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With the rapid growth of social media, the number of images being uploaded to the inter-
net is exploding. Massive quantities of images are shared through multi-platform services
such as Snapchat, Instagram, Facebook and WhatsApp; recent studies estimate that over
1.8 billion photos are uploaded every day. However, for the most part, applications that
make use of this vast data have yet to emerge. Most current image processing applications,
designed for small-scale, local computation, do not scale well to web-sized problems with
their large requirements for computational resources and storage. The emergence of pro-
cessing frameworks such as the Hadoop MapReduce[3] platform addresses the problem
of providing a system for computationally intensive data processing and distributed stor-
age. However, to learn the technical complexities of developing useful applications using
Hadoop requires a large investment of time and experience on the part of the developer. As
such, the pool of researchers and programmers with the varied skills to develop applica-
tions that can use large sets of images has been limited. To address this we have developed
the Hadoop Image Processing Framework, which provides a Hadoop-based library to sup-
port large-scale image processing. The main aim of the framework is to allow developers
of image processing applications to leverage the Hadoop MapReduce framework without
having to master its technical details and introduce an additional source of complexity and
error into their programs.
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CHAPTER 1

INTRODUCTION

With the spread of social media in recent years, a large amount of image data has been

accumulating. When processing this massive data resource has been limited to single com-

puters, computational power and storage ability quickly become bottlenecks. Alternately,

processing tasks can typically be performed on a distributed system by dividing the task

into several subtasks. The ability to parallelize tasks allows for scalable, efficient execu-

tion of resource-intensive applications. The Hadoop MapReduce framework provides a

platform for such tasks.

When considering operations such as face detection, image classification[7] and other

types of processing on images, there are limits on what can be done to improve performance

of single computers to make them able to process information at the scale of social media.

Therefore, the advantages of parallel distributed processing of a large image dataset by us-

ing the computational resources of a cloud computing environment should be considered.

In addition, if computational resources can be secured easily and relatively inexpensively,

then cloud computing is suitable for handling large image data sets at very low cost and

increased performance. Hadoop, as a system for processing large numbers of images by

parallel and distributed computing, seems promising. In fact, Hadoop is in use all over the

world. Studies using Hadoop have been performed, dealing with text data files[8], ana-

lyzing large volumes of DNA sequence data[10], converting the data of a large number of

still images to PDF format, and carrying out feature selection/extraction in astronomy[18].

These examples demonstrate the usefulness of the Hadoop system, which can run multiple

processes in parallel for load balancing and task management.
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Most of the image processing applications that use the Hadoop MapReduce framework

are highly complex and impose a staggering learning curve. The overhead, in programmer

time and expertise, required to implement such applications is cumbersome. To address

this, we present the Hadoop Image Processing Framework, which hides the highly tech-

nical details of the Hadoop system and allows programmers who can implement image

processing algorithms but who have no particular expertise in distributed systems to nev-

ertheless leverage the advanced resources of a distributed, cloud-oriented Hadoop system.

Our framework provides users with easy access to large-scale image data, smoothly en-

abling rapid prototyping and flexible application of complex image processing algorithms

to very large, distributed image databases.

The Hadoop Image Processing Framework is largely a software engineering platform,

with the goal of hiding Hadoop’s complexity while providing users with the ability to use

the system for large-scale image processing without becoming crack Hadoop engineers.

The framework’s ease of use and Java-oriented semantics will further ease the process

of creating large scale image applications and experiments. This framework is an excel-

lent tool for novice Hadoop users, image application developers and computer vision re-

searchers, allowing the rapid development of image software that can take advantage of the

huge data stores, rich metadata and global reach of current online image sources.

In the following section we will describe prior work in this area. Next we present an

overview of the Hadoop Image Processing Framework including the Downloader, Proces-

sor and Extractor stages. Additionally, we describe our approach of distributing tasks for

MapReduce. Finally, we demonstrate the potential of this framework with quantitative

analysis and experiments performed on image processing tasks.
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CHAPTER 2

LITERATURE REVIEW

2.1 Background

Apache Hadoop [5] is a platform that offers an efficient and effective method of storing

and processing massive amounts of data. Unlike traditional offerings, Hadoop was de-

signed and built from ground up to address the requirements and challenges of big data.

