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A COMPARISON OF STATISTICAL TESTS 
DISTINGUISHING ERROR DYNAMICS 

AND SYSTEMATIC DYNAMICS IN DISTRIBUTED 
LAG MODELS 

by 
David A. Pyles, Eric Kocher 

and Daniel S. Tilley· 

1. Introduction 

Proper specification of econometric models frequently requires the incorporation 

of dynamic adjustment mechanisms to accommodate expectation generation, 

noninstantaneous equilibration, and other dynamic processes. The incorporation of 

these dynamic mechanisms often leads to distributed Jag models in which lags on the 

dependent and independent variables are included among the regressors. However, 

similar lag structures also arise from static models possessing autoregressive 

disturbances. Consequently, if a distributed lag model were found to reasonably 

represent the data, the analyst might then be confronted with the question of whether 

the Jag structure of the model should be attributed to systematic dynmnic phenomena, 

or to auto-regressive behavior in the disturbances, or to some combination thereof. 

To illustrate the problem, consider the distributed lag model: 

where L denotes the lag operator. The Et arc assumed to be independently and 

identically distributed (iid) with zero mean and variance u2. The lag structure of the 
model gives the initial impression that the impacts of shifts in x 1 t and x2t will be 

systematically distributed over time. However, suppose that we can formulate the 
model as: 

Yt = 8o + 81x1t + 82x2t + ut 

(1 - pL)ut = Er 
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which implies: 

Though this formulation renders the same general lag stmcture, it is now clear that the 

dynamics of the model are to be attributed entirely to dynamic behavior in the 

disturbances. Since there are no systematic dynamics in the model, the full impacts 
of shifts in x1 t and X2t are immediately reflected in Yt· Therefore, what initially 

appeared to be a dynamic model is in fact a static model with autoregressive 

disturbances. 

For a general formulation of the problem, write the general distributed lag model 

as: 

(1) 

where: Zt is a k + 1 dimensional vector of variables, the first of which is endogenous. 

~(L) is a vector of polynomials in the lag operator L, and the £t for t == 1,,n arc iid 

disturbances with zero mean and variance o2. Distributed lag models will be denoted 

as DL(mo,m1 ,,mk), where mi denotes the order of the (i + 1)th polynomial in ~(L). 

Now, as a special case of (1), we have models of the form: 

8(L)'zt = ut 

p(L)ut == Et 

(2) 

This model is simply a distributed lag model with disturbances following an rth order 

autoregressive process described by the polynomial p(L). Substitute the first of these 

equations into the second to obtain: 

from which it appears that (2) is the special case of (1) where: 

~(L) = p(L)8(L) (3) 

The important distinction between (1) and (2) is that the latter explicitly divides 

the dynamic stmcture of the system into the systematic dynamics component 9(L), 

and the error dynamics component p(L). (3) indicates that the divisibility of the 

dynamic stmcture of (1) into such components is manifested by the presence of r 

common factors to the polynomials in ~(L). From this perspective, models having 

autoregressive errors are seen as special cases of more general dynamic models. 

The possibility that ~(L) may be decomposed as in (3) has at least two important 

implications. First, the validity of (3) can dran1atically change the interpretation of 
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the dynamic behavior of the model. This is illustrated in the example above. Second, 
if the true model has the form of (2), then estimators failing to recognize the 

autoregressive error process will be relatively inefficient to those that do. 
Unfortunately, analysts commonly estimate models having the form of (2) with 

little or no consideration given to the possibility that the true model follows an 
unreduciblc form of (1). The popularity of (2) has derived from the frequent discovery 

of empirical autocorrelation in the residuals of static models estimated with time 
series data. If this empirical autocorrelation is due to autoregressive disturbances, 

then (2) becomes the appropriate model. However, high empirical autocorrelation 
can also derive from misspecification of the functional form and from the exclusion 

of relevant regressors. Consequently, if the true model is of the form of (1), but tlle 

estimated model has relevant lags excluded from the regressors, then empirical 

autocorrelation is apt to be observed in the residuals because of the inability of the 

estimated form to capture the dynamic structure of the system. An attempt to correct 
for this autocorrelation by adopting (2) will merely lead to the replacement of one 
misspecified model with another. A better course in these cases is to first estimate a 

model of the form of (1). If lags arc indeed found to be significant, the analyst can 

then test the possibility that these lags derive from autoregressive disturbances by 
testing the hypothesis that the parameters will admit the factorization in (3). 

In this paper, simulated comparisons are made between statistical procedures 
designed to test the validity of the factorization in (3) for the case of first-order 

autoregressive disturbances. Hence, our experiments suppose a situation where the 

analyst is resolved, either upon a-priori or empirical grounds, as to the orders of the 

polynomials in ~(L), but is unresolved as to whether these polynomials are 

consistent with the presence of a first-order autoregressive process in the 

disturbances. Monte Carlo experiments are conducted in which (3) is tested using four 

different criteria, including the popular Wald, likelihood ratio, and Lagrangian 

multiplier criteria. Tests using these criteria are equivalent asymptotically; however, 
the tests may differ in small samples to the extent that one test might be preferred 

over the others. The primary purpose of the simulation experiments is to determine 
whether any of the criteria are indeed superior in small sample tests of (3). 

Since we restrict attention to tests for first-order autoregressive disturbances, our 
experiments suppose a situation where the analyst is resolved that the order of 

autoregressive process in the disturbances is either zero or one. The assumed 
situation is not as restricted as it might initially appear. A model having the form of 

(1) can algebraically admit an autoregressive process of order no greater than the least 

degree of the polynomials in ~(L). Consequently, the presence of one regressor 

having only a single lag necessarily implies that an autoregressive process, if it 

exists, can be of order no greater than one. We restrict attention to the case of first­

order autoregressive processes for two reasons. First, this case occurs with sufficient 

frequency in practice to warrant its exclusive consideration. Second, numerous 

difficulties are introduced when higher orders must be considered. These difficulties 

arc discussed in Sargan and Sargan and Mehta, wherein it is shown that the traditional 

test criteria have severe problems when applied in such cases. Sargan and Mehta 
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propose an alternative criterion and a procedure wherein it may be applied to cases 
involving high-order autoregressive processes. 

Mizon and Hendry have conducted simulation experiments similar to those 

presented here; however, the experiments reported in this paper differ from theirs in 

several important regards. These differences derive largely from the fact that Mizon 

and Hendry were primarily concerned with the estimation of curves approximating 

small sample power functions, whereas the present study is primarily concerned with 

the comparison of test criteria. Differences between the studies include: 1) Sample 

sizes used in this study are much larger than those used in Mizon and Hendry. 2) 

Different paramcterizations are considered. In particular, we consider the both 

positive and negative autocorrelation, whereas the other authors consider only 

positive autocorrelation. 3) We consider four different test criteria, whereas only the 
Wald and likelihood ratio criteria were considered in the previous study. 4) W c 

consider three different lag structures, whereas the previous study considered only 

two. 

2. The Traditional Test Criteria 

Since the constraints implying the factorl.zation in (3) are nonlinear, it is 

difficult to find a reasonable test criterion having a tractable density function in finite 

samples. However, there are numerous criteria whose asymptotic distributions may 

be inferred under general assumptions. These criteria may then be used in tests 

wherein the asymptotic distributions are used as approximation to the finite-sample 

distributions. The most popular of these arc the Wald, likelihood ratio, and 

Lagrangian multiplier criteria. These criteria arc discussed here. 
Let y = (Y)· .. Yn) be a random sample drawn from a distribution parameterized by 

the p-dimensional vector e 0 . Let the log-likelihood function of e 0 be L(e 0 ;y). 

Henceforth, we shall omit y from the arguments of L to avoid notational clutter. Let 

H denote the Hessian matrix of L, and let: 

* I (8) = -E[H(e)] 
n 

* Hence, I (8) denotes the information marix evaluated at 8. Moreover, let: 
n 

* * I (e) =limn-too I (8)/n 
n 

II 

Denote the maximum likelihood estimator (MLE) of 80 by 8. Let h be a vector of q 

constraints, where q < p. We assume that h is continuously differentiable, and that 
II 

V'h(8 0 ) is of full row rank. Under general regularity conditions on L, e will be 

asymptotically normally distributed. Specifically: 
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(4) 

d 
Where -7 denotes convergence m distribution. We henceforth assume that the 

regularity conditions ensuring the latter hold. For a more thorough discussion of 

these conditions, the reader is referred to Amimiya or Dhrymes. Also, these 

regularity conditions ensure: 

* -
I (90 ) = -plim H(9)/n 

-
where 9 is any consistent estimator of 90 . Now, consider hypotheses of the form: 

H 0 : h(9 0 ) = 0 

Ha: h(8 0 ) oF- 0 

(5) 

(6) 

Let 9 maximize L(9) subject to h(9) = 0. If the null hypothesis is true, then under the 

stated assumptions, all of the following statistics converge in distribution to a chi­

squared variate with q degrees of freedom: 

II 

ALR = -2[L(8) - L(9)] 

...... * ...... """' 
~M = VL(8) In (9 tl VL(9 )' 

These statistics are respectively the Wald, log-likelihood ratio, and Lagrangian 

multiplier statistics. The log-likelihood ratio statistic is generally credited to Wilks. 

