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LOCALLY DISCONJUGATE FAMILIES

OF CONTINUOUS FUNCTIONS

1. Introduction. In the study of the linear homogene-

ous second-order differential equation
(1.1) L(u) = (r-u'+gq-u) '-(g-u'+p-u) =0

on the open interval I of the real line R where p, g, and r
are continuous real-valued functions with r positive on I,

it is found that given any triple (to,u ,ué) in IxR2 there

o
" is a unique solution u of (1.l1l) on I such that u(to) = ug
and u'(to) = ué, so that for some neighborhood Io of any

point to in I there is a solution uy of (1.1) which is never
zero in Io. Moreover, any solution of (1.1) on I0 is a

linear combination of uy and a solution u, given by

t ds
(1.2) u, (t) = 3 -uy (t)
to r(s)‘ul(s)

for t in I,- Then, given a pair of points (tl,xl) and
(tz,xz) in onR with tl#tz, the determinant ul(tl)’uz(tz)
—ul(t2)~u2(t1) is different from zero and there is a unique

solution u of (l.1) which satisfies the conditions

(1.3) u(ti) =x., 1i=1,2;



namely the function u = A-u1+B°u2 where A and B are given by

( uy(ty)  —up () %

A -u, (t.,) u, (t,) X

(1.4) ( _Thth 1°°1 . V¥
B ul(tl)vuz(tz)-ul(tz)-uz(tl)

If solutions to the differential equation (l.1) connect
pairs of points with distinct abscissae in the strip onR
uniquely, (l1.1) is said to be disconjugate on Io. We prefer
to say that the set of solutions,e{, of (1.1) is disconju-
gate on I and, in view of the remarks above, thatqflig,g

locally disconijugate family. It is our purpose to study

locally disconjugate families of continuous functions with
no assumed differentiability properties.

In Section 2 we formalize the notion of local discon-
jugacy for subfamilies of C(I,R) and characterize locally
disconjugate families as a certain class of homeomorphs of

R2

in C(I,R). The concept of consecutive conjugate points
relative to the differential equation (l1.l1l) is generalized
to apply to these families and a sufficient condition for
continuous functional relationships to exist between a
point and its nearest left- and right-conjugates is given.
Finally it is shown that the continuous functions obtained
by putting together restrictions of members of a locally
disconjugate family 3, called piecewise-g-linear functions,

are dense in the real-valued continuous functions on inter-

vals of disconjugacy of t&
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A function f is concave relative to the differential
equation L(u) = 0 on an interval of disconjugacy, sometimes
said "f is super-L", if it dominates those segments of so-
lutions of L(u) = 0 whose endpoints lie below the graph of
f. (See references [l],[é],[lZ]). Section 3 concerns F-
concave (super-3 functions. In Theorem 3.4 a result that
pertains to the family t;is derived from sequences of J-
concave functions. Theorems 3.6 and 3.7 describe the least
J-concave function that dominates a given continuous func-
tion on a compact interval.

In discussing disconjugaté families, Beckenbach [2]
cites as an example "the set of images of all non-vertical
straight lines under a l-to-1 continuous transformation of
the domain a<x<b of the plane into itself in such a way
that every vertical liﬁe is transformed into itself."”
Theorem 4.1 provides a partial converse to this remark for
disconjugate linear subspaces of C(I,R): these are always
images of nonvertical straight lines under a topological
map of some strip I'xR onto IxR which carries vertical lines
into vertical lines. Generally, Section 4 provides results
for locally disconjugate linear subspaces of C(I,R) which
are typical of those for the space of solutions to (1l.1).
In particular, such a family determines local operators, 9,

for which the two-point boundary-value problem

8(x) =vy, x(t;) =y,, i=12,

1
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is uniquely solvable and whose inverses have integral formu-
lations. Moreover, a function f in the domain of 6 is J-
concave if and only if 6(f)<0. This generalizes a result
of Bonsall [3]. Also, following the lead of Ashley [l1], we
derive from a theorem of Choquet [4] an explicit integral
representation of the elements of the cone of nonnegative
ak— concave functions.

In Section 5, we generalize a result of Reid [12]
which characterizes dlconcave functions as those which

satisfy certain unilateral variational relations stated in

terms of the functional J, where

2+2-q-u-u'+p-u2),

(1.5) JK(u) =_/; (r-u'

by introducing a class of functionals, which includes those
of the form (1.5), relative to which a type of unilateral
variational problem is solvable. The class of solutions

of these unilateral variational problems is precisely the
set of generalized concave functions.

In the sequel, I = (a,b), where a and b are extended
reals and a<b, represents a fixed open interval in R and
Ia represents a generic open subinterval of I. All inter-
vals are assumed to be nondegenerate. The set C(Ia,R) of
continuous real-valued functions on Ia is assigned the
topology of uniform convergence on compact subsets of Iy
and subsets thereof are assigned the relativized topology.

For a set 3} in C(Ia,R) and a subset A of I, 3‘A is the set
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of restrictions of members of t}to AnIa, We use S(Ia) to
denote the set {(t,,x,.t,,%x,) e I XRxL xR 3t < t,} and
assign to it the relativized R4 topology. The subset A of
I is said to be bounded in I, if A is a subset of a compact
subset of %z. When R" or C(I,R) are considered as ordered
spaces they are assigned their respective product orderings.
For a natural number n, the symbol ff denotes the set

{1,...,n}.

2. Locally disconjugate families of continuous

functions. Our starting point is the notion of disconju-
gacy for a family of continuous functions. The family 3

contained in C(I,R) is disconjugate on the subinterval Io

of I if and only if for every pair of points (tl,xl),
(t2,x2) in IOxR with distinct abscissae there is one and
only one member F of the family which satisfies the con-

ditions:

(2.1) F(ti) = X4, i=1,2.

In such instances, the interval Io is called an interval

of disconjugacy of the family J. The behavior of members

of the family J on intervals of disconjugacy of 3 is re-
stricted, as is shown in the following theorem due to
Beckenbach [2].

THEOREM 2.1 Suppose that } in C(I,R) is disconjugate

on Io = (ao,bo) and that to € Io. If Fl and F2 are distinct

members of 7 such that Fl(to) = Fz(to)’ then either Fl > F2
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fa

< .
on ( ,bo) and F, < F gg_(ao,to) or F; < F, gg_(to,bo) and

1 2

F, > F, on (a_,t_)-

O

It is to be noted that it follows from the definition
of di;conjugacy and from Theorem 2.1 that if tl,t', and t"
belong to an interval of disconjugacy IO of 4, and are such
that either tl < t!'< t” or t¥ <! < tl’
subfamily of } such that fF;(tl)} is bounded below, [above],

and if {Fa} is a

by the real number r and {Fa(t')} is bounded above, [below],
by the real number s, then {Fa(t")} is bounded above,
[below], by F(t"), where F is the unique member of ¥ con-
necting the points (tl,r) and (t',s). Using an indirect
argument, this implies that if [tl,tZ] c Io and if the se-
quence (Fn) in ¥ is such that (Fn(ti)r%+ﬂ KFn(ti))*—“],
i=1,2, then (F_(t"))»t= [(F (t'))+-=] for all t' in
[t e,

Beckenbach has also proved the following theorem and
corollary.

THEOREM 2.2. If the subfamily 3 of C(I,R) is disconju-

gate on I then the map #:5(I)>C(I,R) such that ®(t;,x;,t,,X,)

is the unique member of "} whose graph contains the points

(tl,xl) and (tz,xz) is continuous.

COROLLARY. If the subfamily 3 of C(I,R) is disconiju-

gate on I, then the subset O of % is compact if for distinct

elements t; and t, of I the sets O'[ti] = {F(ti) :Fed}, i =1,2,

are compact.

These results can be generalized so as to apply to a
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larger class of families of functions. The subfamilyﬁﬁ of
C(I,R) is said to be locally disconijugate if and only if
every point in I is interior to some interval of disconju-
gacy of 3.
THEOREM 2.3. Suppose that:}_ig.g locally disconjugate

subfamily of C(I,R) and that I_ is an interval of disconju-

gacy of 3. Then the map :5(I_)+C(I,R) such that

Q(tl,xl,tz,xz)_ig the unique member of 4 that passes through

(tl,xl) and (t,,x,) is continuous and its range is ¥. More-

over, if t, and t, are distinct fixed points of I, the

restriction ¢ of ¢ to {(t;,x;,t,,%,) : X;,%, ¢ R} is a

homeomorphism of r? onto ‘3. In particular, if '} is a linear

subspace of C(I,R), then ¢ is a linear homeomorphism of R

onto 3.

Before proving Theorem 2.3 we remark that consideration
of the family F = {F(a,g) :a,8 R },3cC(R,R), where [F(a,8)] (0)
= g and, for x # 0, [F(aB)] (x) = a-x%.sin (x—l) + B, leads
to the conclusion that not all homeomorphs of R2 contained
in C(R,R) are locally disconjugate families.,

To prove the theorem, suppose that [ao,bo] is a subin-
tervai 6f I not wholly contained in Io and choose a subin-
terval [a',b'] of I containing bo,bo] whose intersection
with I  is an interval. Cover [a*,b'] by open intervals of
disconjugacy of ¥, choosing I, as the particular interval of
disconjugacy for each point in I n{a',b']. This cover has
a minimum finite subcover containing Io whose elements can

be strictly ordered by their left-hand endpoints. Suppose
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the cover contains an interval which extends to the left of
IO. Then the rightmost of these intervals, Jl, contains a
pair of points, tl and t2, of Io. By Theorem 2.2, a net

(p(a)) in S(Io) convergent to p in S(Io) defines a conver-

gent net (q(a)),

g = (e, Loe' ) 1e) £y, 1o 1 (1)),

in §(J)) with limit q = (t;,[e(p)] (t;), £y, [®(P)] (£,)).
Since ¥ is disconjugate on Jl' Theorem 2.2 implies that for
any compact subset K of Jl the net of restrictions of
(¢(p(°))) to K converges uniformly to the like restriction
of ¢(p), whence the same holds for compact subsets K of
Jlqu. Since the cover is finite, applying the above method
to elements of the cover adjacent to the rightmost.and left-
most intervals of the cover for which this result has been
demonstrated yields the uniform convergence of 0(p(a)) to
®(p) on compact subsets contained in the union of the ele-
ments of the cover, hence on [ao,bo]° Therefore, ¢ is
continuous.

Then, for tl,t2 distinct in Io’ the one-to-one map ¢
such that ¢(xl,x2) = Q(tl,xl,tz,xz) is continuous and,
since ¢(F(tl),F(t2)) =F for F in"3, ¢ is onto 3. The con-
tinuity of ¢ implies that & is a closed, hence complete,
subset of C(I,R). For, if the sequence (Fn) in 3 has limit
f in C(I,R), then, for any choice of tl,t2 in an interval
of disconjugacy I of 3, F o= ¢(F (t;),F_(t,)) implies that

£ = ¢(£(t)) ,£(ty)). Moreover, (F )»F in 3 implies that
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((Fn(tl),Fn(tz)))-—»(F(tl),F(tz)) in R® which is equivalent
to (¢_1(Fn))-—9 JJ(F). Hence the continuity of Jl.

