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Abstract: 

One of the main causes of water quality impairment in the United States is human 
induced Non-Point Source (NPS) pollution through intensive agriculture. The Fort Cobb 
Reservoir (FCR) watershed located in southwestern Oklahoma, United States is a rural 
agricultural catchment with known issues of NPS pollution including suspended solids, 
siltation, nutrients, and pesticides. The FCR watershed with an area of 813 km2 includes 
one major lake fed by four tributaries. Despite efforts and research to improve water 
quality in the FCR watershed through the implementation of varieties of Best 
Management Practices (BMPs) for decades, there are still problems of sediment and 
phosphorous loads in this catchment, which demonstrates the need for research. Since the 
cost of implementing some BMPs can be expensive, the cost effective selection and 
location of BMPs can aid in increasing both the efficiency of public funds and the total 
income of farmers. The major goal of this study was to identify optimal selection and 
location of livestock-crop-BMPs including crop types, production methods, and 
agricultural management practices that could further reduce sediment and phosphorous 
loss from the agricultural fields in Five-Mile Creek (FMC) sub-watershed of FCR 
watershed at the least-cost to producers and the public in both the dry and irrigated areas 
with consideration of existing BMPs. For this, a hydrological model of the study area was 
developed using the Soil and Water Assessment Tool (SWAT). The model was calibrated 
and validated satisfactorily for streamflow, crop yield, sediment, and phosphorous. The 
verified model was used to simulate 22 crop-BMP combinations over the 1989–2016 
period. A Linear Programming (LP) model was used to determine the crop-BMP choice 
that would maximize income and minimize public cost while abating sediment and 
phosphorous under two different scenarios: market solution (maximize revenue with no 
constraints on sediment and phosphorous production) and tax solution (discourage 
sediment and phosphorous production through incentive programs).The model was 
capable of providing precise information for stakeholders to prioritize ecologically sound 
and economically feasible BMPs that are capable of mitigating human induced impacts at 
the watershed scale based on soil texture, land slope and dryland and irrigated areas. 
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CHAPTER I 
 

 

INTRODUCTION, PROBLEMS AND OBJECTIVES 

Introduction  

Soil erosion is one of the serious environmental issues which threatens the agricultural 

sustainability and productive capacity. Continuous excessive soil erosion causes thinning of soils, 

removes plant nutrients, changes soil properties, and jeopardizes the sustainability of high levels 

of crop production. Besides the impact on soil productivity, soil erosion and consequently 

sediment and nutrient loads have a destructive impact on environmental resources outside the 

farm fields and are the main sources of pollutants to stream networks and reservoirs worldwide 

(FAO, 2013). Sediment from soil erosion can cause water body impairment, reduce ecosystem 

health, threaten drinking water supply, reduce reservoir capacity, increase the cost of drinking 

water treatment, and reduce the lifespan of reservoirs (Palmieri et al., 2001, Simon and Klimetz, 

2008). Sediment may also carry excess nutrients, such as nitrogen and phosphorus (Miller et al., 

2014), heavy metals, hydrocarbons, and organics that could threaten human health (Lyman et al., 

1987). Although erosion is a natural process, it can be accelerated by human induced activities 

such as farming and urbanization. According to the United States Environmental Protection 

Agency (USEPA) (USEPA, 2016), most of the water bodies in the US are impaired by Non-Point 

Source (NPS) pollution and sediment ranks fifth among all these leading causes of water quality 

impairments. The federal Clean Water Act (CWA) in the US, adopted in 1972, establishes the 

basic structure for regulating and governing pollutants discharging 
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into the water bodies of the US and regulating quality standards for surface water. It requires that all 

states restore their water bodies to be fishable and swimmable. Under the CWA, USEPA has 

implemented pollution control programs such as 303(d) program. USEPA's 303(d) Program assists 

states, territories and authorized tribes in submitting lists of impaired waters and developing Total 

Maximum Daily Load (TMDL), the maximum amount of a pollutant allowed in a waterbody, as the 

starting point or planning tool for restoring water quality. The 303(d) list comprises those waters that 

are in the polluted water category, for which beneficial uses like drinking, aquatic habitat, industrial, 

recreation and use are impaired by pollution. States are required to submit their list for USEPA 

approval every two years.  

The Fort Cobb Reservoir (FCR) watershed located in southwestern Oklahoma, United States is a 

rural agricultural catchment with known issues of NPS pollution including suspended solids, siltation, 

nutrients, and pesticides and is listed on Oklahoma 303(d) list. The FCR watershed with an area of 

813 km2 includes one major lake fed by four tributaries; Cobb Creek, Lake Creek, Willow Creek, and 

Five-Mile Creek. The watershed is largely an agricultural catchment, with crop agriculture and 

rangeland as the primary land uses. Most parts of the watershed have been terraced for several years 

and recently several Best Management Practices (BMPs) have been implemented in the watershed 

(such as no-tillage and cropland to grassland conversion) to improve water quality. However, as a 

result of remaining sediment loads (ODEQ, 2015), studies are still needed for selection and placement 

of additional agricultural BMPs to reduce NPS pollution in the watershed. In 2001, the Oklahoma 

Conservation Commission (OCC) activated a 319 project in the watershed funded by the state and the 

federal government to target NPS in this watershed and to improve water quality through 

implementation of BMPs in conjunction with incentive payments (state funds, federal funds, and 

landowner cost shares) (OCC, 2009). Unfortunately, these programs, while effective, have not 

completely reduced sediment and nutrient loads to FCR such that it can be delisted as impaired 

waterbody according to the Oklahoma Department of Environmental Quality (ODEQ) 303d list 

(ODEQ, 2015). 
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The purpose of this research was to determine the most cost effective selection and location of 

these BMPs to reduce sediment loading and define more specific incentive payment programs for 

producers and landowners to adopt the most cost effective BMPs. To this end, a hydrological model 

was developed and used with an optimization model to determine the most cost effective set of BMPs 

that reduce soil erosion on farmlands with consideration of existing conservation practices. The 

objective function in this study was to find the maximum net benefit over BMP cost and changes in 

farm income while not exceeding stated sediment and/or phosphorus loads in the FCR watershed 

from FMC area of the watershed. Linear Programming (LP) was used to optimize the types and 

locations of the crops and conservation practices for sediment, nutrient and pesticide control at the 

study area. At the end, the shadow prices from the LP solutions were used to define more specific 

incentive payment programs for landowners and producers to adopt the most cost effective BMPs. 

Problem statement 

Issues such as sediment load to streams and reservoirs due to soil erosion in upland areas and 

streambank erosion have been a major source of agricultural soil degradation and water body 

impairments for decades and considerable money and time have been spent for protection of 

agricultural lands and water bodies. According to Kansas State University (2008), freshwater 

pollution by sediment and nutrients costs individual Americans and government agencies at least $4.3 

billion annually. Excessive sediment, in suspension or deposited, can reduce ecosystem health, 

threatens drinking water supply, reduces reservoir capacity, increases dredging cost, and increases the 

cost of drinking water treatment. Additionally, continuous soil erosion results in thinning of soil, 

changes soil properties and removes plant nutrients, and consequently endangers the sustainability of 

crop yields. According to David et al (1995), soil erosion reduces soil water holding capacity and soil 

fertility. Thus crop yields on eroded soils are lower than that on protected soils.  

According to Garbrecht, et al. (2014), the Southern Great Plains of US has several agricultural 

issues, such as stressing landscape, increasing uncertainty and risk in agricultural production, and 

impeding optimal agronomic management of pasture, grazing systems, and crops. According to 
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Oklahoma State 303 list report, state’s list of impaired and threatened water, most of the water bodies 

in the state of Oklahoma, located in Southern Great Plains, are impaired by sediment and 

phosphorous (USEPA, 2014). The Upper Washita River basin in southwestern Oklahoma has critical 

agricultural strategies and sustainability problems. The FCR located in this basin has multiple 

benefits, such as public water supply, wildlife habitats, and recreation. However the water quality of 

the FCR and its tributaries has been of concern for more than two decades, with water quality 

problems first identified in 1981. Four important tributaries which drain the watershed: Five Mile 

Creek, Willow Creek, Reservoir Creek, and Cobb Cree, are suffering from nutrients, suspended 

solids, siltation, pesticides, and unknown toxicity (Storm et al., 2003). These NPS pollutants cause  

taste and odor problems, reduced aquatic animal food, and increased dredging cost in FCR. The FCR 

watershed is on the Oklahoma 303(d) list due to water quality impairments (suspended solids, 

siltation, and phosphorous) and it does not meet water quality standards. It made this watershed a 

primary recipient of government soil and water conservation (SWC) program. Several agencies have 

made substantial efforts to solve this catchment’s problems. In 1981, Oklahoma Department of 

Agriculture Food and Forestry (ODAFF) recognized water quality issues related to pesticides and 

nutrients in the FCR watershed. In 2000, FCR was listed as a nutrient limited watershed due to high 

primary productivity and FCR, Willow  Creek, and  Lake Creek  were  listed  on the  state’s 303(d) 

list as impaired  water bodies by  turbidity, phosphorus, low  dissolved  oxygen, and pathogens. In 

2001, the OCC activated a 319 project in the watershed to improve water quality through 

implementation of BMPs including riparian buffer establishment, erosion control, 

pastureland management, human waste management, and no-till farming (OCC, 2009). Subsequently, 

in 2005, ODEQ completed a TMDL study for the FCR watershed, 

recommending a 78% phosphorus load reduction. The OCC expanded earlier research 

to reduce phosphorus loading, focusing specifically on implementing no-till and reduced tillage 

farming. In 2009, the OCC suggested $15.0 per acre as incentive payment for no-till system. Through 

this project sixty landowners installed BMPs, in which 92% of the cost was provided by federal and 
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state and only 8% of the BMP implementation costs was paid by landowners. As a result, NRCS 

raised the incentive rate for no-till, but switch to no-till required almost completely new equipment, 

representing a large financial investment and there was not enough funding. In addition, Tong et al. 

(2016) noted that current incentive system in FCR watershed needs restructuring to provide 

appropriate and effective attractive incentives to both producers and non-farming/absentee 

landowners. Despite efforts and research to improve water quality in the FCR watershed, there are 

still problems of sediment and phosphorous loads in this catchment (ODEQ, 2014) which 

demonstrates the need for research. Since the cost of implementing some BMPs can be highly 

variable, the cost effective selection and location of BMPs can aid in increasing both the efficiency of 

public funds and the total income of farmers. In this regard, there is a question of which conservation 

practices can minimize the sediment and nutrient loads in the watershed with minimum cost. The 

answer of this question can show the location and type of crops and agricultural BMPs (e.g. contour 

farming, conservation tillage, etc.) in each part of the watershed which lead the minimum sediment 

and nutrient exports with maximum net revenue for producers.  

Objectives of the Study 

In this study the cost effectiveness of different crops and associated crop production BMPs in 

reducing sediment and phosphorus loading from upland fields in the study area has been estimated. 

Hence, the overall objective of this research is to identify the most cost effective and ecologically 

beneficial placement and selection of crops and BMPs in farmlands to reduce sediment and nutrient 

loads to the FCR and protect long term water quality and availability. Specific objectives or questions 

in this research are to determine: 

a. Determine which crops and/or crop production methods can reduce sediment and phosphorous 

loss at least cost to producers. 

1. Determine which crop and/or crop production methods are the most profitable to producers 

with irrigation while meeting reduced sediment and phosphorous target for the FMC sub-

basin. 
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1-1. Determine how do no-till rotations involving wheat and other crops can affect crop yield 

and sediment and phosphorous reduction. 

2. Determine which crop and/or crop production methods are the most profitable to dryland 

producers while meeting reduced sediment and phosphorous targets for the FMC sub-basin. 

3. Determine which crop-livestock BMPs are the most profitable to producers while meeting 

reduced sediment and phosphorous target for the FMC sub-basin and ensuring livestock feed 

supply 

4. Determine how many animal units could be supported by different cropping systems. 

b. Determine the costs and benefits of maintenance and repair of existing terraces for continued crop 

production as opposed to converting area to pasture (Bermuda grass). 

c. Determine how soil type and land slope affects the economics of BMP and crop choice. 

d. Determine how the total and pre-unit cost of sediment and phosphorous abatement increase as 

sediment and phosphorous losses from crop and pasture land are decreased in FMC sub-basin. 

e. Determine how shadow prices for sediment and phosphorous abatement can be used to develop 

the incentive payments to producers for BMP adoption? 

The specific methods to achieve the main goals of this research are; 1) develop a hydrological 

model and calibrate and validate it for stream flow, sediment, and crop yield 2) generate appropriate 

BMP scenarios for different crops 3) apply the hydrological model for different scenarios 4) Use LP 

as an optimization model using General Algebraic Modeling System (GAMS) to provide precise 

information for stakeholders to prioritize ecologically sound and economically feasible BMPs at least 

cost. 

In previous research on this watershed existing conservation practices in the watershed were not 

simulated in the hydrological model as a baseline by detail and rotation of no-till wheat with other 

crops was not addressed. Since most parts of the FCR watershed are being farmed on the contour with 

terraces for sediment reduction (Zhang et al., 2015) and construction of terraces requires high capital 

investment, the baseline condition of the watershed will address the presence and condition of 
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existing terraces and contour. Since wheat occupies the largest acreage of any grain crops in this 

watershed, it is likely that no-till wheat production is one of the best scenarios for sediment reduction. 

However, continuous no-till wheat production is not really feasible due to the weed and disease 

cycles associated with wheat production (Edwards et al., 2006). One scenario which will be 

considered is rotation of no-till wheat with other crops. A row crop rotation, such as canola and 

winter wheat may be an economically viable scenario to continuous winter wheat, which increases 

marketability of the winter wheat due to improved consistency and quality of wheat after a row crop 

rotation (Boyles et al., 2004). This study will consider rotation of no-till wheat with other crops 

(cotton, canola, and grain sorghum) as additional scenarios. 
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CHAPTER II 
 

 

LITERATURE REVIEW AND BACKGROUND 

Studies on watershed modeling and NPS pollution control 

The main cause of water quality impairment in the Unites States is human induced NPS 

pollution like agriculture and urbanization (USEPA, 2016). NPS pollutions are forms of diffuse 

pollution caused by nutrients, sediment, toxic and organic substances originating from particular 

land use activities such as agricultural activities, which occur over a wide area and carried to 

reservoirs, lakes and stream channels by surface runoff (Humenik et al., 1987). BMPs are 

effective and practical scenarios to control and reduce the transport of agricultural NPS to water 

bodies, but there are concerns regarding the economic efficiency of BMPs in controlling and 

reducing NPS pollutions. Evaluating different BMPs can ensure the most effective devoting of 

funding for watershed management and water quality improvement and can prevent the 

implementation of unnecessary conservation practices in the watershed (USEPA, 2011). Models 

are valuable tools to simulate the erosion process in watersheds and evaluate the effectiveness of 

different BMPs and they can be selected by watershed managers for a given set of conditions. 

Several models have been developed for addressing soil erosion and NPS pollution issue in 

watersheds and assessing different agricultural BMPs.  

The Universal Soil Loss Equation (USLE) is the most widely applied model for estimating 

soil erosion. USLE was designed by the United States Agricultural Research Service (USDA-

ARS). Wischmeier (1978) designed USLE to estimate soil loss from sheet and rill erosion
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in specific conditions from agricultural fields. The USLE predicts soil loss based on rainfall erosivity 

results (R), soil erodibility (K), slope length (L), slope (S), cover management factor (C), and support 

practice parameter (P).  

In the late 1970s the Areal Non-Point Source Watershed Environment Response Simulation 

(ANSWERS) model was developed by Beasley and Huggins (1980) to evaluate the effects of BMPs 

such as conservation tillage, ponds, grassed waterways, tile drainage on surface runoff and sediment 

loss from agricultural watersheds. This model used distributed parameters and was an event-oriented, 

planning model. The overall structure involved a hydrologic model, a sediment detachment/transport 

model and several routing components necessary to evaluate the movement of water in overland, 

subsurface and channel flow phases. In a recent development (ANSWERS-2000), a groundwater 

component was added to the model (Bouraoui et al., 1997) and was validated at the local, field and 

watershed scales. This model had some weaknesses such as not being well adjusted for large scale 

catchments or for extremely long simulations. Due to computational requirements and the dependence 

of nutrient transformations and transport simulation on the empirical statistical equations, the model 

was time consuming and computationally intensive (Nisrami, 2006). 

In November 1980 Chemicals/ Runoff, and Erosion From Agricultural Management Systems 

(CREAMS) model was developed to evaluate NPS pollution from field-sized areas. CREAMS 

includes three components: hydrology, erosion/sedimentation, and chemistry and is a field scale 

model for estimating erosion, runoff, and pollutant movement from agricultural management systems 

(Foster et al., 1980). CREAMS can be applied with individual storms but can also evaluate long-term 

effects (over 2-50 year periods). In this model, the impacts of different agricultural conservation 

practices can be determined by simulation of the potential water, soil, nutrient and pesticide losses in 

runoff from agricultural lands. This model was modified to CREAMS-WT version, but both versions 

were limited to small size fields and homogenous areas (Nisrani, 2006).  

U.S. Department of Agriculture (USDA) in 1989 developed Agricultural Non-Point Source 

(AGNPS) pollution model, to solve the problems related to managing NPS pollution in watershed 
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scale (Young et al., 1989). This model is an event-based model and was developed to address the 

problems related to point source and NPS pollution in surface and groundwater systems and estimates 

the impacts of different conservation practices in agricultural watershed-scale systems using the 

Universal Soil Loss Equation (USLE). The application of this model is limited to about 200 km² 

watersheds (Young et al., 1989). A continuous simulation watershed model (AnnAGNPS) was 

developed and included all the features that were in the AGNPS model plus pesticides, source 

accounting, settling of sediments due to in-stream impoundments using Modified Universal Soil Loss 

Equation (MUSLE) (Nisrani, 2006). These models had some limitations in tracking inflow and 

outflow of water due to lack of a mass balance calculation, sub-surface hydrology, and other 

weakness points. These problems became more serious by increasing the size of the watershed 

(Bowen et al., 2004).  

Sediment from farmlands and streams threatens sustainability and productive capacity of 

agriculture. So, it was crucial to develop a model to assess the impact of soil erosion and NPS 

pollutions on soil fertility, water availability, and crop yield. David et al, (1995) indicated that corn 

yields on some severely eroded soils decline in many states such as Kentucky, Illinois, Indiana, 

Michigan, and Georgia. Hagen and Dyke (1980) predicted soil loss would reduce productivity in the 

US by 8 percent over the next 100 years. In their research they developed a soil/yield loss simulator, 

in which crop yield was a function of soil characteristics.  

Williams et al. (1983) designed the structure of a simple soil and plant P model. By year 1985 it 

was applied in the Water Resources Conservation Act (RCA) (Williams, 1990). This model included 

physically and biologically based components for determining plant growth, erosion, and related 

processes and economic components for evaluating the cost of erosion and for evaluating the best 

conservation management practices.  

Putman et al. (1988) developed the Erosion Productivity Impact Calculator (EPIC) model to 

estimate the effects of soil erosion on soil productivity and crop yield. EPIC is a continuous 

simulation model that can be applied to determine the effect of conservation practices on crop yield 
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and soil and water resources. The drainage area considered by this model is generally a field-sized 

area, up to 100 ha. The major components in EPIC are hydrology, erosion-sedimentation, pesticide 

fate, nutrient cycling, weather simulation, soil temperature, plant growth, tillage, economics, and 

plant environment control. Colacicco and Associates (1989) applied EPIC to evaluate the impacts of 

soil erosion on fertilizer use and crop yields.  

The Soil and Water Assessment Tool (SWAT) was developed in 1990 by the USDA Agricultural 

Research Service (ARS) at the Grassland, Soil and Water Research Laboratory in Temple, Texas 

(Neitsch et al., 2001). SWAT is a hydrological model to simulate the runoff and soil erosion in large 

complex watersheds and estimates impacts of different BMPs on crop, water, and sediment yield. The 

SWAT model is a semi-distributed, comprehensive, river basin scale model and is computationally 

efficient (Arnold et al., 1995). SWAT is used to assess the impact of different management practices 

on NPS and water resources in watersheds and requires information provided by the user (digital 

elevation data (DEM), soil data, land use data, precipitation and other weather data) to simulate 

runoff and soil erosion. In SWAT, sediment yield is estimated by the Modified Universal Soil Loss 

Equation. Hydrologic Response Units (HRUs) are portions of a sub-watershed that possess unique 

land use, slope range, and soil attributes (Neitsch et al., 2004). Engel et al. (1993) applied the SWAT 

model for the first time; Srinivasan and Arnold (1994) and Arnold et al. (1998) later added a 

geographic information system (GIS) interface for SWAT. Arnold and Forher (2005) described the 

expanding global use of SWAT and several releases of the model (96.1, 98.2, 99.2, and 2000 

versions) as well. Gassman et al. (2007) described SWAT version 2005, and also reviewed over 250 

SWAT-related applications that were done worldwide. They presented the strengths and weaknesses 

of the model and provided recommended research needs for SWAT. Krysanova and Arnold (2008), 

Douglas-Mankin et al. (2010), and Tuppad et al. (2011) did further updates on the SWAT model 

application and development trends, and the latter two articles provide further description of SWAT 

version 2009, the latest release of the model. SWAT was used to support the USDA Conservation 

Effects Assessment Project (CEAP), which is conducted to estimate the environmental benefits of 
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conservation practices at both the national and watershed scales (Mausbach and Dedrick, 2004). 

There are several studies that have used the SWAT model to evaluate the effectiveness of BMPs in 

soil erosion and NPS pollution reduction and performing TMDL analyses. Biniam (2009) used the 

SWAT model to identify watershed management scenarios in the Blue Nile Basin of Ethiopia. Biniam 

illustrated that extreme surface runoff leads to high amount of soil erosion. Zhang et al (2011) 

conducted a study about agricultural conservation practices to efficiently reduce the sediment load 

and organophosphate levels in surface runoff. They applied SWAT 2005 to simulate sediment, 

streamflow and pesticide loads into the Orestimba Creek Watershed in California, US, from 2000 to 

2006. They suggested that the SWAT model reasonably evaluated BMP effectiveness at the 

watershed scale. Dechmi et al (2013) evaluated BMPs under intensive irrigation using the SWAT 

model. Their research demonstrated that reduced tillage and irrigation management scenarios can 

result in significant lower total suspended sediment, irrigation return flow, and loss of all phosphorus 

forms. They concluded that a combination of the BMP scenarios was the best method to reduce total 

suspended sediments, reduce irrigated return flows, and reduce the loss of all phosphorus forms. 

Storm et al. (2003) used SWAT to model nutrient and sediment loads from upland areas of FCR 

watershed. They found that areas of wheat, peanut, and sorghum crops were contributing the largest 

amounts of sediment and nutrients to the reservoir. Nair et al. (2011) applied SWAT to calibrate corn, 

soybean, and wheat yields and compared the simulated crop yields to observed yields. They noted 

that compared to traditional calibration approaches (no crop yield calibration), the approach with crop 

yield calibration can improve prediction efficiencies, especially for nutrient balances. 

Mittelstet et al. (2015a) employed the SWAT model and an empirical relationship to simulate 

crop yields and salinity levels in North Fork of the River Basin, located in southwestern Oklahoma 

and the Texas Panhandle. Sarkar et al. (2011), Panagopoulos et al. (2012), and Gikas et al. (2006) 

utilized the SWAT model to estimate cotton yields. In previous research on the SWAT model for 

evaluating crop yield drylands from irrigated lands were not separated. Since cotton is one of the 

main row crops produced in the FCR watershed and most of the irrigated fields in this watershed are 
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covered by cotton, dryland and irrigated crops were separated using center pivot irrigation locations 

tagged from aerial photography. In this regard, the impact of optimal schedule of irrigation operation 

can be considered on runoff using this method.   

SWAT model calibration 

Since SWAT input parameters are process based, they should be within a realistic range using 

calibration and validation process. Model calibration is the comparison of predicted results to 

observed data in order to obtain a defined objective function and the modification of parameter values 

in the model (James and Burges, 1982). For calibration process, it is necessary to determine the most 

sensitive parameters to be adjusted (Ma et al., 2000). Sensitivity analysis at the watershed level is 

used to estimate the rate of change in the output of a model with respect to changes in watersheds 

parameters (Reungsang et al., 2005). There are two types of the sensitivity analysis local and global. 

Local is based on changing parameters values one at a time, and global, by changing all values at the 

same time. After determining the value of the most sensitive parameters during the calibration process 

and reducing the difference between the model prediction and observed data, the final step is 

validation to demonstrate the sufficiency and accuracy of the model (Refsgaard, 1997). In the 

calibration and validation process, available observed data are split into two datasets: one for 

calibration and one for validation. Most of the time data are split by time period, but data can be split 

spatially. To have good results of calibration and validation and to capture long-term trends, observed 

data should include wet, average, and dry years (Gan et al., 1997).  

Several calibration methods have been developed for calibrating the SWAT model, including 

manual procedure and automated using calibration tools in the SWAT model. SWAT Calibration and 

Uncertainty Procedures (SWAT CUP) were developed in 2007 for automatic sensitivity analysis 

(one-at-a-time, and global), calibration, validation, and uncertainty analysis of the SWAT models 

(Abbaspour et al., 2007). SWAT-CUP is a freeware program that contains several algorithms for the 

SWAT model parameters optimization. SWAT-CUP calibration helps the user to obtain a better 

understanding of the hydrologic process in the model and parameter sensitivity. Using this generic 
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interface, any calibration/uncertainty or sensitivity program can easily be linked to SWAT. There are 

five different optimization algorithms in SWATCUP: Sequential Uncertainty Fitting version 2 (SUFI-

2), Particle Swarm optimization (PSO), Generalized Likelihood Uncertainty Estimation (GLUE), 

Parametric Solutions (ParaSol), and Markov Chain Monte Carlo (MCMC) vary parameter values to 

minimize the difference between the observed data and estimated data.  

There are a number of previous studies that worked on automated calibration/validation and 

uncertainty analysis using SWAT-CUP (van Griensven and Meixner, 2006; Faramarzi et al., 2009; 

Akhavan et al. 2010). Abbaspour et al. (2007) made a multi-objective calibration and validation of the 

Thur watershed in Switzerland for sediment, stream flow, nitrate, and phosphate in the objective 

function with uncertainty analysis. Schuol et al. (2008a) calibrated and validated the SWAT model 

for West Africa and the entire continent of Africa. Yang et al. (2008) compared five different 

optimization algorithms in SWAT-CUP and calibrated a watershed in China using the MCMC 

algorithm. Faramarzi et al. (2009) applied the SWAT model as a hydrological model of Iran and 

calibrated and validated the model with the SUFI2 algorithm. Akhavan et al. (2010) calibrated the 

SWAT model for the nitrate leaching from the watershed in Iran, and Andersson et al. (2009) used 

SWAT-CUP to calibrate the SWAT model of the Thukela River basin in South Africa. All of the 

previous research on SWAT CUP reported the good results of automated calibration/validation and 

uncertainty analysis using SWAT-CUP. Moriasi et al. (2008) calibrated the SWAT model of FCR 

watershed for stream flow and suspended sediment based on daily data in 2005 to identify the “hot” 

spots/cropland in this watershed. They used geomorphic assessment to estimate the channel cover and 

channel erodibility parameters. In their research, they did not calibrate their model for all wet, dry, 

and average year but calibrated for one year (daily). Storm et al. (2006) calibrated FCR watershed 

SWAT model for streamflow at Cobb Creek near Eakley, OK from 1995 to 2001 with monthly data 

and validated the model from 1980 to 1989. In their research, the calibration of model was done 

manually for stream flow and phosphorous loads.  
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Before using SWAT-CUP for automated calibration process, it is necessary to examine the output 

of the SWAT model to see that is working properly or not. Iterative manual and automated calibration 

of hydrological model for different parameters like crop yield, stream flow, and sediment over long 

time periods (including dry, average, and wet years) by adjusting different operation management 

parameters and their specific schedule is the category for having the accurate calibrated hydrological 

model and there is limit research concerning all these factors together. 

Conservation practices in the FCR watershed 

Many studies have been conducted on conservation practices in agricultural fields to efficiently 

reduce sediment load and organophosphate in reservoirs (Biniam, 2009; Zhang, 2011; Dechmi, 2013; 

Aaron, 2014; etc.). Conservation practices such as contour and strip farming, terraces, conversion of 

crop land to Bermuda pasture, reduced till and no-till farming, drop structures, shelter belts, flood 

retarding structures, etc. have been currently implemented throughout the FCR watershed (Garbrecht 

and Starks, 2009). However, records detailing types and time of installation of these management 

practices prior to the 1990s are not readily available in either the state offices of the Natural 

Resources Conservation Service (NRCS) or the local conservation districts. According to Garbrecht 

and Starks (2009), 80%-90% of cropland in FCR watershed that needed terraces, has been terraced 

over the last 50 years. Over the last decade, about 50% of the cropland was in conservation tillage or 

minimum disturbance tillage. In addition to these management practices, gully reshaping and grad 

stabilization structures were implemented by conservation funds. Other conservation practices have 

been implemented without cost sharing assistance. Also, some selected channel bank sections were 

stabilized and some channels have been fenced to prohibit cattle from eroding banks, small 

impoundments were constructed, and a number of gravel roads were paved to control cropland 

erosion in this watershed.  

As it was noted, terraces and contour farming were used in most of the cultivated areas in this 

watershed to protect the land against erosion. Since these conservation practices are effective in 

controlling soil erosion and sediment, it is important to include them in the baseline hydrological 
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model before model calibration for flow and sediment. Simulation of terraces and contour can be 

done in different models (Shao et al. 2013). The SWAT model (Arnold et al. 1998; Gassman et al. 

2007; Arnold et al. 2012) has successfully simulated these management practices and evaluated the 

impact of terraces on runoff (Yang et al. 2009 Ouassar et al. 2008). The effects of these practices can 

be simulated by modifying runoff and erosion parameters such as, slope length, the SCS runoff curve 

number (CN), and USLE practice factor. These parameters can be adjusted based on the land slope 

suggested by SWAT documents. There are several studies that simulated existing terraces and 

contour in their hydrological model. For instance, Bednarz et al. (2003) assumed that half of the 

cropland in their study watershed was terraced with/without contouring (based on personal 

communication with agencies and farmers), and the other half was straight-row with no terraces. 

Yang et al. (2009) assessed the impacts of flow diversion terraces on stream flow and sediment yield 

at a watershed level using the SWAT model. They assumed more than 50% of cultivated lands in the 

watershed had been protected by terraces against erosion. They simulated the impacts of terraces on 

abating water and sediment yields by adjusting P-factor in sub-basin level without considering the 

placement of them. Ouessar et al. (2009) assessed modeling of water harvesting systems in arid 

environments. They assumed that crop sites for growing olives are on terraces and they adjusted their 

SWAT model parameters for terraces on these sites.  

SWAT has previously been used in FCR watershed modeling (Storm et al., 2003; Moriasi et al., 

2007, 2008; Mittelstet, 2015b). None of the previous research on modeling the existing BMPs, aerial 

pictures used to distinguish the exact placement of existing terraces and contour and there were 

assumption about the percentage of watershed area under these practices. Since one of the goals of 

this research was to identify the placement of conservation practices, it is important to identify the 

placement of existing conservation practices to prevent reoffering them and assess other scenarios 

instead. Meanwhile, installing these practices requires high capital investment. Their presence will 

affect the optimal selection and placement of additional BMPs. Using aerial pictures and GIS located 

drainage lines can help us to locate broken terraces. Then HRUs can be adjusted in the SWAT model 
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for good quality terraces and contour. In this case, it is possible to find out which of these practices 

need restoration and then restoration can be simulated to determine the effects of restoration scenario.  

One of the other conservation practices that received the most attention in the upper Washita 

River watersheds was no-till farming. Conversion to no-till practices on at least 50 percent of 

cultivated area in the FRC watershed was one of the recommendations of the TMDL developed by 

the ODEQ for the this Watershed (OCC, 2015). Another common conservation practice was 

conversion of cropland to pasture land. The OCC began a program with emphasis on no-till farming 

to meet the water quality standards as established by the TMDL. According to OCC (2009) no-till 

was projected to be one of the most effective conservation practices for controlling both sediment and 

nutrient loads. No-till farming could help to hold moisture in the soil and protect soil against wind 

and rain erosion. However, no-till wheat yield has been decreased (Decker et al., 2009; Patrignani et 

al., 2012). One of the main reasons causing limitation on adaption of continuous no-till winter wheat 

farming is buildup of weeds and diseases cycles associated with wheat production (Edwards et al., 

2006). Several researchers have studied no-till farming and its effect on runoff, NPS pollution and 

crop yield (Choi et al., 2016; Osei et al., 2012), however there is limited research focusing on rotation 

of winter wheat with other viable crops to solve the problems related to continuous no-till winter 

wheat farming and increase marketability of the winter wheat due to improved consistency and 

quality of wheat after a row crop rotation. Osei et al. (2012) assessed the effects of no-till systems on 

crop yield in farm-level economics and compared with other tillage systems for wheat production in 

FCR watershed. They indicated that if winter wheat grain yields are not significantly impacted by 

tillage systems, no-till would be more profitable than conventional tillage or the current mix of tillage 

practices in the watershed. In their study they did not address diseases resulted from continuous no-

till winter wheat farming and rotation of this crop with other crops was not addressed to solve this 

issue. The current study will consider rotation of no-till wheat with other viable crops (cotton, canola, 

and grain sorghum) in the study region as a scenario and will assess its impact on winter wheat yield.    
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Economic analysis 

Economic evaluation of water pollution involves a combination of biophisycal modeling and 

economic analysis (Khanna et al., 2003; Lintner and Weersink, 1999). In this regard, economic 

analysis can have a main role for devising a way to meet the environmental goals at least possible 

cost. One of the main issues in developing economic measures is to evaluate which conservation 

practices are cost effective. One measure of an effective conservation practice is whether it can attain 

a maximum reduction in NPS loads at maximum benefit or minimum cost (Giri et al., 2012). The 

objective for improving cost-effectiveness is the systematic optimization of real-world efforts 

(Rabotyagov et al. 2010). Hence, the information on economic influences on the implementation of 

such practices is critical. The number of possible BMP scenarios within a watershed rises 

exponentially with the number of fields. The enumerative assessment of all possible combinations of 

strategies performance in all fields within the watershed is impossible and it becomes neither practical 

nor economically feasible to select a best combination of BMPs that results maximum pollution 

reduction for least implementation costs. However, the process can be accomplished through 

mathematical programming. For example, a watershed with 100 farms and 3 different possible BMPs 

for each field will require 3100 evaluations. In this regard, selection and placement of BMPs in a 

watershed needs proper optimization method (selection of optimization method is based on the 

dictated condition of problem) with more efficient manner to result maximum benefit with highest 

possible pollution reduction rate. Meanwhile, since BMPs are usually implemented under a limited 

budget, costs associated with inefficient control actions may threaten achievability of designated 

water quality goals. Therefore, a balance should be considered between the economic and ecological 

implications of BMP implementation. Recent studies have demonstrated that optimization methods 

produce good results for optimal allocation of NPS pollution management practices at the watershed 

scale (Veith, 2003; Arabi, 2006; Jha, 2009; Rabotyagov, 2010). The optimization process will result 

in maximum net benefit with minimum amount of sediment and nutrient loads by considering the 
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effectiveness and cost of various BMPs and searching for the best solution from all the possible 

solutions. Therefore, the selection of optimization methods is vital in spatial optimization to ensure 

that there will be convergence of the objective function. Several optimization methods, such as Monte 

Carlo simulation (Wu et al., 2006), Tabu search (Qi et al., 2008), scatter search (Zhen, 2006), non-

dominated sorted genetic algorithms (Cisneros et al., 2009), and Linear Programing (LP) (Cisneros et 

al. 2011) have been used to develop a cost-effectiveness strategy. One approach in the present 

literature review considered the application of evolutionary algorithms like Genetic Algorithm (GA) 

and other approach considered mathematical optimization methods such as LP. For instance, 

Srivastava et al. (2002) combined the Annualized Agricultural Non-Point Source model with a GA 

for implementing the agricultural BMPs in farm lands. Bekele and Nicklow (2005) coupled the 

SWAT model and a multi-objective evolutionary algorithm to gain the tradeoff between ecosystem 

service and agricultural production. Maringanti et al. (2009) developed an optimization model for the 

selection and placement of the BMPs in the L’Anguille River watershed. They argued their method 

was both economically and ecologically effective at any watershed size. They used a multiobjective 

genetic algorithm (NSGA II) for optimizing their two objectives. One objective was minimizing net 

cost and the other one was minimizing the pollutant load from watershed. However, their 

optimization considered just application of fertilizer, buffer strips, and tillage management. Arabi et 

al. (2006; 2007) used the same methodology which combined a watershed model (SWAT) with GA 

for controlling sediment, phosphorus, and nitrogen plans that were multiple and had conflicting 

objectives. Their optimization used the SWAT model for simulation of sediment and nutrient loads, 

BMP tool, economic component, and GA for optimization. By this method they were able to select 

and place BMPs in upland areas and streams. Their solution required only one third the costs for the 

same level of sediment and nutrient loads in targeting strategies. The upland BMPs which they 

considered were just field borders and parallel terraces, but they did not consider other conservation 

practices such as no-till cropping. The stream BMPs considered were grassed waterways and grade 
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stabilization structures. Maringanti et al. (2011) also provided an optimization method to find the 

placement and type of more feasible BMPs with minimum nitrogen, phosphorus, sediment, and 

pesticide losses from upland areas of Wildcat Creek watershed, located in northcentral Indiana. The 

BMPs which they considered in their study were residue management, filter strips, parallel terraces, 

contour farming, and tillage. For the optimization process, with NSGA II, to reduce computation 

time, they used a BMP database, which contained the pollution reduction and cost information of 

different BMPs, as a tool in the watershed model. They illustrated that buffer strips were the most 

cost efficient BMP compared to the other BMPs. Rabotyagov et al. (2012) integrated a modern and 

commonly used the SWAT model with multiobjective evolutionary algorithm SPEA. Ahmadi et al. 

