
~ QUERY OPTIMIZATION TECHNIQUE
~

IN RELATIONAL DATABASES

By

FEROZE ~HALIFULLAH

Bachelor of Engineering

P.S.G. College of Technology

Coimbatore, India

1987

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1991

A QUERY OPTIMIZATION TECHNIQUE

IN RELATIONAL DATABASES

Thesis Approved:

Thesis Advisor

~~4~Jc»;~

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I wish to express my appreciation to Dr. Huizhu Lu, for

her encouragement, advice, and guidance. I also wish to

thank my committee members, Dr. Mansur H. Samadzadeh and Mr.

William D. Miller for their assistance.

Additionally, I wish to thank my parents and my friends

for encouraging and supporting me throughout my graduate

program, and to all other individuals who helped me in this

thesis and during my coursework at Oklahoma State

University.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION•................................ 1

Motivation 6
Outline of the thesis 7

II. LITERATURE REVIEW AND BACKGROUND 8

Query Processing in Centralized Databases 10
Query Processing in Distributed Databases 13
Transaction Management•............... 16
Storage Structure 17

III. QUERY PROCESSING 19

Definitions 19
Optimization Objectives 22
Query Representation 23
Optimization Techniques 30

IV. PROPOSED APPROACH 3 4

Introduction e ••• 34
Target Area 3 6
Description of the Proposed Method 37
An Example 4 2
Simulation Details 45

V. RESULTS AND CONCLUSIONS 49
Evaluation Criteria 49
Results 50
Conclusions 55
Future Work 55

REFERENCES •••......••••.••..•..••.•.....•...•..... 57

APPENDIX- PROGRAM IMPLEMENTATION 61

iv

LIST OF TABLES

Table

I. Comparison of the number of disk accesses made
between the two methods when the number of

Page

attributes queried= 3 51

II. Comparison of the number of disk accesses made
between the two methods when the number of
attributes queried = 4 51

III. Comparison of the number of disk accesses made
between the two methods when the number of
attributes queried= 5 52

v

LIST OF FIGURES

Figure Page

1. A Sample Database System, consisting of three
relations S, P, and SP 2 0

2. Projection of the attributes SNAME and SCITY on
relation S .. 26

3. Selection of those attributes in relation SP
where QTY > 300 27

4. An Equijoin on relations s and SP with the
predicate S. S# = SP. S# 29

5. A Natural Join on the relations S and SP with the
predicate S.S# = SP.S# 30

6. Pseudo-code for Nested Loop Join 31

7. Temporary Relation SP' produced when the queries
are processed separately 42

8. Temporary Relation SP' produced when the queries
are processed together 44

9. Pseudo-code for the simulation of the Proposed
Query Processing Approach 47

10. Graph showing the relation between the # of
common selection attributes and the percentage
reduction in disk accesses when # of attributes
queried = 3 53

11. Graph showing the relation between the # of
common selection attributes and the percentage
reduction in disk accesses when # of attributes
queried = 4 53

12. Graph showing the relation between the # of
common selection attributes and the percentage
reduction in disk accesses when # of attributes
queried= 5 54

vi

CHAPTER I

INTRODUCTION

A database system is basically a computerized record-

keeping system - that is, a system whose overall purpose is

to maintain information and make that information available

on demand [Date87]. Database Management systems (DBMSs) are

now used in almost every computing environment to organize,

create and maintain important collections of information.

The information concerned can be anything that is deemed to

be of significance to the individual or organization who

maintains the database. It is something like an electronic

filing cabinet. The user of the system will be able to

perform a variety of operations on the database such as:

i. adding new data,

ii. deleting existing data,

iii. retrieving data (and changing if needed).

Database systems are now available on machines that range

,from small micros to the large mainframes. The data in a

database is accessed using queries and the high-level

computer language that is used to access this data is known

as a query language. The hardware for handling very large

' data sets is now available. However these large data sets

need careful handling. Many early Database Management

1

Systems (DBMSs) have been criticized because of their

inefficient way of handling the powerful operations they

offer, particularly the content-based access to data by

queries. Accessing the data in the wrong way can slow down

the computer for a considerable time resulting in waste of

resources and time.

Depending on the approach used to construct the

2

database management systems, database systems' can be broadly

divided into two types, namely nonrelational systems and

relational systems.

A majority of present-day database systems are

relational [Date87]. The database stores all information in

tables and can manage data by direct manipulation of these

tables without reference to other constructs. User queries

specify what information is wanted but not how this

information is to be extracted from the database. These
I

nonprocedural languages are easier to use than the

navigation languages of IMS (Information Management System)

or CODASYL (Conference on Data Systems Languages). The user

does not see the access plan that is used. This is where

query optimizers come into the picture. The query optimizer

chooses an efficient access path for the q~ery using

information about the structure of the dat~base. It

translates the predicate specification into an algorithm to

perform database access to solve the query.

The advantage of optimization is twofdld. Firstly, the

user is not concerned with how best to state the query (as

3

compared to navigational databases), and secondly, there is

a high possibility that the optimizer might actually do

better than a human programmer. This can be i~lustrated by

the following example.

Consider a database with two relations, S and SP, as

shown in the below. Let us assume that relation s has 100

entries and SP has 10,000 entries.

s ----------------------------- SP -------------
S# SNAME STATUS CITY S# P# QTY

Now if we have a query such as 11 Who are the suppliers

who supply part P3? 11 , then one solution (the worst possible)

is to create a temporary table that has information from all

tables and pick out the rows that meet all the conditions.

If only 50 shipments were made for part P3, then in our case

we would have to read 10,100 tuples and construct a

temporary relation which is the Cartesian product of the

relations S and SP. And now, using the where clause, we

would pick out 50 tuples and then project this result over

relation s, to obtain the desired result (which would

contain 50 tuples at the most) .

An alternative method (that could be used by the query

optimizer) would be to restrict relation SP to those tuples

that contain part P3. This would involve reading 10,000

tuples but producing a result of 50 tuples from them. Now if

we join this result to relation S, then we would have a

4

retrieval of only 100 tuples and the result would contain

only 50 tuples. Subsequent projection (as in the previous

case) would yield a final result of 50 tuples (at the most).

Now if the number of disk writes were to be taken as a

performance measure, then obviously the latter method far

outperforms the former. This contrived example illustrates

the necessity for optimization in query processing.

The ove~all purpose of the optimizer, then, is to

choose an efficient strategy for evaluating a given

relational expression. Query optimization tries to solve

this problem by integrating a large number of techniques and

strategies, ranging from logical transformations of queries

to the optimization of access paths and the storage of data

on the file system level [Jar84].

Typically, in a modern relational database system,

optimization involves a cost model specific to the system

[Yu84]. The optimizing methods either should attempt to

maximize the output for a given number of resources or to

minimize the resource usage for a given output. If response

time is the criterion for the performance measure, then this

should be minimized.

Nonrelational systems are at a lower level of

abstraction than relational systems. They include:

i. the hierarchic model,

ii. the network model,

iii. the inverted list,

iv. deductive DB's, and

v. object-oriented DB's.

But the major nonrelational approaches to database are the

hierarchic and network approaches. The hierarchic system,

exemplified by IBM's (I.BM is a trademark of International

Business Machines Corporation) IMS, has a data model that

requires all data records to be assembled into a collection

of trees. Each individual tree in the database can be

5

regarded as a subtree of a hypothetical "system" root record

i.e the entire database can be considered as a single tree.

The notion of hierarchic sequence defines a total ordering

for the set of all records in the database, and the database

is regarded as being logically stored in accordance with

that ordering. The query language permitted an application

programmer to access one record at a time, starting from a

specific entry point record and moving on to the desired

information.

In the network database system, the collection of the

records is arranged into a directed graph as typified by the

CODASYL standards. It consists of a set of records and a set

of links. The main distinction with the previous model is

that in the hierarchic structure, a child record has exactly

one parent record whereas in a network structure a child

record can have any number (even zero) of parents.

Both the tree-based and graph-based datapase systems,
I

needed a navigational query language defined. Due to their

record-at-a-time orientation, these systems are all

fundamentally programming systems [Date87]. To answer a

6

specific database request, an application programmer,

skilled in disk-oriented optimization, must write a complex

program to navigate through the database i.e the user must

tell the database manager precisely how to find the desired

information. Any 'optimization' is generally performed by

the user, not by the system. These are therefore efficient

in the hands of an expert, but in general are harder to use

than relational database managers. The majority of users of

large databases are novice programers and the restrictions

that apply to network databases still hold (Rob88]. Moreover

"'
when the structure of the database changes, a$ it will

l

whenever new kinds of information are added, application

programs usually need to be rewritten. These database

systems are costly to use because of the low-level interface

between the application program and the DBMS [Silb91].

Motivation

A number of algorithms to process queries in different

distributed and centralized database systems have been

proposed and implemented [Yu84]. But, as mentioned earlier,

no particular method is suitable for all environments and

there is room for still further advancement in query

optimization. This is the main motivation for working on

this topic. Primarily, the problem of optimizing queries in

centralized DBMSs will be considered in this thesis, because

the cost criterion of disk access is taken as the main

criterion for performance measure. Moreover centralized

7

query optimization is not only important in many mainframe

databases, and more recently in microcomputer DBMSs - but it

also appears as a subproblem of query optimization in

distributed database systems.

Outline of the thesis

In chapter II, a brief outline of the various

approaches towards query optimization is given. In chapter

III, the working of query optimization techniques are

described, with special emphasis to relational algebra

concepts, as this is the data manipulation method used in

this thesis. In chapter IV the details of the proposed

approach to query optimization along with the simulation

details of this approach as run on the Ultrix-32 based VAX

8350 are given. Finally in chapter V, the results,

limitations, conclusions, and scope for future work are

outlined.

CHAPTER II

LITERATURE REVIEW AND BACKGROUND

In this section the database literature on query

optimization and closely related work is reviewed. There are

several aspects to query optimization. One aspect involves

the type of database under consideration (distributed or

centralized) , another aspect concerns the type of

optimization and yet another involves the strategy adopted.

A primary goal of a DBMS is to insulate users and

programs from the physical structure of the data, and this

is accomplished by high-level query languages such as SQL

(Structured Query Language) by translating a logical query

into a sequence of operations at the physical level. The

problem of generating reasonable natural language-like

responses to queries, formulated in non-navigational query

languages with logical data independence, is addressed by

Wald and Sorenson [Wald90]. But sometimes a conceptual query

can be translated into more than one logical query, and they

also address the problem of ambiguity in a formal query

language. The sizes of derived relations often play an

important role in selecting a plan for evaluating a query,

whether it is a centralized database or a distributed

database. Answering queries in a relational database often

8

9

requires that the natural join of two or more relations be

computed. Join operations are the most time-consuming

relational operations, since their result can have a size

equal to the product of the sizes of the original relations.

In this regard the effect of join operations on relation

sizes is discussed by Gardy and Puech [Gar89]. They present

a model of relations and show how to use it to deduce

probabilistic estimations of derived relation sizes. The

result of a join operation does not always have the expected

value (i.e. not all joins are lossless joins). This is

discussed by Aho et al [Aho79] with emphasis on whether the

join of several relations is 'lossless' or 'lossy'. De Vet

[Vet89] described an algorithm for evaluating database

queries represented as expressions in a logical language.

The algorithm described in the paper evaluates a query

expression recursively in terms of its subexpressions. It

can interrupt input expressions which are internally

structured as trees or directed acyclic graphs.

A user may not always have a choice of what query

language to use but sometimes his or her choice may span

over a few prespecified alternatives. Jarke and Vassiliou

[Jar85] gave a framework for choosing a database query

language. A methodology for selecting a type of query

language interface on the basis of its functionality and the

"user friendliness" characteristics is discussed. They

developed taxonomies of query languages and language users.

Their approach to query language evaluation can be

10

understood as a specialized cost-benefit analysis method, in

the sense that multiple evaluation criteria are based on a

simple economic model of query language usage and the trade

off between costs and benefits depends on the user type.

This immediately leads to a two-level classification of

query language: by the senses employed by the user and by

the language methods. Now this classification serves as a

tool for evaluating query languages in a structured manner.

Query Processing in Centralized Databases

A centralized database is one in which the complete

data is maintained at one location. A wide variety of

approaches to improve the performance of query evaluation

algorithms in centralized databases have been proposed: such

as logic-based and semantic transformations, fast

implementations of basic operations, and heuristic

algorithms for generating alternative access plans and

choosing among them. Jarke and Koch [Jar84] present a survey

of query optimization techniques using the relational

calculus representation of queries. Their work is divided

into four steps namely:

i. query representation,

ii. query transformation,

iii. query evaluation, and

iv. access plans.