The Lagrangian multiplier statistic was first introduced by Rao, and is sometimes 

called "Rao's score statistic." A general discussion of these statistics and their 

applications in econometrics may be found in Engle. 

The above results suggest the following decision rule for testing the hypotheses 

in (6): 

Reject H0 if A> X 2 
q,a 

(7) 

where A is any one of the Wald, log-likelihood ratio, or Lagrangian multiplier 

statistics, and where X 2 is the 100(1 - a)th quantile of the chi-squared distribution 
q,a 

with q degrees of freedom. The three criteria render asymptotically equivalent tests 

when incorporated into the later decision rule; consequently, asymptotic properties 

provide no basis for choice among them. However, the distributions of the statistics 
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may differ considerably in small samples, and in such a way that one may be preferred 

as a test criterion over the others. 
When there is no information regarding the small sample properties of these 

three statistics, choice among them is often based upon computational 

considerations. The Wald statistic will generally be the easiest to calculate since it 

requires only the unrestricted MLE. Calculation of the Lagrangian multiplier statistic 

requires the restricted MLE, which is generally more difficult to compute than the 

unrestricted estimator. The log-likelihood ratio requires both the restricted and 

unrestricted MLEs, and will therefore be the most difficult to compute. 

We now show that the Wald statistic is indeed asymptotically distributed 2.s a 

chi-squared variable when the null hypothesis is true; moreover, we derive an 

approximation to the power function for the test in (7) when the Wale! statistic is used 

as the test criterion. The analogous derivations for the likelihood ratio and 

Lagrangian multiplier statistics may be found in their original sources. 

The foregoing analysis makes use of the noncentral chi-squared distribution. 

The density function for this distribution is: 

f(x;d.~) = L~ =O exp( -~ /2) [ (~ /2//i ! ] f (x;d + 2i) 

where d is the degrees of freedom; ~ > 0 is called the "noncentrality parameter," and 

f(x,d) denotes the ordinary chi-squared distribution with d degrees of freedom; hence: 

1/2 -1 d/2-1 
f(x;d) = [2 r(d/2)] x exp(-x/2) 

where r denotes the gamma function. Observe that f(x;d,O) = f(x;d); hence, the chi­

squared distribution may be regarded as the special case of the noncentra1 chi-squared 

where the noncentrality parameter is equal to zero. 
The noncentral chi-squared derives its primary motivation from the normal. In 

particular, if x is a d-dimensional vector of independent normal variates having unit 

variances and mean vector equal to ~l, then x'x is distributed as noncentral chi-squared 

with d degrees of freedom and noncentrality parameter ~'~· A useful generalization 

of this relation is supplied by the following theorem: 

1. Theorem: Let x be a d-dimensional vector distributed as N(~,L), where L is 

assumed to be positive definite, then x'L -1 x is distributed as non central chi-squared 

variate with d degrees of freedom and noncentrality parameter ~,L- 1 ~. 

Proof: Since L is positive definite, we can find a nonsingular matrix Q such that 

QIQ' =I, and consequently, L- 1 = Q'Q. It is easy to verify that Qx - N(Q~t,l); 
moreover: 
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-1 
x'I: x = (Qx) ' (Qx) 

The expression to the right is known to be distributed as noncentral chi-squared with 

d degrees of freedom and noncentrality parameter (QIJ.)' (QIJ.) = 1J.'I:- 11J., and the proof 

is complete. 
If the null hypothesis is true, then under regularity conditions 

A 

n 112 h ( 8) will be asmptotically normal. The asymptotic normality 

ensuring (4 ), 
A 

of nl/2 h(8) 

then implies that the Wald statistic is asymptotically distributed as chi-squared. 

These results may be demonstrated as follows: Since h is differentiable, the mean 

value theorem allows us to write: 

A - A 

h(8) = h(80) + V'h(8)(8 - 80) 

- A 
where 8 is on the line segment between 8 and 8 0 . h(8 0 ) = 0 by assumption; 

consequently, upon multiplying both sides of the latter by n 112 , one obtains: 

Take the probability limit of both sides of this equation to conclude: 

(8) 

where v is known from (4) to be distributed as a multivariate normal vector with zero 
A 

mean vector and covariance matrix I*(8 0 fl. Therefore, nl/2 h(8) converges in 

distribution to a multivariate normal vector with zero mean vector and covariance 

manx: 

(9) 

Now, we can write the Wald statistic as: 

A A *A 1 A 1 A 

'Aw = n112 h(8)'(V'h(8)[I (8)/nr V'h(8)'r n112 h(8) 
n 

Substitute (8) and (9) into the probability limit of the latter to obtain: 
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Since Vh(8 0 )v is distributed as N[O,Q(8 0 )], the right-hand side of the latter is 

known by Theorem one to be distributed as chi-squared with q degrees of freedom. It 

will be observed that the assumed nonsingularity of 0(80 ) necessitates our previous 

assumption that Vh(8 0 ) be of full row rank. 

When the null hypothesis is false, all three of the traditional test criteria tend 

toward positive infinity as the sample size increases. This implies that the test in (7) 
will, under each criterion, have asymptotic power equal to one on the alternative 

hypothesis. Hence, each criterion has the desirable property of rendering a 

consistent test; however, this property makes the asymptotic power function an 

ineffective measure for test comparisons. A better measure of relative test 

performance is obtained by evaluating the limit of the power function on a sequence 

of parameters falling under the alternative hypothesis, but which approaches a 

parameterization satisfying the null. We thereby obtain a measure of the ability of 

the test to reject the null hypothesis at local alternatives. Set y = n112h(8 0 ), and let 

( 8k} be a sequence whose terms satisfy: 

h (8k) = y fk112 

limk~oo ek = 8* 

8k = 8 0 for k = n 

Let nk denote the power function of the test for samples of size k, and let: 

1t may then be used as a measure for test comparisons. The Wald, likelihood ratio, 

and Lagrangian multiplier criteria render asymptotically equivalent tests in the sense 

that under each criterion: 

n = P[x2(q.~) >X 2 ] 
q,a 

(1 0) 

* * * 1 * 1 where: ~ = y '[Vh(8 )I (8 r V h(8 )T y 

and where x2(q,).l) denotes a noncentral chi-squared variate with q degrees of freedom 

and noncentrality parameter J.l. Hence, the three tests are equally effective at rejecting 

local alternatives in large samples. 
The validity of (10) for the case of the Wald statistic may be shown as follows: 
II 

Let 8k denote the maximum likelihood estimator of 8k. Using the mean value 

theorem, we may write: 

II _ II 

h(8k) = y !k 112 + Vh(8k) (8k- 8k) 
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- A 

where Elk lies on the line segment between Elk and Elk From the latter, we conclude: 

k112 h(ek) ~ y + Vh(El*)" 

A 

Hence, kl/2 h( Elk) is asymptotically distributed as 

N ( y,Q(El*) ]. Now, the corresponding sequence of Wald statistics is: 

A * A A A 

'Aw = kl/2 h(Elk)' (Vh(Elk)[\(El)/k]-lV'h(Elk)' }-lkl/2h(Elk) 

Take the probability limit of this expression to obtain: 

Since Vh(El*)v - N[O,Q(El*)], then the right-hand side of the latter is known from 

Theorem one to be distributed as a noncentral chi-squared variate with q degrees of 

freedom and noncentrality parameter given in (10). Similar derivations for the log­

likelihood ratio and Lagrangian multiplier statistics may be found in Gallant and 

Holly. 

Since 1tn (9 0 ) is the nth term in a sequence converging upon n(El 0 ,n,El*), we 

may use 1t as an approximation of 1tn. It will frequently prove to be very accurate, as 

is demonstrated in the forthcoming simulations. Moreover, 1t has at least three 
desirable properties that should be expected of a reasonable approximation to 1tn-

First, if 8 0 satisfies the null hypothesis, then y = 0, and consequently, ~t = 0; hence: 

Therefore, 1t renders the appropriate asymptotic test size. Second, we should expect 1t 

to approach unity as either n approaches infinity or as lh(El 0 )1 approaches infinity. 

In either event, the noncentrality parameter ~ approaches infinity also. Since the 
cumulative distribution function for the noncentral chi-squared distribution is a 

strictly increasing function of the noncentrality parameter, this then implies that 1t 

indeed approaches unity. 