(2013) used the multiobjective genetic algorithm (NSGA II) with mixed discrete-continuous decision 

variables and the SWAT model to estimate the optimal selection and placement of conservation 

practices for nitrate and atrazine control from uplands and streams. They considered other BMPs in 

their study: fertilizer management, grassed waterways and grade stabilization, and tillage and residue 

management. They demonstrated that by using a mixed variable NSGA II, it was possible to find 

solutions with higher water quality at lower cost than with binary variable optimization. But, they did 

not consider the selection of cover crop on the fields and they just considered the selection and 

location of BMPs. 

LP is an optimization technique with a continuous linear objective function and linearly 

constructed constraints. One of the most common applications of LP is in devoting resources for 

different activities (Hillier & Lieberman, 1990). These methods have abilities for overcoming the 

limitation of evolutionary methods or heuristic techniques for solving the problems of Non-Point 

source pollution management optimization. Most of the problems solved by an evolutionary 

algorithm like GA require long computation times. Since the structure of watershed management 

modeling has the complex formation, applying an evolutionary algorithm for optimizing the 

watershed model becomes computationally complex and time consuming. For example, Muleta and 

Nicklow (2005) optimized their watershed BMPs using GA in approximately 4.75 days (Sebti et al. 
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2015). Using a LP allows a global optimum to be reached and local optimums are avoided with little 

computational time. In this regard, the use of classic optimization techniques like LP and Dynamic 

Programing (DP) has potential for improving the productivity of stakeholder collaboration (Ancev, et 

al. 2006). According to Dyke et al. (1985), a LP model plus related models with an associated LP 

subsystem are more suitable for studying erosion economics. These models prepare a detailed 

analysis of the land use, water and other resources. Westra and Olson (2001) applied mathematical 

programing to estimate the most efficient practices for phosphorous abatement in the Minnesota River 

and finally got 40% reduction. Ancev (2003) used the SWAT model for the Eucha-Spavinaw 

reservoir watershed in northeastern Oklahoma to simulate the watershed and used the results in a LP 

model to optimally model phosphorus reduction from chicken litter application. Khanna et al (2003) 

evaluated the cost effectiveness of the Conservation Reserve Enhancement land retirement program 

in the Illinois River using AGNPS model and mathematical programming to optimally identify areas 

for runoff reduction. Whittaker et al. (2003) interfaced SWAT with a data envelope analysis LP 

model to estimate the most cost effective policies in declining N losses to streams in Columbia 

Plateau area in the northwest U.S. Their results showed that a 300% tax on N fertilizer was more cost 

efficient than a mandated 25% reduction in N use. Adams et al. (2005) optimally modeled the 

location and type of crop and BMPs for pollution abatement in the FCR watershed using SWAT and 

LP and they could indicate the tradeoffs between producer income, sediment and nutrient load and the 

spatial allocation of crops in the watershed. Alminagorta et al. (2012) developed a LP to estimate the 

most cost effective BMPs in Echo Reservoir, Utah for phosphorus reduction. They divided their study 

watershed into three sub-watersheds (Chalk Creek, Weber River Below and Weber River above 

Wanship) and for each of them, it was identified nutrient management as the most cost-effective 

practice. Streambank stabilization and protected grazing land were found to be cost effective BMPs in 

Chalk Creek, additionally. Sunandar et al. (2014) employed LP in conjunction with the SWAT model 

to estimate the optimal land cover for decreasing soil erosion in the Asahan Watershed. The optimal 

land use had been estimated by LP with the objective function of minimizing cost with constraints for 
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erosion. Their optimization showed that erosion can be decreased by reducing dryland farm areas, 

increasing forest area, and increasing plantation areas. These land use areas change could reduce 

erosion without decreasing water yield or the economic value of land. Sebti et al. (2015) used LP as 

an optimization model for the placement and selection of BMP at the watershed level to improve 

water quality and quantity. Their objective function was to minimize the total cost of conservation 

practices within the constraints of assuring a surface flow for the whole network during heavy rainfall 

and limiting the peak flow generated at the watershed outlet at the interceptor capacity for frequent 

precipitations. Previous research has focused just on some special management practices in upland 

areas and main streams of watershed to reduce amount of sediment and nutrient loads in channels and 

lakes.  

Again, the purpose of this research was to determine the most cost effective set of BMPs for 

reducing upland erosion. The methods used developed a watershed simulation model integrated to 

systems analysis tools such as optimization models to determine optimal set of best management 

practices and cover crops and their spatial location that reduce soil erosion and meet regulations such 

as TMDLs with least cost. Eventually by using LP least cost combination of types and locations of 

upland conservation practices for nutrient and pesticide control and decreasing sediment loads in FCR 

watershed will be found. The objective function in this case is maximizing the net revenue for farmers 

while NPS pollution in the watershed is getting minimized simultaneously. To determine the optimal 

spatial allocation of crops and cropping practices in the watershed, the impacts of the policy changes 

and various levels of constraints must be examined at both the farm and the watershed level to 

indicate the changes required to achieve maximum net revenue. In this regard, the next part of 

literature review is related to incentive programs such that producers and landowners adopt 

conservation practices that further abate the downstream pollution costs caused by current land 

management practices. 
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Incentive programs for conservation practices adaption 

There are no effective laws regarding the amount of sediment or nutrients that leaves the 

producer’s land in the US. Thus any reduction in these items may be viewed as a cost by the 

producers. The producer’s cost per unit of sediment (or phosphorous) abatement can be written as  

ஈబିஈౘౣ౦

୯బି୯ౘౣ౦
, where Π0 and Πbmp are respective net revenues without and with the BMP adoption 

respectively and q0 and qbmp are respective NPS pollutants leaving the land without and with BMP. 

Understanding what benefits from BMPs are preferred and why agricultural producers and 

landowners decide to adopt conservation practices in the FCR watershed is vital for policy makers, so 

they can make appropriate policies and incentive programs for both producers and landowners such 

that both groups implement practices that further abate the downstream pollution costs (externalities) 

caused by current land management practices. Different conservation programs, such as the 

Environmental Quality Incentives Program, Conservation Stewardship Program, and others have been 

developed in the US to provide incentives for further conservation practices adoption on agricultural 

fields (Cain and Lovejoy, 2004). Until 1985 these incentive programs used natural resource 

conservation as a reason to support financial funds to agricultural areas through agricultural 

producers. In the US today, some of the most commonly adopted conservation programs provided by 

the federal government are the Conservation Reserve Program (CRP), Environmental Quality 

Incentives Program (EQIP), and Conservation Stewardship Program (CSP) to compensate production 

losses or expenses for adopting new cropping or tillage systems and other BMPs. The CRP was 

developed in 1985 and is the first program that considers natural resource conservation seriously 

(Cain and Lovejoy, 2004). According to the USDA (2015), this program provides annual payments 

for retiring erosion sensitive lands and installing or maintaining certain crops and plants that abate 

erosion and increase water quality. EQIP is a program that supports technical and financial assistance 

to landowners and producers to adopt BMPs through cost sharing (USDA, 2015). CSP supports two 

payments types to producers enrolled in this program; one is for installing new BMPs, and the other is 
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for adopting crop rotation (USDA, 2015). Some states like Minnesota have applied enhanced 

conservation programs such as the Conservation Reserve Enhancement Program (CREP) to 

permanently remove erodible enrolled land from production. Although there is a program entitled 

CREP in Oklahoma, this program does not permanently remove highly erosive agricultural lands 

from production (FSA, 2015). Producers in the FCR Watershed have followed the national trend by 

enrolling in various conservation programs such as CRP, CSP, and EQIP. Despite the positive effects 

of these programs, agencies such as the OCC, ODEQ, and the Natural Resource Conservation Service 

(NRCS) listed this region as a focal point for adopting more effective BMPs in order to improve 

water quality. In addition, the FCR watershed was named a water quality priority watershed by 

USEPA for 2001-2007 (OCC, 2014). OCC started a 319 project in 2001 funded by the state and the 

federal government to improve water quality through BMPs implementation such as pasture 

management, no-till farming, and human waste management in conjunction with incentive payments 

(state funds, federal funds, and landowner cost shares) (OCC, 2009). These programs were focused 

on cropland conversion rather than other management practices such as riparian buffers (OCC, 2009). 

Unfortunately, these programs, while effective, have not completely reduced sediment and nutrient 

loads to the FCR such that it can be delisted as impaired waterbody according to the ODEQ 303d list 

(ODEQ, 2015). 

The principal approach in the US toward control of NPS pollutions from agricultural fields has 

been to subsidize adoption of BMPs or provide funds for land retirement and crop rotation, rather 

than taxing inputs such as nitrogen and fertilizer (Shortle and Horan, 2001). Since all conservation 

practices may not improve the profitability of enterprise in the farm level and the government is the 

main source of funding for soil and water conservation (Wang and Berman, 2014), different 

economic incentives requires to be developed at the local level to incentivize conservation practice 

adoption (Osmond et al., 2012; Ribaudo, 2015; Carlisle, 2016). Tong et al. (2016) supported Camboni 

and Napier (1993), Dobbs and Pretty (2004), and Shortle et al. (2012) in the assertion that the current 

incentive system in FCR watershed needs restructuring to provide appropriate and effective attractive 
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incentives to both producers and nonfarming/absentee landowners. One of the main goals of this 

study is using different shadow prices from developed LP results to define more specific incentive 

payment programs for producers and landowners to adopt the most cost effective BMPs for meeting 

water quality goals. 
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CHAPTER III 
 

 

CONTRIBUTION TO SCIENCE 

This research developed a hydrologic, agronomic, and economic watershed model that 

incorporated crop-BMP simulations for making environmental and economic policy decisions. 

This research improved previous research conducted on the FCR watershed by incorporating GIS 

based hydrologic and agronomic data into a mathematical Linear Programming model to 

determine the least social cost for the watershed and construct the new incentive system to 

provide appropriate and effective incentives to both producers and landowners. The SWAT 

model was used to simulate crops and management practices and determine crop yield, sediment 

and phosphorus loading from each hydraulic response unit (HRU). Since SWAT is not an 

optimization program, a Linear Programming decision model was designed to incorporate the 

SWAT data to determine the most profitable livestock-crop-management practice in each HRU to 

meet sediment and phosphorus loss targets at maximum profit for agricultural and livestock 

producers. This study builds on, improves, and extends previous research by developing different 

combination of crops and agricultural management practices and techniques for reducing 

sediment and phosphorus loading at least cost to society to get additional progress needed toward 

the overall TMDL goal. In this regard, there were contributions to agricultural science, 

hydrology, and economy. 

Since this watershed is a pasture intensive watershed and is a leading source of beef 

production, optimized number of supported animal unites with their monthly grazing operation to 

prevent overgrazing and reduce erosion from grazing was evaluated. This can be helpful for  
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a beef producer to plan a year-round grazing system given a specified resource base, which has not 

been done in previous SWAT based research.  

As most parts of the watershed are being farmed on the contour with terraces (Zhang et al., 2015) 

and construction of terraces requires high capital investment, existing conservation practices were 

modeled. Aerial pictures were used to distinguish the exact placement of existing terraces and contour 

and 2-meter LIDAR was used to extract the broken terraces. This process which has not been done in 

previous researches could improve the accuracy of the SWAT model, especially before the calibration 

process and could improve the sediment calibration process. One of the other innovative parts of this 

research is considering rotation of no-till wheat with other possible crops of the region as a highly 

recommended crop-BMP. Since previously no-till farming was highly recommended in the region of 

this catchment and since wheat occupies the largest acreage, so no-till wheat was one of the highly 

recommended crop-BMP (Garbrecht, 2015). But, since continuous no-till wheat production is not 

really feasible because of weed and disease (Edwards et al., 2006), this research considered the 

rotation of no-till wheat with other crops to evaluated the impact of rotation on crop yield and how it 

would affect the most economic choices.  

Since the economic evaluation would be different in dryland and irrigated areas, this research 

separated dryland and irrigated areas to estimate the most cost effective crops and agricultural 

management practices in dryland and irrigated areas separately. Cotton is one of the main row crops 

produced in the FCR watershed and most of the irrigated fields are covered by cotton. Hence, center 

pivot irrigation locations tagged from aerial photography were used to distinguish the irrigated areas.  

Since policy making can be helped by science, there was this attempt to make the results of this 

research more practical. One of the innovative parts of this research was to determine the 

economically efficient soils and slopes to be targeted for BMP placement to reduce sediment and 

phosphorous losses. Also, the specific minimum subsidies for adoption of specific conservation 

practices for adoption on targeted soil textures and slope classes can be determined. This research is a 
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case study and outputs can be generalized to southern Great Plains. For example, the parameters for 

sediment and streamflow calibration, the targeted soil textures for having the highest rate of sediment 

and phosphorous loss reduction with maximum benefits and their specific crop-BMPs with the 

minimum subsidy that producers should paid to adopt them can be can be generalized for watersheds 

on this region. 
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CHAPTER IV 
 

 

EVALUATING EFFECTIVENESS OF AGRICULTURAL CONSERVATION PRACTICES IN 

THE FIVE-MILE CREEK AREA OF FORT COBB WATERSHED 

Abstract 

One of the main causes of water quality impairment in the US is human-induced Non-Point 

Source (NPS) pollution through intensive agriculture. Fort Cobb Reservoir (FCR) watershed 

located in southwestern Oklahoma is a rural agricultural catchment with known issues of high 

sedimentation rate. In this study, the Five-Mile Creek (FMC) sub-watershed of FCR was selected 

to quantify impacts of 22 scenarios of crop/agricultural Best Management Practices (BMPs) on 

surface runoff, sediment loss and crop yield. For this, a hydrological model of the study area was 

developed using the Soil and Water Assessment Tool (SWAT) with 43 sub-basins and 15,217 

hydrological response units. The model was calibrated (1991 ̶ 2000) and validated (2001 ̶ 2010) 

against the monthly observations of streamflow, sediment grab samples, and crop-yields. The 

coefficient of determination (R2), Nash-Sutcliffe efficiency (NS) and percentage bias (PB) were 

used as gauging statistical matrices. Model parametrization resulted in satisfactory values of R2 

(0.64) and NS (0.61) in the calibration period and an excellent model performance (R2 = 0.79; NS 

= 0.62) in the validation period for streamflow. Crop yield was calibrated manually and improved 

model performance and resulted in slight changes to SWAT default values for harvest index for 

optimal growing condition (HVSTI), solar radiation use efficiency (BIO_E), Manning’s 

roughness coefficient (OV_N), and maximum leaf area index (BLAI) parameters for main crops 

in the region.  
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According to the results, contouring practice reduced surface runoff by more than 18% in both 

conservation tillage and no-till practices for all crops. Also, contour farming with either conservation 

tillage or no-till practice reduced sediment loss by almost half. Compared to the conservation tillage 

practice, no-till system decreased sediment loss by 25.3% and 9.0% for cotton and grain sorghum 

respectively. Since continuous no-till wheat is not practical because of weeds and diseases, no-till 

wheat in rotation with other crops increased the sediment rate compared to wheat with conservation 

tillage. Also, wheat as cover crop for grain sorghum generated lowest runoff followed by its rotation 

with canola and cotton regardless of contouring. Meanwhile, on dryland, wheat as a double or cover 

crop reduced soil moisture available for the subsequent crop and sediment loss increased for both 

cotton and grain sorghum covered with winter wheat. At the end, converting all the crops in the 

watershed into Bermuda grass would significantly reduce runoff and decrease sediment loss as the 

most efficient scenario. 

 

Key words: Sediment, streamflow, BMP, SWAT model, crop yield, tillage, rotation, contour 

 

Introduction 

Sediment loads have detrimental impacts on environmental resources outside the farm fields and 

are the main sources of pollution loading to stream networks and reservoirs worldwide (FAO, 2013). 

Sediment discharge due to farming and urbanization can impair water bodies, reduce reservoir 

capacity and lifespan, threaten drinking water supply, increase water treatment cost, and reduce the 

overall ecosystem health (Palmieri et al., 2001, Simon and Klimetz, 2008). Non-Point Source (NPS) 

pollutions are forms of diffuse pollution caused by nutrients, sediment, toxic and organic substances 

originating from land use activities such as agricultural activities, which occur over a wide area and 

carried to reservoirs, lakes and stream channels by surface runoff (Humenik et al., 1987). According 

to the United States Environmental Protection Agency (USEPA) (USEPA, 2016), over half of the 
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water bodies in the US are NPS pollution impaired, and sediment ranks sixth among all leading 

causes of water quality impairments.  

The majority of states in the US Great Plains region consider agricultural NPS pollution to be a 

major source of their water quality issue. This is because agriculture constitutes the most intensive 

and extensive land use activity in this region (Osteen et al., 2012). Several management practices 

have been adopted to mitigate NPS pollution in this region. For example, the Conservation 

Technology Information Center (CTIC) by collecting information about adopting a conservation 

tillage system in Great Plains could replace 10 to 23% of conventional tillage system with 

conservation tillage system and decrease suspended sediment yields (Bernard et al., 1996). Also, 

Great Plains Conservation Program (GPCP) provides financial and technical assistance as water 

quality protection activities in the Great Plains states to ranchers and farmers who adopt total 

conservation treatment of their entire operation. Along with all effort made to reduce NPS pollution 

in this region, with increasing population and intensive agriculture and urbanization, there is still this 

issue in this region as an environmental problem.  

The Fort Cobb Reservoir (FCR) watershed located in the Central Great Plains Ecoregion in 

southwestern Oklahoma, US is a rural agricultural catchment with known issues of NPS pollution, 

including suspended solids, siltation, nutrients, and pesticides. The FCR watershed with an area of 

813 km2 includes one major lake fed by four tributaries (Cobb Creek, Lake Creek, Willow Creek, and 

Five-Mile Creek). The watershed is largely an agricultural catchment, with crop agriculture and 

rangeland as the primary land uses. Although most parts of the watershed have been terraced for 

several years, continued siltation has resulted in Best Management Practices (BMPs) being 

implemented in the watershed (such as no-till crop production and conversion of cropland to 

grassland) to improve water quality. However, as a result of remaining sediment loads (site study), 

additional selection and placement of additional agricultural BMPs to reduce NPS pollution in the 

watershed is needed.  
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Since cotton is one of the main row crops produced in the FCR watershed with 9.1% coverage 

and most of the irrigated fields in this watershed are covered by cotton (7.1% irrigated cotton 

coverage), dry and irrigated crops were separated using center pivot irrigation locations tagged from 

aerial photography. In this regard, the impact of optimal schedule of irrigation operation can be 

considered on runoff using this method.   

Many studies have been conducted on conservation practices in agricultural fields to determine 

the most efficient methods of reducing sediment loads and organophosphate loads in streams and 

reservoirs (Biniam, 2009; Zhang, 2011; Dechmi, 2013; Mittelstet, 2015; etc.). Conservation practices 

such as contour and strip farming, terraces, conversion of crop land to Bermuda pasture, reduced till 

and no-till farming, drop structures, shelter belts, flood retarding structures, etc. have been currently 

implemented throughout the FCR watershed (Garbrecht and Starks, 2009). However, records 

detailing types and time of installation of these management practices prior to the 1990s are not 

readily available in either the state offices of the Natural Resources Conservation Service (NRCS) or 

the local conservation districts. According to Garbrecht and Starks (2009), 80%-90% of cropland in 

FCR watershed that needed terraces, has been terraced over the last 50 years, and over the last decade 

about 50% of the cropland was in conservation tillage or minimum disturbance tillage. In addition to 

these management practices, gully reshaping and grade stabilization structures were implemented by 

conservation funds. Also, some selected channel bank sections were stabilized, some channels have 

been fenced to prohibit cattle from eroding banks, small impoundments constructed, and a number of 

gravel roads were paved to control cropland erosion in this watershed.  

As noted, terraces and contour farming practices have been used in most of the cultivated areas in 

this watershed to protect the land against erosion. Since these conservation practices are effective in 

controlling soil erosion and sediment, it is important to include them in the baseline hydrological 

model before model calibration for flow and sediment. The SWAT model (Arnold et al. 1998; 

Gassman et al. 2007; Arnold et al. 2012) has successfully simulated these management practices and 

evaluated the impact of terraces on runoff (Yang et al. 2009 Ouessar et al. 2008). The effects of these 
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practices can be simulated by modifying runoff and erosion parameters such as, slope length, the SCS 

runoff curve number (CN), and USLE practice factor. There are several studies that simulated 

existing terraces and contour farming in their hydrological models.  Bednarz et al. (2003) assumed 

that half of the cropland in their study watershed was terraced with/without contouring (based on 

personal communication with agencies and farmers), and the other half was straight-row with no 

terraces. Yang et al. (2009) assessed the impacts of flow diversion terraces on stream flow and 

sediment yield at a watershed level using the SWAT model. They assumed more than 50% of 

cultivated lands in the watershed had been protected by terraces against erosion. They simulated the 

impacts of terraces on abating water and sediment yields by adjusting P-factor in sub-basin level 

without considering the placement of them. Ouessar et al. (2009) assessed modeling of water 

harvesting systems in arid environments. They assumed that crop sites for growing olives are on 

terraces and they adjusted their SWAT model parameters for terraces on these sites.  

SWAT has previously been used in FCR watershed modeling (Storm et al., 2003; Moriasi et al., 

2007, 2008; Mittelstet, 2015b). However, none of these studies assessed the effectiveness of existing 

BMPs on surface water quality and they did not model the existing practices. Also, in none of the 

previous research on modeling the existing BMPs, aerial pictures were used to distinguish the exact 

placement of existing terraces and contour and there was assumption about the percentage of 

watershed area under these practices. Since one of the goals of this research was to identify the 

placement of additional conservation practices, it is important to identify the placement of existing 

conservation practices to prevent reoffering them and assess other scenarios instead. Meanwhile, 

installing these practices requires high capital investment. Their presence will affect the optimal 

selection and placement of additional BMPs. Using aerial pictures and GIS located drainage lines can 

help us to locate broken terraces. Then HRUs can be adjusted in the SWAT model for good quality 

terraces and contour.  

One of the other conservation practices received the most attention in the upper Washita River 

watersheds was no-till farming. Conversion to no-till practices on at least 50 percent of cultivated 
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area in the FRC watershed was one of the recommendations of the TMDL developed by the ODEQ 

for this Watershed (OCC, 2015). The OCC began a program with emphasis on no-till farming to meet 

the water quality standards as established by the TMDL. According to OCC (2009), no-till was 

projected to be one of the most effective conservation practices for controlling both sediment and 

nutrient loads. No-till farming could help to hold moisture in the soil and protect soil against soil and 

rain erosion. However, continuous no-till wheat production has been shown result in decreased yield 

(Decker et al., 2009; Patrignani et al., 2012). One of the main reasons causing limitation on adoption 

of continuous of no-till winter wheat is weeds and diseases cycles associated with wheat production 

(Edwards et al., 2006).  

Several researchers have studied no-till farming and its effect on runoff, NPS pollution and crop 

yield (Choi et al., 2016; Osei et al., 2012), however there is limited research focusing on rotation of 

winter wheat with other viable crops to solve the problems related to continuous no-till winter wheat 

farming and increase marketability of the winter wheat due to improved consistency and quality of 

wheat after a row crop rotation. Osei et al. (2012) assessed the effects of no-till systems on crop yield 

in farm-level economics and compared with other tillage systems for wheat production in FCR 

watershed. They indicated that if winter wheat grain yields are not significantly impacted by tillage 

systems, no-till would be more profitable than conventional tillage or the current mix of tillage 

practices in the watershed. In their study, they did not address the issue of diseases resulted from 

continuous no-till winter wheat farming and rotation of this crop with other crops. The current study 

will consider rotation and cover cropping of no-till wheat with other viable crops (cotton, canola, and 

grain sorghum) in the study region as a scenario and will assess its impact on sediment loss and net 

returns. 

The purpose of this study was to determine the effectiveness of different possible BMPs to reduce 

sediment loading and surface runoff while increase crop yield. To this end, a SWAT hydrological 

model was developed and calibrated and validated based on streamflow, sediment, and crop yield to 

determine the effectiveness of BMPs set that reduce soil erosion on farmlands with consideration of 
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existing conservation practices. The adjusted model was then used to simulate crop yields, sediments 

loads and water runoff with and without management practices. 

 

Methodology 

Study area 

The Five-Mile Creek sub-watershed (FMC) is located in southwestern Oklahoma within the Fort 

Cobb Reservoir watershed (Figure 1). FMC has an area of 113.05 km2. The FMC land use is 

comprised of 50% cropland, 41% pastureland and 9% others with other activities of cattle and hog 

operations. The major crops in the study area include winter wheat 30%, cotton (dryland 3.5%, 

irrigated 12.5%), and grain sorghum (1.5%). 

Downstream of the study area is the Fort Cobb Reservoir (FCR), which receives water from four 

upstream tributaries of Cobb Creek, Lake Creek, Willow Creek, and Five-Mile Creek. The reservoir 

water quality has been of concern for decades. FCR and other waterbody segments in the region are 

included in the 303(d) list as being impaired by high levels of sedimentation, phosphorous, nitrogen, 

bacteria, and ammonia caused primarily by intensive agriculture and pastoral activities (OCC 2009; 

ODEQ 2014). The 303(d) list comprises those waters that are in the polluted water category, for 

which beneficial uses like drinking, aquatic habitat, industrial, recreation and use are impaired by 

pollution. Despite several additional BMPs being implemented, the issues of sedimentation still exist 

in the study area. 
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Figure 2. Schematic representation of Best management practices (BMP) implementation in a 

watershed 

 

Hydrological model  

The closest available USGS gage station (Figure 1) received runoff from both the Cobb Creek 

and FMC sub-watersheds. Therefore, a hydrological model was constructed for the larger area above 

this station (red basin in Figure 1) containing of the Cobb Creek and FMC and only the FMC portion 

is used in the later analysis. A hydrological model of the entire red basin that includes Five-Mile 

Creek sub-watershed was developed using a SWAT. A ten-meter Digital Elevation Model was used 
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for watershed delineation, stream network creation and topographic information. The watershed was 

divided into spatially related 43 sub-basins with an average area of 8 km2 (min. 0.2 km2 ̶ max. 28 

km2). Since the study area did not have steep slope areas and was almost flat, the watershed 

topography was grouped into four slope classes of 0-2%, 2-4%, 4-6%, and >6%. Existing waterbodies 

including ponds in the watershed were obtained from USDA (2009) and modeled these waterbodies 

as ponds in each sub-basin (Appendix 1). The SSURGO soil database (USDA, 1995), the finest 

resolution soil data available, was used to define soil attributes in the watershed (Appendix 2). The 

land cover uses in the watershed were obtained from the 2014 crop layer map (USDA, 2014). The 

cultivated land cover types were further separated into irrigated and non-irrigated lands by using the 

center pivot irrigation locations. These locations are based on the 2014 one-meter resolution aerial 

images (https://datagateway.nrcs.usda.gov/). It was found that there were 30 pivot circles 

encompassing 13.67 km2 (12.1%) of irrigated land dedicated for cotton production in the FMC area. 

Overlaying these land cover types, soil and slope classes with respective SWAT threshold 

percentages of 10% for land, 10% for soil and 20% for slope in each sub-basin resulted into 15,217 

unique homogeneous units, called Hydrologic Response Units (HRUs) in the watershed. An HRU in 

SWAT captures watershed diversity by combining similar land, soil and slope areas in each sub-

basin. In SWAT, loadings of water, sediments, and crop yield are calculated first at HRU level, 

summed at each sub-basin and then routed to the watershed outlet. 

These HRUs were assigned agricultural BMPs (conservation tillage, no-till, contouring, crop 

rotation, and conversion to pasture - Bermuda grass) that are most commonly practiced in the study 

area. Existing contour in the study watershed were identified by using aerial photographs. The broken 

terraces were recognized using two-meter Lidar drainage lines as indicated in Figure 3. The HRUs 

with more than 65% contour were classified as being terraced with contour farming. It was found that 

8 km2 of FMC were terraces and contour without breaking, which modeling them resulted into 28% 

reduction in sediment.  
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Model calibration and validation 

First, the model was calibrated manually and then automated iterative calibration was performed 

using SWAT-CUP tool (Abbaspour et al., 2007) for three important components: streamflow, 

sediment, and crop yield. Operation management parameters and associated cropping schedules were 

adjusted manually. Model sensitivity was tested prior to model calibration to determine the most 

sensitive parameters. Observed data on streamflow, crop yields and sediment loads from 1990 to 

2010 were used for model calibration and validation. Three different statistical matrices- coefficient 

of determination (R2), Nash-Sutcliffe efficiency (M/NSE for streamflow and Modified NSE for 

sediment) and percent bias (Pbias) were used to evaluate the model performance. 

The coefficient of determination (R2) is the square of Pearson’s product-moment correlation 

coefficient (Legates and McCabe, 1999). It represents the proportion of total variance in the observed 

data that can be explained by a linear model and ranges from 0 to 1 with 1 being the perfect fit. 

	ܴଶ ൌ
ൣ∑ ሺܳ௠,௜ െ തܳ௠ሻሺܳ௦,௜ െ തܳ௦ሻ௜ ൧

ଶ

∑ ሺܳ௠,௜ െ തܳ௠ሻଶ ∑ ሺܳ௦,௜ െ തܳ௦ሻଶ௜௜

 (1) 

Where, Q is a variable (e.g. discharge), m and s stand for measured and simulated, i is the ith 

measured or simulated data.  

The Nash-Sutcliffe (NSE) (1970) is used to evaluate the predictive power of hydrological models 

and it can range from −∞ to 1, with 1 being the perfect fit 

ܧܵܰ	 ൌ 1 െ
∑ ሺܳ௠ െ ܳ௦ሻ௜

ଶ
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 (2) 

Where, Q is a variable (e.g. discharge), m and s stand for measured and simulated respectively, 

and the bar stands for average.  

The Modified Nash-Sutcliffe efficiency factor (MNSE) is reported to be more sensitive to 

significant over or under prediction than the square form. 

ܧܵܰܯ ൌ 1 െ
∑ |ܳ௠ െ ܳ௦|௜

௣
௜

∑ หܳ௠,௜ െ തܳ௠ห௜
௣

௜

 (3) 
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If p=2 then this is simply NSE as in above. If p=1, the overestimation of a peak is reduced 

significantly.  

Percent bias (Pbias) is the deviation of data being evaluated, expressed as a percentage, 

measuring the average tendency of simulated data to be larger or smaller than the observations. 

ܾܲ ൌ 100 ∗
∑ ሺܳ௠ െ ܳ௦ሻ௜
௡
௜

∑ ܳ௠,௜
௡
௜

 (4) 

 

Streamflow calibration 

The model was calibrated for monthly streamflow observed at the USGS gaging station- Cobb 

Creek near Eakely gage (USGS 07325800) for a ten-year period (1991–2000). Prior to model 

calibration, the sensitivity of the model to streamflow was tested in SWAT-CUP for 17 parameters. 

The p-value and t-state indicators were used to identify the most sensitive parameters in the 

watershed. The smaller the p-value and the larger the absolute value of t-state, the more sensitive the 

parameter is. The six parameters related to water balance: Curve number (CN), soil evaporation 

compensation factor (ESCO), groundwater delay (GW_DELAY), deep aquifer percolation fraction 

(RCHRG_DP), Manning’s n value for the main channel (CH_N2), and available water capacity of 

soil layer (SOL_AWC) were found to be the most sensitive in the watershed (Appendix 4), similar to 

what other studies found (Moriasi et al., 2008; Storm et al., 2006). 

According to Moriasi et al. (2015), model performance can be judged “satisfactory” for flow 

simulations if daily, monthly, or annual R2 > 0.60, NSE > 0.50, and PBIAS ≤ ±15% for watershed-

scale models. The model was calibrated satisfactorily for streamflow with values of R2 (0.64) and 

NSE (0.61) and Pbias (5.1%) (Figure 4). The validation of the model with an independent set of 

monthly observed streamflow at the same gage station for a different ten-year period (2001–2010) 

indicated a robust model performance with values of R2 (0.79) and NSE (0.62) and Pbias (-15%) 

(Figure 5). Calibrated parameters and their final value ranges are listed in Table 1. 
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Figure 4. Observed and calibrated SWAT simulated streamflow at Cobb Creek near Eakley, OK 

(1991-2000) 

 

 

Figure 5. Validation monthly time series (2001–2010) for observed and SWAT predicted streamflow 

at the Cobb Creek near Eakley, Oklahoma gauging station 

 

Sediment 

Suspended sediment was calibrated for ten years (1991–2000) and validated for another ten years 

(2001–2010) at the watershed outlet. For this grab sample data that were available from 2004 to 2012 

(usually 1 to 3 samples per month with a few months missing) was used. This grab sample data 
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provided us an opportunity to estimate sediment loads for the time period that lacked observations 

using a sediment rating curve method. It is a regression relationship between the observed streamflow 

and sediment data used popularly to generate sediment information for missing period in many 

modeling studies (Jothiprakash and Grag, 2009; Salimi et al., 2013; Sarkar et al., 2008; Shabani, 

2012; Gray and Simoes, 2008). A strong correlation (R2=0.9) between the observed grab sample 

sediment data and runoff in the study watershed (Figure 6) was observed and used this regression 

relationship to estimate the missing sediment data for the model simulation period.    

Despite the use of the filled in grab sample data there were still  gaps in measurements and 

because of the dispersed nature of sediment, the model for monthly sediment loads was calibrated by 

modifying ten parameters that were related to sediment load (Storm et al., 2006; Moriasi et al., 2008). 

According to Moriasi et al. (2015), model performance at the watershed scale can be evaluated as 

“satisfactory” if monthly R2 > 0.40 and MNSE > 0.40 and daily, monthly, or annual PBIAS ≤ ±20% 

for sediment. The model calibration with values of R2 (0.30), MNSE (0.35) and Pbias (<20%), 

(Figure 7) and validation with values of R2 (0.33), MNSE (0.43) and Pbias (<55%) (Figure 8) was 

considered acceptable. Calibrated parameters and their final value ranges are listed in Table 1. 

It was found that the largest errors in sediment prediction were associated with errors of peak 

flow estimation. This could be due to the “second storm effect” problem in hydrological models, 

including SWAT (Abbaspour et al. 2007). The first storm event causes a larger sediment transport 

and makes remaining surface layers difficult to mobilize. As a result, the second and third storm 

events regardless of their event sizes, will result in smaller sediment loads. For this study area, the 

“second storm effect” was not tested since there were no observed sediment data representing flood 

events (May 1993, June 1995, June 2007) during model calibration-validation period. The simulated 

sediment data failed to accurately capture these events, resulting uncertainty in sediment calibration. 

