
PERFORMANCE LIMITATIONS IN WIDE

SUPERSCALAR PROCESSORS

 By

 ASWIN RAMACHANDRAN

 Bachelor of Engineering in Electronics and
Communication

 University of Madras
 Madras, Tamil Nadu

 2001

 Master of Science in Electrical Engineering
 Oklahoma State University

 Stillwater, OK
 2003

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of
 the requirements for

 the Degree of
 DOCTOR OF PHILOSOPHY

 December, 2008

 ii

 PERFORMANCE LIMITATIONS IN WIDE

SUPERSCALAR PROCESSORS

 Dissertation Approved:

Dr. Louis G. Johnson

Dissertation Adviser

Dr. R. G. Ramakumar

Dr. Marvin Stone

Dr. Charles Bunting

Dr. Sohum Sohoni

Dr. A. Gordon Emslie

 Dean of the Graduate College

 iii

Dedicated to my mother

 iv

ACKNOWLEDGEMENTS

 As Abraham Lincoln quipped, “It’s not the years in your life that count. It's the life in

your years.” My life seemed to attain a meaning only after I met a few wonderful people.

As my meager mind realizes, these people not only inspired and motivated me but also

shared a portion of their life.

 Following a chronological order, the influence my parents and my grandmother have

on me is significant. My grandmother’s determination to raise four children with modest

income and my parents’ hard work to provide a good education for their children is

something that makes me wonder everyday. My elder brother’s excellence in education

also induced a spirit of motivation in me – may be this is what is known in animal

kingdom as Sibling Rivalry! My high school teacher of Chemistry is an epitome of hard

work and it is through him that I learned to channelize and try to time myself properly.

 Life at Oklahoma State University brought exciting opportunities that I would have

never experienced if it were not so. I still remember the day when I walked into Dr.

Marvin Stone’s sensor lab and the research work that I undertook with interest for the

next two years. Just watching him at work is enough to motivate a person. Dr. Rama

Ramkumar’s witty comments always made me look to the other side of life and Dr.

Sohum Sohoni’s suggestions always kept me to improve and to achieve more.

 Besides research, I experienced a new phase of graduate school when I began to teach!

Dr. Charles Bunting’s unmatched enthusiasm for students and in research has always

 v

been a tremendous inspiration to me. I began to enjoy the art of teaching and continued it

for about 9 semesters.

 My first chance to meet Dr. Louis Johnson came through the digital VLSI class that I

had taken under him. Further, I continued with my master’s thesis on digital CMOS

design. The class on Superscalar processors that intrigued me a lot, especially on a

rename-register file design. I had suggested some design enhancements then that I never

thought that I would later incorporate them in my dissertation work. We would discuss

for several hours in his office about design aspects in computer architecture. Later, these

discussions formed the basis of my dissertation. Dr. Louis Johnson has a profound

impact on my life and will continue to be so for which I’m indebted to him forever.

 Apart from growing in my school life, my friends circle also began to grow.

Interestingly, as I look back, I have found friends at all ages from 8 to 80 years. I try to

work with the international friends’ ministry in a local church and also practice

taekwondo both of which expanded my circle of friends in the community of Stillwater.

 The joy and qualities of some of my friends, Gerard, Simon, Rajaguru, Vijayaraja,

Majunu, Aravind, Grisha, Shyam and many others are remarkable. The help from Bob

and Bettie through the church ministry played a significant role. I also enjoy the child-

like playful times with Robert and inspiration thoughts from Marley and Mei Ling. All

these people and many more have made my life meaningful and beautiful.

 vi

TABLE OF CONTENTS

Chapters Page

 INTRODUCTION I ... 1

1.1. Performance Studies .. 1
1.2. Motivation.. 2
1.3. Cycle-Accurate Simulation Engine Concept ... 5

1.3.1 Processing Elements and Signals:... 5
1.3.2 Buffer Design:.. 5

1.4. Implementation of the Clocked Buffer Model... 7
1.4.1 Module Interfaces through Port Definitions:.. 8
1.4.2 Register and Memory Element Interface Model:... 11

1.4. Organization of this Dissertation ... 12

 LITERATURE REVIEW II... 13

2.1 Simulation... 13
2.2 Simplescalar Tools.. 14
2.3 Liberty Simulation Environment .. 15

2.5. 1 UNISIM... 17
2.5.2 .ArchC.. 17

 SIMULATOR PERFORMANCE III... 20

3.1 Simulator Design .. 20
3.2 Comparison with Superscalar Designs ... 25
3.3 Comparison of Simulation Speed ... 28
3.4 Discussion... 30

 SUPERSCALAR ARCHITECTURE MODEL IV ... 33

4.1 SUPERSCALAR DESIGN... 33
4.2 Store Buffer and Load Dependence Prediction Mechanism................................... 50

4.2.1 Load – Store Address Dependence Prediction.. 51
4.3 Summary... 55

 vii

WRITE-BACK BUS MODEL V.. 56

5.1 Related Work .. 57
5.2 Write-Back Bus Model ... 58
5.2.3. Distribution of Write-Back Bus Size: ... 61
5.3 Write-Back Scheduling Logic... 63
5.3.1. First-In First-Out (FIFO): ... 63
5.3.2. Round-Robin (RR):... 64
5.3.3. Priority to Load/Store, Multiply/Divide and ALU instructions (LMA): 66
5.3.4. Priority to the instruction that has Highly Dependent Instructions (PHD):........ 68
5.3.5. Priority to Program Order Instructions (PO):... 70
5. 4. Simulation Methodology and Implication of scheduler mechanisms.................. 71
5.4.1. Round-Robin Schedule (RR): ... 72
5.4.2. FIFO Write-Back Bus Scheduler: ... 73
5.4.3. Priority to High Dependence (PHD) Write-Back Bus Scheduler:...................... 74
5.4.4. Load-Multiply-ALU (LMA) Write-Back Bus Scheduler: 75
5.5 Summary... 76

 CONTROL DEPENDENT LIMITATIONS VI .. 77

6.1 Program Dependencies ... 77
6.1.1 Higher IPC with Superscalars.. 78
6.2 Multi-Path Execution Schemes... 80

 CONLCUDING REMARKS VII .. 112

REFERENCES ... 115

APPENDIX... 119

 viii

LIST OF TABLES

Table Page

3.1 Event-Driven Simulation Process .. 21

3.2 Simulation Details of the three different simulation models 29

4.1. Summary of description on the fields of the Instruction Window............................. 39

5.1 Instruction Wake-Up Frequency Using ... 69

 Round Robin Write-Back Scheduler ... 69

5.2 Microarchitecture Details of the Simulated Processor... 71

5.3 Improvement in IPC .. 73

6.1 Probability of Misprediction.. 79

6.2 Calculated IPC using equ(6.2) for Branch Prediction ... 82

6.3 Probability of Branch Prediction Error for 3 billion Completed Instructions 84

6.4 Comparison of fetch policy schemes that are evaluated in this study 99

6.5. Simulation Details of the Multi-Path SMT Architecture.. 101

 ix

LIST OF FLOW CHARTS

Flow Chart Page

4.1 Fetch Functional Module .. 35

4.2 Dispatch Logic .. 41

4.3 Execute Stage.. 45

4.4 Finish Stage Logic .. 47

4.5 Complete Stage Logic... 49

6.1 Thread Rename Pointer Logic .. 94

 x

LIST OF FIGURES

Figure Page

1.1 Structure of a Simple Data Path Representation... 5

1.2. Relationship between IPCin and IPCout... 6

1.3. Pipeline Register Interface Model. A and B are modules defining the functionality of

the architecture.. 8

1.4. Module Interface... 9

1.5. Improved Mechanism with Global Pointers for Global Data Structures.................. 10

1.6. Memory Access through Ports.. 11

1.7. Port Access for a Memory Element .. 12

2.1 Port Communications in Liberty, Vaccharajani et. al. [3], 2002 15

3.1 Objectives of a Microarchitecture Simulator.. 20

3.2 Module Executions ... 21

3.3 Design Flow of Simulation ... 23

3.4 Performance Comparison between the Simulators for a simple 3-stage scalar MIPS

architecture.. 24

3.5 Comparison of Simulator Through-put... 25

3.6 Simulated Superscalar Architecture.. 26

3.7 Comparison of Simulator Performance for a Superscalar Architecture Model.......... 28

3.8. Illustration of Module Port Communication... 31

4.1 Design of Rename Register Logic .. 37

 xi

4.2 Fields of Instruction Window Entry ... 38

4.3. Functional Block Diagram of the Issue Logic ... 42

4.4. Functional Block Diagram of the Execute Stage.. 44

4.5 Load Finish and Store Buffer Models... 50

4.6 No. of Load Forwarding and Memory Recoveries with destination memory address

prediction and instruction address (PC) prediction... 52

4.7 IPC with and without Load-Store Dependence Prediction ... 53

5.1. Detailed Architecture Model describing the Write-Back Buses at Finish Stage 60

5.2. IPC of a hypothetical processor using SPEC CINT 2006/2000 Benchmarks 61

5.3. Comparison of IPC for Different Write-Back Bus Widths for fetch width of 4........ 62

5.4. Average IPC for Fetch Width of 4... 63

5.5 Round-Robin Write-Back Bus Scheduler.. 65

5.6 Instruction Mix in SPEC 2006/2000 Benchmark ..66

5.8 LMA Write-Back Bus Scheduler... 67

5.9 PHD Write-Back Bus Scheduler.. 68

5.9 Chain of Data Dependency in an Instruction Window ... 70

5.10 Comparison of IPC over various Write-Back Bus Scheduling Mechanisms 73

5.11 Average Write-Back Stalls by Execution Units for various Write-Back Bus

Schedulers. .. 74

5.12 Average Instruction Window Stalls for various Write-Back Bus Scheduling

Mechanisms .. 75

6.1 Multi-Path for 3 Unresolved Branches. .. 81

6.2 Logical Block Diagram of the Branch Prediction in ..
 Single-Threaded Processor ... 83

6.3 Fraction of Branch Misprediction in SPEC benchmarks..

 xii

 gshare: Size: 2048 entries; History Bits: 16; BTB: 512 sets with 4-way associative 84

6.4 Classification of Branch Instructions in SPEC benchmarks....................................... 85

6.5 Comparisons of Execution Strategies (Source: Uht and Sindagi, 1995 [39])............. 88

6.6 Perceptron based branch confidence estimation by Akkary et el. [2004]................... 90

6.7 Logical Block Diagram of Fetch-Stage in Multi-Threaded Processor. 92

6.8 Example of Register Renaming in Multi-Path Design ... 93

6.9. Logical Block Diagram of Register Renaming in Multi-Path Design...................... 95

6.10 Logical Block Diagram of Fetch Policy using Confidence Estimator...................... 96

6.11 Thread Creation Process .. 98

6.12 Performance Comparison between Perfect and Single-Threaded Processor.......... 102

6.13 IPC for Fetch Width of 32. IPC for 32-wide fetch is slightly less than 8-wide fetch

because of increased latency in recovery.. 103

6.14 Conditional Branch Error Rate. The plot represents the number of Recoveries due

Conditional Branch Misprediction.. 103

6.15 Percentage of Recoveries due to conditional branch misprediction. 104

6.16 Average Branch Execution Latency for 8-Wide Fetch in the SPEC benchmarks.. 105

6.17 Comparison of IPC for different eager-based polices with single-threaded processor

for 8-wide fetch... 106

6.18 Comparison of IPC for different eager-based polices with single-threaded processor

for 32-wide fetch... 106

6.20 Relationship showing how different eager schemes rely on branch prediction and its

effect on IPC ... 109

6.21 Histogram of Active Threads.. 109

6.22 Code Phase Variations in SPEC benchmark... 110

1

CHAPTER I

INTRODUCTION

1.1. Performance Studies

 The design space of microarchitecture is bound to grow significantly as multi-threaded

and multi-core architectures are investigated by computer researchers. Typically,

computer architecture studies can be classified into 2 categories – Performance

Evaluation and Performance Estimation metric studies.

 Studies involving Performance Evaluation simulates the entire microarchitecture

design and provides an accurate performance metric for the simulated microarchitecture.

The simulation of the microarchitecture is cycle-accurate and involves detailed

description of the microarchitecture blocks. This method of detailed cycle-accurate

performance analysis takes tens of thousands of host machine’s clock cycles.

 The SPEC CPU benchmark programs have become the de facto standard to evaluate

computer architecture designs. However, with the number of instructions in the SPEC

benchmarks mounting to more than a trillion instructions, it is not feasible to simulate the

complete set of benchmark programs in a reasonable amount of time.

Chapter I 2

 For example, to execute 1 trillion instructions (assuming it takes 10,000 machine

cycles for a simulated cycle) using a typical CPU operating at 1.5 GHz clock speed and 3

instructions per cycle, it takes about 77 days to evaluate the microarchitecture design. As

different design trade-off studies have to be carried out by researchers, such long

computing wait time becomes a huge impediment for research. Hence, several

techniques have been proposed to circumvent the cost of increased simulation time.

Reduced input data-set and trace-driven evaluations are a few of the techniques to reduce

simulation time for cycle-accurate simulations. However, the similarities of these

simulations with the actual simulation are still under investigation.

 On the other hand, Performance Estimation models are proposed to probabilistically

estimate the performance of the architecture design. The performance estimate of the

microarchitecture is determined in a short time and this ensures the possibility of several

microarchitecture design trade-off studies. But, the accuracy of the probabilistic model

that describes the microarchitecture is debatable. Several assumptions are made to

describe the microarchitecture model and such abstraction undermines the results of the

performance estimations.

1.2. Motivation

 The flow of instructions is measured in instructions per clock, IPCi, at some point i in

the data path. Usually what we are interested in is the average IPC which can be

determined as,

()∑=
c

i
c

i cIPC
N

IPC
1

 (1)

Chapter I 3

where, Nc is the total number of clock cycles when running a bench mark program and

IPCi(c) is the number of instructions passing a point in the data path during clock cycle,

c.

 High level processor simulations can calculate IPC in this manner, but they are forced

to simulate the processor behavior for billions of clock cycles which is very expensive.

Instead a stochastic model for IPC can be used which avoids simulating the processor

architecture cycle by cycle.

 The data path structure and the hazard control logic determine the IPC(c) when hazards

occur. Suppose the cycle by cycle simulation calculates N(IPCi = 0), N(IPCi = 1), ...,

N(IPCi = si) which is the number of clock cycles that IPCi(c) = 0, 1, ..., si, where si is the

local superscalar width (instruction parallelism) at point i in the data path. The IPC model

can be made stochastic by defining the probability that IPCi(c) = 0, 1, ..., si as

 () ii
c

i snnIPCN
N

nIPCP ,...,1,0
1

)(==== (2)

so that,

 ∑
=

=⋅=
is

n
ii nIPCPnIPC

0

)((3)

 The same system of equations from the structural model that determines IPC(c) will

give a system of equations that can be solved for P(IPCi = n) without running a cycle by

cycle simulation.

 The level of detail of this approach is such that individual instructions are not tracked

as they flow through the data path structure. Instead the probability of an instruction flow

rate is determined at each point in the data path structure. Many of the hazard control

equations require knowledge about certain types of instructions at certain locations

Chapter I 4

during certain clock cycles. The probability of an instruction of a certain type can be

determined from instruction frequency analysis of the benchmark programs.

)()|()(iatninstructioPiatninstructiottypePiatttypeP ∗===

)(iatninstructioPf t ∗= (4)

 The instruction frequency of type t instructions, ft, can be reused for performance

calculations of many different structural models. The stochastic model determines P(IPCi

= n) only. The reuse of instruction frequency data greatly reduces the complexity of the

stochastic model.

 Calculating the effects of hazards is complicated since hazards are not mutually

exclusive and that stalls from different hazards can overlap in time. The same stall can be

produced by more than one stall at one time, and we must be careful to avoid counting

the same stalls more than once. To apply the IPC formula, we must include not only

individual hazards, but also all possible combinations of hazards with all possible

overlaps in time.

 In order to accurately estimate the performance of a complex microarchitecture design,

we must understand the dynamic relationship between its instruction flow and the hazards

due to structural, control and data dependence through its statistical information. An

extremely fast microarchitecture simulator with detailed module descriptions that is

closely related to hardware behavior is necessary to gather this statistical information.

Hence, OSU AbaKus – a cycle-accurate microarchitecture simulator is developed to

address this issue.

Chapter I 5

1.3. Cycle-Accurate Simulation Engine Concept

 The basic idea behind the cycle-time simulator is that all clocked modules are

evaluated for every simulation cycle. This idea is in direct relationship with the pipelined

design of the microarchitecture design, as all stages in the pipeline are evaluated similarly

for each clock cycle.

1.3.1 Processing Elements and Signals:

 As shown in Figure 1.1, each Data Processing Element has an input buffer and an

output buffer. The Data Processing Element takes the necessary input data for evaluation

and produces the output data that is then stored in the output buffer. The flow of data in

the buffers is controlled by the stall signal. The processing elements can also introduce

forward-propagating stalls or bubbles in the pipelines. The propagation of bubbles in the

pipeline occurs when there is insufficient amount of data stored in the input buffers to

feed the processing elements. The bubbles can be related to the no-operations (NOPS) in

the microarchitecture design.

Figure 1.1 Structure of a Simple Data Path Representation

1.3.2 Buffer Design:

 The design of the buffer offers the most discreet part of the simulation engine. It

defines both the simulation engine’s flexibility as well as its simulation speed. The

buffer in the simulation act as information sources and sinks for the Data Processing

Chapter I 6

Elements. They maintain the network of connections through which the processing

elements communicate with other processing elements in the design.

 If the buffer gets filled, it can initiate a stall signal that stalls the up-stream buffers.

The IPC of the processor is directly affected by these stall signals. The stall signals that

stall up-stream buffers are called backward-propagating stalls or up-stream stalls. A

major task in designing microarchitecture involves keeping a steady flow of information

in the pipeline and to prevent buffers from being filled up.

 The IPCout and IPCin are related in the eqn (5) and eqn (6) and are illustrated in Figure

1.2, where Nb is the total number of instructions that the buffer can store, sin and sout are

the number of instructions that are flowing into and out of the buffer in a clock cycle,

bubblesin(c) is the number of bubbles that come into the buffer at cycle, ‘c’ and

bubblesout(c) is the number of bubbles that leave the buffer at cycle, ‘c’.

=
=−

=
1)(stall if 0

0)(stall if)(
)(IPC

in

in
in c

ccbubbless
c inin

 (5)

=
=−

=
1stall if 0

0stall if)(
)(IPC

out

out
out

cbubbless
c outout

 (6)

Figure 1.2. Relationship between IPCin and IPCout

 As defined in section 1.3.1, bubbles define the NOP instructions. The buffers can both

propagate as well as initiate stall signals, stallin and stallout. The condition at which the

Chapter I 7

buffer is filled initiates the stallin(c) signal at cycle ‘c’. This is shown in eqn. (7), where

Ib(c) is the number of instructions present in the buffer at cycle ‘c’.

