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CHAPTER I 

 

INTRODUCTION 

 
 

1.1. Performance Studies 

 
 
     The design space of microarchitecture is bound to grow significantly as multi-threaded 

and multi-core architectures are investigated by computer researchers.  Typically, 

computer architecture studies can be classified into 2 categories – Performance 

Evaluation and Performance Estimation metric studies. 

    Studies involving Performance Evaluation simulates the entire microarchitecture 

design and provides an accurate performance metric for the simulated microarchitecture.  

The simulation of the microarchitecture is cycle-accurate and involves detailed 

description of the microarchitecture blocks.  This method of detailed cycle-accurate 

performance analysis takes tens of thousands of host machine’s clock cycles.  

    The SPEC CPU benchmark programs have become the de facto standard to evaluate 

computer architecture designs.  However, with the number of instructions in the SPEC 

benchmarks mounting to more than a trillion instructions, it is not feasible to simulate the 

complete set of benchmark programs in a reasonable amount of time. 
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     For example, to execute 1 trillion instructions (assuming it takes 10,000 machine 

cycles for a simulated cycle) using a typical CPU operating at 1.5 GHz clock speed and 3 

instructions per cycle, it takes about 77 days to evaluate the microarchitecture design.  As 

different design trade-off studies have to be carried out by researchers, such long 

computing wait time becomes a huge impediment for research.  Hence, several 

techniques have been proposed to circumvent the cost of increased simulation time.  

Reduced input data-set and trace-driven evaluations are a few of the techniques to reduce 

simulation time for cycle-accurate simulations.  However, the similarities of these 

simulations with the actual simulation are still under investigation. 

    On the other hand, Performance Estimation models are proposed to probabilistically 

estimate the performance of the architecture design.  The performance estimate of the 

microarchitecture is determined in a short time and this ensures the possibility of several 

microarchitecture design trade-off studies.  But, the accuracy of the probabilistic model 

that describes the microarchitecture is debatable.  Several assumptions are made to 

describe the microarchitecture model and such abstraction undermines the results of the 

performance estimations. 

 

1.2. Motivation 

    The flow of instructions is measured in instructions per clock, IPCi, at some point i in 

the data path. Usually what we are interested in is the average IPC which can be 

determined as, 

( )∑=
c

i
c

i cIPC
N

IPC
1

                                             (1) 
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where, Nc is the total number of clock cycles when running a bench mark program and 

IPCi(c) is the number of instructions passing a point in the data path during clock cycle, 

c. 

    High level processor simulations can calculate IPC in this manner, but they are forced 

to simulate the processor behavior for billions of clock cycles which is very expensive. 

Instead a stochastic model for IPC can be used which avoids simulating the processor 

architecture cycle by cycle. 

    The data path structure and the hazard control logic determine the IPC(c) when hazards 

occur. Suppose the cycle by cycle simulation calculates N(IPCi = 0), N(IPCi = 1), ..., 

N(IPCi = si) which is the number of clock cycles that IPCi(c) = 0, 1, ..., si, where si is the 

local superscalar width (instruction parallelism) at point i in the data path. The IPC model 

can be made stochastic by defining the probability that IPCi(c) = 0, 1, ..., si as 

                              ( ) ii
c

i snnIPCN
N

nIPCP ,...,1,0
1

)( ====                           (2) 

so that, 

                                         ∑
=

=⋅=
is

n
ii nIPCPnIPC

0

)(                                      (3) 

    The same system of equations from the structural model that determines IPC(c) will 

give a system of equations that can be solved for P(IPCi = n) without running a cycle by 

cycle simulation. 

    The level of detail of this approach is such that individual instructions are not tracked 

as they flow through the data path structure. Instead the probability of an instruction flow 

rate is determined at each point in the data path structure. Many of the hazard control 

equations require knowledge about certain types of instructions at certain locations 
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during certain clock cycles. The probability of an instruction of a certain type can be 

determined from instruction frequency analysis of the benchmark programs.  

)()|()( iatninstructioPiatninstructiottypePiatttypeP ∗===  

                                            )( iatninstructioPf t ∗=                                            (4) 

        The instruction frequency of type t instructions, ft, can be reused for performance 

calculations of many different structural models. The stochastic model determines P(IPCi 

= n) only. The reuse of instruction frequency data greatly reduces the complexity of the 

stochastic model. 

    Calculating the effects of hazards is complicated since hazards are not mutually 

exclusive and that stalls from different hazards can overlap in time. The same stall can be 

produced by more than one stall at one time, and we must be careful to avoid counting 

the same stalls more than once. To apply the IPC formula, we must include not only 

individual hazards, but also all possible combinations of hazards with all possible 

overlaps in time.  

    In order to accurately estimate the performance of a complex microarchitecture design, 

we must understand the dynamic relationship between its instruction flow and the hazards 

due to structural, control and data dependence through its statistical information. An 

extremely fast microarchitecture simulator with detailed module descriptions that is 

closely related to hardware behavior is necessary to gather this statistical information.  

Hence, OSU AbaKus – a cycle-accurate microarchitecture simulator is developed to 

address this issue. 
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1.3. Cycle-Accurate Simulation Engine Concept 

    The basic idea behind the cycle-time simulator is that all clocked modules are 

evaluated for every simulation cycle.  This idea is in direct relationship with the pipelined 

design of the microarchitecture design, as all stages in the pipeline are evaluated similarly 

for each clock cycle.   

1.3.1 Processing Elements and Signals: 

    As shown in Figure 1.1, each Data Processing Element has an input buffer and an 

output buffer.  The Data Processing Element takes the necessary input data for evaluation 

and produces the output data that is then stored in the output buffer.  The flow of data in 

the buffers is controlled by the stall signal.  The processing elements can also introduce 

forward-propagating stalls or bubbles in the pipelines.  The propagation of bubbles in the 

pipeline occurs when there is insufficient amount of data stored in the input buffers to 

feed the processing elements.  The bubbles can be related to the no-operations (NOPS) in 

the microarchitecture design. 

 

Figure 1.1 Structure of a Simple Data Path Representation 

1.3.2 Buffer Design: 

   The design of the buffer offers the most discreet part of the simulation engine.  It 

defines both the simulation engine’s flexibility as well as its simulation speed.   The 

buffer in the simulation act as information sources and sinks for the Data Processing 
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Elements.  They maintain the network of connections through which the processing 

elements communicate with other processing elements in the design.   

    If the buffer gets filled, it can initiate a stall signal that stalls the up-stream buffers.  

The IPC of the processor is directly affected by these stall signals.  The stall signals that 

stall up-stream buffers are called backward-propagating stalls or up-stream stalls.  A 

major task in designing microarchitecture involves keeping a steady flow of information 

in the pipeline and to prevent buffers from being filled up.   

    The IPCout and IPCin are related in the eqn (5) and eqn (6) and are illustrated in Figure 

1.2, where Nb is the total number of instructions that the buffer can store, sin and sout are 

the number of instructions that are flowing into and out of the buffer in a clock cycle, 

bubblesin(c) is the number of bubbles that come into the buffer at cycle, ‘c’ and 

bubblesout(c) is the number of bubbles that leave the buffer at cycle, ‘c’. 





=
=−

=
1)(stall if                             0

0)(stall if    )(
)(IPC

in

in
in c

ccbubbless
c inin

                              (5) 





=
=−

=
1stall if                                0

0stall if    )(
)(IPC

out

out
out

cbubbless
c outout

                             (6) 

 

Figure 1.2.  Relationship between IPCin and IPCout 

    As defined in section 1.3.1, bubbles define the NOP instructions.  The buffers can both 

propagate as well as initiate stall signals, stallin and stallout.  The condition at which the 
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buffer is filled initiates the stallin(c) signal at cycle ‘c’.  This is shown in eqn. (7), where 

Ib(c) is the number of instructions present in the buffer at cycle ‘c’.                                                                                     

   (7)                                           

The state of the buffer for the next cycle can then be calculated and is given in eqn. (7).  

Thus eqn. (8) describes that the state of the buffer for the next cycle is only defined by 

the current state of the buffer. 

                               ( ) ( ) )()(1 cIPCcIPCcIcI outinbb −+=+                                       (8) 

    This simplistic view of the buffer is established from the pipeline model and more 

succinctly relates to the Moore State Machine of the architecture design.  Furthermore, 

for stochastic performance analysis, this step can be extended to a discrete-time Markov 

model and thus future state of the buffer can be estimated. 

 

1.4. Implementation of the Clocked Buffer Model 

    In this section, the implementation of the buffer model and the Data Processing 

Elements that are otherwise known as modules is discussed.  As discussed in section 1.2, 

it is important that this cycle-accurate simulator is simple and fast.  As shown in Figure 

1.3, the functionality of the architecture is defined by the two modules A and B.  Two 

separate simulation data structures are maintained at its interface.  The simulation 

methodology is a 2-step process.   

    The first step is to evaluate all the modules in the evaluate phase.  In the first cycle, 

module A uses Data Structure 1 as the output while module B uses Data Structure 2 as 
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the input.  The second step, i.e. at the end of the evaluate phase, is the update phase.  The 

pointers of Data Structures A and B are alternated.  Hence, during the second cycle 

module A uses Data Structure 2 as the output while module B uses Data Structure 1 as 

the input.  This buffer interface mechanism avoids transfer of huge amounts of simulation 

data during each cycle.  This concept is further explained in detail in the following 

sections. 

 

Figure 1.3. Pipeline Register Interface Model.  A and B are modules defining the functionality of 
the architecture. 

1.4.1 Module Interfaces through Port Definitions: 

    The modules descriptions are based on ISO C++ standard constructs.  The modules 

describe the behavior of the Data Processing Element.  The functional behavior of the 

module is described using C++ language definitions as in a sequential programming.  

However, the difference between sequential and modular programming is brought by port 

definitions that are used to interface with other modules.  As a result, as shown in Figure 

1.4, the modularity in the design is achieved through ports that are used as 

communication interfaces between modules and the buffer. 

Cycle 1 

Cycle 1 Cycle 2 

Cycle 2 

OUTPUT INPUT 

Evaluate 
Phase (1) 

Evaluate 
Phase (1) 

Update Phase (2) 

INPUT OUTPUT 

Data  
Structure 1 

Data  
Structure 2 

 

Module 
   A 
 

Module 
   B 
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Figure 1.4.  Module Interface 

    Similar to an HDL, ports are specified in a module to be an input or output port.  In 

Figure 1.4, each port has 2 pointers, the current port pointer and the next port pointer.  

The input data to the module is read from the Data-In Structure that is pointed by the 

current port pointer while the module’s output data is written into the Data-Out Structure 

that is pointed by next port pointer.  In the following cycle, the pointing location of the 

pointers is alternated, thus the outputs written during the previous cycle can be read as 

inputs in the following cycle and vice versa.  This simple alternating of pointers avoids 

the overhead of copying the entire data structure that leads to slow simulations as in 

OSCI SystemC 2.1. 
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Figure 1.5.  Improved Mechanism with Global Pointers for Global Data Structures 

    The number of update operations in alternating pointers between Data-In and Data-

Out Structures is directly proportional to the number of ports in a module.  Hence, to 

avoid this additional computational cost, two Global Pointers for the Global Data 

Structure A and B are created as illustrated in Figure 1.5.  Furthermore, the outputs of all 

the modules in the simulation are referenced to the Global Next Pointer and similarly, the 

inputs of all the modules are referenced to the Global Current Pointer.  These pointers 

alternate between the Global Data Structures A and B for each clock cycle.  Thus, the 

output data structure at clock cycle ‘N’ becomes the input data structure at clock cycle 

‘N+1’  and vice versa.  This mechanism not only avoids copying data between the Global 

Data Structures but also makes the number of update operations independent of the 

number of ports in the modules.  As a result, it maintains the computational time for 

updating the pointer locations a constant. 
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1.4.2 Register and Memory Element Interface Model: 

    The update phase that is shown is Figure 1.3 is also extended to update the registers in 

the register file and other memory elements.  As shown in Figure 1.6, the data in the 

memory elements are accessed through ports similar to the actual memory access.  The 

location of the write and read is determined by the write and read addresses respectively.  

Therefore, a write data or read data occurs on the referenced register/memory location 

depending on the logic. 

 

Figure 1.6.  Memory Access through Ports 

    As shown in Figure 1.7, both the write port and read port have two in-built data 

structures defined as Port A and Port B.  On the write port interface, the data to be stored 

are written into write port A, while the data from the write port B are transferred to the 

memory element. Their corresponding pointers are alternated during the update phase that 

is triggered by the clock cycle.  Hence in the following cycle, the functionalities of write 

ports A and B are interchanged.  Similarly, on the read port interface, data is read from 

the read port A and the data from the memory element is transferred to the read port B.  

The functionalities of ports A and B are similarly interchanged for each cycle.   
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Figure 1.7.  Port Access for a Memory Element 

   This functionality of the write ports and read ports described in this section 

corresponds to the D-flip flop register that is used in the actual hardware design.  Hence, 

designing the memory structures with port interfaces provides this simulator the 

capability to perform both functional as well as timing verifications as in an HDL, and 

yet with a much greater simulation speed. 

1.4. Organization of this Dissertation 
 

    Chapter 2 reviews the simulation mechanism on existing simulators.  It reveals the 

benefits and drawbacks of each simulator.  Chapter 3 presents the simulation approach of 

AbaKus simulator and also compares its performance with existing simulators.  Chapter 4 

discusses the modeling details of the superscalar architecture.  It then presents about the 

load-store dependence prediction schemes used in AbaKus.  Chapter 5 presents a case 

study on register write-back buses and identifies the characteristics of different bus 

scheduling mechanisms.  Chapter 6 presents another case study on control dependencies 

problem in superscalar cores.  Finally, Chapter 7 summarizes the design of AbaKus and 

limitations of superscalar processors.  
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CHAPTER II 

 
 

LITERATURE REVIEW  

 

 

2.1 Simulation 
     

    Hardware simulation is a process of describing the behavior of hardware logic using 

computer programming languages and verifying the hardware behavior with test input 

sets.  Its use and adaptation depends on the accuracy of the results obtained using 

simulated hardware compared with actual behavior, speed of simulation and flexibility to 

design. 

Computer architecture simulators are needed for the following reasons: 

• Perform extensive design space exploration because it is cheaper to experiment 

with simulated designs. 

• Verify hardware logic with respect to both functionality and timing, and 

• Aid in the simultaneous development of support software tools such as compilers 

and operating systems. 

    There is a plethora of computer architecture simulators and the next section discusses 

some of the widely used computer architecture simulators. 
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2.2 Simplescalar Tools 

    Simplescalar tool set (Burger and Austin [1], 1997) has been one of the most widely 

used computer architecture simulator both in research as well as in class projects.  It is an 

open-source and free-of-charge tool for non-commercial academic users.  It provides a 

baseline out-of-order simulator known as the sim-outorder and most of the processor 

design aspects including the reorder window size, number of functional units and latency 

of memory ports can be defined at compile time.  In addition, it integrates simplistic 

cache models to its processor and the cache design parameters can also be varied.   

    Simplescalar package has a set of simulators ranging from simple functional simulator 

to complex out-of-order processor simulator.  It supports MIPS IV based Instruction Set 

Architecture (ISA) with minor changes to the instruction opcodes and also provides 

cross-compiler for its ISA to run on host computer machines.  The advantage of 

Simplescalar tool set is its speed of simulation.  On sim-outorder simulations the 

simulation speeds can average about 200 K instruction/s on a typical modern day desktop 

machine.  Hence, it has been widely popular to execute SPEC benchmarks with 

Simplescalar tool sets that would normally be executed on real processors. 