The over-and under-estimation of sediment during flood events was reported in other SWAT based 

studies (Oeurng et al., 2011). 
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Figure 6. Observed daily discharge and observed daily suspended sediment concentration trend 

 

Table 1. Streamflow and sediment calibration parameter values in study area 

Component Parameter Parameter value range Final value 

Streamflow 

V__GWQMN.gw 0.20_0.60 0.60 
V__GW_REVAP.gw 0.02_0.03 0.02 
V__REVAPMN.gw 0.50_1.50 1.38 
V__RCHRG_DP.gw 0.10_0.50 0.47 
V__GW_DELAY.gw 320_390 376 
R__CN2.mgt -0.16_-0.13 -0.13 
V__ALPHA_BF.gw 0.80_1.00 0.95 
V__ESCO.hru 0.80_0.90 0.83 
V__EPCO.bsn 0.10_0.60 0.30 
V__CH_K1.sub 0.00_0.40 0.09 
V__SURLAG.bsn 0.50_4.00 3.05 
V__EVRCH.bsn 0.00_0.50 0.34 
V__TRNSRCH.bsn 0.00_0.10 0.10 
V__ALPHA_BNK.rte 0.60_1.00 0.84 
R__SOL_AWC(..).sol -0.02_0.06 0.04 
V__CH_N2.rte 0.05_0.30 0.18 
V__CH_K2.rte 1.85_2.15 1.98 

Sediment 

R__USLE_P.mgt -1.000_0.000 -0.240 
R__SLSUBBSN.hru 0.000_0.230 0.217 
R__USLE_K().sol -0.500_0.300 -0.247 
V__RSDCO.bsn 0.010_0.100 0.083 
V__BIOMIX.mgt 0.000_0.300 0.297 
V__SPCON.bsn 0.000_1.000 0.009 
V__SPEXP.bsn 1.000_2.000 1.714 
V__CH_ERODMO(..).rte 0.050_0.700 0.355 
V__CH_COV1.rte 0.001_0.800 0.518 
V__CH_COV2.rte 0.001_0.800 0.332 

Note: “R” before the parameter name stands for relative change (the parameter is multiplied by 1+value); “V” stands for 
replacement (the parameter is replaced by a value within the range)  
 

y = 1.9746x + 3.6951
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Figure 7. Observed and calibrated SWAT simulated suspended sediment concentration at Cobb 

Creek near Eakley, OK (1991-2000) 

 

 

Figure 8. Observed and validated SWAT simulated suspended sediment concentration at Cobb Creek 

near Eakley, OK (2001-2010) 

 

Crop yield  

Crop yield and biomass production affect watershed hydrology through altered erosion and water 

balance (Hu et al. 2007; Ng et al. 2010a; Andersson et al. 2011; Nair et al. 2011). A combination of 
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the OSU variety trial data from 2001 to 2016 (http://croptrials.okstate.edu/), and the county level 

NASS data (1986–2005) were used to calibrate yield of crops (winter wheat, grain sorghum, cotton- 

both dry and irrigated) (USDA-NASS, 1986 to 2005, 

http://digitalprairie.ok.gov/cdm/ref/collection/stgovpub/id/11177). The variety trial crop yields were 

collected from sites in seven counties (Apache, El Reno, Homestead, Chickasha, Altus, Tipton, and 

Thomas) that are located within and nearby the study area. A list of crop yield parameters with their 

initial and calibrated values is provided in Appendix 5 (a, b). In this study the coefficient of 

determination (R) was used as an indicator to compare the SWAT simulated yield with the 

observation. The values of R for cotton, grain sorghum and winter wheat, grain sorghum, and cotton 

were 0.4, 0.32 and 0.61 respectively which are deemed satisfactory as reported by other studies. 

Based on the previous research in this area, the average yields for  hay, alfalfa, rye, native 

pasture, and Bermuda grass yield in the study area were set at 2000, 3000, 3000, 1500, and 6500 

kg/ha respectively.   

 

Scenarios of agricultural Best Management Practices 

Studies identified sedimentation as one of the water quality issues in the region with the 

associated ecological and economic impacts (Zhang et al., 2015). As a result, various agricultural 

BMPs have been implemented in the watershed to abate sediment loading and transport (Becker, 

2011). Despite these efforts, there are still soil erosion problem in agricultural fields causing degraded 

water quality in the region.  

Five scenarios that reflect the commonly used agricultural BMPs in the study area and throughout 

the Great Plains region were developed (Table 2). A combination of land use and these five scenarios 

resulted into 22 SWAT model simulations. In scenarios 1–4, the study area was simulated for one 

crop at a time by converting all crops into one (for example, all crops converted to wheat and so on). 

In scenario 5, all the cropland in the study area was converted to Bermuda grass. Bermuda grass was 
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chosen because producers are having success in cropland conversion in the FCR watershed (result of 

a meeting with Nolan (2017)). 

 

Table 2. Agricultural Best Management Practices (BMPs) scenarios simulated for, cotton, grain 

sorghum and winter wheat to evaluate their impacts on hydrology, sediment and crop yield in the 

study area 

Code BMP Scenario Description 

BL Baseline  Simulation under the calibrated and validated model with 14 land 
uses, 8 km2 FMC under contour farming 

S1 Conservation tillage and strip 
cropping 

BMP applied to cotton, grain sorghum, and winter wheat. No 
changes made to hay and alfalfa. Data obtained from NASS (2014), 
Storm et al. (2003) and Storm et al. (2006). Total three simulations, 
one for each crop. 

S2 Conservation tillage on contour 
Applied contour on scenarios 1; 97 km2 additional contour as 
compared to the baseline scenario. Resulted three simulations, one 
for each crop. 

S3 

No-till and strip cropping 
i.No-till wheat in rotation with 

canola 
ii.No-till wheat as a cover crop 

for cotton 
iii.No-till wheat as a cover crop 

for grain sorghum 

All tillage practices were removed while management practices 
were kept the same; applied to cotton, grain sorghum and winter 
wheat. 
Because of weed and disease problems associated with continuous 
no-till wheat, wheat was rotated/cover coped with (i) canola, (ii) 
cotton and (iii) grain sorghum. Total five simulations, one for each 
crop. 

S4 No-till on contour 
Applied contour on Scenario 3. Resulted five simulations, one for 
each crop. 

S5 Conversion to pasture 
All crops were converted to Bermuda grass pasture. A combination 
of three grazing start months (May, June and July) and two stocking 
rates (1,200 and 1,600 kg) were applied. Total of six simulations. 

Note: Details of each scenario are provided in Appendix 6  

Results 

Surface runoff 
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Figure 9. Average surface runoff generated under each agricultural Best Management Practice 

scenario and the baseline scenario 

All five scenarios except for S3 with wheat-cotton and wheat-canola rotations and cotton in S1 

and S3 decreased surface runoff compared with the baseline scenario (Figure 9). Under conservation 

tillage, it was found that surface runoff would reduce by 18.4% for cotton and grain sorghum and by 

19.2% for winter wheat when contouring is applied on conservation tillage. Similarly, implementation 

of contouring on the existing no-till BMP (S4) led to reduction in runoff by 18.4% (cotton and grain 

sorghum) and 19.4% for wheat compared to the no-till BMP (S3). Between the three major crops in 

scenarios 1 to 4, grain sorghum was the least runoff generator followed by winter wheat and cotton. 

The scenario 5 (S5) in which all crops were converted to Bermuda grass generated the least amount of 

surface runoff as compared to rest of the scenarios. Application of two different grazing operations 

and stocking rates in S5 resulted virtually the similar runoff generation (37.96 to 38.08 mm) with less 

than one-third of a percentage point difference between them. Of the 22 combinations of agricultural 

BMPs simulated in all five scenarios, wheat rotated with cotton under no-till BMP resulted the 

highest runoff followed by wheat rotated with canola. Also, there is no change in surface runoff by 

changing the tillage system (conservation to no-till system). 
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Sediment 

 

Figure 10. Average annual sediment loss (tons per hectare) under each five agricultural Best 

Management Practices scenarios compared with the baseline scenario 

 

Simulation results revealed that implementation of contouring practice on conservation tillage (S1 

and S2) and on no-till (S3 and S4) would reduce sediment loss nearly by half (Figure 10 and Table 3). 

Between all 22 combinations of agricultural BMPs, cotton was the lead contributor to sediment loss. 

For cotton, contour no-till practice generated the least sediment loss (1.27 tons/ha) while the 

conservation tillage with no contouring contributed to the most sediment loss (3.01 ton/ha). Wheat’s 

contribution to sediment loss was as half as that of grain sorghum and one-fourth of that of cotton 

(S1–S4). Wheat, under the conservation tillage with contour (S2), was the least contributor of 

sediment loss (0.4 ton/ha). Rotating wheat with canola was found to be the most effective in 

controlling sediment loss under no-till system with only 0.87 ton/ha loss as compared to wheat as a 

cover crop for cotton (2.0 ton/ha) and grain sorghum (1.57 ton/ha). Converting all crops to Bermuda 

grass pasture with combinations of different grazing time and stocking rate (S5) resulted only 0.10 to 

0.12 ton/ha sediment loss. It was found virtually no difference between the combination of grazing 

timing and stocking rate on the amount of sediment loss. 
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Table 3. Sediment reduction in percentage as a result of contouring on conservation tillage and no-till 

practices for cotton, grain sorghum and winter wheat in FMC sub-watershed  

Grain sorghum Cotton Wheat 
Conservation 
tillage 

No-till 
Conservation 
tillage 

No-till 
Conservation 
tillage 

No-till (In cover cropping/rotation with) 
Grain sorghum Cotton Canola 

44 44 45 46 43 46 43 43 
 

Four of 11 sub-basins in FMC (#7, 15, 16, 18) had high average sediment rate (1.2–1.5 ton/ha) 

(Figure 11.a) under the baseline scenario compare to other sub-basins. Almost half of these sub-

watersheds have fine sandy loam soil texture and half silty clay loam which are more erosive soils. 

Also, 20% of crops in this area are cotton (both irrigated and dry), which is one of the reasons for 

high rate of sediment. The amount and location of these sediment loadings varied between the 

scenarios. For example, 90% of sediment load was reduced under Bermuda grass scenario (S5), while 

it was increased by 76% with cotton under no-till and 135% with cotton under conservation tillage. 

Figure 11 illustrates the change of sediment rate in different subbasins of watershed when all cropland 

in the watershed is converted to each BMP.  As shown above in Figure 10, the least erosion occurs 

with Bermuda grass (Figure 11, panel b) and the greatest amount of erosion occurs with cotton 

(Figure 11, panels e, f, g, and h). 
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a. Baseline 

 
b. Conversion to Bermuda grass 

 
c. Wheat with conservation tillage and contour 

 
d. Grain sorghum with no-till contour

 
e. Cotton with no-till 

 
f. Cotton with no-till and contour

 
g. Cotton with conservation tillage   

h. Cotton with conservation tillage and contour 

Figure 11. SWAT simulated sediment loadings (tons/ha) in Five-Mile Creek sub-watershed under baseline, best and worst scenarios at sub-basin 

level Error! Reference source not found.
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Crop yield 

It was found that there was no significant effect of contouring and tillage systems on simulated 

yields for cotton, grain sorghum and winter wheat. Under the no-till practice, grain sorghum yield 

covered with wheat increased by 18.5% (S3 and S4). It was found that covering/rotated with winter 

wheat resulted into reduced yield for both cotton and grain sorghum regardless of contouring (S3 and 

S4). When covering/rotated with winter wheat, cotton yield decreased by 52% with or without 

contouring while grain sorghum yield decreased by 28.4% (no contour) and by 14.8% with contour 

(S3 and S4). The reason is that this region is water limited region and by rotating crops with wheat in 

no-till system, there will be wheat residues on the fields once the crop (cotton or grain sorghum) is 

being planted, hence the moisture of the soil will not be enough for the second crop (cotton or grain 

sorghum) and it will reduce their yield. This reduction in cotton yield is more than grain sorghum 

yield when they are being rotated/covered with wheat. In the hypothetical scenario of converting all 

crops into Bermuda grass pasture (S5), it was found that there was virtually no effect of stocking rate 

on grazing start month on yield (Figure 12).  

 

 

Figure 12. Crop yields under different agricultural Best Management Practices scenarios  
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Discussion 

As of 2005, approximately 89% of the FCR watershed lands were devoted to the agricultural 

production of row crops like wheat, grain sorghum, cotton, peanuts, and pasture (Becker, 2011). In 

order to reduce erosion in FCR watershed, a series of BMPs has been implemented (OCC, 2014). The 

federal government currently offers conservation programs to install new tillage or cropping systems 

(USDA, Farm Service Agency [FSA], 2016). Some farmers have removed the more erosive parts of 

their land from crop production and planted Bermuda grass (USDA-FSA, 2015). Most farms have 

received financial and technical assistance and installed terraces where needed. According to Zhang 

et al. (2015), the average sedimentation rates in the FCR were three to five times higher during the 

1957 to 1963-time period than during the 1964 to 2011 period and it is because of the implementation 

of numerous conservation measures in the watershed, including check dams, terraces, changing 

cropping patterns, and progressive adoption of no-till and conservation tillage systems. However, as 

of 2013, measures have not reduced sediment loads in the FCR watershed to target levels (ODEQ, 

2014). This research is evaluating the effectiveness of additional crop/agricultural BMPs in this 

region on water quality and quantity and crop yield in the FMC area of FCR watershed. 

The Fort Cobb Reservoir (FCR) watershed is a typical example of agriculture-pasture intensive 

watershed in the US Great Plains that can be used as a test bed for simulating the impacts of 

agricultural activities in combination with various BMPs on water quality and quantity. The FCR 

watershed contains a multi-purpose lake that has been beneficially used for water supply, recreational 

tourism and aesthetics (OCC, 2009 - p4).  

Effect of contouring on runoff, sediment loss and crop-yield: Contour farming and terracing are 

recommended conservation practices in the western gently sloping part of Oklahoma (Nelson, 1937). 

Contour farming across the slopes and following contour lines reduces the formation of gullies and 

rill in heavy runoff period and consequently, reduces erosion. Terracing is used to prevent rainfall 

runoff causing soil erosion by cutting wide steps around the slopes of hills. These two are one of the 

most technically efficient BMPs in this region, and therefore, used as one of the strategies in this 
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research. In this study area, it is estimated that 90 percent of the land where terraces are practical has 

been terraced to reduce the erosion (Garbrecht, et al., 2009). Contour with either conservation tillage 

or no-till farming prevented sediment loss by almost half. It was also found that contouring practice 

reduced surface runoff by more than 18% in both conservation tillage and no-till practices for all 

crops.  

Effect of tillage on runoff, sediment loss and crop-yield: Garbrecht et al. (2008) stated that over 

the last decades, 50% of cropland was under the minimum tillage or conservation tillage system 

cropping or no-till in the FCR watershed. It was found that conservation tillage and no-till practices 

on cotton and grain sorghum have virtually no effect on surface runoff and crop-yield. Compared to 

the conservation tillage practice, no-till decreased sediment loss by 25.3% and 9.0% for cotton and 

grain sorghum respectively.  

Effect of crop rotation/cover cropping on runoff, sediment loss and crop-yield: It was found 

that surface runoff decreased for sorghum (-4.6% vs. -8.1% with contour) and increased for cotton 

(+5% regardless of contouring) when these crops were rotated with winter wheat. The effect of wheat 

as cover crop for grain sorghum generated lowest runoff followed by its rotation with canola and 

cotton regardless of contouring. Sediment loss increased for sorghum (13.7% vs. 8.0% with contour) 

and it decreased for cotton (11.0% regardless of contouring) when these crops were rotated with 

winter wheat. The sediment loss was the highest for cotton followed by grain sorghum and canola 

when rotated with winter wheat regardless of contouring. The reason of increasing sediment loss once 

there was rotation or cover cropping is that this region is water limited region and rotation with wheat 

will take the moisture of soil once planting and having wheat on the ground. Yields of both cotton and 

grain sorghum decreased once winter wheat was used as a cover crop for cotton and grain sorghum,. 

Cotton yields decreased by 52.2% regardless of contouring (51% dry land cotton and 62% irrigated 

lands cotton). Grain sorghum yields decreased by 28.4% vs. 14.8% under contour farming. Winter 

wheat yield remained virtually the same when rotated with canola and used as a cover crop for grain 

sorghum and cotton regardless of contouring. Osei (2016) applied three conservation practices in the 
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FCR watershed to find the optimal distribution of conservation practices and indicated that no-till 

winter wheat production in central Oklahoma results in a small cost reduction while maintaining 

yields and is the win-win option. But since continuous no-till wheat is not possible because of weeds 

and other disease, it is not the good scenarios for adoption. 

Effect of converting crops into pasture on runoff, sediment loss and crop-yield: Garbrecht et al. 

(2008) stated that substantial reduction in sediment yield in FCR watershed in the second half of the 

20th century was related to conversion of cropland to pasture land. They stated that from 1940-1948, 

about 72% of the FCR watershed was in agricultural production and only 25% was in pasture, and 

there were no conservation practices before 1950. At the beginning of 21th century (2004-2007), only 

about 52% of watershed was in agricultural production and 36% was in pasture or grass lands. It was 

found that converting all the crops in the watershed into Bermuda grass would significantly reduce 

runoff by 6.8 to 38.5%, and decrease sediment loss by 72.5 to 96.3%. However, it was found virtually 

no effect of two different stocking rates (1,200 and 1,600) on three grazing timings on surface runoff 

and sediment loss. Osei (2016) in the research on FCR watershed indicated that although conversion 

to pasture entails a significant cost to farmers, it leads substantial and consistent reductions in all 

environmental indicators (runoff volumes and sediment and nutrient losses), which is same as this 

study’s results.   

Success of the BMP installation in the FCR watershed is of interest to many groups because 

erosion and transport of sediment and associated nutrients are common problems in other agricultural 

watersheds (Becker, 2011). Moreover, state and federal funding has supported the implementation of 

conservation practices in the watershed (Steiner and others, 2008). Boyer et al. (2017) stated that 

farming experience, gender and attitudes towards soil and water conservation increases the total 

number of practices adopted. According to Tong et al. (2017), negative externalities are the main 

challenges for adoption of conservation practices in the FCR watershed, and this point indicates the 

need for new extension educational efforts, economic incentives from government, and research 

efforts to reduce to negative externalities. These negative effects of sediment and other NPS 
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pollutions are not paid for by the producers and landowners. Instead, downstream users (e.g. 

recreationists and municipal systems) face the costs. The principal approach for adoption of 

conservation practices for reduction of NPS pollution from agricultural fields in USA is subsidizing 

adoption of conservation practices instead of taxing inputs like sediment and phosphorous. So, there 

should be motivations from government for landowners and producers to implement conservation 

practices. In this regard, apart from the environmental impact of different agricultural BMPs, there 

should be economic consideration of these management practices for selecting the most cost efficient 

BMPs since funding agencies are better appreciating the link between farm economics and producer 

adoption of the conservation practices.  

 

Conclusions 

Response of surface runoff, sediment loss and crop-yield was investigated under five 

different agricultural BMPs in an agriculture-pasture intensive watershed located in southwestern 

Oklahoma.  SWAT model was applied to develop the hydrological model and to quantify the pre- and 

post-BMP implementation characteristics in the FMC sub-watershed. First, the model was 

satisfactory calibrated and validated for streamflow, sediment, and crop yields with consideration of 

existing BMPs in the watershed. Then some 22 different crop-BMP scenarios were simulated in each 

of the crop HRUs in the watershed. Through the evaluation of agricultural BMPs in the watershed, 

efforts can be made to implement the more successful BMPs in the catchment or in other similar 

catchments. 

According to the results, contour tillage practices reduced surface runoff by more than 18% in 

both conservation tillage and no-till practices for all crops. Also, contour farming with either 

conservation tillage or no-till practice reduced sediment loss by almost half. Compared to the 

conservation tillage practice, no-till system decreased sediment loss by 25.3% and 9.0% for cotton 

and grain sorghum respectively. Since continuous no-till wheat is not practical because of weeds and 
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other diseases, no-till wheat was simulated in rotation/cover cropped with other crops. On dryland, 

wheat as a double or cover crop reduced soil moisture available for the subsequent crop. As a result, 

there was an increase in the sediment rate compared to wheat with conservation tillage. Also, the 

effect of wheat as a cover crop for grain sorghum generated lowest runoff followed by its rotation 

with canola and cotton regardless of contouring. Surface runoff decreased for grain sorghum rotated 

with wheat, but increased for cotton rotated with winter wheat. Meanwhile, sediment loss increased 

for both cotton and grain sorghum rotated with winter wheat and the reason was that this region is 

water limited region and rotation or cover cropping with wheat will take the moisture of soil once 

planting and having wheat on the ground. At the end, converting all the crops in the watershed into 

Bermuda grass would significantly reduce runoff by 6.8 to 38.5%, and decrease sediment loss by 72.5 

to 96.3%. 
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Appendix 

Appendix 1. Reservoir and Ponds Information in the SWAT model 

Sub-
basin 

principle 
surface 
area (ha) 
PND_PSA 

principle 
volume 
(10^4 m3) 
PND_PVOL 

emergency 
spillway 
surface 
area (ha) 
PND_ESA 

emergency 
spillway 
volume (10^4 
m3) 
PND_EVOL 

drainage 
area 
(ha) 

sub-
basin 
area (ha) 

drainage 
area/ sub-
basin area 
PND_FR 

1 1.52 3.05 2.29 4.57 45.7 1214.17 0.04 
2 2.65 5.31 3.98 7.96 79.6 694.81 0.11 
3 1.09 2.18 1.64 3.27 32.7 2112.78 0.02 
4 - - - - - - - 
5 4.84 9.69 7.27 14.53 145.3 570.03 0.25 
6 20 40.30 30 62.45 724.5 784.94 0.92 
7 2.06 4.11 3.08 6.17 61.7 625.04 0.10 
8 1.93 3.86 2.90 5.79 57.9 817.80 0.07 
9 6.29 12.59 9.44 18.88 37.74 37.74 1.00 
10 0.84 1.67 1.26 2.51 25.1 697.89 0.04 
11 12.62 25.24 18.93 37.86 57.45 57.45 1.00 
12 0.04 0.07 0.06 0.11 1.1 23.70 0.05 
13 20 41.71 30 62.56 925.6 2822.14 0.33 
14 7.54 15.09 11.31 22.63 226.3 571.50 0.40 
15 7.94 15.89 11.92 23.83 238.3 882.17 0.27 
16 4.37 8.73 6.55 13.10 131.0 1823.63 0.07 
17 - - - - - - - 
18 5.37 10.73 8.05 16.10 161.0 1185.20 0.14 
19 20 40.48 30 62.73 727.3 1139.11 0.64 
20 20 40.68 30 62.02 730.2 2560.27 0.29 
21 - - - - - - 
22 11.80 23.60 17.70 35.40 354.0 1574.00 0.22 
23 5.96 11.92 8.94 17.88 178.8 1596.47 0.11 
24 1.42 2.84 2.13 4.25 42.5 773.11 0.06 
25 8.95 17.89 13.42 26.84 268.4 1665.47 0.16 
26 3.77 7.53 5.65 11.30 113.0 1415.00 0.08 
27 1.85 3.69 2.77 5.54 55.4 560.79 0.10 
28 0.04 0.07 0.05 0.11 1.1 53.39 0.02 
29 3.18 6.36 4.77 9.54 95.4 952.56 0.10 
30 3.26 6.51 4.89 9.77 97.7 888.28 0.11 
31 0.26 0.52 0.39 0.79 7.9 218.01 0.04 
32 0.15 0.30 0.23 0.45 4.5 64.24 0.07 
33 7.42 14.85 11.14 22.27 222.7 753.34 0.30 
34 6.19 12.39 9.29 18.58 185.8 1328.45 0.14 
35 - - - - - - - 
36 2.48 4.96 3.72 7.44 74.4 919.52 0.08 
37 - - - - - - - 
38 - - - - - - - 
39 1.51 3.02 2.27 4.53 45.3 904.65 0.05 
40 0.07 0.14 0.11 0.21 2.1 217.57 0.01 
41 1.83 3.66 2.74 5.49 54.9 655.48 0.08 
42 0.09 0.18 0.13 0.27 2.7 198.45 0.01 
43 2.42 4.83 3.62 7.25 72.5 748.99 0.10 
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Appendix 2. Soil characteristics for each soil ID (SSURGO database) 

MUID SEQN SNAM S5ID Texture 

381869 508001 Acme OK015 SICL-BR 

381870 508004 Grant OK015 L-L-SIL-L-BR 

381871 508011 Binger OK015 FSL-SCL-BR 

381872 508018 Binger OK015 FSL-SCL-BR 

381873 508023 Binger OK015 FSL-SCL-BR 

381874 508024 Binger OK015 FSL-SCL-BR 

381875 508025 Binger OK015 FSL-SCL-BR 

381876 508027 Cyril OK015 FSL-L 

381879 508036 Darnell OK015 FSL-FSL-BR 

381881 508040 Dougherty OK015 LFS-LFS-SCL-FSL-LFS 

381882 508045 Dougherty OK015 LFS-LFS-SCL-FSL-LFS 

381883 508052 Eufaula OK015 FS-FS-FS 

381884 508058 Eufaula OK015 LFS-FS-FS 

381887 508073 Gracemont OK015 FSL-FSL-L 

381888 508077 Grant OK015 L-L-SIL-L-BR 

381889 508078 Grant OK015 L-L-SIL-L-BR 

381890 508079 Grant OK015 L-L-SIL-L-BR 

381891 508080 Grant OK015 L-L-SIL-L-BR 

381894 508088 Konawa OK015 LFS-SCL-LFS 

381895 508093 Konawa OK015 LFS-SCL-LFS 

381897 508095 Ironmound OK015 FSL-L-BR 

381898 508097 Ironmound OK015 FSL-L-BR 

381901 508107 Minco OK015 VFSL-SIL-SIL 

381902 508110 Minco OK015 VFSL-SIL-SIL 

381903 508111 Minco OK015 SIL-SIL-SIL 

381904 508112 Noble OK015 FSL-FSL 

381905 508118 Noble OK015 FSL-FSL 

381908 508130 Pond Creek OK015 FSL-SICL-L 

381909 508136 Pond Creek OK015 FSL-SICL-L 

381910 508142 Pond Creek OK015 SIL-SICL-L 

381911 508148 Pond Creek OK015 SIL-SICL-L 

381912 508154 Pond Creek OK015 SIL-SICL-L 

381913 508155 Port OK015 SIL-SIL-L 

381914 508162 Port OK015 SIL-SIL-L 

381915 508168 Pulaski OK015 FSL-FSL-SR LFS L 

381916 508174 Ironmound OK015 L-L-BR 

381918 508181 Minco OK015 SIL-SIL-SIL 

381920 508192 Darnell OK015 FSL-FSL-BR 

381921 508194 Lovedale OK015 FSL-SCL-SL-S 

381922 508200 Lovedale OK015 FSL-SCL-SL-S 
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381928 508213 Water OK015 water 

381929 508214 Woodward OK015 SIL-SIL-BR 

382310 507114 Carey OK039 SIL-SICL-L-BR 

382316 507133 Cornick OK039 SIL-BR-BR 

382325 507160 Grant OK039 L-L-L-L-BR 

382326 507161 Hardeman OK039 FSL-FSL 

382327 507162 Lucien OK039 VFSL-VFSL-BR 

382328 507164 Minco OK039 VFSL-VFSL-VFSL 

382332 507173 Pond Creek OK039 FSL-SIL-SICL-SIL 

382333 507179 Pond Creek OK039 SIL-SIL-SICL-SIL 

382334 507185 Pond Creek OK039 SIL-SIL-SICL-SIL 

382339 1170380 Quinlan OK039 SIL-SIL-BR 

382341 507217 Lovedale OK039 FSL-FSL-SCL-FSL 

382342 507218 St. Paul OK039 SIL-SICL-SICL-SICL-SIL 

382343 507224 St. Paul OK039 SIL-SICL-SICL-SICL-SIL 

382344 507225 St. Paul OK039 SIL-SICL-SICL-SICL-SIL 

382345 507227 Water OK039 water 

382348 507230 Woodward OK039 SIL-SIL-BR 

382349 507231 Woodward OK039 SIL-SIL-BR 

382350 507238 Woodward OK039 SIL-SIL-BR 

382351 507241 Quinlan OK039 SIL-SIL-BR 

384993 508521 Clairemont OK149 SIL-SIL 

384994 508527 Cordell OK149 SICL-SICL-GRV-SICL-BR 

384995 508528 Cordell OK149 SICL-SICL-GRV-SICL-BR 

384996 508530 Cornick OK149 SIL-BR-BR 

384997 508532 Devol OK149 LFS-FSL-LFS 

384998 508538 Devol OK149 LFS-FSL-LFS 

385003 508496 Altus OK149 FSL-FSL-SCL-SCL 

385004 508565 Dill OK149 FSL-FSL-BR 

385005 508567 Dill OK149 FSL-FSL-BR 

385007 508575 Dougherty OK149 LFS-LFS-SCL-FSL-LFS 

385011 508590 Hardeman OK149 FSL-FSL 

385012 508596 Hardeman OK149 FSL-FSL 

385013 508597 Hardeman OK149 FSL-FSL 

385018 508601 Pond Creek OK149 FSL-SICL-SIL 

385019 508607 Pond Creek OK149 FSL-SICL-SIL 

385020 508613 Port OK149 SIL-SICL-SIL 

385021 508619 Eda OK149 LFS-LFS-LFS 

385023 508622 Quinlan OK149 L-L-BR 

385024 508624 Quinlan OK149 L-L-BR 

385026 508626 Quinlan OK149 L-L-BR 

385027 508628 Quinlan OK149 FSL-L-BR 

385028 508630 Reinach OK149 SIL-SIL 
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385030 508637 Lovedale OK149 FSL-SCL-FSL-FSL 

385031 508643 Lovedale OK149 FSL-SCL-FSL-FSL 

385032 508644 St. Paul OK149 SIL-SICL-SICL-SICL-SIL 

385033 508650 St. Paul OK149 SIL-SICL-SICL-SIL 

385034 508656 St. Paul OK149 SIL-SICL-SICL-SIL 

385036 508511 Binger OK149 FSL-SCL-BR 

385037 508660 Woodward OK149 SIL-SIL-BR 

385038 508661 Woodward OK149 SIL-SIL-BR 

385039 508662 Woodward OK149 SIL-SIL-BR 

385040 508663 Woodward OK149 SIL-SIL-BR 

385041 508673 Woodward OK149 L-SIL-BR 

385042 508675 Woodward OK149 L-SIL-BR 

385044 508512 Binger OK149 FSL-SCL-BR 

385045 508513 Carey OK149 SIL-CL-L-BR 

385046 508514 Carey OK149 SIL-CL-L-BR 

385047 508515 Clairemont OK149 SIL-SIL 

385048 508682 Water OK149 water 
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Appendix 3 (a). Conventional (reduced) tillage for dryland crops and pasture 

Crop Date Operation 
Cotton 1.1 Tillage operation (Disk Plow Ge23ft) 

3.15 Tillage operation ( Disk Plow Ge23ft) 
5.15 Tillage operation   (Springtooth Harrow Ge15ft) 

6.1 
Tillage operation (Finishing Harrow Lt15ft) 
Pesticide Operation (Pendimehalin, 0.25 kg) 

6.10 Fertilizer application (Elemental Nitrogen, 50 kg) 
6.11 Plant 
7.1 Tillage operation (Row Cultivator Ge15ft) 
11.15 Harvest and kill 

Pasture 
 

1.1 Plant 
3.1 Auto fertilization 

5.1 
Grazing operation (Beef-Fresh Manure,  GRZ_DAYS*: 180, 
BIO_EAT*: 3, BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

Winter wheat 3.15 Fertilizer application (Elemental Nitrogen, 80 kg) 
6.1 Harvest and kill 
7.1 Tillage operation (Chisel Plow Gt15ft) 
8.1 Tillage operation (Offset Dis/heavduty Ge19ft) 

9.20 
Fertilizer application (Elemental Nitrogen, 80 kg) 
(Elemental Phosphorus, 35 kg) 

9.22 Tillage operation (Disk Plow Ge23ft) 
9.24 Tillage operation (Springtooth Harrow Lt15ft) 
9.25 Plant 

12.1 
Grazing operation (GRZ_DAYS*: 90, BIO_EAT*: 3, 
BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

Grain sorghum 5.1 Plant 
5.27 Fertilizer application (Elemental Nitrogen, 150 kg) 

5.28 
Tillage operation (Springtooth Harrow Ge15ft, Disk Plow 
Ge23ft, Mecoprop Amine, 125), Pesticide Operation 
(Mecoprop Amine, 125 kg) 

10.18 Tillage operation (Disk Plow Ge23ft) 
10.20 Tillage operation (Springtooth Harrow Ge15ft) 
10.30 Harvest and kill 

Alfalfa 4.1 Harvest only 
5.15 Harvest only 
7.1 Harvest only 

8.29 
Fertilizer application (Elemental Nitrogen, 50 kg), (Elemental 
Phosphorous, 20) 

9.7 Plant 
10.15 Harvest only 

Hay 4.1 Harvest only 
7.1 Harvest only 
8.29 Auto fertilization 
9.7 Plant 
10.15 Harvest only 

Rye 6.10 Harvest only 

8.10 
Fertilizer application (Elemental Nitrogen, 80 kg), (Elemental 
Phosphorous, 35) 

9.20 Plant 

9.15 
Grazing operation (GRZ_DAYS*: 150, BIO_EAT*: 3, 
BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 
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*AUTO_NSTRS: Nitrogen stress factor of cover/plant triggers fertilization. This factor ranges from 0.0 to 1.0 where 0.0 
indicates there is no growth of the plant due to nitrogen stress and 1.0 indicates there4 is no reduction of plant growth due to 
nitrogen stress.  
*GRZ_DAYS: Number of consecutive days grazing takes place in the HRU 
*BIO_EAT: dry weight of biomass consumed daily ((kg/ha)/day) 
* BIO_TRMP: dry weight of biomass trampled daily ((kg/ha)/day) 
*MANURE_KG: dry weight of manure deposited daily ((kg/ha)/day) 

 
Appendix 3 (b). Conventional (reduced) tillage for irrigated crops and pasture 

Crop Date Operation 
Cotton  1.1 Tillage operation (Disk Plow Ge23ft) 

3.15 Tillage operation ( Disk Plow Ge23ft) 
5.15 Tillage operation   (Springtooth Harrow Ge15ft) 

6.1 
Tillage operation (Finishing Harrow Lt15ft) 
Pesticide Operation (Pendimehalin, 0.25 kg) 
Irrigation operation (IRR_AMT*, 33 mm) 

6.10 Fertilizer application (Elemental Nitrogen, 50 kg) 
6.11 Plant 

7.1 
Tillage operation (Row Cultivator Ge15ft) 
Irrigation operation (IRR_AMT, 33 mm) 

7.8 till 9.15 
(One irrigation 
per week) 

Irrigation operation (IRR_AMT, 33 mm) 

11.15 Harvest and kill 
Pasture (Bermuda) 1.1 Plant 

3.1 Auto fertilization 
4.1 Auto irrigation  

5.1 
Grazing operation (Beef-Fresh Manure,  
GRZ_DAYS*: 180, BIO_EAT*: 3, BIO_TRMP*: 0.47, 
MANURE_KG*: 1.5) 

Winter wheat 3.15 Fertilizer application (Elemental Nitrogen, 80 kg) 
4.3 Auto irrigation 
6.1 Harvest and kill 
7.1 Tillage operation (Offset Dis/heavduty Ge19ft) 
8.1 Tillage operation (Chisel Plow Gt15ft) 

9.20 
Fertilizer application (Elemental Nitrogen, 80 kg) 
(Elemental Phosphorus, 35 kg) 
Auto irrigation 

9.22 Tillage operation (Disk Plow Ge23ft) 
9.24 Tillage operation (Springtooth Harrow Lt15ft) 
9.25 Plant 
11.3 Auto irrigation 

12.1 
Grazing operation (GRZ_DAYS*: 90, BIO_EAT*: 3, 
BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

Grain sorghum 5.1 Plant 
5.27 Fertilizer application (Elemental Nitrogen, 150 kg) 

5.28 
Tillage operation (Springtooth Harrow Ge15ft, Disk 
Plow Ge23ft, Mecoprop Amine, 125) 

6.1 Auto irrigation initial 
10.18 Tillage operation (Disk Plow Ge23ft) 
10.20 Tillage operation (Springtooth Harrow Ge15ft) 
10.30 Harvest and kill 
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*IRR_AMT: Depth of irrigation water applied on HRU (mm) 

 

Appendix 3 (c). No-till irrigated cotton with winter wheat as cover crop  

Crop Date Operation 
 

03.15 
Fertilizer application (Elemental Nitrogen, 80 kg) 
(Elemental Phosphorus, 30 kg) 

 04.03 Auto Irrigation 
Winter wheat 06.1 kill 
 06.2 Pesticide Operation (Pendimehalin, 0.25 kg) 
 06.03 Irrigation operation (IRR_AMT, 33 mm) 
 06.10 Fertilizer application (Elemental Nitrogen, 150 kg) 
Cotton 06.11 Plant 
 07.1 till 09.15 one 

irrigation in per week 
Irrigation operation (IRR_AMT, 33 mm) 