 (7)

The state of the buffer for the next cycle can then be calculated and is given in eqn. (7).

Thus eqn. (8) describes that the state of the buffer for the next cycle is only defined by

the current state of the buffer.

 () ())()(1 cIPCcIPCcIcI outinbb −+=+ (8)

 This simplistic view of the buffer is established from the pipeline model and more

succinctly relates to the Moore State Machine of the architecture design. Furthermore,

for stochastic performance analysis, this step can be extended to a discrete-time Markov

model and thus future state of the buffer can be estimated.

1.4. Implementation of the Clocked Buffer Model

 In this section, the implementation of the buffer model and the Data Processing

Elements that are otherwise known as modules is discussed. As discussed in section 1.2,

it is important that this cycle-accurate simulator is simple and fast. As shown in Figure

1.3, the functionality of the architecture is defined by the two modules A and B. Two

separate simulation data structures are maintained at its interface. The simulation

methodology is a 2-step process.

 The first step is to evaluate all the modules in the evaluate phase. In the first cycle,

module A uses Data Structure 1 as the output while module B uses Data Structure 2 as

Chapter I 8

the input. The second step, i.e. at the end of the evaluate phase, is the update phase. The

pointers of Data Structures A and B are alternated. Hence, during the second cycle

module A uses Data Structure 2 as the output while module B uses Data Structure 1 as

the input. This buffer interface mechanism avoids transfer of huge amounts of simulation

data during each cycle. This concept is further explained in detail in the following

sections.

Figure 1.3. Pipeline Register Interface Model. A and B are modules defining the functionality of
the architecture.

1.4.1 Module Interfaces through Port Definitions:

 The modules descriptions are based on ISO C++ standard constructs. The modules

describe the behavior of the Data Processing Element. The functional behavior of the

module is described using C++ language definitions as in a sequential programming.

However, the difference between sequential and modular programming is brought by port

definitions that are used to interface with other modules. As a result, as shown in Figure

1.4, the modularity in the design is achieved through ports that are used as

communication interfaces between modules and the buffer.

Cycle 1

Cycle 1 Cycle 2

Cycle 2

OUTPUT INPUT

Evaluate
Phase (1)

Evaluate
Phase (1)

Update Phase (2)

INPUT OUTPUT

Data
Structure 1

Data
Structure 2

Module
 A

Module
 B

Chapter I 9

Figure 1.4. Module Interface

 Similar to an HDL, ports are specified in a module to be an input or output port. In

Figure 1.4, each port has 2 pointers, the current port pointer and the next port pointer.

The input data to the module is read from the Data-In Structure that is pointed by the

current port pointer while the module’s output data is written into the Data-Out Structure

that is pointed by next port pointer. In the following cycle, the pointing location of the

pointers is alternated, thus the outputs written during the previous cycle can be read as

inputs in the following cycle and vice versa. This simple alternating of pointers avoids

the overhead of copying the entire data structure that leads to slow simulations as in

OSCI SystemC 2.1.

Chapter I 10

Figure 1.5. Improved Mechanism with Global Pointers for Global Data Structures

 The number of update operations in alternating pointers between Data-In and Data-

Out Structures is directly proportional to the number of ports in a module. Hence, to

avoid this additional computational cost, two Global Pointers for the Global Data

Structure A and B are created as illustrated in Figure 1.5. Furthermore, the outputs of all

the modules in the simulation are referenced to the Global Next Pointer and similarly, the

inputs of all the modules are referenced to the Global Current Pointer. These pointers

alternate between the Global Data Structures A and B for each clock cycle. Thus, the

output data structure at clock cycle ‘N’ becomes the input data structure at clock cycle

‘N+1’ and vice versa. This mechanism not only avoids copying data between the Global

Data Structures but also makes the number of update operations independent of the

number of ports in the modules. As a result, it maintains the computational time for

updating the pointer locations a constant.

Chapter I 11

1.4.2 Register and Memory Element Interface Model:

 The update phase that is shown is Figure 1.3 is also extended to update the registers in

the register file and other memory elements. As shown in Figure 1.6, the data in the

memory elements are accessed through ports similar to the actual memory access. The

location of the write and read is determined by the write and read addresses respectively.

Therefore, a write data or read data occurs on the referenced register/memory location

depending on the logic.

Figure 1.6. Memory Access through Ports

 As shown in Figure 1.7, both the write port and read port have two in-built data

structures defined as Port A and Port B. On the write port interface, the data to be stored

are written into write port A, while the data from the write port B are transferred to the

memory element. Their corresponding pointers are alternated during the update phase that

is triggered by the clock cycle. Hence in the following cycle, the functionalities of write

ports A and B are interchanged. Similarly, on the read port interface, data is read from

the read port A and the data from the memory element is transferred to the read port B.

The functionalities of ports A and B are similarly interchanged for each cycle.

Chapter I 12

Figure 1.7. Port Access for a Memory Element

 This functionality of the write ports and read ports described in this section

corresponds to the D-flip flop register that is used in the actual hardware design. Hence,

designing the memory structures with port interfaces provides this simulator the

capability to perform both functional as well as timing verifications as in an HDL, and

yet with a much greater simulation speed.

1.4. Organization of this Dissertation

 Chapter 2 reviews the simulation mechanism on existing simulators. It reveals the

benefits and drawbacks of each simulator. Chapter 3 presents the simulation approach of

AbaKus simulator and also compares its performance with existing simulators. Chapter 4

discusses the modeling details of the superscalar architecture. It then presents about the

load-store dependence prediction schemes used in AbaKus. Chapter 5 presents a case

study on register write-back buses and identifies the characteristics of different bus

scheduling mechanisms. Chapter 6 presents another case study on control dependencies

problem in superscalar cores. Finally, Chapter 7 summarizes the design of AbaKus and

limitations of superscalar processors.

 13

CHAPTER II

LITERATURE REVIEW

2.1 Simulation

 Hardware simulation is a process of describing the behavior of hardware logic using

computer programming languages and verifying the hardware behavior with test input

sets. Its use and adaptation depends on the accuracy of the results obtained using

simulated hardware compared with actual behavior, speed of simulation and flexibility to

design.

Computer architecture simulators are needed for the following reasons:

• Perform extensive design space exploration because it is cheaper to experiment

with simulated designs.

• Verify hardware logic with respect to both functionality and timing, and

• Aid in the simultaneous development of support software tools such as compilers

and operating systems.

 There is a plethora of computer architecture simulators and the next section discusses

some of the widely used computer architecture simulators.

Chapter II 14

2.2 Simplescalar Tools

 Simplescalar tool set (Burger and Austin [1], 1997) has been one of the most widely

used computer architecture simulator both in research as well as in class projects. It is an

open-source and free-of-charge tool for non-commercial academic users. It provides a

baseline out-of-order simulator known as the sim-outorder and most of the processor

design aspects including the reorder window size, number of functional units and latency

of memory ports can be defined at compile time. In addition, it integrates simplistic

cache models to its processor and the cache design parameters can also be varied.

 Simplescalar package has a set of simulators ranging from simple functional simulator

to complex out-of-order processor simulator. It supports MIPS IV based Instruction Set

Architecture (ISA) with minor changes to the instruction opcodes and also provides

cross-compiler for its ISA to run on host computer machines. The advantage of

Simplescalar tool set is its speed of simulation. On sim-outorder simulations the

simulation speeds can average about 200 K instruction/s on a typical modern day desktop

machine. Hence, it has been widely popular to execute SPEC benchmarks with

Simplescalar tool sets that would normally be executed on real processors.

 One of the main drawbacks of sim-outorder is that it is weakly related to the actual

hardware behavior. For example, sim-outorder does not model the effects of write-back

buses in the processor core. The contention among the write-back buses is important as it

may increase the latency of dependent instructions. Another weakness of sim-outorder is

that the actual execution of the instruction is in-order and only the control flow of

execution is simulated. The concept of pipeline register timing is not simulated and it is

Chapter II 15

important to maintain accuracy. Besides, code changes in Simplescalar have also proven

to be difficult (Vachharajani et. al [2], 2002) and hence it has reduced flexibility.

2.3 Liberty Simulation Environment

 In order to the address the problems of accuracy in simulations and to reduce the

development time for logic design Vachharajani et. al. [3], 2002 developed the Liberty

Simulation Environment (LSE). It is free and is a component-based model designed to

reuse code usage.

 Modularity in module definitions is well enforced by allowing modules to

communicate through ports. Each port as shown in Figure 2.1 handles 3 signals: data,

enable, and ack. The data is sent forward and the enable indicates that the receiving

module should process the data. If the receiving module can process the data then an ack

signal is transmitted. This simulates effectively the pipeline stalls and timing of data in

an architecture simulation.

Figure 2.1 Port Communications in Liberty, Vaccharajani et. al. [3], 2002

 The advantages of LSE are that it is modular and through the use of a graphical user

interface, designers can drag, drop and connect modules. However, the modularity

comes at the cost of simulation speed. The number of hand-shaking signals increases

with the increase in ports (Vachharajani et. al, 2002].

Chapter II 16

 The order in which the modules are invoked depends on the scheme called

Heterogeneous Synchronous Reactive (HSR) scheme. It is different for the discrete-event

scheduling in that a partial order of module invocation is generated statically using

several optimizing scheduling polices and later can change similar to the discrete-event

scheduling. In general, the HSR reduces the problem suffered by discrete-event

scheduler which invokes repeated module evaluations.

2.4 ASIM

 The key feature of ASIM is its modularity (Emer [4], 2002). The performance models

in ASIM are mainly developed using C++ and is a proprietary of Intel [4]. Modularity is

achieved through ports that are FIFO queues. The model of FIFO ports helps ASIM to

simulate the latency between pipeline stages and also wire delays.

 ASIM is considered to offer a high degree of module reuse. However, ASIM is likely

to suffer in the speed of simulation as it is based on discrete-event scheduler. Although,

these schedulers enable designers to simulate realistic hardware signal flow, they suffer

from additional computation time. Since, ASIM is considered to be closely related to

simulate hardware behavior; an extension of ASIM known as A-Ports (Pellauer et. al. [5],

2008) has been developed to emulate the behavior through FPGAs.

2.5 SystemC Based Simulators

 SystemC is a C++ based modeling language with several model libraries for specifying

the digital logic of the hardware and has a discrete-event scheduler to simulate the timing

Chapter II 17

details. The popular version of SystemC is maintained by Open SystemC Initiative

(OSCI) [6].

2.5. 1 UNISIM

 Unified Simulation environment (UNISIM) is an open-source SystemC add-on that

focuses on modularity and code reusability. It also supports cycle-level and transaction-

level models. Several groups such as Liberty, Microlib (Perez et. al. 2004, [7]) and

SystemC model developer are actively involved to develop architecture models of the

computer system.

 One key feature in UNISIM is its interoperability which means that it is considered to

be possible to integrate with different simulation environments. It also supports full

system simulation that includes operating systems such as Linux. Virtutech® Simics™ [8]

is another simulation environment that performs full system simulation and supports

various operating systems. But the disadvantage of Simics is that it is commercial with

source code restrictions. UNISIM currently supports a host of processor model including

PowerPC and ARM. The drawback on UNISIM is that it is an even-driven simulation

environment and is slower than cycle-time based simulations.

2.5.2 .ArchC

 ArchC [9] is an open-source architecture description language based on SystemC. It

defines several wrapper class structures to enable designers to specify the architecture

parameters instead on the actual module descriptions. Module descriptions are also

Chapter II 18

possible to extend its model libraries. It supports various models including PowerPC,

Intel 8051 and SPARC V8 architectures.

2.6 FPGA-based system emulation

 Research Accelerator for Multiple Processors (RAMP) [10] aims to emulate dozens of

processor cores in multiple FPGAs whose cells are being densely packed. Validating

multiple processors is difficult in simulations because of the increase in the level of

simulation as well as the number of test inputs. Emulation using FPGA technologies can

lead to significant improvements in validating such architecture designs. However, the

cost involved in emulation is also significantly higher compared to computer simulations.

2.7 Other Simulators

 There are number simulators available for the computer architecture research

community to simulate various components of a computer system. Depending on the

simulator’s characteristic it is the choice of the researcher to select a simulator.

Simulators such as M5 (Binkert et. al. 2006, [11]) and SESC [12] model both CPU as

well as support network I/Os of a computer system. PTSim (Yourst, 2007, [13]) is an

event-based simulation for x86 architectures. Numerous variants of Simplescalar tools

such as sim-mase (Larson et. al. 2001, [14]) is developed to further increase the level of

simulation details in Simplescalar tool set.

Chapter II 19

2.8 Discussion

 Computer architecture simulators available for researchers are abundant. The choice

of the simulator comes down to the details of architecture that the researcher is interested

to model. The nature of the simulator depends on its modularity/flexibility, speed and

accuracy.

 Although most of the simulators focus of modularity and reusability, it comes at the

cost of simulation speed. Simulation speed is important to enable researcher to test and

validate the architecture with numerous test input sets and also to explore more design

alternatives.

 FPGA based system emulation can provide speed and accuracy but at an increase cost.

AbaKus simulator is developed to address the issues of speed, accuracy and modularity

and in an affordable way. In the next few chapters, the internals of AbaKus simulation

engine and its models are discussed.

Chapter III 20

CHAPTER III

SIMULATOR PERFORMANCE

3.1 Simulator Design

Simulators strive to achieve the three important parameters - accuracy, flexibility and

speed in the best possible way as depicted in Figure 3.1. The simulators described in

Liberty [2], MASE [14] and ASIM [4] emphasize on each of these parameters.

Figure 3.1 Objectives of a Microarchitecture Simulator

Microarchitecture functionality can be visualized as a group of modules triggering

dependent modules to be evaluated each cycle. In general, it is modeled as a state

machine. Therefore, the signals that are generated in a module propagate and modify the

state as they traverse through various module structures. The two common types of

simulations are considered to explain interface mechanism,

� Event-Driven Simulation

� Cycle-Time Simulation

Chapter III 21

 In an event-driven simulation, a process queue maintains a list of modules that are to be

evaluated for each cycle. The process queue is updated for each finite simulation cycle

time. Consider A, B, C, D and E are hardware functional modules connected as shown in

Figure 3.2.

Evaluation of each module triggers its dependent modules and is added in the process

queue. For the structural logic shown in Figure 3.2, the process queue collects copies of

same modules to be evaluated repeatedly as shown in Table 3.1.

Figure 3.2 Module Executions

TABLE 3.1 EVENT-DRIVEN SIMULATION PROCESS

Cycle Evaluate Trigger Process
Queue

1 A B, C B, C

2
B
C

C, D
E

C, D, E

3

C
D
E

E
E
C

E, E, C

Modules C and E are evaluated multiple times.

Although, this ensures a more realistic hardware logic evaluation, repeated module

execution results in a lot of computing time. Simulation kernels of HDLs such as Verilog,

VHDL and SystemC are based on this mechanism. Techniques to reduce the number of

redundant module executions in SystemC by acyclic scheduling have been proposed by

Perez et al. [15].

 B A

 C

 D

 E

Chapter III 22

On the other hand, the cycle-time simulation has a simpler approach. All the modules

in the simulation are evaluated only once on each simulation cycle. This provides a more

straightforward solution to avoid redundant module evaluations. The functional

verification is typically provided by enforcing sequential order of module executions, as in

SimpleScalar. The challenge in a cycle-time simulation is to provide both functional as

well as timing verification that is provided by the event-driven simulation. There are two

cycle-time simulators that are developed in this study.

[1] OSU SystemC

[2] OSU AbaKus

3.1.1 OSU SystemC

 As SystemC has grown to be one of the frameworks for developing system-level

architectures, a new cycle-time simulation model based on SystemC language construct –

OSU SystemC – is developed in this research.

 The models developed in SystemC v2.1 from Open SystemC Initiative (OSCI) are

compared OSU SystemC. SimpleScalar version 3.0 tool-set provides the base-line model

to compare the performance of the simulators as it is widely used for academic research

and studies. The syntax of OSU SystemC is same as IEEE 1666 standard described for

SystemC v2.1, but with restriction on usage of thread modules. The following

summarizes the kernel of OSU SystemC,

• The old and new values have pointer that are switched on each delta cycle instead of

values being copied [15].

Chapter III 23

• The scheduler is cycle-time based and hence, it evaluates all the modules that are

declared with SC_METHOD in a delta cycle. SC_THREAD definitions are not

handled as it needs synchronization of all thread modules after each delta cycle.

3.1.2 OSU AbaKus Simulator:

 On the other hand, the syntax of OSU AbaKus is in standard C++ and is developed

such that it is adaptable to any hardware description language. The OSU AbaKus

Microarchitecture Design Simulator is developed to address the issues of flexibility and

speed. The design flow for each microarchitecture simulator is illustrated in Figure 3.3.

 OSU AbaKus provides a much simplified simulator with a new simulation kernel and

is completely different from that of SystemC 2.1 kernel. Thus, by having a new

simulation kernel, the redundant codes present in the existing OSU SystemC version and

its class hierarchical design is avoided.

Figure 3.3 Design Flow of Simulation

Chapter III 24

3.1.3 Comparison between OSCI SystemC, OSU SystemC and OSU AbaKus

A simple three-stage scalar pipeline model was tested with SPEC 95 benchmark

programs on an AMD Duron 750 MHz processor running Linux kernel 2.4.2. As shown

in Figure 3.4, the instruction execution rate of the new simulators using the SimpleScalar’s

instruction-execution engine is 10 times faster than the model developed in SystemC 2.1.

This results in 25% increase in simulation speed between OSU AbaKus and OSU SystemC.

The throughput of the simulators is compared in Figure 3.5. SimpleScalar’s sim-safe

executes all instructions in a clock cycle i.e. the instruction execution latency is 1 and it

represents the most ideal execution engine.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

SystemC 2.1 OSU SystemC OSU AbaKus
1.0

Simplescalar
3.0 Sim-Safe

134.perl

126.gcc

009.go

129.compress

Figure 3.4 Performance Comparison between the Simulators for a simple 3-stage scalar MIPS
architecture

Chapter III 25

0

0.5

1

1.5

2

2.5

3

3.5

134.perl 126.cc 009.go 129.compress

cl
o

ck
 c

yc
le

s
(i

n
 m

ill
io

n
)

/ s
ec

o
n

d

OSU SystemC OSU Abakus Simplescalar's sim-safe

Figure 3.5 Comparison of Simulator Through-put

It is observed from Fig. 3.5 that OSU AbaKus has 40% more throughput than OSU

SystemC. The simulation kernel differences such as implementation of advanced object-

oriented concepts cause the asymmetric distribution of execution rate seen in Figure 3.5.

To further investigate the performance of the simulators on complex designs, a superscalar

architecture is built using OSU AbaKus.

