl«"End of One Map"«endl;

5

/ *
* One of the Test Procedure "test.cpp"

* by Song Gao

* Graduate Student

* Computer Science Department

* Oklahoma State University

* Stillwater, OK. 74075

*/

#include <process.h>

#include <stdlib.h>

#include <stdio.h>

#include "IOSTREAM.H"

#include "fstream.h"

#include "time.h"

ofstream output("Yield. txt", ios: :outpos: :app);

void main(int argc, char* argvD)

{

long sr,r=O,count,i,j;

int a;

srand(time(NULL));

for(r=1 O;r<1 OO;r+=1 0)

{

sr=r*0.1;

86

for(i=0;i<10;i++)

{

count=O;

for(j=0;j<1 OO;j++)

{

char buff[128];

sprintf(buff,"%s %d %d %d %d 0.005 %d",argv[1],r,r,sr,sr,rand(»;

a=system(buff);

if(a==O) count++;

if(a==2)

{

cout«"Error occured"«endl;

exit(1);

}

}

output«count«endl;

sr+=r*0.05;

}

}

}

87

VITA

Song Gao

Candidate for the Degree of

Master of Science

Thesis: A STUDY OF A REDUNDAN:r MEMORY REPAIR ALGORITHM

Major Field: Computer Science

Biographical:

Education: Received Bachelor of Medicine degree in Basic Medicine
from Beijing Medical University, Beijing, China in July 1999.
Completed the requirements for the Master of Science degree
with a major in Computer Science at Oklahoma State University
in May 2003.