Cotton 11.1 Harvest and kill 
 

11.2 
Fertilizer application (Elemental Nitrogen, 80 kg) 
(Elemental Phosphorus, 35 kg) 

 11.2 Auto Irrigation 
Winter wheat 11.3 Plant 
 12.01 Auto Irrigation 
Winter wheat 

12.20 
Grazing operation (GRZ_DAYS*: 90, BIO_EAT*: 3, 
BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

 

Appendix 3 (d). Rotation of winter wheat with canola in dryland with no-till system 

Crop Year Date Operation 
Winter 
wheat 

Year 1 01.01 Plant wheat 
06.01 Harvest and kill 

09.20 
Fertilizer application (Elemental Nitrogen, 80 kg) 
(Elemental Phosphorus, 35 kg) 

09.25 Plant wheat 

12.01 
Grazing operation (GRZ_DAYS*: 90, BIO_EAT*: 3, 
BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

Winter 
canola 

Year 2 03.01 Fertilizer application (Elemental Nitrogen, 80 kg) 
06.01 Harvest and kill 

09.20 
Fertilizer application (Elemental Nitrogen, 38 kg) 
(Elemental Phosphorus, 15 kg) 

09.25 Plant winter canola 
Winter 
wheat 

Year 3 
04.01 

Fertilizer application (Elemental Nitrogen, 76 kg) 
(Elemental Phosphorus, 30 kg) 

06.10 Harvest and kill 

09.01 
Fertilizer application (Elemental Nitrogen, 80 kg) 
(Elemental Phosphorus, 35 kg) 

09.25 Plant wheat 

12.01 
Grazing operation (GRZ_DAYS*: 90, BIO_EAT*: 3, 
BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

Winter 
canola 

Year 3 03.01 Fertilizer application (Elemental Nitrogen, 80 kg) 
06.01 Harvest and kill 

09.20 
Fertilizer application (Elemental Nitrogen, 38 kg) 
(Elemental Phosphorus, 15 kg) 

09.25 Plant winter canola 
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Appendix 3 (e). Rotation of winter wheat with irrigated canola with no-till system 

Crop Year Date Operation 
Winter 
wheat 

Year 1 01.01 Plant wheat 
04.01 Auto irrigation 
06.01 Harvest and kill 
08.25 Auto irrigation 

09.20 
Fertilizer application (Elemental Nitrogen, 80 kg) 
(Elemental Phosphorus, 35 kg) 

09.25 Plant wheat 
11.11 Auto irrigation 

12.01 
Grazing operation (GRZ_DAYS*: 90, BIO_EAT*: 3, 
BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

Winter 
canola 

Year 2 03.01 Fertilizer application (Elemental Nitrogen, 80 kg) 
04.03 Auto irrigation 
06.01 Harvest and kill 

09.20 
Fertilizer application (Elemental Nitrogen, 38 kg) 
(Elemental Phosphorus, 15 kg) 

09.25 Plant winter canola 
Winter 
wheat 

Year 3 
04.01 

Fertilizer application (Elemental Nitrogen, 76 kg) 
(Elemental Phosphorus, 30 kg) 

06.10 Harvest and kill 
08.25 Auto irrigation 

09.01 
Fertilizer application (Elemental Nitrogen, 80 kg) 
(Elemental Phosphorus, 35 kg) 

09.25 Plant wheat 
11.03 Auto irrigation 

12.01 
Grazing operation (GRZ_DAYS*: 90, BIO_EAT*: 3, 
BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

Winter 
canola 

Year 3 03.01 Fertilizer application (Elemental Nitrogen, 80 kg) 
04.03 Auto irrigation 
06.01 Harvest and kill 

09.20 
Fertilizer application (Elemental Nitrogen, 38 kg) 
(Elemental Phosphorus, 15 kg) 

09.25 Plant winter canola 
 

Appendix 3 (f). Cover cropping of winter wheat with grain sorghum in dryland with no-till 

system 

Crop Year Date Operation 
Winter 
wheat 

Year 1  01.01 Plant wheat 
06.01 Harvest and kill 

10.01 
Fertilizer application (Elemental Nitrogen, 80 kg) 
(Elemental Phosphorus, 35 kg) 

10.01 Plant wheat 

12.01 
Grazing operation (GRZ_DAYS*: 90, BIO_EAT*: 
3, BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

 Year 2  03.15 Fertilizer application (Elemental Nitrogen, 80 kg) 
06.01 Harvest and kill 
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Grain 
Sorghum, 
Winter 
wheat 

Year 3  05.01 Fertilizer application (Elemental Nitrogen, 150 kg) 
05.01 Plant grain sorghum 
09.30 Harvest and kill 

10.01 
Fertilizer application (Elemental Nitrogen, 80 kg) 
(Elemental Phosphorus, 35 kg) 
Plant wheat 

12.01 
Grazing operation (GRZ_DAYS*: 90, BIO_EAT*: 
3, BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

 Year 4  03.15 Fertilizer application (Elemental Nitrogen, 80 kg) 
06.01 Harvest and kill 

 

Appendix 3 (g). Cover cropping of winter wheat with irrigated grain sorghum with no-till 

system 

Crop Year Date Operation 
Winter 
wheat 

Year 1  01.01 Plant wheat 
06.01 Harvest and kill 

10.01 
Fertilizer application (Elemental Nitrogen, 80 kg) 
(Elemental Phosphorus, 35 kg) 

10.01 Plant wheat 

12.01 
Grazing operation (GRZ_DAYS*: 90, BIO_EAT*: 3, 
BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

 Year 2 03.15 Fertilizer application (Elemental Nitrogen, 80 kg) 
04.01 Auto irrigation 
06.01 Harvest and kill 

Grain 
Sorghum, 
Winter 
wheat 

Year 3 05.01 Fertilizer application (Elemental Nitrogen, 150 kg) 
05.01 Plant grain sorghum 
06.01 Auto irrigation 
09.30 Harvest and kill 

10.01 
Fertilizer application (Elemental Nitrogen, 80 kg) 
(Elemental Phosphorus, 35 kg) 
Plant wheat 

12.01 
Grazing operation (GRZ_DAYS*: 90, BIO_EAT*: 3, 
BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

 Year 4 03.15 Fertilizer application (Elemental Nitrogen, 80 kg) 
04.01 Auto irrigation 
06.01 Harvest and kill 

 

Appendix 3 (h). Cover cropping of winter wheat with cotton in dryland with no-till system 

Crop Year Date Operation 
Winter 
wheat 

1 
09.20 

Fertilizer application (Elemental Nitrogen, 80 kg) 
(Elemental Phosphorus, 35 kg) 

09.25 Plant 

12.01 
Grazing operation (GRZ_DAYS*: 90, BIO_EAT*: 3, 
BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

Cotton 2 03.15 Fertilizer application (Elemental Nitrogen, 80 kg) 
06.01 Harvest and kill wheat 
06.02 Pesticide Operation (Pendimehalin, 0.25 kg) 
06.10 Fertilizer application (Elemental Nitrogen, 50 kg) 
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06.11 Plant 
11.04 Harvest and kill cotton 

 

Appendix 3 (i). Cover cropping of winter wheat with irrigated cotton with no-till system 

Crop Yea
r 

Date Operation 

Winter 
wheat 

1 
09.20 

Fertilizer application (Elemental Nitrogen, 80 kg) 
(Elemental Phosphorus, 35 kg) 
Auto Irrigation 

09.25 Plant 
11.03 Auto Irrigation 

12.01 
Grazing operation (GRZ_DAYS*: 90, BIO_EAT*: 3, 
BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

Cotton 2 03.15 Fertilizer application (Elemental Nitrogen, 80 kg) 
04.3 Auto Irrigation 
06.01 Harvest and kill wheat 

06.02 
Pesticide Operation (Pendimehalin, 0.25 kg) 
Irrigation operation (IRR_AMT, 33 mm) 

06.10 Fertilizer application (Elemental Nitrogen, 50 kg) 
06.11 Plant 
07.1 till 
09.15 one 
irrigation 
in per 
week 

Irrigation operation (IRR_AMT, 33 mm) 

11.04 Harvest and kill cotton 
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Appendix 4. Global sensitivity analysis results of SWAT-CUP for streamflow 

Parameter Description t-stat p-value 
6:R__CN2.mgt SCS Curve number adjustment for soil 

moisture condition II 
72.99 0.00 

8:V__ESCO.hru Soil evaporation compensation factor -55.38 0.00 
5:V__GW_DELAY.gw Groundwater delay [Days] 51.67 0.00 
4:V__RCHRG_DP.gw Deep aquifer percolation fraction 17.20 0.00 
16:V__CH_N2.rte Manning’s n value for the main 

channel 
-12.20 0.00 

15:R__SOL_AWC(..).sol Available water capacity of soil layer 
(mm H2O/mm soil) 

9.43 0.00 

14:V__ALPHA_BNK.rte base flow alpha factor for bank 3.32 0.00 
10:V__CH_K1.sub Effective hydraulic conductivity in 

tributary channel alluvium ((mmhr-1)) 
-2.88 0.00 

13:V__TRNSRCH.bsn Fraction of transmission losses 
partitioned to deep aquifer 

2.51 0.01 

7:V__ALPHA_BF.gw Baseflow Alpha Factor [Days] 2.09 0.04 
3:V__REVAPMN.gw Threshold depth of water in the 

shallow aquifer for "revap" to occur 
[mm] 

-1.06 0.29 

12:V__EVRCH.bsn reach evaporation adjustment factor -0.96 0.34 
17:V__CH_K2.rte Main channel conductivity -0.83 0.41 
9:V__EPCO.bsn Plant uptake compensation factor 0.75 0.46 
11:V__SURLAG.bsn Surface runoff lag coefficient -0.63 0.53 
1:V__GWQMN.gw Threshold depth of water in the 

shallow aquifer required for return 
flow to occur (mm) 

0.60 0.55 

2:V__GW_REVAP.gw Groundwater "revap" coefficient 0.14 0.89 
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Appendix 5 (a). Cotton yield calibration parameters 

Parameter 
Parameter definition Default 

value 
Calibrated 
value 

BIO_E [(kg/ha)/(MJ/m2)] Radiation use efficiency or biomass energy ratio 15 14 
USLE_C Minimum value of USLE C factor for water erosion 0.2 0.1 
HVSTI [(kg/ha)/( kg/ha)] Harvest index for optimal growing season  0.4 0.3 
OV_N Manning’s “n” value for overland flow 0.14 0.12 
BLAI (m2/m2) Maximum potential leaf area index 4 3 

FRGRW1(fraction) 
Fraction of plant growing season to the first point on 
the optimal leaf area development curve 

0.15 0.14 

FRGRW2 (fraction) 
Fraction of plant growing season to the second point 
on the optimal leaf area development curve 

0.5 0.3 

LAIMX1 (fraction) 
Fraction maximum leaf area index to the first point 
on the optimal leaf area development curve 

0.01 0.005 

CNYLD (kg N/kg seed) Normal fraction of nitrogen in yield 0.015 0.018 
CPYLD (kg P/kg seed) Normal fraction of Phosphorus in yield 0.0025 0.0027 

 

 Appendix 5 (b). Wheat, pasture, and grain sorghum yield calibration parameters 

Parameter 
Winter wheat Pasture Grain sorghum 
Default 
value 

Calibrated 
value 

Default 
value 

Calibrated 
value 

Default 
value 

Calibrated 
value 

BIO_E 
[(kg/ha)/(MJ/m2)] 

30 29 35 28 33.5 37 

USLE_C 0.03 0.02 0.003 0.003 0.2 0.2 
HVSTI [(kg/ha)/( 
kg/ha)] 

0.4 0.3 0.8 0.8 0.45 0.3 

OV_N 0.14 0.12 0.3 0.25 0.14 0.12 
BLAI (m2/m2) 4 3 4 2.5 3 4.5 
FRGRW1(fraction) 0.05 0.03 0.05 0.03 0.15 0.15 
FRGRW2 (fraction) 0.45 0.35 0.49 0.35 0.5 0.5 
LAIMX1 (fraction) 0.05 0.03 0.05 0.03 0.05 0.05 
CNYLD (kg N/kg seed) 0.025 0.02 0.0234 0.0134 0.0199 0.02 
CPYLD (kg P/kg seed) 0.0022 0.0018 0.0033 0.0022 0.0044 0.0032 
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Appendix 6. Definition of modeling of crop rotation in SWAT 

In rotation calculation, half of each HRU area was considered as one of the rotation crops and 

it was assumed that each year both crops would be planted in half of the field and the average of the 

sediment and surface runoff for those two scenarios was used in that year. 
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CHAPTER V 
 

 

EVALUATING THE LEAST COST SELECTION AND PLACEMENT OF CROPS AND 

AGRICULTURAL MANAGEMENT PRACTICES IN THE FIVE-MILE CREEK AREA OF 

FORT COBB WATERSHED 

Abstract 

The Fort Cobb Reservoir (FCR) watershed located in the Upper Washita River basin in 

southwestern Oklahoma provides multiple benefits, such as public water supply, wildlife habitats 

and recreation. However, the FCR watershed presents critical agricultural challenges and 

sustainability problems primarily related to sediment and phosphorous loads. Despite efforts and 

research to improve water quality in the FCR watershed through the implementation of varieties 

of Best Management Practices (BMPs) for decades, there are still problems of sediment and 

phosphorous loads in this catchment, which demonstrates the need for research. Since the cost of 

implementing some BMPs can be expensive, the cost effective selection and location of BMPs 

can aid in increasing both the efficiency of public funds and the total income of farmers. The 

major goal of this study is to identify optimal selection and location of crop-BMPs including crop 

types, production methods, and agricultural management practices that could further reduce 

sediment and phosphorous loss from the agricultural fields in Five-Mile Creek (FMC) sub-

watershed of FCR watershed at the least-cost to producers and the public in both the dry and 

irrigated areas. For this, a hydrological model of the study area was developed using the Soil and 

Water Assessment Tool. 
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The model was calibrated and validated satisfactorily for streamflow, crop yield, sediment, and 

phosphorous. The verified model was used to simulate 22 crop-BMP combinations over the 1989–

2016 period. A Linear Programming (LP) model was used to determine the crop-BMP choice that 

would maximize income and minimize public cost while abating sediment and phosphorous under 

two different scenarios: market solution (maximize revenue with no constraints on sediment and 

phosphorous production) and tax solution (discourage sediment and phosphorous production through 

incentive programs). Results indicated that the tax solution would outperform both baseline and 

market solution scenarios in terms of average reduction of sediment and phosphorous in the study 

area. With the tax solution, average $1.2 million/year compensation to producers to adopt crop-BMPs 

would result in 28% sediment (4,507 tons) and 27% phosphorous (17 tons) reduction annually over 

the baseline scenario. Compared to the market solution, the tax solution scenario would result in 

reduction of sediment and phosphorous by 15% and 2% respectively. The optimized land crop-BMP 

in tax solution scenario included an increase in wheat area by 60% and 21% compared to the baseline 

and market solution respectively, and decrease in the cotton area by 88% and 80% compared to the 

baseline and market solution respectively. Fine sandy loam soil was the targeted soil in changing 

tillage system of wheat and silty clay soil was the targeted soil for conversion of cotton and grain 

sorghum to wheat. 

Key words: Sediment, phosphorous, best management practices, SWAT, Linear Programming 

 

Introduction 

The main cause of water quality impairment in the Unites States is human-induced Non-Point 

Source (NPS) pollution from sources like agriculture and urbanization. NPS pollution is a form of 

diffuse pollution caused by nutrients, sediment, toxic, and organic substances mainly originating from 

agricultural activities, which occur over a wide area and carried to reservoirs, lakes and stream 

channels by surface runoff (Humenik et al., 1987). Best Management Practices (BMPs) are effective 

and practical scenarios to control and reduce the transport of agricultural NPS to water bodies, yet 
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there are concerns regarding the economic efficiency of BMPs in controlling and reducing NPS 

pollutions. Evaluating different BMPs can ensure the most cost effective use of funding for watershed 

management and this allows for greatest reduction of pollutants within a limited budget. In this 

regard, modeling is a necessary step in watershed management to assess the impact of different 

conservation practices on NPS pollutions. Since BMPs are usually implemented under a limited 

budget, costs associated with inefficient BMP choice and location may threaten achievability of water 

quality goals. Therefore, a balance should be considered between the economic and ecological 

implications of BMP implementation. The principal approach for adoption of conservation practices 

for reduction of NPS pollution from agricultural fields in USA is to subsidize the adoption of 

conservation practices instead of taxing or directly limiting pollutants like sediment and phosphorous. 

In this regard, apart from the environmental impact of different agricultural BMPs, there should be an 

economic consideration of BMP costs, both the actual BMP cost and producers income changes from 

their adoption. One measure of an effective conservation practice is whether it can attain a maximum 

reduction in NPS loads at minimum per unit cost (Giri et al., 2012). The objective for improving cost-

effectiveness is the systematic optimization of real-world efforts (Rabotyagov et al. 2010). Hence, the 

information on economic influences on the implementation of such practices is critical.  

The number of possible BMP scenarios within a watershed rises exponentially with the number of 

fields. Without computer optimization the assessment of all possible combinations of strategies 

performance in all fields within the watershed is impossible. It becomes neither practical nor 

economically feasible to select a best combination of BMPs that results maximum pollution reduction 

at a minimum cost. Selection and placement of BMPs in a watershed needs a proper optimization 

method (selection of an optimization method is based on the dictated condition of the problem) with 

more efficient manner to result maximum benefit with highest possible pollution reduction rate. 

Recent studies have demonstrated that optimization methods produce good results for optimal 

allocation of NPS pollution management practices at the watershed scale (Veith, 2003; Arabi, 2006; 

Jha, 2009; Rabotyagov, 2010). Linear Programing (LP) is an optimization technique than can devote 
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resources for different activities (Hillier & Lieberman, 1990). According to Dyke et al. (1985), an LP 

model or related models with an associated LP subsystem are more suitable for studying erosion 

economics.  

The Fort Cobb Reservoir (FCR) watershed is located in the Central Great Plains Ecoregion in 

southwestern Oklahoma. FCR is a rural agricultural catchment with known issues of NPS pollution, 

including suspended solids, siltation, nutrients, and pesticides (OCC, 2014). Conservation practices 

such as contour and strip farming, terraces, conversion of crop land to Bermuda pasture, reduced till 

and no-till farming, drop structures, shelter belts, and flood retarding structures have been 

implemented throughout the FCR watershed (Garbrecht and Starks, 2009). According to Osei (2016), 

substantial cost savings can be achieved if conservation practice distributions can be optimized. The 

Soil and Water Assessment Tool (SWAT) developed in 1990 by the USDA Agricultural Research 

Service (USDA-ARS) at the Grassland, Soil and Water Research Laboratory in Temple, Texas 

(Neitsch et al., 2001), has previously been used in FCR watershed modeling (Storm et al., 2003; 

Moriasi et al., 2007, 2008; Mittelstet, 2015b) to estimate the impact of different BMPs on crop, water, 

and NPS pollution loading and solve the problem. Garbrecht and Starks (2009) stated that 80%-90% 

of cropland in FCR watershed that needed terraces has been terraced over the last 50 years, and over 

the last decade about 50% of the cropland was in conservation tillage or minimum disturbance tillage. 

However, none of these studies assessed the cost effectiveness of existing BMPs on surface water 

quality. One of the goals of this research is to identify the placement of additional conservation 

practices. Therefore, it is important to identify the presence and location of existing conservation 

practices. Installing these practices requires high capital investment, and their presence and location 

affect the optimal selection and placement of additional BMPs.  

One of the other conservation practices that has recently received the most attention in the upper 

Washita River watersheds was no-till farming. Conversion to no-till practices on at least 50 percent of 

the cultivated area in the FRC watershed was one of the recommendations of the TMDL developed 

by the ODEQ for this Watershed (OCC, 2015). The OCC began a program with emphasis on no-till 
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farming to meet the water quality standards as established by the TMDL. According to OCC (2009) 

no-till was projected to be one of the most effective conservation practices for controlling both 

sediment and nutrient loads. No-till farming could help to hold moisture in the soil and protect soil 

against soil and rain erosion. However continuous no-till wheat production has been shown result in 

decreased yields (Decker et al., 2009; Patrignani et al., 2012). The main reasons limiting continuous 

no-till winter wheat are weeds and disease cycles associated with wheat production (Edwards et al., 

2006). Several researchers have studied no-till farming and its effect on runoff, NPS pollution and 

crop yield (Choi et al., 2016; Osei et al., 2012), however, there is limited research focusing on the use 

of winter wheat as a cover crop with other viable crops. Osei et al. (2012) assessed the effects of no-

till systems on crop yield in farm-level economics and compared with other tillage systems for wheat 

production in FCR watershed. They indicated that if winter wheat grain yields are not significantly 

impacted by tillage systems, no-till would be more profitable than conventional tillage on the current 

mix of tillage practices in the watershed. Their study did not address diseases resulted from 

continuous no-till winter wheat. This study considers the use of no-till wheat as a cover crop with 

other viable crops (cotton, canola, and grain sorghum) in the study region as a scenario and assesses 

the economic results. 

In this study, a watershed simulation model (SWAT) of the FMC watershed was developed with 

consideration of existing BMPs such as terraces in the region. Then the SWAT model results were 

analyzed using the optimization models (LP) to determine the optimal set of BMPs and cover crops 

and their spatial locations that maximize profit to farmers and minimize public costs while realizing 

the environmental benefits of reduced sediment and phosphorous loads. Four important questions are 

addressed in this study: 1) how do no-till rotations involving wheat and other crops can affect crop 

yield, and sediment and phosphorous loads, 2) which crop and/or crop production methods are the 

most profitable to dryland producers while meeting reduced sediment and phosphorous targets for the 

FMC sub-basin, 3) how does the total and pre-unit cost of sediment and phosphorous abatement 
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increase as sediment and phosphorous losses from crop and pasture land are decreased in FMC sub-

basin, 4) how do soil type and land slope affect the economics of BMPs and crop choice.   

 

Study watershed 

The Fort Cobb Reservoir (FCR) watershed, located in southwestern Oklahoma, US, in the Upper 

Washita sub-basin with an area of 813 km2, is an agricultural watershed. Land in the FCR watershed 

is comprised of highly erosive, fine sandy loam soils, which even under natural conditions contribute 

to erosion, sediment loading, stream bank and channel instability (OCC, 2009). The water quality of 

the Fort Cobb reservoir in southwestern Oklahoma and its tributaries has been of concern for more 

than two decades, with water quality problems first identified in 1981. The FCR and other waterbody 

segments in the FCR watershed are impaired by different causes (OCC 2009).   Many of crop fields 

such as former peanut fields have been converted to wheat or to pastureland which improves soil 

stability and reduces erosion. However, continued sedimentation in the FCR, despite previous 

conservation practices, demonstrates the need to expand adoption of privately and publically funded 

BMPs. Recently, additional BMPs such as no-till crop production methods and conversion of 

cropland to grassland have been introduced to improve water quality.  

In this study, a SWAT model was constructed and combined with Linear Programing to evaluate 

the most ecological feasible and cost effective BMPs in just the Five-Mile Creek (FMC) area of FCR 

watershed. However, the only available USGS gage station (Figure 1) receives runoff from both the 

Cobb Creek and FMC sub-watersheds. Therefore, the SWAT model was constructed, calibrated, and 

validated for the larger area above this station (red basin in Figure 1) containing both Cobb Creek and 

FMC.  Only the FMC portion was used in the later analysis. The FMC (grey basin in the Figure 1) has 

an area of 113.05 km2. Land use in the FMC sub-watershed constitutes of 50% cropland, 41% 

pastureland and 9% in other uses such as roads, trees, and residential buildings, cattle, and hog 

operations. The major crops in the study area are winter wheat 30%, cotton (dryland 3.5%, irrigated 

12%), and grain sorghum and canola 4%. 



 

 

 

Figur

 

Meth

F

for pl

 

re 1. FCR wat

hodology 

igure 2 descr

acement and 

 

 

 

 

tershed and F

ribes the meth

selection of c

 

 

 

FMC and Cob

hodology foll

crops and agri

 

85 

 

 

 

bb Creek area

owed during 

icultural BMP

s 

the hydrolog

Ps in the wate

gical modeling

ershed. 

g and optimizzation 



 

86 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic representation of optimal control model 

 

SWAT model development 

The SWAT model was employed as a hydrological tool to simulate the Cobb Creek and FMC 

sub-watersheds and estimate surface runoff, sediment and nutrient loads, and crop yields. The 
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divided into 43 subbasins by identifying outlets in the study area. The USGS gage station 

(#07325800) in Cobb Creek near Eakely was defined as a final output of the watershed. Elevation 

data were collected from the USDA Geospatial Data Gateway (http://datagateway.nrcs.usda.gov). 

The SSURGO soil data (USDA, 1995), collected by the National Cooperative Soil Survey with the 

higher spatial resolution compared to STATSGO data were used. Four slope classes (0-2%, 2-4%, 4-

6%, and >6%) were delineated. The USDA, National Agricultural Statistics Service (NASS) crop 

layer for 2014 was used for baseline land use. The watershed was divided into 15,217 smaller 

homogeneous units (Hydrologic Response Units- HRUs) by the SWAT model. Since cotton is one of 

the main row crops produced in the FCR watershed and most of the irrigated fields in this watershed 

are covered by cotton, dryland and irrigated crops were separated using center pivot irrigation 

locations tagged from aerial photography. The impacts of irrigation operations on runoff are available 

using this method. Historical climate data were collected from two weather stations (Figure 1). 

Observed precipitation, minimum and maximum daily temperature data from USDA Agricultural 

Research Service (USDA-ARS) were applied to create files for daily data in 1982 to 2010. 

Precipitation, minimum and maximum daily temperatures data for 2011 to 2016 were taken from the 

Oklahoma MESONET data (McPherson et al., 2007) added to the USDA-ARS data. The data for 

wind speed, relative humidity, and solar radiation were from a mix of sources (Oklahoma 

MESONET, airport values, and Blackland Research site).  

Since 41% of this watershed is pasture and it is an agricultural watershed, grazing and stocking 

rate have a significant impact on erosion rate and nutrient loads. County level NASS cattle estimates 

for the period 1996-2015 were applied with land cover data to determine the stocking rate on pastures 

within the watershed. Based on NASS data and previous research (Storm et al., 2006) on the FCR 

watershed, a stocking rate of 0.5 head/ha was used. The daily biomass consumption values 

(BIO_EAT) of 3 ((kg/ha)/day), dry weight of biomass trampled daily (BIO_TRMP) 0.47 

((kg/ha)/day), and dry weight of manure deposited daily (MANURE_KG) 1.5 ((kg/ha)/day) estimated 

by Storm et al. (2006) were also used. 
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Other components added to the hydrological model were wetlands and ponds. Since ponds affect 

the hydrology and NPS pollutions by impounding water, sediment, and nutrients, modeling these 

wetlands has a significant impact on hydrological modeling and water resources analyzing. The area 

and location of large ponds and reservoirs (Appendix 1) were taken from the U.S. Army Corps of 

Engineers National Inventory of Dams (NID) (USDA, 2009) and USGS 7.5-minute quad maps and 

then vectored in ArcGIS (Figure 1). According to these sources, there are 320 small ponds, lake, and 

artificial wetlands and reservoirs in this study area with an average area of 0.7 ha each. They covered 

120.4 ha of the watershed area. 

Terraces and contour farming were used in most of the cultivated areas in this watershed to 

protect the land against erosion. Since these conservation practices are effective in controlling soil 

erosion and sediment, they were included in the baseline hydrological model before model calibration 

for flow and sediment. All existing terraces and contour in the study watershed were identified using 

aerial photographs. The availability of these georeferenced photos allows determination of the exact 

placement of existing terraces and contour not available in previous studies. There were several 

places where terraces and contour have been broken and appeared to make the erosion problem 

worse. The broken terraces were recognized using 2-meter Lidar drainage lines and were modeled as 

un-terraced fields. HRUs where more than 65% of them were terraced and/or contour farming were 

classified as being terraced with contour farming. The effects of terraces and contour were simulated 

by modifying runoff and erosion parameters such as, slope length, the SCS runoff curve number 

(CN), and USLE practice factor. These parameters were adjusted as suggested by SWAT documents 

(Table 1). 
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Table 1. USLE-P value for contour farming, strip cropping and terracing 

Land Slope % USLE-P 
Contour farming Strip cropping Terracing 

1 to 2 0.6 0.3 0.12 
3 to 5 0.5 0.25 0.1 
6 to 8 0.5 0.25 0.1 
9 to 12 0.6 0.3 0.12 
13 to 16 0.7 0.35 0.14 
17 to 20 0.8 0.40 0.16 
21 to 25 0.9 0.45 0.18 
Source: SWAT 2012 User’s guide (Winchell et al., 2013) 

 

Information about tillage type and fertilizer application for the selected crops was obtained from 

relevant literature (Storm et al, 2006; ODEQ, 2006) and consultation with local OSU Cooperative 

Extension Service and Conservation District personnel (Appendix 2).  

 

SWAT model calibration 

The SWAT model for Cobb Creek and FMC sub-watersheds was calibrated first manually and 

then automatically using SWAT-CUP (Abbaspour et al., 2007) for monthly streamflow and sediment 

concentration. It was also calibrated manually for yield of the main crops in the watershed. The 

USGS gage station- Cobb Creek near Eakely (USGS 07325800) was used as a source of observed 

flow and sediment data for the ten-year (1991–2000) for calibration period and also for the ten-year 

validation period (2001–2010). Among the  seventeen selected parameters for surface runoff 

calibration (Table 2), the SCS Curve number (CN), Soil evaporation compensation factor (ESCO), 

Groundwater delay (GW_DELAY), Deep aquifer percolation fraction (RCHRG_DP), Manning’s n 

value for the main channel (CH_N2), and available water capacity of soil layer (SOL_AWC) were the 

most sensitive parameters. Table 2 shows the adjusted data for these parameters in the model. The 

coefficient of determination (R2) was used as an objective function in order to evaluate different 

interpolation methods. Two other metrics, the (Nash-Sutcliffe efficiency- NSE for streamflow and 

Modified NSE for sediment were used. Percent bias (Pb) was also used to evaluate the model 
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performance. The results of streamflow calibration and validation are shown in Figures 3 and 4. The 

model provided satisfying estimation and reasonable predictions for the calibration (the R2 was 0.64, 

the NSE was 0.61, and the Pb was 5.1) and validation period R2 was 0.79, the NSE was 0.62, and the 

Pb was -15. 

Suspended sediment was calibrated for ten years, (1991–2000) and validated for another ten 

years, (2001–2010) at the watershed outlet. The grab sample data that were available from 2004 to 

2012 (usually 1 to 3 samples per month with a few months missing) were used along with stream 

flow date to estimate sediment loads for days when daily stream flow measurements were available. 

A double log regression between the observed streamflow and measured sediment data was 

estimated. Suspended  sediment  transport  rating  curves  has been used to generate sediment 

information for missing periods in many studies (Walling, 1977; Walling and Webb, 1988; Asselman, 

1999; Horowitz, 2003, Jothiprakash and Grag, 2009; Salimi et al., 2013; Sarkar et al., 2008; Shabani, 

2012; Gray and Simoes, 2008). There was a strong correlation (R2=0.9) between the observed grab 

sample sediment data and runoff in the study watershed (Figure 5). Therefore this regression 

relationship (Ln (sediment) = 1.97 × Ln (runoff) + 3.69) was used to estimate the missing daily 

sediment data for the model simulation period. Ten parameters were selected for sediment calibration. 

The USLE equation support practice factor (USLE_P), the average slope length (SLSUBBSN), and 

the USLE equation soil erodibility factor (USLE_K) were the most sensitive parameters. Table 2 

shows the adjusted data for these parameters. The results of sediment calibration and validation are 

shown in Figures 5 and 6. According to Moriasi et al. (2015), model performance at the watershed 

scale can be evaluated as “satisfactory” if monthly R2 > 0.40 and NSE > 0.45 and daily, monthly, or 

annual PB ≤ ±20% for sediment. In our case, the model provided reasonable predictions for the 

calibration (R2 was 0.30 and MNSE was 0.35 and Pb was <20) and the validation period (R2 was 0.33 

and MNSE was 0.43 and Pb was <53). Since there were some gaps in observed sediment data, the 

SWAT model was not able to be adequately calibrated for sediment concentration. Other reasons 
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could be dispersed nature of the sediment data and poor accuracy of the measured data. However, the 

largest error in sediment prediction was associated with errors of peak flow estimation. As Abbaspour 

et al. (2007), stated in his research, the “second storm effect” can also be a reason for inaccurate 

sediment predictions. It means that after a storm, there is less sediment to be transferred, and the 

remaining surface layer is much more difficult to mobilize. Therefore, a similar size storm, or even a 

bigger size second or third storm could actually result in smaller sediment loads. However, the model 

does not simulate this effect but produced a good simulation of sediment load for the first storm, 

while for the second and the third storms it overestimated the load. Therefore, adjustment of the 

parameters is actually compensating for the lack of precision in the measurement or errors in the 

conceptual model. Despite these reasons, it was found the results quite useful, given that only grab 

samples were used to measure the sediment load. 

Table 2. Streamflow and sediment calibration parameter values in study area 

Component Parameter Parameter value range Final value 

Streamflow 

V__GWQMN.gw 0.20_0.60 0.60 
V__GW_REVAP.gw 0.02_0.03 0.02 
V__REVAPMN.gw 0.50_1.50 1.38 
V__RCHRG_DP.gw 0.10_0.50 0.47 
V__GW_DELAY.gw 320_390 376 
R__CN2.mgt -0.16_-0.13 -0.13 
V__ALPHA_BF.gw 0.80_1.00 0.95 
V__ESCO.hru 0.80_0.90 0.83 
V__EPCO.bsn 0.10_0.60 0.30 
V__CH_K1.sub 0.00_0.40 0.09 
V__SURLAG.bsn 0.50_4.00 3.05 
V__EVRCH.bsn 0.00_0.50 0.34 
V__TRNSRCH.bsn 0.00_0.10 0.10 
V__ALPHA_BNK.rte 0.60_1.00 0.84 
R__SOL_AWC(..).sol -0.02_0.06 0.04 
V__CH_N2.rte 0.05_0.30 0.18 
V__CH_K2.rte 1.85_2.15 1.98 

Sediment 

R__USLE_P.mgt -1.000_0.000 -0.240 
R__SLSUBBSN.hru 0.000_0.230 0.217 
R__USLE_K().sol -0.500_0.300 -0.247 
V__RSDCO.bsn 0.010_0.100 0.083 
V__BIOMIX.mgt 0.000_0.300 0.297 
V__SPCON.bsn 0.000_1.000 0.009 
V__SPEXP.bsn 1.000_2.000 1.714 
V__CH_ERODMO(..).rte 0.050_0.700 0.355 
V__CH_COV1.rte 0.001_0.800 0.518 
V__CH_COV2.rte 0.001_0.800 0.332 
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Note: “R” before the parameter name stands for relative change (the parameter is multiplied by 1+value). While “V” stands 
for replacement (the parameter is replaced by a random value within the range)  

 

 

 Figure 3. Observed and calibrated SWAT simulated streamflow at Cobb Creek near Eakley, OK 

(1991-2000)  

 

 

Figure 4. Validation time series for observed and SWAT predicted flow at the Cobb Creek near 

Eakley, OK (2001 to 2010) 
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Figure 5. Observed and calibrated SWAT simulated suspended sediment concentration at Cobb 

Creek near Eakley, OK (1991-2000) 

 

 

Figure 6. Observed and validated SWAT simulated suspended sediment concentration at Cobb Creek 

near Eakley, OK (2001-2010) 
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within the range of the values measured in the watershed (Figure 8). In our case, the model provided 

reasonable predictions for the phosphorous outputs (R2 was 0.46). 

 

 

Figure 7. Observed daily discharge and observed daily phosphorous concentration trend at the Cobb 

Creek near Eakley, OK 

 

 

Figure 8. Observed total phosphorus concentrations vs SWAT model with modified sediment and 

runoff parameters) predictions 
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the study watershed (USDA-NASS, 1986 to 2005, 

http://digitalprairie.ok.gov/cdm/ref/collection/stgovpub/id/11177). Variety trial yield are taken to 

represent the maximum possible yield with current varieties. Input information on fertilizer and 

pesticides used is often available. The variety trial crop yields were collected from seven sites within 

and nearby the study area (Apache, El Reno, Homestead, Chickasha, Altus, Tipton, and Thomas). A 

list of crop yield parameters with their initial and calibrated values is provided in Appendix 3 and 4. 