Apache Hadoop use cases are many and show up in many industries, including : risk,

fraud and portfolio analysis in financial services; behavior analysis and personalization in

retail; social network, relationship and sentiment analysis for marketing; drug interaction

modeling and genome data processing in health care and life sciences to name a few.

At its core, Apache Hadoop is a frame work for scalable and reliable distributed data

storage and processing. It allows for the processing of large datasets across clusters of

computers using a simple programming model. It is designed to scale up from single server

to thousands of machines, aggregating the local computation and storage form each server.,

Rather than relying on expensive hardware, the Hadoop software detects and handles any

failures that occur, allowing to achieve high availability on top of inexpensive commodity

computes, each individually prone to failure. At the core of Apache Hadoop are the Hadoop

Distributed File System or HDFS and Hadoop MapReduce, which provides a framework

for distributed processing.

HDFS : The Hadoop Distributed File System [14] is a scalable and reliable distributed

storage system that aggregates the storage of every node in a Hadoop cluster into single

global file system. HDFS stores individual files in large blocks, allowing it to efficiently

store very large ot numerous files across multiple machines and access individual chunks
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of data in parallel, without needing to read the entire file into a single computers memory.

Reliability is achieved by replicating the data across multiple hosts, with each block of

data being stored, by default, on three separate computers. If an individual node fails,

the data remains available and an additional copy of any blocks it holds may be made on

new machines to protect against failures. This approach allows HDFS to dependably store

massive amounts of data.

MapReduce : MapReduce [3] is a programming model that allows Hadoop to effi-

ciently process large amounts of data. MapReduce breaks large data processing problems

into multiple steps, namely Maps and Reduces that can each be worked on at the same

time on multiple computers. MapReduce programs are designed to compute large volumes

of data in parallel fashion. This requires dividing the workload across large number of

machines. This model would not scale to large clusters if the components were allowed

to share data arbitrarily. The communication overhead required to keep data on the nodes

synchronized at all times would prevent the system from performing reliably and efficiently

at large scale. Instead all data elements in MapReduce are immutable, meaning they cannot

be updated. If in mapping task you change an input(key, value) pair, it doesnt get reflected

back in the input files; communication occurs only by generating new output(key, value)

pairs which are forwarded by Hadoop system into the next phase of execution. Conceptu-

ally, MapReduce programs transform lists of input data elements into lists of output data

elements. A MapReduce program will do this twice, using two different list processing

idioms: map and reduce. The first phase of map reduce program is mapping. A list of data

elements are provided, one at a time to a function called Mapper, which transforms each

element individually to an output data element. The second phase of map reduce program

is Reducing. Reducing lets you aggregate values together. A reducer function receives an

iterator of input values form an input list. It then combines these values together, returning

a single output value.
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Figure 2.1: Detailed Hadoop MapReduce data flow. Source yahoo
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2.2 Prior Work

With the rapid usage increase of online photo storage and social media on sites like Face-

book, Flickr and Picasa, more image data is available than ever before, and is growing

every day. Every minute 27,800 photos are uploaded to Instagram,[6] while Facebook re-

ceives 208,300 photos over the same time frame. This alone provides a source of image

data that can scale into the billions. The explosion of available images on social media has

motivated image processing research and application development that can take advantage

of very large image data stores.

White et.al [16] presents a case study of classifying and clustering billions of regu-

lar images using MapReduce. It describes an image pre-processing technique for use in a

sliding-window approach for object recognition. Pereira et.al [12] outlines some of the lim-

itations of the MapReduce model when dealing with high-speed video encoding, namely

its dependence on the NameNode as a single point of failure, and the difficulties inherent

in generalizing the framework to suit particular issues. It proposes an alternate optimized

implementation for providing cloud-based IaaS (Infrastructure as a Service) solutions. Lv

et.al [9] describes using the k-means algorithm in conjunction with MapReduce and satel-

lite/aerial photographs in order to find different elements based on their color.