3.2 Comparison with Superscalar Designs

 A modular description of superscalar architecture design is written to accurately

model the functionality of the microarchitecture during each clock cycle. The modules are

described in C++ and reuse Simplescalar’s execution core and memory models. Figure

3.6 shows the details of the simulated superscalar architecture. It accurately models the

stall signals and in addition, the pipeline registers are parameterized to simulate different

superscalar architecture widths. The finish stage encompasses the issue logic, instruction

execution and write-back buses to update the register file. The microarchitecture is

designed to explicitly model the rename register mechanism using Rename Register

Chapter III 26

Pointers and Architect Register Pointers that is not modeled in SimpleScalar’s sim-

outorder 3.0. Moreover, unlike SimpleScalar 3.0, all executions are true out-of-order.

As shown in Figure 3.6, the microarchitecture uses SimpleScalar’s memory model to

fetch instructions and to perform memory related operations. The dynamic instruction

scheduler with single instruction window includes instruction wake-up logic and out-of-

order issue logic. As a test case perfect branch prediction is used to determine the

throughput of each simulator and limit the architectural differences between the two

simulations. But, it is found that in SimpleScalar, the next program counter is determined

at dispatch and hence it encounters conditional stalls even during perfect branch

conditions.

Figure 3.6 Simulated Superscalar Architecture

 As there is no floating-point unit incorporated in OSU AbaKus, it handles floating-point

instructions as a precise exception. Due to this simplification, it is expected to have a

Chapter III 27

lower IPC than SimpleScalar. Instructions that cause exceptions have three-cycle

functional unit latency. The recovery mechanism then recovers the processor to the

original machine state. However, the number of recovery cycles depends upon the state of

the processor at the time of exception and this is not modeled in detail with SimpleScalar

3.0. Besides, no explicit register rename mechanism is implemented in SimpleScalar 3.0.

A more detailed out-of-order architecture model is developed in Simplescalar

4.0/MASE [14]. The renaming register logic is included and a distributed reservation

station model is incorporated. An in-order execution queue is maintained and hence it

does not incur a 2-cycle penalty for perfect branch prediction studies as in Simplescalar

3.0.

Another architecture difference between Simplescalar and OSU AbaKus is the register

write back bus model during the finish stage. This is an important module that defines the

number of instructions that can finish in a clock cycle. This aspect is not considered in

Simplescalar versions (Vachharajani et. al. 2006, [3]). OSU AbaKus solves this problem

by providing an explicit parameter for the write-back bus bandwidth and simulates

realistic stalls encountered during instruction finish. The pre-compiled SPEC binaries

from SimpleScalar and our own compiled binaries with ref and train input data-sets were

run to completion. Due to the long running time not all benchmarks are incorporated in

the test.

Chapter III 28

3.3 Comparison of Simulation Speed

 Figure 3.7 compares the simulation speed of the three microarchitecture simulators,

sim-mase, OSU AbaKus and sim-outorder. In order to correctly compare the simulators,

every effort is made so that the simulated hardware architectures are as similar as possible.

In addition, the processor model that is simulated in the three simulators is designed to

have similar average Instructions per clock cycle (IPC). The simulators are compiled with

gcc 3.4.5 with the O0 optimization level and are executed in a 64-node cluster each with

3.2 GHZ Intel Xeon™ processor running a Linux 2.6.9 kernel. The simulated architecture

details are listed in Table 3.2.

 SPEC CPU 2006/2000 integer benchmarks with reference input datasets are used to

compare the simulators. A total of 6 billion instructions are executed in each of the

selected benchmarks. Only the benchmarks that compiled successfully with

Simplescalar’s sslittle-na-sstrix-gcc are used in this research.

Comparison of Simulation Speed

0.00E+00

5.00E+04

1.00E+05
1.50E+05

2.00E+05

2.50E+05

3.00E+05

3.50E+05
4.00E+05

4.50E+05

5.00E+05

40
2.b

zip
2

45
6.h

mm
er

42
9.m

cf

45
8.s

jen
g

17
6.g

cc

19
7.p

ar
se

r

25
5.v

or
te

x

Ave
ra

ge

E
la

p
se

d
 C

yc
le

s
p

er
 s

ec
o

n
d

sim-mase

AbaKus

sim-outorder

Figure 3.7 Comparison of Simulator Performance for a Superscalar Architecture Model

Chapter III 29

 Due to the inherent dissimilarities between the simulated architectures, it is more

pertinent to compare the elapsed simulation cycles/s between the simulators instead of

instructions/s. Both sim-mase and OSU AbaKus have more detailed architecture

simulation than sim-outorder. As seen in Figure 1, the new simulator –OSU AbaKus- is

on average 50.27% faster than sim-mase while sim-outorder is on average 39.04% faster

than OSU AbaKus.

TABLE 3.2 SIMULATION DETAILS OF THE THREE DIFFERENT SIMULATION MODELS
Design Parameters sim-outorder AbaKus sim-mase

Instruction Fetch Width 4 inst/cycle 4 inst/cycle 4 inst/cycle

Instruction Window Size Single Window: 64 Single Window: 64 Split Window: 64

Physical Registers 32 100 100

Issue Width 8 8 8

Commit Width 8 8 8

Branch Predictor Perfect Perfect Perfect

Integer ALU units (Latency
=1)

3 3 3

Mul/Div Unit (Latency = 6) 1 1 1

Float ALU units 4 Exception call 4

Float Mul/Div units 1 Exception call 1

Write Back Bus Width Not Modeled 4 Not Modeled

Exceptions Not Modeled Precise Precise

Memory Latency 1 1 1

Number of Executed
Instructions

6 Billion 6 Billion 6 Billion

Average IPC 2.165 1.794 1.884

Average Simulation Time 6520.1 seconds 11268.7 seconds 15655.0 seconds

Chapter III 30

 Although, other simulators such as publicly available Liberty and Intel's ASIM also

focus on modularity, their over-head time on port communication is significant as the

number of signals increase. The 3-way hand-shake port communication in Liberty and

multiple event-driven executions in ASIM slow the simulations as the complexity of the

design increases (Vachharajani et. al. 2002 [2]). In contrast, OSU AbaKus is a cycle-time

simulator similar to Simplescalar. Thus, the simulation speed of OSU AbaKus is

compared only to those of Simplescalar 3.0 and MASE. The AbaKus simulator can be

succinctly defined as an HDL that is familiar to hardware designers, but with a cycle-time

based simulation environment.

The OSU AbaKus simulation tool set enjoys the advantages of modularity and

simulation speed. Modularity is achieved by writing module descriptions as done in

typical hardware description languages such as Verilog or VHDL. Changes to its modules

are simplified because the modules are not sequentially dependent as is the case with

Simplescalar tools. In the following section, the flexibility of the OSU AbaKus simulation

tool will be demonstrated by studying the effect of write-back bus widths. The write-back

bus is a natural part of our model because of the direct correspondence of simulation

modules with real hardware modules; whereas the write back bus is not included in

Simplescalar or MASE module descriptions.

3.4 Discussion

 Simulation design objectives of AbaKus computer architecture design tool are

provided below followed by a brief discussion.

1. Modularity: Breaks down performance modeling into different pieces.

2. Reusability of modules: Increases productivity and robustness of the software.

Chapter III 31

3. Familiarity with HDL programming.

4. Fast Simulation Speed.

1. Modularity:

 All the modules in the simulation are accessed by either the Global Input Port Pointer

or the Global Output Port Pointer. As indicated in Figure 3.8, the data elements the 2

global pointers point are switched for each cycle. Thus the updated values are read by

the read ports while the write ports have a temporary data location to write its entries.

Figure 3.8. Illustration of Module Port Communication

2. Reusability:

 Because our module port implementation is fully synchronous, much less simulation

time is required to verify the architecture. The flexibility, i.e. reusability of modular code

of the AbaKus simulation tool will be demonstrated by studying the effect of write-back

bus widths. The write- back bus is a natural part of our model because of the direct

correspondence of simulation modules with real hardware modules; whereas the write

back bus is not included in Simplescalar or MASE module descriptions.

O
U
T

P
T
R

I
N

P
T
R

Module A

0

1

n

Global Input
Port Pointer

2

3

Global Output
Port Pointer

Data
Structure A

Data
Structure B

Data
Structure A

Data
Structure B

Global Data
Structure A

Global Data
Structure BCurrent Cycle

Next Cycle

Chapter III 32

3. Familiarity of HDL Programming:

 The following code structure format is similar to a behavioral HDL that is familiar to

hardware developers.

<module_name>(){
OUTPUT* <output_struct_pointer>; // Output Port Definition
INPUT* <input_struct_pointer>; // Input Ports
INPUT_STALL* <input_stall_pointer>; // Propagating Input Stall Signals
/*module descriptions*/
OUTPUT = module_function(INPUT, INPUT_STALL); // Module Descriptions
}// End of Module

4. Fast Simulation Speed:

 Both sim-mase (Larson et. al., 2001 [14]) and AbaKus have similar and more detailed

architecture description than sim-outorder. The machine state of AbaKus and sim-mase

architectures recovers from exceptions at the complete stage and write-back stage

respectively, while sim-outorder recovers from exceptions at the dispatch stage. The

functional units are matched both in terms of number of units and its latencies. In the

Chapter 4, the hardware and software logic of architecture modeling are discussed in

detail.

 33

CHAPTER IV

SUPERSCALAR ARCHITECTURE MODEL

4.1 SUPERSCALAR DESIGN

 This chapter describes about the basic structure of AbaKus’ superscalar processor

models in detail. The models are described in a structure similar to an HDL that is

discussed in Chapter 3. The functional description of the modules is in standard C++.

The basic modules of the 7-stage pipeline are the fetch, decode, dispatch, issue, finish,

write-back and complete. The implementation details of each of these modules follows

below,

Fetch Stage

 In the CPU architecture core, the fetch stage of AbaKus architecture interfaces with the

memory. The memory unit can be a cache module or the main memory. In a simple

interface model, the fetch is interfaced to the main memory. Although, the memory

interface architecture is a weak relationship with the actual CPU-Memory behavior, it can

be extended to be interfaced with caches.

Chapter IV 34

The following statement is a macro described in Simplescalar (Burger and Austin, 1997,

[1]).

MD_FETCH_INST(inst, mem, fetchPC);

 It is a direct interface to the main memory requiring only 3 arguments, the instruction

object, main memory pointer and the Program Counter (PC) to fetch. A cache functional

module can replace this statement in the fetch module. However, 2 additional signal

arguments are required, if the cache functional module is interfaced, that is shown below,

cache_func(inst, cache_mem, fetchPC, stallUp_signal, hit_signal);

 The 2 additional signals, stallUp_signal and hit_signal are required to

ensure both timing as well as data coherency respectively. Following the instruction

fetch of the corresponding PC, the instruction is partially decoded to identify its type and

operands. This is done for simulation speed-up and also to balance the work-load.

 Since the branch predictor look-up can have a significant adverse effect on the

simulation time, it is necessary that only branch instructions need to be searched in the

look-up table of the Branch Target Buffer (BTB). Hence, after the type of instruction is

known through the partial decoder, only the branch instructions are allowed to access the

BTB and the branch predictors. This is described in Flow Chart 1.

 The work-load between these stages must be balanced because the decode stage has

override logic, free-register priority encoder and register renaming where as the fetch

stage only has the function of instruction fetch interfaced to the main memory. However,

depending on the required timing, the fetch stage can be further easily be super-pipelined

into instruction fetch and partial decoder stages.

Chapter IV 35

Fetch Instruction with

the FetchPC using

Simplescalar Memory

Model

Assign Previous cycle’s Outputs

as Current cycle’s Outputs

Is

CompleteStallBubble

High?

* Update the new Fetch PC

* Flush the previous Outputs

Is decodeStallUp or

dispatchStallUp High?

Partially Decode the instruction to

know its Instruction Type and

Operands.

* Assign the OpCode and partially

decoded values to the Output

Ports.

* Set Next Fetch PC.

Is the Instruction a

Branch?

Look up on the BTB and set the

Next Fetch PC depending on the

Branch Predictor.

Is no. of Instructions

Fetched == S_WIDTH ?

Fetch Sequence

Completed

Set Fetch PC for

the first cycle

NoYes

Yes

No

No

Yes

Yes

No

Flow-Chart 4.1 Fetch Functional Module

Chapter IV 36

Decode Stage

 As mentioned earlier, the main functionality of this stage as implemented in AbaKus

architecture is selecting free rename register, register override logic and register

renaming logic.

Selecting Free Rename Register:

 This functional block selects the next free register available to be renamed. The

instruction set architecture registers are renamed to avoid name dependency stalls in the

superscalar architectures. Basically, the number of required renamed registers is equal to

the sum of instruction window width and instruction fetch width.

 Selecting the free register is simple. It only requires determining the bit that is not set

from the list of busy bits. The corresponding index of the busy bit is the register pointer

for the free register.

Override Logic:

 This is a special case where the operands of one or more subsequent instructions in an

instruction decode group refer to the destination register of any of its previous

instructions. In this case, the override logic makes sure that the newly renamed register

that would only be updated in the next cycle get referenced to the operand that matches

its pointer in the same cycle. This logic is discussed by Shen and Lipasti, 2005 [16] and

is implemented in the AbaKus architecture model.

Chapter IV 37

Register Renaming:

 Register renaming is done by having 2 register pointer files – Architect Register

Pointer File and Rename Register Pointer File. This is best explained with the help of the

following diagram in Figure 4.1.

Register File (RF): Holds the values of the computed data.

Architect Register Pointer (RRP): Holds permanent register pointers for the 32, LO and

HI registers of the Instruction Set Architecture (ISA). The updates are made at the

complete stage.

Figure 4.1 Design of Rename Register Logic

Rename Register Pointer (RRP): Holds temporary register pointers for all the destination

registers of in-flight instructions in the pipeline and is updated at the dispatch stage.

Chapter IV 38

Hence, instructions with dependent source operands refer to the RRP at the decode stage

to find out the correct dependent register pointers.

Dispatch Logic

 Instructions are dispatched to a special instruction window buffer after the decode

logic. The number of entries in the instruction window is fixed during compilation time.

The fields of the instruction window entry are shown in Figure 4.2.

Figure 4.2 Fields of Instruction Window Entry

 The implementation of the instruction window buffer is a choice of the designer. For

hardware logic implementations such as FPGA or custom IC, it is efficient to implement

the instruction window buffer as a fully-associative memory. On the other hand, for a

software simulation it is efficient to implement this special buffer as a direct-mapped

cache.

 In Figure 4.2, the hashed fields represent a single bit field and the remaining fields are

represented by 32 bits in the software implementation. However, the number of bits

should be discerned carefully for the hardware implementation depending on the

requirement. The summary of description of each field is described in Table 4.1.

Chapter IV 39

TABLE 4.1. SUMMARY OF DESCRIPTION ON THE FIELDS OF THE INSTRUCTION WINDOW
Name of the Field Description

Busy Indicates the entry is busy or free.

Completed
Indicates the instruction is

completed/committed

Mis-speculated
Indicates the instruction is misspeculated

and have to thrown out.

Finished
Indicates the instruction has finished

execution

Issued
Indicates the instruction has its operands

ready and is issued in the issue queue.

InOrder

Indicates the instruction enforces order of

fetch, i.e. the STORE instruction forces all

other instructions fetched before it must be

completed, if no load prediction/memory

disambiguation is turned on.

Exception

syscall or any special instructions that is

not implemented in the hardware to be

treated as an exception.

ALU Indicates an ALU type of instruction.

Br
Indicates a BRANCH/JUMPtype of

instruction.

lD Indicates a LOAD type of instruction.

Mult
Indicates a Multiplication/Division type of

instruction.

readLO
Indicates a lower 32-bit of the 64-bit

multiplication result.

readHI
Indicates a higher 32-bit of the 64-bit

multiplication result.

Insn Address
Instruction Address (32-bit) of the

instruction

Chapter IV 40

Insn Opcode
Instruction Opcode (insn A & insn B) of

the instruction

RD Destination Register

RS Source Operand A

RT Source Operand B

Rd_Old Old Destination Register

PC Program Counter

NPC Next Program Counter

Pred PC
Predicted Program Counter at the branch

instruction

Ld_Predict Address
Predicted Load Dependent Address at

Fetch

Bpred_update Branch Update Structure Pointer

Stack_index
Index of the Branch Stack for a direct jump

instruction.

STORE BUF ID Index of the top of STORE Buffer

LOAD BUF ID Index of the top of LOAD Buffer

Wake-Up
0 – Indicates both Rs and Rt are not Ready.

1 – Indicates either Rs or Rt is Ready.

 The dispatch logic is described in the Flow Chart 4.2. The head pointer of the

instruction window is incremented and it is determined if the next ‘S_WIDTH’ of

instruction window entries are available. If not, then the output port of the

dispatchStallUp signal is raised high.

Chapter IV 41

Assign Previous cycle’s Outputs

as Current cycle’s Outputs

Is

completeStallBubble

High?

* Free Busy Bits that were

set in the last cycle.

Is dispatchStallUp or

completeStallUp High?

Is a LOAD

Instruction?

Is no. of

Instructions

Fetched ==

S_WIDTH ?

No

Yes

Yes
No

No

Yes

Yes

No

Is an inOrder

Instruction?

Yes

No

Is only Rs

ready?

Is only Rt

ready?

* Store the top of STORE BUF ID

* Update STORE BUF Contents

* Both Rs and Rt are

Ready; Add the insn

to the COMMON

READY QUEUE.

* Add the insn to the Rs

wake-up list.

* Add the insn to

the Rt wake-up

list.

Is both Rs and

Rt NOT ready?

* Add the insn to the

Rs and Rt wake-up

list.

* Store the top of LOAD BUF ID.

* Update LOAD BUF Contents.

* If cannot ByPass; Add the LOAD

Insn to the STORE’s wake-up list.

NoNoNo

YesYes Yes

Dispatch Sequence

Completed

Start Dispatch Sequence

Add the insn to the Reorder Buffer

Is next

S_WIDTH insn

windown are

free?

Dispatch StallUp Ouput Port = HIGH

Flow Chart 4.2 Dispatch Logic

Chapter IV 42

Issue Logic

 The issue logic reads the instructions in the Common Ready Queue and adds it to the

separate issue queue that is specific for each instruction type. Basically, there are 5

categories of issue queue – ALU, BR, LD/STORE, MULT/DIV and Other instructions

such as syscall, DLW, DSW and other floating-point instructions. It is important that the

instructions have individual queues because a stall in one of the functional unit would not

stall-up the entire queue. The functional block of the dispatch logic and the issue logic is

illustrated in Figure 4.3.

Figure 4.3. Functional Block Diagram of the Issue Logic

Chapter IV 43

[1] The pointer of the ready instruction that is put into the Common Issue Ready is

read and its corresponding instruction window entry and the instruction type are

determined.

[2] Depending upon the type of instruction, it is then added to the respective

instruction issue queue. Step 1 and 2 are continued until all the ready

instructions in the Common Issue Ready are added into its specific instruction

type queues.