Techniques for representing queries in terms of their

suitability for optimization are compared. After being

11

transformed, a query must be mapped into a sequence of

operations that return the requested data, and the

implementation of such operations on a low-level system of

stored data and access paths are also analyzed. In addition,

nonstandard query optimization issues such as higher level

query evaluati~n, query optimization in distributed

databases, and the use of database machines are also

addressed. But the focus is on query optimization in

centralized databases.

Decomposition as a strategy for query processing in the

database management system INGRES is addressed by Wong and

Youssefi [Wong76]. The general idea is to decompose the

query into a sequence of one-variable queries by alternating

between reduction and tuple substitution. Reduction means

the breaking off components of the query which are joined to

it by a single variable and tuple substitution means

substituting for one of the variables, a tuple at a time.

Algorithms for reduction and for choosing the variable to be

substituted are given, and the query processing algorithm

developed for QUEL (Query Language) which is the data

language for the INGRES ("Interactive Graphics and Retrieval

System) system is also described.

Chakravarthy et al [Cha90] discuss semantic query

optimization. The idea of semantic query optimization is to

transform the user query into one which is semantically

equivalent to the original query and which can be processed

more efficiently. There are several aspects to semantic

12

query optimization. One aspect involves the type of database

under consideration. Another aspect concerns the generation
I

of semantically equivalent queries, and their correctness.

Yet another aspect is the pruning of information that is

not useful for semantic optimization. They describe a method

of semantic query optimization in deductive databases

couched in first-order logic. They also show how semantic

query optimization techniques can be extended to databases

that support recursion and integrity constrains that contain

recursion.

Sellis and Shapiro [Sel91] presented the use of

database query languages for programming non-traditional

applications such as engineering and artificial

intelligence, and the techniques for the optimization of

such programs. They primarily focused bn extended query

languages that include an iteration operator, but several of

the techniques apply to classical query languages also.

Whang and Krishnamurthy [Wha90] have presented techniques

for optimizing queries in memory-resident database systems.

Their approach 1s towards developing a CPU-intensive cost

model. Therefore, the em~hasis is on main-memory query

processing and the effect of the operating system's

scheduling algorithm on the memory residency assumption.

They h~ve used the OBE (Office-By-Example) integrated office

system that has been under development at IBM Research.

Databases satisfy the needs of users with regard to

business applications, but at times they must be expanded to

13

offer services in object management and knowledge

management. Object management includes efficient storing and

manipulating nontraditional data types such as icons or

pictures. Knowledge management entails the ability to store

and enforce a collection of rules that are part of the

semantics of an application. In this regard, Stonebraker and

Kemnitz [Ston91] discuss the details of a database manager

that incorporates the above two additional dimensions.

Query Processing in Distributed Databases

The demand for more and more information by different

organizations leads to very large databases, that will

exceed the physical limitations of centralized systems. Also

sometimes integration of already existing geographically

dispersed databases is required. This leads to the concept

of distributed databases.

A distributed database is one in which the data is

maintained at multiple sites [Silb91]. The multiple sites

are connected together into some kind of communications

network, in which an end user or application programmer at

any site can access data stored at any other site. Usually

the data is maintained at the site closer to the people who

are responsible for it, thereby reducing communication

costs. For example information about the Texas customers of

a company might be stored on a machine in Dallas, while data

about Illinois customers could exist on a machine in

Chicago. On top of the network, a distributed DBMS can be

built in such a way that the user need not know about the

distribution of the logical and physical components of the

database.

This type of database has multiple advantages, such as

in the event of a crash at any one site, only part of the

data is inaccessible, and this.may not disrupt the normal

functioning too much. Distributed database systems relieve

the burden on shared mainframes. Also an open architecture

distributed database system will be a big help to users who

increasingly need access to more than one database. Other

advantages include increased availability, decreased access

time, and easy expansion [Aper88].

14

The acceptance and widespread usage of distributed

databases will highly depend on their efficiency. In this

regard, Stonbraker [Ston89] mentions the desired features of

a distributed database in terms of the seven transparency

features, namely:

i. location transparency,

ii. performance transparency,

iii. copy transparency,

iv. transaction transparency,

v. fragment transparency,

vi. schema change transparency, and

vii. local DBMS transparency.

Various techniques for optimizing queries in distributed

databases are presented by Yu and Chang [Yu84]. They outline

the main points of the ideas extracted from existing

15

algorithms such as: the use of semi-join to reduce

transmission cost, the characteriation of queries solvable

by semijoins, the transformation of cyclic queries into tree

queries, enhancements of semijoin strategies, the optimal

processing of certain restricted types of queries, etc. The

problem of allocating the data of a database to the site of

a communication network is investigated by Peter M. G. Apers

[Aper88]. A model that makes it possible to compare the cost

of allocation is presented by him.

A query processing algorithm for distributed relational

database systems is given by Egyhazy and Triantis [Egy88]. A

new technique is proposed to compute the resulting relation

size after a projection, a selection, and a join on non-key

attributes (or key attributes). This is then used in the

algorithm to determine which relation is to be sent across

the network for proce~sing.

PRECI* (Prototype of a RElational Canonical Interface)

is a research prototype for a generalized distributed DBMS.

The architecture of PRECI* is explained by Deen et al

[Deen85]. The architecture presented has the ability to

provide location transparency and transaction-oriented

queries, the former providing for data integration and meta

data. Similarly R* is an experimental, distributed DBMS

developed and operational at the IBM Almaden Research

Center. In a large organization, it is difficult to

standardize on a single DBMS since the requir~ments of the

DBMS from different units (such as engineering,

16

administrative etc.) are diverse. Under these circumstances,

the heterogeneous DBMS is an effective way of sharing data.
I

Chin-Wan Chung describes the architecture of DATAPLEX, which

is a heterogeneous distributed DBMS developed at General

Motors Research Laboratories.

Transaction Management

A transaction is a sequence of operations that must

appear "atomic" when executed. For example when a student

drops course A and adds course B, then the database system

should ensure that either both of the operations - drop A

and add B- happen or that neither happens. If only one of

them happens, then an inconsistent database state results. A

transaction must transform the database from one consistent

state to another. For this, concurrent transactions in the

system must be synchronized correctly in order to guarantee

that consistency is preserved. For example system failures

must not result in an inconsistent state. In a distributed

database system, the actions of a transaction may occur at

more than one site, hence this problem is felt more in these

systems. In this regard Mohan et al [Moh86] discuss

transaction management in the R* DBMS. They also discuss

R*'s approach toward distributed deadlock detection and

resolution.

17

Storage Structure

A query optimization algorithm has to choose among a

variety of existing access paths to resolve a query. In this

regard the internal details of implementing such access

paths are important. This depends on the file structures

used. The internal level of the database is the level that

is concerned with the way the data is actually stored on the

disk. Usually databases are physically stored'on direct

access devices, like moving-head disks etc. Disk access

times are much slower than main storage access time.

Therefore minimization of the number of disk accesses is an

important objective in the optimization process. Now

optimization can also be influenced by the storage structure

i.e the way the data is arranged on the disk, and related

access strategies.

_,Indexing is a method of speeding up retrievals. An

index is a special kinq of stored file, in which each entry

contains two values: a data value, and an associated

pointer. Usually the index is maintained on the primary key

(i.e the identifying key for the tuple), and the pointer

identifies a record of that file that has the same value in

its primary key attribute as the data value of the index.

But the main disadvantages of indexing is that it slows down

updates, and it takes up considerable overhead. Moreover

indexes cannot be maintained for every attribute in the

relation and there is no saying as to which attribute will

be queried by the user.

18

Hashing is another method of direct access to the

records. Each record has its hash address as a function of

the primary key of the record. But hashing has its own

limitations, as it leads to physical clustering and also the

possibility of running into collisions - that is two

distinct records that hash to the same address. Moreover as

the size of the hash file increases, the number of

collisions also tends to increase [Date87], and hence the

average access time increases correspondingly. In this

regard extendable hashing is a nice variation on this base

technique, since extendible hashing guarantees that the

number of accesses to a particular record is never more than

two (usually one) .

Compression techniques are also used to reduce the

amount of storage space required for a given collection of

data. Where the data is accessed sequentially or accessed by

a single index, differential compression can be used.

Huffman coding is a character encoding technique, that can

result in significant data compression if different

characters occur in the data with different frequencies.

CHAPTER III

QUERY PROCESSING

Definitions

Since this work is primarily concerned with relational

databases, at the outset, it would be appropriate to explain

the related terms in a clear and precise manner.

Relational Database

According to Date [Date87] "a relational database

system is a database that is perceived by its users as a

collection of tables (and nothing but tables)". The data is

not physically stored as tables, but at the internal level

the system is free to use any structure it pleases, provided

that it is capable to represent those structures as

relations at the higher levels. The principles of the

relational model were laid down by Dr. E.F.Codd [Codd70],

the major features of which are:

i. Each relation contains only one record type.

ii. The records have no particular order.

iii. The records have a unique identifier field or

field combination called the primary key.

iv. Every attribute is single valued.

19

20

For example, the database in Figure 1 consists of three

relations. These databases do not allow repeating groups and

the entire information content of the database is

represented as explicit data values. In contrast to

nonrelational systems, the relationship between two tuples

in two different tables is not represented by any kind of

physical link (such as pointer). Instead it is expressed by

the presence of a tuple in another table (say table T)

having the primary key values of the two related tuples in

the same row of table T.

s ------------------------------- SP -------------
S# SNAME STATUS SCITY S# P# QTY
------------------------------- -------------
s1 Smith 20 Dallas s1 p1 100
s2 Adams 10 OKCity s1 p2 180
s3 James 15 Austin s1 p4 50
s4 Tony 23 Waco s2 p1 200
s5 Mike 40 Tulsa s3 p3 400

s3 p4 80
s4 p1 800
s4 p2 200

p ---------------------- s4 p3 150
P# PNAME PCITY s4 p4 300

s5 p2 200
s5 p4 300 p1

p2
p3
p4

Rim
Drum
Hub
Disk

Tulsa
NYCity
Norman
Boston

Figure 1. A sample relational database system,
consisting of three relations, s, P,
and SP

Relational database systems have high-level query

languages to ease the use of the DBMS by both end users and

application programmers. The application programmer needs to

21

only specify the predicate(s) that identifies the desired

record or combination of records from the database. Also the

theory of normalization was formulated to help with database

design by eliminating redundancies and certain logical

anomalies.

Queries

A query is a language expression that describes data to

be retrieved from a database [Jar84]. Queries are used in

several settings, the most obvious application is that of

direct requests by end users who need information from the

database (e.g., "What are the names and the grade in course

A of the students who are enrolled in course B, and are

TA's?"). Another application of queries occurs in

transactions that change the stored data based on their
r

current value (e.g., "give all administrative staff, working

for the biology department a 10 percent salary increase").

Optimization

Optimization in database systems means to choose among

the various ways of executing a single query [Sel91]. Query

optimization tries to minimize the response time for a given

query language and mix of query types in a given system

environment. In relational databases the query (in the high-

level relational query language) is translated into plans

that are as efficient (if not more) as what a skilled

22

programmer would have written using one of the earlier DBMSs

(such as network or hierarchical) for accessing the data.

Optimization Objectives

There are two main objectives of query optimization.

These are:

i. to minimize the response time, and

ii. cost minimization of technical usage.

The response time goal is reasonable only under the

assumption that the user time is the most important

criteria. Otherwise, minimization of the resource usage for

a given output is the main objective. Fortunately, both the

above mentioned objectives are largely complementary. But

sometimes when conflicts arise, they are resolved by

assigning limits to the availability of technical resources.

The total cost to be minimized is the sum of the

following [Jar84]:

i. Secondary storage access cost,

ii. Storage cost,

iii. Computation cost, and

iv. Communication cost.

Secondary storage access cost is the cost associated

with the loading of data pages from secondary storage into

memory. The factors that influence is the amount (or number)

of data to be retrieved, the way the data is clustered in

the physical storage, the size of the memory buffer, and the

speed of the devices used. This cost is usually measured by

23

the number of page accesses made. Storage cost are relevant

only if storage becomes a system bottleneck, and the storage

can be varied from query to query. This is the cost

associated with keeping the storage buffers used over a

period of time. Computation cost is the cost associated with

using the central processing unit (CPU) engaged while

computing the access strategy. Communication costs are

expressed in terms of the total amount of data transmitted.

The type of query optimization sought is strongly

influenced by the trade-offs among the above cost

components. For example, in distributed DBMS, communication

costs are relevant but not so much so in centralized

databases. In the latter, the cost is dominated by the

secondary storage access time. In such systems communication

costs are independent of the query evaluating strategy.

Since the focus of this thesis is on centralized databases,

communication costs are not considered.

Query Representation

Queries can be represented in a number of forms. In the

context of query optimization, the query representation must

be powerful enough to express a large class of queries

[Jar84]. The relational database model can be expressed in

the following models:

i. relational calculus,

ii. relational algebra,

iii. query graphs, and

24

iv. tableaus.