Pb was used as an indicator to compare the SWAT simulated yield with the observation. The values 

of Pb for winter wheat, grain sorghum, dryland cotton and irrigated cotton were -6.0%, -27.3%, -9.0% 

and +0.9% respectively. 

 

Management practices and scenarios 

 In this study, a total of 22 different combinations of crop-BMPs were considered by combining 

three major crops grown in the study area (winter wheat, cotton and grain sorghum) with five 

different management practices. Winter wheat (including rotations with other crops), cotton (dry and 

irrigated) and grain sorghum were combined with four different management practices: conservation 

tillage, conservation tillage under contour farming, no-tillage, and no-tillage under contour farming to 

produce 16 combinations of crop BMPs. The rest of the six crop-BMPs were resulted by converting 

crop lands to pasture land (Bermuda grass) using two different stocking rates and three different 

grazing schedules (Table 3).  
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Table 3. Crop-BMP Scenarios 

Code 
Management 
practice 

Explanation 
Abbreviation for different crops in different BMPs 
Winter wheat Grain sorghum Cotton 

S1 
Conservation 
tillage  

The conservation tillage system 
was considered for all crops 
except hay and alfalfa 

WhCv GRSG CtCV 

S2 

Conservation 
tillage in 
combination with 
contour farming 

The contour conservation tillage 
was used following the 
operations-crop calendars for all 
crops except hay and alfalfa 

WhCC GSCC CtCC 

 
S3 

No-Till farming 
plus strip cropping 

No-till was simulated in regular 
crop calendars for all crops except 
hay and alfalfa*: 
- Cotton no-till was simulated in 

irrigated areas with wheat as a 
cover crop 

- Wheat no-till was simulated in 
rotations/cover cropping with 
canola, cotton, and grain 
sorghum 

Cover crop for  grain sorghum: WGNS 

GSNS 

CtNS 
(notill irrigate 
cotton covered 
with wheat: 
CNWc) 

Cover crop for  cotton: WCNS 

In rotation with Canola: WKNS 

S4 
No-Till farming on 
the contour 

It is the combination of two 
management practices (no-till and 
contour farming). 

Cover crop for  grain sorghum: WGNC 
GSNC CtNC Cover crop for  cotton: WCNC 

In rotation with Canola: WKNC 

S5 

Conversion of 
crop lands to 
pasture (Bermuda 
grass) 

replaces all crop land uses (except 
hay and alfalfa) into Bermuda 
grass pasture** 

BIO_MIN 1200 kg BIO_MIN 1600 kg 

Grazing starts 
in May 
BERM1-1

Grazing 
starts in Jun 
BERM2-1

Grazing 
starts in July 
BERM3-1 

Grazing 
starts in May 
BERM1-2

Grazing 
starts in Jun 
BERM2-2

Grazing 
starts in July 
BERM3-2

*Note: Continuous no-till wheat was not considered feasible because of weed and disease problems and was used as a cover crop for cotton and grain sorghum, and in rotation 
with canola. 

**According to the result of a meeting with Nolan (2017), Caddo and Grady counties agent, producers are having success in cropland conversion to Bermuda grass in the 
FCR watershed. For this scenario different stocking rate by changing BIO_MIN and grazing time has been considered. 
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Optimization model development 

Optimization methods in previous studies (Veith, 2003; Arabi, 2006; Jha, 2009; Rabotyagov, 

2010) have given satisfactory results for optimal allocation of NPS pollution management practices at 

the watershed scale. In SWAT model, the runoff from each HRU is assumed to go directly to the 

reach. Thus, each HRU can be modeled as independent of all other HRUs. This allows construction of 

an LP model continuous (non-integer) with nonnegative constraints and convex objective function in 

terms of the land-use variables (BMPs and crops). A convex cost function can be expressed as a 

piecewise linear function. A global optimum solution to even a relatively large LP (with 43,283 rows 

and 340 columns) can be found in a short time (less than 1 minute). Hence, in this study an LP model 

was used as an optimization method using General Algebraic Modeling System (GAMS) to find the 

most cost effective selection and location of BMPs on fields of the FMC sub-watershed. LP allows 

the selection of one of some 22 BMPs for each of some 5,750 HRUs in a way that provides maximum 

producer income while minimizing the public cost of reducing sediment and or phosphorous runoff. 

Hence, the objective function has two parts; producers’ income and public charge. Producer’s income 

is calculated using crop yield, each crop’s price and costs of production and public charge is from 

limit on total sediment and/or phosphorous loss. 

Since “watershed planning process is inherently a multi-objective problem” with conflicting 

objectives (Ahmadi et al., 2013), LP approaches multi-objective problems by parametrization. In this 

research, the objective function is maximizing net revenue per hectare based on crop produced subject 

to a limit on total sediment and/or phosphorous from the watershed by changing agricultural 

conservation practices.   

The optimization model is stated mathematically as below: 

݁ݑ݊݁ݒ݁ݎ	݁ݖ݅݉݅ݔܽܯ ൌ ൣ∑ ∑ ∑ ∑ ൫ሺ ௜ܲ. ௦ܻ௛௜௞ሻ െ ௦௛௜௞൯ܥ
௄
௞ୀଵ

ூ
௜ୀଵ

ு
௛ୀଵ ൈ ௜ܺ௞

ௌ
௦ୀଵ ൧–  

 
SEDtot × Schg – Phtot × Pchg 

        

(1) 

Subject to:  
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෍෍෍෍ܵܦܧ௦௛௜௞

ூ

௜ୀଵ

ൈ ௜ܺ௞ ൌ ௧௢௧ܦܧܵ

ு

௛ୀଵ

ௌ

௦ୀଵ

௄

௞ୀଵ

 

෍෍෍෍݄ܲ௦௛௜௞

ூ

௜ୀଵ

ൈ ௜ܺ௞ ൌ ݄ܲ௧௢௧

ு

௛ୀଵ

ௌ

௦ୀଵ

௄

௞ୀଵ

 

(2) 

 

(3) 

∑ ∑ ௜ܺ௞
௄
௞ୀଵ ൑ ܶܽ௦௛

ூ
௜ୀଵ ,                          for all s and h                                                (4) 

௜ܺ௞ ൒ 0 (5) 

Where: 

S: Sub-basin, h: HRU, i: crop, K: BMP 

௜ܲ: Price of pasture and Cropi  

௦ܻ௛௜௞: Yield of pasture and Cropi with BMPk on one hectare in HRUh in subbasins 

 ௦௛௜௞: Total Cost to produce pasture and Cropi with BMPk on one hectare in HRUh in subbasinsܥ

௜ܺ௞: The number of hectares of pasture and Cropi with BMPk  

ܶܽ௦௛: Total hectares in HRUh 

 ௦௛௜௞: Sediment runoff from HRUh under pasture and Cropi with BMPk in subbasinsܦܧܵ

݄ܲ௦௛௜௞: Phosphorus runoff from HRUh under pasture and Cropi with BMPk in subbasins 

  ௧௢௧: Total amount of sediment leaving HURs in the watershedܦܧܵ

Schg: Charge or tax on each ton of sediment leaving fields in the watershed 

݄ܲ௧௢௧: Total amount of phosphorous leaving HRUs in the watershed  

Pchg: Charge on each kg of phosphorus leaving fields in the watershed 

The principal approach in the US toward control of NPS pollutions from agricultural fields has 

been to subsidize adoption of BMPs or provide funds for land retirement and crop rotation, rather 

than taxing inputs such as nitrogen and fertilizer (Shortle and Horan, 2001).  

Each crop-BMP combination was simulated separately in a SWAT run. The mean crop yield, 

sediment, and phosphorous loadings from each HRU were collected for use in the LP model. The LP 

model constructed with 43,283 rows and 385 columns and was solved using GAMS. In the LP model, 

two scenarios for optimization have been considered: (1) market solution scenario: it’s objective is to 
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identify a crop-BMP that produces the maximum net revenue without consideration of sediment and 

phosphorous constrains (public charge), and (2) tax solution scenario: it’s objective is to identify a 

crop-BMP that produces the maximum net revenue determining the amount of sediment and 

phosphorus that can be abated for a specified charge per unit. The tax solution scenario determines 

the amounts of sediment and phosphorous that could be abated by incentivizing producers to adopt a 

crop-BMP that would minimize sediment and phosphorous loadings. It is implemented in the LP 

model as a charge on sediment and phosphorous loss from the field considering $100 /ton of sediment 

and $300/ton of phosphorous as tax. Indeed, these taxes in the LP model yield the minimum subsidy 

which government should pay farmers to change their crops and adopt relative BMP as incentives. 

 

Crop price and management cost 

Average crop prices (2010–2016), were obtained from the Oklahoma Agricultural Statistics 

(https://www.nass.usda.gov/Statistics_by_State/Oklahoma) as shown in Table 4.  

 

Table 4. Average crop prices in the study area 

Crop Alfalfa  Bermuda Canola Corn Cotton 
Grain 
Sorghum 

Hay Rye Soybean 
Winter 
Wheat 

Price  ($/unit ton) 203.7 88.7 461.7 216.2 1525.6 201.7 88.7 88.7 424.8 248.7 

 

Management costs are the expenses incurred from crop planting to harvesting for farmers. In this 

study, the management costs included expenses in seed, fertilizer, custom harvest, pesticide, harvest 

aids, crop insurance, annual operating capital, machinery labor, machinery fuel, and irrigation. The 

management cost for the study area was calculated using the Machsel program and the Oklahoma 

State University’s enterprise budget software (Kletke and Sestak, 1991).  The average costs 

($/hectare) for each management practice (conservation tillage, conservation tillage under contour 

farming, ,no-tillage, and no-tillage under contour farming) in Oklahoma were obtained from the 
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Oklahoma enterprise budget software and the OSU study on no-till wheat production (Doye et al., 

2004) as shown in Table 5 and 6. 

 

Table 5. Management cost ($/hectare) for three major crops in the study area 

Crop 
Conservation tillage 

Conservationtillage+Contou
r 

No-till 
No-till 
+Contour 

Dry Irrigated Dry Irrigated Dry Irrigated Dry Irrigated 

Cotton 754.0  1,612.0 798.1 1,721.0 769.7 1,612.5  779.4 1,690.3 
Grain 
Sorghum 

308.5    422.2 327.4    441.8 383.2    401.9  399.8    418.6 

Winter Wheat 355.2    365.3 372.7    383.9 341.8    352.8  354.0    335.2 

 

Table 6. Management cost ($/hectare) for rotation of wheat and canola in the study area 

Rotation straight row Rotation contour farming 

Dry Irrigated 

Wheat  Canola Wheat  Canola 

350.1    388.3    367.3  407.5  

 

Results and discussions 

In this study, an LP model was designed to determine optimal crop-BMPs that would maximize 

net revenue for farmers, minimize public cost (government subsidy), and reduce sediment and 

phosphorous loadings. 

Net revenue is calculated as a difference between the selling price of a given crop (mulitiple by 

crop yield) and the associated management cost of that crop. Figure 9 illustrates the net revenue of 

each crop-BMP in the study area. It was found that wheat (in S1 and S2), cotton (in S1-S4), and 

wheat in rotation with canola (in S3 and S4) are economically beneficial crops to farmers. Figure 10 

shows the net revenue per hectare with the average sediment loss leaving the field for each crop-BMP 

combination for all slope classes and soil types. Here, HRUs with each baseline crop has been 

replaced with cotton, wheat, and grain sorghum in different BMP scenarios (Table 3) to see how each 

BMP affects the sediment loss and net revenue for that specific crop.  
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Figure 9. Average annual net revenue per hectare for each crop-BMP combination in the FMC sub-

watershed 
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Figure 10. Net return and sediment loss per hectare by crop-BMPs in the Five-Mile Creek watershed 

 

It was found that wheat (conventional tillage under both contour and non-contour farming) and 

wheat canola rotations (no till and no till under contour farming) generated the highest revenue and 

the lowest sediment loadings (top left of Figure 10). A wheat-grain sorghum rotation has similar 

amounts of erosion but less income per hectare. The cotton single crop and cotton rotations had 

similar levels of income as the wheat-grain sorghum rotations but higher amounts of erosion. The 

BMP using wheat as cover crop (especially with cotton), did not allow for the replenishment of soil 

moisture, had less biomass, lower yields, and slightly higher erosion than continuous cotton although 

all these planting are in no-till systems.  

Since there should be a balance between economic and environmental aspects of each crop-BMP, 

the LP model selected a crop-BMP in each HRU, so that the income of all farmers in the watershed 

maximized in two different scenarios; 1) market solution (without considering public costs of 

sediment and phosphorous abatements) and 2) tax solution (considering $100 /ton of sediment and 

$300 /ton of phosphorous as tax). In this regard, results of baseline (2014 USDA land use and their 

specific conservation practices) were shown and then were compared with two mentioned scenarios. 

 

Baseline scenario 

In the baseline scenario, pasture (41% of the area), wheat with conventional reduced tillage (30% 

of the area), and all cotton (15.6% of the area divided into irrigated cotton 12% and dryland cotton 

3.5% of the area) were the most dominant land uses. The SWAT simulated crop yields were used 

with the crop price and management cost information to estimate net revenue (producer’s income) for 

each crop type.  The average annual net-revenue for the study area was $3,026,795 with 16,513 tons 

of sediment and 69 tons of phosphorous generated. Table 7 shows the land characteristics (soil texture 
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and slope percent) for cotton (dry and irrigated), grain sorghum, pasture, and winter wheat under the 

baseline scenario. 

 

Table 7. Distribution of cotton, grain sorghum, pasture and winter wheat in the study area on 

different soil texture and slope classes in the baseline scenario 

*Soil 
texture 

Slope 
(%) 

Hectares of Land use 
Irrigated 
cotton 

Dryland 
cotton 

Grain 
sorghum 

Native 
pasture 

Winter 
wheat 

CL Total  -  2.6 0.1 198.5 9.5 

  0-2 -  2.1 0.1 148.8 8.7 

  2-4 -  0.4 - 29.0 0.6 

  4-6 -  0.1 - 8.8 0.1 

 >6 -  - 11.8 0.0 

FS Total  262.0 32.5 17.7 443.6 313.7 

  0-2 97.9 9.1 4.4 93.5 73.3 

  2-4 95.3 11.8 5.1 109.5 100.2 

  4-6 40.8 5.4 3.7 91.4 67.7 

  >6 28.0 6.3 4.4 149.2 72.6 

FSL Total  404.1 90.0 34.3 2620.1 1068.7 

  0-2 185.0 25.8 5.8 331.6 361.2 

  2-4 112.4 30.3 8.5 484.1 283.0 

  4-6 53.8 20.7 8.7 590.7 196.4 

  >6 52.9 13.2 11.4 1213.7 228.2 

LFS Total  56.9 12.3 1.2 61.3 45.4 

  0-2 28.4 4.1 0.6 13.9 13.1 

  2-4 16.7 5.8 0.3 15.0 16.2 

  4-6 7.3 2.1 0.1 11.0 8.6 

  >6 4.5 0.3 0.2 21.4 7.5 

SICL Total  471.4 163.9 22.9 270.8 1095.6 

  0-2 371.0 118.9 13.5 130.9 789.5 

  2-4 80.3 34.5 6.2 80.5 236.5 

  4-6 14.7 7.9 2.3 36.5 50.3 

  >6 5.3 2.5 0.9 23.0 19.3 

SIL Total  154.5 93.0 15.0 752.5 762.1 

  0-2 61.4 38.1 3.2 81.5 266.7 

  2-4 49.8 30.2 3.9 167.0 248.0 

  4-6 23.7 17.0 4.0 201.5 145.3 

  >6 19.5 7.7 3.9 302.5 102.2 

VFSL Total  18.3 4.1 1.0 256.9 91.9 

  0-2 4.4 1.9 0.2 16.7 9.3 

  2-4 5.9 1.2 0.4 41.1 24.2 
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  4-6 3.4 0.8 0.2 59.3 27.0 

  >6 4.6 0.2 0.2 139.8 31.5 

Total   1367.1 398.5 92.8 4619.8 3387.7 
*Note: CL is clay loam, FS and FSL are fine sandy loam, LFS is loamy fine sand, SICL is silty clay loam, SIL is silt, and 
VFSL is very fine sandy load.  

 

The most dominant soil texture for the cotton and wheat was silty clay loam (SICL) (Table 7). 

Some 75% of the cotton and 72% of the wheat areas on these soils were planted on lands with 0–2 

percent slope. The second most common soil texture for cotton and wheat was fine sandy load (FSL). 

For grain sorghum the most dominant soil texture was FSL, which some 33% of grain sorghum areas 

on these soils was planted on lands with more than six percent slope. Pasture was mostly on soil with 

FSL texture and almost half of pasture on these soils was planted on lands with more than six percent 

slope. According to the slope classification in the baseline scenario, 52% of the cotton (irrigated and 

dryland) was planted on land with 0–2% slope and only 8% of the cotton was planted on land with 

more than six percent slope. Thirty percent of grain sorghums were planted on lands with 0–2% 

slope, but most of the pasture was located on land with more than six percent slope. More than half of 

the wheat was planted on land with 0–2% slope, 26% was grown on land with 2–4% slopes, and only 

20% was grown on land with more than four percent slope. 

 

Market solution (without a charge for sediment and phosphorous loads) 

This solution estimates changes in crops and BMPs that have incentives for adoption because of 

changes in market prices. Table 8 shows the crop-BMPs compared between the market and baseline 

scenarios. 

 

Table 8. Crop-BMP (hectare) in market solution and baseline scenarios 

Land 
use 

Rye Canola Soybean 
Grain sorghum Wheat Cotton 

GRSG GSNS WhCv WGNC CtCV 
Irrigated 
Cotton 

Market 
solution  

2.8 2.9 1.5 2.7 160.0 4,472.6 1.0 1,070.0 0.5 

Baseline 71.3 373.6 43.6 92.8   3,387.7   398.5 1,367.1 
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In the market solution scenario, wheat (40%), and cotton (10%) were the dominant crops in the 

study area. Since the native pasture area modified by the model, the area of pasture remains constant 

except for possible conversion of cropland to Bermuda grass pasture. It was found that with average 

2010–2016 market prices, the optimal crop choice, from among the conventional crops and added 

BMPs would increase the net revenue (producer’s income) in the watershed by 26% ($805,200) over 

the baseline solution. This scenario also reduced total sediment and phosphorous loads at the 

watershed outlet by 12% and 26% respectively as compared to the baseline (Table 13). Changes in 

relative input prices increased returns from no-till methods relative to conventional tillage methods. 

Table 9 shows the new optimal crop-BMPs and the associated crops that were converted to these new 

crop-BMPs. 

 

Table 9. New crop-BMP scenarios in market solution 

New crop-
BMP 

CtCv GSNS WhCv 

Area (ha) 927.5 41.1 1895.3 

Converted 
crop 

wheat Canola 
Grain 
sorghum 

Rye and 
soybean 

Irrigate 
cotton 

Irrigated 
cotton 

Canola 
Dryland 
cotton 

Grain 
sorghum 
  

Rye 
and 
soybean 

Area (ha) 810 82.3 22.3 12.9 41.1 1186.1 288.4 255.9 67.2 97.7 

 

In the market scenario, cotton with conservation tillage on straight rows (CtCv) was optimal on 

8.2% of the area, grain sorghum with non-contour no-till (GSNS) was optimal on 1.5% of the area, 

while wheat with non-contour conservation-till (WhCv) was optimal on 16.8% of the area. These 

crop-BMPs were suggested to be implemented as additional strategies to reduce 12% of sediment and 

26% phosphorous loadings from agricultural lands and maximize income. 100% of GSNS crop-BMP 

was from conversion of irrigated cotton and most of the WhCv crop-BMP was from conversion of 

irrigated cotton. Most of CtCv crop-BMP was from conversion of wheat, which was because of this 

fact that cotton in dryland is an economic choice if there would be no limit for sediment and 
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phosphorous. In these new conservation strategies, it was found that 38.3% of cotton (CtCV) should 

be planted on the flat areas (0–2% slope), 31% on lands with 2–4% slope, 17.4% on lands with 4–6% 

slope, and only 13.4% on lands with more than 6% slope. For grain sorghum (GSNS), it was found 

that it should be planted mostly on flat area as well (78% on 0_2% slope and 22% on 2–4% slope). 

For wheat (WhCv) the result were similar, 90% on land with 0–4% slope and 10% on land with more 

than 4% slope.  

 

Comparison of market solution with baseline 

In the market solution scenario, the optimal area of rye, canola and soybean decreased by 96%, 

99%, and 96% respectively as compared to the baseline scenario. Grain sorghum increased by76%, of 

which 98% was no-till. Wheat area increased by 32%, all planted with non-contour conservation 

tillage. The overall cotton (irrigated and dryland) area declined by 39%. However, the areas of 

dryland cotton with conservation tillage increased by 169% while the irrigated cotton area decreased 

by 99%. Some 20.5 hectares of irrigated cotton, 1.5% of the total irrigated cotton area, was converted 

to Bermuda grass. An additional 11.7% of the irrigated cotton was converted to grain sorghum under 

a no-till non-contour system. However, 86.7% of irrigated cotton was converted to wheat under a 

conservation tillage system, which was the main reason of sediment reduction.  

 

Tax solution scenario  

The objective of this scenario is to determine the most cost efficient crop-BMPs and their spatial 

locations in the watershed for additional sediment and phosphorous abatement. Table 10 provides a 

comparison between the tax solution, market solution, and baseline scenarios in terms of crop-BMP 

distribution. 
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Table 10. Crop-BMP distribution (ha) under tax solution, market solution, and baseline scenarios 

Land 
use 

Rye Canola Soybean 

Grain 
sorghum 

Wheat Cotton 

GRSG WhCv WGNC WhCC CtCV 
Irrigated 
Cotton 

CtNc 

Tax 
solution  

2.8 2.9 1.5 2.7 4791.7 1.0 633.9 87.3 0.5 125.6 

Baseline 71.3 373.6 43.6 92.8 3387.7  - - 398.5 1367.1 - 

 

In the tax scenario, wheat (48%) was the dominant crop with cotton remaining at only 2%. In the 

tax solution scenario, the net revenue of selected crops and BMPs in the watershed with considering 

constraints for sediment and phosphorous load was $2,611,627 which was14% and 32% less than the 

baseline and market solution, respectively (Table 13). The reason for this decrease is considering tax 

for minimizing sediment and phosphorous. Indeed, the net revenue is producer’s uncompensated 

income which subsidy will make it compensated income. Sediment loadings were reduced by 27% 

(4,507 tons) and the phosphorous loadings were reduced by 28% (17 tons) as compared to the 

baseline scenario. The respective sediment and phosphorus loadings were 17% and 2% lower than 

that in the market solution scenario (Table 13). This shows that $1.2 million compensation to 

producers to adopt BMPs would result in 28% sediment (4,507 tons) and 27% phosphorous (17 tons) 

reduction over the baseline. Table 11 shows the new crop-BMPs in tax solution scenario as converted 

from the baseline crops and the associated crops that were converted. 

 

Table 11. Optimal crop-BMPs in tax solution scenario  

New crop-
BMP 

CtCV CtNc 

Area (ha) 77.7 125.6 

Converted 
crop 

Wheat Canola Other* Wheat Canola 
Dryland 
cotton 

Other*  

Area (ha) 67.1 6.3 4.2 100.8 11.0 8.0 5.8 

New crop-
BMP 

WhCC WhCv 

Area (ha) 633.8 2062.0 

Converted 
crop 

Wheat Canola 
Cotton 

Other* Cotton 
Canola Other* 

Irrigated Dry Irrigated Dry 

Area (ha) 489.5 35.0 43.6 22.3 43.4 1238.4 358.5 318.3 146.7 

*Note: other means Rye and grain sorghum 
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In tax solution scenario, cotton with conservation tillage (CtCV) (0.7%), cotton with no-tillage on 

contour rows (CtNc) (1.1%), wheat with conservation tillage on contour rows (WhCC) (5.6%), and 

wheat with conservation tillage on straight rows (WhCv) (18.2%) were the selected crop-BMPs to 

abate the sediment and phosphorous loadings from the agricultural lands in the study area. Most of 

the CtNc and WhCC were from conversion of wheat and most of the WhCv was from conversion of 

irrigated cotton. Table 12 shows the subsidy distribution in different new significant crop-BMPs 

based on the soil texture and slope. Results show that for implementing the new crop-BMPs to have 

27 and 28% sediment and phosphorous reduction respectively, the highest rate of subsidy should be 

devoted to the areas with fine sandy loam soil texture (especially on lands with more than four 

percent slope). The second targeted soil was silty clay loam soil. 
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Table 12. Subsidy distribution in different new crop-BMPs based on the soil texture and slope 

*Soil 
texture Slope 

New crop-BMP 
Bermuda grass CtCV CtNc WhCC WhCv 

 
CL 

Total       16.1 164.2 

0-2         89.3 

2-4         64.3 

4-6         10.5 

>6       16.1   

 
FS 

Total 83.2 496.4 2,850.5 4,829.5 9,227.2 

0-2   493.3     225.7 

2-4   3.0 1,412.1   873.4 

4-6     1,319.2 475.7 4,630.7 

>6 83.2   119.2 4,353.8 3,497.3 

 
FSL 

Total 1,846.8 238.6   58,708.9 21,868.2 

0-2 3.9 238.6     2,587.3 

2-4 32.0       6,361.0 

4-6 139.7     2,678.8 10,897.0 

>6 1,671.2     56,030.1 2,022.8 

 
LFS 

Total 8.2 411.6   3,782.0 3,690.8 

0-2   411.6     223.3 

2-4         346.3 

4-6 0.3     229.2 3,038.8 

>6 7.9     3,552.9 82.4 

 
SICL 

Total   382.0 140.3 4,903.8 17,787.6 

0-2   382.0 38.4   7,503.5 

2-4     102.0   6,067.9 

4-6       27.2 3,314.3 

>6       4,876.6 902.0 

 
SIL 

Total       18,122.6 12,254.0 

0-2         1,032.6 

2-4         4,131.1 

4-6       3,858.8 6,200.5 

>6       14,263.9 889.9 

VFSL 

Total 216.8     17,376.7 3,378.8 

0-2         298.2 

2-4       8.0 972.0 

4-6       4,830.6 203.4 

>6 216.8     12,538.0 1,905.1 
*Note: CL is clay loam, FS and FSL are fine sandy loam, LFS is loamy fine sand, SICL is silty clay loam, SIL is silt, and 
VFSL is very fine sandy load.  

 

Comparison between baseline and tax solution scenarios 

Table 13 shows the conversion of main crops (irrigated cotton, dryland cotton, grain sorghum, 

and wheat) to different crop-BMPs in seven different soil texture and four slope classes. The purpose 

of this part is identifying the targeted soils for each crop-BMP conversion. The results of tax solution 

scenario indicated that the area of canola, rye and soybean decreased by 99%, 96% and 96% 

respectively from the baseline scenario. The wheat area increased by 60% from the baseline of which, 

11% were planted on contour.  Eighty-six percent of conversion of wheat to CtCV was on lands with 
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FS soil texture, of which 100% were on less than two percent slope. Ninety-four percent of 

conversion of wheat to CtNc happened on soil with FS texture, of which 83% of them were on lands 

with 2–4% slope. Half of wheat with conservation tillage non-contour conversion to wheat with 

conservation tillage contour was on FSL soil texture which 90% of them were on lands with more 

than six percent slope. The cotton area decreased by 87.9% from the baseline; dry cotton with 

conservation tillage decreased by 46.5% and irrigated cotton decreased by 99%.  Fifty-nine percent of 

cotton was planned on contour with no-till. 6.2% of total irrigated cotton (84.7 ha) was converted to 

Bermuda grass with 1,200 kilograms of stocking rate which would be grazed out in 6 months starting 

July. Almost 3% of irrigated cotton was converted to wheat with conservation tillage system and 

contour cropping. Ninety-one percent of irrigated cotton was converted to wheat with conservation 

tillage system and straight cropping. Ninety-six percent of dryland conversion to CtNc is on lands 

with FS soil texture, of which 92% were on lands with 0–2% slope. 50% of dryland cotton conversion 

to WhCC was on lands with FSL soil texture, 100% of which were on lands with more than six 

percent slope. 45% of dryland cotton conversion to WhCv was on lands with SICL soil texture, of 

which 73% of them were on lands with less than two percent slope. In irrigated cotton conversion to 

Bermuda grass, 60% happened on FSL soil texture, of which 66% were on lands with more than six 

percent slope. 50% of irrigated cotton conversion to WhCC occurred on SIL soil texture, of which 

100% were on lands with greater than six percent slope. 40% of irrigated cotton conversion to WhCv 

occurred on SICL soil texture, of which 80% were on lands with less than two percent slope.  

According to the results of this part, fine sandy loam soil was the targeted soil in changing tillage 

system of wheat from conventional tillage to conservation tillage, and these changes would be more 

effective in sediment and phosphorous abatement once they were combined with contour farming on 

steep slope areas. In conversion of conventional tillage wheat to cotton, sandy loam soils were more 

targeted and once they were on steep slope areas, it would be done with contour farming. The targeted 

soils for conversion of grain sorghum and cotton to wheat were silty clay loams with less than two 
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percent slope and once the land slope was more than six percent, it would be combined with contour 

farming.  
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Table 13. Conversion of baseline crops to different crop-BMPs based on soil texture and land slope in tax solution scenario 

*Soil 
texture 

Slope 
(%) 

Conversion of 
baseline irrigated 
cotton to  

Conversion of 
baseline dryland 
cotton to 

Conversion of baseline grain sorghum 
to 

Conversion of baseline 
minimum till wheat to 

BM31 WhCC WhCv CtNc WhCC WhCv CtCV CtNc WGNC WhCC WhCv CtCV CtNc WGNC WhCC 

CL 

Total   2.5 0.1     

0-2   2.1 0.1     

2-4   0.4     

4-6       

>6                               

FS 

Total 25.0   237.0 7.7 5.9 12.0 3.5 4.4   3.8 5.9 57.7 94.8   72.5 

0-2 97.9 2.4 3.5 0.9 57.7   

2-4 95.3 7.1 4.6 0.1 3.7 1.3   79.1   

4-6 40.8 0.6 4.7 0.4 3.3   15.7   

>6 25.0   3.0   5.9 0.3   0.2   3.8 0.4       72.5 

FSL 

Total 48.7 14.0 341.1 10.9 77.2 10.9 21.9 9.0 241.3 
0-2 0.3 184.7 24.9 5.5 9.0   

2-4 5.8 106.5 30.0 8.1     

4-6 10.4 43.3 20.3 8.3   30.4 

>6 32.1 14.0 6.7 10.9 2.0 10.9   210.9 

LFS 

Total 7.4 0.6 49.0   0.3 12.0       0.2 0.9 0.5     5.9 

0-2 28.4 4.1 0.6 0.5   

2-4 16.7 5.8 0.3     

4-6 3.4 3.9 2.1 0.1     

>6 3.9 0.6     0.3         0.2         5.9 

SICL 

Total 5.1 466.2 0.3 1.3 162.0 0.2 22.3   6.0 18.2 

0-2 371.0 0.3 118.6 13.4   5.2   

2-4 80.3 34.4 6.1   0.8   

4-6 14.7 7.8 2.2     

>6 5.1 0.2 1.3 1.2 0.2 0.6   18.2 

SIL 

Total   19.5 134.9   3.5 89.2       3.3 11.3       93.4 

0-2 61.4 38.0 3.1     

2-4 49.8 30.2 3.7     

4-6 23.7 17.0 3.9   4.1 

>6   19.5     3.5 4.0       3.3 0.5       89.4 

VFSL 

Total 3.7 4.4 10.2   0.3 3.8       0.3 0.7       58.2 

0-2 4.4 1.9 0.2     

2-4 5.9 1.2 0.4     

4-6 3.4   0.2 0.6 0.1 0.1   26.7 

>6 3.7 1.0     0.1 0.1       0.2         31.5 
*Note: CL is clay loam, FS and FSL are fine sandy loam, LFS is loamy fine sand, SICL is silty clay loam, SIL is silt, and VFSL is very fine sandy load.  
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Comparison between the baseline, market solution and tax solution scenarios 

Table 14 shows the economic and environmental tradeoffs between the scenarios. It was found that 

the market solution scenario would generate the highest revenue for farmers, producing sediment and 

phosphorous loads intermediate between the baseline and tax solution (uncompensated) scenarios. The 

tax solution scenario would produce the lowest sediment and phosphorous loadings. Compared to the 

baseline scenario, $1.21 million compensations to the farmers would reduce the sediment and 

phosphorous loadings by at least 27% and increase the uncompensated income for farmers by 26%. 

Figure 11 illustrates the comparison between three different scenarios’ land use in the study area. Table 

15 shows the significant crop-BMPs in each scenario. 

 

Table 14. Differences in net revenue, sediment, and phosphorous between the scenarios 

Scenarios 
Net revenue 
(uncompensated 
income) ($)       

Tax cost (producer's 
compensation 
subsidy) ($)  

Producer's income 
(compensated income) 
($)  

Sediment 
(ton) 

Phosphorous 
(ton) 

Baseline 3,026,795 _ _ 16,512.8 62.6 

Market 
solution  

3,831,996 _ _ 14,546.8 46.3 

Tax 
solution  

2,611,628 1,214,134 3,825,762 12,005.4 45. 

 

 

Figure 11. Land use variation in different scenarios 
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Table 15. The significant crop-BMPs in each scenario 

Scenario BMPs/Crop Comment 

Baseline 
Native pasture, grain sorghum, irrigated and dryland cotton, 
and wheat with conventional reduced tillage 

  

Market 
solution 

Native pasture, Bermuda grass, grain sorghum with non-
contour no-till, dryland cotton with conventional tillage, cotton 
with non-contour conservation tillage, wheat with conventional 
reduced tillage, wheat with non-contour conservation tillage  

Only wheat, grain sorghum and cotton 
were considered 

Tax 
solution 

Native pasture, Bermuda grass, cotton with non-contour and 
contour conservation tillage, and wheat with conventional 
reduced tillage, wheat with non-contour and contour 
conservation tillage 

Only wheat, grain sorghum and cotton 
were considered 

 

The results show that continuous minimum till wheat remains the dominant crop in the FMC area 

(until problem of weeds and diseases with continuous no-till wheat can be solved). Simulations with 

winter wheat as a cover crop or double crop in rotation with cotton or grain sorghum gave lower 

economic returns and some increase in erosion.  

Wheat was found to be the most beneficial crop both economically and environmentally. Osei (2016) 

applied three conservation practices in the FCR watershed to find the optimal distribution of conservation 

practices and indicated that no-till winter wheat production in central Oklahoma would be a win-win 

option. But, since continuous no-till wheat is prone to issues of weeds and other diseases, it is not a good 

scenario for adoption (Edwards et al., 2006). Authors further indicated that although conversion to pasture 

entailed a significant cost to farmers, it resulted in substantial and consistent reductions in all 

environmental indicators such as runoff volumes and sediment and nutrient loadings, which is consistent 

with the results of this research.   

Figure 12 shows the crop-BMP distribution of land uses under three scenarios targeted at abating 

sediment and phosphorous loads in the study area. Figure 12-b illustrates optimal crop-BMP for 12% 

sediment and 26% phosphorous abatement (market solution) and Figure 12-c shows optimal crop-BMPs 

for an additional 27% sediment and 28% phosphorous reduction (tax solution). 
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a) Baseline land use b) Market solution c) Tax solution 

Figure 12. Spatial allocation of FMC crop-BMP in different sediment and phosphorous abatement scenarios
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Summary and conclusions 

Twenty-two crop-BMP combinations were simulated in 5,750 HRUs in the study area. The tillage 

methods (conservation tillage with contour and non-contour and no-till with contour and non-contour) 

were simulated with cotton, grain sorghum, and wheat. Wheat was also considered as a cover or 

double crop with cotton and grain sorghum. No-till wheat-canola rotations were also considered in 

contour and non-contour farming systems. The conversion of cropland to Bermuda grass with 

different grazing times and stocking rates was also considered. Average crop yield, sediment, and 

phosphorous loads from each HRU were recorded. The LP model was designed to estimate net 

revenue generated with different crop-BMPs in the study area for two different scenarios: market 

solution and tax solution 

The market solution scenario represented maximum net revenue without constraints on sediment 

and phosphorous loadings. Here, the objective was to maximize net revenue or producer’s income. 