[3] Finally, if there is no stall-up signal for the corresponding issue queue then the

instruction is assigned to the output ports for issue. Although, the instruction is

assigned for issue, it is only finalized, i.e. the issue bit is set only in the next

cycle because there can be a stall in the execute stage that is propagates to the

issue stage only in the next cycle.

 A Round-Robin priority issue is implemented in order equally distribute the instruction

issue among the different instruction types. The number of instruction issues is set as a

compilation parameter in the sc_datatypes.h file. The issue queue stalls due to

unavailability of functional units and finalization of the instruction issue are determined

in the next stage – Execute Stage. The number of entries in the individual issue queue is

a compilation parameter and is set equal to the number of entries in the instruction

window. Stall-Up signals due to unavailability of issue queue entry is not implemented,

however, the optimal number of entries in the individual issue queue is a topic of future

research.

Chapter IV 44

Execute Stage

 The execute stage consists of ALU, Mult/Div, BR, LD/STORE and Float/Other

instructions functional units. Each of functional units has latency, ‘m’, which is a

compilation parameter. Besides, the number of functional units, ‘n’, of each instruction

type is also a variable that is defined during the program compilation.

ALU [n]

LAT = m

Write Data

Finish Bit Access

Read Data

Access

RegFile

MUL/DIV [n]

LAT = m

BR [n]

LAT = m

LD/ST [n]

LAT = m

Float

/Exceptions [n]

LAT = m

W

R

I

T

E

B

A

C

K

BUS

Write-Back

Bus Scheduler

WB Queue

Finish Queue

WB Stall

Instruction-Dependency Wake-Up after Instruction Finish

To Complete

Stage

WB Stall

Figure 4.4. Functional Block Diagram of the Execute Stage.

 It should be noted that at the execute stage only the latency of the instruction execution

is simulated but the actual instruction execution takes place only at the finish/write-back

stage. The pipeline stage of the functional unit is implemented as a circular FIFO queue.

The head and tail pointers of the queue are updated at each cycle.

Chapter IV 45

The instructions are read from the issue queue and are assigned to the corresponding

functional units in a round-robin fashion. If no functional units are available then a stall-

up signal is for the corresponding functional unit is raised high. After a fixed number of

cycles, the inserted instructions in the circular FIFO queue at the head pointer propagate

to the tail pointer. Once the instruction i.e. the instruction window ID reaches the tail

pointer, it is determined to be finished the execution. As shown in Figure 4.4, the

instruction is then inserted into the finish queue.

Flow Chart 4.3 Execute Stage

Chapter IV 46

Finish/Write-Stage:

 The finish-stage is an important module as instructions are scheduled to finish by

accessing the write-ports of the Register File, if required, and also its dependent

instructions are waken-up. In addition, the function execution of the instruction takes

place at this stage through a subroutine macro call – SYM_CAT(). As shown in Figure

4.4, the finished instructions are inserted into the FINISH QUEUE. The order in which

the instructions are scheduled into this queue determines the write-back bus scheduling

order. By default, the instructions are arranged in the FINISH QUEUE in a FIFO

fashion. A more detailed study of scheduling the instructions in the FINISH QUEUE is

discussed later in Chapter 5.

 The instructions are read from the FINISH QUEUE and assigned a write-back bus, if

available. If the write-back bus is not available, then that specific Functional Unit is

stalled-up. Once assigned a write-back bus the instruction is set to finish, i.e. the

instruction is functionally executed and the results are updated in the register file in the

next cycle.

 Once the instruction finishes execution, its dependent instructions are found by

walking through the dependent list of the wake-up structure. The wake-up structure has a

list of instruction window pointers. Either the wake-up bit of the dependent instruction

window slot is set to 1 or the instruction is directed to the READY QUEUE depending

upon its operands validity. The finish-stage functionality is further illustrated in Flow

Chart 4.4.

Chapter IV 47

Flow Chart 4.4 Finish Stage Logic

Chapter IV 48

Complete Stage

 The complete stage includes retiring the STORE instructions, executing the FLOAT

and exception causing instructions, waking up dependent instructions and resetting the

instruction window and register pointer entries. In addition, the complete stage also has

in-order instruction checking mechanism to ensure that the completing instruction is the

instruction in the program order. Apart from these functionalities, the complete stage

also takes care of memory disambiguation that is discussed later in this chapter. The

instructions are ready for complete, when they have finished execution and assigned for

completion based on the program order. The maximum number of instructions that can

be completed is defined as COMPLETE_WIDTH in the sc_datatypes.h header file.

 The flow chart in Figure 4.5 illustrates the complete stage logic. When STORE

complete, it checks for data memory address violation in the load buffer, i.e. it check if a

load instruction after the store instruction had already finished execution. If it were the

case, then the finished load instruction would have a stale value. Hence, those loads that

have memory violated are identified and are marked as ‘memory violated’ in the

instruction window. Later, as the load instruction completes, if the ‘memory violated’ bit

is set, then, all subsequent instructions following the load instruction are not completed

and initiates processor recovery state.

 Similarly, as branch instructions complete, the ’next program counter’ is checked for

equality with the ’predicted program counter’, if not equal, then all instructions

following the branch are not completed and processor recovery is initiated.

Chapter IV 49

Flow Chart 4.5 Complete Stage Logic.

Chapter IV 50

4.2 Store Buffer and Load Dependence Prediction Mechanism

 Memory consistency in a computer system has become a vital part in the design of the

multiprocessor systems. Although, there is only one process executing in a single-

threaded superscalar machine, the fact that instructions executed out-of-order introduces

the challenge to maintain memory coherency. The order of reads and writes into the

cache or the main memory must be maintained in program order by the hardware logic

and any violation of this order can cause erroneous result in execution.

 In the case of simple scalar pipelines, the memory consistency is satisfied because the

writes and reads are inherently executed according to the program order. However, in the

case of the out-of-order execution this order of accessing the memory must be enforced

by a special logic and buffers – Load Finish Buffer and Store Finish Buffer.

Figure 4.5 Load Finish and Store Buffer Models

Chapter IV 51

Load Forwarding

 This is a scheme in the out-of-order machines to reduce the latency of the load

instruction by forwarding the data from the store finish buffer instead of accessing it from

the data cache. Store instructions write their destination value into the store finish buffer

in program order and are then updated into the cache or the main memory – store

retirement. If a load instruction follows a store instruction before the store instruction is

retired then the data can be forward to the load instruction from the store finish buffer.

4.2.1 Load – Store Address Dependence Prediction

 Resolving a load instruction quickly can result in increased speed-up because large

percentage of instructions in the program is dependent on the load instructions. Hence,

by predicting the dependence between a store and load instruction, a load instruction can

be allowed to by-pass a store instruction, if there is no dependence between the pair of

instructions. The store finish buffer is used to determine if the load instruction can by-

pass the preceding store or has to wait till the store instruction is executed.

 The dependence is based on previous machine recoveries due to load-store memory

violation, i.e., a load instruction had executed even before the store to that location can

update the data. The load-store prediction buffer is placed at the fetch stage and in most

cases it is similar to the operation of the branch target buffer (BTB) except that the target

address is the speculated memory load address. The relationship between the load and

store instruction can be determined in 2 ways.

Chapter IV 52

1. By matching the instruction address between the load and store instruction.

2. By matching the destination memory address between the load and store

instruction.

In the case of no prediction, loads by-pass store instructions without any restriction. The

number of load forwarding and recoveries due memory violation are illustrated in Figures

4.6 and 4.7.

Figure 4.6 No. of Load Forwarding and Memory Recoveries with destination memory address
prediction and instruction address (PC) prediction.

Number of Load Recoveries
for 6 Billion Completed Instructions

0.000E+00

5.000E+07

1.000E+08

1.500E+08

2.000E+08

2.500E+08

3.000E+08

3.500E+08

402.bzip2 429.mcf 456.hmmer 458.sjeng 176.gcc 255.vortex Average

N
u

m
b

er
 o

f
L

o
ad

R

ec
o

ve
ri

es

NoPred

AddrPred

PC Pred

Number of Load Forwardings
for 6 Billion Completed Instructions

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

402.bzip2 429.mcf 456.hmmer 458.sjeng 176.gcc 255.vortex Average

N
um

be
r

of
 L

oa
d

Fo
rw

ar
di

n
gs

NoPred
AddrPred
PC Pred

Chapter IV 53

 As seen in Figure 4.6, the number of load forwarding is about 4 times more than the

case with no prediction. As the number of load forwarding increases the instructions that

depend on the load can be issued quickly and hence results in increased IPC as seen in

Figure 4.7.

 Similarly, the number of recoveries in the case of no prediction is about 15 times more

than with the prediction. This shows that load and stores are highly dependent and it is

important to have some schemes like load-store dependence prediction in the machine to

improve the performance of the processor.

Figure 4.7 IPC with and without Load-Store Dependence Prediction

 As seen in Figure 4.7, there is about 50% improvement on average IPC which is

significant considering the simplicity of the scheme. In addition, the low percentage of

recoveries with load-store address prediction also reveals that loads and stores

dependencies can be predicted with high degree of accuracy. However, in some cases

both the dependence approaches fail resulting in a machine-state recovery. These cases

are as follows,

Comparison of IPC for Load/Store Dependency Speculations

0

0.5

1

1.5

2

2.5

402.bzip2 429.mcf 456.hmmer 458.sjeng 176.gcc 255.vortex Average

IP
C

NoPred
AddrPred
PC Pred
MASE

Chapter IV 54

1. Instruction Memory Address Prediction (PC):

for(i=1 to 1 x 10^6) {

 if (i mod 2 = 0)

 R3 = Load(&Y);

 else

 R3 = Load(&Z);

 Store(&X) = R3;

}

 In the above lines of codes, the relationship between a single load and store instruction

for a loop unrolled code cannot be established because the loading memory address

toggles for every count. Hence, more dependence entries have to be stored to predict

dependence over number of memory addresses or a combination of data memory address

prediction can be used.

2. Problem with Data Memory Address Prediction (AddrPred)

for(i=1 to 1 x 10^6) {

 R3 = Load(&Y);

 Store(&X + i) = R3;

}

 In the above case, the load memory data is stored into different store location in the

iteration. Hence, it is not possible to establish a relationship because of ever changing

Chapter IV 55

store address. In this case, a sophisticated logic using stride predictor or instruction

addressed based prediction can be used.

4.3 Summary

 Memory violation due to load instructions can be detected when the store instruction

completes by simply checking the load finish buffer. The completing store instruction

checks for a memory address match and then for a data match. If the data of store does

not match the data of the following load in the load finish buffer, then the load instruction

had violated its order of execution, it set a bit and the processor machine-state has to be

recovered once the load instruction is ready for completion.

 A more interesting challenge arises when a store to a byte is followed by a load to a

word of the same address. Since, at this only a byte address is present in the store finish

buffer. These cases are detected and the memory violation bit in the instruction window

in set, initiating the machine-state recovery when the load completes. Such occurrences

are not common and compiler can take care of it by changing the store to a byte to store

to a word

 56

CHAPTER V

WRITE-BACK BUS SCHEDULING MECHANISMS FOR

 MULTI-PORT REGISTER FILE DESIGN

 In a superscalar processor each execution unit, with the exception of the store unit,

requires a write-back bus to update the state of the register file. Ideally, each execution

unit has a write-back bus both to update the register file as well as to forward the results

to the waiting instructions. In order to reduce the cost of the register file and the cost of

instruction wake-up logic, we explore the effect on IPC by having fewer write-back buses

than the total number of execution units. Furthermore, the performance of various write-

back bus scheduler algorithms is also studied. A major bottleneck in the instruction flow

is the size of the register file write-back bus. The size of the write-back is critical for the

following reasons:

a. The number of write-back buses is proportional to the number of write-ports in

the register file. Multi-port register files are expensive to fabricate as they require

more transistors and chip area. The cost of the multi-port SRAM increases as n2,

where n is the number of write-ports in the register file.

Chapter V 57

b. In the instruction scheduler design, special wake-up issue logic circuitry has to be

designed for each write-back bus to determine if the operands are ready for the

waiting instruction. Hence, the complexity and cost of the hardware increases

with the size of the write-back bus.

c. For an architecture design that is only limited by data dependencies, the number

of register write-back buses limits the flow of instructions. This exacerbates the

data dependency problem as the instructions wait to update the results in the

register file.

 In order to emphasize only the effects of the write-back bus width, a sufficient number

of execution units is simulated. Many stalls that are incurred at the finish stage are only

due to lack of sufficient write-back buses, eventually stalling the upstream instruction

fetching. The problem of insufficient write-back buses is more pronounced in a

Simultaneous Multi-Threaded (SMT) processor. As an SMT type processor maximizes

the utilization of the execution core, there is much more demand on the write-back buses

than with a superscalar processor. Hence, it is important to understand the size and the

write-back scheduling logic for these buses can be expensive but when lacking will tend

to limit the instruction flow.

5.1 Related Work

 A delay write-back queue strategy similar to a load and store buffer is proposed by

Kim and Mudge, (2003 [17]) to reduce the number of write ports. In their paper, they

show a 20% savings in energy for a modest penalty in IPC. A multi-level register bank is

Chapter V 58

proposed by Cruze et. al., (2000 [18]), as an alternative to reduce the register file write-

ports. This scheme is further extended by Balasubramonian et al., (2003 [19]), with a

register-file allocation policy to increase the hit rates in level 1 register file. A low-

power 12-port multi-bank register file is designed by Sueyoshi et al., (2004 [20]), and

shows a 72% decrease in area compared to a 12-port-cell-based register file.

 Kim and Mudge, (2003 [11]), use the more common FIFO scheduler between the

functional units and the write-back buses. Our paper shows the relationship between

various bus schedulers and its effect on CPU performance in a detailed manner.

Contention between write-back buses is identified by Smotherman et al., (1993 [22]), and

takes a heuristic approach to reduce this problem.

 5.2 Write-Back Bus Model

 In this section we describe architecture details that are associated with simulating the

write-back buses. In our paper, the write-back bus allocation policy is used as an

example of this capability since such subtle but important aspects of computer

architecture design are not always modeled in Simplescalar tool sets [1].

 A detailed model of the finish stage is illustrated in Figure 5.1. The write-back busses

in our simulations can be considered to be extensions of the "common forwarding data

bus" in Tomasulo's classic algorithm. The write-back busses not only access the ports of

the register file but also update the control information for store and branch instructions.

5.2.1. Round-Robin Issue Logic

Chapter V 59

 The write back bus allocation strategy cannot be studied independently of the issue

strategy, but we did not intend for our paper to be a detailed study of pipeline scheduling

algorithms. We are attempting to show the ease with which detailed studies of hardware

design trade-offs can be done with our modular approach. The instructions in the issue

ready queue are inserted by the dispatch stage. During issue, the instructions are taken

out of the issue queue and are issued to appropriate type execution units in a round-robin

fashion. This results in the instructions being distributed equally in their set of execution

units.

5.2.2. Execution Units:

 The execution units are grouped into three sets and are scalable. All the execution

units in each of the sets have individual stall signals.

a) ALU: Executes integer add, sub and bit-wise type of instructions.

b) MUL/DIV: Executes integer multiply and divide type of instructions.

c) Other Execution Units (OEU): Executes other remaining instructions, such as

load, branch and float instructions. Besides, it also handles store instructions that

are processed by simplified store buffer logic. Since, the simulated architecture

does not model the floating-point register file all the float instructions in the

SPEC CPU INT 2000/2006 benchmarks are treated as exceptions and are handled

precisely.

Chapter V 60

Figure 5.1. Detailed Architecture Model describing the Write-Back Buses at Finish Stage

C. Finish Queue and Write-Back Bus:

 As shown in Figure 5.1, the finish queue is a part of the write-back bus scheduler

implementation. It is not an extra storage space but only models the last stage of the

execution units. The write-back bus scheduler inserts the finished instructions that are

waiting for the write-back bus in the finish queue. The write-back bus width is

parameterized to study the effects of IPC on varying the write-back width. As the size of

the write-back bus increases, there is a proportional increase in the number of write-ports

in the register file and the forwarding bus lines for instruction wake-up.

Chapter V 61

5.2.3. Distribution of Write-Back Bus Size:

 The maximum possible IPC for hypothetical processor architecture, limited only by

fetch width and data dependencies is an interesting starting point for the study of the

effects of write-back bus width. All other structural hazards and control dependencies are

ignored in order to focus the study on the write-back bus width. As mentioned in section

2, only those benchmarks which could be successfully compiled for Simplescalar MIPS

IV instructions are used in this study. Moreover, the subset of SPEC CPU INT

2006/2000 benchmarks actually represents a balanced instruction mix (Phansalkar,

2007[5]).

IPC for Different Fetch Widths
 Window Size = 96; Issue Width = 24; Write Back Bus = 44

0

2

4

6

8

10

12

40
2.b

zip
2

45
6.h

m
mer

42
9.m

cf

45
8.s

jen
g

17
6.g

cc

19
7.p

arse
r

25
5.v

or
tex

IP
C

Fetch Width = 16

Fetch Width = 8

Fetch Width = 4

Figure 5.2. IPC of a hypothetical processor using SPEC CINT 2006/2000 Benchmarks

Chapter V 62

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 4 6 8

Write-Back Bus Width

IP
C

402.bzip2

456.hmmer

429.mcf

458.sjeng

176.gcc

197.parser

255.vortex

Figure 5.3. Comparison of IPC for Different Write-Back Bus Widths for fetch width of 4

 Figure 5.2 shows that for a hypothetical processor that is only limited by a fetch width

of 4 and data dependencies, an average IPC of 3.681 is achievable. With this as the base-

line, the write-back bus width is varied to obtain the sensitivity of IPC to write-back bus

widths. The sensitivity of the write-back bus width to IPC is shown Figures 5.3 and 5.4.

For small write-back widths, there is a linear relationship between IPC and the write-back

bus widths.

 As the write-back buses are a critical and expensive part of the design of the

microprocessor, it becomes important to verify if any of the bus scheduling algorithms

would result in a better IPC. As shown in Figure 5.4, a Round-Robin write-back bus

scheduling logic is used and its average IPC is measured. An important well known

constraint is that the IPC of the microprocessor cannot be greater than the width of the

number of the write-back bus.

Chapter V 63

Average IPC Fetch Width = 4
= 1/ (Average(CPI))

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8

Write Back Width

A
ve

ra
g
e

IP
C

Average IPC

Figure 5.4. Average IPC for Fetch Width of 4

But, it is curious to find the type write-back scheduling algorithm that is chosen to

maximize the IPC for a given number of write-back buses. As indicated in Figure 5.4,

since the write-back bus width of 3 falls in the linear range of IPC, we select this width to

analyze the scheduling algorithms in sections 6 and 7.

 5.3 Write-Back Scheduling Logic

 In this section, the various write-back scheduling algorithms that are tested in

simulations are discussed.