This constitutes the data manipulation part. The

manipulative part provides a set of operators_for data

manipulation. These are not just for data retrieval but they

form the basis on which optimization techniques are founded.

Most of the work done on query optimization is in the

framework of the relational model where the queries are

represented as relational calculus or relational algebra

expressions [Vet89].

Relational Calculus

The relational calculus provides a notation for

defining the result of a query through a description of its

properties. The representation of the query consists of two

parts namely the target list and the selection expression.

The target list defines the attributes that appear in the

result and the selection expression specifies the contents

of the relation resulting from the query. Using the sample

database in Figure 1, the query "Get supplier names and

supplier city name for suppliers who supply part P4", may

have a calculus representation something similar to as

shown:

Get SNAME and SCITY from relation s, such that there

exists a tuple in relation SP with the same S# and P#

value 'P4'.

The user just defines the characteristics of the desired

set, and it is left to the system to decide exactly what

projections, joins or selections etc. must be executed. In

the target list of the above query, the range variable is

'SNAME' and 'SCITY' and they 'range over' relation s.

Relational Algebra

The relational algebra consists of a set of operators

(such as join, project, etc.) defined on relations. These

operators fall into two sets namely:

25

i. the traditional set operations, such as union,

intersection, difference and Cartesian product.

ii. the special relational operations select, project,

join, and divide.

Each operator of the relational algebra takes either

one or two relations as its input and produces a new

relation as its output (which may even be an empty

relation). As opposed to relational calculus expression,

which describes the relation resulting from a query by means

of its properties, a relational algebra expression provides

a collection of explicit operations such as join,

projection, selection etc. - that can be used to build the

desired relation from the given relations of the database.

The calculus simply states ~he problem but the algebra gives

a method of solving that problem. For example the relational

algebra expression of the example query in the previous

section may be like this:

Join relation S with relation SP.

Restrict the result to those tuples that have P# = P4.

26

Project the result got on SNAME and SCITY.

However relational calculus and relational algebra are

equivalent to one another [Date87]. In this thesis

relational algebra is used in the optimization process. In

particular the three basic relational operators, 'Join',

'Project', and 'Select' are used. So the underlying section

explains the process of join, project and select as applied

on the relations.

Project

~his operator extracts specified attributes from the

given relation. It takes one relation as its input and

always builds a relation that is non-empty. It yields a

'vertical' subset of the input relation. In the process it

eliminates redundant duplicate tuples that may exist after

the projection.

s -------------------------------
S# SNAME STATUS SCITY SNAME SCITY

s1 Smith 20
s2 Adams 10
s3 James 15
s4 Tony 23
s5 Mike 40

Dallas
OKCity
Austin
Waco
Tulsa

Smith
Adams
James
Tony
Mike

Dallas
OKCity
Austin
Waco
Tulsa

Figure 2. Projection of the attributes SNAME, and
SCITY on relation S

Any number of attributes may be projected but the attributes

of the result will have the same qualified names as they

have within the original relation from which the projection

27

was done. A projection of the attributes "S#", and "STATUS"

on the relation S of Figure 1 is shown in Figure 2.

Select

Let theta represent a valid scalar comparison operator

(such as =, <, >=, !=, etc. The selection of those

attributes in relation R, whose A-attribute theta a

specified constant, is denoted by

R where R.A theta specified constant,

where A is an element of R. Now this is obtained by choosing

those rows in R such that R.A theta specified constant

evaluates to be true. In short selection produces a

'horizontal' subset of the given relation. The result may

contain 0 or more tuples (unlike projection) .

Selection operation: SP where QTY > 200

SP -------------
S# P# QTY S# P# QTY
------------- -------------
s1 p1 100 s3 p3 400
s1 p2 180 s4 p1 800
s1 p4 50 s4 p4 300
s2 p1 200 s5 \ p4 300
s3 p3 400 -------------
s3 p4 80
s4 pl 800
s4 p2 200
s4 p3 150
s4 p4 300
s5 p2 200
s5 p4 300

Figure 3. Selection of those attributes in relation SP
where QTY value > 200

28

One or more select clauses on the same relation may be used

in selection. The selection operation not only permits

simple comparison in the WHERE clause but by the property of

closure it is possible to extend this (making use of other

constructs such as UNION, MINUS etc.). A simple example of a

selection criteria as applied on the relation SPJ of Figure

1 is shown in Figure 3.

Most relational databases create temporary tables to

combine information from pairs of tables. Joins are a way of

combining two tables. A join of two relations is a subset of

their Cartesian cross product. Let theta be defined as any

valid scalar comparison operator. Then the theta-join of

relation R1 on attribute A1 with relation R2 on attribute

A2, is the set of all concatenated tuples of R1 and R2 such

that the condition R1.A1 theta R2.A2 holds good, for the

respective tuples of R1 and R2. Attributes R1.A1 and R2.A2

should be defined on the same domain and theta must make

sense for that domain.

For example an equal-to join (also called equijoin) on

the relations S and SP of Figure 1 is given in Figure 4.

It is obvious that the result of a equijoin must include two

identical attributes. If one of these attributes is

eliminated then the join is called a natural join i.e a

natural join is the projection of a restriction of a

product. Natural join is the most important form of join in

practice and it is used extensively in this work too. For

simplicity the natural join of the above example can be

written as:

s join SP

(S times SP) where S.S# = SP.S#

S# SNAME STATUS SCITY S# P# QTY

s1 Smith 20 Dallas s1 p1 100
s1 Smith 20 Dallas s1 p2 180
s1 Smith 20 Dallas s1 p4 50
s2 Adams 10 OKCity s2 p1 200
s3 James 15 Austin s3 p3 400
s3 James 15 Austin s3 p4 80
s4 Tony 23 Waco s4 p1 800
s4 Tony 23 Waco s4 p2 200
s4 Tony 23 Waco s4 p3 150
s4 Tony 23 Waco s4 p4 300
s5 Mike 40 Tulsa s5 p2 200
s5 Mike 40 Tulsa s5 p4 300

Figure 4. An equijoin on relations S and SP with the
predicate S.S# = SP.S#

Now if there are more than one attribute in common between

29

the two relations then all the common attributes in both the

relations should hold the same value before the

concatenation of those tuples can take place.

The join construct is associative i.e a sequence of

joins can be written without any parentheses. Therefore

(R1 join R2) join R3 is the same as

R1 join (R2 join R3), which is the same as

R1 join R2 join R3.

30

S# SNAME STATUS SCITY P# QTY

s1 Smith 20 Dallas p1 100
s1 Smith 20 Dallas p2 180
s1 Smith 20 Dallas p4 50
s2 Adams 10 OKCity p1 200
s3 James 15 Austin p3 400
s3 James 15 Austin p4 80
s4 Tony 23 Waco p1 800
s4 Tony 23 Waco p2 200
s4 Tony 23 Waco p3 150
s4 Tony 23 Waco p4 300
s5 Mike 40 Tulsa p2 200
s5 Mike 40 Tulsa p4 300
--

Figure 5. A natural join on relations s and SP with
the predicate S.S# = SP.S#

Optimization Techniques

Optimizing techniques can be enforced in the compiler

design itself. In the compiler level optimization is done in

two areas namely:

i. loop optimization, and

ii. temporary storage management.

The former relates to time optimization and the latter to

space optimization. Joins take up most time (for a join of

two relations the cost is approximately equal to the cost of

between 5 and 20 database retrievals [Date87]) and these are

implemented in the following two ways:

i. the nested loop method, and

ii. the sortjmerge method.

31

In the nested join (Rl join R2) join RJ, it is not necessary

to compute the join of R1 and R2 in its entirety before

computing the join of the result and R3. Instead as soon as

any two tuples of R1 and R2 have been joined, it can be

passed to the process that joins such tuples with the tuples

of RJ. The nested loop method which is used to implement the

join in the proposed approach, is described by the pseudo

code in Figure 6.

for i = 1 to num-of-tuples in R1
scan tuple i in R1;

end;

for k = 1 to num-of-tuples in R2;
scan tuple k in R2;

end;

check whether tuple i matches tuple k;
if so construct concatenated tuple;

Figure 6. Pseudo-code for nested-loop join

The sortjmerge method is a method of implementing the join

operation in system R database system. It sorts the two

relations (which are to be joined) on basis of the values of

the joining attributes, and then on this it applies the

nested loop algorithm (mentioned previously).

For a given set of relations the optimizer chooses a

pair to be joined first, and then the third relation to be

joined to the result of the first join, and so on. This is a

strategy followed by the optimizer to reduce the search

space. When two relations are to be joined each having some

restrictions on them andjor projections on them, the

optimizer treats it as shown below:

(Rl join R2) where restriction on R2

is treated as

Rl join (R2 where restriction on R2).

32

Temporary storage management in the context of database

operations is how to optimize commands by reusing temporary

relations. A good caching scheme can be built where

temporary results are stored so that they can be used later

in the execution of later commands. But the temporary table

that is built in the first place should be of use to later

queries. This is dealt with greater detail in the succeeding

section.

Other techniques of query optimization include:

i. early restr~ctions, and

ii. combining operations.

It is usually advantageous to restrict the size of the

relations involved in a query as early as possible. 'Select'

command in SQL can be considered as a restriction, since

they tend to reduce the size of the relation (in terms of

the number of tuples) involved in subsequent commands.

'Project' also is a restriction. Combining operations deal

with executing two or more commands at the same time, thus

avoiding scanning the same tuple twice. For example a

selection and a projection can be performed together. But

there is no easy way to combine two different commands into

one. In cases like this changing the order of execution can

increase the efficiency.

If a query is embedded in an applications program, the

query can be optimized at:

i. the compile time, or

ii. the first time the query is executed, or

iii. every time the query is executed.

33

If the query is optimized at compile time, distribution

information is not available then. When it is optimized the

first time only, then it may so happen that in the middle of

the program there may be some change made which affects the

query processing. The ideal time would be to optimize it

whenever it is executed but in that case the overhead of

optimization will also be quite high.

CHAPTER IV

PROPOSED APPROACH

Introduction

As a query is made, it can be optimized. No information

about other queries in the system is used. This is called

single query optimization [Sel91]. The reasons for which

single query optimization is done are:

i. Firstly, in business applications it is quite

common that single database commands can be quite

complex, so that processing each single query

efficiently would result in significant

improvement.

ii. Secondly, it is again common in business data

processing applications to use ad hoc access to

the database, in which the user issues only one

query at a time, so that there is no opportunity

to optimize more than one query at a time.

iii. Moreover the query processing algorithm which is

most efficient is essentially an exhaustive search

of all the possibilities and this complexity would

grow exponentially if more than one query at a

time were optimized.

34

35

But optimization techniques can be focussed on more

than one query at a time. This can be done in .both

traditional and non-traditional applications. This works out

to be quite advantageous for the following reasons:

i. The optimizer has more information on which to

base its decision. For example, knowing that there

will be several consecutive commands of one type,

the optimizer may elect to build an index which

may not be worthwhile for only one command of that

type.

ii. The optimizer has more flexibility to rearrange

the order and implementation of operations.

iii. In extended languages such as QUEL*, a single new

database command include several traditional

commands. Therefore in these languages a single

query can encompass several traditional queries.

In the proposed method, this is the basic approach

taken for developing enhancements to existing query

processing algorithms i.e instead of processing one query at

a time, two queries are processed at one time, so as to make

use of some of the advantages listed above. It is usually

advantageous to restrict the size of the relations involved

in a query as early as possible in the execution plan. If

the succeeding query is known it becomes all the more

beneficial for optimization.

36

Target Area

The proposed method is aimed at databases in which

there is high likelihood of successive queries having common

attributes. Statistical databases is one such area, since

they are primarily collected for statistical analysis

purposes. A statistical database is a database from which

aggregate information about large subsets of 8ntities of an

entity set is to be obtained [Pal87]. A database of census

data is an example of a statistical database. Furthermore

traditional single query optimization techniques do not

provide adequate efficiency for many non business

applications, such as engineering and artificial

intelligence applications. Optimization techniques need to

be applied to an entire program of database queries. The

proposed method is therefore relevant to these areas also.

Even in business applications, there are a number of

instances where two succeeding queries use the same base

relations. Therefore it is useful to preserve the temporary

tables that are created using joins. An example of this

would be in a typical student database (maintained by

universities), with queries such as:

i. what are the names of the students who passed out

in the Fall of 1990 with a GPA > 3.5?

ii. what are the names of the students who passed out

in the Spring of 1991 with a GPA > 3.5?

Yet another example would be:

i. What are the names of students enrolled for 9

hours or less?

ii. What are the names of students enrolled for 15

hours or more?

Thus this method can be adopted for business

applications too in a limited fashion.