The tax solution scenario was obtained with charges on sediment and phosphorus production. Here, 

the objective was to maximize net revenue subject to determining the amount of sediment and 

phosphorus leaving the field that could be abated for $100 and $300 per ton respectively. These 

charges serve as subsidy (compensated income) to farmers. The charges assist in determining the type 

and location of crop-BMPs in the watershed to reduce sediment and phosphorus loadings for an 

amount less than or equal to the charge. The charge gives the same result as a payment to the 

producer to prevent a unit of phosphorus or sediment loss from their field. Using the income 

maximization approach, crop-BMPs were compared for reduction in sediment and phosphorous 

loadings across all HRUs in different scenarios.    

By maximizing net revenue without constraints on sediment and phosphorous reduction (market 

scenario), there was 26% increase in income, 12% increase in sediment abatement, and 26% increase 

in phosphorous abatement. In market scenario, most of the new strategies for replacement of row 

crops with new conservation practices are wheat and cotton with non-contour conservation tillage and 

grain sorghum with non-contour no-till. In cotton with non-contour conservation tillage, the 
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conversion was from wheat with conventional tillage system. For wheat with conservation tillage, the 

most of the conversion was from irrigated cotton. In grain sorghum with non-contour no-till, all of the 

conversion was from irrigated cotton. It means that cotton is a profitable crop economically on 

dryland but irrigated cotton was less profitable than other crops in this study area. The conversion of 

39 percent of the cotton area to wheat and other crops was accompanied by a decrease in sediment 

and phosphorus loss. This was especially true on the irrigated area.  

The tax solution scenario was to determine how much additional sediment and phosphorus could 

be reduced at a cost of $100 per ton of sediment and $300 per ton of phosphorus. The producer’s 

income (compensated income) in this solution was increased by 26.4% leading to a reduction of 

sediment (27%) and phosphorous (28%) as compared to the baseline scenario. The net revenue 

without considering the compensated income would be 13.7% less than that of the baseline scenario. 

This shows that 1.2 million dollars compensation to producers to adopt crop-BMPs would result in 

28% sediment (4,507 tons) and 27% phosphorous (17 tons) reduction over the baseline. This would 

also result in additional 15% and 2% respectively in sediment and phosphorous reduction over the 

market solution. The increase in abatement required replacement of 2,697 hectares of row crops with 

wheat; most of the change was on lands with silty clay loam (especially on lands with less than two 

percent slope) and fine sandy loam (especially on lands with more than six percent slope). The 

solution contained fewer cotton areas which were targeted for sediment and phosphorous abatement, 

but the new suggested cotton were from conversion of wheat with reduced tillage to cotton with 

contour no-till (mostly on lands with fine sandy soil texture with less than four percent slope). Soils 

with fine sandy loam texture were the targeted soils in changing tillage system of wheat from 

conventional tillage to conservation tillage, and these changes was more effective on sediment and 

phosphorous reduction once they were combined with contour farming on steep slope areas. In 

conversion of conventional tillage wheat to cotton, sandy loam soils were more targeted and once 

they were on steep slope areas, it would be done with contour farming. The targeted soils for 

conversion of grain sorghum and cotton to wheat were silty clay loams with less than two percent 
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slope and once the land slope was more than six percent, it would be combined with contour farming. 

Meanwhile , results showed that for implementing the new crop-BMPs to have 27% and 28% 

sediment and phosphorous reduction respectively, the highest rate of subsidy should be devoted to the 

areas with fine sandy loam soil texture (especially on lands with more than four percent slope). The 

second targeted soil was silty clay loam soil.   

For each crop, loss in net revenue per ton of reduced sediment load increases with the total 

amount of sediment abated since the model selects less productive and highly erodible lands first and 

gradually moves to more productive and less erodible lands as the constraint level is increased. This is 

desirable since the objective is to obtain the highest possible load reduction per dollar lost as a result 

of replacing a more profitable land cover type by less profitable ones.  

According to the result of LP, if sediment and phosphorous constrains were considered, this 

conversion to wheat with non-contour conservation tillage would be more profitable. Once there was 

no constrains on sediment and phosphorous load and the goal is just maximizing producer’s income, 

wheat was the first best crop and then no-till grain sorghum was the second best crop for irrigated 

areas. But with considering constrains for NPS loads, wheat with non-contour conservation tillage 

would be preferred in irrigated lands.  

Dryland cotton and grain sorghum were the most profitable crops for farmers. However, they had 

higher NPS pollution than wheat. Wheat under conservation tillage was both economically and 

environmentally beneficial crop in both dry and agricultural fields. The percentage of the area 

devoted to wheat increased when charges were placed on field losses of sediment and phosphorus. 

The rotation or double crop of wheat with other crops (cotton, canola, and grain sorghum) with no-

tillage system (with both contour and non-contour farming) was not the most economic and 

environmental strategy with the abatement level used in this study. 
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Limitation of this study 

In no-till farming there is a problem of crop resistance to the diseases from using herbicides and 

pesticides. One of the limitations of this study is that in the modeling part using SWAT, this 

resistance was not considered in crop yield calculation.  The changes in relative crop prices or proven 

yields and crop insurance rates will also affect producers’ ability to change crops.  
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Appendix 

Appendix 1. Reservoir and Ponds Information in the SWAT model 

Sub-
basin 

principle 
surface 
area (ha) 
PND_PSA 

principle 
volume (104 
m3) 
PND_PVOL 

emergency 
spillway 
surface area 
(ha) 
PND_ESA 

emergency 
spillway 
volume (104 
m3) 
PND_EVOL 

drainage 
area (ha) 

sub-
basin 
area (ha) 

drainage 
area/ 
sub-
basin 
area 
PND_FR 

1 1.52 3.05 2.29 4.57 45.7 1214.17 0.04 
2 2.65 5.31 3.98 7.96 79.6 694.81 0.11 
3 1.09 2.18 1.64 3.27 32.7 2112.78 0.02 
4 - - - - - - - 
5 4.84 9.69 7.27 14.53 145.3 570.03 0.25 
6 20 40.30 30 62.45 724.5 784.94 0.92 
7 2.06 4.11 3.08 6.17 61.7 625.04 0.10 
8 1.93 3.86 2.90 5.79 57.9 817.80 0.07 
9 6.29 12.59 9.44 18.88 37.74 37.74 1.00 
10 0.84 1.67 1.26 2.51 25.1 697.89 0.04 
11 12.62 25.24 18.93 37.86 57.45 57.45 1.00 
12 0.04 0.07 0.06 0.11 1.1 23.70 0.05 
13 20 41.71 30 62.56 925.6 2822.14 0.33 
14 7.54 15.09 11.31 22.63 226.3 571.50 0.40 
15 7.94 15.89 11.92 23.83 238.3 882.17 0.27 
16 4.37 8.73 6.55 13.10 131.0 1823.63 0.07 
17 - - - - - - - 
18 5.37 10.73 8.05 16.10 161.0 1185.20 0.14 
19 20 40.48 30 62.73 727.3 1139.11 0.64 
20 20 40.68 30 62.02 730.2 2560.27 0.29 
21 - - - - - - 
22 11.80 23.60 17.70 35.40 354.0 1574.00 0.22 
23 5.96 11.92 8.94 17.88 178.8 1596.47 0.11 
24 1.42 2.84 2.13 4.25 42.5 773.11 0.06 
25 8.95 17.89 13.42 26.84 268.4 1665.47 0.16 
26 3.77 7.53 5.65 11.30 113.0 1415.00 0.08 
27 1.85 3.69 2.77 5.54 55.4 560.79 0.10 
28 0.04 0.07 0.05 0.11 1.1 53.39 0.02 
29 3.18 6.36 4.77 9.54 95.4 952.56 0.10 
30 3.26 6.51 4.89 9.77 97.7 888.28 0.11 
31 0.26 0.52 0.39 0.79 7.9 218.01 0.04 
32 0.15 0.30 0.23 0.45 4.5 64.24 0.07 
33 7.42 14.85 11.14 22.27 222.7 753.34 0.30 
34 6.19 12.39 9.29 18.58 185.8 1328.45 0.14 
35 - - - - - - - 
36 2.48 4.96 3.72 7.44 74.4 919.52 0.08 
37 - - - - - - - 
38 - - - - - - - 
39 1.51 3.02 2.27 4.53 45.3 904.65 0.05 
40 0.07 0.14 0.11 0.21 2.1 217.57 0.01 
41 1.83 3.66 2.74 5.49 54.9 655.48 0.08 
42 0.09 0.18 0.13 0.27 2.7 198.45 0.01 
43 2.42 4.83 3.62 7.25 72.5 748.99 0.10 
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Appendix 2. Conventional (reduced) tillage for dryland crops and pasture 

Crop Date Operation 
Cotton 1.1 Tillage operation (Disk Plow Ge23ft) 

3.15 Tillage operation ( Disk Plow Ge23ft) 
5.15 Tillage operation   (Springtooth Harrow Ge15ft) 

6.1 
Tillage operation (Finishing Harrow Lt15ft) 
Pesticide Operation (Pendimehalin, 0.25 kg) 

6.10 Fertilizer application (Elemental Nitrogen, 50 kg) 
6.11 Plant 

7.1 Tillage operation (Row Cultivator Ge15ft) 
11.15 Harvest and kill 

Pasture 
 

1.1 Plant 
3.1 Auto fertilization 

5.1 
Grazing operation (Beef-Fresh Manure,  GRZ_DAYS*: 180, 
BIO_EAT*: 3, BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

Winter wheat 3.15 Fertilizer application (Elemental Nitrogen, 80 kg) 
6.1 Harvest and kill 
7.1 Tillage operation (Chisel Plow Gt15ft) 
8.1 Tillage operation (Offset Dis/heavduty Ge19ft) 

9.20 
Fertilizer application (Elemental Nitrogen, 80 kg) 
(Elemental Phosphorus, 35 kg) 

9.22 Tillage operation (Disk Plow Ge23ft) 
9.24 Tillage operation (Springtooth Harrow Lt15ft) 
9.25 Plant 

12.1 
Grazing operation (GRZ_DAYS*: 90, BIO_EAT*: 3, 
BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

Grain sorghum 5.1 Plant 
5.27 Fertilizer application (Elemental Nitrogen, 150 kg) 

5.28 
Tillage operation (Springtooth Harrow Ge15ft, Disk Plow 
Ge23ft, Mecoprop Amine, 125), Pesticide Operation 
(Mecoprop Amine, 125 kg) 

10.18 Tillage operation (Disk Plow Ge23ft) 
10.20 Tillage operation (Springtooth Harrow Ge15ft) 
10.30 Harvest and kill 

Alfalfa 4.1 Harvest only 
5.15 Harvest only 

7.1 Harvest only 

8.29 
Fertilizer application (Elemental Nitrogen, 50 kg), (Elemental 
Phosphorous, 20) 

9.7 Plant 
10.15 Harvest only 

Hay 4.1 Harvest only 
7.1 Harvest only 

8.29 Auto fertilization 
9.7 Plant 

10.15 Harvest only 
Rye 6.10 Harvest only 

8.10 
Fertilizer application (Elemental Nitrogen, 80 kg), (Elemental 
Phosphorous, 35) 

9.20 Plant 
9.15 Grazing operation (GRZ_DAYS*: 150, BIO_EAT*: 3, 
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BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 
 

*AUTO_NSTRS: Nitrogen stress factor of cover/plant triggers fertilization. This factor ranges from 0.0 to 1.0 where 0.0 
indicates there is no growth of the plant due to nitrogen stress and 1.0 indicates there4 is no reduction of plant growth due to 
nitrogen stress.  
*GRZ_DAYS: Number of consecutive days grazing takes place in the HRU 
*BIO_EAT: dry weight of biomass consumed daily ((kg/ha)/day) 
* BIO_TRMP: dry weight of biomass trampled daily ((kg/ha)/day) 
*MANURE_KG: dry weight of manure deposited daily ((kg/ha)/day) 
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Appendix 3. Cotton yield calibration parameters 

Parameter 
Parameter definition Default 

value 
Calibrated 
value 

BIO_E [(kg/ha)/(MJ/m2)] Radiation use efficiency or biomass energy ratio 15 14 
USLE_C Minimum value of USLE C factor for water erosion 0.2 0.1 
HVSTI [(kg/ha)/( kg/ha)] Harvest index for optimal growing season  0.4 0.3 
OV_N Manning’s “n” value for overland flow 0.14 0.12 
BLAI (m2/m2) Maximum potential leaf area index 4 3 

FRGRW1(fraction) 
Fraction of plant growing season to the first point on the 
optimal leaf area development curve 

0.15 0.14 

FRGRW2 (fraction) 
Fraction of plant growing season to the second point on 
the optimal leaf area development curve 

0.5 0.3 

LAIMX1 (fraction) 
Fraction maximum leaf area index to the first point on the 
optimal leaf area development curve 

0.01 0.005 

CNYLD (kg N/kg seed) Normal fraction of nitrogen in yield 0.015 0.018 
CPYLD (kg P/kg seed) Normal fraction of Phosphorus in yield 0.0025 0.0027 

 

Appendix 4. Wheat, pasture, and grain sorghum yield calibration parameters 

Parameter 
Winter wheat Pasture Grain sorghum 
Default 
value 

Calibrated 
value 

Default 
value 

Calibrated 
value 

Default 
value 

Calibrated 
value 

BIO_E 
[(kg/ha)/(MJ/m2)] 

30 29 35 28 33.5 37 

USLE_C 0.03 0.02 0.003 0.003 0.2 0.2 
HVSTI [(kg/ha)/( 
kg/ha)] 

0.4 0.3 0.8 0.8 0.45 0.3 

OV_N 0.14 0.12 0.3 0.25 0.14 0.12 
BLAI (m2/m2) 4 3 4 2.5 3 4.5 
FRGRW1(fraction) 0.05 0.03 0.05 0.03 0.15 0.15 
FRGRW2 (fraction) 0.45 0.35 0.49 0.35 0.5 0.5 
LAIMX1 (fraction) 0.05 0.03 0.05 0.03 0.05 0.05 
CNYLD (kg N/kg 
seed) 

0.025 0.02 0.0234 0.0134 0.0199 0.02 

CPYLD (kg P/kg seed) 0.0022 0.0018 0.0033 0.0022 0.0044 0.0032 
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CHAPTER VI 
 

 

OPTIMIZED LANDUSE, CONSERVATION PRACTICES, AND GRAZING OPERATION IN 

AN AGRICULTURAL, PASTURE INTENSIVE WATERSHED, OK, USA 

Abstract 

Non-Point source (NPS) pollution from agriculture is a major environmental problem in the US. 

Adoption of Best Management Practices (BMPs) is one of the strategies to control NPS 

pollutions and improve water quality. The main objective of this study is to identify the most cost 

efficient livestock-crop-BMPs and grazing operations in the Five-Mile Creek watershed in 

southwestern Oklahoma to reduce sediment and phosphorous loads from agricultural fields. The 

Soil and Water Assessment Tool (SWAT) was used to model the watershed and generate crop 

yield, and sediment and phosphorous loads from 22 different crop-BMPs. A Linear Programming 

(LP) model was designed to evaluate the effectiveness of these crop-BMPs targeted at reducing 

the loads of sediment and phosphorus at the least cost possible. The LP model was used to 

determine the optimal crop-BMP in each field that would give maximum net farm income subject 

to different pollutant charges. The results indicated soil textures and slope classes where less 

erosive crops and/or no-till practices could replace conventional crops with the least amount of 

social cost (farm income reduction and/or public subsidy). It was noted that changes in relative 

input prices could reduce sediment and phosphorous loads by 11% (1,796 tons) and 6.5% (4.1 

tons) respectively and increase producer’s income by 29% ($870,482) over the 2014 baseline. An 

additional 2,873 and 3,140 and 3,215 tons of field sediment loss could be prevented with charges 
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of $100, $200, and $300 per ton of sediment respectively. The results show that continuous minimum 

till wheat remains the dominant crop in the study area until problems with continuous no-till wheat 

can be solved. Increased contour farming (wheat and cotton), increased no-till farming (cotton) and 

decreased no-till farming (wheat) would increase sediment abatement. Winter wheat as a cover crop 

or in rotation with cotton or grain sorghum would generate lower economic returns and some increase 

in sediment loads. The rotation of no-till wheat with canola especially with contour farming was 

economically viable while reducing sediment. Fine sandy loam soils are the targeted soils for 

changing tillage system of wheat to conservation or no-till and once the contour are the most effective 

solution, these changes should be implemented more on steep slope areas. The targeted soils for 

conversion of cotton to wheat are fine sandy and silty clay loam, which silty clay loam is the targeted 

soil once we want to plant wheat in rotation with canola and fine sandy loam is the targeted soil for 

conversion of cotton to wheat with conservation tillage. 

 

Keywords: Non-Point source, best management practices, livestock operation, SWAT, linear 

programming, cost effectiveness, soil texture, slope 

 

Introduction 

Non-Point Source (NPS) pollutants are forms of diffuse pollution caused by nutrients, sediment, 

toxic and organic substances originating from particular land use activities such as agricultural 

activities. These occur over a wide area and carried to reservoirs, lakes and stream channels by 

surface runoff (Humenik et al., 1987). According to the United States Environmental Protection 

Agency (USEPA) (2016), almost half of the water bodies in the US are impaired by NPS pollution 

and sediment ranks fifth among the causes of water quality impairments. Agricultural activities that 

cause NPS pollution most usually occur from the lack of a proper management and conservation plan. 

Impacts can be generated from agricultural practices like plowing too often or at the wrong time, 

improper application of fertilizer, poorly located or managed animal feeding operations and 
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manure, and overgrazing (USEPA, 2017). In rural catchments, the major sources of nutrients may 

include runoff from agricultural fields applied with fertilizer and manure, runoff from grazing fields 

with animal wastes associated with the erosion of sediments, and runoff from concentrated animal 

operations (Howry et al., 2008). Best Management Practices (BMPs) are effective and practical 

scenarios to control and reduce the transport of agricultural NPS pollutants to water bodies. Livestock 

management and grazing are also essential components in NPS pollution control in pasture intensive 

watersheds. In agricultural catchments with NPS pollution, preventing overgrazing with ensuring a 

livestock food supply is critical both environmentally and economically. Evaluating different crop-

livestock/BMPs can help ensure the most effective allocation of funding for watershed management 

and water quality improvement. The cost effective selection and location of crop-livestock/BMPs can 

aid in increasing both the efficiency of public funds and the total income of farmers and producers. 

The Upper Washita River basin in southwestern of Oklahoma, US contains critical pollution and 

sustainability problems. The Fort Cobb Reservoir (FCR) watershed located in this basin is largely an 

agricultural catchment, an area with high rates of wheat and cattle production (mainly cow-calf and 

stocker operations). Cattle and stocker production use both cropland pasture, planted pasture and 

range lands in this watershed (Starks et al., 2014). The primary land uses of this watershed are crop 

agriculture and rangeland. Wheat is the major crop and is heavily grazed by stocker cattle in the 

winter months (Osei, 2016). Sustainable cattle and stocker production require an ensured twelve 

month food supply which is especially critical during the winter months. On the other hand, since 

sediment and phosphorus lost from grazed pastures and cropland pasture, such as wheat pasture, all 

contribute to NPS, at the watershed level. There should be a balance between crop-animal production, 

and sediment and phosphorous reduction.  

Most of this watershed has been terraced for several years. However, additional BMPs (such as 

no-tillage and cropland to grassland conversion) have been implemented in the watershed to improve 

water quality. The water quality still does not meet the water quality standards as given in the Clean 



 

130 
 

Water Act. In spite of the already implemented BMPs, studies are still needed for selection and 

placement of additional cost-efficient crop/agricultural BMPs and grazing systems to reduce sediment 

and phosphorous load in the watershed.  

There are several studies that have investigated the least-cost mix, location, and magnitude of 

grazing management practices to reduce phosphorus loading in different watersheds (Ancev, 2003, 

Machooka, 2007, Marumo, 2007). Also, there are several studies on FCR watershed to improve water 

quality and control NPS pollution, without considering grazing operations and rotation of crops 

(Storm et al., 2003, 2006; Moriasi et al., 2007, 2008; Osei et al., 2012; Mittelstet, 2015). However, 

none of these studies have directly assessed the cost-effectiveness of adding additional BMPs to the 

existing BMPs. Since one of the goals of this research is to identify the placement of conservation 

practices, it is important to identify the placement of existing conservation practices to prevent 

reoffering them and assess other scenarios instead. Meanwhile, installing these practices requires high 

capital investment. Their presence will affect the optimal selection and placement of additional 

BMPs. This study builds to improve and extend previous studies on this watershed by developing 

different agricultural management practices and land uses for reducing sediment and phosphorus 

loading from Five Mile Creek area of FCR watershed at least cost to the society with consideration of 

existing conservation practices in the study area.  

The no-till wheat cropping system was a highly recommended crop-BMP in this catchment (Osei 

et al., 2012). No-till farming leaves a ground cover that can hold moisture in the soil and protect soil 

against soil and rain erosion. However no-till wheat production has been shown to result in decreased 

yield over time (Decker et al., 2009; Patrignani et al., 2012). Some of the reasons causing the 

limitation of continuous of no-till winter wheat farming are weed and disease cycles associated with 

wheat production (Edwards et al., 2006). Several researchers have studied no-till farming and its 

effect on runoff, NPS pollution and crop yield (Choi et al., 2016; Osei et al., 2012), however there is 

limited research on rotation and double cropping of winter wheat with other viable crops to solve the 

problems related to continuous no-till winter wheat farming. Osei et al. (2012) assessed the effects of 
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no-till systems on crop yield in farm-level economics and compared with other tillage systems for 

wheat production in FCR watershed. They indicated that if winter wheat grain yields are not 

significantly impacted by tillage systems, no-till would be more profitable than conventional reduced 

tillage or the current mix of tillage practices in the watershed. In their study they did not address 

diseases resulted from continuous no-till winter wheat farming and rotation of this crop with other 

crops was not addressed to solve this issue. In this study, the result of several possible crop-

livestock/BMPs has been evaluated using the Soil and Water Assessment Tool (SWAT).  

There are no effective laws regarding the amount of sediment or nutrients that leave the 

producer’s land in the US. Thus any reduction in these items may be viewed as a cost by the 

producers. The principal approach in the US toward control of NPS pollutions from agricultural fields 

has been to subsidize adoption of BMPs or provide funds for land retirement and crop rotation, rather 

than taxing inputs such as nitrogen and fertilizer (Shortle and Horan, 2001). Since all conservation 

practices may not improve the profitability of enterprises at the farm level, the government is the 

main source of funding for soil and water conservation (Wang and Berman, 2014). Different 

economic incentives are required at the local level to incentivize conservation practice adoption 

(Osmond et al., 2012; Ribaudo, 2015; Carlisle, 2016). Tong et al. (2016), Camboni and Napier 

(1993), Dobbs and Pretty (2004), and Shortle et al. (2012) agree in the assertion that the current 

incentive system in FCR watershed needs restructuring to provide appropriate, effective and attractive 

incentives to both producers and non-farming/absentee landowners. The end goal of this research is to 

define more specific incentive payment programs for producers and landowners to adopt the most 

cost effective BMPs. To this end, the shadow prices from the LP solutions will be used to define more 

specific incentive payment programs for landowners and producers to adopt the most cost effective 

BMPs.  

The main goal of this study is to identify crop-livestock BMPs that would be the most profitable 

to cattle and agricultural producers while reducing cost to the society because of sediment and 

phosphorous abatements. For this, different combinations of crops, livestock, and agricultural 
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management practices including grazing schedule were simulated in a hydrological model (SWAT). 

The simulation results then were analyzed to get the optimal land use, optimal conservation practices, 

and optimal number of cattle supported in this region with appropriate grazing schedule using the LP 

model. One of the specific objectives of this study is to estimate impact of different soil types and 

slope classes on economics of crop-BMP choices, crop rotation, and grazing operation management.  

 

Methods and data 

Study area 

The Fort Cobb Reservoir (FCR) watershed located in southwestern Oklahoma, US, in the Upper 

Washita sub-basin with an area of 813 km2, is an agricultural watershed. Land in the FCR watershed 

is comprised of highly erosive, fine sandy loam soils, which even under natural conditions contribute 

to erosion, sediment loading, stream bank and channel instability (OCC, 2009). The water quality of 

the Fort Cobb reservoir in southwestern Oklahoma and its tributaries (Cobb Creek, Lake Creek, 

Willow Creek, and Five-Mile Creek) has been of concern for more than two decades, with water 

quality problems first identified in 1981. Recently, several BMPs have been implemented in the 

watershed (such as no-till crop production methods and conversion of cropland to grassland) to 

improve water quality. The continued sedimentation in the FCR, despite previous conservation 

practices, demonstrates the need to expand adoption of both privately and publically funded BMPs. In 

this study, a SWAT model has been constructed and combined with Linear Programing to evaluate 

the most ecological feasible and cost effective crop-livestock BMPs in just Five Mile Creek (FMC) 

(grey basin) area of FCR watershed. However the only available USGS gage station (Figure 1) 

receives runoff from both the Cobb Creek and FMC sub-watersheds. Therefore, the SWAT model 

was constructed for the larger area above this station (red basin in Figure 1) containing of the Cobb 

Creek and FMC and only the FMC portion is used in the later analysis. FMC has an area of 113.05 

km2 and is composed of predominately cropland (50%), pastureland (44%), and others (6%) (NASS-

USDA, 2014). Historically, peanuts and cotton were major crops but in recent years many of these 
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Figure 2. Schematic representation of optimal control model 

 

Hydrological model 

The Soil and Water Assessment Tool (SWAT) (Arnold, 1995) was used to model the western 

portion of the FCR watershed (see Figure 1) in western Oklahoma. The model was calibrated and 

verified both manually and automatically for monthly streamflow, sediment, and annual yield of 

winter wheat, cotton, grain sorghum, and pasture. A 10-m USGS Digital Elevation Model (DEM) was 

used to delineate the watershed boundary. The gage station (USGS 07325800) was used as the 

watershed outlet. Then the delineated watershed was divided into 43 sub-basins with an average sub-

basin area of 8 km2 (min. 0.2 km2 ̶ max. 28 km2). The Soil Survey Geographic Database- SSURGO 

soil data, the US Department of Agriculture crop layer and the USGS elevation-slope information 

were overlaid to produce 15,217 polygons which constitute unique combinations of soil, land use and 

slope. These are called hydrologic response units (HRUs). In SWAT, an HRU is the finest scale of 

measurement, and therefore routings of water, nutrients, and sediments are calculated at HRU level 
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and aggregated to the sub-basin and finally to the watershed level. Therefore, a large number of 

HRUs, at the expense of computational efficiency, were generated to understand the detailed effects 

of different conservation practices in a crop-pasture intensive watershed in rural Oklahoma. Two 

weather stations (C349422 and C341504) from the United States Department of Agriculture (USDA) 

Agricultural Research Service (ARS) (https://datagateway.nrcs.usda.gov/) were used to characterize 

current climate and drive model simulations. Major water body (lakes, ponds and wetlands) data were 

collected from the U.S. Army Corps of Engineers National Inventory of Dams (NID) (USDA, 2009). 

Also USGS 7.5-minute quad maps were used. There were a total of 320 waterbodies in the study area 

with an average area of 0.055 km2 draining 62.9 km2 of the study area. The characteristics associated 

with these waterbodies were calculated following Mittelstet et al. (2015). The average depth of the 

ponds was assumed to be two meters given that these waterbodies are shallow and mostly used for 

livestock. The drainage area of each waterbody was assumed to be 30 times of the surface area of the 

waterbody as suggested by Whitis (2002). Information related to fertilizer use and management 

practices (Appendix 1) for the selected crops were incorporated as observed in the study area between 

1982–2015 while developing the model prior to model calibration (Storm et al, 2006). Garbrecht and 

Starks (2009) stated that 80%-90% of cropland in FCR watershed that needed terraces has been 

terraced over the last 50 years. Aerial pictures were used to distinguish the exact placement of 

existing terraces and contour. There were several places where terraces and contour have been broken 

and appeared to make the erosion problem worse. The broken terraces were recognized using 2-meter 

Lidar drainage lines and treated as being un-terraced in the model. HRUs where more than 65% of the 

area was terraced and contour farmed were classified as being terraced with contour farming. The 

effects of terraces and contour were simulated by modifying runoff and erosion parameters for slope 

length, the SCS runoff curve number (CN), and USLE practice factor. These parameters can be 

adjusted based on the land slope suggested by SWAT documents (Table 1). 
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Table 1. USLE-P value used for contour farming, strip cropping and terracing 

Land Slope % 
USLE-P 

Contour farming Strip cropping Terracing 
1 to 2 0.6 0.3 0.12 
3 to 5 0.5 0.25 0.1 
6 to 8 0.5 0.25 0.1 
9 to 12 0.6 0.3 0.12 
13 to 16 0.7 0.35 0.14 
17 to 20 0.8 0.40 0.16 
21 to 25 0.9 0.45 0.18 
Source: SWAT 2012 User’s guide (Winchell et al., 2013) 

 

Hydrological model calibration and validation 

The SWAT model was calibrated and validated for streamflow, sediment, and crop yield. First, 

the SWAT Calibration and Uncertainty Procedures (SWAT-CUP) (Abbaspour, 2011) was employed 

to automate model sensitivity, parameterization and validation using the observed streamflow data. 

Seventeen parameters related to streamflow were used to carry out model parametrization (Table 2). 

To calibrate the model, a 10-year (1991–2000) monthly streamflow observations dataset, recorded at 

the USGS gauge station (USGS 07325800) was used. The model performance was determined using 

three statistical measures: coefficient of determination (R2), Nash-Sutcliffe efficiency (ENS), and 

percentage bias (PB). The values of R2 (0.64), ENS (0.61), and PB (5%) in the calibration period 

(Figure 3) were deemed to be satisfactory as suggested by other SWAT-based studies (Moriasi et al., 

2015). The model was validated by comparing the USGS observations with SWAT simulated 

streamflow data for a different time period (2001–2010) and found reasonable model performance (R2 

= 0.79; ENS = 0.62; PB = -15%) as shown in Figure 4.  
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Figure 3. Observed and calibrated SWAT simulated streamflow at Cobb Creek near Eakley, OK 

(1991-2000)  

 

 
Figure 4. Validation time series for observed and SWAT predicted flow at the Cobb Creek near 

Eakley, OK (2001 to 2010) 

 

Suspended sediment was calibrated for ten years, (1991–2000) and validated for another ten 

years, (2001–2010) at the watershed outlet. The grab sample data that were available from 2004 to 

2012 (usually 1 to 3 samples per month with a few months missing) were used along with stream 

flow date to estimate sediment loads for days when when daily stream flow measurements were 

available. A double log regression between the observed streamflow and measured sediment data was 
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estimated.  This method has been used to generate sediment information for missing periods in many 

studies (Jothiprakash and Grag, 2009; Salimi et al., 2013; Sarkar et al., 2008; Shabani, 2012; Gray 

and Simoes, 2008). There was a strong correlation (R2=0.9) between the observed grab sample 

sediment data and runoff in the study watershed (Figure 5). Therefore this regression relationship was 

used to estimate the missing daily sediment data for the model simulation period.    

 

Figure 5. Observed daily discharge and observed daily suspended sediment concentration trend at the 

Cobb Creek near Eakley, OK 

 

Table 2. Streamflow and sediment calibration parameter values in study area 

Component Parameter Parameter value range Final value 

Streamflow 

V__GWQMN.gw 0.20_0.60 0.60 
V__GW_REVAP.gw 0.02_0.03 0.02 
V__REVAPMN.gw 0.50_1.50 1.38 
V__RCHRG_DP.gw 0.10_0.50 0.47 
V__GW_DELAY.gw 320_390 376 
R__CN2.mgt -0.16_-0.13 -0.13 
V__ALPHA_BF.gw 0.80_1.00 0.95 
V__ESCO.hru 0.80_0.90 0.83 
V__EPCO.bsn 0.10_0.60 0.30 
V__CH_K1.sub 0.00_0.40 0.09 
V__SURLAG.bsn 0.50_4.00 3.05 
V__EVRCH.bsn 0.00_0.50 0.34 
V__TRNSRCH.bsn 0.00_0.10 0.10 
V__ALPHA_BNK.rte 0.60_1.00 0.84 
R__SOL_AWC(..).sol -0.02_0.06 0.04 
V__CH_N2.rte 0.05_0.30 0.18 
V__CH_K2.rte 1.85_2.15 1.98 

Sediment 
R__USLE_P.mgt -1.000_0.000 -0.240 
R__SLSUBBSN.hru 0.000_0.230 0.217 

y = 1.9746x + 3.6951
R² = 0.9
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R__USLE_K().sol -0.500_0.300 -0.247 
V__RSDCO.bsn 0.010_0.100 0.083 
V__BIOMIX.mgt 0.000_0.300 0.297 
V__SPCON.bsn 0.000_1.000 0.009 
V__SPEXP.bsn 1.000_2.000 1.714 
V__CH_ERODMO(..).rte 0.050_0.700 0.355 
V__CH_COV1.rte 0.001_0.800 0.518 
V__CH_COV2.rte 0.001_0.800 0.332 

Note: “R” before the parameter name stands for relative change (the parameter is multiplied by 1+value); “V” stands for 
replacement (the parameter is replaced by a value within the range)  

 

Despite the use of only grab sample sediment data filled in by daily regression estimates of 

sediment loads based on the daily flow, the model was successfully calibrated for monthly sediment 

loads by modifying ten parameters that were related to sediment transport (Storm et al., 2006; Moriasi 

et al., 2008) (Table 2). The model calibration with values of R2 (0.30), MNSE (0.35) and Pbias 

(20%), (Figure 6) and validation with values of R2 (0.33), MNSE (0.43) and Pbias (53%) (Figure 7) 

was considered acceptable. It was found that the largest error in sediment prediction was associated 

with errors of peak flow estimation. It could be due to the “second storm effect” prone to hydrological 

models including SWAT (Abbaspour et al. 2007). The first storm event causes a larger sediment 

transport and makes remaining surface layers difficult to mobilize. As a result, the second and third 

storm events, regardless of their event sizes, result in smaller sediment loads. For this study area, the 

“second storm effect” was not tested since there were no observed sediment data representing flood 

events (May 1993, June 1995, June 2007) during model calibration-validation period. The simulated 

sediment data failed to accurately capture these events, resulting uncertainty in sediment calibration. 

The over-and under-estimation of sediment during flood events was reported in other SWAT based 

studies (Oeurng et al., 2011).  
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Figure 6. Observed and calibrated SWAT simulated suspended sediment concentration at Cobb 

Creek near Eakley, OK (1991-2000) 

 

Figure 7. Observed and validated SWAT simulated suspended sediment concentration at Cobb Creek 

near Eakley, OK (2001-2010) 

 

Crop yield and biomass production affect watershed hydrology through altered erosion and water 

balance (Hu et al. 2007; Ng et al. 2010a; Andersson et al. 2011; Nair et al. 2011). A combination of 

the OSU variety trial data from 2001 to 2016 (http://croptrials.okstate.edu/), and the county level 

NASS data (1986–2005) were used to calibrate yield of three different crops (winter wheat, grain 
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sorghum, cotton- both dryland and irrigated) (USDA-NASS, 1986 to 2005, 

http://digitalprairie.ok.gov/cdm/ref/collection/stgovpub/id/11177). The variety trial crop yields were 

collected from sites in seven counties (Apache, El Reno, Homestead, Chickasha, Altus, Tipton, and 

Thomas) that are located within and nearby the study area. A list of crop yield parameters with their 

initial and calibrated values is provided in Appendix 2, 3. In this study the coefficient of 

determination (R) was used as an indicator to compare the SWAT simulated crop yields with the 

observed yields. The values of R for cotton, grain sorghum and winter wheat, grain sorghum, and 

cotton were 0.4, 0.32 and 0.61 respectively which are deemed satisfactory as reported by other 

studies. 

Based on the previous research in this area, the average yields of hay, alfalfa, rye, native pasture, 

and Bermuda grass yields in the study area were held constant at 2,000, 3,000, 3,000, 1,500, and 

6,500 kg/ha respectively. When used with the adjusted parameters for these crops, lead to satisfactory 

results.   