If Fis a linear subspace, then lw¢(xl,x2) belongs to
¥ for real A, whence A'¢(xl,x2) is the unique member of 3
passing through (tl,l-xl) and (tz,x-xz). Thus, X°¢(xl,x2)
equals «A-xl,loxz). Similarly, ¢(xl,x2) + ¢(xi,xé) =
¢(xl+xi,x2+xé).

COROLLARY. If Ol is a subset of the locally disconju-

gate family 3, then QO is compact if and only if for some
pair of points 1:1,.,2 belonging to a common open interval of

disconjuqacy of 3 the sets QAlt,] = {F(t,):Fed}, i = 1,2, are
compact.

The corollary follows from the fact that projections
are continuous after noting that Q[t; ] = p;°¢ l[ch i=1,2,
where ¢ is defined as in Theorem 2.3 by any pair tl,t2 con-
tained in some interval of disconjugacy of 3 and pi:Rz»R

th coordinate projection map.

is the 1
We now characterize those C(I,R)-valued maps whose
images are locally disconjugate families. We say that the

pair of points tl,t2 of I determines the homeomorphic im-

bedding ¥ of R2 into C(I,R) if and only if the map B8 defined

by

and denoted by B==(et e )o , 1s a homeomorphism of R2

1l
The map u:R'+C(I R) is Q_;rw1se determined if and only if
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every pair of points in I determines ¥; the map ¥ is locally
pairwise determined if and only if every point of I belongs

to some open interval each of whose pairs of points determines

Y.

2

If YsR“+C(I,R) is a homeomorphism whose range is a

locally disconjugate family, and if ¢ is the homeomorphism
of Theorem 2.3 obtained from uMRz) and from the points tl

and t belbnging to a common interval of disconjugacy of

2
MR?), then the map B = (e t Yo ¥ equals 6-1ow and is a
2

2

,e
ty

homeomorphism of R2. Also, if ysR“+C(I,R) is a locally

pairwise determined homeomorphism, then, for to in I, any
open interval Io about to each of whose pairs of points
determine ¢y is an interval of disconjugacy for w(RZ). For,

-1t (xl,xz) is the

2

with t, and t, in I, tb°((etl,.et ) e v)
unique member of ¢(R2) whose graph contains (tl,xl) and

(t2,x2). These considerations yield the following theorem.

THEOREM 2.4. The range of a homeomorphic imbedding of

R2 into C(I,R) is disconijugate on I, [locally disconjugate],

if and only if the homeomorphism is pairwise determined,

[locally pairwise determined].

Therefore, a subfamily of C(I,R) is disconjugate on I,
[locally disconjugate], if and only if it is the range of a
pairwise determined, [locally pairwise determined], homeo-
morphic imbedding of R2 in C(I,R).

In the sequel'& is a locally disconjugate family in
C(I,R) and F = '&(tl,xl,tz,xz) indicates that F is the unique

member of ¥ which satisfies conditions (2.1) . Use of this
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notation presupposes that tl < t2 and that [tl’tZ] is con-
tained in an interval of disconjugacy of 3. Thus 4, as a
function, is used to represent any of the continuous
functions ¢ of Theorem 2.3. Since the topology of uniform
convergence on compacta for C(I,R) is jointly continuous

[9;p. 224 and Thm. 7.11l], the function 34 defined by
A%t %y0t) = [(Ey.%),t,,%,)] (¢)

is a continuous function of five variables on domains of
the form S(Io)xI, Io being an interval of disconjugacy of
For a pair of points tl,t2 in I with tl < t2 we say

that t, is ¥-related to t,, denoted by t,~ t,, if and

1l 2' 1 27
only if for some (xl,xz) in R2 either two members of %
satisfy conditions (2.1) or no member of ' satisfies these
conditions. If ¥ is also a linear subspace of C(I,R) then
the alternative conditions used in defining #-related pairs
are equivalent, [ see Section 4] so that if 4 is the space
of solutions of the differential equation (1l.l1), then tl

is R-related to t, if and only if t, and t., are conjugate

2 1 2
with respect to this differential equation. Even in the
general case, the second condition in the definition of
4-relatedness can be expressed in. terms of the first con-

dition, as is shown in the theorem below.

THEOREM 2.5. If no member of a locally disconjugate

—— A———  ——————  —— - ———

family,é-jg;ns (tl,xl) and (t2'x2)' then either two members

of ™ join (tl,xl) and some (té,xé) ;g,(tl,tZ]*R, or t,
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— ————— t—— ——

(té,xé)-

For a choice of ti in (tl'tz) such that ¥ is disconju-
3 ?
gate on [t;,t;] define F  to be 3(tl,xl,tl,r) for real r.

Let O~='{Fr:reR} and define a:Récq(t by a(r)
1l

=F .
The continuity of <4 implies that the set of values attained

at t, by members of Y4 passing through (tl,xl), namely

2
{Fr(tz):reR } = f}(tl,xl,t',r;tz):reR }, is an interval in R.
Suppose, for definiteness, that Fr(tz) < X, for all real r.
It is clear that two members of QA intersect in (tl,t2] if
and only if a is not strictly increasing. Suppose that a

is strictly increasing. Then(J[tZ] is an open interval

with a supremum A < Xy If no members of & intersect in
some closed neighborhood [t',t"] of t2 on which'3 is dis-
conjugate, then both sequences (Fn(t')) and (Fn(t")) are
strictly increasing and, by the remarks following Theorem
2.1, the fact that (Fn(tz)) is bounded above implies that
one of the sets Jlt'], Q[t"] has a finite least upper bound
B. Then the segquence (Fn), each term of which satisfies
Fn(tl) = x;, has one of the functions ﬁ(t',B,tz,A),
3(t2,A,t“,B) as limit and, by Theorem 2.3, this limit func-
tion is a member of ¥ which passes through (tl,xl) and(tz,A),
contradicting the openness of<1[t2]. Thus, for all ¢ > 0,
(t2,t2+e)xR contains a point at which a pair of elements of

Q. intersect.
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The proof just given makes it clear that Theorem 2.5
has the following dual statement: if no member of'3 joins
(tl'xl) and (t2'x2)' then tl is less than or equal to the

supremum of the values ti for which there is an associated

xi such that two members of ¥ join (t',xi) and (t2'x2)'

THEOREM 2.6. If 3 is a locally disconjugate family

and t, is t-related to ty then for every ti less than tys

1
1 : 1 1
[t2 greater than t2], there is a t) less than t,, [t;

greater than tl], such that ti is 3}-related to ts-

We consider the case: ti < tl° The alternative follows
in a similar manner. Note that it is sufficient to prove
the result for t; such thaﬁ 4 is disconjugate on J = [ti'tl]'
For if > is not disconjugate on J, it is possible to find
a mimimal finite open cover of J consisting of intervals of
disconjugacy of ¥ and, after choosing a point from each of
- the intersections of pairs of adjacent intervals of the
cover, a finite number of applications of the result for
intervals of disconjugacy yields the result of the theorem.

Suppose that ¥ is disconjugate on [ti’tl]° Since
tl'“ t2 there are real numbers 3 and X, such that either
two members of JF join (tl,xl) and (t2,x2) or no member of
3 joins these points. First, if F and G are distinct mem-
bers of % connecting (tl,xl) and (t2,x2), we may assume
without loss of generality that F > G on (tl’tZ) and that

F and G do not intersect in (t',tl)° Moreover, if

F(ti) = G(ti) the desired result is immediate, so we assume
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that F(ti) < G(ti). For a fixed xi in the interval (F(ti),
G(ti)), index the members of the set O. of ¥-lines passing
through (t],x]) by their values at t,. That is, a =
'{Fr:reR} where Fr = 3(t',xi,tl,r), We show that some mem-
bers of @Q intersect in (ti,tz), which is equivalent to the
statement that the map ©® which takes r in R to FrI(ti,tz)
is not strictly increasing, by deriving a contradiction
from the assumption that @ is strictly increasing.

Suppose that a is strictly increasing. 1In view of
Theorem 2.5, this implies that every point in (ti,tz)XR
is in the graph of some member of Q. Also, a continuous
function f is bounded above and below by members of Q on
compact subintervals, K, of (ti't2)° For, given £ and K,
for any t in K, the member Frt of A whose value at t is 2-£(t)
strictly dominates £ on a neighborhood Nt of t, so that, for

any finite cover, (N :ien}, of K taken from {NtzteK} and

€

with r = max'{re.:ieﬁ}, Fr strictly dominates f on K. There
are two cases tolconsider. If a(xl) meets F or G in (tl,tz),
then some member of QA meets F or G at a point in (ty.t,)

'but does not cross it at this point, a contradiction to the
result of Theorem 2.1. For if a(xl) crosses F in (tl’tz) with
té the least abscissa of the points of intersection of F and
a(xl) in (tl'tz)' then, since some member of Q strictly domi-
nates F on &l,té]and by the result of Theorem 2.3, there is a

nonempty open interval in R with infimum $>X, consisting of all

reals r for which a(xr)>F on [tl'té]' whence a(s) dominates F on
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[tl’té] but meets F somewhere in [tl'té]° If a(xl) meets
neither F nor G in (tl'tz)' let Ht be the unique member of
Q. which passes through (t,F(t)) for t in [tl'tz)' If any
Ht meets F in (t,tz), say at some least abscissa tj, then,
by an argument similar to the one given above, there is a
member of (Awhich dominates F on [t,té] but which equals F
somewhere in [t,té], a contradiction. Otherwise, for every
¢ <Fon (t,tz), so that Ht(tz) =
F(t,) for all t in [tl'tz)’ by virtue of which ¥ is not

t in [tl'tz)’ u(xl) <H

disconjugate on any neighborhood of t,, also a contradiction.

With 3 still taken to be disconjugate on [ti’tl]'
suppose that no member of 3 connects (tl'xl) and (t2,x2),
and, for definiteness, that Fr(t2) < X, for all real r,
where F_ = 3{ti,-r,tl,xl). Since ¥ is disconjugate on an
open interval containing t; and since {Fr:reR} is the set
of all J-lines through (tl,xl), there is an € >0 such that,
for all t in (tl,tl+e), the sequence (Fn(t))—¥+=n Then any
member of 3 that passes through (t2,x2) meets Fn at least
twice in (ti,tz) for all sufficiently large n. In view of
the results of the preceding paragraphs, this yields the
conclusion of the theorem.