Description of the Proposed Method

37

In both the examples cited in the previous section,

there were common attributes between the two queries. The

proposed approach rests on this basis that successive

queries have one or more common attributes in common. In the

worst case if there are no attributes in common, then

processing would boil down to the same time which it would

take for processing a single query.

Now even though there may be common attributes between

the two queries, the restrictions that are asked for in each

query may not be same or even similar. If the first query

was, say for example "get names of senior students with GPA

> 3.5'', and the second was "get names of senior students

with GPA > 3.75", then the result of the first can be

directly used in the second. But as shown in the second

example, the restriction applied for each query may be

diametrically opposite. Therefore, in the proposed method

the selection criteria is a sum of both the restrictions. It

uses an "OR" clause i.e during the selection process, if the

38

specified attribute in the tuple in the relation evaluates

to 'TRUE' value for either condition 1 or condition 2, it is

selected. This makes it imperative to apply another

selection analysis on the resulting relation, this time only

with condition 1 and once again only with condition 2. Now

in total three passes are done. One of them is done on the

original relation and the remaining two are done on the

relation got from the result of the first operation, which

is considerably smaller than the original one. In normal

query processing, in total two passes would have been done

but both of them would be on the same original relation.

It is also not necessary that there have to be an

attribute common between two queries, before the joint

processing is done. It is enough if both the queries have

this much in common that they both have some attributes

which belong to the same relation. The formulation of the

algorithm for the proposed approach is based on the

assumption that most simple queries in a relational system

can be expressed by means of the relational operators

projection, selection, and join. Also it is assumed that the

database on which this algorithm operates does not

incorporate data partitioning.

Notations

The permanent relations are denoted by R1, R2, etc. A1,

A2, etc. are the set of attributes associated with the

relations Rl, R2, etc. Temporary relations are created as a

result of performing any one of the three relational

operations project, select or join, and they are denoted by

TRl, TR2, etc.

39

A query is made. PQl is the set of attributes requested

by the query. For example, PQl = {al, a2,, a3, .. }. This set

PQl is useful in projecting the final result i.e. for

performing a final projection. The query also defines some

operand restrictions which are placed in another set SQl.

SQl contains both the attributes on which the restrictions

are placed, and the restricting clauses too. For example,

SQl = {al = s3, a6 !=London, a4 < 300, ... }

The selections will assure that the specific operand

conditions have been met. Now the user is prompted for the

second query. If the user decides to answer 'NO' to the

prompt, the processing of the query already read in is

initiated. On the other hand if the user does enter the

second query, then the corresponding details for the second

query are placed in sets PQ2, and SQ2.

Methodology

We begin with building a relation matrix containing the

names of the relations, that are used by the two queries.

Next using the sets SQl and SQ2, a set C is b~ilt which

contains the common selection attributes of query 1 and

query 2, i.e.

C = SQl intersection SQ2.

40

Now for every attribute that is present in set c, the parent

relation is determined. A temporary relation TRi for each

common selection attribute in set c, is created using the

parent relation as the ,original relation. This temporary

relation is created such that it contains only those tuples

which satisfy the conditions associated to the specified

common selection attribute, in sets SQ1 and SQ2. Now in the

relation matrix, the corresponding parent relation is

substituted by the newly created temporary relation i.e

whenever say relation R7 is to be referred to, and if this

had a temporary relation created from it then,the query will

refer to relation TR7 instead of R7.

Now the processing of query 1 starts. First a set E is

made which contains the names of all the relations that are

needed for processing query 1. E is built using PQ1 and SQ1.

Note that while building E, the relation matrix is referred

to, and therefore E may at the start itself contain a

temporary relation in place of an original one. For example

E = {R4, R7, TR3, ... }

Selections and projections are performed and new temporary

relations are created~ But these temporary relations are not

substituted in the place of the original ones in the

relation matrix. But for each relation in E for which a

projection or selection (or both) was made, the new

temporary relation is substituted in its place in the set E.

Whenever a projection is made, the primary key attribute(s)

is also projected, so as to be able to uniquely identify the

tuples in the new relation. These key attributes facilitate

the join operations which follow later. This process is

repeated till the set E contains only temporary relations

i.e E may be something like this:

E = { TR2 , TR5 , . . }

41

Now b~tween every temporary relation in E, which have

one or more attributes in common, a natural join is made

with respect to those common attributes. The result of the

join is placed in the set E, and the two temporary relations

that were used for the join are now removed from E. This

process is also repeated till the set E contains only one

relation. This is the final temporary relation created and

this will contain atleast those attributes that were defined

by the initial query. Using the set PQ1, the needed result

attributes are projected from this temporary relation to

eliminate unnecessary key attributes. This forms the answer

for query 1 which is then displayed to the user.

The whole process is repeated with query 2, the only

difference being that the sets PQ1 and SQ2 are used in place

of PQ1 and SQ1 for building the set E. Since the relation

matrix was not disturbed at all, the set E can be started

with the original relations (except for those relations

which had a common selection attribute). The result of query

2 is then displayed as in the former case.

42

An Example

An example is cited to make the explanation clearer.

Consider two queries with reference to the database in

Figure 1, that are to be processed:

i. Get S#, SNAME, and QTY of shipment for those

suppliers who supply part P2.

ii. Get P#, PCITY, for those parts which are supplied

in QTY > 300.

Normal processing would be to process query 1 followed

by query 2. In this case it would involve, reading 12 tuples

from the relation SP and selecting 3 from them. Then this

would be followed by joining relation S with the result. It

would scan 5 tuples in s and produce a result containing 3

tuples. In total the total number of page accesses (assuming

each record occupies one page - an assumption which is quite

possible if the records are large) would be equal to 12 + 5

= 17.

S#

s1
s4
s5

P#

p2
p2
p2

QTY

180
200
200

S#

s3
s4

P#

p3
p1

QTY

400
800

-------------'

SP' for query 1 SP' for query 2

Figure 7. Temporary relation SP' produced when the
queries are processed separately

43

Now processing the second query would have another

operation of scanning 12 tuples in relation SP, producing a

result containing 2 tuples. Again now scanning 4 attributes

of relation P and then making a join with the result of the

previous operation would end with a relation containing 3

tuples. This time the total number of pages accessed would

be equal to 12 + 4 = 16. In sum for processing two queries

the total number of pages accessed would be equal to 17 + 16

= 35.

Using the method proposed, the query would be processed

thus:

i. Get the common attributes between the two queries.

In this case it is the attribute QTY.

ii. In the relation containing the common attribute,

select those tuples which fulfil either of the two

restrictions, i.e either QTY > 300 or P# = p2.

This involves reading 12 tuples and selecting 5 of

them. This new temporary relation created is kept

in the memory or cache. Let this be SP'.

iii. Now project S# and SNAME from relation S. This

involves reading 5 tuples and creates a temporary

relation containing 5 tuples but much smaller in

size.

iv. Select from relation SP', those tuples which meet

the condition P# = p2, and produce a join with the

result of the previous projection.

44

v. Project the attributes asked for in the result of

the first query. Totally the number of page access

done for this query= 12 + 5 = 17.

vi. Now project P# and PCITY from relation P. This

involves readipg 4 tuples and creates a new

relation conta~ning 4 tuples but again smaller in

size, as compared to the original relation.

vii. Select from the relation SP' the tuples that meet

the condition, QTY > 300 and perform a join with

the result of the previous step.

viii. Finally project the attributes asked for in the

result of the second query, from the relation

formed in the previous step. For this query the

total number of pages accessed from the disk = 4,

since the relation SP' was held in the main memory

or cache as the case may be.

S# P# QTY

s1 p2 180
s3 pJ 400
s4 p1 800
s4 p2 200
s5 p2 200

New gpt formed

Figure 8. Temporary relation SP 1 produced when the
queries are processed together

45

In total the number of page's read from the disk amounts to

17 + 4 = 21, as compared to 35 in the first case. Note also

that in the relation SP there were no tuples that were

commonly selected for both the queries. had there been some

common tuples, then the size of the temporary relation built

(i.e SP') would have been even smaller.

The overhead attached to this approach is that the

temporary relation SP' which is built in the first place is

larger than the one that would have been built for a single

query. Also it is scanned twice.

Simulation Details

The approach towards query optimization discussed in

the previous section was simulated on a VAX 8350 running

under the Ultrix o;s. The coding was done in the 'C'

language a copy of which is attached in the appendix.

Initially, the database containing four relations was

created. The database is created of fixed length records,

with fixed length fields. Each record is assumed to be big

enough to occupy one complete page so that each time a

record is accessed, a page access is said to be done. Each

relation of the database is maintained in a separate file,

and these are treated as secondary storage. The relations

are created just to look like tables (the user view), and

they consist of a header line followed by the tuples. No

primary key value is allowed to be NULL. A separate file

called 'MANAGER' is used to store information about the

46

database, which the algorithm reads at the beginning. This

gives details about the names of the relations of the

database, their primary keys, and the number of tuples in

each relation.

Queries are addressed in a SQL like format with a

little modification. A typical query has the syntax shown

below:

Atrl [,Atr-i] ; Condnl [,Condn-i] .

The square parentheses '[]' denote that any number of

attributes, or conditions can follow. The list of attributes

is terminated with a';' and the end of the query is

indicated by a'·' The left side of the ' . ' '
in the query is

read into the set PQ, and the right side into the set SQ.

Both these sets are maintained by means of arrays.

The pseudo-code for the whole simulation is shown in

Figure 9. The code consists of seven basic modules, namely:

i. creation of the matrix of relations,

ii. reading the input query,

iii. checking for common selection attributes,

iv. making the relation list,

v. performing the selections and projections,

vi. performing the joins, and

vii. printing the results.

begin
read MANAGER file;
create relation-matrix;
read 1st query;
prompt user for 2nd query;
if user sends 2nd query

end;

read 2nd query;
find common selection attributes;
create temp files for those relations only;
adjust relation-matrix;

start processing query 1
make list of relations;
make selections and projections;
note # of page accesses made;
perform joins;
extract result;

end processing query 1;
if (2nd query present)

make list of relations for 2nd query;
make selections and projections;
note # of page accesses made;
perform joins;
extract result;

end processing 2nd query;
end.

Figure 9. Pseudo-code for the simulation of the
proposed query processing approach

When the program is run, it first looks into the MANAGER

file and based on the information there it creates a

relation matrix. The relation matrix identifies each

attribute with the appropriate relation. It is implemented

with a two-dimensional matrix.

47

Another structure known as the relation-list is made to hold

the set E described in the previous section. This has the

list of the attributes that are to be projected from that

48

relation, and the conditions that are attached to any

attribute present in that relation. It is implemented using

a linked list. File pointers are used for implementation of

projections and selections. New temporary relations that are

created are represented as files. Procedures responsible for

the projection, selection and join operations use the

relation-list and a temporary- file-list as inputs. The

projection procedure eliminates those attribu~es that are

not needed to answer the query. The selection procedure

ensures that all the predicate relationships specified by

the query have been considered. The nested-loop method of

join is used to perform the join operations. The relations

are assumed to be read sequentially.

CHAPTER V

RESULTS AND CONCLUSIONS

The new approach to query optimization was developed

and tested for a random sample of queries. Comparison was

made with the 'traditional' method of evaluating i.e. the

method without using the proposed approach but in all other

aspects the same. Initially the database used for testing

the proposed technique was created. This sample database was

created very much similar to the sample database available

on the QMF (Query Management Facility) running under IBM

VM/SP (Virtual Machine/System Product) operating system on

the mainframe IBM 3090 machine. It was available from the

University Computer Center, Oklahoma State University. QMF

is a user interface to access data stored in relational

databases such as SQL/DS (SQL/Data System) or
1

IBM DB2

(Database 2). The conclusions inferred from the test runs

are discussed below.

Evaluation Criteria

Evaluation of the test is based upon the number of page

accesses made for processing the given query. This

indirectly reflects on the time complexity also, since the

most time consuming operation in the evaluation of a query

49

is in making the disk accesses. It follows that fewer disk

accesses made, leads to better performance.

Results

50

First several runs were made to identify the problems

incurred during the development of the simulation process.

Later test runs were made querying different number of

attributes. Also the number of common selection attributes

were varied so as to show the effect of this parameter on

the processing. The test results are shown in Figures 10

through 13. The below tables give the average number of disk

accesses made for every set of two queries by the two

methods.