Zhang et.al [19] presents methods used for processing sequences of microscope im-

ages of live cells. The images are relatively small (512x512, 16-bit pixels). Stored in 90

MB folders, the authors encountered difficulties regarding fitting into Hadoop DFS blocks

with were solved by custom InputFormat, InputSplit and RecordReader classes. Powell

et.al [13] describes how NASA handles image processing of celestial images captured by

the Mars Orbiter and rovers. Clear and concise descriptions are provided about the seg-

mentation of gigapixel images into tiles, how the tiles are processed and how the image

processing framework handles scaling and works with the distributed processing. Wang,

Yinhai and McCleary[15] discuss speeding up the analysis of tissue microarray images by

substituting human expert analysis for automated processing algorithms. While the images
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were gigapixel-sized, the content was easily segmented and there was no need to analyze

all of an image at once. The work was all done on a specially-built high performance

computing platform using the Hadoop framework.

Bajcsy et.al [1] present a characterization of four basic terabyte-size image computa-

tions on a Hadoop cluster in terms of their relative efficiency according to a modified Am-

dahl’s Law. The work was motivated by the fact that there is a lack of standard benchmarks

and stress tests for large-scale image processing operations on the Hadoop framework.

Moise et.al [11] outlines the querying of thousands of images in one run using the Hadoop

MapReduce framework and the eCP Algorithm. The experiment performs an image search

on 110 million images collected from the web using the Grid 5000 platform. The results

are evaluated in order to understand the best practices for tuning Hadoop MapReduce per-

formance for image search.

The above shows that there has been a great deal of intensive work in image processing

using MapReduce. However, each independent project requires a complex, error-prone,

one-off implementation. Such research and application development would benefit greatly

from a standard, well-engineered image processing framework such as the one we provide.
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CHAPTER 3

METHODOLOGY

Thesis Statement :To design and develop an Image Library using the Hadoop MapReduce

framework thereby providing a tool to users, researchers to develop of large scale image

processing application with ease.

The Hadoop Image Processing Framework is intended to provide users with an accessi-

ble, easy-to-use tool for developing large-scale image processing applications.

The main goals of the Hadoop Image Processing Framework are:

• Provide an open source framework over Hadoop MapReduce for developing large-

scale image applications

• Provide the ability to flexibly store images in various Hadoop file formats

• Present users with an intuitive application programming interface for image-based

operations which is highly parallelized and balanced, but which hides the technical

details of Hadoop MapReduce

• Allow interoperability between various image processing libraries

3.1 Downloading and storing image data

Hadoop uses the Hadoop Distributed File System (HDFS)[14] to store files in various nodes

throughout the cluster. One of Hadoop’s significant problems is that of small file storage.

[17] A small file is one which is significantly smaller than HDFS block size. Large image
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datasets are made up of small image files in great numbers, which is a situation HDFS has

a great deal of trouble handling. This problem can be solved by providing a container to

group the files in some way. Hadoop offers a few options:

• HAR File

• Sequence File

• Map File

Figure 3.1: Single node running the Downloader Module (handled by the framework and

transparent to the user)
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The Downloader Module of our Hadoop Image Processing Framework performs the fol-

lowing operations:

Step 1: Input a URL List. Initially users input a file containing URLs of images to

download. The input list should be a text file with one image URL per line. The list can

be generated by hand, extracted from a database or a provided by a search. The framework

provides an extendable ripper module for extracting URLs from Flickr and Google image

searches and from SQL databases. In addition to the list the user selects the type of image

bundle to be generated (e.g. HAR, sequence or map). Our system divides the URLs for

download across the available processing nodes for maximum efficiency and parallelism.

The URL list is split into several map tasks of equal size across the nodes. Each node map

task generates several image bundles appropriate to the selected input list, containing all

of the image URLs to download. In the reduce phase, the Reducer will merge these image

bundles into a large image bundle.