3. Testing Parameters of Linear Models 
with Normal Errors 

In this section, we consider the application of the test criteria presented in the 
previous section to tests of nonlinear restrictions upon the coefficients of linear 

models having normal errors. This discussion is necessitated by the fact that the 

simulated tests for common factors fall within this general class of tests. 
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Subsequently, suppose we have a linear model whose marix representation is: 

y = Z~0 + E (11) 

where: y is an nxl vector of observations on the dependent variable. Z is an nxp 

matrix of regressors possibly containing lags on the dependent variable, and E is an 

nxl vector of disturbances distributed as N(0,02 I). We wish to test the null 
0 

hypothesis that h(~ 0 ) = 0 against the alternative that h(~ 0 ) * 0, where h is a q-

dimensional vector function for q < p. It is shown that under the assumption of 

normal disturbances, the log-likelihood ratio and Lagrangian multiplier statistics 

may be found as simple functions of the restricted and unrestricted MLEs of 0 2. We 
0 

also introduce a fourth test criterion by showing that the restricted MLE of ~0 may be 

found as the solution to an unconstrained minimization problem whose indirect 

objective function has the same asymptotic distribution as the log-likelihood ratio 

and Lagrangian multiplier statistics. 

The log-likelihood function corresponding to the model in (11) is: 

Since L is differentiable, the unconstrained MLEs for ~0 and 0 2 must satisfy: 
0 

dL/d~ = (y - Z~)' Z/02 = 0 

CJL/d02 = -n/(202) + (y- Z~)' (y- Z~) I 204 = 0 

II A2 
Let~ and 0 denote the unconstrained MLEs. From the first condition, it is clear that: 

Moreover, the second condition implies: 

A2 II , II 

0 = (y - Z ~) (y - Z ~ )/n (12) 

Now, it will be observed that since h(~) does not involve 02, the second condition 

must also be satisfied by the solution which maximizes L(~,02) subject to h(~ ) = 0. 

"" -2 
Therefore if the constrained MLEs are denoted by~ and 0 , then we must have: 

-2 "" "" 
0 =(y-Z(3)'(y-Z~)/n (13) 
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Upon substituting (12) and (13) into the log-likelihood ratio statistic, it will be 

found that: 

~ -2 11 "2 -2 A2 
ALR = -2[L(j3, 0 ) - L(~ .0 )] == nlog(0 I 0 ) (14) 

Hence ALR reduces to a simple function of the unrestricted and restricted MLEs of 0~ 
The Lagrangian multiplier statistic for the hypothesis h(~0 ) = 0 is defined as: 

* where I denotes the information marix. For the present problem: 
n 

Since the last component of V'L$, cr2 ) is known to be equal to zero by the first-order 

conditions, /o..LM reduces to: 

A = (y- zE')' Z(Z'Zt1Z' (y- Z~)Jcr2 
LM 

A 
Using the fact that ~ = (Z'zt1z'y, the last equation can be reduced to: 

(15) 

It happens that the numerator of this expression is equal to the difference between the 

restricted and unrestricted sums of squared errors, as may be seen by observing: 

........ 2 "" "" " ....... " ,. ...... "' 
n0 = (y - ~)' (y - ~) = [£ - Z $ - ~)]' [£ - Z$ - ~)J 

1\2 ~ II "" II 
= n0 + $ - ~)' (Z'Z)$ - ~) 

II 

where£ denotes the vector of residuals for the unrestricted MLEs. Upon substituting 

the last relation into (15), one obtains: 

-2 "2 -2 
ALM = n(0 - 0 )/0 (16) 

II 



Hence, ALM also reduces to a simple function of the unrestricted and restricted MLEs 

of (:l . 
0 

Using (14) and (16), ALR may be written in terms of ALM with: 

A.LR = nlog[n/(n- A.LM)] = -nlog(1 - A.LM /n) 

Using the fact that log(1 + x) < x for all x E (-1,=), it is clear from the later that ALR > 

ALM for all finite n. However, it may also be seen that as n approaches infinity, ALR 

converges to ALM; hence, the asymptotic equivalence of the two statistics is 

confirmed. It has been shown by Berndt and Savin that when testing linear 

constraints on the coefficients of linear models, the W ald statistic will be greater 

than ALR; however, this inequality does not necessarily hold in the case of nonlinear 

constraints, as is illustrated in section six. 

A difficulty with the above formulation JS that calculation of ~ requires 

maximization of L(~,02) subject to the constraint h(~) = 0. Since constrained 

optimization problems are generally much more difficult to analyze and solve than 

unconstrained problems, calculations can generally be simplified if a formulation can 
be found in which only unconstrained optima are required. We now develop such a 
fornmlation, and in so doing, we arrive at yet another test criterion. 

Suppose that there exists a vector function g mapping from Ep-q to Ep such that 

the condition h(~) = 0 is true if and only if there exists e E Ep-q such that ~ = g(9). 

It will frequently be the case that parameter constraints occur naturally in this form. 

This happens to be the case for the common factor problem. For example, consider 

the DL(1, 1) model: 

where the Et are iid disturbances. If a common factor exists in the lag polynomials of 

the latter model, then it must be true that the model may be alternatively written as: 

yt=S1xt+ut 

ut = e2ut-1 + ~\ 

or equivalently: 
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Hence, the following correspondence exists between the parameters of the 

unrestricted and restricted models: 

~1 = gl(8 1'82) = 82 

132 = g2(8 1'82) = 8 1 

~3 = g3(8 1'82) = -8 182 

where the gi would be the component functions of g considered above. To derive the 

relevant constraint for the coefficients of the unrestricted model, one must eliminate 

8 1 and 82 from the above equations. The constraint will be found to be: 

In this case, the constraint is easily derived; however, derivation of the constraint 

becomes extremely difficult when additional Jags arc introduced. Our present point is 
that for the common factor problem, the constraints are initially given in terms of 

the vector function g. The derivation of h requires an additional step, and one which 
may be extremely difficult to perform. 

With the existence of such g, we may replace the hypothesis that h(~0 ) = 0 with 

the hypothesis that there exists 8 0 such that ~0 = g(80 ). Moreover, we may find the 

maximum of L(~,02) subject to h(~) = 0 simply by finding the unconstrained 
2 ~ ~ 

maximum of L[g(8),0 ]. lf we let 8 denote the solution to this problem, then ~ = 
~ 

g(8). Now, for case of the linear model with normal errors, the Jog-likelihood 

function for 8 and 02 is: 

L[g(8),cr2] = -(n/2)log(2ncr2) - [y - Zg(8)] ' [ y - Zg(8)]/(2cr2) 

From the latter, it may be seen that the MLE of 80 is the solution to: 

minimize (8): S(8) = [y - Zg(8)] ' [y - Zg(8)] 

After simplifying the objective function, it will be found that: 

11 2 ~ 11 2 ~ 
S(8) = cr { [g(8)- ~] '(Z'Z/a )[g(8)- ~l + n} (17) 

Hence, the minimim of S(8) is equal to the solution of: 

minimize (8): [g(8)- Pl ' (Z'Z/ ~2)[g(8) - Pl (18) 
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The advantage of this formulation becomes clear in the next section where it is shown 
that problems of this form can generally be solved using the Gauss-Newton 
algorithm. 

Let the optimized value of the objective function to the above problem be 

denoted as AD. Since the restricted MLE of ~2 is cr2 = S (~) In, then from (17) it may 

be concluded: 

Using (14) and 16) in conjunction with the latter, it is easy to confirm that the log­

likelihood ratio and Lagrangian multiplier statistics may be expressed in terms of AD 

with: 

A.LR = nlog(l + A.Din) 

A.LM = nA.D I (A.D + n) 

Both ALR and ALM converge to AD as n approaches infinity; hence, the three 

statistics are asymptotically equivalent. Using the fact that log( 1 + x) < x for x E 

(0, =), it may be concluded from the above that AD> ALR' We have already 

established the fact that ALR > ALM; hence, AD > ALR > ALM. 

4. The Gauss-Newton Algorithm 

Suppose we have a linear model of the form: 

y = z~o + £ 

where £ - N(O, cr2 I). Let the likelihood function for ~ 0 and cr2 be denoted by 
0 0 

L(~, cr2). In this section, we consider calculation of the maximum of L(~, cr2) subject 

to the restriction h(~) = 0. Let the umestricted MLEs of ~0 and 0'~ be denoted with ~ 
1\2 - _,.., 

and cr , and let the restricted MLEs be denoted with~ and cr"'. Following the previous 

section, we assume that h(~0 ) = 0 if and only if there exists 8 0 such that ~0 = g(8 0 ), 

- " " in which case,~ = g(8), where 8 is the solution to: 

" "'"' " minimize (8): [ g(8)- ~] '(Z'ZI cr"')[ g(8)- ~] (19) 
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The Gauss-Newton algorithm is an iterative routine specifically designed to 
solve problems having the general form: 

minimize (x): e(x) = f(x) ' Af(x) 

where f is a differentiable m-dimensional vector function; x is a vector of dimension 
not greater than m, and A is an mxm positive definite matrix. The problem in (19) 

has precisely this form. Now, let x be any realization of x. The algorithm proceeds 

from x by replacing f(x) in the objective function with a first-order Taylor 

approximation about X. The resulting function is: 

c (x) = [f ( x) + Vf( x)(x - x )J 'A [f (x) + vr (x)(x- x)] 

e(x) is minimized at X*, where: 

x * = x.- [Vrc x) 'A vrcx>r1vrcx> 'Af(x) 

The algorithm repeatedly replaces x with X* until '7 e(x *> is sufficiently near the zero 

vector. The algorithm may be summarized as follows: 

Initialization Step: Choose a starting point x 1, and a distinguishability constant 8 > 

0. Set k = 1 and go to main step. 

Main Step: 

1) Set x* = xk- [Vf(xk)' AVf(xk)r 1Vf(xk) 'Af(xk). 