If an endpoint to of the interval Io is #-related to
some t' in Io' then, by Theorem 2.6, for a choice of t" be-
tween t' and the other endpoint of Io' t" is 4d-related to
some té between t" and to, whence ¥ is not disconjugate on

Io. Thus we have the following corollary.
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COROLLARY. An endpoint of an open interval of discon-
jugacy of a locally disconjugate family is not 4-related to
any point in the interval.

We say that a locally disconjugate family in C(I,R) is
merely locally disconjugate if the family is not disconju-
gate on I. Clearly, this condition holds if and only if I
contains an d~related pair. If t] ~t) in I and if I =

(t ) € I is an interval of disconjugacy of ﬁ'containing

1'%
: ] [ ] ] [ ]

to' then either tl < t) or t) < t2 or (tl,tz) c (t ,tz).

By Theorem 2.6, in the first case, ty is ¥-related to some

t5 in [t,,t}); in the second case,.t, is 4-related to some

ti in (ti’tl]' Therefore, if ¥ is merely locally disconju-
gate, every point in I belongs to some open interval of
disconjugacy of % which is contained in a closed subinter-
val of I whose endpoints are 3-related.

Suppose now that 3 is merely locally disconjugate. By
Theorem 2.6, the sets Dp = {t:At'>tat~t’'} and D, =
{t:3t'<t3t'~t} of left and right members of Y-related pairs
in I are of the form (a,tp) and (t,,b), respectively, for

some t, in (a,b] and t, in [a,b). It is also clear that

the functions AsDX—>I and D:Dp—>I, called the left and

right conjugate point functions determined by ¥, defined by
(2.2) A(t) = sup{t'<t:t'~t) and p(t) = inf{t'>t:t~t"}

are nondecreasing and that for t in D, {t in D,], the

family % is disconjugate on the interval (t,p(t)),[(A(t),t)].
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Further, if ternp-l(Dx), [teD, nA'l(Dp)], then A(p(t)) st,
[p(a(t))2t]. For, if A(e(t))>t, then, by the definition of
A p(t) is F-related to a point in (t,A(P(t))] which, by
the corollary to Theorem 2.6, contradicts the disconjugacy
of ¥ on the interval (t,pe(t)). Using these alternative re-
sults together, if teq)np_l(DA), [teDknl_l(Dp)], then
Alp(t)) € Db’ p(Aop(t)) < po(t), and peor(p(t)) 2 p (t), whence
p(r (p(t))) =p(t), [A(p(A(t))) = A(t)]. Then, with R, = A(D,)
and Rp =p(Dp),'{t:p°A(t) = t} is precisely Danp and
{t:xep(t) = t} equals Danx’ and {t:)ep(t) < t} equals
Dpnp—l(Dk)\Rx and {t:poa(t) >t} is Dxnx-l(Dp)\Rp. Suppose
that A(p(t)) < t and that t* € (A(p(t)),t). Then
p(Ap(t))) s p(t') < p(t), so that p(t') = p(t). Thus,
Dpnp-l(Dx)\RA consists of intervals of constancy of p whose
left-hand endpoints are in DanA‘ A dual result holds for
D aX (D))\R). Now, if t ¢ D and p(t) < t ., then t, is to
the right of an F-related pair, whence t).e Dx, a contra-
diction. Therefore,!%c &l,b) and, since p.is nondecreasing,
{t: p(t) = t, 1, which is Dp\p'l(DA), is an initial interval
in I; that is, it has one of the forms (a,t)), (a,ty] for
some t ¢ in [a,t,]. Similarly, Rxc(a,tql and DA}i‘l(Db) =
(e a(t) = t o has the form (t;,b) or [ti,bs for some t] in
[tl,a]. '
Suppose now that for no t in I is A(e(t)) < t. Then
either t; = tp and the function P is the constant t, func-

A
tion, or t; = a and p is strictly increasing, or
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a <th < t,and p is constant on (a,t‘;) and strictly increas-
ing on (t'p,tp) . If it is further assumed that p(r(t)) is
never greater than t, the functions !L:D,\r\Rp—-aDpnR,t and

r:Dpn Rx—anan, defined as restrictions of )X and p, respec-
tively, are such that rof and for are identity maps, so that
» and p are strictly increasing and continuous on (tx’t'l)

and (t;),tp) respectively. Then p is continuous unless

a=1 + p(t) > t}‘. But, since r(p(t)) =t for t

e (t)) |
in (t;,,tp), this would imply that A(a) > t'p, whence any t'
in (t;,A(u)) has p(t') < a, a contradiction. A dual argu-
ment shows the continuity of A. In this instance, let ry
and_? be the continuous extensions of p and A to [a,t p] and
[t )‘,b] , respectively, with T and ¢ their respective restric-
tions to [t;,tp] and It, ,t; ).
THEOREM 2.7. If '} is a merely locally disconiugate

family in C(I,R), the conjugate point functions, » and a,

determined by % are such that (t,p(t)), [(a(t),t)], is the

largest open interval of disconijugacy with t as endpoint

and extending to the right, [left]. If for not in I is

Me(t)) < t or o(A(t)) > t, p and A are continuous and de-

fine continuous extensions p: [a,tp]—é[tx,b] and
Tz[tx,b]—>[a,tp] in the extended reals such that »(t) = t,
for € in [.th] X(t) = t, for t in [t].b], and the re-
strictions of p _an_dl-x- to [t"),tp] _a._r_l_d_[tA ,t;‘] , xespectively,

are inverse homeomorphisms.

An open interval of disconjugacy of ? is said to be
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maximal if and only if it is not properly contained in any
open interval of disconjugacy of %. The endpoints of a
bounded maximal interval of disconjugacy are called ¥-conju-
gates or are said to constitute an ¥-conjugate pair. It
follows from the fact that the bounded interval (tl'tz) of
disconjugacy is maximal if and only if % is not disconju-
gate on either (tl,t2+e) or (tl-e,tz) for all € > 0 that,
when a<tl<t2<b, (tl'tz) is maximal if and only if t2 = D(tl)

and t. = x(tz). In such an instance, we call tl the left-

1l
¥-conjugate of t, and t, the right-}-conjugate of t)-

COROLLARY. If for no t in I is A(e(t)) < t or

p(a(t)) > t and if t: < t,, then the right, [left], 4 -con-

—— e ——————— S ———————————C—re———  A————

ing, and is given by the right, [left], conjugate point

function for t in (t;,tp), [(tA'ti)]° Moreover, the right-

3hconjugate and left-¥-conijugate functions are inverse

homeomorphisms.

Note that two points in (a,b) are consecutive conjugate
points relative to the differential equation (l1.1l) defined on
(a,b) if and only if they are chonjugates, where 4 is the
family of solutions to (l1.l1l) on (a,b). Thus, our notion of 3-
conjugate points is a generalization of the notion of con-
secutive conjugate points of the differential equation (1.1).

Theorem 2.8. ;;‘3°;§_mere;x locally disconjugate, then

every point in I is interior to some maximal open interval

of disconijugacy.
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For a fixed ty and a fixed’}—:elated pair tyity in I
such that t_e (t;,t,), any chain C={Ih} 4¢p in the set B
of open subintervals of [tl’t2] which contain to and on
which ¥ is disconjugate, where ® is partially ordered by
set inclusion, has }?%;a as an upper bound. By Zorn's
lemma, some member of ® is not properly contained in any
other. If some maximal member (t]‘_,té) of 8 is such that
ti = t1 and té =t, or tl < ti and té < t2, then it is a
bounded maximal interval of disconjugacy containing to'
Otherwise, maximal members of ® have the form (tl'té) with

t) < t, or (ti,tz) with £, < t!. In the former case,

2 2 1 1

- 4 ] ] 1
t) = p(t;) and one of the intervals (£y.85), (a,t)), (t-,tz),

where t] = inf (p_l({p(tl)})), is a maximal interval of
disconjugacy. In the latter case, either (ti't2)’(ti’b)'
or (tj,t}), where tj = sup(k-l({x(tz)})), is maximal.

The members of ¥ are called #-lines and a function
f:I-»R which agrees with some member of ¥ on the interval
[t;/t,] is said to be %-linear on [tl’tZ]' The function
f:I->R is termed piecewise-}-linear if and only if there
are finite sets T = {ti:ieﬁ}CI and X = {xi:ieﬁYcR, for

some n 2 2, with ti < t and 3‘d1sconjugate on [ti’ti+1]

i+l
for 1 = 1,2,°°*,n~1, such that

[%(tllxl-l tzlxz) ](t) ,a<t5t2,
£(t) =0 (e x b 0%, 0 (B), b stst, 82,7 *, n=2,
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denoted by f = ¥(T,X). The collection of piecewise-¥-linear
functions is denoted by ¥(%).

The operations A and V , defined in C(I,R) such that
fAg and £Vg are the pointwise infimum and pointwise supre=~
mum, respectively, of £ and g, are continuous and give C(I,R)
the structure of a distributive lattice. The following lemma
is an immediate result of M. H. Stone's Theorem 1 in ([13].

LEMMA 2.9. If % is disconjugate on I and if P is a

sublattice of C(I,R) containing 3 then P is dense in C(I,R).

That is, given f in C(I,R), for every €>0 and for
every compact subinterval K of I, there is a member P of ¥
such that [P(t) -£(t)| < € for all t in K.

Suppose I is an interval of disconjugacy of 3. since
Y-linear segments of pairs of members of 0('3"1. ) intersect
at most once, if F' = J(T',X"), T'cI_, and F" : Hrr,x"),
T"<I_, then F = F'V F" has the form '}(T,X); where T is a
strict ordering of the union of T', T", together with the
abscissae of the points of intersection of F' and F", and
where X, = max {F (ti) ,F"(ti)}. A similar result holds for
F'AF", whence ®(%|; ) is a sublattice of C(I_,R) contain-~
ing ’&'I . This and tc:)he result of Lemma 2.9 prove the next
theoremiJ

THEOREM 2.10. Suopose 4<C(I,R). If "} is disconjugate

on I, then 63('3-']: ) is dense in C(I_,R).
o
This means that any continuous function can be uniformly
approximated by piecewise—'y'-linear functions on any compact

interval of disconjugacy of 4. Note that if ¥ is locally



22

disconjugate ¥(3) need not be a sublattice, for the family
4 = (F(a,8) : [F(,8)] (t) = a-cos(t)+B-sin(t),o,B,teR}

contains the sine and constant zero functions, whence ¥(%)
contains them, but (sin) V (0) is not in ®(J).

The theorems to follow will be seen to be of the nature
of Theorem 2.10. That is, they pertain to the restrictions
of the members of locally disconjugate families to intervals
of disconjugacy. Or, said another way, the subsequent
theorems concern families which are disconjugate on their
common domain and thereby give local results for locally
disconjugate families. Maximal intervals of disconjugacy
are then the largest open intervals to which these local
results apply.