Step 2: Split URLs across nodes. From the input file containing the list of image

URLs and the type of file to be generated, we equally distribute the task of downloading

images across the all the nodes in the cluster. The nodes are efficiently managed so that no

memory overflow can occur even for terabytes of images downloaded in a single map task.

This allows maximum downloading parallelization. Image URLs are distributed among all

available processing nodes, and each map task begins downloading its respective image set.

Step 3: Download image data from URLs. For every URL retrieved in the map

task, a connection is established according to the appropriate transfer protocol (e.g. FTP,

HTTP, HTTPS, etc.). Once connected, we check the file type. Valid images are assigned

InputStreams associated with the connection. From these InputStreams, we generate new

HImage objects and add the images to the image bundle. The HImage class holds the image

data and provides an interface for the user’s manipulation of image and image header data.

The HImage class also provides interoperability between various image data types (e.g.

BufferedImage, Mat, etc.).
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Figure 3.2: Individual map task of Downloader Module

Step 4: Store images in an image bundle. Once an HImage object is received, it can

be added to the image bundle simply by passing the HImage object to the appendImage

method. Each map task generates a number of image bundles depending on the image list.

In the reduce phase, all of these image bundles are merged into one large bundle.

3.2 Processing image bundle using MapReduce

Hadoop MapReduce program handles input and output data very efficiently, but their na-

tive data exchange formats are not convenient for representing or manipulating image data.

For instance, distributing images across map nodes require the translation of images into

strings, then later decoding these image strings into specified formats in order to access

pixel information. This is both inefficient and inconvenient. To overcome this problem,

images should be represented in as many different formats as possible, increasing flexibil-

ity. The framework focuses on bringing familiar data types directly to user.

As distribution is important in MapReduce, images should be processed in the same

machine where the bundle block resides. In a generic MapReduce system, the user is

responsible for creating InputFormat and RecordReader classes to specify the MapReduce
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job and distribute the input among nodes. This is a cumbersome and error-prone task; the

Hadoop Image Processing Framework provides such InputFormat and RecordReaders for

system’s ease of use.

Figure 3.3: Single node running the Processor Module (handled by the framework and

transparent to user)

Images are distributed as various image data types and users have immediate access to

pixel values. If pixel values are naively extracted from the image byte formats, valuable im-

age header data (e.g. JPEG EXIF data or IHDR [4] image headers) is lost. The framework

holds the image data in a special HImageHeader data type before converting the image

bytes into pixel values. After processing pixel data, image headers are reattached to the

12



processed results. The small amount of storage overhead required for this functionality is

a trade-off worth making for preserving image header data after processing.

The functionality of the framework’s Processor module is described below:

Step 1: Devise the algorithm. We assume that the user writes an algorithm which

extends the provided GenericAlgorithm class. This class is passed as an argument to the

processor module. The framework starts a MapReduce job with the algorithm as an input.

The GenericAlgorithm holds an HImage variable; this allows user to write an algorithm

on a single image data structure, which the framework then iterates over the entire image

bundle. In addition to the algorithm, the user should provide the image bundle file that

needs to be processed. Depending on the specifics of the image bundle organization and

contents, the bundle is divided across nodes as individual map tasks. Each map task will

apply the processing algorithm to each local image and append them to the output image

bundle. In the reduce phase, the Reducer merges these image bundles into a large image

bundle.

Step 2: Split image bundle across nodes. The input image bundle is stored as blocks

in the HDFS. In order to obtain maximum throughput, the framework establishes each

map task to run in the same block where it resides, using custom input format and record

reader classes. This allows maximum parallelization without the problem of transferring

data across nodes. Each image bundle now applies different map tasks to the image data

for which it is responsible.

Step 3: Process individual image. The processing algorithm devised by the user and

provided as input to the Processing Module is applied to every HImage retrieved in the map

task. The HImage provides its image data in the data format (e.g. Java BufferedImage,

OpenCV Mat, etc.) requested by the user and used by the processing algorithm. Once the

image data type is retrieved, processing takes place. After processing, the preserved image

header data from the original image is appended to the processed image. The processed

image is appended to the temporary bundle generated by the map task.