 

Crop-BMP scenarios 

In this study, five conservation practices were considered for three mains crops (winter wheat, 

cotton, and grain sorghum) and cropland conversion to pasture. Table 3 shows the explanation of each 

scenario.  
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Table 3. Crop-BMP Scenarios 

No. 
Conservation 
practice 

Explanation 
Abbreviation for different crops in different BMPs 
Winter wheat Grain sorghum Cotton 

1 
Conservation 
tillage  

The conservation tillage 
system was considered for 
all crops except hay and 
alfalfa 

WhCv GRSG CtCv 

2 

Conservation 
tillage in 
combination 
with contour 
farming 

The contour conservation 
tillage was used following the 
operations-crop calendars for 
all crops except hay and 
alfalfa 

WhCC GSCC CtCC 

3 
No-Till farming 
non-contour 
cropping 

No-till was simulated in 
regular crop calendars for all 
crops except hay and alfalfa*: 
- Cotton no-till was simulated 

in irrigated areas with wheat 
as a cover crop 

- Wheat no-till was simulated 
in rotations/cover crop with 
canola, cotton, and grain 
sorghum 

In rotation with grain sorghum: WGNS 

GSNS 
CtNS 
(notill irrigate cotton covered 
with wheat: CNWc) 

In rotation with cotton: WCNS 

In rotation with Canola: WKNS 

4 
No-Till farming 
on the contour 

It is the combination of two 
management practices (no-till 
and contour farming). 

In rotation with grain sorghum: WGNC 
GSNC CtNC In rotation with cotton: WCNC 

In rotation with Canola: WKNC 

5 
Conversion crop 
lands to pasture 
(Bermuda grass) 

replaces all crop land uses 
(except hay and alfalfa) into 
Bermuda grass pasture** 

Grazing starts in 
May, bio-min: 
1200 kg 
BERM1-1 

Grazing starts in 
Jun, bio-min: 
1200 kg 
BERM2-1 

Grazing starts 
in July , bio-
min: 1200 kg 
BERM3-1 

Grazing starts 
in May, bio-
min: 1600 kg 
BERM1-2 

Grazing starts 
in Jun, bio-min: 
1600 kg 
BERM2-2 

Grazing starts 
in July, bio-
min: 1600 kg 
BERM3-2 

*Note: Continuous no-till wheat is not really feasible because of weed and disease problems and was replaced by rotations of wheat with canola and as cover crop for cotton and 
grain sorghum. 
**According to the result of a meeting with Nolan (2017), Caddo and Grady counties agent, producers are having success in cropland conversion to Bermuda grass in the FCR 
watershed. So, this scenario has been divided to 6 scenarios which includes different stocking rate by changing BIO_MIN and starting grazing time has been considered. 
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Optimization 

In this study Linear Programing (LP) was used as an optimization method in the General 

Algebraic Modeling System (GAMS), to find the most cost effective selection and location of 

livestock-crop-BMPs in agricultural fields. LP is one of the mathematical programming techniques 

for achieving the best outcome (in our case maximum profit or lowest cost) subjects a set of linear 

requirements on the use of land, water and other resources. The objective function was to maximize 

net revenue per hectare based on crops produced and livestock supported by changing agricultural 

management practices subject to constraints on sediment and phosphorous. Hence, the objective 

function had two parts; maximizing producer’s income and minimizing public charge which is based 

on constraints on sediment and phosphorous losses. The producer’s income was calculated using crop 

yield, crop price, value of livestock, and costs of production. The public cost is from the charge on 

total sediment and/or phosphorous loss. Constraints on sediment and phosphorous in the LP model 

are implemented as taxes which are used to calculate subsidies from government to producers. 

Constraints are considered in different tax scenarios to estimate different incentive programs from 

government.   

The optimization model is stated mathematically as shown: 

 ݁ݑ݊݁ݒ݁ݎ	݁ݖ݅݉݅ݔܽܯ
 
ൌ ∑ ൣ∑ ∑ ∑ ൫ሺ ௜ܲ. ௦ܻ௛௜௞ሻ െ ௦௛௜௞൯ܥ

௄
௞ୀଵ

ூ
௜ୀଵ

ு
௛ୀଵ ൈ ௜ܺ௞ 	൅ ஼ܸ௨ݑܥ௦ െ ∑ ௦௠݄ܨ

ଵଶ
௠ୀଵ . ൧ௌ	ݕ݄ܽܥ

௦ୀଵ –  
 
SEDtot × Schg – Phtot × Pchg 
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௜ܺ௞ ൒ 0 (5) 

Cattle feed balance for each month in each sub-basin: 

൥෍෍݃ܯܦ௦௛௜௞௠. ௜ܺ௞

ூ

௜ୀଵ

ு

௛ୀଵ

൩ ൅ ௦௠݄ܨ ൒ .௦௠ܿܯܦ  ௦ݑܥ

൥෍ .ݕ݄ܻܽ ௜ܺ௞

ு

௛ୀଵ

൩ ൒ ෍ ௦௠݄ܨ

ଵଶ

௠ୀଵ

 

 

(6) 
 

(7) 

Where: 

s: Sub-basin, h: HRU, i: crop, K: BMP 

௜ܲ: Price of pasture and Cropi  

௦ܻ௛௜௞: Yield of pasture and Cropi on HRUh with BMPk on one hectare in subbasins 

 ௦௛௜௞: Total Cost to produce pasture and Cropi on HRUh with BMPk on one hectare in subbasinsܥ

௜ܺ௞: The number of hectares of pasture and Cropi with BMPk on one hectare 

஼ܸ௨: The value of cow unit 

 ௦: Number of cow herd animal unitsݑܥ

 ௦௠: Fed hay in subbainss in month m on one hectare in subbasins݄ܨ

 Cost of hay :ݕ݄ܽܥ

 ௦௛௜௞: Sediment runoff from HRUh with pasture and Cropi and BMPk on one hectare in subbasinsܦܧܵ

݄ܲ௦௛௜௞: Phosphorous runoff from HRUh with pasture and Cropi and BMPk on one hectare in subbasins 

ܶܽ௦௛: Total acres in HRUh 

  ௦௛௜௞௠: Grazed out dry matter݃ܯܦ

 ௦௠: Dry matter required per cow unit in a monthm in subbasinsܿܯܦ

 Yield of hay :ݕ݄ܻܽ

  ௧௢௧: Total amount of sediment leaving HURs in the watershedܦܧܵ

Schg: Charge or tax on each ton of sediment leaving fields in the watershed 

݄ܲ௧௢௧: Total amount of phosphorous leaving HRUs in the watershed  

Pchg: Charge on each kg of phosphorus leaving fields in the watershed  
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Each crop-BMP was simulated separately in a SWAT run. The mean HRU specific values for 

crop yield, phosphorus, and sediment loads for each livestock-crop-BMP obtained from the SWAT 

simulations were used as coefficients in the LP model described above. 

The principal approach in the US toward control of NPS pollutions from agricultural fields has 

been to subsidize adoption of BMPs or provide funds for land retirement and crop rotation, rather 

than taxing inputs such as nitrogen and fertilizer (Shortle and Horan, 2001). In this regard, the charges 

of $100, $200, and $300 per ton of sediment and $300 per ton of phosphorous (bold numbers in Table 

4) were applied in the LP model to reduce the sediment and phosphorous loads. Theoretically, these 

charges or shadow prices in the LP model could be considered as government subsidies paid to 

farmers to adapt the optimal crop-livestock-BMPs.  

One of the objectives of this research is to define more specific incentive payment programs for 

producers and landowners to adopt the most cost effective BMPs. Therefore, different charges on 

sediment and phosphorous loads were defined to evaluate the impacts of charges or subsidies on 

sediment and phosphorous abatement rates. Table 4 shows alternative charges used in LP 

optimization to determine the amount of phosphorus and or sediment that could be abated.  

 

Table 4. Charges ($) used for alternative sediment and phosphorous abatement in the FMC 

Sediment 
($/tons) 

a b c d e a b c d e a b c d e 

100 100 100 100 100 200 200 200 200 200 300 300 300 300 300 

Phosphorous 
($/ton) 

0 100 300 600 1000 0 100 300 600 1000 0 100 300 600 1000 

 

Crop budget and crop price 

The OSU Enterprise Budgets tool (Sahs and Doye, 2017) was used to estimate the basic 

quantities and management costs included costs of seed, fertilizer, custom harvest, pesticide, harvest 

aids, crop insurance, annual operating capital, machinery labor, machinery fuel, irrigation costs for 
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the study area. The management costs were generated with the Machsel program and the Oklahoma 

State University’s enterprise budget generating software, developed by Kletke and Sestak (Kletke and 

Sestak, 1991). Average crop prices obtained from the Oklahoma Agricultural Statistics 2010-2017 are 

shown in Table 5. 

The average costs ($/hectare) for each management practice (contour farming, conservation 

tillage, and no-tillage) in Oklahoma were obtained from Oklahoma Enterprise Budgets for 2017 

(Doye et al., 2004) and are shown in Tables 6 and 7. The net revenue from the Cow calf enterprise 

was estimated to be $520 per cow unit. 

 

Table 5. Average net returns per acre, using (2011 - 2016) Oklahoma crop prices and 2017 OSU 

budget costs   

Crop Alfalfa  Bermuda Canola Corn Cotton 
Grain 
Sorghum 

Hay Rye Soybean 
Winter 
Wheat 

Price  
($/unit ton) 

203.67 88.69 461.65 216.21 1525.6 201.68 88.69 88.69 424.76 248.68 

 

Table 6. Management cost ($/hectare) for three major crops in the study area 

Crop 
Conservation tillage 

Conservation 
tillage+Contour 

No-till Contour+No-till 

Dry Irrigated Dry Irrigated Dry Irrigated Dry Irrigated 
Cotton 754.0  1,612.0 798.1 1,721.0 769.7 1,612.5  779.4  1,690.3 

Grain Sorghum 308.5  422.2 327.4 441.8 383.2 401.9  399.8  418.6 
Winter Wheat 355.2  365.3 372.7 383.9 341.8 352.8  354.0  335.2 

 

Table 7. Management cost ($/hectare) for rotation of wheat and canola in the study area 

Rotation straight row Rotation contour farming 

Dryland Irrigated 

Canola Wheat  Canola Wheat  

  388.3  350.1  407.5    367.3  
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Results  

A livestock-crop-BMP Linear Programming model was designed to identify the most cost-

effective crop-livestock-BMPs and their locations in the study area. All 22 crop-BMPs were 

simulated in each cropland HRU in the study area. The SWAT simulated results of crop yield, 

sediment and phosphorous loads in each HRU were combined with the crop price, management cost, 

and monthly feed balances for livestock. Then, the LP model was used to estimate producer’s income 

along with sediment and phosphors loads under two scenarios: market solution and tax solution 

(pollutant charges). In market solution, no charge was considered for sediment and phosphorous 

loads, which means just producer’s benefits were considered without environmental aspects 

consideration. In the tax solution, the charges of $100, $200, and $300 per ton of sediment leaving the 

field were considered in the way that maximizes the producer’s income with sediment and 

phosphorous constraints. The charge on each ton of phosphorus leaving the field was $300 per ton of 

phosphorous. At the end, the impact of other different combination of taxes on sediment and 

phosphorous abatement was discussed. 

 

Baseline 

In the baseline scenario and other scenarios a minimum of 40.1% of the FMC watershed area was 

in permanent pasture. In the baseline, 30% of the area (3,388 ha) was in wheat, and 15.6% of the area 

(1,766 ha) was in cotton. Irrigated cotton occupied 12% of the FMC watershed area. Using the 

average SWAT crop yields, the OSU budget costs, and average prices received by Oklahoma farmers 

(2011- 2016), the net revenue for the FMC watershed was estimated to be $3,026,795. At the outlet of 

watershed, there were 16,513 tons of sediment and 69 tons of phosphorous from all above fields. 

Some 52% of the area planted to cotton (irrigated and dryland) was on land with 0–2% slope. Only 

8% of the cotton was planted on land with more than a six percent slope. Thirty percent of grain 

sorghum was planted on land with a 0–2% slope. More than half of the wheat was planted on lands 

with 0–2% slope, 26% was planted on land with a 2–4% slope, while 20% was planted on land with 
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more than a four percent slope. Forty percent of the pasture was on land with more than six percent 

slope.  

 

Market solution 

This solution estimates changes in crops and BMPs that have incentives for adoption because of 

changes in market prices. Table 8 shows the land use with their associated BMPs in this economic 

scenario and its comparison with the baseline scenario.  

 

Table 8. Comparison of hectares of each crop in market solution and baseline scenarios in the Five-

Mile Creek watershed 

Land 
use 

Rye Canola Soybean 

Grain 
sorghum 

Wheat Cotton 

GRSG WhCv WKNC WKNS CtCv 
Irrigated 
Cotton 

Market 
solution  

2.8 1107.7 1.5 3.1 3597.1 227.0 877.7 1012.9 8.9 

Baseline 71.3 373.6 43.6 92.8 3387.7  - - 398.5 1367.1 

 

In the market solution scenario, 42% of the area was wheat, and 9% was cotton. Since the native 

pasture area modified by the model, the area of pasture remains constant except for possible 

conversion of cropland to Bermuda grass pasture. The data showed that with average 2010–2016 

market prices, the optimal crop choice, from among the conventional crops and added BMPs, would 

increase net revenue (producer’s income) in the watershed by 29% over the conventional crops in the 

baseline solution ($870,482). The market choice of crops and BMPs also reduced total sediment and 

phosphorous loads at the outlet of watershed by 11% and 6.5% respectively from the baseline. 

Changes in relative input prices have increased returns from no-till methods relative to conventional 

reduced tillage methods. There were 1,341 cow units in the study area. This is about 1 cow unit for 

each 7 ha of land rangelands. The rate of monthly fed hay using livestock is in Figure 8. 
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Comparison of market solution with baseline: 

The results of comparison between baseline and market solution are shown in Figure 9. 

According to the results of market solution, the optimal area of rye and soybean decreased by 96% 

and 96% from the baseline respectively and canola increased by 104% from the baseline. There was a 

100% decrease in the grain sorghum area from the baseline. There was also a 28% increase in wheat 

from the baseline scenario. Twenty-two percent of the wheat was planted using non-contour 

conservation tillage, 19% with rotation with canola with non-contour no-till, 5% with rotation with 

canola with contour no-till, and 54% was planted with conservation tillage in the market solution. The 

area for all cotton (irrigated and dryland) declined 42.6% from the baseline. However, the areas of 

dryland cotton with conventional reduced tillage increased by 133.5% while the irrigated cotton area 

decreased by 99%.  

 

Tax solution 

This solution is presenting the most cost efficient crop-BMPs first with $100/ton sediment and 

$300/ton phosphorous charges on edge of field loss and then present results for $200 and $300/ton of 

sediment charge. Table 8 shows the land use with their associated BMPs in this tax solution scenario 

and its comparison with the baseline and market solution scenarios. 
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Table 8. Comparison of hectares of crop-BMP choices between the baseline, market, and $100 

sediment tax scenarios for the Five-Mile Creek watershed 

Land 
use 

Rye Canola Soybean 

Grain 
sorghum 

Wheat 
Cotton 

GRSG WhCv WhCC WKNC WKNS CtCv 
Irrigated 
Cotton 

CtNC 

Tax 
solution  

3 761 1.5 3 3484 1278 698 60 79 0.5 124 

Market 
solution 

3 1108 1.5 3 3597 - 227 878 1013 9 - 

Baseline 71 374 44 93 3388 -  - - 398 1367 - 

 

In this scenario, as compared to the baseline, the area in wheat increased from 30% to 49%. The 

area in cotton declined from nearly 16% to only 2%. The uncompensated or market value of net 

revenue after tax of selected crops and BMPs declined to $2,701,050 or 10% less than the baseline 

($3,026,795). However with the compensation to adopt the BMPs, the compensated producer’s 

income would be ($3,899,777) or 29% more than baseline. The sediment and phosphorous loads at 

the outlet of watershed were 28% and 24% lower respectively than the baseline, and 19.5% and 

18.3% lower than the market solution. Table 9 shows the new crop-BMPs and the associated crops 

that were converted to them in tax solution scenario. 

 

Table 9. New crop-BMP scenarios in tax solution 

New  
crop-BMP 

**CtCv **CtNC **WhCC 

Area (ha) 69.6 124.1 1277.7 
Baseline 
crop  

Wheat Other* Wheat 
Dryland 
cotton 

Other* Wheat 
Cotton 

Other* 
Irrigated Dryland 

Area (ha) 59.3 10.3 100.4 8 15.4 933 153 59.6 132 

New  
crop-BMP 

**WhCv **WKNC     

Area (ha) 1232.5 698.2     

Baseline 
crop  

Cotton 
 Other* 

Cotton 
Wheat Other*     

Irrigated Dryland Irrigated Dryland 

Area (ha) 515.3 318.3 398.8 638.2 2.9 43.3 15.8     
*Note: Other means canola, rye, and grain sorghum 
**CtCv means cotton with non-contour conservation tillage, CtNC means cotton with contour no-till farming, WhCC means wheat with 
contour conservation tillage, WhCv means wheat with non-contour conservation tillage, and WKNC means wheat in rotation with canola 
with contour no-till farming. 
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Table 9 shows there was some shifting between crops and production practices. The total area in 

cotton declined from 15.6% in the baseline to 1.7 % of the total watershed area. The percent of the 

watershed area in no-till contour cotton was (CtNC) (1.1%) and 0.6 % of that was in in non-contour 

conservation tillage cotton (CtCv) (0.6%). The total area in wheat increased from 30% in the baseline 

to 5,520 hectares or 48.8 % of the total watershed area. Wheat with contour conservation tillage 

(WhCC) (11.3%), and wheat with non-contour conservation tillage (WhCv) (10.9%), non-contour no-

till wheat in rotation with canola (WKNS) (0.5%) and contour no-till wheat in rotation with canola 

(WKNC) (6.2%) were new crop-BMPs that have been suggested to be implemented as additional 

strategies to abate 28% of sediment and 24% of phosphorous loads from agricultural lands. Eighty-

one percent of CtNC was from conversion of wheat, 8.2% from canola, 6.6% from dryland cotton, 

and 4.2% from rye and grain sorghum conversion to CtNC. Eighty five percent of CtCv was from 

conversion of wheat, 8.8% from canola, and 6.0% from rye and grain sorghum conversion to CtCv. 

Seventy three percent of WhCC was from conversion of wheat with conventional reduced tillage, 

12% from irrigated cotton, 5.8% from canola, 4.7% from dryland cotton, and 4.5% from rye and grain 

sorghum conversion to WhCC. Forty two percent of WhCv was from conversion of irrigated cotton, 

25.8% from dryland cotton, 22.4% from canola, 3.6% from grain sorghum, and 6.4% from rye and 

soybean conversion to WhCv. Ninety-two percent of WKNC was from conversion of irrigated cotton, 

6% was from wheat with non-contour conservation tillage, and other was from grain sorghum and rye 

conversion. 100% of WKNS was from conversion of irrigated cotton.  

For these new conservation strategies, it was found that 80% of cotton (CtNC) would be planted 

on the almost flat areas with slopes from 2-4%, while the non-contour conservation tillage (CtCv), 

100% was limited to fields with a 0-2% slope. Ninety-three percent of continuous contour 

conservation tillage wheat (WhCC) was planted on steeper slopes, soils with more than four percent 

slope, which shows for wheat with contour conservation tillage it was better crop to be planted on 

with 0-4% slopes. Most of the no-till wheat-canola, (WKNC) (60 %) was planted on soils with a with 
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a 0-2% slope, 24% was planted on lands with 2-4% slope, 11% on lands with 4-6% slope, and 5% on 

lands with more than six percent slope.  

The number of cow-units with the $100 sediment tax solution declined to 958 units. This is about 

1 cow unit for each 11 ha of land rangelands. The rate of hay fed monthly to livestock is in Figure 8.  

 

 

Figure 8. Comparison of monthly average quantities of hay fed in Five-Mile Creek watershed 

between the market and $100 per ton of sediment charge scenario 

 

According to Figure 8, March and November were the months where the maximum quantity of 

hay was fed to livestock. It means that in these months there was not enough grazing to support the 

number of cattle, so the feeding of harvested hay is required. In May, June, and July all feed is 

supplied by grazing. 

 

Comparison of baseline and tax solution: 

Table 10 shows the changes in the hectares of the main crops in the FMC watershed to different 

crop-BMPs by soil texture and slope class. The results of tax solution indicated that grain sorghum, 

rye, and soybean decreased 97%, 96%, and 96% from the baseline respectively and canola increased 
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by 196% from the baseline. Results indicated that for a 28% and 24% increase in sediment and 

phosphorous abatement, wheat should increase by 63% (2,132 hectares) from the baseline. Thirty-six 

percent of the wheat would be planted on contour, 14% of wheat would be in rotation with canola, 

and some 92% of the wheat-canola would be planted on the contour. According to Table 10, 97% of 

conversion of wheat to CtCv was on lands with FS soil texture with a slope of two percent or less. 

However, there were also some smaller areas converted from conventional wheat to cotton.  Nearly 

60 ha of conventional wheat on FS soils with slopes of 2% or less were switched to conventional 

cotton. Another 94 hectares of conventional wheat on FS soils with slopes of 2-6 % were converted to 

no-till contour cotton. Five hundred hectares of the conventional tilled wheat were converted to 

contour-conservation tillage on FS and FSL soils with slopes of 4% or more. Conversion to wheat 

with contour conservation tillage was on FSL soil texture which 50% of it was on land with more 

than six percent slope. Also, 100% of wheat to WKNC was on lands with FSL soils, and 50% of that 

was on land with 2-4% slopes. 

For the cotton, there was an 88.5% decrease in the total cotton area (irrigated and dry). All of the 

irrigated cotton in the baseline solution was replaced by wheat. Meanwhile, 61% of the dryland cotton 

was planted with a no-till contour system and 39% was planted with non-contour conservation tillage. 

Forty-seven percent of irrigated cotton was converted to no-till contour wheat in rotation with canola. 

Forty percent of the irrigated cotton was converted to wheat with non-contour conservation tillage 

system (WhCv) and 13% was planted to wheat with contour conservation tillage (WhCC). Fifty-five 

percent of irrigated cotton converted to WhCv was on FSL soils with slopes of two percent of less.  

Forty-five percent of the irrigated cotton that was converted to WKNS was on SICL soils where the 

slope was 2% or less. For dryland cotton, 96% of that converted to CtNC was on FS soils with slopes 

of 4 % or less. Forty-five percent of the dryland cotton converted to WhCC was on FSL soils with 2-

4% slopes. Forty-nine percent of dryland cotton converted to WhCv was on SICl soils, 77% of which 

had slopes of 2 % or less. All the dryland cotton converted to WKNC was on FSL soils. Some 58% of 

these soils had 4-6% slopes. All the grain sorghum converted to cotton was on FS soils. Ninety-one 
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percent of this area had slopes of four percent or less. Grain sorghum on FSL soils that was converted 

to wheat was mainly on land with more than a four percent slope. All conversion of grain sorghum to 

WKNC was on lands with a FSL soil texture and 4-6% slopes. Figure 9 shows the area of each land 

use in baseline (2014), market solution, and tax solution scenarios. 

 

 

Figure 9.  Land use variation in baseline and LP solutions 

 

The results show that continuous minimum till wheat remains the dominant crop in the FMC area 

(until problems with continuous no-till wheat can be solved). Simulations with winter wheat as a 

cover crop or double crop in rotation with cotton or grain sorghum gave lower economic returns and 

some increase in erosion, but rotation of no-till wheat with canola especially with contour farming 

was economically viable.  

According to Figure 9, wheat was dominate (both economically and environmentally) crop. Osei 

(2016) applied three conservation practices in the FCR watershed to find the optimal distribution of 

conservation practices and indicated that no-till winter wheat production in central Oklahoma lead to 
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a small cost reduction while maintaining yields and was the win-win option. But since continuous no-

till wheat is not possible because of weeds and other disease, it is not a good choice for adoption. He 

also indicated that although conversion to pasture entails a significant cost to farmers, it resulted in 

substantial and consistent reductions in all environmental indicators (runoff volumes and sediment 

and nutrient losses). However it was not economical and efficient strategy in our results. 

Figure 10 shows the crop-BMP distribution in the FMC area of FCR watershed in baseline, 

market solution, and tax solution for different sediment and phosphorous abatement scenarios. Figure 

13-b illustrates optimal crop-BMPs for 11% sediment and 6.5% phosphorous abatement (Market 

solution). Figure 13-c illustrates optimal crop-BMPs for 28% sediment and 24% phosphorous 

abatement (tax solution). 
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Table 10. Areas of baseline crops conversion to different crop-BMPs based on soil texture and land slope in tax solution scenario 

Soil 
texture 

Slope 
(%)  

Conversion of irrigated cotton 
to  

Conversion of dryland cotton 
to 

Conversion of grain sorghum to 
Conversion of conventional 
wheat to 

WhCC WhCv WKNC WKNS CtNC WhCC WhCv WKNC CtCv CtNC WhCC WhCv WKNC CtCv CtNC WhCC WKNC 

CL 

Total               2.5   0.1   0.1   
0-2         2.1   0.1     
2-4         0.4       
4-6             0.1   
>6                                       

FS 

Total 55.7 185.9 20.3 7.7 11.0 6.9   3.5 4.1 7.2 2.2 0.5 57.7 94.4 124.8 0.1 
0-2 86.3 11.7   2.4   3.5 0.9 57.7   
2-4 86.6 8.6 7.1 4.6   0.1 3.7 1.3   79.1   
4-6 27.8 13.0   0.6 4.7   0.4 3.3   15.3 52.3   
>6 28.0         6.3         3.9   0.5     72.5 0.1 

FSL 

Total 65.5 283.9 41.6 12.9   27.1 58.1 2.9 16.6 13.9 2.2 1.2 442.1 43.2 
0-2 172.2 8.5 4.3   24.8 0.1 5.5 1.2 4.5 
2-4 101.5 6.1 4.7   29.2 0.9 8.1   62.3 21.6 
4-6 31.2 7.4 13.6 1.6   16.4 2.3 1.7 5.8 0.3 2.2   171.8 13.9 
>6 34.3 2.8 13.4 2.3   10.7 1.9 0.3 10.9   208.0 3.2 

LFS 

Total 11.4 45.5     2.4 9.9       0.3 0.8   0.5   14.9   
0-2 28.4     4.1   0.6 0.5   
2-4 16.7     5.8   0.3     
4-6 6.9 0.4     2.1   0.1   8.4   
>6 4.5     0.3         0.2         6.5   

SICL 

Total 0.9   443.4 27.0 0.3 8.1 155.1   3.0 19.5   6.0 69.1   
0-2 344.0 27.0 0.3 118.6   13.4   5.2   
2-4 80.3     34.4   6.1   0.8   
4-6 14.7     6.0 1.8   2.2   50.1   
>6 0.9   4.4     2.2 0.3   0.8   19.1   

SIL 

Total 19.5 134.9     10.4 82.3       7.3 7.3       199.7   
0-2 61.4     38.0   3.1     
2-4 49.8     30.2   3.7   3.8   
4-6 23.7     6.9 10.0   3.5 0.4   102.1   
>6 19.5     3.5 4.0       3.8         93.7   

VFSL 

Total     18.3     0.7 3.4       0.5 0.5       82.4   
0-2 4.4     1.9   0.2     
2-4 5.9     0.3 0.9   0.1 0.3   24.1   
4-6 3.4     0.2 0.6   0.2   26.8   
>6     4.6     0.1 0.1       0.2         31.5   

*Note: CL is clay loam, FS and FSL are fine sandy loam, LFS is loamy fine sand, SICL is silty clay loam, SIL is silt, and VFSL is very fine sandy loam.  
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a) Baseline land use 
b) Optimal crop-BMPs for 11% sediment and 
6.5% phosphorous reduction 

c) Optimal crop-BMPs for 28% sediment and 
24% phosphorous reduction 

Figure 10. FMC crop-BMP map in the baseline, market, and $100/ton of sediment charge scenarios
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Different sediment charge scenarios 

Table 11 shows the comparison of sediment, phosphorous, net revenue, producer’s compensated 

income, and producer’s compensation subsidy for baseline, market solution, and $100, $200, and 

$300 per ton of sediment charge and $300 per ton of phosphorous charge. According to results, an 

additional 2,873 and 3,140 and 3,215 tons of field sediment loss could be prevented for $100, $200, 

and $300 per ton of sediment respectively. Figure 11 shows the area of main crops in different 

scenarios. 

 

Table 11. Net revenue, sediment, and phosphorous variation in baseline, market, and different 

sediment charge scenarios 

Scenarios 
Net revenue 
(uncompensated 
income) ($)       

Tax cost 
(producer's 
compensation 
subsidy) ($)  

Producer's 
income 
(compensated 
income) ($)  

Sediment 
(ton) 

Phosphorou
s (kg) 

Baseline 3,026,795 _ _ 16,513 62,572 

Market solution  3,879,895 _ _ 14,717 58,510 

Tax 
solution  

$100/ton of 
sediment, 
$300/ton of 
phosphorous 

Tax 
solution 
(100) 

2,689,002 1,198,728 3,887,730 11,844 47,779 

$200/ton of 
sediment, 
$300/ton of 
phosphorous 

Tax 
solution 
(200) 

1,581,240 2,329,489 3,910,730 11,577 46,807 

$300/ton of 
sediment, 
$300/ton of 
phosphorous 

Tax 
solution 
(300) 

484,229 3,464,499 3,948,728 11,502 46,330 
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Figure 11.  Land use variation in baseline, market solution and LP solutions for $300/ton of 

phosphorous charge and three different sediment charge scenarios 

 

The main point of Figure11 is that by increasing charge for sediment the wheat area increased 

from the baseline to the market solution and the $100/ton of sediment charge. However, there was 

only a slight increase in the wheat area with the $200 and $300 per ton of sediment charge solutions. 

Meanwhile, by increasing charge for sediment the cotton area decreased from the baseline through the 

market and tax solutions. The percentage of the area in cotton declined from 15.6% in baseline to 

9.0%, 1.8%, 0.9%, and 0.7% in market and $100, $200, and $300/ton of sediment charge solutions. 

Also, by increasing the charge, there were 8.6 hectares of crop conversion to Bermuda grass, which 

100% of this conversion was from wheat with conventional reduced tillage conversion to Bermuda 

grass. Meanwhile, by increasing sediment and phosphorous abatement, cotton with conventional 

tillage in dryland in removing and cotton with no-till covered with wheat is becoming better choice. 
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Table 12 shows the change of cropping system (tillage and contour farming) for cotton and wheat in 

baseline, market solution, and different sediment charge scenarios. 

 

Table 12. Change of cropping system (tillage and contour farming) for cotton and wheat in baseline, 

market solution, and different tax solution scenarios 

Scenario 

Area (ha) Area (%) Contour farming No-till 

Wheat Cotton  Wheat Cotton 
For wheat  
(% of total 
wheat) 

For Cotton  
(% of total 
cotton) 

For wheat 
(in rotation)  
(% of total 
wheat) 

For cotton  
(% of total 
cotton) 

Baseline 3,387.7 1,765.6 30.0 15.6 - - - - 

Market 
solution 

4,701.8 1,021.8 41.6 9.0 4.8 - 23.5 0.0 

Tax solution 
100 

5,519.8 203.9 48.8 1.8 35.8 60.9 13.7 60.9 

Tax solution 
200 

5,624.7 98.2 49.8 0.9 54.3 89.5 12.4 93.1 

Tax solution 
300 

5,644.7 74.0 49.9 0.7 56.8 86.8 11.0 98.5 

 

According to the results, by increasing the sediment charge, contour farming was increased for 

wheat and cotton, but no-till was decreased for wheat and increased for cotton. The reason for 

decreased no-till farming for wheat was that its rotation with other crops which makes it expensive 

and also erosive.  

 

Results of different tax scenarios 

This part presents results of different combination of tax (Table 4) for both sediment and 

phosphorous charges. The phosphorous charges considered were; a. $0; b. $100; c. $300; d. $600; and 

e. $1000 per ton on three scenarios of sediment charge; $100, $200, and $300 per ton (Table 4). 

Graph 12 and 13 show changes in phosphorous and sediment reduction with changes in costs. Figure 

12 shows the cost to remove on additional 2-3 tons of phosphorous at each sediment charge. 
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Figure 12. Variation of cost with changing phosphorous abatement rates 

 

 

Figure 13. Variation of cost with changing sediment abatement rates 
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With increasing sediment and phosphorous abatement, total abatement cost was increased. It 

means that while BMPs can reduce sediment and phosphorous, pollution reduction will be costly to 

producers. Thus, reduced pollution probably will require some type of government intervention and 

incentive programs. The other point is that concentrating on phosphorous reduction only was not 

changing crop system much and was not effective solution. Since much of the phosphorous is 

attached to the sediment, so concentrating on sediment will affect phosphorous as well. This result 

could be seen in the number of livestock in different tax solutions (Figure 14). The number of 

livestock varied by 10 head or less when the sediment tax was held constant and only the tax rate on 

phosphorus was varied. However, the number of livestock declined as the charge on sediment was 

increased from $100 to $300 per ton.  

 

 

Figure 14. Livestock numbers and their associated sediment rate 
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Conclusion 

Twenty two crop-livestock/BMP combinations, including no-till and conservation practices with 

contour and non-contour farming on grain sorghum, cotton, and winter wheat were simulated in 5,750 

HRUs of FMC area of FCR watershed to estimate the most cost efficient crop-BMP and number of 

supported livestock with their associated grazing operation in each HRU with considering existing 

BMPs in the watershed. Since no-till wheat is a common suggested crop-BMP that can reduce 

sediment and phosphorous effectively and since the continuous no-till wheat is not possible because 

of weeds and diseases problems, no-till wheat was considered as cover crop for grain sorghum and 

cotton and in rotation with canola. The conversion of cropland to Bermuda grass because of 

substantial and consistent reductions in all environmental indicators was one of the other conservation 

practices considered in this study. Average crop yield, sediment, and phosphorous loads and grazing 

amount from each HRU were estimated under each scenario using SWAT and fed into LP written in 

GAMS. At the end, the soil textures and slope that should be targeted was determined.  

It was noted that market changes could reduce field losses of sediment and phosphorous by 1,796 

and 4.1 tons respectively over the 2014 baseline cropping pattern. An additional 2,873 and 3,140 and 

3,215 tons of field sediment loss could be prevented for $100, $200, and $300 per ton of sediment 

respectively. By maximizing net revenue with considering $100/ton of sediment and $300/ton of 

phosphorous, sediment decreased 28% and phosphorous decreased 24% compare to the current land 

use with existing BMPs in the watershed. In this scenario, producer’s income increased 29%, but net 

revenue totally decreased 29%. According to this solution, most of the new strategies for replacement 

of row crops with new conservation practices are wheat with contour and non-contour conservation 

tillage, no-till wheat in rotation with canola and no-till cotton with contour farming. The results show 

that continuous minimum till wheat remains the dominant crop in the FMC area (until problems with 

continuous no-till wheat can be solved). Also, by increasing sediment abatement, contour farming is 

increased for wheat and cotton, but not-till is decreased for wheat and increased for cotton. This was 

because simulations with winter wheat as a cover crop or double crop in rotation with cotton or grain 
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sorghum gave lower economic returns and some increase in erosion, but rotation of no-till wheat with 

canola especially with contour farming was economically viable. 

The number of livestock varied by 10 head or less. They also increased by 10 head or less with 

increasing tax for sediment reduction. March and November were the months where the maximum 

quantity of hay was fed to livestock. It means that in these months there was not enough grazing to 

support the number of cattle, so the feeding of harvested hay is required. In May, June, and July all 

feed is supplied by grazing. 