    One of the main drawbacks of sim-outorder is that it is weakly related to the actual 

hardware behavior.  For example, sim-outorder does not model the effects of write-back 

buses in the processor core.  The contention among the write-back buses is important as it 

may increase the latency of dependent instructions.  Another weakness of sim-outorder is 

that the actual execution of the instruction is in-order and only the control flow of 

execution is simulated.  The concept of pipeline register timing is not simulated and it is 
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important to maintain accuracy.  Besides, code changes in Simplescalar have also proven 

to be difficult (Vachharajani et. al [2], 2002) and hence it has reduced flexibility. 

 

2.3 Liberty Simulation Environment 

    In order to the address the problems of accuracy in simulations and to reduce the 

development time for logic design Vachharajani et. al. [3], 2002 developed the Liberty 

Simulation Environment (LSE).  It is free and is a component-based model designed to 

reuse code usage.   

    Modularity in module definitions is well enforced by allowing modules to 

communicate through ports.  Each port as shown in Figure 2.1 handles 3 signals: data, 

enable, and ack.  The data is sent forward and the enable indicates that the receiving 

module should process the data.  If the receiving module can process the data then an ack 

signal is transmitted.  This simulates effectively the pipeline stalls and timing of data in 

an architecture simulation. 

 

Figure 2.1 Port Communications in Liberty, Vaccharajani et. al. [3], 2002 

    The advantages of LSE are that it is modular and through the use of a graphical user 

interface, designers can drag, drop and connect modules.  However, the modularity 

comes at the cost of simulation speed.  The number of hand-shaking signals increases 

with the increase in ports (Vachharajani et. al, 2002].     
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    The order in which the modules are invoked depends on the scheme called 

Heterogeneous Synchronous Reactive (HSR) scheme.  It is different for the discrete-event 

scheduling in that a partial order of module invocation is generated statically using 

several optimizing scheduling polices and later can change similar to the discrete-event 

scheduling.  In general, the HSR reduces the problem suffered by discrete-event 

scheduler which invokes repeated module evaluations. 

 

2.4 ASIM 

    The key feature of ASIM is its modularity (Emer [4], 2002).  The performance models 

in ASIM are mainly developed using C++ and is a proprietary of Intel [4].  Modularity is 

achieved through ports that are FIFO queues.  The model of FIFO ports helps ASIM to 

simulate the latency between pipeline stages and also wire delays.   

    ASIM is considered to offer a high degree of module reuse.  However, ASIM is likely 

to suffer in the speed of simulation as it is based on discrete-event scheduler.  Although, 

these schedulers enable designers to simulate realistic hardware signal flow, they suffer 

from additional computation time.  Since, ASIM is considered to be closely related to 

simulate hardware behavior; an extension of ASIM known as A-Ports (Pellauer et. al. [5], 

2008) has been developed to emulate the behavior through FPGAs. 

 

2.5 SystemC Based Simulators 

    SystemC is a C++ based modeling language with several model libraries for specifying 

the digital logic of the hardware and has a discrete-event scheduler to simulate the timing 
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details.  The popular version of SystemC is maintained by Open SystemC Initiative 

(OSCI) [6]. 

 

2.5. 1 UNISIM 
 
   Unified Simulation environment (UNISIM) is an open-source SystemC add-on that 

focuses on modularity and code reusability.  It also supports cycle-level and transaction-

level models.  Several groups such as Liberty, Microlib (Perez et. al. 2004, [7]) and 

SystemC model developer are actively involved to develop architecture models of the 

computer system. 

    One key feature in UNISIM is its interoperability which means that it is considered to 

be possible to integrate with different simulation environments.  It also supports full 

system simulation that includes operating systems such as Linux.  Virtutech® Simics™ [8] 

is another simulation environment that performs full system simulation and supports 

various operating systems.  But the disadvantage of Simics is that it is commercial with 

source code restrictions.  UNISIM currently supports a host of processor model including 

PowerPC and ARM.  The drawback on UNISIM is that it is an even-driven simulation 

environment and is slower than cycle-time based simulations.   

2.5.2 .ArchC 
 
    ArchC [9] is an open-source architecture description language based on SystemC.  It 

defines several wrapper class structures to enable designers to specify the architecture 

parameters instead on the actual module descriptions.  Module descriptions are also 
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possible to extend its model libraries.  It supports various models including PowerPC, 

Intel 8051 and SPARC V8 architectures. 

 

2.6 FPGA-based system emulation 

    Research Accelerator for Multiple Processors (RAMP) [10] aims to emulate dozens of 

processor cores in multiple FPGAs whose cells are being densely packed.  Validating 

multiple processors is difficult in simulations because of the increase in the level of 

simulation as well as the number of test inputs.  Emulation using FPGA technologies can 

lead to significant improvements in validating such architecture designs.  However, the 

cost involved in emulation is also significantly higher compared to computer simulations. 

 
 
2.7 Other Simulators 

    There are number simulators available for the computer architecture research 

community to simulate various components of a computer system.  Depending on the 

simulator’s characteristic it is the choice of the researcher to select a simulator.  

Simulators such as M5 (Binkert et. al. 2006, [11]) and SESC [12] model both CPU as 

well as support network I/Os of a computer system.  PTSim (Yourst, 2007, [13]) is an 

event-based simulation for x86 architectures.  Numerous variants of Simplescalar tools 

such as sim-mase (Larson et. al. 2001, [14]) is developed to further increase the level of 

simulation details in Simplescalar tool set. 
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2.8 Discussion 

    Computer architecture simulators available for researchers are abundant.  The choice 

of the simulator comes down to the details of architecture that the researcher is interested 

to model.  The nature of the simulator depends on its modularity/flexibility, speed and 

accuracy.   

    Although most of the simulators focus of modularity and reusability, it comes at the 

cost of simulation speed.  Simulation speed is important to enable researcher to test and 

validate the architecture with numerous test input sets and also to explore more design 

alternatives. 

    FPGA based system emulation can provide speed and accuracy but at an increase cost.  

AbaKus simulator is developed to address the issues of speed, accuracy and modularity 

and in an affordable way.  In the next few chapters, the internals of AbaKus simulation 

engine and its models are discussed.     
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CHAPTER III 
 
 

SIMULATOR PERFORMANCE  

 

3.1 Simulator Design 
 

Simulators strive to achieve the three important parameters - accuracy, flexibility and 

speed in the best possible way as depicted in Figure 3.1. The simulators described in 

Liberty [2], MASE [14] and ASIM [4] emphasize on each of these parameters. 

 

Figure 3.1 Objectives of a Microarchitecture Simulator 

Microarchitecture functionality can be visualized as a group of modules triggering 

dependent modules to be evaluated each cycle.  In general, it is modeled as a state 

machine.  Therefore, the signals that are generated in a module propagate and modify the 

state as they traverse through various module structures.  The two common types of 

simulations are considered to explain interface mechanism, 

� Event-Driven Simulation 

� Cycle-Time Simulation 
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    In an event-driven simulation, a process queue maintains a list of modules that are to be 

evaluated for each cycle.  The process queue is updated for each finite simulation cycle 

time.  Consider A, B, C, D and E are hardware functional modules connected as shown in 

Figure 3.2. 

Evaluation of each module triggers its dependent modules and is added in the process 

queue.  For the structural logic shown in Figure 3.2, the process queue collects copies of 

same modules to be evaluated repeatedly as shown in Table 3.1. 

                                       

Figure 3.2 Module Executions 

TABLE 3.1 EVENT-DRIVEN SIMULATION PROCESS 

Cycle Evaluate Trigger Process 
Queue 

1 A B, C B, C 

2 
B 
C 

C, D 
E 

C, D, E 

 
3 
 

C 
D 
E 

E 
E 
C 

E, E, C 

Modules C and E are evaluated multiple times. 

 

Although, this ensures a more realistic hardware logic evaluation, repeated module 

execution results in a lot of computing time. Simulation kernels of HDLs such as Verilog, 

VHDL and SystemC are based on this mechanism.  Techniques to reduce the number of 

redundant module executions in SystemC by acyclic scheduling have been proposed by 

Perez et al. [15]. 

 B  A 

 C 

 D 

   E 
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On the other hand, the cycle-time simulation has a simpler approach.  All the modules 

in the simulation are evaluated only once on each simulation cycle.  This provides a more 

straightforward solution to avoid redundant module evaluations.  The functional 

verification is typically provided by enforcing sequential order of module executions, as in 

SimpleScalar.   The challenge in a cycle-time simulation is to provide both functional as 

well as timing verification that is provided by the event-driven simulation.  There are two 

cycle-time simulators that are developed in this study. 

[1] OSU SystemC  

[2] OSU AbaKus  

 

3.1.1 OSU SystemC 

    As SystemC has grown to be one of the frameworks for developing system-level 

architectures, a new cycle-time simulation model based on SystemC language construct – 

OSU SystemC –  is developed in this research. 

    The models developed in SystemC v2.1 from Open SystemC Initiative (OSCI) are 

compared OSU SystemC. SimpleScalar version 3.0 tool-set provides the base-line model 

to compare the performance of the simulators as it is widely used for academic research 

and studies. The syntax of OSU SystemC is same as IEEE 1666 standard described for 

SystemC v2.1, but with restriction on usage of thread modules.   The following 

summarizes the kernel of OSU SystemC, 

• The old and new values have pointer that are switched on each delta cycle instead of 

values being copied [15]. 



 

Chapter III     23 

• The scheduler is cycle-time based and hence, it evaluates all the modules that are 

declared with SC_METHOD in a delta cycle.  SC_THREAD definitions are not 

handled as it needs synchronization of all thread modules after each delta cycle. 

 

3.1.2 OSU AbaKus Simulator: 

    On the other hand, the syntax of OSU AbaKus is in standard C++ and is developed 

such that it is adaptable to any hardware description language. The OSU AbaKus 

Microarchitecture Design Simulator is developed to address the issues of flexibility and 

speed.  The design flow for each microarchitecture simulator is illustrated in Figure 3.3.  

    OSU AbaKus provides a much simplified simulator with a new simulation kernel and 

is completely different from that of SystemC 2.1 kernel. Thus, by having a new 

simulation kernel, the redundant codes present in the existing OSU SystemC version and 

its class hierarchical design is avoided.  

 

Figure 3.3 Design Flow of Simulation 
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3.1.3 Comparison between OSCI SystemC, OSU SystemC and OSU AbaKus 

A simple three-stage scalar pipeline model was tested with SPEC 95 benchmark 

programs on an AMD Duron 750 MHz processor running Linux kernel 2.4.2.  As shown 

in Figure 3.4, the instruction execution rate of the new simulators using the SimpleScalar’s 

instruction-execution engine is 10 times faster than the model developed in SystemC 2.1. 

This results in 25% increase in simulation speed between OSU AbaKus and OSU SystemC.  

The throughput of the simulators is compared in Figure 3.5.  SimpleScalar’s sim-safe 

executes all instructions in a clock cycle i.e. the instruction execution latency is 1 and it 

represents the most ideal execution engine.   
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Figure 3.4 Performance Comparison between the Simulators for a simple 3-stage scalar MIPS 
architecture 



 

Chapter III     25 

0

0.5

1

1.5

2

2.5

3

3.5

134.perl 126.cc 009.go 129.compress

cl
o

ck
 c

yc
le

s 
(i

n
 m

ill
io

n
) 

/ s
ec

o
n

d

OSU SystemC OSU Abakus Simplescalar's sim-safe
 

Figure 3.5 Comparison of Simulator Through-put 

It is observed from Fig. 3.5 that OSU AbaKus has 40% more throughput than OSU 

SystemC. The simulation kernel differences such as implementation of advanced object-

oriented concepts cause the asymmetric distribution of execution rate seen in Figure 3.5. 

To further investigate the performance of the simulators on complex designs, a superscalar 

architecture is built using OSU AbaKus. 

3.2 Comparison with Superscalar Designs 
 

    A modular description of superscalar architecture design is written to accurately 

model the functionality of the microarchitecture during each clock cycle.  The modules are 

described in C++ and reuse Simplescalar’s execution core and memory models.  Figure 

3.6 shows the details of the simulated superscalar architecture.  It accurately models the 

stall signals and in addition, the pipeline registers are parameterized to simulate different 

superscalar architecture widths.  The finish stage encompasses the issue logic, instruction 

execution and write-back buses to update the register file.  The microarchitecture is 

designed to explicitly model the rename register mechanism using Rename Register 



 

Chapter III     26 

Pointers and Architect Register Pointers that is not modeled in SimpleScalar’s sim-

outorder 3.0.  Moreover, unlike SimpleScalar 3.0, all executions are true out-of-order.   

As shown in Figure 3.6, the microarchitecture uses SimpleScalar’s memory model to 

fetch instructions and to perform memory related operations. The dynamic instruction 

scheduler with single instruction window includes instruction wake-up logic and out-of-

order issue logic.  As a test case perfect branch prediction is used to determine the 

throughput of each simulator and limit the architectural differences between the two 

simulations.  But, it is found that in SimpleScalar, the next program counter is determined 

at dispatch and hence it encounters conditional stalls even during perfect branch 

conditions.  

 

Figure 3.6 Simulated Superscalar Architecture 

    As there is no floating-point unit incorporated in OSU AbaKus, it handles floating-point 

instructions as a precise exception.   Due to this simplification, it is expected to have a 
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lower IPC than SimpleScalar. Instructions that cause exceptions have three-cycle 

functional unit latency. The recovery mechanism then recovers the processor to the 

original machine state.  However, the number of recovery cycles depends upon the state of 

the processor at the time of exception and this is not modeled in detail with SimpleScalar 

3.0.  Besides, no explicit register rename mechanism is implemented in SimpleScalar 3.0. 

A more detailed out-of-order architecture model is developed in Simplescalar 

4.0/MASE [14].  The renaming register logic is included and a distributed reservation 

station model is incorporated.  An in-order execution queue is maintained and hence it 

does not incur a 2-cycle penalty for perfect branch prediction studies as in Simplescalar 

3.0.   

Another architecture difference between Simplescalar and OSU AbaKus is the register 

write back bus model during the finish stage.   This is an important module that defines the 

number of instructions that can finish in a clock cycle.  This aspect is not considered in 

Simplescalar versions (Vachharajani et. al. 2006, [3]). OSU AbaKus solves this problem 

by providing an explicit parameter for the write-back bus bandwidth and simulates 

realistic stalls encountered during instruction finish. The pre-compiled SPEC binaries 

from SimpleScalar and our own compiled binaries with ref and train input data-sets were 

run to completion.  Due to the long running time not all benchmarks are incorporated in 

the test.  
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3.3 Comparison of Simulation Speed 
 

    Figure 3.7 compares the simulation speed of the three microarchitecture simulators, 

sim-mase, OSU AbaKus and sim-outorder.  In order to correctly compare the simulators, 

every effort is made so that the simulated hardware architectures are as similar as possible.  

In addition, the processor model that is simulated in the three simulators is designed to 

have similar average Instructions per clock cycle (IPC).  The simulators are compiled with 

gcc 3.4.5 with the O0 optimization level and are executed in a 64-node cluster each with 

3.2 GHZ Intel Xeon™ processor running a Linux 2.6.9 kernel.  The simulated architecture 

details are listed in Table 3.2.  