3. "3-Concave and %-Convex Functions. Suppose % is a

locally disconjugate family in C(I,R). For a function
f:I+%R and a pair of points tl,t2 which belong to a common
open interval of disconjugacy of'ﬁ, let‘3(f;tl,t2) repre-
sent ’:-}(tl,f(tl) ty, £(t,)); that is, that member of 3 which
agrees with f at ty and t,. We say that f:I+R is F-con-
cave (or super-}) if and only if for every pair t,.,t,

which belongs to a common open interval of disconjugacy of

3 the following holds:

(3.1) 2 J(£itg.t,)

e,y (ty )"

The function f is strictly JF-concave if the above inequality
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is strict. Reversal of inequality (3.1l) leads to definitions

of F-convex (sub-3) and strictly ﬁ-convex functions. Let Sf

and 4 denote the sets of d-concave and 3-convex functions,
respectively. Note that ¥ = ﬁ%\?r. In this section we will
state and prove results for E#: It should be kept in mind

that dual theorems hold for ¥ .

The function f is convex relative to the locally discon-
jugate family ¥ if and only if, for every open interval of
disconjugacy, I, of 3, f|I is sub—(ﬁﬂlo) in the sense of
Beckenbach [2]. Theorem 3°i restates some of Beckenbach's

results in our setting.

THEOREM 3.1. Suppose that ¥ is a locally disconjugate

family in C(I,R) which is disconjugate on I  and that £ is

¥-concave. Then, for all ty.ty, in I, f[A < ﬁ(frtl,tz)lA,

where A = Io\(tl,tz)° 1f there is a member F of } and a

point t_ in I_ such that £ 2 F on I and f(to) = F(to), then

f=F on Io° Moreover, £ is continuous.

The continuity of an %-concave' function £ at any to is

proved using the inequalities

< s -+
b ’](t) < f(t) s £ ) ](t), when t t t _+h,
and

£, p(t) s £(t) s £ ,(t), when t ~h St t_,

where h > 0 and is such that ¥ is disconjugate on [to-h,to+h]
and £ . = WUsse .t +h) and £, _p = Hfst -h,t ), and the

fact that fO and £ h are continuous.

lh o,

— e o Fa .
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A function f supports the S-line F at to if and only if
f(to) = F(to) and F 2 £ on some maximal interval of disconju-
gacy containing to. Green [7] attributes the following re-
sult to Peixoto [11]. Since this latter reference is not
available to us we give a proof.

THEOREM 3.2. The function f is J-concave if and only

if f supports an %-line at each t, in I.

Suppose f is #4-concave and to belongs to the maximal
interval of disconjugacy IO. Choose h > 0 such that

[to~h,to+rh =I_, and define G,:(0,h]-9R, i = 1,2, as follows:
(3.2) G (h') = £ ., (t +h) and G,(h') = £, . (t +h).

G, is nondecreasing, Gl is nonincreasing, and

2
A= sup(Gl) S B E inf(G2)° Then, for any ce[A,B], £ sup-

ports é(to,f(to),to+h,c) at t_. If £ is not 4-concave,

some maximal interval contains points tl,t',t2 with tl < t!

< t, for which f(t') < [G(f;tl,tz)](t'). Then any %-line

through (t',f(t')) which is not below f at one of the points

£ty

no ﬁbline at t'.

is strictly below £ at the other. That is, f supports

For a compact subinterval K = hi,tz] of an open inter-
val of disconjugacy of '3', ('EHK) ~-concavity is defined by
means of (3.1l) with [tl’tZ]cK°

COROLLARY. Suppose £:K->R. Then f is (¥/)-concave
if and only if f supports an (¥ (11'12))—_;3@_@;% t in

(Tl,rz) and (lim inf f)(Ti) 2 f(Ti), i=1,2.
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Since the ’}HK-concavity of f implies that f is
('3|(T T ))—concave, we prove the corollary by showing
1’72

that, under the assumption that f is ('3|(T ))-concave,
2

/T
f is (31K)-concave if and only if the statéd limit inferi-
or relations hold. If a, = (lim inf f)(ri) is strictly

less than f(ri) in the extended reals for either i = 1 or

i = 2, then any 3-line, F, through (Ti,f(Ti)? is bounded
away from @, on some neighborhood of T in K'and in this
neighborhood F dominates f at the points of a monotonic se-
quence, (t(n)), in (rl,tz) with limit T chosen such that
(f(t(n)))—*ui, whence f is not (34K)-concave. Conversely,
if, with f being (31(Tll12))-concave, f is not (34K)-con-
cave, then there is a t' between points tl,t2 of K, at least
one of which is an endpoint of K, such that f(t') < F(t'),
where F = ﬁ(f;tl,tz), If only one of the points t,,t,, call
it T, is an endpoint of K, then, by Theorem 2.1 and the
first result of Theorem 3.1, the }-line which agrees with

f at t' and at the member of {tl’tz} which is interior to

K is strictly dominated by F and dominates f on the closed
interval with endpoints Tt and t'. Then, since F(t1) = £(1),
(lim inf £)(7) < £(1). 1If t, =7, and t, = 1,, suppose

that at one of these endpoints, T, (lim inf £f) (t) 2 f(f).
This and the continuity result of Theorem 2.3 imply that
there is a positive e such that, for every t in (t-¢, T+ € nK,

the "3-line which agrees with f at t and at the endpoint of

K opposite 1 is greater than f at t'. Then, for any such
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choice of t except 71, the former argument applies, whence £
is greater than (lim inf f) at the endpoint of K opposite T.

REMARK. If f is 3‘K-concave (‘3|K-concave) and if
a = (lim inf £)(t) < (lim sup £f) (1) = B

for an endpoint Tt of K, there are monotonic sequences (t;)
and (t;) in (rl,rz) whose elements are interlaced, each
with limit T, such that (f(t:))—>8, (f(t;))—-va. Then, for
sufficiently large n, the F-line which agrees with f at t;
and t:-1+l is above f at the element of (t;) between these
points, a contradiction. Therefore, a= 8. Thus, every

ﬁK—concave function agrees with a unique continuous

%(-concave function on the interior of K.

The following lemma implies that neither ’3»+\3' nor
3'-\'3' is empty. (The function '3(T,X) , used below, was de~
fined in Section 2.)

LEMMA 3.3. Suppose F is a member of the locally dis-

conjugate family 4 which is disconijugate on [tl’tZ] and

t e (ty,t,). Then, if k is positive, [neqativel , the

function
£ =3ttt LAF(E]) F(E ) +K,Flty)))

is %-concave, [F-convex], but not F-linear.
Clearly, f is not “y-linear. Now, with k > 0, suppose
that t_ is interior to an interval of disconjugacy [t]'_,té]

of '} and define F' to be ’3—(f;t]'_,té) . On some interval I'
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J 3 1 L —
containing t_,t;,t,,t], and t;, £ = F]_/\F2 where

F HEst], )

L = ¥t Fle) e Pt ) +k)

and

=
it

e Fle)+k, £, Flt,)) = HEst ).

. 1 1
This and the facts that Fl(ti) < Fz(ti) and Fl(tz) > Fz(tz)
imply that F' is strictly less than both Fl and F2 on

] ]
(ti,tz), whence F' < £ on [t;,t;].
COROLLARY. If [t',to] is contained in an open interval

of disconjugacy of 4 and o, 8, and vy are reals with a<8,

then f such that f equals ¥(t',e,t_,¥) on (a,t ], f equals
S(t',B,to,y) on ft_.b), is 3-concave but not ¥-linear.

Now if 3 is diséonjugate onI_ = (a,b)), F ed, and
(tﬁ) and (tg) are, respectively, decreasing and increasing
sequences 1in I with respective limits ag and bo' then, for
any t_ in IO and for sufficiently large n, the function 9,

defined as F({t!',t_,t"

poto thLAF(E)) F(t )+1,F(t))}) belongs to

5* J. For a fixed t' in (a_,t ) and again for sufficiently
o' o

large n, the sequences (cn) and (dn), where c =

(¥t F(t )+1,t2,F(t2)) 1(t') and 4 = g (t'), are, respec-
tively, decreasing and increasing, and dn < ¢, Then (dn)
and (cn) have limits A and B with A S B. Define f as in the
corollary to Lemma 3.3 taking a=A, B=B, and y = F(to)+1.
Clearly, £ is #-concave and £ > F on Io. Indeed, £ = lim
(gn). Since f supports an F-line (possibly itself) at ty
there is an %-line which is strictly greater than F on Io'
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The results of Section 4 are based on the following state-
ment of this result.

f a locally disconjugate

THEOREM 3.4. Every member

family ¥ is strictly dominated by some member of the family

on an open interval of disconjugacy.

The proof given above does not require that a, or bo'
belong to I. But if Io is bounded in I, then it is clear
that F is dbminated on Io by any 3-line supported by
ﬁ({ao,to,bo},'{F(ao),F(to)+l,F(bo)T) at t_. Moreover, given
Io bounded in I, if the construction in the proof yields
A =B for any F in 4, then Io is maximal.

Note that functions are convex in the usual sense if
and only if they are X-convex where & is the disconjugate

family
{L(a,8):{L(a,8)](x) = a-x+8B, a,B€R, x€I}.

In view of this, the following theorems are not unexpected.

It suffices to suppose 3<C(I,R) to be disconjugate on
I. Let W represent the collection of compact subintervals
of I and, for K in K, let }K stand for QJK. A function in
C(I,R) is F-concave on K if and only if its restriction to
K is 3k-concave. The collection of all such functions is
denoted by 3’1-:. Note that KK, implies fctf;; 3";:1.

IfK = [tl,t2k=1 and aeR, consideration of the sequence

(Fn), where Fn = ﬁ(ti,a,tz,n), ti fixed in (a,tl), leads to

the conclusion that some F-line is never below a in K.
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Then every element of C(I,R) is dominated on each K in X by
some *-line, so that the operator 9+, which, for K in K,
maps C(I,R) into the set of real-valued functions on K ac-

cording to the rule
[6(£)]1(t) = inf(F(t) :Fe3,F2f on K}

is well-defined. Further, if f is dominated on I by an
¥-line, we define [é+(fﬂ (t) to be inf{F(t) :Fe’¥ F2f}. The
domain, De+, of 6 contains at least ':é'f and the bounded-
above members of C(I,R). For any pair Kl’KZ in X with

f < 9 (f) seK (f) on K, for £ in C(I,R); for £

K Ko ) 1
in D+, each of these is dominated by ot (£) on K,. Also,
if £ s g,f,geC(I,R), then eK(f) < eK(g) for all K in X and
e+(f) < _e+(g) if geD o+ . Thus each 91': and 61 are order-
preserving. Moreover, BE(f) and e'*.(f), when defined, are,

respectively, ¥ -concave and F-concave. For if, for some

K
KeX and some feC(I,R), there are points tl,t',t2 in K such

that t, < t' < t, and for which

1 2

[ (D) 1(t") < [Hep () :t;,t,)] (1),
then any member F of 4 which satisfies
g (D)1 (£*) S F(£Y) < [F(op(£) st ,t)1(t")

and which dominates f on K is not below e;(f) at either tl
or t,, whence, by Theorem 2.1, F dominates 9(e;(f) 7t1’t2)

on [tl,tz], a contradiction. This latest result and
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Theorem 3.2 and its corollary yield the following lemma.
LEMMA 3.5. The function £ in C(I,R) is super-%

|suger—$k, where KeX], if and only if e+(f) = f, [e;(f) = f|K].