13



Figure 3.4: Individual map task of Processor Module

Step 4: Store processed images in an image bundle. Every map task generates an

image bundle upon completion of its processing. Once the map phase is completed there

are many bundles scattered across the computing cluster. In the reduce phase, all of these

temporary image bundles are merged into a single large file which contains all the processed

images.

3.3 Extracting image bundles using MapReduce

In addition to creating and processing image bundles, the framework provides a method for

extracting and viewing these images. Generally, Hadoop extracts images from an image

bundle iteratively, inefficiently using a single node for the task. To address this inefficiency,

we designed an Extractor module which extracts images in parallel across all available

nodes. Distribution plays a key role in MapReduce; we want to make effective and efficient

use of the nodes in the computing cluster. As previously mentioned in the description of the

Processor module, a user working in a generic Hadoop system must again devise custom

InputFormat and RecordReader classes in order to facilitate distributed image extraction.

The Hadoop Image Processing Framework provides this functionality for the extraction

task as well, providing much greater ease of use for the development of image processing

applications.
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Figure 3.5: Single node running the Extractor Module (handled by the framework and

transparent to the user)

Organizing and specifying the final location of extracted images in a large distributed

task can be confusing and difficult. Our framework provides this functionality, and allows

the user simply to specify whether images should be extracted to a local file system or

reside on the Hadoop DFS.

The process of the Extractor module is explained below:

Step 1: Input the image bundle to be extracted. The image bundle specified for

extraction is passed as a parameter to the Extractor module. In addition, the user can

include an optional parameter specifying the images’ final location (defaults to local file

system). The image bundle is then distributed across the nodes as individual map tasks.

Each map task will extract the requisite images onto the specified filesystem.

Step 2: Split Image bundle across nodes. The input image bundle is split across

available nodes using the framework’s custom input format and record reader classes for

maximum throughput. Once a map task starts, HImage objects are retrieved.

Step 3: Extract individual image. The image bytes obtained from each HImage object

15



Figure 3.6: Individual map task of Extractor Module

are stored onto the filesystem in the appropriate file format based on its image type. The

Extractor module lacks a reduce phase.
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CHAPTER 4

IMAGE PROCESSING ALGORITHMS

To explore the Hadoop Image Processing Framework’s capabilities and performance, we

implemented multiple variations of existing widely-used image processing algorithms:

• A stand-alone implementation running on a single node with no distributed process-

ing capability

• A generic Hadoop implementation which requires a high level of software engineer-

ing expertise within the Hadoop framework

• An implementation that employs the Hadoop Image Processing Framework

We chose the following algorithms: Laplacian filtering, Canny edge detection and

k-means image segmentation. These are widely-used, computation-intensive and data-

intensive algorithms of varying complexity which require large distributed systems for

timely operation on hundreds of thousands of images.

4.1 Laplacian Filter

The Laplacian is a 2-D isotropic measure of the 2nd spatial derivative of an image. The

Laplacian of an image highlights regions of rapid intensity change and is therefore often

used for edge detection. The Laplacian is often applied to an image that has first been

smoothed with an approximation of a Gaussian filter in order to reduce sensitivity to noise.

The operator normally takes a single gray level image as input and produces another gray

level image as output.

17



The Laplacian L(x, y)of an image with pixel intensity values I(x, y) is given by

L(x, y) =
∂2I

∂x2
+
∂2I

∂y2
(4.1)

This is calculated using a convolution filter.

Since the input image is represented as a set of discrete pixels, we have to find a dis-

crete convolution kernel that can approximate the second derivatives in the definition of the

Laplacian. This is a very simple computation that consists of a few additions and multipli-

cations.