TABLE I

COMPARISON OF THE NUMBER OF DISK ACCESSES MADE
BETWEEN THE TWO METHODS WITH THE NUMBER OF

ATTRIBUTES QUERIED = 3

NUMBER OF COMMON
SELECTION ATTRIBUTES

0

1

2

3

NUMBER OF PAGE ACCESSES

TRADITIONAL NEW METHOD

60 60

60 40

60 33

60 30

TABLE II

COMPARISON OF THE NUMBER OF DISK ACCESSES MADE
BETWEEN THE TWO METHODS WITH THE NUMBER OF

ATTRIBUTES QUERIED = 4

NUMBER OF COMMON NUMBER OF PAGE ACCESSES
SELECTION ATTRIBUTES

TRADITIONAL NEW METHOD

0 80 80

1 80 70

2 80 57

3 80 50

4 80 40

51

TABLE III

COMPARISON OF THE NUMBER OF DISK ACCESSES MADE
BETWEEN THE TWO METHODS WITH THE NUMBER OF

ATTRIBUTES QUERIED = 5

NUMBER OF COMMON
SELECTION ATTRIBUTES

0

1

2

3

4

5

NUMBER OF PAGE ACCESSES

TRADITIONAL NEW METHOD

100 100

100 80

100 73

100 70

100 60

100 50

52

50

40
% Reduction
in # of disk 30
accesses

20

10

0 I _,_,_,_,_,_
0 1 2 3 4 5

of common
selection attributes

Figure 10. Graph showing the relation between the #

% Reduction
in # of disk
accesses

of common selection attributes and the
percentage reduction in disk accesses when
of attributes queried = 3

50

40

30

20

10

0

..,..~"'
~"'~/

/'

/
/

"'/

/,../ ... -
.r""'

.. /

// _,_,_,_,_,_
0 1 2 3 4 5

of common
selection attributes

Figure 11. Graph showing the relation between the #
of common selection attributes and the
percentage reduction in disk accesses when
of attributes queried = 4

53

% Reduction
in # of disk
accesses

50

40

30

20

10

0 _l_l_l_l_l_
0 1 2 3 4 5

of common
selection attributes

Figure 12. Graph showing the relation between the #
of common selection attributes and the
percentage reduction in disk accesses when
of attributes queried = 5

54

55

Conclusions

The new technique of query optimization was developed

with the intention that it would enhance the processing of

existing query optimization algorithms. The proposed

technique can be used in combination with other algorithms.

Based on several test runs made with the simulation program,

the following conclusions can be inferred:

i. The proposed method does decrease the number of

page accesses made for processing any set of two

queries.

ii. On the average, the number of page accesses made

(by the proposed method) reduce approximately

linearly, with the number of selection attributes

that are common between the two queries.

iii. Also a reduction in the size of the temporary

tables created is observed, but however the

processing time for the queries does increase

slightly.

Future Work

The present work was aimed at developing a new

technique for query processing in relational databases,

based on reading two queries at a time. As a sequence to

this work, multi query processing (with more than two) can

be attempted. This would be quite useful especially in

statistical databases.

56

Also another possible future direction of this research

work is to improve on the software implementation of the

proposed technique. A number of refinements and extensions

can be suggested. The impact of a system's overhead and the

way it affects the overall cost could be studied. The

proposed technique is active only when there are some common

selection attributes between the two queries. But an

improvement can be got even if there is just some relation

in common in between the two queries (and not only

attributes) . There is also scope for future work in this

direction.

REFERENCES

[Aho79]
Aho, A.V., Beeri, c., and Ullman, J.D., The Theory of
Joins in Relational Databases, ACM Transactions on
Database Systems, Vol. 4, No. 3, Sept 89, pp. 297-314.

[Aper88]
Apers, M.G., Data Allocation in Distributed Database
Systems, ACM Transactions on Database systems, Vol. 13,
No.3, Sept 88, pp. 263-304.

[Bez86]
Bezalel, G., and Segev, A., Set Query Optimization in
Distributed Database Systems, ACM Transactions on
Database Systems, Vol. 11, Sept 86, pp 265-293.

[Cha90]
Chakravarthy, u.s., Grant, J., and Minker, J., Logic
Based Approach to Semantic Query Optimization, ACM
Transactions on Database Systems, Vol. 15, No. 2, June
90, pp. 162-207.

[Codd70]
Codd, E.F., A Relational Model of Data for Large Shared
Data Banks, Communications of the ACM, Vol. 13, No. 6,
June 1970.

[Date87]
Date, C.J., An Introduction to Database Systems,
Addison-Wesley Publishing Company, Inc. , Reading, MA,
1987.

[Deen85]
Deen, S.M., Amin, R.R., Ofori-Dwumfuo, G',O., and Taylor
M.C., The Architecture of a Generalized Distributed
Database System - PRECI*, Computer Journal, Vol. 28,
No. 3, 1985 pp. 282-290.

[Egy88]
Egyhazy, c., and Triantis, K., A Query Processing
Algorithm for Distributed Relational Database Systems,
Computer Journal, Vol. 31, No. 1, Feb 88, pp. 34-40.

57

58

[Fink88]
Finkelstein, R., and Pascal, F., SQL Database
Management Systems, Byte, Vol. 13, Jan 88, pp. 111-114.

[Gall84]
Gallaire, H., Minker, J., and Nicolas, J.M., Logic and
Databases: a Deductive Approach, ACM Computing Surveys,
Vol. 16, 1984, pp. 153-185.

[Gar89]
Gardy, D., and Puech, C., On the Effect of Join
Operations on Relation Sizes, ACM Transactions on
Database Systems, Vol. 14, No. 4, Dec 89, pp. 574-603.

[Hev83]
Hevner, A.R., and Yao, S.B., Query Processing on a
Distributed Database , IEEE Transactions of Software
Engineering, Vol. 9, No. 1, Jan 83, pp. 57-68.

[IBM90]
Query Management Facility, Learners Guide Version 3
Release 1, copyright IBM, 1983, 1990, pp~ 204-209.

[Jar84]
Jarke, M., and Koch, J., Query Optimization in Database
Systems, Computing Surveys, Vol. 16, No. 2, June 84,
pp. 111-152.

[Jar85]
Jarke, M., and Vassiliou, Y., A Framework for Choosing
a Database Query Language, ACM Computing Surveys, Vol.
17, No. 3, Sept 85, pp. 313-40.

[Ker82]
Kerschberg, L., Ting P.D., and Yao S.B., Query
Optimization in Star Computer Networks, ACM
Transactions on Database systems, Vol. 7, No. 4, Dec
82, pp. 678-711.

[Moh86]
Mohan, c., Lindsay B., and Obermarck R.,Transaction
Management in the R* Distributed Database Management '
System, ACM Transactions on Database Systems, Vol. 11,
No. 4, Dec 86, pp. 378-396.

[Ozs89]
ozsoyoglu, G., Maltos, V., Ozsoyoglu, Z.M., Query
Processing Techniques in the Summary-Table-by-Example
Database Query Language, ACM Transactions on Database
Systems, Vol. 14, Dec 89, pp. 526-573.

59

[Pal87]
Palley, M.A., and Simonoff, J.S., The Use of Regression
Methodology for the Compromise of Confidential
Information in Statistical Databases, ACM Transactions
on Database Systems, Vol. 12, No. 4, December 87, pp.
593-608.

[QMF90)
Query Management Facility General Information, Version
3 Release 1, IBM Corp., 1990.

[Rob88)
Robie, Jonathan, Fast Data Access, Byte, Vol. 13, Jan
88, pp. 243-250.

[Sel91]
Sellis, T.K., and Shapiro, L., Query Optimization for
Nontraditional Database Applications, IEEE Transactions
on Software Engineering, Vol. 17, No. 1, Jan 91, pp.
77-86.

[Silb91]
Silberschatz, A., Stonebraker, M., and Ullman, J.,
Database Systems: Achievements and Opportunities,
Communications of the ACM, Vol. 34, No. 10, Oct 91, pp.
110-120.

[Ston89)
Stonebraker, M., The Distributed Database Decade,
Datamation, Vol. 35, Sept 15 '89, pp. 38-39.

[Ston91]
Stonebraker, M., and Kemnitz, G., The POSTGRES Next
Generation Database Management System, Communications
of the ACM, Vol. 34, No. 10, Oct 91, pp. 78-92.

[Vet89]
De Vet, John H.M., A Practical Algorithm for evaluating
Database Queries, Software-Practice and Experience,
Vol. 19, May 85, pp. 491-504. ·

[Wald90)
· Wald, J.A., and Sorenson, P.G., Explaining Ambiguity in

a Formal Query Language, ACM Transactions on Database
Systems, Vol. 15, No. 2, June 90, pp. 125-161.

[Wha90]
Whang, K., and Krishnamurthy, R., Query Optimization in
a Memory-Resident Domain Relational Calculus Database
System, ACM Transactions on Database Systems, Vol.
15, No. 1, March 90, pp. 67-95.

[Wong76]
Wong, E., and Youssefi, K., Decomposition- A Strategy
for Query Processing, ACM Transactions on Database
Systems, Vol. 1, No. 3, Sept 76, pp. 223-241.

[Yu84]
Yu, C.T., and Chang, c.c., Distributed Query
Processing, Computing Surveys, Vol. 16, No. 4, Dec 84,
pp. 399-408.

60

APPENDIX

PROGRAM IMPLEMENTATION

61

,,

PROGRAM FOR THE SIMULATION OF THE PROPOSED
QUERY PROCESSING TECHNIQUE

#include <stdio.h>
#include <ctype.h>
#include <string.h>

MAX NUM RELATIONS - -
MAX REL NAME LEN - - -

#define
#define
#define
#define
#define
#define
#define
#define

MAX NUM ATTRS IN REL

7
10
1?
10
15
20

- - - -MAX ATTR NAME LEN - - -MAX_NUM_ATTRS_QRYD
MAX NUM CONDNS - -MAX NUM TPLS PER REL

- -
MAX TPL LEN

150
150

/*********************************
* *
*
*

GLOBAL VARIABLES *
·*

*********************************/

typedef char
typedef Atr name

Atr_name [MAX_ATTR_NAME_LEN];
Q_ary [MAX NUM_ATTRS_QRYD];

typedef

typedef

struct {
char rel name
Atr name attr ary
Atr name key_ary
int tpl_sz;
int num tp;
} Mtrx_nd; -

struct {
Atr name lhs;
Atr name mid;
Atr name rhs;
} Condn;

[MAX_REL_NAME LEN];
[MAX_NUM_ATTRS_IN_REL];
[MAX_NUM_ATTRS_IN_REL];

~ 62

typedef struct {
Atr name
Atr name
Atr name
Atr-name
Atr-name
} Common;

lhs;
midl;
rhsl;
mid2;
rhs2;

typedef struct P node {
struct P-node *next;

typedef

Atr name- data;
} Proj nd, *P nd_ptr;

struct c node
struct C-node
Condn
} Condn_nd, *C

{
*next;
data;
nd_ptr;

typedef struct L node {
char rel name U1AX_REL_NAME LEN];
P nd_ptr p_ptr;
C nd ptr c_ptr;
struct L node *next;
} List nd, *List_nd_ptr;

typedef struct T node {
FILE *fp;
char rel name [MAX_REL_NAME_LEN];
Atr name atr [MAX NUM ATTRS IN REL];
int- tpl_sz; -
int num_tp;
struct T node *next;
} Temp_nd, *Temp_nd ptr;

typedef Mtrx nd
typedef Condn
typedef Common

Matrix [MAX_NUM RELATIONS];
C_ary [MAX_NUM_CONDNS];
Cmn_ary [MAX_NUM_CONDNS];

int
Matrix
Q_ary
C_ary
Cmn_ary

num pg accs,QRY NUM=l;
matrix; -
q_aryl,q_ary2;
c_aryl,c ary2;
cmn_ary;

List nd ptr
Temp=nd=ptr

head;
t hd NULL;

63

/*********************************
* *
*
*

MAIN PROGRAM *
*

This is the main driver routfne. It calls the other
functions (twice if necessary) .
No input parameters for this routine.
*I

main ()

{
int
char

PRSNT;
ans[lO];

printf ("\n\n");
create rel matrix (matrix) i
read query-(q aryl,c aryl);
printf ("\nDo-you want to enter 2nd query?");
printf (" (Answer Y or N) : ");
ans [0] = 'N 1 ;

scanf ("%s",ans);
if (ans [o] == 1 y 1) {

read_query (q ary2,c_ary2);
PRSNT = check sel attrs (c aryl,c ary2);
if (PRSNT) - - -

process_sel_attrs ();
}
make rel list (&head,q aryl,c aryl);
make-sels projs ();
perform joins ();
print results (q aryl) ;
printf (11 \n\n") ;-

if (ans [0] == 1 Y 1) {

}

t_hd = NULL;
QRY NUM = 2;
make rel list (&head,q ary2,c ary2);
make-sels projs ();
perform joins ();
print results (q ary2);
printf (11 \n\n") ;-

printf ("\nTotal # of page accesses =
%d\n",num_pg_accs);
}

64

65

/*********************************
* *
* CREATE REL MATRIX *

* *

This function is to read the existing database files
and create a matrix to relate each attribute to its
respective file.
Input:
mtrx - the relation matrix containing information about

different relations present in the database.
*I

create rel matrix (mtrx)
Matrix- mtrx;