    SPEC CPU 2006/2000 integer benchmarks with reference input datasets are used to 

compare the simulators.  A total of 6 billion instructions are executed in each of the 

selected benchmarks.  Only the benchmarks that compiled successfully with 

Simplescalar’s sslittle-na-sstrix-gcc are used in this research.   

Comparison of Simulation Speed
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Figure 3.7 Comparison of Simulator Performance for a Superscalar Architecture Model 
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    Due to the inherent dissimilarities between the simulated architectures, it is more 

pertinent to compare the elapsed simulation cycles/s between the simulators instead of 

instructions/s.  Both sim-mase and OSU AbaKus have more detailed architecture 

simulation than sim-outorder.  As seen in Figure 1, the new simulator –OSU AbaKus- is 

on  average 50.27% faster than sim-mase while sim-outorder is on average 39.04% faster 

than OSU AbaKus. 

TABLE 3.2  SIMULATION DETAILS OF THE THREE DIFFERENT SIMULATION MODELS 
Design Parameters sim-outorder AbaKus sim-mase 

Instruction Fetch Width 4 inst/cycle 4 inst/cycle 4 inst/cycle 

Instruction Window Size Single Window: 64 Single Window: 64 Split Window: 64 

Physical Registers 32 100 100 

Issue Width 8 8 8 

Commit Width 8 8 8 

Branch Predictor Perfect Perfect Perfect 

Integer ALU units (Latency 
=1) 

3 3 3 

Mul/Div Unit (Latency = 6) 1 1 1 

Float ALU units 4 Exception call 4 

Float Mul/Div units 1 Exception call 1 

Write Back Bus Width Not Modeled 4 Not Modeled 

Exceptions Not Modeled Precise Precise 

Memory Latency 1 1 1 

Number of Executed 
Instructions 

6 Billion 6 Billion 6 Billion 

Average IPC 2.165 1.794 1.884 

Average Simulation Time 6520.1 seconds 11268.7 seconds 15655.0 seconds 
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    Although, other simulators such as publicly available Liberty and Intel's ASIM also 

focus on modularity, their over-head time on port communication is significant as the 

number of signals increase.  The 3-way hand-shake port communication in Liberty and 

multiple event-driven executions in ASIM slow the simulations as the complexity of the 

design increases (Vachharajani et. al. 2002 [2]).  In contrast, OSU AbaKus is a cycle-time 

simulator similar to Simplescalar. Thus, the simulation speed of OSU AbaKus is 

compared only to those of Simplescalar 3.0 and MASE.  The AbaKus simulator can be 

succinctly defined as an HDL that is familiar to hardware designers, but with a cycle-time 

based simulation environment. 

The OSU AbaKus simulation tool set enjoys the advantages of modularity and 

simulation speed.  Modularity is achieved by writing module descriptions as done in 

typical hardware description languages such as Verilog or VHDL.  Changes to its modules 

are simplified because the modules are not sequentially dependent as is the case with 

Simplescalar tools.  In the following section, the flexibility of the OSU AbaKus simulation 

tool will be demonstrated by studying the effect of write-back bus widths.  The write-back 

bus is a natural part of our model because of the direct correspondence of simulation 

modules with real hardware modules; whereas the write back bus is not included in 

Simplescalar or MASE module descriptions. 

3.4 Discussion 

        Simulation design objectives of AbaKus computer architecture design tool are 

provided below followed by a brief discussion. 

1. Modularity: Breaks down performance modeling into different pieces. 

2. Reusability of modules: Increases productivity and robustness of the software. 
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3. Familiarity with HDL programming. 

4. Fast Simulation Speed. 

1. Modularity: 

    All the modules in the simulation are accessed by either the Global Input Port Pointer 

or the Global Output Port Pointer.    As indicated in Figure 3.8, the data elements the 2 

global pointers point are switched for each cycle.  Thus the updated values are read by 

the read ports while the write ports have a temporary data location to write its entries. 

 

Figure 3.8.  Illustration of Module Port Communication 

 
 

2.  Reusability: 

    Because our module port implementation is fully synchronous, much less simulation 

time is required to verify the architecture.  The flexibility, i.e. reusability of modular code 

of the AbaKus simulation tool will be demonstrated by studying the effect of write-back 

bus widths.  The write- back bus is a natural part of our model because of the direct 

correspondence of simulation modules with real hardware modules; whereas the write 

back bus is not included in Simplescalar or MASE module descriptions. 
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3.  Familiarity of HDL Programming: 

    The following code structure format is similar to a behavioral HDL that is familiar to 

hardware developers. 

<module_name>(){ 
OUTPUT* <output_struct_pointer>; // Output Port Definition 
INPUT* <input_struct_pointer>; // Input Ports 
INPUT_STALL* <input_stall_pointer>; // Propagating Input Stall Signals 
/*module descriptions*/ 
OUTPUT = module_function( INPUT, INPUT_STALL ); // Module Descriptions 
}// End of Module 

 
4.  Fast Simulation Speed: 

    Both sim-mase (Larson et. al., 2001 [14]) and AbaKus have similar and more detailed 

architecture description than sim-outorder.  The machine state of AbaKus and sim-mase 

architectures recovers from exceptions at the complete stage and write-back stage 

respectively, while sim-outorder recovers from exceptions at the dispatch stage. The 

functional units are matched both in terms of number of units and its latencies.  In the 

Chapter 4, the hardware and software logic of architecture modeling are discussed in 

detail.
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CHAPTER IV 

 
 

SUPERSCALAR ARCHITECTURE MODEL 

 

4.1 SUPERSCALAR DESIGN 

    This chapter describes about the basic structure of AbaKus’ superscalar processor 

models in detail.  The models are described in a structure similar to an HDL that is 

discussed in Chapter 3.  The functional description of the modules is in standard C++.  

The basic modules of the 7-stage pipeline are the fetch, decode, dispatch, issue, finish, 

write-back and complete.    The implementation details of each of these modules follows 

below, 

 

Fetch Stage  

    In the CPU architecture core, the fetch stage of AbaKus architecture interfaces with the 

memory.  The memory unit can be a cache module or the main memory.  In a simple 

interface model, the fetch is interfaced to the main memory.  Although, the memory 

interface architecture is a weak relationship with the actual CPU-Memory behavior, it can 

be extended to be interfaced with caches. 
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The following statement is a macro described in Simplescalar (Burger and Austin, 1997, 

[1]).   

MD_FETCH_INST(inst, mem, fetchPC); 

    It is a direct interface to the main memory requiring only 3 arguments, the instruction 

object, main memory pointer and the Program Counter (PC) to fetch. A cache functional 

module can replace this statement in the fetch module.  However, 2 additional signal 

arguments are required, if the cache functional module is interfaced, that is shown below, 

cache_func(inst, cache_mem, fetchPC, stallUp_signal, hit_signal); 

 

    The 2 additional signals, stallUp_signal and hit_signal are required to 

ensure both timing as well as data coherency respectively.  Following the instruction 

fetch of the corresponding PC, the instruction is partially decoded to identify its type and 

operands.  This is done for simulation speed-up and also to balance the work-load. 

    Since the branch predictor look-up can have a significant adverse effect on the 

simulation time, it is necessary that only branch instructions need to be searched in the 

look-up table of the Branch Target Buffer (BTB).  Hence, after the type of instruction is 

known through the partial decoder, only the branch instructions are allowed to access the 

BTB and the branch predictors.  This is described in Flow Chart 1. 

    The work-load between these stages must be balanced because the decode stage has 

override logic, free-register priority encoder and register renaming where as the fetch 

stage only has the function of instruction fetch interfaced to the main memory.  However, 

depending on the required timing, the fetch stage can be further easily be super-pipelined 

into instruction fetch and partial decoder stages.   
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Flow-Chart 4.1 Fetch Functional Module 
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Decode Stage 

    As mentioned earlier, the main functionality of this stage as implemented in AbaKus 

architecture is selecting free rename register, register override logic and register 

renaming logic.   

Selecting Free Rename Register: 

    This functional block selects the next free register available to be renamed.  The 

instruction set architecture registers are renamed to avoid name dependency stalls in the 

superscalar architectures.  Basically, the number of required renamed registers is equal to 

the sum of instruction window width and instruction fetch width. 

    Selecting the free register is simple.  It only requires determining the bit that is not set 

from the list of busy bits.  The corresponding index of the busy bit is the register pointer 

for the free register.   

 

Override Logic: 

    This is a special case where the operands of one or more subsequent instructions in an 

instruction decode group refer to the destination register of any of its previous 

instructions.   In this case, the override logic makes sure that the newly renamed register 

that would only be updated in the next cycle get referenced to the operand that matches 

its pointer in the same cycle.  This logic is discussed by Shen and Lipasti, 2005 [16] and 

is implemented in the AbaKus architecture model. 
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Register Renaming: 

    Register renaming is done by having 2 register pointer files – Architect Register 

Pointer File and Rename Register Pointer File.  This is best explained with the help of the 

following diagram in Figure 4.1. 

Register File (RF):  Holds the values of the computed data. 

Architect Register Pointer (RRP):  Holds permanent register pointers for the 32, LO and 

HI registers of the Instruction Set Architecture (ISA).  The updates are made at the 

complete stage. 

 

Figure 4.1 Design of Rename Register Logic 

Rename Register Pointer (RRP): Holds temporary register pointers for all the destination 

registers of in-flight instructions in the pipeline and is updated at the dispatch stage.  
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Hence, instructions with dependent source operands refer to the RRP at the decode stage 

to find out the correct dependent register pointers.  

 

Dispatch Logic 

    Instructions are dispatched to a special instruction window buffer after the decode 

logic.  The number of entries in the instruction window is fixed during compilation time.  

The fields of the instruction window entry are shown in Figure 4.2. 

 

Figure 4.2 Fields of Instruction Window Entry 

    The implementation of the instruction window buffer is a choice of the designer.  For 

hardware logic implementations such as FPGA or custom IC, it is efficient to implement 

the instruction window buffer as a fully-associative memory.  On the other hand, for a 

software simulation it is efficient to implement this special buffer as a direct-mapped 

cache. 

    In Figure 4.2, the hashed fields represent a single bit field and the remaining fields are 

represented by 32 bits in the software implementation.  However, the number of bits 

should be discerned carefully for the hardware implementation depending on the 

requirement.  The summary of description of each field is described in Table 4.1. 
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TABLE 4.1.  SUMMARY OF DESCRIPTION ON THE FIELDS OF THE INSTRUCTION WINDOW 
Name of the Field Description 

Busy Indicates the entry is busy or free. 

Completed 
Indicates the instruction is 

completed/committed 

Mis-speculated 
Indicates the instruction is misspeculated 

and have to thrown out. 

Finished 
Indicates the instruction has finished 

execution 

Issued 
Indicates the instruction has its operands 

ready and is issued in the issue queue. 

InOrder 

Indicates the instruction enforces order of 

fetch, i.e. the STORE instruction forces all 

other instructions fetched before it must be 

completed, if no load prediction/memory 

disambiguation is turned on. 

Exception 

syscall or any special instructions that is 

not implemented in the hardware to be 

treated as an exception. 

ALU Indicates an ALU type of instruction. 

Br 
Indicates a BRANCH/JUMPtype of 

instruction. 

lD Indicates a LOAD type of instruction. 

Mult 
Indicates a Multiplication/Division type of 

instruction. 

readLO 
Indicates a lower 32-bit of the 64-bit 

multiplication result. 

readHI 
Indicates a higher 32-bit of the 64-bit 

multiplication result. 

Insn Address 
Instruction Address (32-bit) of the 

instruction 
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Insn Opcode 
Instruction Opcode (insn A & insn B) of 

the instruction 

RD Destination Register 

RS Source Operand A 

RT Source Operand B 

Rd_Old Old Destination Register 

PC Program Counter  

NPC Next Program Counter  

Pred PC 
Predicted Program Counter at the branch 

instruction 

Ld_Predict Address 
Predicted Load Dependent Address at 

Fetch 

Bpred_update Branch Update Structure Pointer 

Stack_index 
Index of the Branch Stack for a direct jump 

instruction. 

STORE BUF ID Index of the top of STORE Buffer 

LOAD BUF ID Index of the top of LOAD Buffer 

Wake-Up 
0 – Indicates both Rs and Rt are not Ready. 

1 – Indicates either Rs or Rt is Ready. 

 
 
    The dispatch logic is described in the Flow Chart 4.2.  The head pointer of the 

instruction window is incremented and it is determined if the next ‘S_WIDTH’ of 

instruction window entries are available.  If not, then the output port of the 

dispatchStallUp signal is raised high. 

 
 
 
 
 
 
 



 

Chapter IV 41 

Assign Previous cycle’s Outputs 

as Current cycle’s Outputs

Is 

completeStallBubble 

High?

* Free Busy Bits that were 

set in the last cycle.

Is dispatchStallUp or 

completeStallUp High?

Is a LOAD 

Instruction?

Is no. of 

Instructions 

Fetched == 

S_WIDTH ?

No

Yes

Yes
No

No

Yes

Yes

No

Is an inOrder 

Instruction?

Yes

No

Is only Rs 

ready?

Is only Rt 

ready?

* Store the top of STORE BUF ID

* Update STORE BUF Contents

* Both Rs and Rt are 

Ready; Add the insn 

to the COMMON 

READY QUEUE.

* Add the insn to the Rs 

wake-up list.

* Add the insn to 

the Rt wake-up 

list.

Is both Rs and 

Rt NOT ready?

* Add the insn to the 

Rs and Rt wake-up 

list.

* Store the top of LOAD BUF ID.

* Update LOAD BUF Contents.

* If cannot ByPass; Add the LOAD 

Insn to the STORE’s wake-up list.

NoNoNo

YesYes Yes

Dispatch Sequence 

Completed

Start Dispatch Sequence 

Add the insn to the Reorder Buffer

Is next 

S_WIDTH insn 

windown are 

free?

Dispatch StallUp Ouput Port = HIGH

 

Flow Chart 4.2 Dispatch Logic 
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Issue Logic 

    The issue logic reads the instructions in the Common Ready Queue and adds it to the 

separate issue queue that is specific for each instruction type.  Basically, there are 5 

categories of issue queue – ALU, BR, LD/STORE, MULT/DIV and Other instructions 

such as syscall, DLW, DSW and other floating-point instructions.  It is important that the 

instructions have individual queues because a stall in one of the functional unit would not 

stall-up the entire queue.  The functional block of the dispatch logic and the issue logic is 

illustrated in Figure 4.3.  

 

Figure 4.3. Functional Block Diagram of the Issue Logic 
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[1] The pointer of the ready instruction that is put into the Common Issue Ready is 

read and its corresponding instruction window entry and the instruction type are 

determined. 

[2] Depending upon the type of instruction, it is then added to the respective 

instruction issue queue.  Step 1 and 2 are continued until all the ready 

instructions in the Common Issue Ready are added into its specific instruction 

type queues. 

[3] Finally, if there is no stall-up signal for the corresponding issue queue then the 

instruction is assigned to the output ports for issue.  Although, the instruction is 

assigned for issue, it is only finalized, i.e. the issue bit is set only in the next 

cycle because there can be a stall in the execute stage that is propagates to the 

issue stage only in the next cycle.   