2) If IV e(x *)I < o then stop; otherwise, replace k with k + 1; set xk = x *, and repeat 

step one. 

The algorithm breaks down upon arriving at points where '7 f is not of full 

column rank since the matrix inversion in the main step will not be possible in such 

cases. However, it can be shown that if Vf is of full column rank at the optimum, 

then the algorithm always converges to the optimum when initiated in a 

neighborhood of it. It is possible for the algorithm to endlessly iterate without 
reducing the value of the objective function. This problem may be avoided by 

redefining x * as: 

It can be shown that if A is sufficiently small, then x * will render a lower value in the 
obiective function than xk, provided that xk is not a stationary point. Therefore, 
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with appropriate choice of A, we can cause the algorithm to render successively lower 

values of e. A possible approach would be to begin with A = 1, then successively 

divide this value in half until obtaining an X* rendering a lower value in the 
objective function. 

The algorithm terminates where Ve(x *) is sufficiently near the zero vector. 

Since this condition will hold at all local minima of e, it is possible for the algorithm 

to converge at any of such points. For this reason, location of the global minimum 
may require initiation of the algorithm from several starting points. 

5. Generation of the Data 

In this section, we describe the procedures that were used in the generation of 
data for the simulation experiments. All experiments necessitated the generation of 
data for models having the form: 

Y = ~1Y 1 + ··· + ~ Y + a.ox + · ·· +a. x + £ t t- q t-q t r t-r t 

xt = A.xt-1 +Vt 

(20) 

(21) 

Hence, all models involved only one exogenous variable; however, varying numbers 
of lags of this exogenous variable were included among the regressors. The 
exogenous variable is always generated by the first-order autoregressive process 
described by the second of the above equations. 

Generation of the Disturbances 

In all models, the £t and v t are generated as normal random variables. Most 

programming languages include random number generators only for the uniform 
distribution over the interval from zero to one (U(O,l)). However, the following 
theorem may be used to transform U(O,l) random variates to random variates 

following any desired distribution function: 

2. Theorem: Let F be the cumulative distribution function corresponding to any 

continuous random variate, and let u be a U(O,l) variate, then x = F-1(u) is a random 
variable distributed with cumulative distribution function equal to F. 

Proof: For any constant a: 

P[x <a] = P[F-1(u) <a] = P[u < F(a)] = F(a) 

which shows the cumulative distribution function of x to be F(x), and the proof is 

complete. 
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Unfortunately, closed-form representations do not exist for the normal 

cumulative distribution function or for its inverse. Consequently, direct application 

of the theorem would necessitate the usage of approximations to these functions. 

However, it happens that the usage of approximations can be avoided by generating 

the random variates in pairs. This is illustrated in the following procedure due to Box 

and Muller: Let x1 and x2 denote the independent standard normal variates to be 

generated. The joint probability density for these two variates is: 

2 2 
f (x 1, x2) = (1/2rc)exp[-(x1 + Jt..) /2] 
x1, x2 L 

Suppose we convert to polar coordinates using the transforms: 

x1 = rcos(8) 

x2 = rsin(8) 

The joint density of r and e is: 

2 
f e (r,8) = (r/2rc)exp[ -r /2]; r E [0,=), 8 E [0,2rc] 
r, 

It is apparent from the nature of the problem that r and e are independent. Of course, 

this may be formally verified by calculating the conditional densities. The marginal 

density for r is. 

2 
fr (r) = rexp[ -r /2]; r E [0,=) 

Hence, the cumulative density for r is: 

P (r) = 1 - exp[-r2/2]; r E [0,=) 
r 

Using the latter, we can apply Theorem two to randomly genedte r. In particular, if 
u1 denotes a U(0,1) variate, then r can be generated with: 

r = [ -2log(u )]112 
1 

The maginal density for e is simply a U(0,2rc); consequently, e can be generated with: 
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where u2 is an U(0,1) variate that is independent of u1. x1 and x2 are then calculated 

using: 

x1 = rcos(8) = [-2log(u 1)]1/2 cos(2nu2) 

x2 = rsin(8) = [ -2log(u 1 )]1/2 sin(2nu2) 

(22) 

(23) 

Marsaglia and Bray propose a method similar to that of Box and Muller, but 
which avoids the calculation of the sine and cosine functions. Let v 1 and v 2 be 

independent U(-1,1) variates conditional on w = v? + v~ $ 1. Hence, (v 1, v2) may be 

viewed as a pair of coordinates uniformly distributed on a unit circle centered at the 
origin. Such coordinate pairs may be generated by generating both v 1 and v2 from 

the U(-1,1) and rejecting all pairs for which w > 1. With use of polar coordinates, it is 

not difficult to confirm that w is distributed as U(0,1), and that 

v 1;w 112 and v2;w 112 are distributed as the cosine and sine of a random variate 

distributed as U(0,2n). Moreover, both v 1;w112 and v2;w 112 are independent of w. 

Consequently, the following substitutions can be made in (22) and (23): u1 can be 

replaced with w, cos(2nu2) can be replaced with v 1/w 112, and sin(2nu2 ) can be 

replaced with v2/w 112 . After making these substitutions, one obtains: 

1/2 x 1 = v 1[-2log(w)/w] 

1/2 x2 = v2[ -2log(w)/w] 

The latter formuli were used in the simulation experiments for the generation of 

standard normal variates. 

Generation of Initial Values 

The data series can be generated using (20) and (21) once initial values are 

provided; however, appropriate generation of the initial values can be a rather 

difficult task. If the first period corresponds to t = 1, then initiation of the sequences 
will require values for (y0,,y 1_q ,x 1,,x 1_r). The usual approach is to generate the 

initial values such that their means, covariances, and autocovariances are equal to 

those of the sequences which they initiate. Of course, this assumes that the sequences 

arc stationary, so that their means, cov ariances, and autocovariances do in fact 

converge upon constants with the progression of the sequences. The process 

generating y t will be stationary provided that the roots to 1 - ~ 1 L - ... - ~ qL q = 0 all lie 

outside the unit circle. Moreover, the process generating xt will be stationary if 

IA.I < 1. All pararneterizations used in the simulations are chosen such that these 
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stationarity conditions are satisfied. Now, since both (20) and (21) are without 
constant terms, both Yt and xt have expectation equal to zero for all t. Suppose that 

the covariance marix of (yt_ 1 ,,yt-q' xt"'xt-r) is I:. LetT be a triangular matrix 

satisfying T 1 T = I:, and let w be a conformable vector of independent standard 

normal variates. Initial values having zero mean and covariance matrix I: can be 

generated with Tw. Hence, the problem of generating initial values reduces to the 

problem of determining T. In the following, we treat the construction of I:. The 

problem of determining T from I: is addressed in Appendix II. 

The components of I: are most easily found by formulating (20) and (21) as a 

vector autoregression. We may then find the components of I: from among the 

components of the autocovariance matrices of the vector autoregression. 

Subsequently, consider the general vector autoregression of order s: 

(24) 

where the Ai are mxm matrices of constants, and where the Et are iid random vectors 

having zero mean vector and covariance matrix Q. Both (20) and (21) can indeed be 

formulated as such a model. Analysis of the general vector autoregression can be 

greatly expedited by reformulating it in terms of a vector autoregression of order one. 
This may be done as follows: Let vi (t) = zt-i fori = 0,1, , ,s - 1; moreover, let 

I I 

v(t) = [v0 (t), , ,v s-1 (t)] 1
, then (24) may be expressed as: 

v(t) = Bv(t-1) + ~t (25) 

where: 

~~l 
A2 As-1 As l ~~t-1 0 0 0 
I Bl 0 J 

~t liJ 0 0 
0 I 0 

Let the covariance matrix of v t be denoted as r o· To find r O• postmultiply (25) 

by v(t) 1 and take the expectation of both sides to obtain: 

(26) 
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where [' 1 = E[ v(t)v(t-1 )'], and: 

o/{ 
~ 0 0 

] 0 0 0 

0 0 0 

Observe that [' 0 1s symmetric, but this is not necessarily the case for 1 1. Next, 

postmultiply (25) by v(t-1 )' and take the expectation of both sides to obtain: 

(27) 

Upon substituting (27) into (26), one concludes: 

which implies: 

vec(f' o) = BEBBvec(f' o) +vee('!') 