{
int

char
FILE

i=O,k=O,DONE=O,
num rels, f pos;
*c,s[81],ch~ str [MAX_REL_NAME_LEN];
*f1, *f2;

f1 = fopen ("MNGR","r");
fscanf (f1,"%s",str);
while (!DONE) {

strcpy (mtrx[i].rel name,str);
f2 = fopen (str,"r");

fgets (s,80,f2);
k = strlen (s);
s[k-1] = '\0';
c = strtok (s," ");
k = 0;
strcpy (mtrx[i].attr ary[k++],c);
while (*c) { -

c = strtok ('\ 0' , " ") ;
strcpy (mtrx[i].attr_ary[k++],c);

}
strcpy (mtrx[i].attr_ary[k-1], """);

f pos = ftell (f2);
mtrx[i].tpl sz = f pos;
fclose (f2)T - ,

k = o;
fscanf (f1,"%s",str);
fscanf {f1,"%d",&mtrx[i].num tp);
fscanf {f1,"%s",str);
while ((strcmp (str,".") != 0) &&

(strcmp (str," ... ") != 0)) {

}

strcpy (mtrx[i].key ary[k++],str);
fscanf (fl,"%s",str);

}

}

strcpy (mtrx[i].key_ary[k) 1 " ");

if (strcmp (str 1 " ") == 0)
DONE = 1;

else
fscanf (f1 1 "%s",str);

i++;

strcpy (mtrx[i].rel_name 1 """);

num rels = i;

/*********************************
* *
*
*

READ_QUERY *
*

This function reads the input query and identifies
those attributes that are needed to be displayed in the
final result.
Input:
q_ary -
c_ary -
*I

array to contain attributes needed in the result
array to contain conditions read alongwith

read_query (q_ary,c_ary)
Q_ary q_ary;
c_ary c_ary;

{
int i=0 1 j=O, DONE=O,

num_condns=O, num_res attrs=O;
Atr name str;

printf (11 \nPlease type in query: \n");
scanf ("%s" 1 str);
j = strlen (str);
while (!DONE) {

if (str[j-1] == 1; 1) {

}

str [j -1] = 1 \ o 1 ;

DONE = 1;

if (str[j-1] == 1 I I)
str[j-1] = 1 \0 1 ;

strcpy (q ary[i++],str);
if (!DONE) {

66

}

}
}

scanf ("%s",str);
j = strlen (str);
if (strcmp (str,";") -- 0)

DONE = 1;

strcpy (q ary[i] ,""");
num res attrs = i;

i = o;
DONE = 0;
scanf (11 %s",str);
if (strcmp (str 1 ".") -- 0)

DONE = 1;
while (!DONE) {

}

strcpy (c ary[i].lhs,str);
scanf ("%s",str);
strcpy (c ary[i].mid 1 str);
scanf ("%s",str);
j = strlen (str);
if (S t r [j -1] == I I I)

str[j-1] = '\0';
if (str [j -1] == ' . 1) {

}

str[j-1] = '\0';
DONE = 1;

strcpy (c ary[i++].rhs,str);
if (!DONE) {

}

scanf ("%s 11 1 str);
if (strcmp (str, ".") -- 0)

DONE = 1;

strcpy (c ary [i] . lhs 1 """) ;

num condns = i;

67

/*********************************
* *
*
*

CHECK SEL ATTRS *
*

68

This functions is for getting the attributes common
to the two relations that are passed to it as parameters. It
stores the common attributes in the array c_atr ary.
Input:
al - array containing the conditions of query 1
a2 - array containing the conditions of query 2
*I

check sel attrs (al,a2)
C_ary al,a2;

{

}

int il=O,i2=0,kl,k2,
j=O,PRSNT=O;

while (strcmp (al[il++] .lhs,""") != 0);
wh1le (strcmp (a2[i2++].lhs,""") != 0);
for (kl = o; kl < (il-l); kl++)

for (k2=0; k2 < (i2-l); k2++)
if (strcmp (al[kl].lhs, a2[k2] .lhs)

== 0) {

}

strcpy (cmn ary[j].lhs,
al(kl].lhs);

strcpy (cmn ary[j].midl,
al[kl) .mid);

strcpy (cmn_ary[j].rhsl,
a 1 [kl] . rhs) ;

strcpy (cmn ary[j].mid2,
a2[k2].mid);

strcpy (cmn_ary[j].rhs2,
a2[k2] .rhs);

j++;

strcpy (cmn ary[j].lhs,""");
if (j != 0)-

PRSNT = 1;
return (PRSNT) ;

/*********************************
* *
*
*

PROCESS SEL ATTRS *
*

This procedure is :for processing the selection
attributes only that which are common to both the queries.
It modifies the relation matrix as necessary.
*I

process_sel attrs ()

{
int
long
char
FILE

for

i,k,tpl_sz,num_tp,mtrx_loc,TRUE;
jl,j2;
r name[lO),val rd[lO],line [MAX_TPL_LEN];
*fl,*f2;

(i=O; strcmp (cmn ary [i) . lhs, 11 " 11) ! = 0; i ++) {
find rel (cmn ary[i].lhs,r name,&mtrx lac);
tpl sz = matrlx[mtrx loc].tpl sz; -
num-tp = matrix[mtrx-loc].num-tp;
fl;; fopen (r_name,"r11); -

strcat (r name, 11 N11);

f2 = fopen (r name, 11 w11);

fgets (line~MAX TPL LEN,fl);
fprintf (f2,"%s 11 ,line);
strcpy (matrix[mtrx_loc).rel_name,r_name);

f seek (f 1, 0, 0) ;
strcpy (val rd, 11 " 11);

while (strcip(val rd,cmn ary[i].lhs) 1- 0)
fscanf (fl, 11 %s 11 ,val rd);

jl = ftell (fl) - strlen (val_rd);

for (k=l; k<=num_tp; k++) {
num pg aces++;
j2 ;; (k*tpl sz) + jl;
fseek (fl,]2, 0);
fscanf (fl,"%s 11 ,val_rd);
TRUE = compare

(val rd,cmn_ary[i].rhsl,

(val_rd,cmn_ary[i].rhs2,

cmn_ary[i].mid2);

cmn_ary[i].midl);
if (!TRUE)

TRUE = compare

if (TRUE) {
j2 = k * tpl sz;
fseek (f1,)2,0);

69

fgets
(line,MAX_TPL_LEN,fl);

fprintf (f2,"%s",line);
}

}
j2 = ftell (f2);
matrix[mtrx loc].num tp = j2/tpl_sz- 1;
fclose (fl); -
fclose (f2);

}
}

/*********************************
* *
* MAKE REL LIST *
* *

This function is for making the list of files that
are to be read for processing the given query and attaching
the necessary conditions to that list.
Input:
hd - head of the list containing the temp relations

created
q_ary -
c ary -
*7

array containing the result attribut~s of query
array containing the restrictions of the query

make rel list
List=nd_ptr
Q_ary

(hd,q_ary,c_ary)
*hd;
q_ary;

c_ary

{

c_ary;

int
char
List nd_ptr

*hd = NULL;

i=O,FOUND,mtrx_loc;
r name (MAX_REL_NAME_LEN];
pl,p2;

for (i=O; (strcmp (q ary[i] ,""") != 0); i++) {
find rel (q=ary[i],r_name,&mtrx_loc);
if ((*hd) == NULL) {

}

*hd (List nd ptr) malloc
(sizeof (List nd));

*hd = NULL;
make new node (hd,r name,q ary[i],

matrix[mtrx_loc).key=ary);

70

else {
locate rel (r name, (*hd),

&pl,&FOUND);
if (FOUND)

add_attr (pl,q_ary[i]);
else

71

make new node (&pl, r name,
q_ary[i],matrix[mtrx_loc].key_ary);

}

}
}

for (i=O; strcmp (c ary[i] .lhs, 11 '"' 11) != 0; i++) {
find rel (c-ary[i].lhs,r name,&mtrx loc);
locate rel (r name, (*hd)~&pl,&FOUND);

}

if (FOUND) -

else {

}

add_condn (pl,c_ary[i]);

make new node (&pl,r name, matrix
- - [mtrx Ioc].key ary[O],

matrix[mtrx_loc).key_ary);
p2 = pl->next;
add condn (p2,c ary[i]);

/*********************************
* *
*
*

FIND REL *
*

This function is to locate the name of the relation
in which a particular attribute is found. It returns the
name string.
Input:
an -

rn -
loc -
*I

name of the attribute to be matched to its
corresponding relation
relation name that is matched with an
integer to show location of rn in the matrix

find rel (an,rn,loc)
Atr name
char
int

{

an;
rn [] ;
*loc;

}

int i=O,k, DONE=O, FOUND,OVER;

while (!DONE) {
FOUND = 0;
OVER = 0;
k = o;
while ((!FOUND) && (!OVER))

if (strcmp (matrix[i].attr_ary[k],
an) == 0)

FOUND = 1;
else

if (strcmp (matrix[i].attr ary(k],
II " II) == 0) -

OVER = 1;
else

k++;
if (OVER)

i++;
if (FOUND) {

DONE = 1;

72

strcpy (rn,
matrix[i].rel_name);

*loc = i;
}
if (strcmp (matrix[i].rel_name,

II A II) == 0) {
DONE = 1;
strcpy (rn, "not found");

}
}

/*********************************
* *
*
*

MAKE NEW NODE *
*

This function is for
the list and attaching it to
needed pointers.

making a new relation node in
the end. It also modifies the

Input:
p1 -

rn -
attr -

k_ary -

ptr to show location in list (holding involved
relation names) where new node is to be inserted*/
relation name which is to be included in the list
attribute in that relation which is to be
projected
array to hold key attributes of the relation

*I

make new node
List-nd ptr
char- -

(pl,rn,attr,k_ary)
*pl;
rn[),attr[];
k_ary[]; Atr name

{

}

int
List nd ptr
P_nd=ptr

i, k i
nl;
tl,t2;

nl = (List nd ptr) malloc (sizeof (List nd));
nl->p ptr = (P nd ptr) rnalloc (sizeof (Proj nd));
nl->c-ptr = (C-nd-ptr) rnalloc (sizeof (Condn nd));
strcpy (nl->rei_narne,rn); -
nl->c_ptr = NULL;
nl->next = NULL;

I* copy key atributes first *I
strcpy (nl->p_ptr->data, k_ary[O)};
nl->p_ptr->next = NULL;
tl = nl->p ptr;
for (i=l; (strcrnp (k ary[i], 11 " 11 } 1- 0); i++) {

tl->next = (P nd ptr) rnalloc (sizeof
(Proj-nd));

}

strcpy (tl->next=>data, k ary[i]);
tl = tl->next;

tl->next NULL;
add attr (nl,attr);

if ((*pl) ==NULL)
(*pl) = nl;

else
(*pl)->next nl;

I*********************************
* *
*
*

LOCATE REL *
*

This function is for checking the relation list to
see whether the given relation is already in it or not.
Input:

73

rn - relation whose presence in the list is to be found

hd -
ptr -
FOUND -
*I

head of the list containing involved relations
ptr returns location of rel in the list
boolean variable to indicate success in search

locate_rel (rn,hd,ptr,FOUND)
char rn [];
List nd ptr hd,*ptr;
int - - *FOUND;

{

}

int
List_nd_ptr

DONE;
tl;

*FOUND = 0; DONE = 0;
*ptr = hd;
while ((!(*FOUND)) && (!DONE)) {

}

if (strcmp ((*ptr)->rel_name, rn) -- 0)
*FOUND = 1;

else {
tl = *ptr;
*ptr = (*ptr)->next;

}
if (*ptr == NULL) {

DONE = 1;
*ptr = tl;

}

I*********************************

* *
*
*

ADD ATTR *
*

74

This function is for adding a given attribute to the
proper relation in the list of relations.
Input:
pl -

attr -
*I

ptr to indicate location of the relation in the
list
attribute needed in the result (is added)

add attr (pl,attr)
List nd ptr pl;
char- - attr[];

{

}

int
P_nd_ptr

ALRDY_PRSNT=O;
tl,t2;

tl = pl->p ptr;
while ((!ALROY PRSNT) && (tl !=NULL))

if (strcmp (tl->data,attr) == O)
ALROY PRSNT = 1;

else {
t2 tl;
tl tl->next;

}
if (!ALROY PRSNT)

t2->next =
{
(P nd ptr) malloc (sizeof
(Proj-nd));

}

strcpy (t2->next=>data,attr);
t2->next->next = NULL;

/*********************************
* * * ADD CONDN *
* *

This function is for adding a given
criteria to the proper relation in the list

selection
of relations.