4.2 Canny Edge Detection

Canny edge detection[2] is an multi-stage algorithm to detect a wide range of edges in im-

ages. Edge detection, especially step edge detection, is an important technique to extract

useful structural information from visual information, dramatically reducing the amount of

data to be processed. Among existing edge detection methods, the Canny edge detection al-

gorithm is considered to provide reliable edge detection without relying on context-specific

heuristics.

The process of the Canny edge detection algorithm can defined in five stages:

• Apply a Gaussian filter to smooth the image and remove noise.

• Find the intensity gradients of the image.

• Apply non-maximum suppression to get rid of spurious responses to edge detection

• Apply a double threshold to determine potential edges.

• Track edges by hysteresis. Finalize the detection of edges by suppressing all edges

that are “weak” and not connected to strong edges.
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4.3 Image segmentation using k-means clustering

The k-means algorithm is an unsupervised clustering algorithm that classifies input data

points into multiple classes based on their Euclidean distance from each other. The algo-

rithm assumes that the data features form a vector space and tries to find natural clusterings

within it. The points are clustered around centroids µi∀i = 1...k which are obtained by

minimizing the objective

V =
n∑

i=1

∑
xj∈Si

(xj − µi)
2 (4.2)

where there are k clusters Si, i = 1, 2, ..., k and µi is the centroid or mean point of all

the points xj ∈ Si.

For the purposes of our experiment, we implemented iterative versions of the algorithm.

The algorithm takes a 2-dimensional image as input. The steps of the algorithm are as

follows:

• Compute the intensity distribution (also called the histogram) of the image.

• Initialize the centroids with k random intensities.

• Repeat the following steps until the cluster labels of the image stop changing from

one iteration to the next:

– Cluster the points based on the distance of their intensities from the centroid’s

intensity.

ci := argminj||xi − µj||2 (4.3)

– Compute the new centroid for each of the clusters.

µi =

m∑
i=1

1{ci = j}xi

m∑
i=1

1{ci = j}
(4.4)

where k is a parameter of the algorithm (the number of clusters to be found),

i iterates over all the intensities, j iterates over all the centroids and µi are the

centroid intensities.
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CHAPTER 5

EXPERIMENTAL RESULTS

We present execution time and programming complexity results for the three image pro-

cessing algorithms described above, demonstrating the effectiveness of the Hadoop Image

Processing Framework. These algorithms are not particularly challenging to implement on

a single node, but producing a distributed Hadoop implementation is quite challenging and

requires a great deal of familiarity with Hadoop concepts and distributed software engi-

neering expertise. On the other hand, our framework provides all of the performance and

scalability benefits of the Hadoop system while retaining the simplicity of the single-node

implementation. In this section we describe the dataset, hardware and software specifica-

tions used in our experiments, and discuss the results.

5.1 Characteristics of Image Dataset, Hardware and Software

We performed image processing computations on a dataset of about 1 TB in size. The

dataset was obtained by performing a Flickr search based on the keyword “flight”. The

dataset was extracted using the FlickrRipper, an instance of the Ripper interface provided

by our Hadoop Image Processing Framework. The framework currently provides rippers

for Flickr and Google image searches, and more will be provided in the future. A Ripper

interface extracts image URLs from search results, and can be implemented for any set of

results in any format. The experimental dataset is composed of 220,000 images at 4.76

MB/image, or about 1 TB.

20



5.2 Computer hardware and software characteristics

We ran the image processing computations on a 6-node distributed cluster and on a single-

node desktop computer. The table below summarizes the cluster and desktop hardware

and software specifications. The cluster nodes differ in terms of CPU speed and RAM.

We installed Hadoop, Cloudera CDH5 and Java 1.7 on the cluster to support Java code

execution. The desktop computer had a similar software configuration to the cluster.

Table 5.1: Computer hardware and software characteristics.