Hence: 

where vee(.) is the vectorization operator, and EB denotes the Kroenecker product 

operator. Both of these operators are discussed in APPENDIX I. The components of~ 

may be found among the components of [' 0 and f' 1. 

6. Design of the Experiments and the Results 

Simulation experiments were conducted upon three distributed lag models. For 
each model, the presence of a common factor in the lag polynomials was tested using 

each of the four test criteria previously considered. The criteria were compared to 

determine which, if any, proved to be the best for small sample tests. In this section, 

we discuss the design of these experiments and present the results. 

The simulated models were DL(l,J), DL(1,2), and DL(2,1). Hence, all models had 

the general form: 

(28) 
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with varying numbers of lags being used on the endogenous and exogenous variable. 
In all models, the Et were generated as independent standard normal variates. Also, x1 

was generated in all models using: 

where the v t were generated as independent standard normal variates. The above 

process was chosen for the generation of the independent variable because it 

approximately characterizes a large number of economic variables, particularly when 
measured on an annual basis. 

For the DL(l,l) model, the presence of a common factor in the lag polynomial 
implies that the model may be written as: 

Yt = 'VoXt + ut 

ut = put-1 + Et 

or equivalently: 

Therefore, we have the following correspondence between the coefficients of the 
unrestricted and restricted models: 

Hence, two parameters are mapped into three coefficients. The existence of p and \jf 0 

satisfying the above equations implies and is implied by the constraint: 

(29) 

The coefficients to (28) were chosen following procedures used in the Mizon and 
Hendry experiments. In particular, all coefficients in (28) were chosen in accordance 
with the presence of a common factor except the coefficient on the furthest lag of xt' 

This coefficient was chosen so as to violate (29) by specified amounts. Specifically, 
we set: 

for 'Vo = 1, p = (-.8,-.2,.2,.8), y = (0,.5,1,1.5,2) , and n = (20,40,60). Using the 

anlaysis in section two, it may be confirmed that as the sample size n approaches 

21 



infinity, the coefficients converge upon the null hypothesis in such a way as to cause 
the test criteria to converge in distribution to a noncentral chi-squared with one 
degree of freedom and noncentrality parameter: 

where Vh is evaluated at the limits of the coefficients, and where :E is the covariance 

of the regressors at the limits of the coefficients. The test size was always set at five 
percent; consequently, as sample size approaches infinity, the powers of the 

simulated tests should converge upon: 

2 2 
n = P[X (l.~.L) > X1,.05] (30) 

By comparing the sample powers of the various tests with the asymptotic power 

above, one can determine the relative rates of convergence in the various criteria. 

Values for p were chosen so that the relative performance of the tests could be 

evaluated on both high and low degrees of both positive and negative 
autocorrelation. 1,000 replications were simulated on all parameterizations except 

those corresponding to the null hypothesis (y = 0) where 2,000 replications were used 

instead. The larger number of replications on the null hypothesis was used to achieve 

greater accuracy in the measurement of test size. Since three of the four criteria are 
algebraically related, it was expected that test size would become an important 

determinant in the selection of the best test. Suppose that the true size for a particular 

test is p, and that the sample power is ~. then the variance of ~ is p(l - p)/n. 
Therefore, an approximate 99% confidence interval about some hypothesized test 

size, say p0 , would be p0 't 2 [p0 (1 - p0 )/n]112. This approximation is based upon 

the asymptotic normality of p. Since nominal test sizes were set at five percent, 
2000 replications would produce a confidence interval of radius equal to .9747 
percentage points, or less than one percent. 

The results for the DL( 1,1) model are reported in Table I. In this and all other 

tables, the following notation is used: 'Aw, ALR• and ALM denote the Wald, log-

likelihood ratio, and Lagrangian multiplier criteria, respectively. AD denotes the 

optimal solution to the problem in (18), and n denotes the noncentral chi-squared 

approximation to the power function defined in (30). 

Several important conclusions can be drawn from Table I. First, the sample 
powers are closely approximated by n, particularly for samples sizes greater than or 

equal to 40. Second, the experiments demonstrate that the Wald statistic is not 

necessarily greater than the log-likelihood ratio for tests of nonlinear constraints, 

since the power of the likelihood ratio test is greater than that of the Wald test under 

numerous parameterizations. Mizon (1977a) has also produced examples where the 

Wald statistic is less than the likelihood ratio in tests of nonlinear constraints. 
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Third, no one test appreciably outperforms the others; moreover, where one test has 

greater power on the alternative hypothesis than the others, it is generally found that 
the test also has larger size. Of course, to make fair comparison among the tests, the 
criteria should be adjusted so as to render equal size; however, no effort was made 
toward such adjustments since the unadjusted powers were felt to convincingly 
suggest approximate equivalence between the tests. Fourth, tests using 'Aw, t...0 , and 

ALR consistently had estimated test size greater than the nominal size. ALM produced 

estimated test sizes greater than the nominal size in all cases but one. Since, 

AD > 'ALR > ALM• it naturally follows that among these three statistics, 'ALM produced 

tests having estimated sizes nearest to the nominal size, and tests using A. 0 had 

estimated sizes being the furthest away. However, in all but one case, the estimated 

sizes for the ALM tests also proved nearer to the nominal size than those for the A.w 

tests. Fifth, the powers of all tests on the alternative hypothesis were highly affected 

by the parameter p. The powers consistently increased with increases in p. The 

results indicate that the probability of type II error could be quite large if the true 

model is approximated by a model possessing negatively autocorrelated disturbances. 

For the DL(1,2) model, a common factor in the lag polynomials implies that the 

model may be written as: 

The coefficients of the unrestricted model in (28) will satisfy the above factorizations 

if and only if: 

The following parameterizations were used in the construction of the simulated 
models: 

for \If 0 = 1, p = ( -.8,-.2,.2,.8) , \If 1 = ( -.5,.5), and n = (20,40,60). All other aspects 

of the experiment were the same as that for the DL(l,l) model. 

The results for the DL(l ,2) model arc reported in Table II. All of the conclusions 

drawn from the previous simulation are confirmed here. 7t proves to be an accurate 

approximation of the estimated powers, particularly with 40 or more observations. 
As before, test powers on the alternative hypothesis are approximately equivalent, 

with differences usually being largely explained by differences in size. For all tests, 
the estimated sizes were greater than the nominal size without exception. In all but 

three cases, the ALM tests had estimated sizes nearer to the nominal size than did the 

23 



Aw tests. As before, the powers of the tests increase as p is increased, and the risk of 

type TI error is indicated to be quite large when the true model is approximated by a 

model having negatively autocorrelated disturbances. The powers appear to be 

invariant with respect to the parameter \jf 1• and the asymptotic powers are invariant. 

Indeed, the inclusion of the additional lag on the exogenous variable appears to have 

had little effect on the power function since both the estimated powers and 

asymptotic powers for the DL(l,l) and DL(l,2) models arc approximately the same 

for equal values of y and p. 

For the DL(2,1) model, a common factor in the lag polynomials implies a model 

of the form: 

The coefficients of the umestricted model in (28) will satisfy the above factorizations 

if and only if: 

2 
h = (al/ao) + (a1/ao)~1 - ~2 = 0 

Coefficients for the simulated models were calculated with the following: 

~1 =p+El1, ~2=-pEll, ao=\jfo 

a 1 =\jf0(-(p+91)! [(p -9 1)2 +4y/n112]112)/2 

The! term in the last relation is a consequence of the fact that for given \jf 0, r, and e1, 

there will be two values of a 1 producing h = y/ nl/2. Choice between the solutions 

was made such that y = 0 rendered a 1 = -p\j/0. Hence, the negative sign was chosen if 

p > e1, but the positive sign was chosen otherwise. Parameter values were \jf 0 = 1, e1 

= (-.5,.5), p = (-.8,-.2,.2,.8), and n = (20,40,60). All other aspects of the 

experiment were the same as for the previous experiments. 