5.3.1. First-In First-Out (FIFO):

a) Strategy:

 First-In First-Out (FIFO) logic is most common queuing model in memory systems. It

is simple to implement as it naturally follows the pipeline model of the architecture

design. At the last stage of the execution pipeline, the FIFO scheduler schedules the

Chapter V 64

instructions to the write-back bus depending on the order in which the instructions finish.

At the finish stage, the scheduler keeps track of execution units that are ready to finish.

High priority is given to those instructions that finished in the previous cycles and are

waiting for the write-back bus than is given to instructions that finish in the current cycle.

An execution unit stalls in a given cycle, if it has an instruction that is ready to write-back

its results but is unable to access the write-back bus.

b) Benefits:

 The implementation of the FIFO scheduler is simple and requires less hardware. It

removes long waiting times for accessing the write-back bus and hence keeps the

execution units from stalling the pipeline.

c) Pitfalls:

 The FIFO scheduler is likely to give priority to the execution units that have less

latency than other execution units, since they are more likely to finish first in the

execution core. Hence, ALU type of instructions is given more priority than other

categories of instructions.

5.3.2. Round-Robin (RR):

a) Strategy:

 Round-Robin (RR) scheduling logic is an unbiased bus scheduling logic as it gives

equal priorities to all the execution groups. The instructions scheduled to the write-back

bus alternate between the ALU, MUL/DIV and LD/ST/BR execution pipelines.

b) Example:

Chapter V 65

 Figure 5.5a shows the write-back bus state at the nth cycle. The RR scheduler starts by

giving priority to the ALU, MUL and OEU instruction type (shaded boxes). As shown in

Figure 5.5b, in the (n+1)th cycle the scheduler starts by giving priority to the MUL, OEU

and ALU instruction type.

c) Benefits:

a. Bus State at nth cycle b. Bus State at (n+1)th cycle

Figure 5.5 Round-Robin Write-Back Bus Scheduler

 Any dominance by a particular type of instruction that would normally result in

instruction window stalls due to data dependence is reduced since the priorities are

normally distributed.

d) Pitfalls:

 Figure 5.6 shows the dynamic instruction mix in SPEC 2006/2000 benchmarks.

Designing a bus scheduler that allocates the instructions to the bus with equal priorities

may not always yield the best

Chapter V 66

Instruction Mix in SPEC 2006/2000 Benchmarks

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

40
2.b

zip
2

45
6.h

mm
er

42
9.m

cf

45
8.s

jen
g

17
6.g

cc

19
7.p

ar
se

r

25
5.v

or
te

xP
er

ce
n

ta
g

e
o

f
In

st
ru

ct
io

n
 C

o
u

n
t

Trap

Float

Integer Operations

Conditional Branch

Unconditional Branch

Store

Load

Figure 5.6 Instruction Mix in SPEC 2006/2000 Benchmark

results, considering the variations in instruction frequencies and the dynamic behavior of

the program during run-time.

5.3.3. Priority to Load/Store, Multiply/Divide and ALU instructions (LMA):

a) Strategy:

 This strategy is designed to exploit the high frequency of Ld/Br/float instructions in the

SPEC 2006/2000 benchmarks when compared to integer type instructions as seen in

Figure 5.7. Hence, in this strategy order of priority is given by OEU (Ld/Br/float)

instructions followed by MUL/DIV instructions and ALU instructions – LMA priority.

b) Example:

 As shown in Figure 5.7a, in the nth cycle the OEU type of instructions gets access to

the write-back bus and is followed by the MUL/DIV instruction. The ALU execution

pipelines get stalls, until they get access to the write-back bus in the (n+1)th cycle.

Chapter V 67

a. Bus State at nth cycle b. Bus State at (n+1)th cycle

Figure 5.8 LMA Write-Back Bus Scheduler

c) Benefits:

 It is likely that the Ld/Br/float instructions that use OEU execution pipelines stall often

due to their high instruction frequency as indicated in Figure 5.7. Hence, providing a

high priority to this group of instructions reduces the number of stalls in the OEU

execution pipelines.

d) Pitfalls:

 Providing high priorities to only load instructions causes the ALU execution pipelines

to be starved for access to the write-back bus. This results in the instruction window

stalling the dispatch and fetch logic until the ALU execution pipelines get access to the

write-back bus.

Chapter V 68

5.3.4. Priority to the instruction that has Highly Dependent Instructions (PHD):

a. Bus State at nth cycle b. Bus State at (n+1)th cycle

Figure 5.9 PHD Write-Back Bus Scheduler

a) Strategy:

 In the Priority to Highly Dependent instruction (PHD) scheduler logic, the scheduler

checks the wake-up table to determine the number of instructions that depend on the

instruction that is ready for write-back. High priority is provided to the instruction that

has high dependency on it.

 Table 5.1 shows the number of times exactly 2 instructions, 3 instructions and more

than 3 instructions are woken-up in the processor using RR write-back scheduler. Since,

on average 4.6% instructions out of 6 billion instructions are dependent on 2 or more

instructions, high priority is given to those instructions that have 2 or more instructions

depending on them.

Chapter V 69

TABLE 5.1 INSTRUCTION WAKE-UP FREQUENCY USING
ROUND ROBIN WRITE-BACK SCHEDULER

Instruction Wake-Up Frequency

Benchmarks
2

Instructions
3 Instructions

More than
3

instructions

Total
Instruction
Wake-Up
Frequency

402.bzip2 6.58E+07 1.27E+07 1.98E+07 9.83E+07

456.hmmer 3.39E+07 4.66E+05 2.31E+05 3.46E+07

429.mcf 9.61E+07 2.21E+07 5.65E+07 1.75E+08

458.sjeng 1.72E+08 3.85E+07 4.21E+07 2.52E+08

176.gcc 1.69E+08 8.35E+07 9.58E+07 3.49E+08

197.parser 2.93E+08 2.09E+08 8.48E+07 5.86E+08

255.vortex 3.45E+08 5.22E+07 5.74E+07 4.55E+08

b) Example:

 Figure 5.8 shows the example of a PHD scheduler. In Figure 5.8a, the instructions that

have high dependency win the write-back bus in the nth cycle and then in the (n+1)th

cycle the other instructions get the bus allocation.

c) Benefits:

 As data dependency is the main problem causing instruction window stalls, the HDI

scheduler reduces these stalls by providing accesses to the instructions that have

dependent instructions waiting on them. Hence, this scheduler is designed to issue a

group of data independent instructions that are just waiting on one instruction to finish.

Chapter V 70

d) Pitfalls:

 The PHD scheduler cannot determine the dependency length of a chain of instructions

that are waiting on one another. Figure 5.9 highlights the problem of chain data

dependency. The PHD scheduler fails to allocate that highest priority to instruction in

slot 1, since a chain of instructions in the instruction window all have a dependency

length of 1 in their wake-up table.

Figure 5.9 Chain of Data Dependency in an Instruction Window

5.3.5. Priority to Program Order Instructions (PO):

a) Strategy:

 In this strategy, high priority is given to the instruction that is dispatched first i.e. in the

program order. It is likely that later instructions in the program code are dependent on

the instructions that are issued earlier. It encompasses the characteristics of order

dependent FIFO and data dependent PHD schedulers to allocate priority to access the

write-back bus.

b) Benefits:

 The problem of chain data dependency as shown in Figure 5.9 is solved by simply

scheduling the instruction to the write-back bus in the program order. This is an effective

algorithm that allays the problem of long waiting times in the instruction window.

Chapter V 71

c) Pitfalls:

 As there is no check on the number of instructions on which the scheduled instruction

is dependent, there can be instances where the instruction scheduled to write back had no

dependent instruction on it. Moreover, the hardware to implement the PO scheduler is

expensive, requiring many comparators and ALUs in order to select the instruction in the

program order at the finish stage.

5. 4. Simulation Methodology and Implication of scheduler mechanisms

 A write-back width of 3 is selected to compare differences between the write-back

strategies that are discussed in section 5.3. The benchmarks are selected from SPEC

CPU CINT 2006/2000 suite and are complied with Simplescalar’s sslittle-na-sstrix-gcc

compiler. The other benchmarks in the SPEC CINT benchmark suite have compilation

problems and hence are eliminated. However, based on the SPEC suite similarity

analysis Phansalkar, 2007 [28], 402.bzip2, 456.hmmer and 429.mcf are determined to be

dissimilar and hence unique in program characteristics. All the benchmarks are supplied

with reference data input sets and are run until 6 billion instructions are executed. Table

5.2 provides the details of the simulated microarchitecture design.

TABLE 5.2 MICROARCHITECTURE DETAILS OF THE SIMULATED PROCESSOR
Design Parameters OSU AbaKus

Instruction Fetch Width 4 inst/cycle

Instruction Window Size 96

Physical Registers 100

Issue Width 14

Chapter V 72

Commit Width 8

Branch Predictor Perfect

Integer ALU units (Latency =1) 3

Mul/Div Unit (Latency = 6) 1

Ld/St/Float/Br Unit (Latency = 2) 4

Write Back Bus Width 3

Exceptions Precise

Memory Latency 1

Number of Executed Instructions 6 Billion

 As shown in Figure 5.4, a write-back bus width of 3 is chosen since it is in the linear

range of IPC. All control dependencies are eliminated by considering a perfect branch

prediction in the simulation. Memory latencies are kept at 1cycle. These assumptions

are made to focus the study on the effects of the write-back bus width on IPC. As a width

of 3 is the bottleneck of the architecture, the IPC can not be higher than 3. Figure 5.10

shows that performance of the simulated architecture with various write-back scheduling

algorithms. The implications of each scheduler are discussed below.

5.4.1. Round-Robin Schedule (RR):

 Since the Round-Robin (RR) write-back bus scheduler give all the execution units

equal priority, it provides a base-line scheduler for effective comparison with other bus

schedulers.

Chapter V 73

Comparison of IPC for various Write-Back Bus Scheduling Mechanisms for
Write-Back width = 3

0

0.5

1

1.5

2

2.5

3

3.5

402.bzip2 456.hmmer 429.mcf 458.sjeng 176.gcc 197.parser 255.vortex

IP
C

FIFO

RR

PHD

LMA

PO

Figure 5.10 Comparison of IPC over various Write-Back Bus Scheduling Mechanisms

TABLE 5.3 IMPROVEMENT IN IPC FROM ROUND-ROBIN BUS SCHEDULER
Improvement =
 (IPC - IPCRoundRobin) / (IPCRoundRobin)

FIFO
(%)

PHD
(%)

LMA
(%)

PO
(%)

402.bzip2 6.145 6.681 -0.398 5.088
456.hmmer 7.529 7.549 5.628 7.582
429.mcf 5.481 5.984 -0.288 5.400
458.sjeng 5.973 6.300 -0.305 7.735
176.gcc 6.209 6.556 -1.404 3.305
197.parser 2.093 2.437 -0.124 3.884
255.vortex 7.960 8.124 3.029 9.475
Average Improvement in IPC (%) 5.913 6.233 0.881 6.067

5.4.2. FIFO Write-Back Bus Scheduler:

 As indicated in Table 5.3, the FIFO bus scheduler is superior to the Round-Robin (RR)

bus scheduler with an improvement of approximately 6%. This increase can be attributed

to the priority that the FIFO scheduler gives the finished instructions in execution order.

Hence, there is less waiting time for an instruction that is waiting for the write-back bus.

On the other hand, RR scheduler may result in a condition where an instruction that

finishes in the nth cycle waits for the bus, while the instructions that finishes in (n+1)th

cycle gets access to the write-back bus. This leads to a stall in the instruction window

and fetch stages.

Chapter V 74

5.4.3. Priority to High Dependence (PHD) Write-Back Bus Scheduler:

 The Priority to High Dependence (PHD) scheduler logic also performs well as it

schedules an instruction to the write-back bus that has a high instruction dependency.

Hence, more instructions are issued as their data dependencies are resolved with priority.

This effect can be seen in Figure 5.11, where there are more write-back stalls in the PHD

scheduler than the RR scheduler. This implies that due to the increase in issue rate more

instructions can finish than the RR scheduler and are waiting for the write-back bus.

 Conversely, as observed in Figure 5.10, the increase in write-back bus stalls does not

decrease the IPC of the PHD scheduler. This is because as seen in Figure 5.10, the

average instruction window stalls that stall instruction dispatch is lower for the PHD

scheduler than the RR scheduler. As the instruction window size is 96 instructions, the

issue logic is able to issue more instructions while the data dependencies are quickly

resolved using the PHD bus scheduler.

Average Write-Back Stalls by Execution Units for various Write-Back
Scheduling Mechanisms

0.00E+00

2.00E+09

4.00E+09

6.00E+09

8.00E+09

1.00E+10

1.20E+10

FIFO RR PHD LMA PO

Write Back Alogrithms

A
ve

ra
g

e
W

ri
te

-B
ac

k
S

ta
lls

Ld/St &
Br

ALU

Figure 5.11 Average Write-Back Stalls by Execution Units for various Write-Back Bus
Schedulers.

Chapter V 75

5.4.4. Load-Multiply-ALU (LMA) Write-Back Bus Scheduler:

 As shown in Figure 5.11, priority to load instructions reduces the write-back stalls that

are caused by OEU pipelines. However, as shown in Figure 5.12 the average number of

instruction window stalls is 14.8% more than the instruction window stalls of the PHD

scheduler. As a result the IPC of the simulated architecture with LMA scheduler is ≈ 6%

less than the FIFO, PHD and PO bus schedulers. The relatively low IPC by the LMA

write-bus scheduler can be attributed to the 2.2 times increase in ALU execution pipeline

stall as observed in Figure 5.11. This is because resolving ALU instructions is critical to

the mitigation of the instruction data dependencies. As the LMA gives low priority to

ALU instructions, its IPC is less than the FIFO, PHD and PO bus schedulers.

Average Instruction Window Stalls various Write-Back Bus
Scheduling Mechanisms for Write-Back width = 3

0.0E+00
1.0E+08
2.0E+08
3.0E+08
4.0E+08
5.0E+08
6.0E+08
7.0E+08
8.0E+08
9.0E+08

FIFO RR PHD LMA PO

A
ve

ra
ge

 In
st

ru
ct

io
n

W
in

do
w

 S
ta

lls

Figure 5.12 Average Instruction Window Stalls for various Write-Back Bus Scheduling
Mechanisms

V. Program Order (PO) Write-Back Bus Scheduler:

 As shown in Table 5.3, the characteristics of the PO bus scheduler and PHD bus

scheduler mechanisms are similar. Since the PO bus scheduler gives priority to the

Chapter V 76

instruction in the program order, it is likely that later instructions are data dependent on

this instruction. Hence, as seen in Figure 5.11, the PO bus scheduler has more write-back

stalls than any other scheduler logic. This indicates that more instructions have finished

execution and are waiting for the write-back bus. On the other hand, Figure 5.12 shows

less average instruction window stalls than the RR bus scheduler. This indicates that

compared to the RR bus scheduler the issue rate is large and the completion time for an

instruction is small.

5.5 Summary

 The flexibility, simulation speed and closeness to hardware logic design that is

emphasized in the design of the AbaKus microarchitecture simulator is demonstrated by

analyzing various write-back bus strategies. As shown in Figure 5.1, IPC can be limited

by the write-back bus width of the architecture design and can be an important bottle-

neck in achieving higher CPU performance, especially in SMT architectures. There is a

need to develop an instruction issue policy that corresponds well with write-back bus

scheduling policy to maximize the utilization of expensive read and write ports of a

register file.

 77

CHAPTER VI

CONTROL DEPENDENT LIMITATIONS ON

INSTRUCTIONS PER CYCLE

“Prediction is very difficult, especially about the future”

- Niels Bohr

6.1 Program Dependencies

 As human brain thinks and reasons out before it makes a decision, it is not clear if this

logic flow is conducted in a sequential or parallel manner. However this may be, some

degree of sequential and parallel process is involved before the brain arrives at a decision.

This argument is necessary because it defines how humans use computer languages to

model and describe their logic. Thereby, the nature of these program descriptions

introduces dependencies before the logic is computed. These inherent program or

instruction dependencies are classified into 2 types – Data Dependencies and Control

Dependencies.

Chapter IV 78

 Instruction data dependencies exist in the program due to logic flow and it requires

computation time to resolve these dependencies. They can be regarded as the last major

bottle-neck of sequential programming model. In many ways, resolving them for a

single-threaded process depends on the logic description and physical design limitations.

However, solutions have been proposed to hide the latency of the data dependent

instructions (IBM 2005 [29][20]) through multiple parallel threads.

 On the other hand, control dependencies in a program can be related indirectly to data

dependencies. Nevertheless, the control flows of the program seem to be predicted to a

fair degree of accuracy (Nair, 1995 [31], McFarling, 1993 [32]) for machines with small

instruction fetch. But, it introduces a limitation for wider instruction fetch machines and

is harder to predict the control flow. This is because of lack of sophisticated hardware

with small latency to recognize the pattern of the program behavior or in general, due to

the innate behavior of the program.

6.1.1 Higher IPC with Superscalars

 The goal of the superscalar architecture design is exploit available Instruction Level

Parallelism (ILP) in the program code and hence, to achieve maximum IPC. But, to

maximize the utilization of ILP, the control flow of the program has to be predicted with

accuracy. Branch predictors using 2-bit saturating counters and a branch pattern history

table are used to predict a branch instruction with a fair amount of accuracy using gshare

branch predictor (McFarling, 1993 [32]).

 Maximum possible IPC of a machine is equal to the number of instructions fetched per

cycle, denoted by ‘s’- the fetch width, assuming the number of instructions dispatched,

issued, finished and completed are all equal or greater than ‘s’. Hence, with the increase

Chapter IV 79

in fetch width the IPC is bound to increase. But, this is not found to be true. This is

because as the fetch width increases the number of branches in the fetch group also

increases. Since, the branch predictor now has to choose among multiple branched paths

and predict the correct one. This problem worsens as the machine is super-pipelined and

there are more unresolved pending branches due to increase in branch execution

latencies.

 Let a single branch misprediction error be Pe and k be the number of unresolved

branches in the machine. Then, the probability that all the ‘k’ branches are predicted

correctly is given by [(1-Pe) ^ k].

That implies, the probability that at least one out of ‘k’ branches is mispredicted is given

by,

1 – [(1-Pe) ^ k] equ(6.1)

TABLE 6.1 PROBABILITY OF M ISPREDICTION
Number of
Unresolved
Branches

P[at least one
branch is
mispredicted]

0 0
1 0.1
2 0.19
3 0.27
4 0.34
5 0.41
6 0.47
7 0.52
8 0.57
9 0.61

10 0.65

As seen in Table 6.1, simply using branch prediction to predict the control flow is not

reliable if there are 6 or more unresolved pending branches in the machine because the

branch prediction error is close to 50% or more. In fact, 27% prediction error for 3

Chapter IV 80

pending branches is high enough to deteriorate the IPC. Hence, a better solution other

than to simply trust the branch predictor is required to have a high IPC.