    A Round-Robin priority issue is implemented in order equally distribute the instruction 

issue among the different instruction types.  The number of instruction issues is set as a 

compilation parameter in the sc_datatypes.h file. The issue queue stalls due to 

unavailability of functional units and finalization of the instruction issue are determined 

in the next stage – Execute Stage.  The number of entries in the individual issue queue is 

a compilation parameter and is set equal to the number of entries in the instruction 

window.  Stall-Up signals due to unavailability of issue queue entry is not implemented, 

however, the optimal number of entries in the individual issue queue is a topic of future 

research. 
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Execute Stage 

    The execute stage consists of ALU, Mult/Div, BR, LD/STORE and Float/Other 

instructions functional units.  Each of functional units has latency, ‘m’, which is a 

compilation parameter.  Besides, the number of functional units, ‘n’, of each instruction 

type is also a variable that is defined during the program compilation. 
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Figure 4.4.  Functional Block Diagram of the Execute Stage. 

    It should be noted that at the execute stage only the latency of the instruction execution 

is simulated but the actual instruction execution takes place only at the finish/write-back 

stage.  The pipeline stage of the functional unit is implemented as a circular FIFO queue.  

The head and tail pointers of the queue are updated at each cycle.   
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The instructions are read from the issue queue and are assigned to the corresponding 

functional units in a round-robin fashion.  If no functional units are available then a stall-

up signal is for the corresponding functional unit is raised high.  After a fixed number of 

cycles, the inserted instructions in the circular FIFO queue at the head pointer propagate 

to the tail pointer.  Once the instruction i.e. the instruction window ID reaches the tail 

pointer, it is determined to be finished the execution.  As shown in Figure 4.4, the 

instruction is then inserted into the finish queue.   

 

Flow Chart 4.3 Execute Stage 



 

Chapter IV 46 

 
Finish/Write-Stage: 

    The finish-stage is an important module as instructions are scheduled to finish by 

accessing the write-ports of the Register File, if required, and also its dependent 

instructions are waken-up.  In addition, the function execution of the instruction takes 

place at this stage through a subroutine macro call – SYM_CAT( ).  As shown in Figure 

4.4, the finished instructions are inserted into the FINISH QUEUE.  The order in which 

the instructions are scheduled into this queue determines the write-back bus scheduling 

order.  By default, the instructions are arranged in the FINISH QUEUE in a FIFO 

fashion.  A more detailed study of scheduling the instructions in the FINISH QUEUE is 

discussed later in Chapter 5. 

    The instructions are read from the FINISH QUEUE and assigned a write-back bus, if 

available.  If the write-back bus is not available, then that specific Functional Unit is 

stalled-up.  Once assigned a write-back bus the instruction is set to finish, i.e. the 

instruction is functionally executed and the results are updated in the register file in the 

next cycle. 

    Once the instruction finishes execution, its dependent instructions are found by 

walking through the dependent list of the wake-up structure.  The wake-up structure has a 

list of instruction window pointers.  Either the wake-up bit of the dependent instruction 

window slot is set to 1 or the instruction is directed to the READY QUEUE depending 

upon its operands validity.  The finish-stage functionality is further illustrated in Flow 

Chart 4.4. 
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Flow Chart 4.4 Finish Stage Logic 
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Complete Stage 

    The complete stage includes retiring the STORE instructions, executing the FLOAT 

and exception causing instructions, waking up dependent instructions and resetting the 

instruction window and register pointer entries.  In addition, the complete stage also has 

in-order instruction checking mechanism to ensure that the completing instruction is the 

instruction in the program order.  Apart from these functionalities, the complete stage 

also takes care of memory disambiguation that is discussed later in this chapter.  The 

instructions are ready for complete, when they have finished execution and assigned for 

completion based on the program order.  The maximum number of instructions that can 

be completed is defined as COMPLETE_WIDTH in the sc_datatypes.h header file. 

    The flow chart in Figure 4.5 illustrates the complete stage logic.  When STORE 

complete, it checks for data memory address violation in the load buffer, i.e. it check if a 

load instruction after the store instruction had already finished execution.  If it were the 

case, then the finished load instruction would have a stale value.  Hence, those loads that 

have memory violated are identified and are marked as ‘memory violated’ in the 

instruction window.  Later, as the load instruction completes, if the ‘memory violated’ bit 

is set, then, all subsequent instructions following the load instruction are not completed 

and initiates processor recovery state. 

    Similarly, as branch instructions complete, the ’next program counter’ is checked for 

equality with the ’predicted program counter’, if not equal, then all instructions 

following the branch are not completed and processor recovery is initiated. 
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Flow Chart 4.5 Complete Stage Logic. 
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4.2 Store Buffer and Load Dependence Prediction Mechanism 

    Memory consistency in a computer system has become a vital part in the design of the 

multiprocessor systems.  Although, there is only one process executing in a single-

threaded superscalar machine, the fact that instructions executed out-of-order introduces 

the challenge to maintain memory coherency.  The order of reads and writes into the 

cache or the main memory must be maintained in program order by the hardware logic 

and any violation of this order can cause erroneous result in execution.   

    In the case of simple scalar pipelines, the memory consistency is satisfied because the 

writes and reads are inherently executed according to the program order.  However, in the 

case of the out-of-order execution this order of accessing the memory must be enforced 

by a special logic and buffers – Load Finish Buffer and Store Finish Buffer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.5 Load Finish and Store Buffer Models 
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Load Forwarding 

    This is a scheme in the out-of-order machines to reduce the latency of the load 

instruction by forwarding the data from the store finish buffer instead of accessing it from 

the data cache.  Store instructions write their destination value into the store finish buffer 

in program order and are then updated into the cache or the main memory – store 

retirement.  If a load instruction follows a store instruction before the store instruction is 

retired then the data can be forward to the load instruction from the store finish buffer. 

 

4.2.1 Load – Store Address Dependence Prediction 

    Resolving a load instruction quickly can result in increased speed-up because large 

percentage of instructions in the program is dependent on the load instructions.  Hence, 

by predicting the dependence between a store and load instruction, a load instruction can 

be allowed to by-pass a store instruction, if there is no dependence between the pair of 

instructions.  The store finish buffer is used to determine if the load instruction can by-

pass the preceding store or has to wait till the store instruction is executed. 

    The dependence is based on previous machine recoveries due to load-store memory 

violation, i.e., a load instruction had executed even before the store to that location can 

update the data.  The load-store prediction buffer is placed at the fetch stage and in most 

cases it is similar to the operation of the branch target buffer (BTB) except that the target 

address is the speculated memory load address.  The relationship between the load and 

store instruction can be determined in 2 ways. 
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1. By matching the instruction address between the load and store instruction. 

2. By matching the destination memory address between the load and store 

instruction. 

In the case of no prediction, loads by-pass store instructions without any restriction.  The 

number of load forwarding and recoveries due memory violation are illustrated in Figures 

4.6 and 4.7. 

 

Figure 4.6 No. of Load Forwarding and Memory Recoveries with destination memory address 
prediction and instruction address (PC) prediction. 
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    As seen in Figure 4.6, the number of load forwarding is about 4 times more than the 

case with no prediction.  As the number of load forwarding increases the instructions that 

depend on the load can be issued quickly and hence results in increased IPC as seen in 

Figure 4.7. 

    Similarly, the number of recoveries in the case of no prediction is about 15 times more 

than with the prediction.  This shows that load and stores are highly dependent and it is 

important to have some schemes like load-store dependence prediction in the machine to 

improve the performance of the processor. 

 

 

 

 

 

 

 

 

Figure 4.7 IPC with and without Load-Store Dependence Prediction 

    As seen in Figure 4.7, there is about 50% improvement on average IPC which is 

significant considering the simplicity of the scheme. In addition, the low percentage of 

recoveries with load-store address prediction also reveals that loads and stores 

dependencies can be predicted with high degree of accuracy.  However, in some cases 

both the dependence approaches fail resulting in a machine-state recovery.  These cases 

are as follows, 
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1. Instruction Memory Address Prediction (PC): 

for(i=1 to 1 x 10^6) {        

    if ( i mod 2 = 0 ) 

      R3 = Load(&Y); 

    else 

      R3 = Load(&Z); 

   Store(&X) = R3; 

} 

 

    In the above lines of codes, the relationship between a single load and store instruction 

for a loop unrolled code cannot be established because the loading memory address 

toggles for every count.  Hence, more dependence entries have to be stored to predict 

dependence over number of memory addresses or a combination of data memory address 

prediction can be used. 

 

2. Problem with Data Memory Address Prediction (AddrPred) 

for(i=1 to 1 x 10^6) { 

   R3 = Load(&Y); 

 Store(&X + i) = R3; 

} 

 

    In the above case, the load memory data is stored into different store location in the 

iteration.  Hence, it is not possible to establish a relationship because of ever changing 
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store address.  In this case, a sophisticated logic using stride predictor or instruction 

addressed based prediction can be used.   

4.3 Summary 
 
    Memory violation due to load instructions can be detected when the store instruction 

completes by simply checking the load finish buffer.  The completing store instruction 

checks for a memory address match and then for a data match.  If the data of store does 

not match the data of the following load in the load finish buffer, then the load instruction 

had violated its order of execution, it set a bit and the processor machine-state has to be 

recovered once the load instruction is ready for completion.  

 

    A more interesting challenge arises when a store to a byte is followed by a load to a 

word of the same address.  Since, at this only a byte address is present in the store finish 

buffer.  These cases are detected and the memory violation bit in the instruction window 

in set, initiating the machine-state recovery when the load completes.  Such occurrences 

are not common and compiler can take care of it by changing the store to a byte to store 

to a word 
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CHAPTER V 

 
 

WRITE-BACK BUS SCHEDULING MECHANISMS FOR 

 MULTI-PORT REGISTER FILE DESIGN 

 

 

    In a superscalar processor each execution unit, with the exception of the store unit, 

requires a write-back bus to update the state of the register file.  Ideally, each execution 

unit has a write-back bus both to update the register file as well as to forward the results 

to the waiting instructions.  In order to reduce the cost of the register file and the cost of 

instruction wake-up logic, we explore the effect on IPC by having fewer write-back buses 

than the total number of execution units.  Furthermore, the performance of various write-

back bus scheduler algorithms is also studied.  A major bottleneck in the instruction flow 

is the size of the register file write-back bus. The size of the write-back is critical for the 

following reasons: 

a. The number of write-back buses is proportional to the number of write-ports in 

the register file.  Multi-port register files are expensive to fabricate as they require 

more transistors and chip area.  The cost of the multi-port SRAM increases as n2, 

where n is the number of write-ports in the register file. 
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b. In the instruction scheduler design, special wake-up issue logic circuitry has to be 

designed for each write-back bus to determine if the operands are ready for the 

waiting instruction.  Hence, the complexity and cost of the hardware increases 

with the size of the write-back bus.   

c. For an architecture design that is only limited by data dependencies, the number 

of register write-back buses limits the flow of instructions.   This exacerbates the 

data dependency problem as the instructions wait to update the results in the 

register file. 

 

    In order to emphasize only the effects of the write-back bus width, a sufficient number 

of execution units is simulated.  Many stalls that are incurred at the finish stage are only 

due to lack of sufficient write-back buses, eventually stalling the upstream instruction 

fetching.  The problem of insufficient write-back buses is more pronounced in a 

Simultaneous Multi-Threaded (SMT) processor.  As an SMT type processor maximizes 

the utilization of the execution core, there is much more demand on the write-back buses 

than with a superscalar processor.  Hence, it is important to understand the size and the 

write-back scheduling logic for these buses can be expensive but when lacking will tend 

to limit the instruction flow. 

 

5.1 Related Work 
 
    A delay write-back queue strategy similar to a load and store buffer is proposed by 

Kim and Mudge, (2003 [17]) to reduce the number of write ports.  In their paper, they 

show a 20% savings in energy for a modest penalty in IPC.  A multi-level register bank is 
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proposed by Cruze et. al., (2000 [18]), as an alternative to reduce the register file write-

ports.  This scheme is further extended by Balasubramonian et al., (2003 [19]), with a 

register-file allocation policy to increase the hit rates in level 1 register file.   A low-

power 12-port multi-bank register file is designed by Sueyoshi et al., (2004 [20]), and 

shows a 72% decrease in area compared to a 12-port-cell-based register file. 

    Kim and Mudge, (2003 [11]), use the more common FIFO scheduler between the 

functional units and the write-back buses.  Our paper shows the relationship between 

various bus schedulers and its effect on CPU performance in a detailed manner.  

Contention between write-back buses is identified by Smotherman et al., (1993 [22]), and 

takes a heuristic approach to reduce this problem. 

 

 5.2 Write-Back Bus Model 
 

    In this section we describe architecture details that are associated with simulating the 

write-back buses.  In our paper, the write-back bus allocation policy is used as an 

example of this capability since such subtle but important aspects of computer 

architecture design are not always modeled in Simplescalar tool sets [1].   

    A detailed model of the finish stage is illustrated in Figure 5.1.  The write-back busses 

in our simulations can be considered to be extensions of the "common forwarding data 

bus" in Tomasulo's classic algorithm.  The write-back busses not only access the ports of 

the register file but also update the control information for store and branch instructions.   

5.2.1. Round-Robin Issue Logic 

 



 

Chapter V 59 

    The write back bus allocation strategy cannot be studied independently of the issue 

strategy, but we did not intend for our paper to be a detailed study of pipeline scheduling 

algorithms.  We are attempting to show the ease with which detailed studies of hardware 

design trade-offs can be done with our modular approach.  The instructions in the issue 

ready queue are inserted by the dispatch stage.  During issue, the instructions are taken 

out of the issue queue and are issued to appropriate type execution units in a round-robin 

fashion.  This results in the instructions being distributed equally in their set of execution 

units. 

 

5.2.2. Execution Units: 

 
    The execution units are grouped into three sets and are scalable.  All the execution 

units in each of the sets have individual stall signals. 

a) ALU: Executes integer add, sub and bit-wise type of instructions. 

b) MUL/DIV: Executes integer multiply and divide type of instructions. 

c) Other Execution Units (OEU): Executes other remaining instructions, such as 

load, branch and float instructions.  Besides, it also handles store instructions that 

are processed by simplified store buffer logic.  Since, the simulated architecture 

does not model the floating-point register file all the float instructions in the 

SPEC CPU INT 2000/2006 benchmarks are treated as exceptions and are handled 

precisely. 
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Figure 5.1. Detailed Architecture Model describing the Write-Back Buses at Finish Stage 

 
C. Finish Queue and Write-Back Bus: 

    As shown in Figure 5.1, the finish queue is a part of the write-back bus scheduler 

implementation.  It is not an extra storage space but only models the last stage of the 

execution units.  The write-back bus scheduler inserts the finished instructions that are 

waiting for the write-back bus in the finish queue.  The write-back bus width is 

parameterized to study the effects of IPC on varying the write-back width.  As the size of 

the write-back bus increases, there is a proportional increase in the number of write-ports 

in the register file and the forwarding bus lines for instruction wake-up. 
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5.2.3. Distribution of Write-Back Bus Size: 

    The maximum possible IPC for hypothetical processor architecture, limited only by 

fetch width and data dependencies is an interesting starting point for the study of the 

effects of write-back bus width.  All other structural hazards and control dependencies are 

ignored in order to focus the study on the write-back bus width.  As mentioned in section 

2, only those benchmarks which could be successfully compiled for Simplescalar MIPS 

IV instructions are used in this study.  Moreover, the subset of SPEC CPU INT 

2006/2000 benchmarks actually represents a balanced instruction mix (Phansalkar, 

2007[5]). 
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Figure 5.2. IPC of a hypothetical processor using SPEC CINT 2006/2000 Benchmarks 
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Figure  5.3. Comparison of IPC for Different Write-Back Bus Widths for fetch width of 4 

 
 

    Figure 5.2 shows that for a hypothetical processor that is only limited by a fetch width 

of 4 and data dependencies, an average IPC of 3.681 is achievable.  With this as the base-

line, the write-back bus width is varied to obtain the sensitivity of IPC to write-back bus 

widths.  The sensitivity of the write-back bus width to IPC is shown Figures 5.3 and 5.4. 