The results for the DL(2,1) model are reported in Table III. The most important 

conclusion to be drawn from these results is that Wald statistic clearly becomes 

inferior to the other criteria under certain parameterizations. The powers under the 

Wald statistic are in some instances very low; moreover, in some cases, the powers 

actually decreased with increasing y. Such perverse behavior indicates that the rate of 

convergence in Aw towards its asymptotic distribution is extremely slow. The other 

criteria still perform well; however, the rates of convergence in these are also slower 

than in the previous experiments, as is evidenced by the fact that n; is a much poorer 

approximation to the estimated powers than before. Certain of the previous results 

are also reflected here. In particular, the estimated test size for t..0 , ALR . and ALM 
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still consistently exceed the nominal size; hence, A.LM again performs the best 

insofar as approximation to the nominal size is concerned. As before, the power 

function appears to be decreasing in p, with values of p near -1 resulting in high 

probabilities of type II error. Test powers are clearly affected by e1, but the direction 

of the effect is determined partly by an interaction between e 1 and p that is too 

complex to generalize in simplistic terms. 
A further simulation of one of the DL(2,1) parameterizations was conducted using 

larger sample sizes with the intent of obtaining a better measure of the rate of 
convergence in the test criteria. The simulated parameterization corresponded to e1 = 

.5, p = .2, andy= (0,.5,1,1.5,2). Sample sizes up to 1000 were simulated. As in 

the previous simulations, 1000 replications were used for y > 0, but 2000 replications 

were used for y = 0. The results of this experiment are reported in Table IV. The power 

estimates for sample sizes 20, 40, and 60 were lifted from Table III. The estimated 
powers reported in the Table IV further confirm that all criteria converge slowly under 
this parameterization; however, convergence in the Wald statistic is clearly the 

slowest. The power function for the Wald statistic continues to have power declining 

withy in sample sizes as large as 125. 

7. Conclusions 

The most important conclusion to be drawn from the simulation experiments JS 

that the Wald criterion can perform very poorly under certain parametcrizations of the 
DL(2, 1) model. The other criteria also exhibit slow convergence under these 
parameterizations; however, their performance clearly excels that of the Wald 

statistic. Under the DL(l,l) and DL(l,2) models, all criteria produced tests having 

powers very close to the asymptotic powers, particularly for sample sizes of 40 or 

more. These results indicate a possible generalization to be that the rate of 
convergence in all criteria is adversely affected by the number of lags on the 
dependent variable included among the regressors, and in the case of the Wald 
statistic the effect can be extreme. 

The experiments indicate a clear tendency on the part of all criteria to produce 
tests with sizes exceeding the nominal size. Because of this and the algebraic 

relation, A.LM < A.LR < A. 0 , the Lagrangian multiplier statistic produces tests with 

sizes closer to the nominal sizes than "-LR and A.0 . Though the Lagrangian multiplier 

bears no such algebraic relationship with the Wald statistic, the simulations strongly 

indicate that it also excels the Wald statistic in this regard. Based upon this 

observation and the observations of the previous paragraph, the Lagrangian 

multiplier statistic appears to be the best of the four criteria for the simulated models. 

The ability of all tests to reject parameterizations in the neighborhood of the 

null hypothesis appears highly contingent upon the value of the autocorrelation 
coefficient under the null. Both estimated and asymptotic powers consistently 

increased with increases in the signed value of the autocorrelation coefficient. The 

probability of type II error appears quite large for autocorrelation coefficients near -1. 
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TABLE I 

SIMULATION RESULTS FOR DL(1,1) MODELS 

Criteria Parameters y 

n 0 .5 1.5 2.0 

Aw 20 -.8 9.35 9.70 11.80 18.80 24.50 

Ao 9.60 10.30 12.30 19.50 24.80 

ALR 7.75 8.60 10.40 17.20 22.70 

ALM 6.20 7.00 8.80 14.60 20.60 

Aw 40 -.8 10.10 10.70 11.60 14.00 21.40 

Ao 10.50 11.30 12.60 14.50 22.20 

ALR 8.70 10.20 10.90 12.20 19.60 

ALM 7.15 7.90 8.70 10.50 17.20 

Aw 60 -.8 6.45 7.40 10.10 15.10 22.20 

AD 6.50 7.30 10.20 15.20 22.80 

ALR 5.80 7.10 9.80 14.60 21.60 

ALM 5.45 6.90 9.30 14.10 20.80 

1t 5.00 5.93 8.79 13.70 20.70 
------------------------------------------------------------------------
Aw 20 -.2 7.40 9.40 18.20 27.30 43.10 

Ao 8.75 11 .20 19.40 29.00 44.30 

ALR 7.50 9.50 16.90 25.80 41.60 

ALM 6.10 7.60 14.80 23.00 37.90 

AW 40 -.2 7.55 10.20 16.00 25.30 36.60 

AD 8.90 11 .60 18.80 28.60 40.60 

ALR 7.40 10.10 16.60 25.60 36.80 

ALM 5.90 8.70 13.30 22.70 33.30 

Aw 60 -.2 5.80 8.30 13.20 24.10 41.40 

AD 6.25 8.80 14.80 25.50 42.80 

ALR 6.15 8.40 13.70 24.80 41.80 

ALM 5.60 7.90 12.50 23.20 40.60 

1t 5.00 7.07 13.50 24.50 39.38 
------------------------------------------------------------------------
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TABLE I (Continued) 

'Aw 20 .2 6.35 11 .90 20.20 41.50 62.40 

J..o 8.70 14.20 23.80 45.80 68.10 

).LR 7.15 12.70 21.60 42.80 64.80 

).LM 6.15 10.40 18.40 39.10 61.50 

J..w 40 .2 7.00 11 .00 21.70 38.10 59.70 

J..o 9.10 14.80 26.60 44.60 64.50 

).LR 7.50 11.90 23.60 41.30 61.50 

).LM 5.70 10.30 19.70 37.80 58.30 

J..w 60 .2 5.30 9.40 24.80 42.50 64.30 

'Ao 6.25 10.40 27.70 44.00 67.20 

).LR 5.90 9.70 25.70 43.60 65.40 

).LM 5.35 9.10 24.70 42.40 63.90 

1C 5.00 9.31 22.82 44.40 67.92 
------------------------------------------------------------------------

"w 20 .8 9.80 23.00 47.60 73.80 87 90 

J..o 11 .80 26.70 50.60 73.50 87.50 

).LR 9.85 23.30 46.50 70.60 85.50 

).LM 8.30 19.60 43.00 67.50 82.90 

J..w 40 .8 9.95 20.90 50.80 72.90 85.60 

J..o 12.25 25.30 52.10 73.70 84.30 

).LR 10.25 23.10 49.60 70.20 82.90 

).LM 8.40 20.30 45.60 66.40 80.30 

J..w 60 .8 7.00 19.00 52.40 82.40 95.70 

J..o 8.10 20.09 54.20 82.80 95.40 

).LR 7.50 19.80 53.20 82.10 95.10 

J..LM 6.75 18.50 51.80 81.30 94.60 

1C 5.00 20.10 60.88 91.84 99.40 
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TABLE II 

SIMULATION RESULTS FOR DL(1 ,2) MODELS 

Criteria Parameters y 

n '¥1 p 0 .5 1.5 2.0 

Aw 20 -.5 -.8 10.10 10.70 11.60 14.00 21.40 

Ao 10.50 11 .30 12.60 14.50 22.20 

ALA 8.70 10.20 10.90 12.20 19.60 

ALM 7.15 7.90 8.70 10.50 17.20 

Aw 40 -.5 o-.8 6.80 8.50 10.50 12.90 16.40 

Ao 6.85 8.40 10.70 12.50 16.30 

ALA 6.45 7.60 10.20 12.00 15.20 

ALM 5.70 7.00 9.00 10.90 14.70 

Aw 60 -.5 -.8 6.85 7.30 8.90 12.00 17.50 

Ao 6.90 7.50 9.10 12.40 17.50 

ALA 6.35 7.10 8.60 11.50 17.00 

ALM 6.05 6.50 7.90 10.90 16.50 

7t 5.00 5.58 7.35 10.37 14.69 
------------------------------------------------------------------------

Aw 20 -.5 -.2 7.55 10.20 16.00 25.30 36.60 

Ao 8.90 11.60 18.80 28.60 40.60 

ALA 7.40 10.10 16.60 25.60 36.80 

ALM 5.90 8.70 13.30 22.70 33.30 

Aw 40 -.5 -.2 5.45 8.30 15.30 23.80 39.40 

AD 5.80 9.10 16.40 25.90 40.60 

ALA 5.50 8.20 15.20 24.80 39.30 

ALM 5.20 7.40 14.30 23.50 37.80 

Aw 60 -.5 -.2 5.55 7.60 13.90 24.70 39.40 

AD 6.10 7.90 14.80 26.00 40.70 

ALA 5.65 7.70 14.10 24.60 39.30 

ALM 5.10 7.50 13.50 23.70 38.10 

7t 5.00 7.00 13.21 23.84 38.29 
------------------------------------------------------------------------
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TABLE II (Continued) 