Fine sandy loam soils are the targeted soils for changing tillage system of wheat to conservation 

or no-till and once the contour tillage are the most effective solution, these changes should be 

implemented more on steep slope areas. For cotton the targeted soils for conversion of cotton to 

wheat were the fine sandy and silty clay loams. The silty clay loam soil, where wheat in rotation with 

canola, had a comparative advantage. Fine sandy loam was targeted soil for conversion of cotton to 

wheat with conservation tillage. Again contour was the selected on the steep slopes. 
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Appendix 

Appendix 1. Conventional (reduced) tillage for dryland crops and pasture 

Crop Date Operation 
Cotton 1.1 Tillage operation (Disk Plow Ge23ft) 

3.15 Tillage operation ( Disk Plow Ge23ft) 
5.15 Tillage operation   (Springtooth Harrow Ge15ft) 

6.1 
Tillage operation (Finishing Harrow Lt15ft) 
Pesticide Operation (Pendimehalin, 0.25 kg) 

6.10 Fertilizer application (Elemental Nitrogen, 50 kg) 
6.11 Plant 

7.1 Tillage operation (Row Cultivator Ge15ft) 
11.15 Harvest and kill 

Pasture 
 

1.1 Plant 
3.1 Auto fertilization 

5.1 
Grazing operation (Beef-Fresh Manure,  GRZ_DAYS*: 180, 
BIO_EAT*: 3, BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

Winter wheat 3.15 Fertilizer application (Elemental Nitrogen, 80 kg) 
6.1 Harvest and kill 
7.1 Tillage operation (Chisel Plow Gt15ft) 
8.1 Tillage operation (Offset Dis/heavduty Ge19ft) 

9.20 
Fertilizer application (Elemental Nitrogen, 80 kg) 
(Elemental Phosphorus, 35 kg) 

9.22 Tillage operation (Disk Plow Ge23ft) 
9.24 Tillage operation (Springtooth Harrow Lt15ft) 
9.25 Plant 

12.1 
Grazing operation (GRZ_DAYS*: 90, BIO_EAT*: 3, 
BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

Grain sorghum 5.1 Plant 
5.27 Fertilizer application (Elemental Nitrogen, 150 kg) 

5.28 
Tillage operation (Springtooth Harrow Ge15ft, Disk Plow 
Ge23ft, Mecoprop Amine, 125), Pesticide Operation 
(Mecoprop Amine, 125 kg) 

10.18 Tillage operation (Disk Plow Ge23ft) 
10.20 Tillage operation (Springtooth Harrow Ge15ft) 
10.30 Harvest and kill 

Alfalfa 4.1 Harvest only 
5.15 Harvest only 

7.1 Harvest only 

8.29 
Fertilizer application (Elemental Nitrogen, 50 kg), (Elemental 
Phosphorous, 20) 

9.7 Plant 
10.15 Harvest only 

Hay 4.1 Harvest only 
7.1 Harvest only 

8.29 Auto fertilization 
9.7 Plant 

10.15 Harvest only 
Rye 6.10 Harvest only 

8.10 
Fertilizer application (Elemental Nitrogen, 80 kg), (Elemental 
Phosphorous, 35) 

9.20 Plant 
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9.15 
Grazing operation (GRZ_DAYS*: 150, BIO_EAT*: 3, 
BIO_TRMP*: 0.47, MANURE_KG*: 1.5) 

*AUTO_NSTRS: Nitrogen stress factor of cover/plant triggers fertilization. This factor ranges from 0.0 to 1.0 where 0.0 
indicates there is no growth of the plant due to nitrogen stress and 1.0 indicates there4 is no reduction of plant growth due to 
nitrogen stress.  
*GRZ_DAYS: Number of consecutive days grazing takes place in the HRU 
*BIO_EAT: dry weight of biomass consumed daily ((kg/ha)/day) 
* BIO_TRMP: dry weight of biomass trampled daily ((kg/ha)/day) 
*MANURE_KG: dry weight of manure deposited daily ((kg/ha)/day) 
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Appendix 2. Cotton yield calibration parameters 

Parameter 
Parameter definition Default 

value 
Calibrated 
value 

BIO_E [(kg/ha)/(MJ/m2)] Radiation use efficiency or biomass energy ratio 15 14 
USLE_C Minimum value of USLE C factor for water erosion 0.2 0.1 
HVSTI [(kg/ha)/( kg/ha)] Harvest index for optimal growing season  0.4 0.3 
OV_N Manning’s “n” value for overland flow 0.14 0.12 
BLAI (m2/m2) Maximum potential leaf area index 4 3 

FRGRW1(fraction) 
Fraction of plant growing season to the first point on the 
optimal leaf area development curve 

0.15 0.14 

FRGRW2 (fraction) 
Fraction of plant growing season to the second point on 
the optimal leaf area development curve 

0.5 0.3 

LAIMX1 (fraction) 
Fraction maximum leaf area index to the first point on the 
optimal leaf area development curve 

0.01 0.005 

CNYLD (kg N/kg seed) Normal fraction of nitrogen in yield 0.015 0.018 
CPYLD (kg P/kg seed) Normal fraction of Phosphorus in yield 0.0025 0.0027 

 

Appendix 3. Wheat, pasture, and grain sorghum yield calibration parameters 

Parameter 
Winter wheat Pasture Grain sorghum 
Default 
value 

Calibrated 
value 

Default 
value 

Calibrated 
value 

Default 
value 

Calibrated 
value 

BIO_E 
[(kg/ha)/(MJ/m2)] 

30 29 35 28 33.5 37 

USLE_C 0.03 0.02 0.003 0.003 0.2 0.2 
HVSTI [(kg/ha)/( 
kg/ha)] 

0.4 0.3 0.8 0.8 0.45 0.3 

OV_N 0.14 0.12 0.3 0.25 0.14 0.12 
BLAI (m2/m2) 4 3 4 2.5 3 4.5 
FRGRW1(fraction) 0.05 0.03 0.05 0.03 0.15 0.15 
FRGRW2 (fraction) 0.45 0.35 0.49 0.35 0.5 0.5 
LAIMX1 (fraction) 0.05 0.03 0.05 0.03 0.05 0.05 
CNYLD (kg N/kg 
seed) 

0.025 0.02 0.0234 0.0134 0.0199 0.02 

CPYLD (kg P/kg seed) 0.0022 0.0018 0.0033 0.0022 0.0044 0.0032 
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CHAPTER VII 
 

 

LIMITATION OF STUDY AND FUTURE RESEARCH 

 

Limitation of study 

There are some technical and theoretical limitations to this study, which most of them come 

from both the SWAT and the economic models. Although SWAT is a reliable modeling tool, 

there are many assumptions and uncertainties especially in calibration and validation process. 

One of the points that contributed to the uncertainty about the calibration process was that the 

SWAT model can be constructed based on one year of landuse data (2014). SWAT was then 

calibrated for ten years and validated for the next ten years. Of course, there are landuse changes 

during these time periods and the model was calibrated based on just one year landuse data. The 

second point in making uncertainty in calibration process for sediment was use of bi-weekly grab 

sample data which was used to generate daily sediment data for use observed data in the 

calibration and validation process. Other reasons could be dispersed nature of the sediment data 

and poor accuracy of the measured data. However, the largest error in sediment prediction was 

associated with errors of peak flow estimation. The second storm effect problem in the 

hydrological model could not be tested in calibration process since there were no observed 

sediment data representing flood events (May 1993, June 1995, June 2007) during the model 

calibration-validation period. It is assumed the first storm event caused a larger sediment 

transport and made the remaining surface layers more difficult to mobilize. As a result, the 

second and third storm events regardless of their event sizes would result in smaller sediment 
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loads. The simulated sediment data failed to accurately capture these events, resulting in 

uncertainty
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in sediment calibration. The over-and under-estimation of sediment during flood events has been 

reported in other SWAT based studies (Oeurng et al., 2011). Because of the same problems in 

sediment calibration process, phosphorous could not be calibrated and just the simulated phosphorous 

data were compared to the observed phosphorous data to be sure that SWAT phosphorous outputs are 

reasonable. 

One of the other limitations of this study was about the weakness of SWAT in process of 

calculating crop yield once there is rotation of two crops with no-till farming. In no-till farming there 

is a problem of crop resistance to the diseases from using herbicides and pesticides. One of the 

limitations of this study was that in the modeling part using SWAT, this resistance was not 

considered in crop yield calculation. One of the other assumptions was related to phosphorous 

calculation process. The model assumed that harvested hay was not consumed in the farms and the 

phosphorous loss from consuming harvested hay was not added to the phosphorous leaving from 

fields.  

The economic model had some limitations due to the assumption of profit maximization, which 

may not always be an appropriate assumption for the real world. For example, the changes in relative 

crop prices or proven yields and crop insurance rates will also affect producers’ ability to change 

crops. Time did not allow for an analysis of the effect of alternative crop process on BMP adoption. 

 

Future research 

There are several areas of this dissertation where further research is needed. One of the areas 

needing more consideration is impact of drought and even severe floods on the economics of BMP 

adoption. Since in this study the average of 25 years hydrologic simulation was used in economic 

analysis, and since there are specific years in the historical data that there was drought in the region, it 

would be beneficial to reduce the time frame and evaluate the most cost efficient BMPs that were 

effective in drought conditions. Additional, applying different Global Climate Models (GCM) can 

help to work on future weather conditions and evaluate the most cost effective crop-BMPs which 
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would minimize the sediment and phosphorous losses from agricultural fields in this region. The 

results of working with future climate data can be beneficial for decision makers to know that with 

adopting which conservation practices and planting which crops they will have the most economic 

results for producers while spending less funding to support them in the future once there will be 

more drought and flood, and consequently, more NPS pollution loads.   



 

178 

CHAPTER VIII 
 

 

REFERENCES 

Abbaspour, K. C., Vejdani, M., Haghighat, S., & Yang, J. (2007, December). SWAT-CUP 

calibration and uncertainty programs for SWAT. In MODSIM 2007 International Congress on 

Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand (pp. 

1596-1602). 

Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., 

Srinivasan, R. & Reichert, P. (2007). Modelling hydrology and water quality in the pre-

alpine/alpine Thur watershed using SWAT. Journal of hydrology, 333(2), 413-430. 

Adams, D. L., Boyer, T. A., & Dicks, M. R. (2005, February). Changes in the Spatial 

Allocation of Cropland in the Ft. Cobb Watershed as a Result of Environmental Restrictions. 

In Southern Agricultural Economics Assoc. Annual Meetings, February (pp. 5-9).  

Ahmadi, M., Arabi, M., Hoag, D. L., & Engel, B. A. (2013). A mixed discrete‐continuous 

variable multiobjective genetic algorithm for targeted implementation of nonpoint source 

pollution control practices. Water Resources Research, 49(12), 8344-8356. 

Andersson, J. C., Zehnder, A. J., Rockström, J., & Yang, H. (2011). Potential impacts of 

water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in 

the Thukela River basin, South Africa. Agricultural water management, 98(7), 1113-1124. 

Ancev, T. (2003). Optimal Allocation of Waste Management Practices with Economic 

Implications for Policies to Regulate Phosophours Pollution in the Eucha-Spavinaw 



 

179 

Watershed (Doctoral dissertation, Ph. D. Dissertation, Edmond Low Library, Oklahoma State 

University, August2003). 

Arabi, M., Govindaraju, R. S., & Hantush, M. M. (2006). Cost‐effective allocation of watershed 

management practices using a genetic algorithm.Water Resources Research, 42(10).  

Arabi, M., Govindaraju, R. S., Engel, B., and Hantush, M. M. (2007). Optimization tool for 

allocation of watershed management practices for sediment and nutrient control, 7th International 

IWA Symposium on Systems Analysis and Integrated Assessment in Water Management, 

Washington, DC, May 07 - 09, 2007. IWA Publishing, London, Uk. 

Arnold, J. G., Williams, J. R., Nicks, A. D., & Sammons, N. B. (1990). SWRRB; a basin scale 

simulation model for soil and water resources management. SWRRB; a basin scale simulation model 

for soil and water resources management. 

Arnold, J. G., Williams, J. R., & Maidment, D. R. (1995). Continuous-time water and sediment-

routing model for large basins. Journal of Hydraulic Engineering, 121(2), 171-183. 

Arnold, J. G., & Fohrer, N. (2005). SWAT2000: current capabilities and research opportunities in 

applied watershed modelling. Hydrological processes, 19(3), 563-572. 

Beasley, D. B., Huggins, L. F., & Monke, A. (1980). ANSWERS: A model for watershed 

planning. Trans. Asae, 23(4), 938-944.  

Bekele, E. G., & Nicklow, J. W. (2005). Multiobjective management of ecosystem services by 

integrative watershed modeling and evolutionary algorithms. Water Resources Research, 41(10).  

Bednarz, S. T., Dybala, T., Amonett, C., Muttiah, R. S., Rosenthal, W., Srinivasan, R., & Arnold, 

J. G. (2003). Brush management/water yield feasibility study for four watersheds in Texas. Texas 

Water Resources Institute. 

Biniam, B. (2009). SWAT to identify watershed management options. Graduate School of 

Cornell University in Partial, Master of Science thesis. 



 

180 

Bouraoui, F., Vachaud, G., Haverkamp, R., & Normand, B. (1997). A distributed physical 

approach for surface-subsurface water transport modeling in agricultural watersheds. Journal of 

Hydrology, 203(1-4), 79-92. 

Bowen, G. S., Leon, L. F., Booty, W. G., & Van Seters, T. Verification of the AGNPS Model's 

Trace Source Contribution Algorithm for Use in Southern Ontario Watersheds. Great Lakes Need 

Great Watersheds., 17.  

Boyles, M., Peeper, T. F., & Medlin, C. (2004). Producing winter hardy canola in Oklahoma. 

Division of Agricultural Sciences and Natural Resources, Oklahoma State University.  

Cain, Z., & Lovejoy, S. (2004). History and outlook for Farm Bill conservation 

programs. Choices, 19(4), 37-42. 

Camboni, S. M., & Napier, T. L. (1993). Factors affecting use of conservation farming practices 

in East Central Ohio. Agriculture, ecosystems & environment, 45(1-2), 79-94. 

Carlisle, L. (2016). Factors influencing farmer adoption of soil health practices in the United 

States: a narrative review. Agroecology and Sustainable Food Systems, 40(6), 583-613. 

Cisneros, J. M., Grau, J. B., Antón, J. M., De Prada, J. D., Cantero, A., & Degioanni, A. J. 

(2011). Assessing multi-criteria approaches with environmental, economic and social attributes, 

weights and procedures: A case study in the Pampas, Argentina. Agricultural Water 

Management, 98(10), 1545-1556. 

Choi, Y., Won, C., Shin, M., Park, W., Lee, S., Shin, Y., & Shin, J. (2016). Effect of No‐Till 

Practice on Runoff and Nonpoint Source Pollution from an Intensively Farmed Field in 

Korea. Irrigation and Drainage, 65(S2), 175-181. 

Dechmi, F., and Skhiri A. (2013). Evaluation of best management practices under intensive 

irrigation using SWAT model. Journal of Agricultural Water Management, 123, 55-64. 

Decker, J. E., Epplin, F. M., Morley, D. L., & Peeper, T. F. (2009). Economics of five wheat 

production systems with no-till and conventional tillage. Agronomy journal, 101(2), 364-372. 



 

181 

Dobbs, T. L., & Pretty, J. N. (2004). Agri-environmental stewardship schemes and 

“multifunctionality”. Applied economic perspectives and policy, 26(2), 220-237. 

Douglas-Mankin, K. R., Srinivasan, R., & Arnold, J. G. (2010). Soil and Water Assessment Tool 

(SWAT) model: Current developments and applications. Trans. Asabe, 53(5), 1423-1431. 

Doye, D., & Sahs, R. (2009). Oklahoma farm and ranch custom rates, 2007–08. Oklahoma 

Cooperative extension service, Oklahoma state university. 

Dyke, P. T., & Heady, E. O. (1985). Assessment of soil erosion and crop productivity with 

economic models. Soil Erosion and Crop Productivity, (soilerosionandc), 105-117.  

Eawag. 2009. SWAT-CUP. Dübendorf, Switzerland: Swiss Federal Institute of Aquatic Science 

and Technology. Available at: www.eawag.ch/organisation/abteilungen/siam/software/ 

swat/index_EN. 

Edwards, J., Epplin, F., Hunger, B., Medlin, C., Royer, T., Taylor, R., & Zhang, H. (2006). No-

till wheat production in Oklahoma. Oklahoma Cooperative Extension Service Fact Sheet, 2132. 

Engel, B. A., Srinivasan, R., Arnold, J., Rewerts, C., & Brown, S. J. (1993). Nonpoint source 

(NPS) pollution modeling using models integrated with geographic information systems (GIS). Water 

Science and Technology, 28(3-5), 685-690. 

Farm Service Agency (FSA), 2015. Conservation Reserve Agency. FSA Website. Available at: 

https://www.fsa.usda.gov/FSA/webapp?area=home&subject=copr&topic=cep 

FAO, 2013. Food and Agriculture Organization of the United Nations. Available at: 

http://www.fao.org/nr/nr-home/en/ 

Follett R. F. and B. A. Stewart. 1985. “Assessment of Soil Erosion and Crop Productivity with 

Economic Models” in Soil erosion and crop productivity. By the American Society of Agronomy, 

Inc. ISBN 0-89118-087-7. 

Foster GR, Lane LJ, Nowlin JD, Laflen JM, Young RA, Smith SJ, Kissel DE, Williams JR. 1980. 

United States Department of Agriculture (USDA) in 1conjunction with the Science and Education 

Administration-AgricultureResearch (SEA-AR). 



 

182 

Frothingham, K. M. (2008). Evaluation of stability threshold analysis as a cursory method of 

screening potential streambank stabilization techniques.Applied Geography, 28(2), 124-133.  

Gan, T. Y., Dlamini, E. M., & Biftu, G. F. (1997). Effects of model complexity and structure, 

data quality, and objective functions on hydrologic modeling. Journal of Hydrology, 192(1-4), 81-

103. 

Garbrecht, J. D., & Starks, P. J. (2009). Watershed sediment yield reduction through soil 

conservation in a West‐Central Oklahoma watershed. Ecohydrology, 2(3), 313-320. 

Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). THE SOIL AND WATER 

ASSESSMENT TOOL: HISTORICAL DEVELOPMENT, APPLICATIONS, AND FUTURE 

RESEARCH DIRECTIONS Invited Review Series. Transactions of the American Society of 

Agricultural and Biological Engineers, 50(4), 1211-1250. 

Giri, S., Nejadhashemi, A. P., & Woznicki, S. A. (2012). Evaluation of targeting methods for 

implementation of best management practices in the Saginaw River Watershed. Journal of 

environmental management, 103, 24-40.  

Gikas, G. D., Yiannakopoulou, T., & Tsihrintzis, V. A. (2006). Modeling of non-point source 

pollution in a Mediterranean drainage basin. Environmental Modeling and Assessment, 11(3), 219-

233. 

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with 

applications to biology, control, and artificial intelligence. U Michigan Press. 

Hu, X., McIsaac, G. F., David, M. B., & Louwers, C. A. L. (2007). Modeling riverine nitrate 

export from an east-central Illinois watershed using SWAT. Journal of Environmental Quality, 36(4), 

996-1005. 

Humenik, F. J., Smolen, M. D., & Dressing, S. A. (1987). ES&T feature: pollution from nonpoint 

sources. Environmental science & technology, 21(8), 737-742. 



 

183 

James, L. D., & Burges, S. J. (1982). Selection, calibration, and testing of hydrologic models, 

Hydrologic Modeling of Small Watersheds CT Haan, HP Johnson, DL Brakensiek, 437–472, 

American Society of Agricultural Engineers, St. Joseph, Mich. 

Jha, M. K., Rabotyagov, S. S., & Gassman, P. W. (2009). Optimal placement of conservation 

practices using genetic algorithm with SWAT. 

Khanna, M., Yang, W., Farnsworth, R., & Onal, H. (2003, June). Targeting and Evaluating the 

Cost Effectiveness of the Conservation ReserveEnhancement Program in Illinois. In AERE Workshop 

on Spatial Theory, Modeling and Econometrics inEnvironmental and Resource Economics, Madison, 

WI. 

Knisel, W. G. (1980). CREAMS: a field scale model for Chemicals, Runoff, and Erosion from 

Agricultural Management Systems [USA]. United States. Dept. of Agriculture. Conservation 

research report (USA). 

Krysanova, V., & Arnold, J. G. (2008). Advances in ecohydrological modelling with SWAT—a 

review. Hydrological Sciences Journal, 53(5), 939-947. 

Langendoen, E. J., & Simon, A. (2008). Modeling the evolution of incised streams. II: 

Streambank erosion. Journal of hydraulic engineering, 134(7), 905-915. 

Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of “goodness‐of‐fit” measures in 

hydrologic and hydroclimatic model validation. Water resources research, 35(1), 233-241. 

Li, M. H., & Eddleman, K. E. (2002). Biotechnical engineering as an alternative to traditional 

engineering methods: A biotechnical streambank stabilization design approach. Landscape and 

Urban Planning, 60(4), 225-242.  

Ma, L., Ascough, J. C., Ahuja, L. R., Shaffer, M. J., Hanson, J. D., & Rojas, K. W. (2000). Root 

zone water quality model sensitivity analysis using Monte Carlo simulation. Transactions of the 

ASAE, 43(4), 883-896.  

Mausbach, M. J., & Dedrick, A. R. (2004). The length we go. Journal of Soil and Water 

Conservation, 59(5), 96A.  



 

184 

Maringanti, C., Chaubey, I., & Popp, J. (2009). Development of a multiobjective optimization 

tool for the selection and placement of best management practices for nonpoint source pollution 

control. Water Resources Research, 45(6). 

Maringanti, C., Chaubey, I., Arabi, M., & Engel, B. (2011). Application of a multi-objective 

optimization method to provide least cost alternatives for NPS pollution control. Environmental 

management, 48(3), 448-461.  

McPherson, R. A., Fiebrich, C. A., Crawford, K. C., Kilby, J. R., Grimsley, D. L., Martinez, J. E., 

... & Melvin, A. D. (2007). Statewide monitoring of the mesoscale environment: A technical update 

on the Oklahoma Mesonet. Journal of Atmospheric and Oceanic Technology, 24(3), 301-321.  

Mittelstet, A. R., Storm, D. E., & Stoecker, A. L. (2015a). Using SWAT to simulate crop yields 

and salinity levels in the North Fork River Basin, USA. International Journal of Agricultural and 

Biological Engineering, 8(3), 110.  

Mittelstet, A. R. (2015b). Quantifying Phosphorus Loads and Streambank Erosion in the Ozark 

Highland Ecoregion Using the SWAT Model (Doctoral dissertation, Oklahoma State University). 

Moriasi, D., Steiner, J., Arnold, J., Allen, P., Dunbar, J., Shisanya, C., ... & Sang, J. (2007, 

December). Fort Cobb Reservoir Watershed, Oklahoma and Thika River Watershed, Kenya twinning 

pilot project. In AGU Fall Meeting Abstracts. 

Moriasi, D. N., Starks, P. J., & Steiner, J. L. (2008, October). Using SWAT model to quantify the 

impact of converting cropland to bermudagrass on soil loss and water quality in Cobb Creek sub-

watershed. In Proceedings of the Soil and Water Conservation Society,“Farming with Grass” 

Conference, Oklahoma City, USA. 

Nair, S. S., King, K. W., Witter, J. D., Sohngen, B. L., & Fausey, N. R. (2011). Importance of 

crop yield in calibrating watershed water quality simulation tools. JAWRA Journal of the American 

Water Resources Association, 47(6), 1285-1297. 

Narasimhan, B., Allen, P. M., Srinivasan, R., Bednarz, S. T., Arnold, J. G., & Dunbar, J. A. 

(2007). Streambank erosion and best management practice simulation using SWAT. In Watershed 



 

185 

Management to Meet Water Quality Standards and TMDLS (Total Maximum Daily Load) 

Proceedings of the 10-14 March 2007, San Antonio, Texas (p. 190). American Society of Agricultural 

and Biological Engineers.  

Neary, D. G., Swank, W. T., & Riekerk, H. (1988). An overview of nonpoint source pollution in 

the Southern United States. The forested wetlands of the southern US, 1-7.  

Neitsch, S.L., J.G. Arnold, J.R. Williams. (2001). Soil and Water Assessment Tool User’s 

Manual Version 2000. Blackland Research Center. 

Nelson, P. (1937). Farm Management as Related to Conservation Program: Discussion by Peter 

Nelson. American Journal of Agricultural Economics, 19(3), 687-688. 

Ng, T. L., Eheart, J. W., Cai, X., & Miguez, F. (2010). Modeling miscanthus in the soil and water 

assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environmental 

science & technology, 44(18), 7138-7144. 

Nisrami M. G. 2006. Environmental and economic modeling of Non-Point Source Pollution 

control: optimized land use systems and vegetative filter strips. Master’s dissertation. Department of 

Biosystems and agricultural Engineering. Oklahoma State University. 

Oklahoma Conservation Commission. Oklahoma State (2005). Watershed Based Plan for the 

Fort Cobb Watershed (2nd ed.).  

Oklahoma Conservation Commission. Oklahoma State (2009). Fort Cobb Watershed 

Implementation Project. Water Quality Division. 

https://www.ok.gov/conservation/documents/2009_3_19FtCobbFactSheet.pdf 

Oklahoma Conservation Commission. Oklahoma State (2014). WQ Priority Watershed Project. 

Fort Cobb Lake Watershed Implementation Project 2001-2007. Water Quality Division. 

http://www.ok.gov/conservation/Agency_Divisions/Water_Quality_Division/WQ 

_Projects/WQ_Fort_Cobb_Lake/ 



 

186 

Oklahoma Department of Environmental Quality (ODEQ) (2006). TMDL Development 

for Cobb Creek Watershed and Fort Cobb Lake, Final Report. Oklahoma Department of 

Environmental Quality. 

Osei, E., Moriasi, D., Steiner, J. L., Starks, P. J., & Saleh, A. (2012). Farm-level economic impact 

of no-till farming in the Fort Cobb Reservoir Watershed. Journal of Soil and Water 

Conservation, 67(2), 75-86. 

Osmond, D., Meals, D., Hoag, D., Arabi, M., Luloff, A., Jennings, G., ... & Line, D. (2012). 

Improving conservation practices programming to protect water quality in agricultural watersheds: 

Lessons learned from the National Institute of Food and Agriculture–Conservation Effects 

Assessment Project. Journal of Soil and Water Conservation, 67(5), 122A-127A. 

Ouessar, M., Bruggeman, A., Abdelli, F., Mohtar, R. H., Gabriels, D., & Cornelis, W. M. (2008). 

Modelling water-harvesting systems in the arid south of Tunisia using SWAT. Hydrology & Earth 

System Sciences Discussions, 5(4). 

Panagopoulos, Y., Makropoulos, C., & Mimikou, M. (2012). Decision support for agricultural 

water management. Global Nest Journal, 14(3), 255-263. 

Patrignani, A., Godsey, C. B., Ochsner, T. E., & Edwards, J. T. (2012). Soil water dynamics of 

conventional and no-till wheat in the Southern Great Plains. Soil Science Society of America 

Journal, 76(5), 1768-1775. 

Qi, H., Altinakar, M. S., Vieira, D. A., & Alidaee, B. (2008). Application of Tabu Search 

Algorithm With a Coupled AnnAGNPS‐CCHE1D Model to Optimize Agricultural Land 

Use1. JAWRA Journal of the American Water Resources Association, 44(4), 866-878. 

Rabotyagov, S., Campbell, T., Jha, M., Gassman, P. W., Arnold, J., Kurkalova, L., ... & Kling, C. 

L. (2010). Least‐cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic 

zone. Ecological Applications, 20(6), 1542-1555. 



 

187 

Rabotyagov, S., Campbell, T., Valcu, A., Gassman, P., Jha, M., Schilling, K., & Kling, C. (2012). 

Spatial multiobjective optimization of agricultural conservation practices using a SWAT model and 

an evolutionary algorithm.Journal of visualized experiments: JoVE, (70).  

Rawls, W. J., & Richardson, H. H. (1983). Runoff curve numbers for conservation 

tillage. Journal of soil and water conservation, 38(6), 494-496. 

Reungsang, P., Kanwar, R. S., Jha, M. K., Gassman, P. W., Ahmad, K., & Saleh, A. (2005). 

Calibration and validation of SWAT for the upper Maquoketa river watershed. 

Refsgaard, J. C. (1997). Parameterisation, calibration and validation of distributed hydrological 

models. Journal of hydrology, 198(1), 69-97. 

Ribaudo, M. (2015). The limits of voluntary conservation programs. Choices, 30(2), 1-5. 

Rostamian, R., Jaleh, A., Afyuni, M., Mousavi, S. F., Heidarpour, M., Jalalian, A., & Abbaspour, 

K. C. (2008). Application of a SWAT model for estimating runoff and sediment in two mountainous 

basins in central Iran. Hydrological Sciences Journal, 53(5), 977-988. 

Sarkar, S., Miller, S. A., Frederick, J. R., & Chamberlain, J. F. (2011). Modeling nitrogen loss 

from switchgrass agricultural systems. Biomass and bioenergy, 35(10), 4381-4389. 

Sebti, A., Fuamba, M., & Bennis, S. (2015). Optimization model for BMP selection and 

placement in a combined sewer. Journal of Water Resources Planning and Management, 142(3), 

04015068. 

Sheffield, R. E., Mostaghimi, S., Vaughan, D. H., Collins Jr, E. R., & Allen, V. G. (1997). Off-

stream water sources for grazing cattle as a stream bank stabilization and water quality 

BMP. Transactions of the ASAE, 40(3), 595-604. 

Shortle, J. S., & Horan, R. D. (2001). The economics of nonpoint pollution control. Journal of 

economic surveys, 15(3), 255-289. 

Srinivasan, R., & Arnold, J. G. (1994). Integration of a basin‐scale water quality model with 

GIS. JAWRA Journal of the American Water Resources Association, 30(3), 453-462. 



 

188 

Srivastava, P., Hamlett, J. M., Robillard, P. D., & Day, R. L. (2002). Watershed optimization of 

best management practices using AnnAGNPS and a genetic algorithm. Water resources 

research, 38(3).  

Storm, D. E., Busteed, P. R., & White, M. J. (2006). Fort Cobb Basin: modeling and land cover 

classification. Biosystems and Agricultural Engineering Department, Division of Agricultural 

Sciences and Natural Resources, Oklahoma State University. 

Sunandar, A. D. (2014). Penentuan Luas Hutan Optimal Ditinjau Dari Respon Hidrologis di DAS 

Asahan.  

Tong, B. H. (2016). Conservation adoption preferences, determinants of conservation program 

enrollment and conservation adoption in Oklahoma's Fort Cobb Reservoir Watershed (Doctoral 

dissertation, Oklahoma State University).  

Tuppad, P., Douglas-Mankin, K. R., Lee, T., Srinivasan, R., & Arnold, J. G. (2011). Soil and 

Water Assessment Tool(SWAT) Hydrologic/Water Quality Model: Extended Capability and Wider 

Adoption. Transactions of the ASABE, 54(5), 1677-1684. 

U.S. Department of Agriculture (2008). National Agricultural Statistics Service Database. 

Washington, D.C.: USDA National Agricultural Statistics Service. Available at: www.nass.usda.gov. 

Accessed on [2010-05-20]. 

U.S. Department of Agriculture (2015). Conservation Reserve Program. Farm Service Agency. 

http://www.fsa.usda.gov/FSA/webapp?area=home&subject=copr&topic=crp U.S. Department of 

Agriculture. 2015. Conservation Stewardship Program. Natural Resources Conservation Service. 

http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/financial/csp/  

U.S. Department of Agriculture (2015). Environmental Quality Incentives Program. Natural 

Resource Conservation Service. 

http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/financial/eqip/  



 

189 

U.S. Environmental Protection Agency (2016). National Summary of Impaired Waters and 

TMDL Information. U.S. Environmental Protection Agency. Available at: 

http://iaspub.epa.gov/waters10/ attains_nation_cy.control%3Fp_report_type=T. 

USDA. 2009. National Agricultural Imagery Program Mosaic: 2008. Datagateway Database. 

USDA, Washington, DC. Available at: http://datagateway.nrcs.usda.gov/. Accessed on [2010-05-20]. 

USDA. 1995. State Soil Geographic (SSURGO) database. Misc. Pub. 1492. Lincoln, Neb.: 

USDA-NRCS National Soil Survey Center. Available at: 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053627. 

Veith, T. L., Wolfe, M. L., & Heatwole, C. D. (2003). OPTIMIZATION PROCEDURE FOR 

COST EFFECTIVE BMP PLACEMENT AT A WATERSHED SCALE1. 

Wang, X., & Berman, E. (2014). Financing conservation: some empirical evidence from Florida 

local governments. Journal of Environmental Planning and Management, 57(5), 733-750. 

Westra, J. V., Easter, K. W., & Olson, K. D. (2002). Targeting nonpoint source pollution control: 

Phosphorus in the Minnesota River basin. Journal of the American Water Resources 

Association, 38(2), 493. 

Whitis, G. (2002). Watershed Fish Production Ponds Guide to Site Selection And Construction. 

Southern Regional Aquaculture Center. Oklahoma State University, Stillwater, OK. Available at:< h 

ttp. pods. dasnr. okstate. edu/docushare/dsweb/Get/Document-1837/SRAC-102web. pdf>(accessed 

10.03. 08). 

Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses-a guide to 

conservation planning. Predicting rainfall erosion losses-a guide to conservation planning. 

Williams, J., Dyke, P. T., & Jones, C. A. (1983). EPIC--A model for assessing the effects of 

erosion on soil productivity. Analysis of ecological systems: state-of-the-art in ecological modelling: 

proceedings, 24-28 May 1982, Colorado State Univ., Ft. Collins, Colo./edited by WK Lauenroth, GV 

Skogerboe, M. Flug. 



 

190 

Williams, J. R., Nicks, A. D., & Arnold, J. G. (1985). Simulator for water resources in rural 

basins. Journal of Hydraulic Engineering, 111(6), 970-986. 

Williams, J. R. (1990). The erosion-productivity impact calculator (EPIC) model: a case 

history. Philosophical Transactions of the Royal Society of London B: Biological 

Sciences, 329(1255), 421-428.  

Wu, J., Yu, S. L., & Zou, R. (2006). A water quality‐based approach for watershed wide BMP 

strategies. JAWRA Journal of the American Water Resources Association, 42(5), 1193-1204. 

Xie, H., Chen, L., & Shen, Z. (2015). Assessment of agricultural best management practices 

using models: Current issues and future perspectives. Water, 7(3), 1088-1108. 

Yang, Q., Meng, F. R., Zhao, Z., Chow, T. L., Benoy, G., Rees, H. W., & Bourque, C. P. A. 

(2009). Assessing the impacts of flow diversion terraces on stream water and sediment yields at a 

watershed level using SWAT model. Agriculture, ecosystems & environment, 132(1), 23-31. 

Young, R. A., Onstad, C. A., Bosch, D. D., & Anderson, W. P. (1989). AGNPS: A nonpoint-

source pollution model for evaluating agricultural watersheds. Journal of soil and water 

conservation, 44(2), 168-173. 

Zhang, X., & Zhang, M. (2011). Modeling effectiveness of agricultural BMPs to reduce sediment 

load and organophosphate pesticides in surface runoff. Science of the Total Environment, 409(10), 

1949-1958.  

Zhang, X. C., Zhang, G. H., Garbrecht, J. D., & Steiner, J. L. (2015). Dating sediment in a fast 

sedimentation reservoir using cesium-137 and lead-210. Soil Science Society of America 

Journal, 79(3), 948-956. 

Zhen, J., Shoemaker, L., Riverson, J., Alvi, K., & Cheng, M. S. (2006). BMP analysis system for 

watershed-based stormwater management. Journal of Environmental Science and Health Part 

A, 41(7), 1391-1403. 



 

 

VITA 
 

Solmaz Rasoulzadeh Gharibdousti 
 

Candidate for the Degree of 
 

Doctor of Philosophy 
 
Dissertation:    EVALUATING THE LEAST COST SELECTION OF AGRICULTURAL 

MANAGEMENT PRACTICES IN THE FIVE-MILE CREEK AREA OF FORT 
COBB WATERSHED 

 
 
Major Field:  Biosystems and Agricultural Engineering 
 
Biographical: 
 

Education: 
 
Completed the requirements for the Doctor of Philosophy in Biosystems Engineering at 
Oklahoma State University, Stillwater, Oklahoma in May, 2018. 

 
Completed the requirements for the Master of Science in Water Resources Engineering 
at University of Tehran, Karaj, Tehran, Iran in 2011. 
  
Completed the requirements for the Bachelor of Science in Water Engineering at 
University of Tehran, Karaj, Tehran, Iran in 2007. 
 
Experience:   
-Hydrology, Meteorology, Water Resources Management, and Drainage of tunnels and 
agriculture fields expert in P. O. Rahvar Consulting Engineering Company (May 2010- 
Nov2013) 
-Research Assistant, Biosystems and Agricultural Engineering Department, 
Oklahoma State University (Jan 2015, Present) 
-Teaching Assistantship of Hydrology in Water Engineering Dept., University of 
Tehran (Jan 2010) 
- Teaching Assistantship of Hydrology in Biosystems and Agricultural Engineering 
Dept., Oklahoma State University (Fall 2017) 
 
 
Professional Memberships:   
-American Society of Agricultural and Biological Engineers (ASABE)  
-American Geophysical Union (AGU)  
-Green Student Initiative Committee for OSU Biosystems and Agricultural Engineering 
Graduate Student Association (2016-Present) 