For small write-back widths, there is a linear relationship between IPC and the write-back 

bus widths. 

    As the write-back buses are a critical and expensive part of the design of the 

microprocessor, it becomes important to verify if any of the bus scheduling algorithms 

would result in a better IPC.  As shown in Figure 5.4, a Round-Robin write-back bus 

scheduling logic is used and its average IPC is measured.  An important well known 

constraint is that the IPC of the microprocessor cannot be greater than the width of the 

number of the write-back bus.   
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Average IPC Fetch Width = 4
= 1/ (Average(CPI))
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Figure 5.4. Average IPC for Fetch Width of 4 

 
 

But, it is curious to find the type write-back scheduling algorithm that is chosen to 

maximize the IPC for a given number of write-back buses.  As indicated in Figure 5.4, 

since the write-back bus width of 3 falls in the linear range of IPC, we select this width to 

analyze the scheduling algorithms in sections 6 and 7. 

 

 5.3 Write-Back Scheduling Logic 
 
    In this section, the various write-back scheduling algorithms that are tested in 

simulations are discussed. 

5.3.1. First-In First-Out (FIFO): 

a) Strategy: 

    First-In First-Out (FIFO) logic is most common queuing model in memory systems.  It 

is simple to implement as it naturally follows the pipeline model of the architecture 

design.  At the last stage of the execution pipeline, the FIFO scheduler schedules the 
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instructions to the write-back bus depending on the order in which the instructions finish.  

At the finish stage, the scheduler keeps track of execution units that are ready to finish. 

High priority is given to those instructions that finished in the previous cycles and are 

waiting for the write-back bus than is given to instructions that finish in the current cycle.  

An execution unit stalls in a given cycle, if it has an instruction that is ready to write-back 

its results but is unable to access the write-back bus.  

b) Benefits: 

    The implementation of the FIFO scheduler is simple and requires less hardware.  It 

removes long waiting times for accessing the write-back bus and hence keeps the 

execution units from stalling the pipeline.  

c) Pitfalls:    

    The FIFO scheduler is likely to give priority to the execution units that have less 

latency than other execution units, since they are more likely to finish first in the 

execution core.  Hence, ALU type of instructions is given more priority than other 

categories of instructions. 

 

5.3.2. Round-Robin (RR): 

a) Strategy: 

    Round-Robin (RR) scheduling logic is an unbiased bus scheduling logic as it gives 

equal priorities to all the execution groups.  The instructions scheduled to the write-back 

bus alternate between the ALU, MUL/DIV and LD/ST/BR execution pipelines. 

b) Example: 
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     Figure 5.5a shows the write-back bus state at the nth cycle.  The RR scheduler starts by 

giving priority to the ALU, MUL and OEU instruction type (shaded boxes).  As shown in 

Figure 5.5b, in the (n+1)th cycle the scheduler starts by giving priority to the MUL, OEU 

and ALU instruction type.   

c) Benefits: 

 

a. Bus State at nth cycle             b. Bus State at (n+1)th cycle 

Figure 5.5  Round-Robin Write-Back Bus Scheduler 

    Any dominance by a particular type of instruction that would normally result in 

instruction window stalls due to data dependence is reduced since the priorities are 

normally distributed. 

 

d) Pitfalls: 

    Figure 5.6 shows the dynamic instruction mix in SPEC 2006/2000 benchmarks.  

Designing a bus scheduler that allocates the instructions to the bus with equal priorities 

may not always yield the best  
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Instruction Mix in SPEC 2006/2000 Benchmarks
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Figure 5.6  Instruction Mix in SPEC 2006/2000 Benchmark 

results, considering the variations in instruction frequencies and the dynamic behavior of 

the program during run-time. 

 

5.3.3. Priority to Load/Store, Multiply/Divide and ALU instructions (LMA): 

a) Strategy: 

    This strategy is designed to exploit the high frequency of Ld/Br/float instructions in the 

SPEC 2006/2000 benchmarks when compared to integer type instructions as seen in 

Figure 5.7.  Hence, in this strategy order of priority is given by OEU (Ld/Br/float) 

instructions followed by MUL/DIV instructions and ALU instructions – LMA priority.   

b) Example: 

    As shown in Figure 5.7a, in the nth cycle the OEU type of instructions gets access to 

the write-back bus and is followed by the MUL/DIV instruction.  The ALU execution 

pipelines get stalls, until they get access to the write-back bus in the (n+1)th cycle. 
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a. Bus State at nth cycle             b. Bus State at (n+1)th cycle 

Figure 5.8  LMA Write-Back Bus Scheduler 

c) Benefits: 

    It is likely that the Ld/Br/float instructions that use OEU execution pipelines stall often 

due to their high instruction frequency as indicated in Figure 5.7.  Hence, providing a 

high priority to this group of instructions reduces the number of stalls in the OEU 

execution pipelines. 

d) Pitfalls: 

    Providing high priorities to only load instructions causes the ALU execution pipelines 

to be starved for access to the write-back bus.  This results in the instruction window 

stalling the dispatch and fetch logic until the ALU execution pipelines get access to the 

write-back bus. 
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5.3.4. Priority to the instruction that has Highly Dependent Instructions (PHD): 

 

a. Bus State at nth cycle             b. Bus State at (n+1)th cycle 

Figure 5.9  PHD Write-Back Bus Scheduler     

a) Strategy: 

    In the Priority to Highly Dependent instruction (PHD) scheduler logic, the scheduler 

checks the wake-up table to determine the number of instructions that depend on the 

instruction that is ready for write-back.  High priority is provided to the instruction that 

has high dependency on it.   

    Table 5.1 shows the number of times exactly 2 instructions, 3 instructions and more 

than 3 instructions are woken-up in the processor using RR write-back scheduler. Since, 

on average 4.6% instructions out of 6 billion instructions are dependent on 2 or more 

instructions, high priority is given to those instructions that have 2 or more instructions 

depending on them.   
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TABLE 5.1   INSTRUCTION WAKE-UP FREQUENCY USING 
ROUND ROBIN WRITE-BACK SCHEDULER 

Instruction Wake-Up Frequency 

Benchmarks 
2 

Instructions 
3 Instructions 

More than 
3 

instructions 

Total 
Instruction 
Wake-Up 
Frequency 

402.bzip2 6.58E+07 1.27E+07 1.98E+07 9.83E+07 

456.hmmer 3.39E+07 4.66E+05 2.31E+05 3.46E+07 

429.mcf 9.61E+07 2.21E+07 5.65E+07 1.75E+08 

458.sjeng 1.72E+08 3.85E+07 4.21E+07 2.52E+08 

176.gcc 1.69E+08 8.35E+07 9.58E+07 3.49E+08 

197.parser 2.93E+08 2.09E+08 8.48E+07 5.86E+08 

255.vortex 3.45E+08 5.22E+07 5.74E+07 4.55E+08 

 

b) Example:   

    Figure 5.8 shows the example of a PHD scheduler.  In Figure 5.8a, the instructions that 

have high dependency win the write-back bus in the nth cycle and then in the (n+1)th 

cycle the other instructions get the bus allocation. 

c) Benefits: 

    As data dependency is the main problem causing instruction window stalls, the HDI 

scheduler reduces these stalls by providing accesses to the instructions that have 

dependent instructions waiting on them.  Hence, this scheduler is designed to issue a 

group of data independent instructions that are just waiting on one instruction to finish. 
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d) Pitfalls: 

    The PHD scheduler cannot determine the dependency length of a chain of instructions 

that are waiting on one another.  Figure 5.9 highlights the problem of chain data 

dependency.  The PHD scheduler fails to allocate that highest priority to instruction in 

slot 1, since a chain of instructions in the instruction window all have a dependency 

length of 1 in their wake-up table. 

 

Figure 5.9 Chain of Data Dependency in an Instruction Window 

5.3.5. Priority to Program Order Instructions (PO): 

a) Strategy: 

    In this strategy, high priority is given to the instruction that is dispatched first i.e. in the 

program order.  It is likely that later instructions in the program code are dependent on 

the instructions that are issued earlier.  It encompasses the characteristics of order 

dependent FIFO and data dependent PHD schedulers to allocate priority to access the 

write-back bus. 

b) Benefits: 

    The problem of chain data dependency as shown in Figure 5.9 is solved by simply 

scheduling the instruction to the write-back bus in the program order.  This is an effective 

algorithm that allays the problem of long waiting times in the instruction window. 
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c) Pitfalls: 

    As there is no check on the number of instructions on which the scheduled instruction 

is dependent, there can be instances where the instruction scheduled to write back had no 

dependent instruction on it.  Moreover, the hardware to implement the PO scheduler is 

expensive, requiring many comparators and ALUs in order to select the instruction in the 

program order at the finish stage. 

 

5. 4.  Simulation Methodology and Implication of scheduler mechanisms 
 
    A write-back width of 3 is selected to compare differences between the write-back 

strategies that are discussed in section 5.3.  The benchmarks are selected from SPEC 

CPU CINT 2006/2000 suite and are complied with Simplescalar’s sslittle-na-sstrix-gcc 

compiler.  The other benchmarks in the SPEC CINT benchmark suite have compilation 

problems and hence are eliminated.  However, based on the SPEC suite similarity 

analysis Phansalkar, 2007 [28], 402.bzip2, 456.hmmer and 429.mcf are determined to be 

dissimilar and hence unique in program characteristics.  All the benchmarks are supplied 

with reference data input sets and are run until 6 billion instructions are executed.  Table 

5.2 provides the details of the simulated microarchitecture design. 

TABLE 5.2  MICROARCHITECTURE DETAILS OF THE SIMULATED PROCESSOR 
Design Parameters OSU AbaKus 

Instruction Fetch Width  4 inst/cycle 

Instruction Window Size 96 

Physical Registers 100 

Issue Width 14 
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Commit Width 8 

Branch Predictor Perfect 

Integer ALU units (Latency =1) 3 

Mul/Div Unit (Latency = 6) 1 

Ld/St/Float/Br Unit (Latency = 2) 4 

Write Back Bus Width 3 

Exceptions Precise 

Memory Latency 1 

Number of Executed Instructions 6 Billion 

        

    As shown in Figure 5.4, a write-back bus width of 3 is chosen since it is in the linear 

range of IPC.  All control dependencies are eliminated by considering a perfect branch 

prediction in the simulation.     Memory latencies are kept at 1cycle.  These assumptions 

are made to focus the study on the effects of the write-back bus width on IPC.  As a width 

of 3 is the bottleneck of the architecture, the IPC can not be higher than 3.  Figure 5.10 

shows that performance of the simulated architecture with various write-back scheduling 

algorithms.  The implications of each scheduler are discussed below. 

5.4.1. Round-Robin Schedule (RR): 

   Since the Round-Robin (RR) write-back bus scheduler give all the execution units 

equal priority, it provides a base-line scheduler for effective comparison with other bus 

schedulers. 
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Comparison of IPC for various Write-Back Bus Scheduling Mechanisms for 
Write-Back width = 3
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Figure 5.10 Comparison of IPC over various Write-Back Bus Scheduling Mechanisms 

TABLE 5.3 IMPROVEMENT IN IPC FROM ROUND-ROBIN BUS SCHEDULER 
Improvement = 
 (IPC - IPCRoundRobin) / (IPCRoundRobin) 

FIFO 
(%) 

PHD 
(%) 

LMA 
(%) 

PO 
(%) 

402.bzip2 6.145 6.681 -0.398 5.088 
456.hmmer 7.529 7.549 5.628 7.582 
429.mcf 5.481 5.984 -0.288 5.400 
458.sjeng 5.973 6.300 -0.305 7.735 
176.gcc 6.209 6.556 -1.404 3.305 
197.parser 2.093 2.437 -0.124 3.884 
255.vortex 7.960 8.124 3.029 9.475 
Average Improvement in IPC (%) 5.913 6.233 0.881 6.067 

5.4.2. FIFO Write-Back Bus Scheduler: 

    As indicated in Table 5.3, the FIFO bus scheduler is superior to the Round-Robin (RR) 

bus scheduler with an improvement of approximately 6%.  This increase can be attributed 

to the priority that the FIFO scheduler gives the finished instructions in execution order.  

Hence, there is less waiting time for an instruction that is waiting for the write-back bus. 

On the other hand, RR scheduler may result in a condition where an instruction that 

finishes in the nth cycle waits for the bus, while the instructions that finishes in (n+1)th 

cycle gets access to the write-back bus.  This leads to a stall in the instruction window 

and fetch stages. 
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5.4.3. Priority to High Dependence (PHD) Write-Back Bus Scheduler: 

    The Priority to High Dependence (PHD) scheduler logic also performs well as it 

schedules an instruction to the write-back bus that has a high instruction dependency.  

Hence, more instructions are issued as their data dependencies are resolved with priority.  

This effect can be seen in Figure 5.11, where there are more write-back stalls in the PHD 

scheduler than the RR scheduler.  This implies that due to the increase in issue rate more 

instructions can finish than the RR scheduler and are waiting for the write-back bus. 

    Conversely, as observed in Figure 5.10, the increase in write-back bus stalls does not 

decrease the IPC of the PHD scheduler.  This is because as seen in Figure 5.10, the 

average instruction window stalls that stall instruction dispatch is lower for the PHD 

scheduler than the RR scheduler.  As the instruction window size is 96 instructions, the 

issue logic is able to issue more instructions while the data dependencies are quickly 

resolved using the PHD bus scheduler. 

Average Write-Back Stalls by Execution Units for various Write-Back 
Scheduling Mechanisms

0.00E+00

2.00E+09

4.00E+09

6.00E+09

8.00E+09

1.00E+10

1.20E+10

FIFO RR PHD LMA PO

Write Back Alogrithms

A
ve

ra
g

e 
W

ri
te

-B
ac

k 
S

ta
lls

 

Ld/St &
Br

ALU

 

Figure 5.11  Average Write-Back Stalls by Execution Units for various Write-Back Bus 
Schedulers. 
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5.4.4. Load-Multiply-ALU (LMA) Write-Back Bus Scheduler: 

 
   As shown in Figure 5.11, priority to load instructions reduces the write-back stalls that 

are caused by OEU pipelines.  However, as shown in Figure 5.12 the average number of 

instruction window stalls is 14.8% more than the instruction window stalls of the PHD 

scheduler.  As a result the IPC of the simulated architecture with LMA scheduler is ≈ 6% 

less than the FIFO, PHD and PO bus schedulers.  The relatively low IPC by the LMA 

write-bus scheduler can be attributed to the 2.2 times increase in ALU execution pipeline 

stall as observed in Figure 5.11.  This is because resolving ALU instructions is critical to 

the mitigation of the instruction data dependencies. As the LMA gives low priority to 

ALU instructions, its IPC is less than the FIFO, PHD and PO bus schedulers. 