Why not simply build multi-cores to solve this problem?

 Building parallel core architectures results in speed-up provided there is enough code

parallelism to extract in the program. ILP is much more at finer granularity than task or

data parallelism that useful for multiple parallel core architectures. In addition, Agerwala

and Cocke (IBM, 1987 [33]) showed that it requires at least 75% of parallelism in

programs for a parallel machine of 100 processors to equal the speed-up of a parallel

machine with just 6 processors but with twice the speed-up in its sequential part of the

program.

 High parallelism is found in programs developed for numerical computations or

gaming applications. But, only a few programs have such high degree of parallelism (>

75%) and hence it is important to address the problem of control dependencies that is

present in the non-parallelizable code to boost the performance of modern computing

machines.

6.2 Multi-Path Execution Schemes

 Streams of instructions from both paths are followed after a branch instruction until the

branch gets executed. This strategy seems to be straightforward as there is no influence

of branch prediction and most importantly the machine need not recover from the

misprediction where many useful CPU cycles are lost. This is because following both the

paths of the branch guarantees completion of one path when the branch is executed.

Chapter IV 81

 On the other hand, following both paths leads to splitting the machine resources among

the paths where one is discarded. Furthermore, if the path has a branch instruction it

forks 2 new paths and so on. This results in an increase in the number of paths of the

order of (2^n), where ‘n’ is the number of unresolved branches. As each path after the

branch instruction maintains its own sub-set of registers and pointers that are then

updated at complete, they well fit into the definition to be called as threads.

 Now, let’s conduct a simple analysis to understand the performance of the branch

prediction and multi-path execution schemes. To keep the analysis simple, let’s assume 3

consecutive branches that are executed in parallel and hence all have the same latency at

which it is resolved.

Let ‘s’ be the number of instructions fetched per cycle, ‘Perror’ be the probability that

the 3rd unresolved branch is mispredicted, and ‘R’ be the number of recovery cycles, then

the IPC of the machine with branch prediction is,

IPC (bpred) =

)/()(

1
1

Rs

P

s

P errorerror +
−

 equ (6.2)

Let’s consider the multi-path case,

a. Minimum Possible Threads (4 Threads) b. Maximum Possible Thread (8 Threads)

Figure 6.1 Multi-Path for 3 Unresolved Branches.

Chapter IV 82

The IPC of the multi-path execution assuming the 3 branches are resolved in the same

cycle simply is,

IPC (multi-path) = s/2m equ(6.3)

Now, considering 4 to 8 threads (Figure 6.1) the IPC for 8-wide machine (s = 8) is

between 2 and 1. If the probability of error is predicting the 1st branch varies from 0.05

to 0.5, then using equ(6.2) and equ(6.3), the Perror for the 3rd branch and its

corresponding IPC can be calculated as shown in Table [6.2].

TABLE 6.2 CALCULATED IPC USING EQU(6.2) FOR BRANCH PREDICTION

Pe (1st Br) Pe(3rd Br) IPC(bpred)
0.05 0.14 4.347

0.1 0.27 3.053

0.15 0.39 2.395

0.2 0.49 2.030

0.25 0.58 1.785

0.3 0.66 1.612

0.35 0.73 1.486

0.4 0.78 1.408

0.45 0.83 1.337

0.5 0.88 1.273

 Note that when the Pe(1st branch) is more than 0.25, the IPC with branch prediction is

less than 2, where as in the case of multi-path execution the IPC with 4 threads is 2. On

the other hand, the worst-case of multi-path execution with 8 threads the IPC is 1 and the

IPC with branch prediction is little more than 1 for its worst-case.

 From the above analysis it is not clear if the machine with branch prediction or multi-

path execution is better, as it depends on various conditions of path executions in both the

schemes. In addition, formulating all possible paths with large number of unresolved

branches is a combinatorial problem. Hence, to obtain more deterministic estimate of the

processor performance, execution-based simulations have to be conducted and later the

Chapter IV 83

results have to be analyzed to determine the machine that has a better average

performance.

6.3 Single-Threaded Processor with Branch Prediction

 This is the base-line architecture in the present day microprocessor cores. For branch

prediction logic, branch target butter (BTB), 2-bit saturating counter and a shift register

to maintain global history bits are used to predict the control flow of the single-threaded

machine. The 2-bit saturating counters and the BTB are updated non-speculatively in the

complete stage. This may result in extra cycles but recovering for a speculative mis-

prediction is prevented. Studies have shown there is 1% improvement if branches are

updated speculatively, which is insignificant compared to the logic and cost involved in

speculative recoveries. The basic architecture of the branch prediction logic in the fetch

stage is shown in Figure 6.2.

Figure 6.2 Logical Block Diagram of the Branch Prediction in

Single-Threaded Processor

Chapter IV 84

Evaluating Branch Prediction Mechanism

 Gshare branch predictor is the most commonly used branch prediction because of it

reasonably low branch prediction error rate and its simplicity (McFarling, 1993 [32]). It

consists of a globally shared history bits (gshare) of a particular size in bits. These

history bits are hashed with the branch instruction address to index a column of state

predictors. Depending on the State Machine Predictor as shown in Figure 6.2, the next

address after the branch instruction is predicted and the corresponding instruction is

fetched from the instruction cache.

TABLE 6.3 PROBABILITY OF BRANCH PREDICTION ERROR FOR 3 BILLION COMPLETED

INSTRUCTIONS

Benchmarks > 0.3
0.3 > Pe <
0.7

176.gcc 0.624318 5.21E-01

402.bzip 0.214487 2.09E-01

456.hmmer 0.573799 0.5383107

429.mcf 0.306306 0.3005648

458.sjeng 0.560901 0.48985

255.vortex 0.469276 0.2176803
Average 0.458181 0.3793101

Fraction of Branch Mis-Predictions with Probabilty Error >= 0.3
and between 0.3 to 0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

176.gcc 402.bzip 456.hmmer 429.mcf 458.sjeng 255.vortex Average

SPEC Benchmarks

F
ra

ct
io

n
 o

f
B

ra
n

ch
 M

is
-

P
re

d
ic

ti
o

n

Pe > 0.3

0.3 >= Pe <= 0.7

Figure 6.3 Fraction of Branch Misprediction in SPEC benchmarks

gshare: Size: 2048 entries; History Bits: 16; BTB: 512 sets with 4-way associative

Chapter IV 85

 Figure 6.3 shows the fraction of branch misprediction that have a probability of error

more 0.3 as well as between 0.3 and 0.7. As seen from the plot about 45% of branches

are mispredicted. If the predictions of those branches that have a probability of error

greater than 0.7 are inverted, since there are wrongly correlated (Klauser, 2001, [34]).

Even then there are still about 38% of the branches whose behavior patterns are not

correlated with the branch predictor.

Classification of Branches and their Prediction

Percentage of Branch Instruction Distribution
in SPEC Benchmarks

80.26
72.47

63.84

50.59

65.34 66.12

72.44

67.29

0%

20%

40%

60%

80%

100%

17
6.g

cc

40
2.b

zip
2

45
6.h

m
m

er

42
9.m

cf

45
8.s

jen
g

25
5.v

or
te

x

09
9.g

o

Ave
ra

ge

D
is

tr
ib

u
ti

o
n

 o
f
B

ra
n

ch
 i

n
 S

P
E

C
 p

ro
g

ra
m

s

uncond indirect (JR)
call direct (JAL)
cond direct (BEQ, BNE)
uncond direct (J)

Figure 6.4 Classification of Branch Instructions in SPEC benchmarks

 It is important to find the class of branches and to identify the area that needs

improvement. In the benchmark programs that are tested, there exist four predominant

classes of branch instructions – Unconditional Jumps, Call Direct Jumps, Unconditional

Indirect Jumps and Conditional Direct Jumps.

Chapter IV 86

 Unconditional Jumps and Call Direct jumps are predicted using a BTB, they normally

attribute to compulsory misses or aliasing. Although, compulsory misses cannot be

avoided, aliasing can be taken care simply by increasing the buffer size. Unconditional

Indirect jumps can be predicted using BTB but more advanced techniques using register

address stack as in Intel’s Nehalem architecture are also used.

 From Figure 6.4, about 67% of branches fall under the category of conditional

branches. Hence with about 38% of total branches regarded as hard-to-predict branches

there are approximately about 25.4% of conditional branches that can be regarded as

hard-to-predict conditional branches. To maximize the performance of single-threaded

execution, it is vital to reduce the misprediction penalties that are incurred due to hard-to-

predict branches.

 To solve the problem of misprediction penalties in single-thread instruction stream, a

scheme were multiple paths are followed and executed using Simultaneous Multi-

Threaded (SMT) architecture designs is adapted. Although, branch prediction can be

further improved with confidence estimators, data-value prediction and neural network

algorithms, they normally result in diminishing results. Hence, SMT-based architecture

design is chosen to solve the hard-to-predict conditional branch problem as well as to

explore and improve some design techniques in the multi-threaded designs.

6.4 Related Work

 Ahuja et al, 1998 [35] show average speedups of 14.4% for multipath architecture with

confidence predictor on SPECint95 benchmarks compared to a single path machine. The

paper demonstrates that the instruction fetch bandwidth is very important and extra

Chapter IV 87

resources to fetch correct execution path can improve performance. However, the study

does not indicate how the fetch resources must be allocated and how the confidence

values can be used to control the fetch allocation.

 JRS confidence estimator by Jacobsen, Rotenberg and Smith, 1996 [36] introduce the

concept of confidence estimators. The confidence predictor is implemented similar to a

branch predictor. They test the performance of confidence estimator with ones counter

(shift registers), saturating and resetting counter. The paper shows that resetting counter

tracks ideal curve of misprediction due to dynamic branches closely than other counter

methods. Selective Branch Inversion (SBI) is proposed by Klausaur et al., 2001,[34].

An up-down counter is used in the confidence estimator with 0 marked as low confidence

and 1 to 3 as high confidence. A relative improvement of 9% reduction in branch

misprediction is noted when compared with the McFarling predictor. However,

performance improvement in terms of IPC is not indicated in the paper. As an alternative

to the SBI scheme, Aragon et al, 2001 [37] use data value prediction and reverse a branch

through the Branch Prediction Reversal Unit (BPRU). Over 6% improvement is shown

over the SBI scheme in terms of IPC. Manne et al 199 [38] also introduces various useful

confidence evaluation metrics such as PVN and Specificity.

 Uht et al., 1995 [39] propose a variation in eager execution schemes called the Dis-

Joint Eager Execution (DEE). It uses the cumulative path probabilities to determine the

highest likelihood path to follow. The differences between single path, eager and disjoint

eager execution are illustrated in Figure 6.5.

Chapter IV 88

Figure 6.5 Comparisons of Execution Strategies (Source: Uht and Sindagi, 1995 [39])

 A mean speedup of 4% over single path execution if more than 256 possible paths are

followed is recorded. However, the implementation of DEE is simplified by only

considering the static branch prediction probabilities and does not consider the dynamic

probabilities for each individual branch. As branches in an instruction stream have

varying misprediction rates, it is interesting to look into the dynamic prediction

probabilities. In addition, the paper also does not propose any realistic hardware design

to implement DEE.

 Malik et al., 2008 [40] propose a new probability based path confidence predictor and

compare them with the standard threshold-and-count predictor. Basically, the threshold-

and-counter confidence estimators suffer from a case where low confidence branches are

assumed to be mispredicted at the same rate. The probability based predictor calculates

the cumulative correct prediction probability in an encoded form. It uses simplified

multipliers (log-based circuit) and keeps track of both correct as well incorrect

predictions of a branch. It is used in the SMT prioritization of threads and shown to be

Chapter IV 89

5.4% better than the standard JRS confidence estimators. Such predictors can be used on

confidence-based eager executions and have to be tested.

 Dual Path Instruction Processing is proposed by Aragon et al, 2001 [37] using Branch

Prediction Reversal Unit (BPRU). This architecture targets to reduce the pipeline-fill

penalty after a misprediction. Through the BPRU if the alternative branch path has low

confidence then the instructions from the path are fetched, decoded and renamed but not

executed while the other predicted path is executed. If a misprediction occurs then the

decoded instructions are allowed to refill the buffer thus reducing the pipeline-fill

penalty. An 8% improvement is noted over single path with gshare predictors.

However, fetching from alternative streams reduces the fetch bandwidth and more than 2

branch paths have to be followed as shown in DEE.

 Wallace et al., 1998 [40] propose a method to use the 2-way SMT for multipath

execution. They use a fetch policy called the ICOUNT, where the fetch logic gives

priority to those threads that have fewest instructions between fetch and issue. The

architecture check points at the blocks of branches. Depending on the priority based on

confidence values and resource availability the check points are followed until the branch

resolves. A 14 % increase in this modified SMT over the baseline architecture is seen.

 Selective Dual Path with various fetch polices using confidence values is studied by

Heil and Smith, 1997 [42]. The fetch policies are,

Canceled Policy: Ignore subsequent low confidence branches if the earlier branch is

followed.

First Delayed Policy: Save the processor state when the 2nd low confidence branch is

encountered and follow it when the 1st branch is resolved.

Chapter IV 90

Last Delayed Policy: The processor state of the latest low confidence branch is saved and

followed when the 1st branch is resolved. The paper shows that the mispredicted

branches occur in clusters. The fetch policies did not provide much improvement and the

paper concludes to investigate on machines that can fork multiple branch paths.

 Perceptron based branch confidence estimation is discussed by Akkary et al, 2004 [43].

Figure 6.6 shows the block diagram of the perceptron confidence estimator. The delays

in calculating (summers and multipliers) and weights training are significant. A 7 %

decrease on average in executing wrong instructions is shown using pipeline gating and

branch reversal strategies.

Figure 6.6 Perceptron based branch confidence estimation by Akkary et el. [2004]

 Address-Branch correlation for long-latency hard-to-predict branches is investigated

by Gao et al, 2008 [44]. It relies on hard-to-predict branches that depend on the address

of the memory location rather than its value. Certain memory-intensive benchmarks

exhibit this behavior. The concept involves identifying hard-to-predict branches and is

based on number of branch penalties. Once the branch is identified then its producer load

Chapter IV 91

instruction is tracked. Using the load and branch address relationship the target address

of the branch is then predicted. There is less than 10% reduction in misprediction on

average and the actual impact on the IPC is not discussed.

6.5 Discussion

 The multi-path design using some form confidence estimators has been proposed.

Klauser et al., 1998 [45] discuss about Selective Eager Execution using confidence

estimator and achieve an average improvement of 14% in IPC for SPECint95

benchmarks. However, schemes such as the DEE (Uht and Sindagi, 1995 [39]) have

never been tested even through architecture simulations using dynamic confidence

estimators. In addition, dynamic confidence estimators are shown to have problems and

the performance of the multi-path design relies to an extent on the performance of the

confidence estimators. The performance improvement varies from 4% to 14% in most of

the architecture designs that tried to improve the single-threaded program execution.

Eager execution techniques like DEE and confidence-based fetch are explored in this

dissertation. In the next sections, the important design aspects of the SMT architecture of

this dissertation is explained in detail.

6.6 Multi-Threaded Fetch Logic Design

 In the case of the multiple threads, a multi-ported BTB and instruction cache are

necessary to determine multiple target addresses and to fetch from them. As shown in

Figure 6.7, the BTB can now be considered as a Thread Management Buffer due to its

increased number of fields. Although, the logical block diagram looks simple, the

Chapter IV 92

increase in number of read/write ports increases the cost of the design. For simplicity,

the block diagram in Figure 6.7 only shows fetching from 2 threads after a branch.

Figure 6.7 Logical Block Diagram of Fetch-Stage in Multi-Threaded Processor.

 The challenge in fetching from multiple paths is to make sure the instructions from

these streams can be distinguished at any point inside the processor. This is could be

done in 2 ways. Structurally the entire processor can be divided for each of these streams

or each instruction can be tagged with a path or thread identification tag – Thread ID – to

distinguish between various paths. Structurally dividing the entire processor may enforce

strict limitation of number of threads and also that these resources can be shared. Hence,

to improve resource utilization the hardware functional units and registers must be shared

among these paths. Therefore, a unique scheme where the branch history bit is used for

Thread IDs is proposed by Chen, 1998 [46]. Through this scheme the taken path is set as

1 and the not taken path is set as 0. Hence, if the instruction path is taken, taken and not

taken. The Thread ID would be 110. This scheme not only makes it easier to distinguish

between paths but also to find the heritage of the instruction. Determining its heritage or

Chapter IV 93

the path’s ancestor paths enables to find the correct rename register pointers which is

discussed in the following section.

6.7 Register Renaming for Multiple Paths

 Register renaming in a single-threaded processor is explained in chapter 4. Although,

the mechanism is the same for multi-path architecture, one major difference in this

architecture is that the renaming can happen at any level of the forking path. Hence, the

challenge is to find the correct ancestor path and also to reference the correct rename

pointer. Let’s look at the procedure to find the correct ancestor thread ids through an

example.

Figure 6.8 Example of Register Renaming in Multi-Path Design

 In the example shown in Figure 6.8, register 12 gets renamed once at the master thread

as well as twice in Thread ID 00 but at different branch levels. In thread paths 10 and 01,

register 12 is being read and the correct register pointers are indicated by arrow symbols

in the Figure 6.8. The explanation of how register 12 references correctly to its renamed

pointers is given in the Flow Chart 6.1,

Chapter IV 94

Flow Chart 6.1 Thread Rename Pointer Logic

 Rename register logic is one major module that different from that of single-path

architecture design. The rest of the units in the pipeline in the multi-path architecture

design are similar to single-path.

 However, to reduce the number of thread paths that are followed, the thread paths are

invalidated at dispatch and complete stages as soon as the branch get executed and its

actual path is determined. The reason to keep the number of thread path low in a multi-

path scheme is because the more the number of thread paths that are followed the less is

the fetch width per thread.

Chapter IV 95

N
o
.
o
f
E
n
tr
ie
s

=

N
o
.
o
f
In
s
tr
u
c
ti
o
n
s
 I
n
-F
lig
h
t

in
 t
h
e
 P
ip
e
lin
e

N
o
.
o
f
E
n
tr
ie
s

=

N
o
.
o
f
In
s
tr
u
c
ti
o
n
s
 I
n
-F
lig
h
t

in
 t
h
e
 P
ip
e
lin
e

Figure 6.9. Logical Block Diagram of Register Renaming in Multi-Path Design.

 6.8 Confidence Estimator

 Another approach to reduce the number threads to follow the thread path that has the

most likelihood to be executed. This form of execution is called Dis-Joint Eager

Execution (DEE) and is discussed in detail in the following sections. In this section, the

design and performance of the confidence estimator is discussed.