Specs Cluster Desktop

Hardware
Cluster Nodes

6 data nodes with

from 2 to 4 virtual

processors and 4 GB

RAM and name node

with 8 GB RAM

Intel Xeon @ 2Ghz

8 cores, 16GB of RAM

and hyperthreading

activated

Networking 1 Gbit/second

Software

Java Virtual

Machine

Java version

”1.7.0 45”

Java SE Runtime

Environment

Java version

”1.7.0 45”

Java SE Runtime

Environment

Hadoop
Hadoop 2.5

Cloudera CDH5

Operating

System
CentOS 6.5 CentOS 6.5

The desktop implementations of the algorithms are Java programs for processing a

small image dataset. As soon as the data set is processed the program halts. The desk-

top implementation starts as a single thread, and images are processed one at a time in

succession. When the dataset size is low, each program runs smoothly and with excel-
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lent performance. However, as the size of the data to be processed reaches the terabyte

scale, such a single-process approach fails utterly. Data on this scale must be processed in

distributed fashion using Hadoop.

Each algorithm is also implemented on a Hadoop cluster without using the Hadoop

Image Processing Framework. These implementations overcome the problem of handling

large datasets but they suffer from extremely complex code. The user needs to write a great

deal of code and understand the technical details of Hadoop. Writing such code, includ-

ing custom InputFormats and RecordReaders, is cumbersome and error-prone. Figure 5.2

compares the actual lines of code a user needs to write in order to run our experimental

algorithms (or any similar image processing application) on a Hadoop cluster.

Finally, we compare the same algorithms implemented on a Hadoop cluster using the

framework. These implementations overcome the problems of handling large datasets and

managing interoperability between image datatypes while holding code complexity down

to the same level as the single-process, local implementation. Users enjoy automated cre-

ation of custom InputFormats and RecordReaders, and can tune settings for the desired

output. The framework is so transparent that the user needs only a few lines of code to pro-

cess a large image data set. It hides the technical details of MapReduce and runs the code in

highly parallelized fashion. The code required to implement each image processing algo-

rithm is no more complex than the same algorithm implemented on a local, single-threaded

system, but the performance improvement for large datasets is immense.

5.3 Observations

We have explored the space of image processing algorithms, applying different hardware

and software configurations to the various data sets. Specifically, we compared:

• Three image processing algorithms described in Section 4

• Datasets of varying image counts
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• Configurations of hardware cluster used for computations

• Coding complexity - measured in Lines of Code (LOC)

The numerical results are shown in Figures 5.1 through 5.4.

Figure 5.1 illustrates the performance comparison of Canny edge detection on a single

node, on Hadoop using our framework and Hadoop without using the framework.

Figure 5.1: Canny edge detection computation executed on a single node and on a Hadoop

cluster with and without using framework

It can be observed that the Hadoop cluster performance is nearly identical whether

the Hadoop Image Processing Framework is used or not. The single node performance

is satisfactory on small input sizes; in fact it outperforms Hadoop when the amount of

data is very small owing to the lack of MapReduce overhead. However, as the amount of

data grows the single node performance becomes increasingly poor. The same pattern is

observed with any image processing algorithm.

Figure 5.2 compares the coding complexity of the different image handling and pro-

cessing tasks described in Section ??, for the Canny edge detection task. The Downloader

module and Extractor module are simple to use and require few lines of code to config-

ure. The processor module includes the specific algorithm devised by the user, which can
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be significant amount of code, but using our framework to configure the algorithm for

MapReduce requires almost no additional coding.

Figure 5.2: Comparing coding complexities of modules in different environments

Figure 5.3 shows the coding complexity of the processor portion of our three experi-

mental image processing algorithms. The naive single-process, single-node algorithm re-

quires a similar amount of code to using our highly parallel, distributed framework, while

direct implementation of the algorithm using Hadoop and MapReduce requires a great deal

more effort. The Hadoop Image Processing Framework hides all of this complexity from

the user.

The Hadoop Image Processing Framework provides transparency on multiple levels.

Users can use the predefined MapReduce modules (Downloader, Processor and Extractor)

for processing the image modules, and most image processing tasks require no more than

this. Users may also write custom MapReduce tasks within the framework, taking advan-

tage of its hierarchical construction. This still protects the user from the full complexity

and error-prone nature of the full Hadoop framework, but requires additional knowledge

and expertise on the user’s part.
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Figure 5.3: Comparing coding complexity of Laplacian filter, Canny edge detection and

k-means clustering in different environments

The Hadoop Image Processing Framework is intended to be extremely simple to use.