Average Instruction Window Stalls various Write-Back Bus 
Scheduling Mechanisms for Write-Back width = 3
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Figure 5.12 Average Instruction Window Stalls for various Write-Back Bus Scheduling 
Mechanisms  

V. Program Order (PO) Write-Back Bus Scheduler: 

    As shown in Table 5.3, the characteristics of the PO bus scheduler and PHD bus 

scheduler mechanisms are similar.   Since the PO bus scheduler gives priority to the 
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instruction in the program order, it is likely that later instructions are data dependent on 

this instruction.  Hence, as seen in Figure 5.11, the PO bus scheduler has more write-back 

stalls than any other scheduler logic.  This indicates that more instructions have finished 

execution and are waiting for the write-back bus.  On the other hand, Figure 5.12 shows 

less average instruction window stalls than the RR bus scheduler. This indicates that 

compared to the RR bus scheduler the issue rate is large and the completion time for an 

instruction is small. 

 

5.5 Summary 
 
    The flexibility, simulation speed and closeness to hardware logic design that is 

emphasized in the design of the AbaKus microarchitecture simulator is demonstrated by 

analyzing various write-back bus strategies.  As shown in Figure 5.1, IPC can be limited 

by the write-back bus width of the architecture design and can be an important bottle-

neck in achieving higher CPU performance, especially in SMT architectures.  There is a 

need to develop an instruction issue policy that corresponds well with write-back bus 

scheduling policy to maximize the utilization of expensive read and write ports of a 

register file.   
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CHAPTER VI 

 
 

CONTROL DEPENDENT LIMITATIONS ON  

INSTRUCTIONS PER CYCLE 

 
 

 
“Prediction is very difficult, especially about the future” 

- Niels Bohr 

 

6.1 Program Dependencies 
 
     
    As human brain thinks and reasons out before it makes a decision, it is not clear if this 

logic flow is conducted in a sequential or parallel manner.  However this may be, some 

degree of sequential and parallel process is involved before the brain arrives at a decision.  

This argument is necessary because it defines how humans use computer languages to 

model and describe their logic.  Thereby, the nature of these program descriptions 

introduces dependencies before the logic is computed.  These inherent program or 

instruction dependencies are classified into 2 types – Data Dependencies and Control 

Dependencies.
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    Instruction data dependencies exist in the program due to logic flow and it requires 

computation time to resolve these dependencies.  They can be regarded as the last major 

bottle-neck of sequential programming model.  In many ways, resolving them for a 

single-threaded process depends on the logic description and physical design limitations.  

However, solutions have been proposed to hide the latency of the data dependent 

instructions (IBM 2005 [29][20]) through multiple parallel threads. 

    On the other hand, control dependencies in a program can be related indirectly to data 

dependencies.  Nevertheless, the control flows of the program seem to be predicted to a 

fair degree of accuracy (Nair, 1995 [31], McFarling, 1993 [32]) for machines with small 

instruction fetch.  But, it introduces a limitation for wider instruction fetch machines and 

is harder to predict the control flow.  This is because of lack of sophisticated hardware 

with small latency to recognize the pattern of the program behavior or in general, due to 

the innate behavior of the program. 

6.1.1 Higher IPC with Superscalars 

    The goal of the superscalar architecture design is exploit available Instruction Level 

Parallelism (ILP) in the program code and hence, to achieve maximum IPC.  But, to 

maximize the utilization of ILP, the control flow of the program has to be predicted with 

accuracy.  Branch predictors using 2-bit saturating counters and a branch pattern history 

table are used to predict a branch instruction with a fair amount of accuracy using gshare 

branch predictor (McFarling, 1993 [32]).   

    Maximum possible IPC of a machine is equal to the number of instructions fetched per 

cycle, denoted by ‘s’- the fetch width, assuming the number of instructions dispatched, 

issued, finished and completed are all equal or greater than ‘s’.  Hence, with the increase 
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in fetch width the IPC is bound to increase.  But, this is not found to be true.  This is 

because as the fetch width increases the number of branches in the fetch group also 

increases.  Since, the branch predictor now has to choose among multiple branched paths 

and predict the correct one.  This problem worsens as the machine is super-pipelined and 

there are more unresolved pending branches due to increase in branch execution 

latencies. 

        Let a single branch misprediction error be Pe and k be the number of unresolved 

branches in the machine. Then, the probability that all the ‘k’ branches are predicted 

correctly is given by [(1-Pe) ^ k]. 

That implies, the probability that at least one out of ‘k’ branches is mispredicted is given 

by,  

1 – [(1-Pe) ^ k]    equ(6.1) 

TABLE 6.1 PROBABILITY OF M ISPREDICTION 
Number of 
Unresolved 
Branches 

P[at least one 
branch is 
mispredicted] 

0 0 
1 0.1 
2 0.19 
3 0.27 
4 0.34 
5 0.41 
6 0.47 
7 0.52 
8 0.57 
9 0.61 

10 0.65 
 

As seen in Table 6.1, simply using branch prediction to predict the control flow is not 

reliable if there are 6 or more unresolved pending branches in the machine because the 

branch prediction error is close to 50% or more.  In fact, 27% prediction error for 3 
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pending branches is high enough to deteriorate the IPC.  Hence, a better solution other 

than to simply trust the branch predictor is required to have a high IPC. 

Why not simply build multi-cores to solve this problem? 

    Building parallel core architectures results in speed-up provided there is enough code 

parallelism to extract in the program.  ILP is much more at finer granularity than task or 

data parallelism that useful for multiple parallel core architectures.  In addition, Agerwala 

and Cocke (IBM, 1987 [33]) showed that it requires at least 75% of parallelism in 

programs for a parallel machine of 100 processors to equal the speed-up of a parallel 

machine with just 6 processors but with twice the speed-up in its sequential part of the 

program. 

    High parallelism is found in programs developed for numerical computations or 

gaming applications.  But, only a few programs have such high degree of parallelism (> 

75%) and hence it is important to address the problem of control dependencies that is 

present in the non-parallelizable code to boost the performance of modern computing 

machines. 

 

6.2 Multi-Path Execution Schemes 
 

    Streams of instructions from both paths are followed after a branch instruction until the 

branch gets executed.  This strategy seems to be straightforward as there is no influence 

of branch prediction and most importantly the machine need not recover from the 

misprediction where many useful CPU cycles are lost.  This is because following both the 

paths of the branch guarantees completion of one path when the branch is executed.   
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    On the other hand, following both paths leads to splitting the machine resources among 

the paths where one is discarded.  Furthermore, if the path has a branch instruction it 

forks 2 new paths and so on.  This results in an increase in the number of paths of the 

order of (2^n), where ‘n’ is the number of unresolved branches.  As each path after the 

branch instruction maintains its own sub-set of registers and pointers that are then 

updated at complete, they well fit into the definition to be called as threads. 

    Now, let’s conduct a simple analysis to understand the performance of the branch 

prediction and multi-path execution schemes.  To keep the analysis simple, let’s assume 3 

consecutive branches that are executed in parallel and hence all have the same latency at 

which it is resolved. 

Let ‘s’ be the number of instructions fetched per cycle, ‘Perror’ be the probability that 

the 3rd unresolved branch is mispredicted, and ‘R’  be the number of recovery cycles, then 

the IPC of the machine with branch prediction is, 

IPC (bpred) = 

)/()(

1
1

Rs

P

s

P errorerror +
−

     equ (6.2) 

Let’s consider the multi-path case, 

                      

a. Minimum Possible Threads (4 Threads)     b. Maximum Possible Thread (8 Threads) 

Figure 6.1 Multi-Path for 3 Unresolved Branches. 
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The IPC of the multi-path execution assuming the 3 branches are resolved in the same 

cycle simply is, 

IPC (multi-path) = s/2m    equ(6.3) 

Now, considering 4 to 8 threads (Figure 6.1) the IPC for 8-wide machine (s = 8) is 

between 2 and 1.   If the probability of error is predicting the 1st branch varies from 0.05 

to 0.5, then using equ(6.2) and equ(6.3), the Perror for the 3rd branch and its 

corresponding IPC can be calculated as shown in Table [6.2]. 

TABLE 6.2 CALCULATED IPC USING EQU(6.2) FOR BRANCH PREDICTION 

Pe (1st Br) Pe(3rd Br) IPC(bpred) 
0.05 0.14 4.347 

0.1 0.27 3.053 

0.15 0.39 2.395 

0.2 0.49 2.030 

0.25 0.58 1.785 

0.3 0.66 1.612 

0.35 0.73 1.486 

0.4 0.78 1.408 

0.45 0.83 1.337 

0.5 0.88 1.273 

 

    Note that when the Pe(1st branch) is more than 0.25, the IPC with branch prediction is 

less than 2, where as in the case of multi-path execution the IPC with 4 threads is 2.  On 

the other hand, the worst-case of multi-path execution with 8 threads the IPC is 1 and the 

IPC with branch prediction is little more than 1 for its worst-case.  

    From the above analysis it is not clear if the machine with branch prediction or multi-

path execution is better, as it depends on various conditions of path executions in both the 

schemes.  In addition, formulating all possible paths with large number of unresolved 

branches is a combinatorial problem.  Hence, to obtain more deterministic estimate of the 

processor performance, execution-based simulations have to be conducted and later the 
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results have to be analyzed to determine the machine that has a better average 

performance. 

 

6.3 Single-Threaded Processor with Branch Prediction 

    This is the base-line architecture in the present day microprocessor cores.  For branch 

prediction logic, branch target butter (BTB), 2-bit saturating counter and a shift register 

to maintain global history bits are used to predict the control flow of the single-threaded 

machine.  The 2-bit saturating counters and the BTB are updated non-speculatively in the 

complete stage.  This may result in extra cycles but recovering for a speculative mis-

prediction is prevented.  Studies have shown there is 1% improvement if branches are 

updated speculatively, which is insignificant compared to the logic and cost involved in 

speculative recoveries. The basic architecture of the branch prediction logic in the fetch 

stage is shown in Figure 6.2. 

 

Figure 6.2 Logical Block Diagram of the Branch Prediction in  

Single-Threaded Processor 

 



 

Chapter IV 84 

Evaluating Branch Prediction Mechanism 

    Gshare branch predictor is the most commonly used branch prediction because of it 

reasonably low branch prediction error rate and its simplicity (McFarling, 1993 [32]).  It 

consists of a globally shared history bits (gshare) of a particular size in bits.  These 

history bits are hashed with the branch instruction address to index a column of state 

predictors. Depending on the State Machine Predictor as shown in Figure 6.2, the next 

address after the branch instruction is predicted and the corresponding instruction is 

fetched from the instruction cache. 

TABLE 6.3 PROBABILITY OF BRANCH PREDICTION ERROR FOR 3 BILLION COMPLETED 

INSTRUCTIONS 

Benchmarks > 0.3 
0.3 > Pe < 
0.7 

176.gcc 0.624318 5.21E-01 

402.bzip 0.214487 2.09E-01 

456.hmmer 0.573799 0.5383107 

429.mcf 0.306306 0.3005648 

458.sjeng 0.560901 0.48985 

255.vortex 0.469276 0.2176803 
Average 0.458181 0.3793101 

Fraction of Branch Mis-Predictions with Probabilty Error >=  0.3
and between 0.3 to 0.7
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Figure 6.3 Fraction of Branch Misprediction in SPEC benchmarks 

gshare: Size: 2048 entries; History Bits: 16; BTB: 512 sets with 4-way associative 
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    Figure 6.3 shows the fraction of branch misprediction that have a probability of error 

more 0.3 as well as between 0.3 and 0.7.  As seen from the plot about 45% of branches 

are mispredicted.  If the predictions of those branches that have a probability of error 

greater than 0.7 are inverted, since there are wrongly correlated (Klauser, 2001, [34]).  

Even then there are still about 38% of the branches whose behavior patterns are not 

correlated with the branch predictor. 

 

Classification of Branches and their Prediction 

Percentage of Branch Instruction Distribution  
in SPEC Benchmarks
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Figure 6.4 Classification of Branch Instructions in SPEC benchmarks 

    It is important to find the class of branches and to identify the area that needs 

improvement.  In the benchmark programs that are tested, there exist four predominant 

classes of branch instructions – Unconditional Jumps, Call Direct Jumps, Unconditional 

Indirect Jumps and Conditional Direct Jumps.  
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    Unconditional Jumps and Call Direct jumps are predicted using a BTB, they normally 

attribute to compulsory misses or aliasing.  Although, compulsory misses cannot be 

avoided, aliasing can be taken care simply by increasing the buffer size.  Unconditional 

Indirect jumps can be predicted using BTB but more advanced techniques using register 

address stack as in Intel’s Nehalem architecture are also used. 

    From Figure 6.4, about 67% of branches fall under the category of conditional 

branches.  Hence with about 38% of total branches regarded as hard-to-predict branches 

there are approximately about 25.4% of conditional branches that can be regarded as 

hard-to-predict conditional branches.    To maximize the performance of single-threaded 

execution, it is vital to reduce the misprediction penalties that are incurred due to hard-to-

predict branches. 

    To solve the problem of misprediction penalties in single-thread instruction stream, a 

scheme were multiple paths are followed and executed using Simultaneous Multi-

Threaded (SMT) architecture designs is adapted.  Although, branch prediction can be 

further improved with confidence estimators, data-value prediction and neural network 

algorithms, they normally result in diminishing results.  Hence, SMT-based architecture 

design is chosen to solve the hard-to-predict conditional branch problem as well as to 

explore and improve some design techniques in the multi-threaded designs. 

 

6.4 Related Work 

    Ahuja et al, 1998 [35] show average speedups of 14.4% for multipath architecture with 

confidence predictor on SPECint95 benchmarks compared to a single path machine.  The 

paper demonstrates that the instruction fetch bandwidth is very important and extra 
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resources to fetch correct execution path can improve performance.  However, the study 

does not indicate how the fetch resources must be allocated and how the confidence 

values can be used to control the fetch allocation.  

    JRS confidence estimator by Jacobsen, Rotenberg and Smith, 1996 [36] introduce the 

concept of confidence estimators.  The confidence predictor is implemented similar to a 

branch predictor.  They test the performance of confidence estimator with ones counter 

(shift registers), saturating and resetting counter.  The paper shows that resetting counter 

tracks ideal curve of misprediction due to dynamic branches closely than other counter 

methods.      Selective Branch Inversion (SBI) is proposed by Klausaur et al., 2001,[34].  

An up-down counter is used in the confidence estimator with 0 marked as low confidence 

and 1 to 3 as high confidence.  A relative improvement of 9% reduction in branch 

misprediction is noted when compared with the McFarling predictor.  However, 

performance improvement in terms of IPC is not indicated in the paper.  As an alternative 

to the SBI scheme, Aragon et al, 2001 [37] use data value prediction and reverse a branch 

through the Branch Prediction Reversal Unit (BPRU).  Over 6% improvement is shown 

over the SBI scheme in terms of IPC.  Manne et al 199 [38] also introduces various useful 

confidence evaluation metrics such as PVN and Specificity. 