 The confidence estimator works similar to the branch prediction except that instead of

storing the target addresses, it has a 4-bit saturating counter. The performance of the 4-

bit saturating confidence counter and other performance metrics are discussed by Manne

et al., 1998 [38]. The following is the Pseudo-Code of the confidence update mechanism

when the branch executes:

Chapter IV 96

Prediction Correct:

 if (Low Confidence): confidence < 8: set confidence value = 8

 if (High Confidence): confidence value >= 8: Increment

Prediction Incorrect:

 if (Low Confidence): confidence < 8: decrement

 if (High Confidence): confidence value >= 8: set value = 7 (low confidence)

6.8.1 Fetch Logic using Confidence Estimates

 The major difference with fetching instructions based on confidence estimates is that

instead of a branch predictor a table of saturating counters is used by the fetch scheduler

to determine the path of the next instruction fetch. The fetch scheduler may use different

policies and are list in Table 6.4.

Figure 6.10 Logical Block Diagram of Fetch Policy using Confidence Estimator

Chapter IV 97

 As shown in Figure 6.10, the BTB is now augmented by Thread Management Table

which has the following fields, the next Thread PC, the forked branch address, thread

level and path confidence. These fields are explained below,

Next Thread PC: Stores the next program counter of each active path.

Forked Branch Address: This is the branch address where the path is forked.

Thread Level: It indicates the level of the thread path and it changes as the path traverses

down.

Path Confidence: It stores the confidence value of the path and changes as the path forks

new paths.

 In addition, to provide continuous fetch stream after switching different paths in the

same clock cycle, an instruction collapsing buffer has to be modeled. This buffer stores

the starting instruction address of a block and the length of the block. By using these

fields, different sequences of instruction streams are combined to form a wide fetch group

in the next cycle. Hence, with the help of the instruction collapsing buffer the fetch

group in the cycle is not broken because of multi-path switching and it maximizes the

fetch resource utilization.

 Although, the structure of the instruction collapsing buffer is not modeled in the

simulation, its functional behavior is implemented to ensure the entire bandwidth of the

fetch is utilized. The cumulative probability approximation is a small multiplier unit that

multiplies the current path confidence and the confidence of the forked path during the

Chapter IV 98

thread creation process. The branch predictor is used to determine if the confidence

value should be associated with the taken or the not taken path.

6.8.2 Thread Path Creation Logic

 A new path is created only if there is a hit in the BTB. If there is no hit in the BTB, the

path continues in the not taken path (BTB only stores the taken addresses). At complete

stage, if the completion logic detects the branch instruction did not spawn a thread, then it

recovers the machine state if the branch is taken.

 If there is a hit in the BTB, then a new path is forked in the new thread path level with

complemented bits in the respective thread path level by the Spawn New Thread module.

At the same time, the confidence value from the Path Confidence Table is read and a new

entry is recorded in the Thread Management Table as illustrated in Figure 6.11.

Depending on the Thread Policy Scheduler, the new thread may be followed or not.

Figure 6.11 Thread Creation Process

Chapter IV 99

TABLE 6.4 COMPARISON OF FETCH POLICY SCHEMES THAT ARE EVALUATED IN THIS STUDY

Eager Execution

Dis-Joint Eager

Execution

Dis-Joint
Eager

Execution with
selective
threads

Policy Perfect
Single-
Thread

50 %
allocation

Confidence
Based
Fetch

Static
Confidence

Dynamic
confidence

Dynamic
Confidence

Fetch Group

Depends
on BTB

and
perfect

predictor

Depends
on BTB

and
Branch

Predictor

Split
equally

among all
active
paths

Allocated
propor-
tionally

among all
paths

based on
Confidence

Values

Same as
Dynamic

A path with
high

confidence
values is
chosen

A set of paths
with high

confidence
values are

chosen

Reason to
study this
scheme

Perfect
case

To prove
branch
predic-
tion for

high
fetch
band-

width is
poor.

To
illustrate

the
machine
perfor-
mance
without
any kind
of branch
prediction

To show
how

confidence
values can
be utilized.

To com-
pare with
the dyna-
mic case

To limit the
number of

threads
with

confidence
values

To minimize of
dependence on

confidence
values as they

can be
misleading

Max. Possible
Number of
Threads

1 1

2^n,
where ‘n’
is no. of
branch
levels

2^n, where
‘n’ is no. of

branch
levels

2^n, where
‘n’ is no. of

branch
levels

2^n, where
‘n’ is no. of

branch
levels

Depends on the
Target IPC limit

Unconditional
Branches

With
BTB

With
BTB

With
BTB

With
BTB

With
BTB

With
BTB

With
BTB

Conditional
Branch

Prediction
Perfect

2-Bit
State

Predictor

Used after
maximum

thread
level

Used after
maximum

thread level

Used after
maximum

thread level

Used after
maximum

thread level

Used after
maximum

thread level

Confidence
Estimator

No No No Yes Yes Yes Yes

Updates
No

Updates

Predictor
updated
at Com-

plete

No
Updates

Confidence
Values

updated at
Finish
Stage

No Updates
as it is
Static

Confidence
Values

updated at
Finish
Stage

Confidence
Values updated
at Finish Stage

Additional
Hardware

-
Counters
and BTB

Multi-
Path

machine

Multi-Path
and

Multipliers
for propor-

tional
allocation
at Fetch

Same as
dis-joint

Multi-Path
& Confi-

dence
multipliers

Multi-Path
Confidence

multipliers &
priority
encoder.

Chapter IV 100

6.9 Simulation Environment

 AbaKus simulation framework is used to explore the architectural features of the

processors with both the branch prediction and multi-path execution schemes. This

framework with module and port-structures gives a fair degree of accuracy in the

simulations with reasonable speed. The details of AbaKus framework and superscalar

models are discussed in Chapters 3, 4 and 5.

 To focus the study on conditional branch effects on the processor, the component

designs of simulated architecture are widened to minimize any structural design hazards.

Perfect memory is assumed as conditional branches only have indirect effect on memory.

The summary of architecture details are described in Table 6.5. The simulation is

executed using Intel Xeon CPU 3.2 GHz (128-node cluster) with 4GB RAM. In the next

section, the architecture descriptions of the single-threaded and multi-threaded designs

are discussed.

 To test the architecture design, benchmarks from Standard Performance Evaluation

Corporation (SPEC) are used. In addition, the benchmarks are cross-compiled for

Simplescalar MIPS IV instruction format. Due to the library compatibility problems only

few of SPEC benchmarks were successfully compiled and are used in this study. The

benchmarks are run up to 500 million and then the architecture designs are tested for the

next 100 million instructions. This is done get past the start-up code in the benchmarks.

This set of 100 million instructions, however, does not represent the entire benchmark

that typically has more than 1 trillion instructions.

Chapter IV 101

TABLE 6.5. SIMULATION DETAILS OF THE MULTI-PATH SMT ARCHITECTURE
Design Parameters Multi-Path SMT

Maximum No. of Threads

225 possible threads.
Exclusively depends

on Fetch Policy
Instruction Fetch Width per
Thread

8 or 32 insts/cycle
but depends on fetch

policy
Instruction Window Size 4096 entries
Physical Registers 32
Issue Width 64
Commit Width 128
BTB & Branch Predictor (if used) BTB: 8192 16-way

Gshare:
 16384 entries;
16 History Bits

Confidence Estimator (if used) 8132 entries
Confidence Counters (if used) 4-bit Saturating

Counters
Integer ALU units (Latency =1) 40
Branch Units (Latency = 1) 40
Load/Store (Latency = 2) 40
Mul/Div (Latency = 5) 20
Float/Special Units (Latency = 3) 40
Write Back Bus Width 128
Complete Width 128

6.10 Implications

 To understand the performance limitations of the conditional branches, a processor

with perfect conditional branches is evaluated. This is done by gathering the target

address traces of the conditional branches in a single-threaded processor and then,

allowing the simulation to read from this trace when a conditional branch is encountered.

In this way all the architecture parameters are the same between the perfect and the

single-thread processor except the conditional branch prediction.

Chapter IV 102

Comparison of Instructions per Cycle (IPC) for
Fetch Width = 8 insns/cycle on SPEC Benchmarks

with 100 million completed instructions

1.994E+00

1.310E+00

0.00E+00
5.00E-01

1.00E+00
1.50E+00
2.00E+00
2.50E+00
3.00E+00
3.50E+00
4.00E+00
4.50E+00
5.00E+00

17
6.g

cc

40
2.b

zip
2

45
6.h

m
m
er

42
9.m

cf

45
8.s

jen
g

25
5.
vo

rte
x

09
9.
go

bm
k

Ave
ra

ge

In
st

ru
ct

io
n
s

p
er

 C
yc

le
 (
IP

C
)

Perfect Conditional Br.

Single Conditional Br.

`

Figure 6.12 Performance Comparison between Perfect and Single-Threaded Processor

 The average IPC in Figure 6.12 is calculated by finding the average CPI and then

taking its inverse. The margin of improvement required on average is about 0.684 IPC.

Although, this may look small, there are some benchmarks that suffer more conditional

branch mispredictions penalties than other benchmarks. From Figure 6.12, the IPCs of

429.mcf, 458.sjeng and 099.go are likely to have more conditional branch misprediction

penalties.

6.10.1 Increasing Fetch Width

 Increasing fetch width to feed on more Instruction Level Parallelism (ILP) is not

effective as seen in Figure 6.13. There are 2 factors that affect this, data dependency and,

fetch width partition and penalties due to indirect jump mispredictions and exceptions. It

also results in increase recovery cycles because more instructions from the window have

to be cancelled during recovery.

Chapter IV 103

Comparison of Instructions per Cycle (IPC) for
Fetch Width = 32 insns/cycle on SPEC Benchmarks

with 100 million completed instructions

1.990E+00

1.303E+00

0.00E+00

5.00E-01

1.00E+00
1.50E+00

2.00E+00

2.50E+00

3.00E+00
3.50E+00

4.00E+00

4.50E+00

17
6.g

cc

40
2.b

zip
2

45
6.h

mm
er

42
9.m

cf

45
8.s

jen
g

25
5.v

or
te

x

09
9.g

ob
m

k

Ave
ra

ge

In
st

ru
ct

io
n

s
p

er
 C

yc
le

 (
IP

C
)

Perfect Conditional Br.

Single Conditional Br.

`

Figure 6.13 IPC for Fetch Width of 32. IPC for 32-wide fetch is slightly less than 8-wide fetch
because of increased latency in recovery.

6.10.2 Reducing Conditional Branch Mispredictions

 As shown in Figure 6.14, a single-threaded processor suffers from conditional branch

error rate of 10 % on average. Figure 6.14 also shows the number of conditional branch

error for the set of 100 million completed instructions.

Conditional Branch Misprediction for
100 Million Completed Instructions on SPEC Benchmarks

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

17
6.

gc
c

40
2.

bz
ip2

45
6.

hm
m

er

42
9.

m
cf

45
8.

sje
ng

25
5.

vo
rte

x

09
9.

go
bm

k

Ave
ra

ge

N
u

m
b

er
 o

f
C

o
n

d
it

io
n

al
 B

ra
n

ch

M
is

p
re

d
ic

ti
o

n
s

0%

5%

10%

15%

20%

25%

30%

C
o

n
d

it
io

n
al

 B
ra

n
ch

 P
re

d
ic

ti
o

n
 E

rr
o

r
(%

)
No. of Cond. Br.
Mispredictions
Error Rate (%)

Figure 6.14 Conditional Branch Error Rate. The plot represents the number of Recoveries due
Conditional Branch Misprediction

Chapter IV 104

 Figure 6.14 show that ‘456.hmmer’ at an extremely low error of just 1 conditional

branch error. This set of 100 million instructions happens to be the best case for this

benchmark. Because no improvement can further be made on this phase of the

benchmark, ‘456.hmmer’ will not be tested with the eager-based architectures for this set

of 100 million instructions.

6.10.3 Eager-Based Execution Schemes

 The eager-based fetch policy schemes are detailed in Table 6.4 through a comparison

with single-threaded fetch policy. Figure 6.15 shows the percentage of mispredictions

due to conditional branches for eager execution policy.

Percentage of Recoveries due to Conditional Branches

10.9% 9.9%

3.0%

14.0%

2.7%

27.6%

9.7%

2.0%
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

17
6.g

cc

40
2.b

zip
2

42
9.m

cf

45
8.s

jen
g

25
5.v

or
te

x

44
5.g

ob
m

k

Ave
ra

geP
er

ce
n

ta
g

e
o

f
R

ec
o

ve
ri

es
 d

u
e

to
 C

o
n

d
it

o
n

al

B
ra

n
ch

es

 Branch Prediction
Error Rate on
Eager Exe.(%)

Error Rate on
Single-Threaded
(%)

Figure 6.15 Percentage of Recoveries due to conditional branch misprediction. The figure
shows that eager execution has reduced the number of recoveries. Mispredictions in
eager based executions are due to compulsory BTB misses and if the number of
unresolved branches reaches the maximum number of branch levels possible in the
processor.

Chapter IV 105

 Branch prediction is used in the eager-based execution only if the maximum possible

unresolved branch level is reached in the processor. If branch prediction is used then it

leads to a possibility of misprediction. Hence, it is important for eager-based executions

to use branch prediction rarely by increasing the number of maximum possible branch

levels in the machine. This results in increase in more possible threads to handle in the

processor. For example, if 3 unresolved branches exist in the processor then it leads to a

maximum possibility of 23 or 8 threads.

Average Branch Execution Latency for 8-Wide Fetch8 cycles
14%

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

4.00E+06

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Execution Latency (Cycles)

F
re

q
u

en
cy

 o
f

B
ra

n
ch

es

Figure 6.16 Average Branch Execution Latency for 8-Wide Fetch in the SPEC benchmarks.

 As seen in Figure 6.16, the average branch execution latency involves more than 8

cycles. For an instruction window of size 4096, the worst-case latency can be even little

more than 4096 cycles implying a highly dependent instruction chain. But, as seen in

Figure 6.16 one half of the pie-chart rotation is about 15 cycles. Hence, in order to make

sure that the branch prediction is not used very often, the simulated eager-based

processors can handle up to 25 unresolved branch levels or up to a maximum possible of

225 short threads. The results of the simulations with IPC as the measure of performance

for both 8 and 32-wide fetch are shown in Figure 6.17 and 6.18.

Chapter IV 106

Comparison of Instructions per Cycle (IPC) for
Fetch Width = 8 insns/cycle on SPEC Benchmarks

with 100 million completed instructions after 500 million insns

1.574E+00

0.0
0.5
1.0
1.5
2.0
2.5

3.0
3.5
4.0
4.5
5.0

17
6.g

cc

40
2.b

zip
2

42
9.m

cf

45
8.s

jen
g

25
5.v

or
te

x

09
9.g

ob
mk

Ave
ra

ge

In
st

ru
ct

io
ns

 p
er

 C
yc

le
 (I

P
C

)

Perfect Condition

Single-Threaded

Eager

Eager Confidence

Dynamic Selective
Disjoint
Dynamic Disjoint

Static Disjoint

`

Figure 6.17 Comparison of IPC for different eager-based polices with single-threaded processor
for 8-wide fetch.

Comparison of Instructions per Cycle (IPC) for
Fetch Width = 32 insns/cycle on SPEC Benchmarks

with 100 million completed instructions after 500 million insns

1.703E+00

2.635E+00

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

17
6.g

cc

40
2.b

zip
2

42
9.m

cf

45
8.s

jen
g

25
5.v

or
te

x

09
9.g

ob
mk

Ave
ra

ge

In
st

ru
ct

io
ns

 p
er

 C
yc

le
 (I

P
C

)

Perfect Condition

Single-Threaded

Eager

Eager Confidence

Dynamic Selective
Disjoint
Dynamic Disjoint

Static Disjoint

`

Figure 6.18 Comparison of IPC for different eager-based polices with single-threaded processor
for 32-wide fetch.

 From the Figure 6.17 and 6.18, one subtle but important observation is that the IPC for

32-wide has increased for eager-based execution while it did not for a single-threaded

processor with branch prediction. For 8-wide and 32-wide fetch the eager execution with

Chapter IV 107

50 % allocation (Table 6.4) has 17.21% and 27.60% improvement, respectively. The

maximum possible improvement between the processor with perfect conditional branch

prediction and the single-threaded processor with gshare branch prediction is about 70%

on average. 0.99.go has the best improvement on IPC with about 77.26% for the 32-wide

fetch with eager execution. The low IPC value of static confidence-based disjoint

execution signifies the importance of dynamic confidence estimator in the design.

6.11 Discussion on Confidence-Based Eager Execution Schemes

 There are 3 important factors that need to be considered to attain the IPC of the perfect

conditional branch prediction – confidence estimates, branch prediction and fetch width.

 Using the confidence estimator described by Manne et al, 1998 [38] only supplements

branch prediction. Eager polices that depend on confidence values such as disjoint,

disjoint selective and confidence-based eager execution assumes that branch prediction

error can be corrected by confidence estimates correctly. On the other hand, the dynamic

nature of code execution proves to be far more complex than the confidence estimator

can handle. This is illustrated in Figure 6.19 that shows the values of PVN, PVP,

Specificity and Sensitivity of the confidence estimator. It is important that PVN –

probability that low confidence is mispredicted correctly and Specificity – fraction of

mispredictions that are low confidence are close to 1.

Chapter IV 108

Figure 6.19 Accuracy of the Confidence Estimator with 4-bit saturating counters. The low
values of PVN and Specificity highly affects the performance of the confidence-based
eager executions.

 In addition to confidence estimators, branch prediction and fetch width have a direct

effect on IPC. The use of branch prediction is dependent on the maximum number of

branch levels available in eager execution schemes. As seen in Figure 6.20, as the

number of available branch levels decrease the processor relies more on the branch

predictor and tend to make more branch mispredictions. This directly results in decrease

in IPC. On the other hand, as seen in Figure 6.21, if the eager schemes have more

number of branch levels, then the number of active-threads increase resulting in dividing

of fetch resources. The way in which the fetch resources are divided depends on the

0

0.2

0.4

0.6

0.8

1

1.2

176.gcc 402.bzip 429.mcf 458.sjeng 099.go

P
ro

b
ab

il
it

y
o

f
C

o
rr

ec
tn

es
s

Predictive value of Negative
Test =
Incorrect(Low)/(Correct(Low)
+ Incorrect(Low))

Predictive value of Postive
Test =
Correct(high)/(Correct(High)
+ Incorrect(High))

Accuracy of Confidence Estimator

0

0.2

0.4

0.6

0.8

1

1.2

176.gcc 402.bzip 429.mcf 458.sjeng 099.go

F
ra

ct
io

n
 o

f
C

o
rr

ec
tn

es
s

sensitivity =
(Correct(high)/Correct(high) +
Correct(low))

Specificity =
Incorrect(low)/(Incorrect(high)
+ Incorrect(low)

Chapter IV 109

imposed fetch policy of processor. However, as a result of dividing the fetch resources

the number of instructions supplied to each thread is reduced impacting the IPC. This

can be seen in Figure 6.20. The eager and disjoint-eager based executions of 25 and 16

levels have more or less a similar IPC (about 2.9 from Figure 6.20) where as the disjoint-

eager with 8-levels have less number of threads but falters as it relies more on the branch

predictor.