'Aw 20 -.5 .2 7.00 11 .00 21.70 38.10 59.70 

"o 9.10 14.80 26.60 44.60 64.50 

ALA 7.50 11.90 23.60 41.30 61.50 

ALM 5.70 10.30 19.70 37.80 58.30 

Aw 40 -.5 .2 5.45 9. 70 21.60 41.10 63.30 

Ao 6.40 11 .90 24.10 45.20 67.50 

'ALA 5.95 10.70 23.10 43.10 65.70 

ALM 5.25 9.50 21.60 41.20 63.60 

Aw 60 -.5 .2 5.55 8.80 22.20 44.30 64.80 

Ao 6.25 10.20 23.90 46.90 67.30 

ALA 5.75 9.30 23.30 45.90 65.60 

ALM 5.65 8.60 22.20 44.20 64.40 

1t 5.00 9.18 22.31 43.39 66.68 
------------------------------------------------------------------------

Aw 20 -.5 .8 9.95 20.90 50.80 72.90 85.60 

Ao 12.15 25.30 52.10 73.70 84.30 

ALA 10.25 23.10 49.60 70.20 82.90 

ALM 8.40 20.30 45.60 66.40 80.30 

Aw 40 -.5 .8 7.35 20.50 50.10 77.80 92.40 

Ao 8.15 23.90 52.80 78.70 92.10 

ALR 7.75 22.30 50.70 77.10 91.60 

ALM 6.90 21.20 48.70 75.70 90.90 

Aw 60 -.5 .8 6.85 21.60 53.40 83.00 92.80 

Ao 8.00 23.80 55.40 83.80 92.70 

ALR 7.85 22.70 53.90 83.30 92.10 

'ALM 6.90 21.60 53.40 81.80 91.90 

lt 5.00 19.62 59.53 91.02 99.27 
------------------------------------------------------------------------
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TABLE II (Continued) 

"w 20 .5 -.8 9.95 10.70 11.00 15.90 20.90 

"-o 10.25 11 .40 11.20 16.70 21.30 

"-LR 8.75 9.90 9.00 14.80 19.30 

"-LM 7.65 7.90 7.40 12.20 16.60 

"-w 40 .5 -.8 7.70 8.50 10.50 13.80 18.10 

"-o 7.80 8.50 10.50 13.50 18.60 

"-LR 7.20 7.70 9.40 13.00 17.50 

"-LM 6.60 7.00 8.90 12.40 16.50 

"-w 60 .5 -.8 6.35 7.00 8.50 12.30 17.50 

"-o 6.45 6.90 8.80 12.60 18.00 

"-LR 6.00 6.50 8.10 12.00 17.20 

"-LM 5.60 6.30 7.40 11.20 16.80 

1t 5.00 5.58 7.35 10.37 14.69 
------------------------------------------------------------------------

"-w 20 .5 -.2 8.15 8.80 15.50 25.30 40.00 

"-o 9.80 10.50 18.70 27.70 43.30 

"-LR 8.40 9.10 16.20 25.80 40.20 

"-LM 6.70 7.20 14.60 22.70 37.00 

"-w 40 .5 -.2 5.80 8.80 12.60 21.90 37.30 

"-o 6.05 9.10 13.50 23.40 39.80 

"-LR 5.90 8.50 12.60 21.70 37.30 

"-LM 5.20 8.30 12.00 20.50 35.30 

"-w 60 .5 -.2 5.60 8.60 9 20 22.70 37.30 

"-o 5.90 9.00 9.10 23.50 38.00 

"-LR 5.45 8.70 8.80 22.90 37.50 

A.LM 5.30 8.50 8.30 22.20 36.30 

1t 5.00 7.00 13.21 23.84 38.29 
------------------------------------------------------------------------
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TABLE II (Continued) 

'-w 20 .5 .2 6.60 12.90 20.90 38.10 61.10 

'-o 9.05 15.70 26.60 44.50 65.90 

'-LR 7.20 14.10 24.20 40.70 63.50 

'-LM 5.75 12.40 20.20 37.40 60.00 

'-w 40 .5 .2 5.85 9.80 23.80 39.30 62.80 

'-o 6.70 11.00 26.90 44.40 66.80 

'-LR 6.00 10.50 25.40 41.40 65.00 

'-LM 5.35 9.30 23.90 39.30 63.20 

'-w 60 .5 .2 5.60 10.80 23.40 45.50 60.30 

'-o 6.20 11.50 25.10 47.50 62.40 

'-LR 5.80 11.10 24.50 46.70 61.80 

'-LM 5.50 10.90 23.70 45.60 60.60 

1t 5.00 9.18 22.31 43.39 66.68 
------------------------------------------------------------------------

'-w 20 .5 .8 10.35 20.90 47.60 71.30 84.70 

'-o 12.35 23.70 51.60 71.80 83.30 

'-LR 10.90 22.00 47.20 69.20 81.40 

'-LM 9.10 18.60 43.10 66.90 78.20 

'-w 40 .5 .8 7.30 19.50 52.20 78.10 91.80 

'-o 8.50 21.90 54.50 78.60 91.70 

'-LR 7.35 20.20 52.60 77.00 91.20 

'-LM 6.55 19.00 50.20 75.70 90.10 

'-w 60 .5 .8 6.00 16.70 53.70 82.10 94.10 

'-o 6.90 18.60 55.10 82.30 93.70 

'-LR 6.50 17.80 53.50 81.70 93.20 

'-LM 6.05 16.70 52.70 80.80 92.70 

1t 5.00 19.62 59.53 91.02 99.27 
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TABLE Ill 

SIMULATION RESULTS FOR DL(2,1) MODELS 

Criteria Parameters 'Y 

n e1 p 0 .5 1.5 2.0 

'),-w 20 -.5 -.8 1.85 2.00 1.30 1.40 .90 

"-o 12.55 14.80 20.60 24.90 27.50 

ALR 10.30 13.00 18.00 22.00 25.70 

ALM 8.50 11 .80 15.50 18.90 22.90 

"-w 40 -.5 -.8 1.70 1.30 .90 .60 .80 

"-o 7.75 11.70 16.00 21.90 28.60 

"-LR 7.05 10.80 14.50 20.90 27.20 

"-LM 6.45 9.60 13.40 19.60 25.60 

"-w 60 -.5 -.8 1.60 1.80 .70 .80 .60 

"-o 6.65 11 .20 15.60 22.20 29.30 

ALR 6.45 10.50 14.40 21.10 28.10 

ALM 6.05 10.20 13.60 21.10 27.40 

7t 5.00 9.88 25.18 48.97 73.19 
------------------------------------------------------------------------

"-w 20 -.5 -.2 7.55 17.80 29.40 44.00 54.70 

AD 12.05 20.70 31.50 44.50 55.80 

"-LR 10.25 18.30 28.80 41.50 51.60 

ALM 8.25 15.30 25.10 38.10 48.60 

"-w 40 -.5 -.2 5.40 15.10 27.80 43.10 56.60 

AD 6.75 16.40 29.60 45.20 58.00 

"-LR 6.30 15.20 28.00 43.60 56.40 

"-LM 5.60 13.90 25.30 41.50 54.40 

"-w 60 -.5 -.2 5.60 14.50 28.70 44.40 60.00 

"-o 6.70 16.30 29.80 46.40 61.20 

"-LR 6.20 15.40 28.90 45.20 60.10 

"-LM 6.10 14.40 27.90 44.20 58.90 

7t 5.00 12.11 34.10 64.23 87.27 
------------------------------------------------------------------------
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TABLE Ill (Continued) 

'w 20 -.5 .2 9.20 17.60 33.10 43.80 58.90 

"o 10.10 17.50 32.60 44.10 60.10 

/.LR 8.05 15.50 29.30 39.80 56.60 

/.LM 6.85 13.30 27.30 35.30 51.80 

"w 40 -.5 .2 6.55 15.90 30.60 49.00 65.10 

"o 6.45 15.90 29.00 47.40 63.30 

/.LR 5.70 14.70 27.80 45.90 61.80 

/.LM 5.30 13.00 26.60 43.80 60.00 

"w 60 -.5 .2 6.15 12.90 30.40 49.30 67.40 

"o 5.75 12.60 25.50 48.10 65.30 

/.LR 5.30 11.90 28.50 47.30 64.40 

/.LM 4.90 11 .40 27.00 46.10 63.40 

lt 5.00 10.69 28.48 54.99 79.40 
------------------------------------------------------------------------

"w 20 -.5 .8 9.00 15.00 28.70 38.70 46.00 

"o 10.65 18.30 37.00 50.40 64.40 

/.LR 9.25 16.10 34.20 47.40 59.60 

/.LM 7.75 14.00 29.40 42.20 55.90 

"w 40 -.5 .8 8.30 17.00 33.10 48.50 63.90 

"o 8.35 19.60 37.50 56.90 71.50 

/.LR 7.60 18.50 35.80 55.10 69.70 

/.LM 6.65 17.30 34.00 53.00 68.20 

"w 60 -.5 .8 6.55 15.00 34.10 52.10 72.30 

"o 6.45 16.30 36.50 57.70 75.70 

/.LR 6.10 15.50 34.60 55.70 74.70 

/.LM 5.65 14.80 33.70 54.20 74.00 

lt 5.00 13.11 37.93 69.78 91.06 
------------------------------------------------------------------------
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TABLE Ill (Continued) 