According to Lemma 3.5, 6" ana 8;, K in X, are idempo-
. + + + + o+ + +
tent; that is, 6 c9 = ¢ and og° O = 6. Moreover, OK(f),

being the pointwise infimum of continuous functions, is
ﬁbper semicontinuous, and, by Theorem 3.1 and the corollary
to Theorem 3.2, it is lower semicontinuous, whence the fol-
lowing corollary is immediate.

COROLIARY. If KeK and £eC(I,R), then 6% (f) is contin-
lous.

It is clear from Theorem 3.2 and the definition of oF

that gg_%-concave function that dominates f can be below

e+(f) at any point. Thus we have:

THEOREM 3.6. Suppose 3<C(I,R) is disconjugate on I.

If £ in C(I,R) is dominated by some F-line, 6" (£) is the

least J-concave function dominating £. For g in C(I,R),

and KeK, %;(g)_lg the least 3K-concave function dominating

g on K.

Now if K = [tl,tZ], g€C(I,R), and €>0, then for all
sufficiently large n the function F = gitl,g(tl)+e,t2,n)
dominates g on K, else g is not bounded on K. Thus,

g (9)] (t;) = g(t;). Similarly, [6f(g)](t,) = g(t,).
Therefore q;(g) belongs to the set of members of C(K,R)
which agree with g at the endpoints of K and which dominate

glg. We label this set C;(g).
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COROLLARY. For K in X and g in C(I,R),. ez(g) is the
least Sk-concave member of C;(g).

In Theorem 3.7 we give a different characterization of
e;. For K in K 1et'T% be the set of finite subsets of K
which contain the endpoints'of K. For T = {tl,---,tn} in
T% with tl < v < tn and £:I>R, let ﬁ(f;T) represent
e, :ieR}, {E(t;):ieR)). For £ in C(I,R) and for t in K,

(65 (5)] () = sup {[F(£:T) I (£) sme T ).

Then, for any F in ¥ such that F 2 £ on K and for any T in
+ +
T., F2 4(£;T) on K, whence eK(f)z yK(f) > fIK. Also
+
[pg ()] (t))
terior to K = [tl,t2]

f(ti), i =1,2. Next we show that for t in-

(3.3) [q,;(f)] (t):sup{['ﬂ—(f;ti,té)] (t) :ti<t<té,ti,t2'€K}-

since'{tl,t]'_,tz',t2 } e 7%, [&;(f)](t) is as least as great
as the right-hand entity in (3.3). Now if a sequence (Tn)
in 7% such that [&;(f)](t)-l/n < [ﬁ(f;Tn)](t) is such that

no Tn contains t, then for each n there is an integer in

o+
such that tin< t < tin+l and [&K(f)](t) equals
lim ﬁﬂf;ti 'ty 41)1(t). Otherwise, every sequence (T ) in
n n
R

7; for which x = [%K(f)](t) equals lim ([31f;Tn)](t)) is

such that t belongs to each Tn for sufficiently large n.

Then, . with ti chosen less than t in K and with

Fn = ?Rti,f(ti),t,x-l/n), Fn does not intersect f in (t,t2]

for sufficiently large n, whence, for a choice of té in
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(t,t2], the increasing sequence (Fn(té)) is bounded above by
f(té), Then, either (Fn(té)) has limit f(té), so that x =
[g(f;ti,té)](t), contradicting the assumption concerning se-
quences (Tn)' or (Fn(té)%—iu < f(té), whence x "[ka;ti,té)]
(t), contradicting the definition of x.

As a result of (3.3) there are sequences (ti n) in
[tl,t) and (té,n) in (t,t2] with respective limits Ll in

[t;.t] and L, in &,tZ] such that
(3.4) (6] (8) = Lim([¥(£:] .5 DI ()

and (3.4) equals [lim(ﬂ(f;ti n'té n)ﬂ(t), whenever this
indicated limit exists. If Ll = t or L2 = t then
[wg(f)](t) = f(t) and f supports an ﬁkline at t. If, for

. ] t < <
some pair of sequences (tl,n)'(tz,n)' Ll t L2, then

Lim (F(£:¢] ,t) )) = WEL),L,),

and w;(f) supports F = H(£;L,,L,) at t. For, if there is

a tO in K at which\kg(f) dominates F, then, by (3.3), there
is a t' in K, different from t, Ll' L2, and to, at which £
dominates F, which implies that one of the functions
S(f;Ll,t'),g(f;t',Lz) is strictly above F at t, contradicting
the equality F(t) = [&;(f)](t)° Also, &;(f), being the
supremum of a collection of continuous functions, is lower
semicontinuous. Then, by the Corollary to Theorem 3.2,

ﬁ;(f) is Bk—concave and, by Theorem 3.6, ﬂ;(f) = eﬁ(f).

THEOREM 3.7. If ‘}is disconjugate on I, KeX, and
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£ec(1,R), then [64(£)1(t) = sup{[$(£:m)] () :Teh) for
t in K.

4. Locally disconjugate linear subspaces of C(I,R).

Suppose that 3 is a locally disconjugate linear subspace of
C(I,R), that X is the set of compact subintervals of I, that
&('}) is the set of maximal intervals of disconjugacy of /g_'
and that X(§) is the set of compact subintervals of members
of &(¥). By Theorem 2.3, for a fixed pair t.t, in some

I, belonging to ¥(3), the map
2 — o — o L]
¢:R“>C(I,R) 53 9(x;,%,) = He x ,ty,%,) = x; -F+x, G,

where F = ’av(tl,l,tz,o) and G = ﬁ-(tl,o,tz,l) , is a topologi-
cal isomorphism onto 3. When the determinant

1 = - 1 . ] ° 1 : .
D(ti,tz) = F(ti) G(tz) F(t2) G(tl) is not zero, ¢(xl,x2) is

the unique F-line passing through (t',xi) and (t',xé) if

G(té) -G(ti) %
(xl) -F(t3) F(t]) xJ

D(ti,té)

and only if

The local disconjugacy of g'implies that F and G have
no zeroes in common, whence D(ti,té) = 0 if and only if
the matrix

[} ]
( F(tl) G(tl))

F(té) G(té)
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has rank one, and this occurs if and only if there are points
(xi,xé) and (xi,xg) in R? such that two 4-lines pass through
(t},x]) and (tj,x;) and no ¥-lines pass through (tj,xj) and
(té,xg . Thus, D(t‘,té) = 0 if and only if ti"té. It fol-
lows, then, that for every basis {F,G} of 4 (as a vector
space) and for every point to in I, D(ti,té) is of constant
sign for all ti,té with ti < té in some neighborhood of to.
Also, t!~t! if and only if the one-dimensional sub-

1 -2
space of ‘} consisting of those ¥-lines which pass through
the point (ti,o) is precisely the one-dimensional subspace
of '} consisting of the ¥-linec passing through (té,o).
Therefore, when ¥ is a linear space the relation ~ satisfies
the following transitivity condition: if any two members
of a triple of distinct points in I are ¥-related to the
third, then these two are Smrelated to each other. Thus,
the set of F-relatives of ti is the set of zeroes of any
nonzero member of ¥ which passes through (ti,O) and each
of the zeroes of such a function is %-related to all the
others. If any such set had an accumulation point to in

I, every neighborhood of to would contain ﬂhrelated pairs,

a contradiction. Therefore, the set of zeroes of any

nonzero member of 4 has no accumulation point in I.

It follows, then, that if 4 is not disconjugate on
all of I the maps p and A of Theorem 2.7 yield the least
right-%-relatives and the greatest left-¥-relatives, re-

spectively, of their arguments, that F:[a,tp]—y[tk, b]
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and ;:[tA,b]-+[a,tp] are inverse homeomorphisms, and that
every té in I is interior to a bounded maximal interval of
disconjugacy whose endpoints are consecutive zeroes of some
nonzero #¥-line. Further, the iterates of p and EY applied
to any point in I generate the #-relatives (now called the

%-conjugates) of that point.

Suppose ti and té are zeroes of the nonzero 4-1line F

and that {F,G} is a basis for ¥. G is not zero at either
ti or té. If G has no zero in (ti,té), then G is strictly
positive or strictly negative on [ti,té], whence some mul-

tiple of F intersects G at least twice in (ti,;kti)), a

contradiction. Thus, between any pair of zeroes of one

member of a basis for Gk there is a zero of the other mem-
ber of the basis.

Now suppose that ¥ is disconjugate on I, = (ao’bo)'
According to Theorem 3.4 some member, F, of ﬁ- is strictly
positive on Io and, by linearity, F can be chosen to take
on the value 1 at any: fixed tl in Io' For such a tl and F,
choose t, in (t;,b ) and define G to be ﬁ(tl,o,tz,l).

Then {F,G} is a basis for 3, and the constancy of sign of
D(ti,té) for a, < ti < té
= 1 imply that the continuous function Tl

< bo and the fact that D(tl'tz)

m

(G/F):Io—%R
is strictly increasing. Let I' represent the range of Ti'
Note that if Io is bounded and maximal then F(ao) = 0 =
F(bo) and G(ao) < 0 < G(bo), whence I' is R. For conveni-

ence, let t be the map (Tl)_l. That is, t is the strictly
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increasing homeomorphism of I' onto-Io such that t(so) = to
if and only if so-F(to) = G(to). Also, let £ be the family
of straight lines, a-s'+g, for s' in I'. X is a linear sub-
space of C(I',R) which is disconjugate on 1'.

Consider the map T:IOxR-*I'*R defined by
Tlt_,x.) = (Tt ) Ty(ty %)) = (G(E)/Flt ) % /F(E)).

T is a homeomorphism of Ia‘R onto I'*xR which takes vertical
lines into vertical lines. Such a map induces a homeomor-

phism, T*, of C(IO,R) onto C(I',R) in the following way:
TH(£) at s_ in I' is T, ((T,) "Y(s ), £((Ty) "L(s)))
o 2 1 o'’ 1l o) *

In our case, lT*(f)](so) = f(t(so))/F(t(so)), denoted by
T*(f) = (f/F)o(G/F)_l, and T* is linear and positive. That
is, if f is a nonnegative function on Io’ then T*(£f) is a
nonnegative function on I'. Moreover, [T*(a-F+8-G)] (s) =
o+ B-s. More precisely, the image under T* of the 8-line
determined by the points (tl,xl) and (tz,xz) in IOKR is the
£~-line (straight line) through the points T(tl,xl) and
T(t2'x2)' This and the positivity of T* yield the result
that £ is 3-concave, [#-convex], on I, if and only if

T*(f) is concave, [convex ], in the usual sense. Note also
that Sq is a zero of T*(f) if and only if t(so) is§§_zero_
of £. Let ¥ and ¥ denote the sets of functions on I'
which are concave and convex, respectively.