    Uht et al., 1995 [39] propose a variation in eager execution schemes called the Dis-

Joint Eager Execution (DEE).  It uses the cumulative path probabilities to determine the 

highest likelihood path to follow.  The differences between single path, eager and disjoint 

eager execution are illustrated in Figure 6.5. 
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Figure 6.5 Comparisons of Execution Strategies (Source: Uht and Sindagi, 1995 [39]) 

    A mean speedup of 4% over single path execution if more than 256 possible paths are 

followed is recorded.  However, the implementation of DEE is simplified by only 

considering the static branch prediction probabilities and does not consider the dynamic 

probabilities for each individual branch.  As branches in an instruction stream have 

varying misprediction rates, it is interesting to look into the dynamic prediction 

probabilities.  In addition, the paper also does not propose any realistic hardware design 

to implement DEE.  

    Malik et al., 2008 [40] propose a new probability based path confidence predictor and 

compare them with the standard threshold-and-count predictor.  Basically, the threshold-

and-counter confidence estimators suffer from a case where low confidence branches are 

assumed to be mispredicted at the same rate.  The probability based predictor calculates 

the cumulative correct prediction probability in an encoded form.  It uses simplified 

multipliers (log-based circuit) and keeps track of both correct as well incorrect 

predictions of a branch.  It is used in the SMT prioritization of threads and shown to be 
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5.4% better than the standard JRS confidence estimators.  Such predictors can be used on 

confidence-based eager executions and have to be tested. 

    Dual Path Instruction Processing is proposed by Aragon et al, 2001 [37] using Branch 

Prediction Reversal Unit (BPRU).  This architecture targets to reduce the pipeline-fill 

penalty after a misprediction.  Through the BPRU if the alternative branch path has low 

confidence then the instructions from the path are fetched, decoded and renamed but not 

executed while the other predicted path is executed.  If a misprediction occurs then the 

decoded instructions are allowed to refill the buffer thus reducing the pipeline-fill 

penalty.  An 8% improvement is noted over single path with gshare predictors.  

However, fetching from alternative streams reduces the fetch bandwidth and more than 2 

branch paths have to be followed as shown in DEE. 

    Wallace et al., 1998 [40] propose a method to use the 2-way SMT for multipath 

execution.  They use a fetch policy called the ICOUNT, where the fetch logic gives 

priority to those threads that have fewest instructions between fetch and issue.  The 

architecture check points at the blocks of branches.  Depending on the priority based on 

confidence values and resource availability the check points are followed until the branch 

resolves.  A 14 % increase in this modified SMT over the baseline architecture is seen. 

    Selective Dual Path with various fetch polices using confidence values is studied by 

Heil and Smith, 1997 [42].  The fetch policies are,  

Canceled Policy: Ignore subsequent low confidence branches if the earlier branch is 

followed. 

First Delayed Policy: Save the processor state when the 2nd low confidence branch is 

encountered and follow it when the 1st branch is resolved. 
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Last Delayed Policy: The processor state of the latest low confidence branch is saved and 

followed when the 1st branch is resolved.  The paper shows that the mispredicted 

branches occur in clusters.  The fetch policies did not provide much improvement and the 

paper concludes to investigate on machines that can fork multiple branch paths. 

    Perceptron based branch confidence estimation is discussed by Akkary et al, 2004 [43].  

Figure 6.6 shows the block diagram of the perceptron confidence estimator.  The delays 

in calculating (summers and multipliers) and weights training are significant.  A 7 % 

decrease on average in executing wrong instructions is shown using pipeline gating and 

branch reversal strategies. 

 

Figure 6.6 Perceptron based branch confidence estimation by Akkary et el. [2004] 

    

    Address-Branch correlation for long-latency hard-to-predict branches is investigated 

by Gao et al, 2008 [44].  It relies on hard-to-predict branches that depend on the address 

of the memory location rather than its value.  Certain memory-intensive benchmarks 

exhibit this behavior.  The concept involves identifying hard-to-predict branches and is 

based on number of branch penalties.  Once the branch is identified then its producer load 
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instruction is tracked.  Using the load and branch address relationship the target address 

of the branch is then predicted.  There is less than 10% reduction in misprediction on 

average and the actual impact on the IPC is not discussed. 

 

6.5 Discussion 

    The multi-path design using some form confidence estimators has been proposed. 

Klauser et al., 1998 [45] discuss about Selective Eager Execution using confidence 

estimator and achieve an average improvement of 14% in IPC for SPECint95 

benchmarks.  However, schemes such as the DEE (Uht and Sindagi, 1995 [39]) have 

never been tested even through architecture simulations using dynamic confidence 

estimators.  In addition, dynamic confidence estimators are shown to have problems and 

the performance of the multi-path design relies to an extent on the performance of the 

confidence estimators.  The performance improvement varies from 4% to 14% in most of 

the architecture designs that tried to improve the single-threaded program execution.  

Eager execution techniques like DEE and confidence-based fetch are explored in this 

dissertation.  In the next sections, the important design aspects of the SMT architecture of 

this dissertation is explained in detail. 

 

6.6 Multi-Threaded Fetch Logic Design 

    In the case of the multiple threads, a multi-ported BTB and instruction cache are 

necessary to determine multiple target addresses and to fetch from them.  As shown in 

Figure 6.7, the BTB can now be considered as a Thread Management Buffer due to its 

increased number of fields.  Although, the logical block diagram looks simple, the 
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increase in number of read/write ports increases the cost of the design.  For simplicity, 

the block diagram in Figure 6.7 only shows fetching from 2 threads after a branch.   

 

Figure 6.7 Logical Block Diagram of Fetch-Stage in Multi-Threaded Processor. 

 

    The challenge in fetching from multiple paths is to make sure the instructions from 

these streams can be distinguished at any point inside the processor.  This is could be 

done in 2 ways.  Structurally the entire processor can be divided for each of these streams 

or each instruction can be tagged with a path or thread identification tag – Thread ID – to 

distinguish between various paths.  Structurally dividing the entire processor may enforce 

strict limitation of number of threads and also that these resources can be shared.  Hence, 

to improve resource utilization the hardware functional units and registers must be shared 

among these paths.  Therefore, a unique scheme where the branch history bit is used for 

Thread IDs is proposed by Chen, 1998 [46].  Through this scheme the taken path is set as 

1 and the not taken path is set as 0.  Hence, if the instruction path is taken, taken and not 

taken.  The Thread ID would be 110.  This scheme not only makes it easier to distinguish 

between paths but also to find the heritage of the instruction.  Determining its heritage or 
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the path’s ancestor paths enables to find the correct rename register pointers which is 

discussed in the following section.  

 

6.7 Register Renaming for Multiple Paths 

    Register renaming in a single-threaded processor is explained in chapter 4.  Although, 

the mechanism is the same for multi-path architecture, one major difference in this 

architecture is that the renaming can happen at any level of the forking path.  Hence, the 

challenge is to find the correct ancestor path and also to reference the correct rename 

pointer.  Let’s look at the procedure to find the correct ancestor thread ids through an 

example. 

 

Figure 6.8 Example of Register Renaming in Multi-Path Design 

    In the example shown in Figure 6.8, register 12 gets renamed once at the master thread 

as well as twice in Thread ID 00 but at different branch levels.  In thread paths 10 and 01, 

register 12 is being read and the correct register pointers are indicated by arrow symbols 

in the Figure 6.8.  The explanation of how register 12 references correctly to its renamed 

pointers is given in the Flow Chart 6.1, 
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Flow Chart 6.1 Thread Rename Pointer Logic 

       Rename register logic is one major module that different from that of single-path 

architecture design.  The rest of the units in the pipeline in the multi-path architecture 

design are similar to single-path.   

    However, to reduce the number of thread paths that are followed, the thread paths are 

invalidated at dispatch and complete stages as soon as the branch get executed and its 

actual path is determined.  The reason to keep the number of thread path low in a multi-

path scheme is because the more the number of thread paths that are followed the less is 

the fetch width per thread. 



 

Chapter IV 95 

N
o
. 
o
f 
E
n
tr
ie
s
  
=
 

N
o
. 
o
f 
In
s
tr
u
c
ti
o
n
s
 I
n
-F
lig
h
t 

in
 t
h
e
 P
ip
e
lin
e

N
o
. 
o
f 
E
n
tr
ie
s
  
=
 

N
o
. 
o
f 
In
s
tr
u
c
ti
o
n
s
 I
n
-F
lig
h
t 

in
 t
h
e
 P
ip
e
lin
e

 

Figure 6.9.  Logical Block Diagram of Register Renaming in Multi-Path Design. 

 6.8 Confidence Estimator 

   Another approach to reduce the number threads to follow the thread path that has the 

most likelihood to be executed.  This form of execution is called Dis-Joint Eager 

Execution (DEE) and is discussed in detail in the following sections.  In this section, the 

design and performance of the confidence estimator is discussed.   

    The confidence estimator works similar to the branch prediction except that instead of 

storing the target addresses, it has a 4-bit saturating counter.  The performance of the 4-

bit saturating confidence counter and other performance metrics are discussed by Manne 

et al., 1998 [38].  The following is the Pseudo-Code of the confidence update mechanism 

when the branch executes: 
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Prediction Correct: 

  if (Low Confidence): confidence < 8: set confidence value = 8 

  if (High Confidence): confidence value >= 8: Increment 

Prediction Incorrect: 

  if (Low Confidence): confidence < 8: decrement 

  if (High Confidence): confidence value >= 8: set value = 7 (low confidence) 

6.8.1 Fetch Logic using Confidence Estimates 

    The major difference with fetching instructions based on confidence estimates is that 

instead of a branch predictor a table of saturating counters is used by the fetch scheduler 

to determine the path of the next instruction fetch.  The fetch scheduler may use different 

policies and are list in Table 6.4. 

 

Figure 6.10 Logical Block Diagram of Fetch Policy using Confidence Estimator 
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    As shown in Figure 6.10, the BTB is now augmented by Thread Management Table 

which has the following fields, the next Thread PC, the forked branch address, thread 

level and path confidence.  These fields are explained below, 

 

Next Thread PC:  Stores the next program counter of each active path. 

Forked Branch Address:  This is the branch address where the path is forked.   

Thread Level:  It indicates the level of the thread path and it changes as the path traverses 

down. 

Path Confidence:  It stores the confidence value of the path and changes as the path forks 

new paths. 

    

     In addition, to provide continuous fetch stream after switching different paths in the 

same clock cycle, an instruction collapsing buffer has to be modeled.  This buffer stores 

the starting instruction address of a block and the length of the block.  By using these 

fields, different sequences of instruction streams are combined to form a wide fetch group 

in the next cycle.  Hence, with the help of the instruction collapsing buffer the fetch 

group in the cycle is not broken because of multi-path switching and it maximizes the 

fetch resource utilization.   

    Although, the structure of the instruction collapsing buffer is not modeled in the 

simulation, its functional behavior is implemented to ensure the entire bandwidth of the 

fetch is utilized.  The cumulative probability approximation is a small multiplier unit that 

multiplies the current path confidence and the confidence of the forked path during the 
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thread creation process.  The branch predictor is used to determine if the confidence 

value should be associated with the taken or the not taken path. 

6.8.2 Thread Path Creation Logic 

    A new path is created only if there is a hit in the BTB.  If there is no hit in the BTB, the 

path continues in the not taken path (BTB only stores the taken addresses).  At complete 

stage, if the completion logic detects the branch instruction did not spawn a thread, then it 

recovers the machine state if the branch is taken. 

    If there is a hit in the BTB, then a new path is forked in the new thread path level with 

complemented bits in the respective thread path level by the Spawn New Thread module.  

At the same time, the confidence value from the Path Confidence Table is read and a new 

entry is recorded in the Thread Management Table as illustrated in Figure 6.11.  

Depending on the Thread Policy Scheduler, the new thread may be followed or not. 

 

Figure 6.11  Thread Creation Process 
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TABLE 6.4 COMPARISON OF FETCH POLICY SCHEMES THAT ARE EVALUATED IN THIS STUDY 

Eager Execution 

 
Dis-Joint Eager 

Execution 
 

Dis-Joint 
Eager 

Execution with 
selective 
threads 

 

 
 

Policy Perfect 
Single-
Thread 

50 % 
allocation 

 

Confidence 
Based 
Fetch 

Static 
Confidence 

Dynamic 
confidence 

Dynamic 
Confidence 

Fetch Group 

Depends 
on BTB 

and 
perfect 

predictor 

Depends 
on BTB 

and 
Branch 

Predictor 

Split 
equally 

among all 
active 
paths 

Allocated 
propor-
tionally 

among all 
paths  

based on 
Confidence 

Values 

Same as 
Dynamic 

A path with 
high 

confidence 
values is 
chosen 

A set of paths 
with high 

confidence 
values are 

chosen 

Reason to 
study this 
scheme 

Perfect 
case 

To prove 
branch 
predic-
tion for 

high 
fetch 
band-

width is 
poor. 

To 
illustrate 

the 
machine 
perfor-
mance 
without 
any kind 
of branch 
prediction 

To show 
how 

confidence 
values can 
be utilized. 

To com-
pare with 
the dyna-
mic case 

To limit the 
number of 

threads 
with 

confidence 
values 

To minimize of 
dependence on 

confidence 
values as they 

can be 
misleading 

Max. Possible 
Number of 
Threads 

1 1 

2^n, 
where ‘n’ 
is no. of 
branch 
levels 

2^n, where 
‘n’ is no. of 

branch 
levels 

2^n, where 
‘n’ is no. of 

branch 
levels 

2^n, where 
‘n’ is no. of 

branch 
levels 

Depends on the 
Target IPC limit 

Unconditional 
Branches 

With 
BTB 

With 
BTB 

With 
BTB 

With 
BTB 

With 
BTB 

With 
BTB 

With 
BTB 

Conditional 
Branch 

Prediction 
Perfect 

2-Bit 
State 

Predictor 

Used after 
maximum 

thread 
level 

Used after 
maximum 

thread level 

Used after 
maximum 

thread level 

Used after 
maximum 

thread level 

Used after 
maximum 

thread level 

Confidence 
Estimator 

No No No Yes Yes Yes Yes 

Updates 
No 

Updates 

Predictor 
updated 
at Com-

plete 

No 
Updates 

Confidence 
Values 

updated at 
Finish 
Stage 

No Updates 
as it is 
Static 

Confidence 
Values 

updated at 
Finish 
Stage 

Confidence 
Values updated 
at Finish Stage 

Additional 
Hardware 

- 
Counters 
and BTB 

Multi-
Path 

machine 

Multi-Path 
and 

Multipliers 
for propor-

tional 
allocation 
at Fetch 

Same as 
dis-joint 

Multi-Path 
& Confi-

dence 
multipliers 

Multi-Path 
Confidence 

multipliers & 
priority 
encoder. 
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6.9 Simulation Environment 

    AbaKus simulation framework is used to explore the architectural features of the 

processors with both the branch prediction and multi-path execution schemes.  This 

framework with module and port-structures gives a fair degree of accuracy in the 

simulations with reasonable speed.  The details of AbaKus framework and superscalar 

models are discussed in Chapters 3, 4 and 5.   

 

    To focus the study on conditional branch effects on the processor, the component 

designs of simulated architecture are widened to minimize any structural design hazards.  

Perfect memory is assumed as conditional branches only have indirect effect on memory.  

The summary of architecture details are described in Table 6.5.  The simulation is 

executed using Intel Xeon CPU 3.2 GHz (128-node cluster) with 4GB RAM.  In the next 

section, the architecture descriptions of the single-threaded and multi-threaded designs 

are discussed.   