IPC and Branch Misprediction for Eager-Based Executions

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

Eager Disjoint 25-
Levels

Disjoint 16-
Levels

Disjoint 8-Levels

Eager-Based Schemes

IP
C

0
10000

20000
30000
40000

50000
60000

70000
80000

N
o.

 o
f C

on
di

tio
na

l

B
ra

nc
h

M
is

pr
ed

ic
tio

ns

IPC

Bpred

Figure 6.20 Relationship showing how different eager schemes rely on branch prediction and its
effect on IPC

Histogram of Active Threads in Eager and Disjoint Executions

-5.0E+05

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06

4.5E+06

0 5 10 15 20 25 30

Number of Active Threads

F
re

q
u

en
cy

Eager

Disjoint 25-Levels

Disjoint 16-Levels

Disjoint 8-Levels

Figure 6.21 Histogram of Active Threads. The Disjoint with 8-levels has less number of
active threads but relies more on branch prediction.

Chapter IV 110

6.12 Summary

 The effect on conditional branch misprediction on IPC of the processor is clearly seen

in Figure 6.17 and Figure 6.18. There is about 70% performance loss due to such

mispredictions. Two distinctly different approaches of eager-based execution schemes

are considered. The schemes directly affect the fetch bandwidth. In the first approach of

simple eager-based execution with 50% allocation, the branches spawn multiple paths

and divided the fetch and pipeline resources. Although, the dependence on branch

predictions is reduced, it also reduces the number of instructions being processed in each

thread path. The second approach is the disjoint eager execution where the thread path

that has the high confidence gets the priority to utilize the fetch resources. Although, this

scheme allocates the fetch resources to high confidence paths, the confidence values tend

to be error prone as shown in Figure 6.19. The confidence estimator is poorly identifies

the paths that mispredict. This results in the thread to be discarded and hence wasting the

fetch resources. A more judicious confidence estimator using advanced schemes such as

data value prediction or neural network-based predictors would benefit the disjoint eager

execution scheme.

Variation in Instructions per Cycle (IPC) for
100 Million Completed Instructions on SPEC Benchmarks

1.310E+00

1.643E+00

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

17
6.
gc

c

40
2.
bz

ip
2

45
6.
hm

m
er

42
9.
m
cf

45
8.
sj
en

g

25
5.
vo

rte
x

09
9.
go

bm
k

Ave
ra

ge

In
st

ru
ct

io
n
s

p
er

 C
yc

le
 (
IP

C
)

After 5Million

After 5Billion

`

Figure 6.22 Code Phase Variations in SPEC benchmark

Chapter IV 111

 The 27% average increase in IPC for eager-based execution is relatively significant

considering the benchmarks that are chosen for performance evaluation. The SPEC

benchmarks have code variations depending on the instruction group that is evaluated as

seen in Figure 6.22. The size of each benchmark (more than 1 trillion instructions) and

such code variation makes it hard to understand the true performance of the architecture

design. However, by using sim-points (Lau et al., 2004 [46]) where statistical and other

clustering techniques are used to determine subsets of code that represents the entire

benchmark can help in finding the regions of code subsets for evaluating the architecture

design.

 112

CHAPTER VII

CONLCUDING REMARKS

 Several of computer architecture simulation tools are available for architecture design

space explorations. However, each of these simulation tools is developed to model

certain specific aspects of the architecture. Hence, it is the task of the designer to make

proper tool selection considering accuracy, speed and flexibility of the simulator. In

addition, the simulator should also have cross-compiler features, if required, for extensive

hardware design verification.

7.1 AbaKus Simulation Framework

 AbaKus simulation framework is developed to model hardware functionality with

simple behavior-level details but also with cycle-accurate timing. The timing information

is described through port interfaces and is implicitly incorporated in the simulation for

module communication. This is ideal for CPU core simulation because instruction flow

is pipelined on a cycle-by-cycle basis. Moreover, there is one aspect where the

simulation speed can be increased, which is by simply multi-threading the simulator as

modules are task independent.

Chapter VII 113

 Although the simulation has sufficient task-level parallelism, the modules must

communicate and hence, must synchronize every simulated cycle making it as a set of

tightly-coupled threads. However, existing computers do not facilitate in speeding up of

such multi-threaded codes as they synchronize much slower at second-level cache

memory. AbaKus simulation framework can be extended to simulate multiple cores to

study memory hierarchy designs as well as memory coherency problems. This

dissertation has showed the usefulness of AbaKus framework by conducting performance

studies in CPU core designs.

 Evaluating architecture designs extensively with large benchmarks is essential for

validating the design and measuring the performance. In the study of register write-back

bus width discussed in Chapter 5, about six billion instructions are evaluated in the wide

superscalar design. This shows both the capability of AbaKus as well as the extent to

which the designs can be evaluated.

7.2 Instruction-Level Parallelism

 Instruction-Level Parallelism may seem to have hit the brick-wall and has been

extremely hard to even go beyond IPC of 2.5 in the evaluated SPEC benchmarks.

Although this may be a limiting case to increase the speed-up of sequential programs,

these programs are compiled with compilers that takes no account of the different

hardware architectural features. This is a major problem as compilers could also aid in

finding the ILP necessary for wide superscalar processors. Many new compilers such as

OpenMP (Chapman et al., 2008 [48]), NVIDIA CUDA™ compiler [49] and Intel® C++

Chapter VII 114

Compiler for Itanium architectures [50] take this into account to extract the parallelism

available at all levels in the program.

7.3 Conclusion and Future Work

 This dissertation has demonstrated the successful design and development of an open-

source computer architecture simulator – AbaKus - and also in identifying the key

aspects of design limitations in wide superscalar processors. The following are some of

the contributions made in this research,

• AbaKus Computer Architecture Simulator

AbaKus incorporates a simple timing structure in its framework that enables the tool

to be adapted to other existing hardware description languages. This timing structure

based on Moore State Machine also provides cycle-time accuracy that is the baseline

for all pipelined architecture designs. In addition, the AbaKus superscalar models can

be reused for future design evaluations and as shown in the case studies, it can be

extended to simulate complex multi-threaded and multi-core architectures.

• Designed and verified architecture designs for Eager-Based Executions

Confidence-Based fetch polices are proposed and evaluated. It optimizes the use of

the fetch bandwidth by dynamically varying the fetch rate of eager-threads based on

the path confidence values. Since the confidence estimator is very important for the

design, future work on eager execution would be to increase PVN and Specificity of

this estimator. The design and performance of the disjoint eager execution using

dynamic confidence estimators is also evaluated architecturally.

 115

REFERENCES

[1] D Burger and T. M. Austin, “The SimpleScalar Tool Set, Ver. 2.0, University of
Wisconsin Computer Sciences Technical Report #1342, (June 1997).

[2] M. Vacchharajani, N. Vachharajani, D. A. Penry, J. A. Blome, D. I. August,
“Microarchitectural Exploration with Liberty”, Proceedings of 35th Internl.
Symp. on Microarchitecture, (2002).

[3] M. Vacchharajani, N. Vachharajani, D. A. Penry, S Malik, D. I. August, “The
Liberty Simulation Environment: A deliberate approach to high-level system
modeling”, ACM Transaction on Computer Systems., .vol. 24, No. 3, (August
2006), pp. 211-249.

[4] J. Emer et el, “ASIM: A Performance Model Framework”, IEEE Computer, (Feb.
2002), pp. 68-76.

[5] Pellauer, M., Vijayaraghavan, M., Adler, M., Arvind, and Emer, J. 2008. A-
Ports: an efficient abstraction for cycle-accurate performance models on FPGAs.
In Proceedings of the 16th international ACM/SIGDA Symposium on Field
Programmable Gate Arrays (2008).

[6] Open SystemC Initiative, 2008, http://www.systemc.org/
[7] D. Perez, G. Mouchard, and O. Temam, “MicroLib: A Case for Quantitative

Comparison of Microarchitecture Mechanisms,” Proc. International Symposium
of Microarchitecture, 2004.

[8] Virtutech® Simics™, 2008, http://www.simics.net/
[9] Sandro Rigo, Guido Araujo, Marcus Bartholomeu and Rodolfo Azevedo,

“ArchC: A SystemC-Based Architecture Description Language”
In proceedings of the 16th Symposium on Computer Architecture and High
Performance Computing (SBAC'04). Foz do Iguacu - Brazil, October 2004.

[10] Sewook Wee, Jared Casper, Njuguna Njoroge, Yuriy Teslyar, Daxia Ge, Christos
Kozyrakis, Kunle Olukotun, A Practical FPGA-based Framework for Novel
CMP Research, Proceedings of the 15th ACM SIGDA Intl. Symposium on Field
Programmable Gate Arrays, Montery, CA, February 2007

[11] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, S. K. Reinhardt, "The
M5 Simulator: Modeling Networked Systems," IEEE MICRO, pp. 52-
60, July/August, 2006.

[12] SESC: SuperESCalar Simulator. http://iacoma.cs.uiuc.edu/~paulsack/sescdoc/, 2002.
[13] Yourst, M.T., "PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural

Simulator," Performance Analysis of Systems & Software, 2007. ISPASS 2007. IEEE
International Symposium on , vol., no., pp.23-34, 25-27 April 2007

 116

[14] E. Larson, S Chatterjee and T. Austin, “The MASE Microarchitecture Simulation
Environment”, IEEE Internl. Symp. on Perf. Analysis of Systems and Software, June
2001.

[15] D. G. Perez, G. Mouchard and O. Temam, “A New Optimized Implementation of the
SystemC Engine Using Acyclic Scheduling”, Proceeding of the Design, Automation
and Test in Europe Conf., 2004, pp. 1530-1591.

[16] J. P. Shen and M. H. Lipasti, “Modern Processor Design, Fundamentals of Superscalar
Processor”, Tata McGraw-Hill Edition, ISBN 0-07-059033-8

[17] Nam Sung Kim, Trevor N. Mudge, “Reducing Register Ports Using Delayed Write-Back
Queues and Operand Pre-fetch”, ICS 2003, pp: 172-182.

[18] José-Lorenzo Cruz, Antonio González, Mateo Valero, Nigel P. Topham,”Multiple-
banked register file architectures”, ISCA 2000, pp 316-325

[19] Rajeev Balasubramonian, Sandhya Dwarkadas, David H. Albonesi,”Reducing
the complexity of the register file in dynamic superscalar processors”, MICRO
2001, pp 237-248

[20] Tetsuya Sueyoshi, Hiroshi Uchida, Hans Jürgen Mattausch, Tetsushi Koide,
Yosuke Mitani, Tetsuo Hironaka,”Compact 12-port multi-bank register file test-
chip in 0.35µm CMOS for highly parallel processors”, ASP-DAC 2004, pp 551-
552.

[21] Nam Sung Kim, T. N. Mudge: The microarchitecture of a low power register file.
ISLPED 2003: 384-389

[22] Mark Smotherman, Shuchi Chawla II, Stan Cox, Brian A. Malloy: Instruction
scheduling for the Motorola 88110, MICRO 1993: 257-262

[23] D. A. Penry and D I. August, “Optimizations for a Simulator Construction System
Supporting Reusable Components,”40th IEEE Design Automation Conf., 2003, pp. 926-
931.

[24] Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A. Patil, William Reinhart, Darrel
Eric Johnson, Jebediah Keefe, and Hari Angepat. FPGA-Accelerated Simulation
Technologies (FAST): Fast, Full-System, Cycle-Accurate Simulators. MICRO 07:
Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 249--261, 2007.

[25] Lee, J., Kim, J., Jang, C., Kim, S., Egger, B., Kim, K., and Han, S. 2008. FaCSim: a fast
and cycle-accurate architecture simulator for embedded systems. SIGPLAN Not. 43, 7,
89-100, 2008.

[26] M. M.K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen,
K. E. Moore, M. D. Hill, and D. A. Wood, Multifacet's General Execution-driven
Multiprocessor Simulator (GEMS) Toolset,Computer Architecture News (CAN), 2005.

[27] Patt, Y. N., Patel, S. J., Evers, M., Friendly, D. H., and Stark, J., “One Billion
Transistors”, One Uniprocessor, One Chip. Computer 30, 9, 51-57, 1997.

[28] Aashish Phansalkar, Ajay Joshi, and Lizy K. John, Analysis of Redundency and
Application Balance in the SPEC CPU2006 Benchmark Suite, ACM SIGARCH
Computer Architecture News, Vol. 35 , Issue 2, May 2007, pp: 412 – 423.

[29] J.A. Kahle et al.,”Introduction to the Cell Multiprocessor”, IBM Journal of Research and
Development, Vol 49, No. 4/5 2005

[30] H. M. Mathis et al., “Characterization of Simulatneous Mulithreading (SMT) efficieny
in POWER5”, IBM Journal of Research and Development, Vol 49, No. 4/5, 2005.

 117

[31] Ravi Navir, IEEE Transactions on Computers Staff 1995. Optimal 2-Bit Branch
Predictors. IEEE Trans. Comput. 44, 5 (May. 1995), 698-702.

[32] S McFarling, “Combining Branch Predictors”, Techincal Report TN-36, Digital
Equipment Corp, 1993.

[33] Agerwala, T., and J. Cocke, “High performance reduced instruction set processors”,
Technical Report, IBM Computer Science, 1987.

[34] Artur Klauser , Srilatha Manne , Dirk Grunwald, Selective Branch Inversion:
Confidence Estimation for Branch Predictors, International Journal of Parallel
Programming, v.29 n.1, p.81-110, February 2001

[35] Ahuja, P. S., Skadron, K., Martonosi, M., and Clark, D. W. 1998. Multipath execution:
opportunities and limits. In Proceedings of the 12th international Conference on
Supercomputing (Melbourne, Australia). ICS '98.

[36] Erik Jacobsen , Eric Rotenberg , J. E. Smith, Assigning confidence to conditional branch
predictions, Proceedings of the 29th annual ACM/IEEE international symposium on
Microarchitecture, p.142-152, December 02-04, 1996

[37] Aragon, J.L.; Gonzalez, J.; Garcia, J.M.; Gonzalez, A., "Selective branch prediction
reversal by correlating with data values and control flow," Computer Design, 2001.
ICCD 2001. Proceedings. 2001 International Conference on , vol., no., pp.228-233,
2001.

[38] Manne, S., Klauser, A., and Grunwald, D. 1999. Branch Prediction Using Selective
Branch Inversion. In Proceedings of the 1999 international Conference on Parallel
Architectures and Compilation Techniques (October 12 - 16, 1999).

[39] Uht, A. K., Sindagi, V., and Hall, K. 1995. Disjoint eager execution: an optimal form of
speculative execution. In Proceedings of the 28th Annual international Symposium on
Microarchitecture (Ann Arbor, Michigan, United States, November 29 - December 01,
1995).

[40] Kshitiz Malik, Mayank Agarwal, Vikram Dhar, Matthew Frank. "PaCo: Probability-
based Path Confidence Prediction". International Symposium on High-Performance
Computer Architecture, (HPCA-14), February, 2008.

[41] Wallace, S., Calder, B., and Tullsen, D. M. 1998. Threaded multiple path execution.
SIGARCH Comput. Archit. News 26, 3 (Jun. 1998), 238-249.

[42] T.H. Heil and J.E. Smith. "Selective Dual Path Execution". Technical Report, University
of Wisconsin-Madison, ECE, 1997.

[43] Akkary, H., Srinivasan, S. T., Koltur, R., Patil, Y., and Refaai, W. 2004. Perceptron-
Based Branch Confidence Estimation. In Proceedings of the 10th international
Symposium on High Performance Computer Architecture (February 14 - 18, 2004).

[44] H. Gao, Y. Ma, M. Dimitrov, and H. Zhou, “Address-Branch Correlation: A Novel
Locality for Long-Latency Hard-to-Predict Branches”, The 14th International
Symposium on High Performance Computer Architecture (HPCA-14), pp. 74-85, Feb.,
2008.

[45] Artur Klauser and Abhijit Paithankar and Dirk Grunwald, "Selective eager execution on
the polypath architecture", In 25th Annual International Symposium on Computer
Architecture, 1998, 250-259.

[46] Tien-Fu Chen. Supporting Highly Speculative Execution via Adaptive Branch Trees. In
Fourth Intl. Symp. on High-Performance Computer Architecture, February 1998.

[47] Jeremy Lau, Stefan Schoenmackers, and Brad Calder, Structures for Phase
Classification, 2004 IEEE International Symposium on Performance Analysis of
Systems and Software, March 2004

 118

[48] Barbara Chapman, Gabriele Jost and Ruud van der Pas, “Using OpenMP: Portable
Shared Memory Parallel Programming”, MIT Press, 2008, ISBN 978-0-262-53302-7.

[49] NVIDIA CUDA™ Education, 2008, http://www.nvidia.com/object/cuda_education.html
[50] Intel® C++ Compiler, 2008, http://software.intel.com/en-us/

 119

APPENDIX

Software Design of the Simulated Superscalar Architecture

VITA

Aswin Ramachandran

Candidate for the Degree of

Doctor of Philosophy

Dissertation: PERFORMANCE LIMITATIONS IN WIDE SUPERSCALAR

PROCESSORS

Major Field: Electrical Engineering

Biographical:

Personal Data: Born 20th August 1980

Education:

Graduated from University of Madras, Madras, India earning a
Bachelor's degree in Electronics and Communication Engineering
during May 2001;
Graduated from Oklahoma State University, Stillwater, India earning a
Master’s degree in Electrical Engineering during December 2003;
Completed the requirements for the Doctor of Philosophy in Electrical
Engineering at Oklahoma State University, Stillwater, Oklahoma in
December, 2008.

Experience:
School of Electrical Engineering
Graduate Research Assistant (2004-2008)
Graduate Teaching Assistant (2004-2008)

Professional Memberships:
IEEE Student Member

ADVISER’S APPROVAL: Dr. Louis G. Johnson

Name: Aswin Ramachandran Date of Degree: December, 2008

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: PERFORMANCE LIMITATIONS IN WIDE SUPERSCALAR

PROCESSORS

Pages in Study: 119 Candidate for the Degree of Doctor of Philosophy

Major Field: Electrical Engineering

Scope and Method of Study:

 Superscalar processors with wide instruction fetch only results in diminishing

performance returns. The aim of this research to find what causes these
limitations. In addition, a new cycle-accurate computer architecture simulator –
AbaKus - is developed to study and evaluate the performance of the architecture
designs.

Findings and Conclusions:
 Eager-Based executions and their designs are tested to overcome the effects of

low-accuracy of branch prediction on 38% of the conditional branch instructions.
An improvement IPC of 27% on average is shown. However, confidence
estimators need improvement on its design logic as they prove critical on the
performance of eager-based executions. In addition, the limitation of compilers to
extract ILP from the benchmark programs leads to a severe restriction on
performance of Superscalar architectures due to data dependencies.