THEOREM 4.1. Suppose I, is an interval of disconjugacy
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of the locally disconijugate linear subspace ¥ of C(I,R).

Then there is an interval I' in R and a homeomorphism T of

onR onto I'xR which takes vertical lines to vertical lines

and which induces a positive, linear homeomorphism T* of

C(I_.,R) onto C(I',R) which maps ﬂi onto'x,‘§; onto ¥, and
( o )
}; onto ¥ . Moreover, if I_ is bounded and maximal then
o sl FRASESS 5

I' equals R.

In particular, if a linear subspace of C(I,R) is dis-

conjugate on I then the graphs of its members in IxR are the
images of the nonvertical straight line segments in some
strip I'xR under a homeomorphism that preserves vertical
lines.

Theorem 4.1 yields a local integral representation for
3=concave functions. First note that, for a fixed choice
of I, F, and G, (T*)_l(z) = F+(20(G/F)) for any z in C(I',R).
It is well known (see Natanson [10;p.230]) that z:I'-»R is
concave in the usual sense if and only if it is expressible
as an indefinite integral of a nonincreasing function
$:I'->R which is bounded on compacta in I'. Then f£:I-»R is
Jconcave on I, ‘f and only if T*(f) has the form

s

(T%(9)] (s) = [P*(£)1(s) + S ¢ for all s in T',

S
o)

for some real-valued nonincreasing function ¢. Applying
(’I."")"l to the above expression we have

£(t) S(G/F) (t)

£(t) = F(t)- FlET ") (6/m) (t,) ’
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for all t in Io" Note that ¢0(G/F) is real-valued and non-

increasing on IO.

THEOREM 4.2. Suppose ¥ is a linear subspace of C(I,R)

which is disconjugate on Io. Then f is F-concave on Io if

and only if for every basis {F,G} for % with F > 0 and (G/F)

strictly increasing on I, and for ty fixed in I, there is

a nonincreasing real-valued function w:IO—DR such that

£(t)) t
£(t) = F(t)- Eq;f%'*'gt Y+d(G/F)
o
o

for t in Io°

Now, assuming the hypotheses of Theorem 4.2 and that F
and G are as described there, we construct a linear operator
in C(IO,R) whose solution set is precisely ﬁ-(that is, 3& ).
Any linear operator 8:8-C(I',R) in C(I',R) can be "pulleg
back" to a linear operator 9*:(T*)-57—+C(I°,R) in C(IO,R) by

loe°T*o Then 6*(f) = 0,[ 20,5s0], if

defining 6* as (T*)
and only if 6(T*(f)) = 0,[20,5s0], so that
ker 6% = (T*)-l(ker 6). We consider the second order linear

differential operator

DZ:CZ(I',R)-9C(I',R) g3 D2x = x"
because the solution set of D2x = 0, namely X, is T*(¥}).
The operator (D2)* = (T*)_loDon* is called a generalized

second-order linear differential operator in C(IO,R) de-

termined by 3. 4 is the set of solutions of [(DZ)*](u)‘= 0.
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The operator D2 restricted to the set of all C2 func-
tions which have fixed values at two fixed points in I' has
an inverse; that is, for y continuous on I', Yy and Yo arbi-
trary reals, and Sy and S, in I', there is a unique member

z of CZ(I',R) such that
2 = o
D" (z) = y and z(si) =y 1= 1,2,

which we denote by (Dz)-l(y;sl,yl,sz,yz). Explicitly,

S

z(s) = [R(s).y;,85,¥))] (s) + S ? K(s,0)-y(o) do
S

1

where the Green's function K is given by

(s-s,) - (o-s,)
2 1
K(s,0) = ,
5275,

IN

s,

(s-sl)-(v-sz)

, S S 0O,
sz-sl

Now [(D®)*](£) = g and £(t,) = g,

i i=1,2, if and only if

D?(T*(£)) = T*(g) and [T*(H)] (s;) = y,, i = 1,2, with s; =
(G/F)(ti) and y; = gi/F(ti)’ i =1,2, This determines
T*%(f), hence f, uniquely, and we write £ = ((DZ)*)_1
(g;tl,gl,tz,gz). An explicit representation of £ is given
below.

THEOREM 4.3. Suppose Io is an interval of disconiju-

gacy of the linear subspace & of C(I,R). A basis {F,G} for

% with F > 0 and (G/F) strictly increasing on I determines

a generalized second-order differential operator (D2)* in
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C(IO,R) whose kernel is 3 and for which the two-point boun-

dary-value problem

2 _ _ . .
(D )*(f) - 9', f(tl) - gl: 1= 112: t1< t2 in IO' gEC(Io,R),
is uniquely solvable, with solution given by

£(t) = [FHty.9.t5,95) (£)

+

F(t) . ). -1 .
- 10l-g((G/F) ~(g)) -do.
(6/F) (t)) F((G/F) (o)) (F(t) ’

(G/F) (t5)

If (G/F) is absolutely continuous the integral above can

be expressed in terms of a Green's function

kx(e,1) = (5 k[FE S om0

£(t) = [F(t;,9;.t5.95)1(¢) +§;:2 K(t,r)°g(r)-dr.
1

In view of the result of Lemma 4.4 below, the following
corollary includes Bonsall's conclusion [3;Thm.6] that, with
L(u) = u"+pl°u'+p2-u, Py and p, being continuous, 1if
fECZ(Io,R) and L(f) <0, [L(f) < 0], then £ is concave,
[sprictly concave], with respect to the set of solutions of
L(u) = 0 on the interval of disconjugacy I, The corollary
itself follows from the concavity-preserving property of T*

and from the integral representation of concave functions.

COROLLARY. Suppose f belongs to the domain of (D2)*°

Then f is }-concave on I, if and only,1§>(D2)*(f) s O.
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Moreover, ;ﬁ,(Dz)*(f) < 0, then f is strictly “J-concave on

I -
o

The following lemma is a result of differentiation.

LEMMA 4.4. Suppose that p is continuous on I, r and g

are continuously differentiable on I with r positive, and

that the differential equation L(u) = 0 is disconjugate on

I , where
o! ———

L:CZ(I,R)—%C(I,R) :: L(u) = (r-u'+qg-u) '=(q-u'+p-u).

If F solves L(u) = 0 and is never zero on Io' if G is the
solution to L(u) = 0 given by
t
ste) = Fee)- \ T
¢ Tl (F(D)
o

and if T*(£) = (£/F)o(G/F) "L, then (D?)*(f) = r-F .L(f) for

f in c?(1_.R).
o

The local nature of the results of Theorems 4.1, 4.2,
and 4.3 can be summarized by saying that a locally disconju-
gate linear subspace of C(I,R) gives IXR the structure of a
C° 2-manifold. (see [8;p.21). For given such a subspace %
and a basis {F,G} of 3}, every t, in I belongs to at least
one of the disjoint intervals which make up the sets
I\F_l(O) and 1\9’1(0), so that every (to,xo) in IxR belongs
to at least one strip, IOXR, which is in a one-to-one
correspondence with an open set, I'xR, in R2 via a map

having one of the forms
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T'(t,x) = (G(t)/F(t),x/F(t)),T"(t,x) = (F(t)/G(t),x/G(t)).

Moreover, T'o(T")-l and ’I‘"o(T')-l are, when defined, inverse
homeomorphisms,‘since these have the forms

(s,y) = ( [(G/F) o (F/G) "11(s) , v+ ( [(a/F) °(F/G) ™Y (s)) and

(s,y) » ([E/G) o (a/F) " 1(s), ye ([(E/G) > (a/F) 11 (s)) respec-
tively.

Ashley [1] has applied a theorem of Choquet [4:p.237],
whiéh-ﬁe state below as Theorem 4.5, to concavity as defined
by the family,.Jk, of restrictions of solutions to (1l.1) to
a compact interval, K, of disconjugacy of (1.1), and asserts
the existence of certain integral representations for the
elements of the cone of nonnegative, continuous Jk—concave
functions. We extend his assertion to locally disconjugate
linear subspaces,f}, of C(I,R) and make the asserted repre-
sentations explicit. Lemmas 4.7 and 4.8 and Theorem 4.9
are versions of Ashley's results in our more general setting.
Lemma 4.10 is a generalization of a result sought by Ashley.

THEOREM 4.5. Every point in a convex, compact subset

X of a Hausdorff locally convex topological vector space is

the center of gravity of a probability measure (nonnegative

Radon measure of unit mass) on the closure of the set of ex-
treme points of X.

Let V be a real vector space. The segment ;; with
endpoint x and y in V is the set {(1-A)-x+i-y:ie[0,1]}.

The set'§§\{x,y} is called the interior of §§e The subset

R f— 3 300D e
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S of V is convex if and only if, for every pair x,y in S, S
contains the segment §§. The point x of the convex set S
is extreme, denoted by x € ex(S), if x is interior to no

segment in S. The subset S of V is a cone (convex cone) if

and only if S contains the zero element of V and is closed
under addition and nonnegative scalar multiplication.

Radon measures are continuous linear functionals on the

space of continuous real-valued functions with compact sup-
port in a locally compact space given the inductive limit

topology. As a general reference we offer Edwards [5;Chap.
4]. If V is a topological vector space, the point x is the

center of gravity of the measure M on X<V (sometimes said

"u represents x") if and only if F(Xx) =.]. F-du for every
continuous linear functional F on V. *

Let K = [tl'tzl be a fixed but arbitrary member of
X(¥) with t, a fixed point interior to K; let C(K) be the
set of nonnegative super-—'EfK functions in C(K,R); and let
B(K,to) be the set of elements f in C(K) such that f(to) =
1. Where the meaning is clear we use C and B to denote
C(X) and B(K,to), réspectively° Note that the constant

zero function belongs to C and that the identities
FEe] )+ Hait] eg) = Hirgst] e,
Frfit] ) = AR et tg),

for [ti,té]CK, which follow from the last sentence in
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Theorem 2.3, imply that C is closed under addition and non-
negative scalar multiplication, so that C is a convex cone.
Then the functions h;= (1-})-f+A.g for A€ [0,1], where f and
g are in B, belong to C and hx(to) = 1. Also, a nonzero
element, £, of C is positive at to by the second result of

Theorem 3.1, whence g = f/f(to) belongs to B. Thus we have:

LEMMA 4.6. The set B is a convex subset of the convex

cone C in C(K,R) such that for every f in C there is a

unique g in B for which f = f(to)'g.
The functions Fl = 3{to,l,t2,0), F2 = ﬁ(tl,o,to,l) in

B determine compact intervals'E%.for t in K by the rule:

B, = [Fo(t) P ()], tele, .t ];

B

[Fl(t) ,Fz(t)] ,te[to,tZ] .