Input:
pl -
condn -

ptr to indicate relation location in list
condition to be added to that relation entry

*I

add condn (pl,condn)
List_nd_ptr pl;
Condn condn;

{
int
C nd_ptr

DONE=O;
tl,t2;

tl = pl->c ptr;
t2 = tl; -
while (!DONE) {

if (tl -- NULL)
DONE = 1;

else {
t2 = tl;

75

}
if (t2

}
else {

}
}

tl = tl->next;
}

NULL) {
pl->c_ptr = (C nd ptr) malloc (sizeof

(Condn nd));
pl->c ptr->data = condn;
pl->c=ptr->next = NULL;

t2->next = (C nd ptr) malloc (sizeof
(Condn nd));

t2->next->data =-condn;
t2->next->next = NULL;
I* end main else *I

I*********************************
* *
* MAKE SELS PROJS *

* *

76

This function is for making the actual selections on
the relation tables and then projecting the required
attributes to form new relations.
*I

make sels_projs ()

{
int

Atr name
List_nd_ptr
P nd_ptr
C_nd_ptr
FILE

tl = head;

i,j,row_num,l,
tpl sz,num_tp,DISK,
row [MAX_NUM_TPLS_PER_REL];
val;
tl;
t2;
t3;
*fpp [MAX_NUM_ATTRS_IN_REL],
*fpc [MAX_NUM_ATTRS_IN_REL];

while (tl != NULL) {
DISK = 0;
if (tl->rel name[strlen(tl~>rel name)-1]

!= 'N')- -
DISK = 1;

77

get rel parms (tl->rel name,
- - &tpl sz~&num tp);

build file ptrsl (ti,fpp,fp~,tpl sz);
for (row_num=O; row_num < num __ tpT row_num++)
{

}
}

}

t3 = tl->c ptr;
make selections

make_projections

if (DISK)

(t3,fpc,tpl sz,
row, row num) ;

(tl,fpp,tpl sz,
row,row_num);

num pg_accs++;

check_temp_rel (tl,&t_hd,fpp,fpc);
tl = tl->next;

/*********************************
* *
*
*

GET REL PARMS *
*

This function is for getting the size of each tuple
of the given relation and also the num of tuples in it, by
referring to the matrix.
Input:
rel -
sz -
num -
*I

relation whose parameters are needed
size of one tuple in the relation
number of tuples in the relation

get rel parms (rel,sz,num)
char rel(];
int *sz,*num;

{
int i=O,DONE=O;

while (!DONE) {
if (strcmp(rel,matrix(i].rel_name) 0)

DONE = 1;
else

i++;
}

}

*sz
*num

= matrix(i].tpl sz;
= matrix[i].num=tp;

/*********************************
* *
*
*

BUILD FILE PTRSl *
*

This function is for building the file pointers to
the given relations so as to read each attribute value.
Input:
tl -
fpp -

fpc -

tpl
*I

sz -

ptr to indicate relation position in the list
array containing file ptrs pointing to result
attributes in the relation
array containing file ptrs pointing to condition
attributes in the relation
size of each tuple in the relation

build file ptrsl (t1 1 fpp,fpc 1 tpl sz)
List_nct_ptr tl;
FILE *fpp[MAX_NUM_ATTRS_IN_REL] 1

*fpc(MAX NUM ATTRS IN REL];
int tpl sz; - - -

{
int
Atr name
P_nd_ptr
c_nd_ptr
FILE

i,jlk;
attr,lhs,str;
t2;
t3;
*fopen () ;

t2 = tl->p ptr;
for (i=O; t2 != NULL; i++) {

}

fpp[i] = fopen (tl->rel_name 1 "r");
strcpy (attr 1 """);

while (strcmp(attr,t2->data) != 0)
fscanf (fpp[i] 1 "%s" 1 attr);

j = ftell (fpp[i]) - strlen(attr);
fseek (fpp [i] 1 j 1 0) ;

t2 = t2->next;

t3 = tl->c_ptr;

78

}

for (i=O; t3 != NULL; i++) {

}

fpc[i] = fopen (tl->rel_name, 11 r");
strcpy (lhs,""");
while (strcmp(lhs,t3->data.lhs) != 0)

fscanf (fpc(i],"%s",lhs);
j = ftell (fpc[i]) - strlen(lhs) + tpl_sz;
fseek (fpc [i] , j, 0) ;

t3 = t3->next;

/*********************************
* *
*
*

MAKE SELECTIONS *
*

This function is for making the required selections
in the given relations.
Input:
pl -

fpc -

tpl_sz -
row -

ptr to show position of conditions in the query
pertaining to this relation
array containing file ptrs pointing to the
condition attributes in the relation
size of each tuple in the relation
array containing numbers of those tuples that are
selected '

row num - number of the selected row
*I

make selections (pl,fpc,tpl sz,row,row num)
c_nd:=ptr pl; , - -
FILE *fpc[];
int tpl sz, row[],row_num;

{
int
Atr name
C_nd_ptr

i=O,j,k,TRUE,ONCE FL=O,r2(6];
val_rd; -
p2,p3;

row [row num] = 0;
while (pl != NULL) {

fscanf (fpc(i],"%s",val rd);
j = ftell (fpc[i]) - -

strlen (val rd) + tpl sz;
TRUE = compare (val rd,pl=>data.rhs,

pl->data.mid);
if (!TRUE)

79

}

}

ONCE FL=1;
fseek (fpc[iJ, j,O};

p1 = p1->next;
i++;

if (!ONCE_FL)
row[row_num] = 1;

/*********************************
* *
*
*

COMPARE *
*

This function is for comparing the value present in
the relation with the expected value, and it returns an
indication to the comparision performed.
Input:
val rd -
val-exptd -
mid--
*/

value read from the relation
value asked for in the query
the operand connecting the above two values

compare (val rd,val exptd,mid)
Atr name val=rd,val exptd,mid;

{
int
char

k,TRUE=O;
c;

switch (mid[O]) {
case 1 =' if (strcmp(val rd,val exptd) -- 0}

case I I I

case '>'

TRUE = 1;
break;
if (strcmp(val_rd,val exptd)

TRUE = 1;
break;
k = strlen (mid) ;
if (k == 1) {

! = 0)

if (strcmp(val rd,
val_exptd) > 0)

TRUE = 1;
}
else

80

if ((strcmp(val rd,
val exptd) > o> II

(strcmp(vai rd,

case 1 < 1

break;

val exptd) == 0))
TRUE = 1;

k = strlen (mid) ;
if (k == 1) {

}
else

if (strcmp(val rd,
Vctl=exptd) < 0)

TRUE = 1;

81

if ((strcmp(val rd,
val exptd) < o) II

(strcmp(vai rd,
val=exptd) == 0))

TRUE = 1;

}

default
}

break;
break;

return (TRUE) ;

/*********************************
* * * MAKE PROJECTIONS *
* *

This routine is for projecting the needed
to a temporary file from where the joins can take

attributes
place.

Input:
tl -
fpp -

ptr indicating relation position in
array containing file ptrs pointing
attributes that are to be projected
size of each tuple in the relation
array containing the selected rows

the list
to the

tpl sz -
row -
row num
*I

- number of the selected row

make projections (tl,fpp,tpl sz,row,row num)
List-nd ptr tl; -
FILE- - *fpp[];
int tpl sz,row[], row_num;

{
int
Atr name
P_nd_ptr
Temp_nd_ptr

i=O,j;
val_rd;
p2;
trl;

if (row num == 0)
-create_temp_rel (tl,fpp,tpl sz);

if (row

}
else {

}
}

(row num] == 1) {
tr1 ~ t hd;
strcat (t1->rel name,"1");
while (strcmp (tr1->rel name,t1->rel name)

!= 0) - -

tr1 = tr1->next;
t1->rel name (strlen(t1->rel name)-1] =

- '\0'; -
p2 = t1->p ptr;
while (p2 T= NULL) {

}

fscanf (fpp[i], "%s",val rd);
fprintf (tr1->fp,"%-10s",~al rd);
j = ftell(fpp[i]) + tpl sz --

strlen(val rd); -
fseek (fpp[i++],j,O);
p2 = p2->next;

fprintf (tr1->fp,"\n 11);

p2 = t1->p ptr;
while (p2 T= NULL) {

}

j = ftell(fpp(i]) + tpl sz;
fseek (fpp[i++],j,O);
p2 = p2->next;

/*********************************

* *
* CREATE TEMP REL *

* *

82

result
Input:
t1 -
fpp -

This function creates a temporary file to have the
of the selections and projections made on a relation.

tpl sz -
*/ -

ptr indicating relation position in
array containing file ptrs pointing
attributes that are to be projected
size of each tuple in the relation

create temp rel (t1,fpp,tpl sz)
List nd ptr- t1; -
FILE- - *fpp(];

the list
to those

int

{

}

int
char

tpl_sz;

i=O,k=O,j;

P nd ptr
Temp=:nct_ptr

t_fl [MAX_REL_NAME_LEN];
p2;
nl,trl,tr2;

strcpy (t fl,tl->rel name);
strcat (t-fl,"l"); -
nl = (Temp nd ptr) malloc (sizeof (Temp_nd));
strcpy (nl=>rel name,t fl);
nl->fp = fopen (t fl-;"w");
nl->next = NULL; -
p2 = tl->p_ptr;

while (p2 != NULL) {

}

fscanf (fpp(i], "%s" ,nl->atr(k]);
fprintf (nl->fp,"%-lOs",nl->atr[k]);
j = ftell (fpp[i]) - strlen(nl->atr[k]) +

tpl sz;
fseek (fpp[i],j,O);
i++; k++;
p2 = p2->next;

fprintf (nl->fp, "\n");
strcpy (nl->atr[k],""");
j = ftell (nl->fp);
nl->tpl_sz = j;

if (t hd == NULL) {

}

- t hd (Temp nd ptr) malloc
(sizeof(Temp_nd));

t hd = nl;

else {

}

trl = t_hd;
tr2 = trl;
while (trl != NULL) {

tr2 = trl;
trl = trl->next;

}
tr2->next = (Temp nd ptr) malloc

(sizeof(Temp_nd));
tr2->next nl;

83

/*********************************

* *
*
*

CHECK TEMP REL *
*

This function checks whether
created has any tuples in it. If not
relation from the temp-rel list.

the temporary relation
then it removes this

Input:
tl - ptr to indicate relation position in the list

84

t hd -
fpp -

head of the list
array containing
of the relation

ptrs to the projection attributes

fpc -

*I

array containing ptrs to the selection attributes
of the relation

check temp rel
List nd ptr
Temp=nd=ptr
FILE

(t1,t_hd,fpp,fpc)
t1;
*t hd;
*fpp[MAX NUM ATTRS IN REL],
*fpc[MAX=NUM=ATTRS IN=REL];

{
int
Temp nd ptr
p nd-ptr

j ;
tr1,tr2;
t2;

C=nd=ptr t3;

t2 = t1->p ptr;
for (j=O; t2 !=NULL; j++) {

fclose (fpp[j]);
t2 = t2->next;

}
t3 = t1->c ptr;
for (j=O; t3 != NULL; j++) {

fclose (fpc[j]);
t3 = t3->next;

}

tr1 = *t_hd;
strcat (tl->rel name, 11 1 11);

while (strcmp (tr1->rel_name,t1->rel name) != 0)
tr1 = tr1->next;

t1->rel name [strlen(t1->rel name)-1] = '\0';
j = ftell (tr1->fp) ; -
tr1->num tp = (jjtr1->tpl sz) - 1;
fclose (tr1->fp);

if (tr1->num tp < 1) {
if (trl == *t hd)

*t hd-= (*t_hd)->next;
else {

}
}

}

tr2 = *t hd;
strcat (i:l->rel name," 1") ;
while (strcmp (tr2->next->rel_name,

tl->rel_name) != 0)
tr2 =tr2->next;

tl->rel name
[strlen(tl->rel_name)-1] = '\O';

tr2->next = tr2->next->next;

/*********************************
* *
*
*

PERFORM JOINS *
*

This function performs the needed joins between the
different relational tables as necessary so as to get a
final relation containing the required attributes.
*I

perform_joins ()

{
int
Atr name
Temp_nd_ptr
char

t1 t_hd;

DONE=O,PRSNT;
c_atr_ary [MAX_NUM ATTRS IN REL];
tl,t2;
ch[lO];

t2 t1->next;
if (t2 == NULL)

DONE = 1;
while (!DONE) {

PRSNT = get common atrs (c atr ary,
t1->atr,t2->atr);

if (PRSNT) {

}
else

perform_join2 (c_atr_ary,t1,t2);
t1 t1->next;
t2 = t1->next;

t2 = t2->next;
if (t2 == NULL)

DONE = 1;

85

}
t hd = tl;