 

    To test the architecture design, benchmarks from Standard Performance Evaluation 

Corporation (SPEC) are used.  In addition, the benchmarks are cross-compiled for 

Simplescalar MIPS IV instruction format.  Due to the library compatibility problems only 

few of SPEC benchmarks were successfully compiled and are used in this study.  The 

benchmarks are run up to 500 million and then the architecture designs are tested for the 

next 100 million instructions.  This is done get past the start-up code in the benchmarks. 

This set of 100 million instructions, however, does not represent the entire benchmark 

that typically has more than 1 trillion instructions.  
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TABLE 6.5.  SIMULATION  DETAILS OF THE MULTI-PATH SMT ARCHITECTURE 
Design Parameters Multi-Path SMT 
 
Maximum No. of Threads 

 
225 possible threads.  
Exclusively depends 

on Fetch Policy 
Instruction Fetch Width per 
Thread 

8 or 32 insts/cycle 
but depends on fetch 

policy 
Instruction Window Size 4096 entries  
Physical Registers 32 
Issue Width 64  
Commit Width 128 
BTB & Branch Predictor (if used) BTB: 8192 16-way 

Gshare: 
 16384 entries;  
16 History Bits 

Confidence Estimator (if used) 8132 entries 
Confidence Counters (if used) 4-bit Saturating 

Counters 
Integer ALU units (Latency =1) 40 
Branch Units (Latency = 1) 40 
Load/Store (Latency = 2) 40 
Mul/Div (Latency = 5) 20 
Float/Special Units (Latency = 3) 40 
Write Back Bus Width 128 
Complete Width 128  

 

6.10 Implications 

    To understand the performance limitations of the conditional branches, a processor 

with perfect conditional branches is evaluated.  This is done by gathering the target 

address traces of the conditional branches in a single-threaded processor and then, 

allowing the simulation to read from this trace when a conditional branch is encountered.  

In this way all the architecture parameters are the same between the perfect and the 

single-thread processor except the conditional branch prediction. 
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Comparison of Instructions per Cycle (IPC) for 
Fetch Width = 8 insns/cycle on SPEC Benchmarks 

with 100 million completed instructions 
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Figure 6.12 Performance Comparison between Perfect and Single-Threaded Processor 

    The average IPC in Figure 6.12 is calculated by finding the average CPI and then 

taking its inverse.  The margin of improvement required on average is about 0.684 IPC.  

Although, this may look small, there are some benchmarks that suffer more conditional 

branch mispredictions penalties than other benchmarks.  From Figure 6.12, the IPCs of 

429.mcf, 458.sjeng and 099.go are likely to have more conditional branch misprediction 

penalties. 

 

6.10.1 Increasing Fetch Width 

    Increasing fetch width to feed on more Instruction Level Parallelism (ILP) is not 

effective as seen in Figure 6.13.  There are 2 factors that affect this, data dependency and, 

fetch width partition and penalties due to indirect jump mispredictions and exceptions.  It 

also results in increase recovery cycles because more instructions from the window have 

to be cancelled during recovery. 
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Comparison of Instructions per Cycle (IPC) for 
Fetch Width = 32 insns/cycle on SPEC Benchmarks 

with 100 million completed instructions 
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Figure 6.13 IPC for Fetch Width of 32.  IPC for 32-wide fetch is slightly less than 8-wide fetch 
because of increased latency in recovery. 

6.10.2 Reducing Conditional Branch Mispredictions 

    As shown in Figure 6.14, a single-threaded processor suffers from conditional branch 

error rate of 10 % on average.  Figure 6.14 also shows the number of conditional branch 

error for the set of 100 million completed instructions.  

Conditional Branch Misprediction for 
100 Million Completed Instructions on SPEC Benchmarks
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Figure 6.14 Conditional Branch Error Rate. The plot represents the number of Recoveries due 
Conditional Branch Misprediction 
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    Figure 6.14 show that ‘456.hmmer’ at an extremely low error of just 1 conditional 

branch error.  This set of 100 million instructions happens to be the best case for this 

benchmark.  Because no improvement can further be made on this phase of the 

benchmark, ‘456.hmmer’ will not be tested with the eager-based architectures for this set 

of 100 million instructions. 

 

6.10.3 Eager-Based Execution Schemes 

    The eager-based fetch policy schemes are detailed in Table 6.4 through a comparison 

with single-threaded fetch policy.  Figure 6.15 shows the percentage of mispredictions 

due to conditional branches for eager execution policy. 

Percentage of Recoveries due to Conditional Branches 
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Figure 6.15 Percentage of Recoveries due to conditional branch misprediction.  The figure 
shows that eager execution has reduced the number of recoveries.  Mispredictions in 
eager based executions are due to compulsory BTB misses and if the number of 
unresolved branches reaches the maximum number of branch levels possible in the 
processor. 
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    Branch prediction is used in the eager-based execution only if the maximum possible 

unresolved branch level is reached in the processor.  If branch prediction is used then it 

leads to a possibility of misprediction.  Hence, it is important for eager-based executions 

to use branch prediction rarely by increasing the number of maximum possible branch 

levels in the machine.  This results in increase in more possible threads to handle in the 

processor.  For example, if 3 unresolved branches exist in the processor then it leads to a 

maximum possibility of 23 or 8 threads. 

Average Branch Execution Latency for 8-Wide Fetch8 cycles
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Figure 6.16 Average Branch Execution Latency for 8-Wide Fetch in the SPEC benchmarks. 
 

    As seen in Figure 6.16, the average branch execution latency involves more than 8 

cycles.  For an instruction window of size 4096, the worst-case latency can be even little 

more than 4096 cycles implying a highly dependent instruction chain.  But, as seen in 

Figure 6.16 one half of the pie-chart rotation is about 15 cycles.  Hence, in order to make 

sure that the branch prediction is not used very often, the simulated eager-based 

processors can handle up to 25 unresolved branch levels or up to a maximum possible of 

225 short threads.  The results of the simulations with IPC as the measure of performance 

for both 8 and 32-wide fetch are shown in Figure 6.17 and 6.18. 
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Comparison of Instructions per Cycle (IPC) for 
Fetch Width = 8 insns/cycle on SPEC Benchmarks 

with 100 million completed instructions after 500 million insns
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Figure 6.17 Comparison of IPC for different eager-based polices with single-threaded processor 
for 8-wide fetch. 
 

Comparison of Instructions per Cycle (IPC) for 
Fetch Width = 32 insns/cycle on SPEC Benchmarks 

with 100 million completed instructions after 500 million insns
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Figure 6.18 Comparison of IPC for different eager-based polices with single-threaded processor 
for 32-wide fetch. 
 
 
    From the Figure 6.17 and 6.18, one subtle but important observation is that the IPC for 

32-wide has increased for eager-based execution while it did not for a single-threaded 

processor with branch prediction.  For 8-wide and 32-wide fetch the eager execution with 
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50 % allocation (Table 6.4) has 17.21% and 27.60% improvement, respectively.  The 

maximum possible improvement between the processor with perfect conditional branch 

prediction and the single-threaded processor with gshare branch prediction is about 70% 

on average.  0.99.go has the best improvement on IPC with about 77.26% for the 32-wide 

fetch with eager execution.  The low IPC value of static confidence-based disjoint 

execution signifies the importance of dynamic confidence estimator in the design. 

 

6.11 Discussion on Confidence-Based Eager Execution Schemes 

    There are 3 important factors that need to be considered to attain the IPC of the perfect 

conditional branch prediction – confidence estimates, branch prediction and fetch width. 

    Using the confidence estimator described by Manne et al, 1998 [38] only supplements 

branch prediction.  Eager polices that depend on confidence values such as disjoint, 

disjoint selective and confidence-based eager execution assumes that branch prediction 

error can be corrected by confidence estimates correctly.  On the other hand, the dynamic 

nature of code execution proves to be far more complex than the confidence estimator 

can handle.  This is illustrated in Figure 6.19 that shows the values of PVN, PVP, 

Specificity and Sensitivity of the confidence estimator.  It is important that PVN – 

probability that low confidence is mispredicted correctly and Specificity – fraction of 

mispredictions that are low confidence are close to 1. 
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Figure 6.19 Accuracy of the Confidence Estimator with 4-bit saturating counters.  The low 
values of PVN and Specificity highly affects the performance of the confidence-based 
eager executions. 
 

        In addition to confidence estimators, branch prediction and fetch width have a direct 

effect on IPC.  The use of branch prediction is dependent on the maximum number of 

branch levels available in eager execution schemes.  As seen in Figure 6.20, as the 

number of available branch levels decrease the processor relies more on the branch 

predictor and tend to make more branch mispredictions.  This directly results in decrease 

in IPC.  On the other hand, as seen in Figure 6.21, if the eager schemes have more 

number of branch levels, then the number of active-threads increase resulting in dividing 

of fetch resources.  The way in which the fetch resources are divided depends on the 
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imposed fetch policy of processor.  However, as a result of dividing the fetch resources 

the number of instructions supplied to each thread is reduced impacting the IPC.  This 

can be seen in Figure 6.20.  The eager and disjoint-eager based executions of 25 and 16 

levels have more or less a similar IPC (about 2.9 from Figure 6.20) where as the disjoint-

eager with 8-levels have less number of threads but falters as it relies more on the branch 

predictor. 

IPC and Branch Misprediction for Eager-Based Executions
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Figure 6.20 Relationship showing how different eager schemes rely on branch prediction and its 
effect on IPC 

Histogram of Active Threads in Eager and Disjoint Executions
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Figure 6.21 Histogram of Active Threads.  The Disjoint with 8-levels has less number of 
active threads but relies more on branch prediction.  
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6.12 Summary 

    The effect on conditional branch misprediction on IPC of the processor is clearly seen 

in Figure 6.17 and Figure 6.18.  There is about 70% performance loss due to such 

mispredictions.  Two distinctly different approaches of eager-based execution schemes 

are considered.  The schemes directly affect the fetch bandwidth.  In the first approach of 

simple eager-based execution with 50% allocation, the branches spawn multiple paths 

and divided the fetch and pipeline resources.  Although, the dependence on branch 

predictions is reduced, it also reduces the number of instructions being processed in each 

thread path.  The second approach is the disjoint eager execution where the thread path 

that has the high confidence gets the priority to utilize the fetch resources.  Although, this 

scheme allocates the fetch resources to high confidence paths, the confidence values tend 

to be error prone as shown in Figure 6.19.  The confidence estimator is poorly identifies 

the paths that mispredict.  This results in the thread to be discarded and hence wasting the 

fetch resources.  A more judicious confidence estimator using advanced schemes such as 

data value prediction or neural network-based predictors would benefit the disjoint eager 

execution scheme. 

Variation in Instructions per Cycle (IPC)  for 
100 Million Completed Instructions on SPEC Benchmarks
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Figure 6.22 Code Phase Variations in SPEC benchmark 
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    The 27% average increase in IPC for eager-based execution is relatively significant 

considering the benchmarks that are chosen for performance evaluation.  The SPEC 

benchmarks have code variations depending on the instruction group that is evaluated as 

seen in Figure 6.22.  The size of each benchmark (more than 1 trillion instructions) and 

such code variation makes it hard to understand the true performance of the architecture 

design.  However, by using sim-points (Lau et al., 2004 [46]) where statistical and other 

clustering techniques are used to determine subsets of code that represents the entire 

benchmark can help in finding the regions of code subsets for evaluating the architecture 

design. 
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CHAPTER VII 
 
 

CONLCUDING REMARKS 
 

 

    Several of computer architecture simulation tools are available for architecture design 

space explorations.  However, each of these simulation tools is developed to model 

certain specific aspects of the architecture.  Hence, it is the task of the designer to make 

proper tool selection considering accuracy, speed and flexibility of the simulator.  In 

addition, the simulator should also have cross-compiler features, if required, for extensive 

hardware design verification.   

 

7.1 AbaKus Simulation Framework 

    AbaKus simulation framework is developed to model hardware functionality with 

simple behavior-level details but also with cycle-accurate timing.  The timing information 

is described through port interfaces and is implicitly incorporated in the simulation for 

module communication.  This is ideal for CPU core simulation because instruction flow 

is pipelined on a cycle-by-cycle basis.  Moreover, there is one aspect where the 

simulation speed can be increased, which is by simply multi-threading the simulator as 

modules are task independent. 
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    Although the simulation has sufficient task-level parallelism, the modules must 

communicate and hence, must synchronize every simulated cycle making it as a set of 

tightly-coupled threads.  However, existing computers do not facilitate in speeding up of 

such multi-threaded codes as they synchronize much slower at second-level cache 

memory.  AbaKus simulation framework can be extended to simulate multiple cores to 

study memory hierarchy designs as well as memory coherency problems.  This 

dissertation has showed the usefulness of AbaKus framework by conducting performance 

studies in CPU core designs. 

    Evaluating architecture designs extensively with large benchmarks is essential for 

validating the design and measuring the performance.  In the study of register write-back 

bus width discussed in Chapter 5, about six billion instructions are evaluated in the wide 

superscalar design.  This shows both the capability of AbaKus as well as the extent to 

which the designs can be evaluated. 

 

7.2 Instruction-Level Parallelism 

    Instruction-Level Parallelism may seem to have hit the brick-wall and has been 

extremely hard to even go beyond IPC of 2.5 in the evaluated SPEC benchmarks.  

Although this may be a limiting case to increase the speed-up of sequential programs, 

these programs are compiled with compilers that takes no account of the different 

hardware architectural features.  This is a major problem as compilers could also aid in 

finding the ILP necessary for wide superscalar processors.  Many new compilers such as 

OpenMP (Chapman et al., 2008 [48]), NVIDIA CUDA™ compiler [49] and Intel® C++ 
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Compiler for Itanium architectures [50] take this into account to extract the parallelism 

available at all levels in the program. 

7.3 Conclusion and Future Work 

    This dissertation has demonstrated the successful design and development of an open-

source computer architecture simulator – AbaKus - and also in identifying the key 

aspects of design limitations in wide superscalar processors.  The following are some of 

the contributions made in this research, 

• AbaKus Computer Architecture Simulator 

AbaKus incorporates a simple timing structure in its framework that enables the tool 

to be adapted to other existing hardware description languages.  This timing structure 

based on Moore State Machine also provides cycle-time accuracy that is the baseline 

for all pipelined architecture designs.  In addition, the AbaKus superscalar models can 

be reused for future design evaluations and as shown in the case studies, it can be 

extended to simulate complex multi-threaded and multi-core architectures. 

 

• Designed and verified architecture designs for Eager-Based Executions 

Confidence-Based fetch polices are proposed and evaluated.  It optimizes the use of 

the fetch bandwidth by dynamically varying the fetch rate of eager-threads based on 

the path confidence values.  Since the confidence estimator is very important for the 

design, future work on eager execution would be to increase PVN and Specificity of 

this estimator.  The design and performance of the disjoint eager execution using 

dynamic confidence estimators is also evaluated architecturally.  
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Findings and Conclusions:   
 Eager-Based executions and their designs are tested to overcome the effects of 

low-accuracy of branch prediction on 38% of the conditional branch instructions.  
An improvement IPC of 27% on average is shown.  However, confidence 
estimators need improvement on its design logic as they prove critical on the 
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performance of Superscalar architectures due to data dependencies. 

 
 
 
 
 
 
 
 