If f € B and, for some t in K, f£(t) ;ﬁ}t, then t # t,
Suppose t € (to’tZ]' If f£(t) > Fz(t), then, since F' E
'S(f;to,t) crosses F, at t_, F'(tl) is negative. But, by
the first result of Theorem 3.1, F'(tl) > f(tl), whence
f(tl) is negative, a contradiction. A like contradiction
follows from the assumption that f(t) < Fl(t) and similar
considerations applied to the case te[tl,to) yield contra-
dictions. This proves the following lemma.

LEMMA 4.7. For f in B and t in K, f(t)e&c,

The following is Ashley's Lemma 2.].

LEMMA 4.8. If f£, fl’ and f2 are g'-concave functions
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on K such that f = fl+f2 on K', where K' is a compact sub-

interval of K, and £ is ¥-linear on K', then f; and £, are
4-linear on K'.

The functions F1 and F2 are extreme elements of B.
For if F, = A.-f+(l-))-g for f£,9 in B and X in (0,1), then,

1
by Lemma 4.8, £ and g are ﬁ-linear on K, and since f(t2) =
0 = g(tz), f=g9g=F,. Similarly, F, € ex(B) . Moreover,
since every ﬁk-linear element of B has the form A-F1+B-F2,
where A 2 0,B 2 0, and A+B = 1, Fl and F2 are the only
3k-lines in ex(B). Now for a choice of t in (tl:tzL let
F = 3({tl,t,t2},{0,[FlV.FZ](t),O}). F is continuous, non-
negative, and, by Lemma 3.3, gk-concave. Also F(to) = 1,
so that F ¢ B. Suppose t s t . IfF = A+f+(1l-2) °g for
some £ and g in B and X in (0,1), then, since F = Fl on
[t,t2] and, by Lemma 4.8 and the fact that f(tl) =0 =
g(tl), F=f=gon [tl,t]. This and a similar argument
for t > t imply that F € ex(B). Now if £ in B is not
3¥linear and is not zero at both tl and t2' then F' =
3(f;tl,t2) is such that 0 < F'(to) <1, Then, since £ -~ F'

is ﬁk-concave, the identity

£ = (1P (e))) Ty

+ F'(t ) —E
o o

Fi(t)

implies that £ #'ex(B). FPinally, suppose that £ in B is

zero at both tl and t2 but that f is not ¥-linear on both
[tl,to] and [to’t2]° For definiteness, suppose f(t') >
Fl(t ) for some t' in (to,tz). Let 10 = inf{A:X°F2 > f-Fl
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on K} and let T = sup{t":kon(t") = E£(¢)-F (£")}. A, exists
and is in (0,1l) and T exists and belongs to (to’tz)' Define

-1 .
fl to equal F, on [tl,T] and Ab °(f-Fl) on h,tzl. Now if

1 , [ ] ° 1 s -
tl € [tl,f) and t2 € (T,t2], Qkfl,tl,té) lies below fl F2

on (ti,r), since fl(té) < F2(té), and intersects fl once in
(T,t2] since (f-Fl) is é-concave, Therefore, fl belongs to

. -1
B. Define f. to be (l-Xo) (f-xo-fl). Now f—Ao fl equals

2
- ° ' ]
£ g F2 on [tl,r] and Fl on &,tzl, and, for t] in [tl,t],

1Y o . < ] . . .
f(tl) Ao Fz(ti) Fl(tl) by the definition of A . Then the

3=concavity of £, follows as did the 3=concavity of fl.

2

Thus, £, belongs to B and f is interior to the segment de-

2
termined by fl and f2' and we have:

THEOREM 4.9. Suppose } is a locally disconijugate linear

subspace of C(I,R), that K = [t;,t,]eK(}), and that t_ is

interior to K. The extreme elements of the set of continuous

nonnegative gk—concave functions whose value at to is 1 are

F E’?r<to,l,t2.0), F, = ¥t,,0,t,,1), and those functions of

o

1
he form

Fie 6,110, [F VF,]1(£),0})

for t in (tl’tz)'

Ashley [1; Lemma 3.2 ] claims that C is closed in RK,
the set of real-valued functions on K, for the topology of
pointwise convergence. This is incorrect since (Ln), with

Ln =X({0,1/n,1},{0,1,1}), is a sequence of nonnegative,(“

continuous g[O 1] ~concave functions whose pointwise limit,
L
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being discontinuous, is not in C. We now develop a setting

in which this result holds.

We will apply Choquet's theorem to the vector space V

generated by the cone C; that is, V = C-C. The problem 1is

to topologize V in such a way as to satisfy the hypotheses
of Theorem 4.5. Let RK be assigned the product topology
(topology of pointwise convergence), let QK be the collec-

K

tion of equivalence classes in R modulo the equivalence

relation =% defined by
f g if and only if £ = g on (tl’tz)'

assign to QK the quotient topology, and let P:RK-bQK be the
continuous map which takes the function f in RK to its =-
equivalence class, [f]. Then ([fa])—+[fo] in QK if and
only if (£, (t))—>f_(t) for all t in (t .t,). Q° is
Hausdorff and, as a topological vector space, locally con-
vex; P is a vector space homomorphism. Since a member of
QK contains at most one member of C(K,R), the map P re-
stricted to C(K,R) is 1l-to-1l. In particular, the sets

ex(B), B, C, and V can be considered as subsets of QK.

Assign to V the relativized-QK-tholoqy. Then V is a local-

ly convex, Hausdorff topological vector space. Moreover,

since the evaluation maps, e tE(tl,t defined by

tl 2)’
e, :08 3 Rize, ([£]) = £(t)
t e

. . . K . . )
are continuous linear functionals on Q , their restrictions
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being discontinuous, is not in C. We now develop a setting
in which this result holds.

We will apply Choquet's theorem to the vector space V

generated by the cone C; that is, V = C-C. The problem is

to topologize V in such a way as to satisfy the hypotheses
of Theorem 4.5. Let RK be assigned the product topology
(topology of pointwise convergence), let QK be the collec-
tion of equivalence classes in RK modulo the equivalence

relation <% defined by
f ~g if and only if £ = g on (tl'tZ)'

assign to QK the quotient topology, and let P:RK-*QK be the
continuous map which takes the function £ in RK to its =-
equivalence class, [f]. Then ([fa])-+[fo] in QK if and
only if (£, (t))—f_(t) for all t in (t .t,). Q" is
Hausdorff and, as a topological vector space, locally con-
vex; P is a vector space homomorphism. Since a member of
QK contains at most one member of C(K,R), the map P re-
stricted to C(K,R) is l-to-l. 1In particular, the sets

ex(B), B, C, and V can be considered as subsets of QK.

Assign to V the relativized-QK-togology. Then V is a local-

ly convex, Hausdorff topological vector space. Moreover,

since the evaluation maps, t€(tl,t2), defined by

e
e :QK—)R::e ([£]) = £(t)
t t

. . . K . . .
are continuous linear functionals on Q , their restrictions
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to V are continuous linear functionals on V.

LEMMA 4.10. C = C(K) is closed in @, B = B(K,t ) is
closed in QK, and B is compact in V.

Suppose (fa) is a sequence of nonnegative, continuous,
@k—concave functions with limit [g] in QK. Clearly, g2 0

1 1 2
= 6> 0, let N. be the neighborhood of [g] consisting of

on (tl,tz)., If £, < t! <t <t! < ty and ['}(g;t]'_,té)](t)-g(t)

classes [h] determined by functions h which are within e of

g at t!, t, and té,

8/(1+M) and where M is the supremum of ﬁ%t',l,té,l) on

for a choice of ¢ in (O,eo), where €y =

[t;.t}]. Then N_ contains no classes determined by ﬁk—
concave functions, a contradiction. Therefore, g is 4-
concave on (tl'tz) and, by the remark following the corol-
lary to Theorem 3.2, there is a unique continuous ﬁ%-
concave function g' in [g). Moreover, g' 2 0 on K, so that
(f;)—+g' implies C is closed in o®. Since B = B(K,to) =
C(K)ne;l({l}), the facts that C is closed and e, is con-

o o
tinuous imply that B is closed in QK. By Lemma 4.7, B, as

a subset of RK, is contained in the Cartesian product S =
X{Bt:tEK} which, by the Tychonoff theorem, is compact in
RK. Then B, as a subset of QK, is a closed subset of the
compact set P(S) in QK. Therefore B is compact in QK, hence
in V.

Ashley's Theorem 3.3 states that ex(B) is RX-closed,

which is not true. But ex(B) is QK—closed, as is shown in

the following lemma.
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LEMMA 4.11. For all ty interior to K, the set of ex-

treme elements of the set of nonnegative, continuous,‘}K-

concave functions whose value at tO is 1 is homeomorphic

to K.

By Lemma 4.9, the map &:K-»V defined by

E(t)) = Fy; glty) = Fyo

() = [FyVF,1(t) F({t,t,t,},{0,1,0}), telt;,t,),

is 1l-to-1 and onto ex(B(K,to))° If (t(n)) in K has limit t
interior to K, the continuity of Fl\/F2 and ¥ insure that
E(t(n)) approaches &(t) uniformly on K, hence pointwise on
'the interior of K. If (t(n’) approaches an endpoint of K,
say (t(n))—bti, i =1o0r 2, then (E(t(n)))—>Fi pointwise on
K\{ti}° Therefore & is continuous and, since K is compact
and ex(B) Hausdorff, a homeomorphism.