Aw 20 -.5 -.8 12.75 10.60 8.00 5.40 5.20 

Ao 9.95 11.1 0 11.80 15.00 19.10 

ALA 8.90 9.30 10.30 13.30 17.30 

ALM 7.40 7.50 8.80 11.00 15.20 

Aw 40 -.5 -8 10.20 5.70 6.10 3.10 2.70 

Ao 7.05 8.80 9.50 12.70 14.10 

ALR 6.75 7.60 8.90 11 .60 13.30 

ALM 5.90 7.10 7.90 10.30 12.40 

Aw 60 -.5 -.8 9.05 7.90 3.80 3.40 3.20 

Ao 6.60 8.00 9.50 10.70 15.00 

ALA 6.10 7.40 9.00 10.40 14.30 

ALM 5.65 7.40 8.30 9.80 13.70 

7t 5.00 5.04 6.62 8.69 11.64 
------------------------------------------------------------------------

Aw 20 .5 -.2 5.70 2.50 2.10 1.80 1.70 

Ao 10.70 14.40 18.00 26.40 29.30 

ALA 9.20 12.60 16.10 23.70 27.40 

ALM 7.25 10.10 14.00 20.90 24.10 

Aw 40 .5 -2 5.65 3.30 1.00 1.50 .70 

Ao 6.30 10.60 13.70 23.50 27.90 

ALA 5.50 10.00 13.10 22.50 25.50 

ALM 4.75 9.20 11.80 21.00 24.20 

Aw 60 .5 -.2 5.15 3.00 1.70 .50 1.10 

Ao 5.95 9.50 13.80 21.60 27.90 

'-LA 5.30 8.90 13.30 20.50 26.40 

ALM 5.10 8.50 13.00 19.70 25.60 

7t 5.00 6.90 12.80 22.92 36.77 
------------------------------------------------------------------------
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TABLE Ill (Continued) 

A.w 20 .5 .2 3.30 1.90 2.20 1.80 2.20 

A.o 10.85 18.80 27.50 36.20 46.10 

A.LR 9.35 16.40 24.90 33.20 43.60 

A.LM 7.60 14.70 21.90 29.50 39.60 

'Aw 40 .5 2 3.45 1. 70 1.20 .70 2.10 

'Ao 7.10 14.80 26.30 36.70 48.40 

A.LR 6.50 13.50 25.10 34.50 47.70 

A.LM 5.75 12.10 23.80 32.40 45.50 

'Aw 60 .5 .2 3.15 1.1 0 1.20 1.80 4.20 

A.o 6.85 13.60 23.20 34.40 53.50 

A.LR 6.20 13.10 22.40 33.30 52.00 

ALM 5.95 12.30 21.60 32.10 50.90 

1t 5.00 11 .91 33.31 63.00 86.34 
------------------------------------------------------------------------

A.w 20 .5 .8 4.90 29.50 36.40 40.60 44.70 

'Ao 10.70 45.90 67.40 79.40 85.20 

A.LR 8.95 42.40 64.70 77.40 83.70 

A.LM 7.40 38.70 61.90 74.60 81.60 

'Aw 40 .5 .8 5.05 35.60 56.00 73.50 81.70 

A.o 7.85 44.60 74.20 91.20 95.50 

A.LR 7.25 43.50 72.70 90.40 95.30 

A.LM 6.35 41.80 71.00 89.70 94.60 

A.w 60 .5 .8 4.60 43.20 75.20 87.80 93.60 

A.o 5.90 49.50 83.10 94.30 97.90 

A.LR 5.60 48.00 82.60 94.10 97.80 

A.LM 5.05 46.90 81.70 93.80 97.60 

1t 5.00 60.92 99.40 99.99 99.99 
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TABLE IV 

SIMULATION RESULTS FOR DL(2,1) MODELS 

Criteria Parameters y 

n 81 p 0 .5 1.5 2.0 

'w 20 .5 .2 3.30 1.90 2.20 1.80 2.20 

"o 10.85 18.80 27.50 36.20 46.10 

ALR 9.35 16.40 24.90 33.20 43.60 

I..LM 7.60 14.70 21.90 29.50 39.60 

"'w 40 .5 .2 3.45 1.70 1.20 .70 2.10 

"'o 7.10 14.80 26.30 36.70 48.40 

ALR 6.50 13.50 25.10 34.50 47.70 

ALM 5.75 12.10 23.80 32.40 45.50 

"'w 60 .5 .2 3.15 1.1 0 1.20 1.80 4.20 

"o 6.85 13.60 23.20 34.40 53.50 

ALR 6.20 13.10 22.40 33.30 52.00 

I..LM 5.95 12.30 21.60 32.10 50.90 

"'w 125 .5 .2 4.00 2.50 5.80 9.40 19.10 

"'o 6.40 11 80 25.70 36.60 55.30 

I..LR 6.30 11.30 25.30 36.00 54.90 

ALM 6.20 10.90 24.90 35.50 54.30 

"'w 250 .5 .2 4.00 4.60 10.60 23.00 39.50 

"'o 5.20 13.70 27.70 45.00 62.50 

ALR 5.20 13.60 27.30 44.20 62.10 

I..LM 5.10 13.40 27.20 43.60 61.70 

l..w 500 .5 .2 5.30 6.50 16.70 33.70 49.90 

"o 6.40 11 .70 25.40 46.90 63.80 

I..LR 6.30 11.60 25.30 46.30 63.70 

I..LM 6.10 11.40 25.20 46.20 63.70 

"'w 1000 .5 .2 5.40 7.60 20.40 42.00 61.10 

"'o 5.90 11.30 27.60 49.10 69.50 

I..LR 5.80 11.20 27.60 49.10 69.50 

ALM 5.70 11 .1 0 27.60 49.00 69.50 

1t 5.00 11 .91 33.31 63.00 86.34 
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Appendix I 

Kronecker Products and Matrix Vectorization 

Kronecker Products 

Let A be an mxn and let B be pxq, then the "Kronecker product" of A and B, 

denoted as AEBB, is defined as the mpxnq marix: 

~allB a12ll alnB l a21ll a22ll a2nll 

A"'B =l: 
J amlll a B amnn m2 

1 Theorem: (AEBB) (CiffiD) = (ACEBBD) if A is conformable with C and if B is 

conformable with D. 

2 Theorem: (AEBB)' = A'iffiB'. 

3 Theorem: If A and B are invertible marices of orders m and n, then 

(AiffiBf 1 =A -1iffiB- 1. 

4 Theorem: Let A and B be square matrices of orders m and n. Let the eigenvalues of 

A be denoted by Ai for i = 1,2,,m, and denote the eigenvalues of B by Jlj for j = 

1,2,,n, then the eigenvalues of Aiffill are: 

Ai)lj; i = 1,2,,m; j = 1,2,,n 

4.1 Corollary: det (AiffiB) = det (A)ndet(B)m. 

4.2 Corollary: tr (AiffiB) = tr (A)tr(B). 

5 Theorem: Let A and B be square mances. Let a i be an eigenvector of A 

corresponding to the eigenvalue Ai and let bj be an eigenvector of B with eigenvalue 

)l·, then a.iffib. is an eigenvector of AiffiB with corresponding eigenvalue A·)l·. 
J I J 1 J 
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Matrix Vectorization 

Let A be an mxn marix, and let the jth column of A be denoted as aj. The 

"vectorized" form of A, denoted as vec(A), is defined as: 

6 Theorem: Let A be mxn, and let B be nxp, then: 

vee (AB) = (lp(BA)vec(B) = (B' (Blm)vec (A) 

where Ip denotes the identity matrix of order p. 

7 Theorem: Let A be conformable with B, and let B be conformable with C, then vee 

(ABC)= (C'(BA)vec(B). 

8 Theorem: Let A be nxm and let B be mxn, then: 

vec(B')'vec(A) = tr(AB) = vec(A')'vec(B) 
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Appendix II 

Matrix Triangularization 

It can be shown that if A is a symmetric positive definite matrix, then there 

exists a triangular matrix T such that A = T'T. In this appendix, we show how to 

construct T. 

Let tij = 0 for i < j. Let aij denote the (i,j) element of A, since A = T'T, then: 

a··= 1 1 t t 
lJ k=l ki kj 

Hence: 

which implies: 

t .. =(a .. -1 t 2 )l/l 
11 11 k<i ki 

Moreover, ( 1) implies: 

One can solve the last two equations recursively, beginning with (i,j) 

proceeding row by row through the remainder of the marix. 

(1) 

(1, 1 ), then 
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