The framework strictly adheres to Java file writing and reading techniques, extending those

conventions to the Hadoop framework’s notion of reading and writing bundle files. In this

way, working with Hadoop image processing is exactly like working on a single system.

The main aim of the framework is to provide useful software abstractions such that pro-

gramming on a Hadoop cluster is equivalent to programming on a single computer. Listing

1 demonstrates the similarity between Java code written for a single machine and the same

code using the image processing framework. The framework’s use of ordinary Java con-

ventions helps in understanding the software engineering process and reduces complexity.

Listing 2 demonstrates the mechanism for setting the image headers of processed images.
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Figure 5.4: Comparing file writers and readers with and without using framework

Listing 5.1: Comparing FileWriter instance in java and SequenceBundleWriter instance in

Hadoop Image Processing framework

//Sample File Writing in Java

File file = new File("test");

FileWriter fw = new FileWriter(file);

fw.append(val)

fw.close();

//Sample BundleFile Writing in Hadoop using Framework

BundleFile file = new BundleFile("test_bundle.seq");

SequenceBundleWriter sbw = new

SequenceBundleWriter(file);

sbw.append(himage);

sbw.close();
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Listing 5.2: Setting image headers for processed images using Hadoop Image Processing

Framework

//input - HImage is sent as input

CannyEdge canny = new CannyEdge(input);

canny.process();

HImage himage = canny.getProcessedImage();

himage.setImageHeader(input.getImageHeader());
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Table 5.2: Characteristics of computational elasticity, coding complexity and data locality

for the three experimental platforms.

Computa-

tional

Platform

Computational

Elasticity

Code

Complexity

Data

Locality

Desktop

Low : limited by

RAM and CPU of

the executing

computer

Normal : Complexity

lies in writing the

algorithm

All data are

on local disk

Hadoop:

without

using

framework

High: Nodes can

be requested

as needed

Heavy : Complexity

lies in writing every

module in framework

including custom

InputFormats and

RecordReaders. User

requires high

technical expertise

with Hadoop.

All data resides

in HDFS. Custom

InputFormats

need to be

created to launch

computations

in appropriate

locations

Hadoop:

using

framework

High: Nodes can

be requested

as needed

Normal : Complexity

lies in writing

algorithm and is

equivalent to writing

on desktop platform

All data resides

in HDFS. Highly

parallelized.
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CHAPTER 6

FUTURE WORK

This paper has described our Hadoop Image Processing Framework for implementing large

scale image processing applications. The framework is designed to abstract the technical

details of Hadoop’s powerful MapReduce system and provide an easy mechanism for users

to process large image datasets. We provide software machinery for storing images in

the various Hadoop file formats and efficiently accessing the Map Reduce pipeline. By

providing interoperability between different image data types we allow the user to leverage

many different open-source image processing libraries. Finally, we provide the means

to preserve image headers throughout image manipulation process, retaining useful and

valuable information for image processing and vision applications.

With these features, the framework provides a new level of transparency and simplic-

ity for creating large-scale image processing applications on top of Hadoop’s MapReduce

framework. We demonstrate the power and effectiveness of the framework in terms of per-

formance enhancement and complexity reduction. The Hadoop Image Processing Frame-

work should greatly expand the population of software developers and researchers easily

able to create large-scale image processing applications.
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CHAPTER 7

CONCLUSION

In the near future we hope to extend the framework into a full-fledged multimedia pro-

cessing framework. We would like to improve the framework to handle audio and video

processing over Hadoop with similar ease. We also intend to add a CUDA module to allow

processing tasks to make use of machines’ graphics cards. Finally, we intend to develop our

system into a highly parallelized open-source Hadoop multimedia processing framework,

providing web-based graphical user interfaces for image processing applications.
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