According to Theorem 4.5 applied to V with the rela-
tive QK topology, every point f in the compact, convex set
B determines a nonnegative Radon measure e of unit mass
on ex(B) such that for every continuous linear functional L

on V

L(f) =[ L-dug.
ex(B)

Now, since K and ex(B) are homeomorphic and since the non-
negative Radon measures of mass 1 on K are the Stieltijes

integrals generated by nondecreasing real-valued functions



v on K such that v(tz)-v(t = 1 (see Edwards [5:Sec.4.5~-

1
4.7]), every £ in B determines a nondecreasing function

vf:K-+[0,l] such that vf(tl) = 0 and vf(tz) = 1, for which

t
L(£) =§ (Lo g) -dvg =§ 2 L(E(r))°dvf(t)
K ty

for all continuous linear L:V-R. Then choosing L = e,

for t interior to K we have

£(t) =§t2[a(r)1 (£) *ave(r) .
t1

Since Ve is nondecreasing it has left and right one-sided
limits throughout K, whence Ve is uniquely determined by
requiring it to be left-continuous at its points of discon-
finuity° Finally, a nonnegative Hk-concave function whose
value at to is 1 determines a unique member f£' of B which
in turn determines a function Veeo
THEOREM 4.12. Suppose that ¥ is a locally disconju-

gate linear subspace of C(I,R), that K = [tl,tz]er}), and

that to is interior to K. Then for every nonzero, nonnega-

tive }K—concave function f there is a unique left-continu-

ous nondecreasing function vf:K—%R such that for all t

interior to K

.
£(t) = f(to)S 2 H(t, 1) cavg(s)
51
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where
H(tlT) = Fl(t) ‘ Te[tllt) ‘ b
= (F () /Fy () "Fy(t), refe,t ], b for t e (£,t ]
= FZ(t)' T e(to,tz], )
and
H(t, 1) = Fl(t), re[tl,to) *
= (Fy(t1)/F () *Fy(£), 7 e [t ,t],pfor £ € (t,t,),
= Fz(t), T e(t,tz], /
and
F) o= ¥t ,1,t,,0), F, = Ht,,0,t,1).
5. Unilateral Extremizing Properties of }-concave
functions. For K a compact interval in I, define the fol-

lowing cl
functions
rivatives
functions
the class
endpoints

dominate

asses of functions: PK the class of real-valued
that are absolutely continuous on K and whose de-
are of integrable square on K; PK,O the class of )
in EK which vanish at the endpoints of K; FK(f)
of functions in FK which agree with f:I—R at the
of K;F+(f) the class of functions in PK(f) which

f on K.

Suppose that r, q, and p belong to C(I,R) and that r

is positive on I. Utilizing a well-known equivalence between

©
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the disconjugacy of the differential equation
(5.1) L(u) = (reu'+q-u)'-(q-u'+p.u) =0

on the open interval I and the positive definiteness of the

quadratic functional , where

JK
) 2 2

(5.2) JK(u) = (reu'“+2-q-u-u'+p-u”), K = [tl,t2]cI,

1

on PK 0 for all compact subintervals K of I, Reid [12] has
proved the following theorem. Our statement of the theorem
is based on the fact that the differential equation (5.1) is
disconjugate on I if and only if the family,& of solutions
to (5.1) on I is disconjugate on I in the sense introduced

in Section 2.

THEOREM 5.1. f (5.1) is disconjugate on I, then

f:I->R igzg-concave if and only if for each compact subin-

terval K of I, f belongs to Ty and JK(g) 2 Jk(f) for all g
in re(£).

Loosely speaking, the equivalence mentioned above can
be stated: L(u) = 0 is the Euler equation associated with
the functional J. Or it can be said that the set of solu-
tions of (5.1) on I constitute the set of extremals of the
functional J. Now L(u) = 0 may be the Euler equation for
functionals other than J. For example, y" = 0 gives the ex-
tremals of both J and H where Jk(u) =.[%u'2 and HK(u) =
j;(l+u'2)%. So it is natural to ask: does the unilateral

extremal characterization of f-concave functions given in
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Theorem 5.1 for the functional J hold for all functionals
whose extremals are given by (5.1)? We describe a class of
functionals, which include those of the form (5.2), for
which the result of Theorem 5.1 holds. Moreover, for these
functionals a certain class of unilateral minimization
problems is solvable.

For a subset & of C(I,R), a compact interval K in I,
and a real-valued function f on I, let DK be the class of
restrictions to K of members of 3; oaK(f) the class of
functions in ﬁK which agree with f at the endpoints of K;
and ﬂ;(f) the class of functions in ﬁK(f) which dominate

£| We say that H is a fJ-functional onW, K being the set

K.
of compact subintervals of I, if H maps each K in ¥ into a
real-valued map, Hg, cn oUK. The &-functional H on X is
sectionally additive if and only if, for every pair K',6K"

in X whose union is in ¥,
HKIUKM = HK|+H-KH"I'1K|nKn:

and, for functions f£' and f£" in fJ which agree at some ts

in I, contains the functions fl and f2, where fl = £' on
— n — 1] ! - 1

(a,to], fl = f" on (to,b) and £, = f" on (a,to], f2 f

on (to,b) . H is called lower semicontinuous if each Hy for

K in X is lower semicontinuous; that is, given K in X, the

uniform convergence of the sequence (fn) in o@K to the limit

fo in 5K implies that HK(fo) is not greater than lim inf

(B (£)) -



54

Suppose H is a fJ-functional on X.. Given points (t1.%;)
and (t2’x2) in IxR, with t, < t,, the problem of minimizing
H on the class of functions g in & which satisfy g(t.)

[tl’tzl i
= X, i=1,2, is called a fixed endpoint variational prob-

lem for H. A function f € C(I,R) determines a class of
fixed endpoint problems -- those of minimizing H‘K on 'D'K(f)

for K in X -- called, collectively, the two-point varia-

tional problem for H determined by £. The function g in

— — —————————————————— p—

lem for H determined by f if g |K minimizes HK uniquely on
Py (f) for all K in X. The function f is said to be an ex-
tremal of the &-functional H on K if and only if fed and
every point in I belongs to an open interval Io such that,
for every member K of the set, Ko’ of compact subintervals
of I, I-IK(f |K) is the uniquely achieved minimum value of
H on 5K(f) . Thus, the extremals of H solve the two-point
variation problems that they determine for H locally. The
problem of minimizing H. on ﬁ;(f) for K in X, where

f € C(I,R), is termed the upper two-point variational prob-

lem for H determined by £. The function £ in & is an

upper extremal of H if and only if every ty in T is interior
to ~ome I_ such that, for K compact in I_, f[K is the
unique Hy-minimizing element of 5;(f) .

We assume that the maximal intervals of disconjugacy of

a locally disconjugate family of extremals are precisely

those which are maximal relative to the property of having
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unigue solutions to two-point variational problems. If H
has extremals and if the family of extremals,%’, of H is
locally disconjugate, then, for tl and t, sufficiently near
to each other, the minimum value of H{tl,tzlon the class

of functions in & having (tl,xl) and (t,,x,) in their

[ty 5]
graphs is realized at (and only at) '3‘(t1,x1,t2,x2) T2stricted
to [tl,tzl. Moreover, if H is also sectionally additive,
then & contains P (), the set of piecewise-#-linear func-
tions, and, by Theorem 2.10, & is locally dense in C(I,R);
that is, every to in I belongs to some Io such that BII
is dense in C(IO,R) . °
If 3<C(I,R) is locally disconjugate, let ¥(¥) repre-
sent the set of maximal intervals of disconjugacy and
K(¥) represent the set of compact subintervals of members
of #(¥). For convenience, we will write HK(f) for H'K(f,K) .
THEOREM 5.2. Suppose, for #cC(I,R), that H is a

lower semicontinuous, sectionally additive &-functional on

K. which has a locally disconijugate family ¥ of extremals

and that for all K in K(%) the class & contains the

functions which are 3-concave on K. Then, for £ in C(I,R),

the upper two-point variational problem for H determined by

f is solvable in this local sense: for K in X(3#), e;(f) is
the unigque I—IK-minimizing member gjﬁ;(f) . In particular,
f is J-concave if and only if it is an upper extremal of H.

If £ in ¥ is not '3'-concave, there is a K = [tl,t2]€ X(3$)

for which '3’(f;tl,t2) IKvﬁﬂ;(f) , whence H.K(f) is strictly greater
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than the minimum of on D+(f) , So that if for evervy KeX'$)
K — p—

the minimum of H, gr_lﬂiz(f) is H (f), then f is Y-concave.

Moreover, if KecK'e Ioea('&) , sectional additivity impliés that
He (f) > H,(£f'), where £' = '3»(f;t1,t2) on [t;,t,] with

f' = £ elsewhere, since H‘K' (£) -HK.(f') = HK(f) -H.K(f') .

This yields the stronger result: if f provides HK with its
minimum %ﬁ;(f) , then f is %-concave on K.

If K € X(3) and f €¢I, then, from the result of
Theorem 2.10 and the compactness of K, there is a sequence
(T_) in 7;
its uniform limit on K. Moreover, no term of the sequence

such that the sequence (3~(f;Tn)|K) has 9;:(f) as

(I-IK(’3-(f;Tn))) is greater than I-IK(f) . Then, since H, is

lower semicontinuous,
B (0p(£)) S lim inf (H ($(£:7))) S H ().

. . +

Therefore, for K in X(%) and f in &J, He (£) 2 He(8,(£)).

Now suppose that K = [tl,t2]€ K¥) and that f and g
are distinct '3‘K-concave elements of C(K,R) with
g € CI':(f) and g > £ on (tl'tz) . Note that if the '3-line
F is supported by f at to in (tl’tz) , the function gAF
(that is, g/\(FIK)) belongs to C;('(f)n'?r"', which is a subset

+ ,
of bK(f) , and HK(g/\F) < H.K(g) . Let.F be an assignment of
¥-lines to the points of (tl’tz) such that, for t in (tl'tz) ’

(t)

f supports F at t. Then, for each T = {tl't(l)"”'t(n)'

té },n2 1, in T, the function

K

n (t,:y)
o = (A 7
i=
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belongs to C;(f)ﬂa'; and H.K(g,_gF)) < H.K(g) . Also, with Nr(1t°) =
'{t:F(to) (t) - £(t) < n'":L }, for £, in (tl'tz) , and N, =
Ht:g(t) - £(t) <n '}, the collection {(N\%0) tt e (£, t) u(N_}

is an open cover of K for each n. For each n, choose a fi-

nite set, {t i= l,"",pn }, in (tl,tz) such that

n,i’°

(N ,N(tnll) ,"'°,N(tn’pn)} covers K and define T_ in 7. to
n''n n n K

consist of tl,t2 and all tj,i' j=1,""",n; i = l,'“,pj.

Then the sequence (g,I(,F)) has £ as its uniform limit and the
n
sequence (HK(g,I(,F))) . each term of which is less than HK(g) ,
n
is nonincreasing. Then the lower semicontinuity of HK
. . + i
yields: H.(f) < Hy(g). Thus, if feCp(£) ¥, then H, (f)

is the uniquely attained minimum value of H, on C;(f)n?;,

For £ in C(I,R) and KeK(3), suppose gED;(f) . If
0x(9) # 6 (f), then Hi(g) 2 HY(6x(g)) > H (85 (£)). Other-
wise, a;(g) = e;;(f) and H(q) 2 HK(e;z(f)), Therefore the
infimum of Hy, on ﬁ;(f) is attained at ez(f) . Then, if
HK(g) = H.K(e;:(f)) , g is '3'K—concave, that is, g = Gz(g) , SO
that the minimum of H, on ﬁz(f) is assumed uniquely. This
completes the proof of the theorem.

That Theorem 5.1 is an instance of Theorem 5.2 follows
in all particulars except lower semicontinu-i.ty upon defining
& to be {£eC(I,R) :Y KeX £| €T, ). For the lower semicontinu-

ity of the functional (5.2) we cite Graves [6;p.1641].
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