}

/*********************************
* *
*
*

GET COMMON ATRS *
*

86

This functions is for getting the attributes common
to the two relations that are passed to it as parameters. It
stores the common attributes in the array c_atr_ary.
Input:
c_atr_ary - array containing the attributes that are

common to the two queries*/
al -
a2 -

array containing selection attr.'s of query 1
array containing selection attr.'s of query 2

*I

get_common atrs (c atr ary,al,a2)
Atr name c_atr ary[],al[],a2[];

{

}

int il=O,i2=0,kl,k2,
j=O,PRSNT=O;

while (strcmp (al [il++], """) != 0);
while (strcmp (a2 [i2++], """) != 0);
for (kl = o; kl < (il-l); kl++)

for (k2=0; k2 < (i2-l); k2++) {

}

if (strcmp (al[kl], a2[k2]) -- 0)
strcpy (c_atr_ary[j],

al[kl]);
j++;

}

strcpy (c atr ary[j],""");
if (j != 0)

PRSNT = 1;
return (PRSNT);

{

/*********************************

* *
*
*

PERFORM JOIN2 *
*

This function
given relations.

performs the actual join between two

Input:
ary -
tl -

t2 -

*I

array to contain the key attributes of new rel
ptr to indicate relation l's position in the temp
relation list
ptr to indicate relation 2's position in the temp
relation list

perform_join2 (ary,tl,t2)
Atr_name ary[];
Temp_nd_ptr tl,t2;

{
int

Atr name
FILE

nl,n2,k,j,hdr_len,
ONCE_FL,DONE;
str,sl,s2;
*fpl[MAX NUM ATTRS IN REL],
*fp2[MAX-NUM=ATTRS=IN=REL],*fp;

strcpy (str,t2->rel name);
strcat (str,"2 11); -

/*
if (QRY_NUM == 2)

strcat (str,"T");
*I
fp fopen (str,"w");
create_join hdr (ary,tl,t2,fp,&hdr len);

for (nl=O; nl<tl->num tp; nl++) {
build file ptrs2 (ary,tl,fpl,nl);
build-file-ptrs2 (ary,t2,fp2,0);
for (n2=0;-n2<t2->num_tp; n2++) {

ONCE FL = 0;
for (k=O; strcmp(ary[k], """) != o;

k++) {
fscanf (fpl [k], "%s", sl);
fscanf (fp2 [k], "%s", s2);
if (strcmp(sl,s2) != 0)

ONCE FL = 1;
j = ftell (fpl[k]) -

strlen(sl);
fseek (fpl[k],j,O);

87

j = ftell (fp2[k]) -
strlen(s2) + t2->tpl sz;

fseek (fp2[k],j,O); -
}

I*

*I
}

if (!ONCE FL)
add tuple
(tl~t2,ary,n1,n2,fp);

}

}
for (k=O; strcmp (ary[k], """) != 0; k++) {

fclose (fpl [k]) ;
fclose (fp2[k]);

}

t2->fp = fp;
t2->tpl sz = hdr len;
j = fteil (fp);
t2->num tp = (j/t2->tpl sz) - 1;
strcpy (t2->rel name,str);
fclose (fp); -

check prnt (4,1,1);

/*********************************
* *
* CREATE JOIN HDR *

* *

This function copies the needed attribute names to
the header of the new relation that is to be formed and
updates the atr array.
Input:
ary -
t1 -
t2 -
fp -
hdr len
*I

array containing all key attributes of new rel
ptr indicating position of rel 1 in list
ptr indicating position of rel 2 in list
ptr pointing to new relation that is created

- tuple size of the new relation

create join_hdr (ary,t1,t2,fp,hdr len)
Atr name ary[];
Temp nd_ptr tl,t2;
FILE *fp;
int *hdr_len;

{
int
Atr name

i=O,j=O,k,J ATR;
str, aa[2*MAX_NUM_ATTRS_IN_REL];

88

while (strcmp(tl->atr[i],""") != 0) {
fprintf (fp,"%-lOs",tl->atr[i]);
strcpy (aa[j++],tl->atr[i]);
i++;

}
i = o;
while (strcmp(t2->atr[i],""") != 0) {

J ATR =check if join atr (t2->atr[i],ary);
if (!J ATR) T -

- fprintf (fp,"%-10s",t2->atr[i]);
strcpy (aa[j++],t2->atr[i]);

}

}
i++;

}
fprintf (fp,"\n");
*hdr len= ftell (fp);
for (i=O; i<j; i++)

strcpy (t2->atr [i] 1 aa [i]) ;
strcpy (t2->atr[i] 1 """);

/*********************************
* *
*
*

BUILD FILE PTRS2 *
*

This function is used to build file pointers
attributes of the temporary relation pointed to.
Input:
ary -
fpa -

array containing attributes in query
array containing ptrs to attributes in new
relation

to the

n -
*I

integer indicating the tuple number in the rel.

build file ptrs2 (ary 1 p 1 fpa 1 n)
Atr name - ary [];
Temp_nd ptr p;
FILE *fpa[];
int

{
int

n· I

Atr name
i 1 j i
atr 1 rel_name;

strcpy (rel name,p->rel name);
for (i=O; strcmp(ary[i]~""") != 0; i++) {

89

}
}

fpa[i] = fopen (rel_name,"r");
strcpy (atr,""");
while (strcmp(atr,ary(i]) != 0)

fscanf (fpa(i],"%s",atr);
j = ftell (fpa[i]) - strlen(atr) +

((n+l) * p->tpl_sz);
fseek (fpa[i],·j,O);

/*********************************
* * * ADD TUPLE *
* *

This function is
relation that is created
relations.

for adding a new row to the
by the join of two existing

Input:
tl -
t2 -
ary -
nl -
n2 -
fp -
*I

ptr indicating position of 1st join rel in list
ptr indicating position of 2nd join rel in list
array containing names of join attributes
integer indicating tuple # in relation 1
integer indicating tuple # in relation 2
file ptr pointing to new relation (got from join)

add_tuple (tl,t2,ary,nl,n2,fp)
Temp_nd_ptr tl,t2;
Atr name ary[];
int- nl,n2;
FILE *fp;

{
int
long
char
Atr name
FILE

i,k,J_ATR;
jl,j2;
ch,line [MAX_TPL LEN];
sl,s2,atr;
*fl,*f2;

strcpy (sl,tl->rel name);
strcpy (s2,t2->rel-name);
fl = fopen (sl,"r");
f2 = fopen (s2,"r");
jl = (nl+l) * tl->tpl sz;
fseek (fl,jl,O);

90

}

fgets (line,MAX TPL LEN,fl);
line (strlen(line)-i] = '\0';
fprintf (fp,"%s",line);

jl = o;
while ((jl+lO) < t2->tpl sz) {

fseek (f2, j 1 1 0) T
fscanf (f2 1 11 %s",atr);
jl = ftell (f2);

}

J ATR =check if join atr (atr 1 ary);
if (! J ATR) T - -

}

- j2 = jl - strlen (atr)
+ ((n2+1) * t2->tpl sz);

fseek (f2,j2 1 0); -
fscanf (f2, "%s" 1 atr) ;
fprintf (fp 1 "%-10s",atr);

fclose (f2) ;
fprintf (fp,"\n 11);

/*********************************
* *
*
*

CHECK IF JOIN ATR *
*

This function checks whether the given attribute is
among the attributes that are common to the join. If so it
returns a TRUE value.
Input:
atr -
ary -
*I

attribute that is to be checked
array containing names of join attributes

check if join_atr (atr,ary)
Atr name atr,ary[);

{
int i=O,DONE=O;

while (!DONE) {
if (strcmp (atr,ary[i]) 0)

DONE = 2;
if (strcmp (ary(i],""") 0)

DONE = 1;
i++;

91

}

}

if (DONE == 2)
return (1);

else
return (0);

/*********************************
* *
*
*

PRINT RESULTS *
*

92

This function is used to do the final projection of
the needed result attributes from the last temp rel created.
Input:
q_ary - array containing the result attributes that are to

be finally projected*/

print_results (q ary)
Q_ary q_ary;

{
Temp_nd_ptr
FILE

tl;
*fp[MAX_NUM ATTRS IN REL];
i,nl,n2; int

long
Atr name

j ;
atr;

printf ("\nResult:\n");
printf (11 =======\n\n");
for (i=O; strcmp(q ary[i], 11 " 11) != o; i++) {

printf ("%=1os",q ary[i]);

}

fp[i] = fopen (t hd->rel name,"r");
strcpy (atr,""")T -
while (strcmp(atr,q ary[i]) != 0)

fscanf (fp[iJ, 11 %s",atr);
j = ftell(fp[i]) - strlen(atr) +

t hd->tpl sz;
fseek-(fp[i] ,],0);

printf ("\n");
for (nl=O; nl<i; nl++)

printf ("----------");
printf ("\n");

for (nl=O; nl<t hd->num tp; nl++) {
for (n2~0; n2<iT n2++) {

}
}

}

fscanf (fp[n2],"%s",atr);
printf ("%-lOs",atr);
j = ftell(fp(n2]) - strlen(atr) +

t hd->tpl sz;
fseek-(fp[n2]~j,O);

printf ("\n");

/*********************************
* * * CHECK PRNT *
* *

This is just a debugging routine. Performs no
function, unless used for checking intermediate results.*/
Input:
typ -
vall -
val2 -
*I

to indicate which structure to print
maxm # of tuples (if relevant)
maxm # of values (if relevant)

check prnt (typ,vall,val2)
int typ,vall,val2;

{
int
List nd_ptr
Temp_nd_ptr
P nd ptr
c:=nd:=ptr

i,k=O;
tl;
pl;
t2;
t3,t4;

switch (typ) {
case 1 : {
printf (11 \nPrinting contents of matrix\n\n");
for (i=O; i<vall; i++) {

printf ("[%d] %5s -",i,matrix[i].rel_name);
k = o;

93

while (strcmp(matrix[i].attr_ary[k],"A") !=
0)

k = 0;

printf
("%7s",matrix[i].attr_ary[k++]);

printf (11 %7s",":")i

}
}
break;

while (strcmp(matrix[i].key_ary[k], 11 " 11) !=
0)
printf
("%:.s 11 ,matrix[i] .key_ary[k++));

printf ("\n");
printf ("Tp sz = [%d), and# of tpls =

[%d]\n", matrix[i).tpl_sz,
matrix[i].num_tp);

case 2 {
printf ("\nq ary ");
for (i=O; i<vall; i++)

printf ("%s 11 ,q_aryl[i]);
printf (11 \n");
printf ("c ary ");
for (i=O; I<val2; i++) {

}

printf ("%s ",c aryl[i].lhs);
printf ("%s ",c-aryl[i].mid);
printf ("%s; "~c aryl[i] .rhs);

printf ("\n");
}
break;

case 3 : {
printf ("\nrel list\n");
printf ("--~--=--\n");
tl = head;
while (tl != NULL) {

}
}
break;

case 4

printf ("rel name %s\n",tl->rel_name);
t2 = tl->p ptr;
printf ("p-ptr ");
while (t2 T= NULL) {

}

printf (" --> %s",t2->data);
t2 = t2->next;

t3 = tl->c ptr;
printf (" =-1\nc_ptr ");
while (t3 != NULL) {

}

printf (" --> %s %s %s",
t3->data.lhs,t3->data.mid,
t3->data.rhs);

t3 = t3->next;

printf (" --1\n\n");
tl = tl->next;

94

}

pl = t hd;
printf-("Temp-rel's that are not empty are
while (pl != NULL) {

}

printf (" %-5s with atr.'s :",pl
>rel_name) ;

i = o;
while (strcmp (pl->atr[i], ""'") != 0)

printf (" %s",pl->atr[i++]);
printf ("\n");
printf ("tpl sz = %d\n",pl->tpl sz);
printf ("npm-tp = %d\n",pl->num=tp);
pl = pl->next;

printf ("\n -*- \n");
break;

}

---oooOOO END OF PROGRAM OOOooo---

95

VITA)~

FEROZE KHALIFULLAH

Candidate for the Degree of

Master of Science

Thesis: A QUERY OPTIMIZATION TECHNIQUE IN
RELATIONAL DATABASES

Major Field: Computer Science

Biographical:

Personal Data: Born at Tiruchi, India, on March 31,
1965, to Mr. and Mrs. Kutbuddin Khalifullah.

Education: Graduated from St. Johns Vestry Higher
Secondary School, Tiruchi, India, in April 1983;
Received Bachelor of Engineering Degree with a
major in Civil Engineering from P.S.G. College of
Technology, Coimbatore, May 1987; Completed
requirements for the Master of Science degree at
Oklahoma State University in December 1991.

Professional Experience: Graduate Assistant,
University Computer Center, OSU; Construction
Engineer, Pavan Associates, Madras, India.

