
AN AB INITIO PI ELECTRON 

HAMILTONIAN 

By 

EDWARD GREEN BRADFORD ,, 
Bachelor of Science 

Seattle University 

Seattle, Washington 

1970 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 

DOCTOR OF PHILOSOPHY 
May, 1976 



T~ 
I ?7!P D 
'8 7ffjl)­
~;~ 

• , I 

.• t 

1( .. 1" ,• -· ' 

... ·"'1 

'' ' 
, .... 

.. ' 

- .{ r '. ... i. 



AN AB INITIO PI ELECTRON 

HAMILTONIAN 

Thesis Approved: 

964112 
ii 



PREFACE 

In this thesis, the canonical transformation approach to quantum 

chemistry is developed. The pi electron hamiltonian for the ethylene 

molecule is derived from first principles. The hamiltonian is diag­

onalized on the valence space and the electronic excitation energies 

are calculated. We compare our results with experiment and other · 

ab initio calculations. These calculations are only preliminary 

applications of the canonical transformation technique which promises 

to be useful for molecular calculations. 

I would like to express my appreciation and gratitude to my 

friend and adviser, Dr. Paul Westhaus, whose patience and guidance 

throughout the course of this work have been rewarding and fulfilling. 

I also would like to acknowledge the financial support of the Physics 

Department in the form of a teaching assistantship and the Oklahoma 

State University Research Foundation and the National Institute of 

Health for research assistantships. I would like to thank Mr. Max M. 

McKee for teaching me about computers. I also want to thank Mrs. 

Debbie Williams for her excellent work in typing this thesis. Finally, 

I want to express my gratitude to my wife whose patient love through 

the final year of this work has been indispensible. 

iii 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION 

II. THE EFFECTIVE HAMILTONIAN. • 

Cluster Expansion ofJfeff • • • • • 
Effective Hamiltonian Operators 
Valence Shell Hamiltonian • 

III. PI ELECTRON HAMILTONIAN ••• 

IV. PROGRAMMING CONSIDERATIONS • 

V. THE ETHYLENE MOLECULE. • • 

SCF Calculations •••• 
The Canonical Transformation. • 
Configuration Interaction • 

VI. DISCUSSION AND CONCLUSIONS •• 

Conclusions • • • • • • 

. . . . . . . 

APPENDIX A - REDUCTION OF THREE-BODY MATRIX ELEMENTS. 

APPENDIX B - CORRECTIONS TO TWO-BODY MATRIX ELEMENTS. 

iv 

Page 

1 

13 

32 
42 
51 

59 

65 

73 

81 
82 
89 

93 

102 

109 

114 



LIST OF TABLES 

Table Page 

I. Energies of Excited States Relative to Ground State 
(Schullman, Moskowitz, and Hollister). 75 

II. Ethylene Excitation Energies by Buenker, et al 
(Energies in eV) • • • • • • • • • • • • • • • • • • 77 

III. Ethylene Excitation Energies by Del Bene, et al 
(Energies in eV) • • . . • • • • • . . • • • 78 

IV. Table of Three Basis Sets Used in This Thesis. • 83 

v. SCF Results (lAu = 27.2116eV). 

VI. Excitation Energies with Pi E~ectron Approximation, 
Without Two-Body Terms in Denominators, and With 

84 

Two-Body Terms in Denominators (Energies in eV). • 91 

VII. Two Body One-and Two-Center Matrix Elements. • • • • 100 

VIII. Configuration Interaction Results (Energies in eV) • 103 

v 



LIST OF FIGURES 

Figure 

Block Diagonal Form Sought for the Matrix of ?feff 
on N-electr~ Model Space ~Nand Its Orthogonal 
Complement ~N· Hatch Marks Indicate Nonvanishing 
Matrix Elemen~s. . . . . . . . . . . . . . ~ . . . . 

Page 

. . . 19 

2. Partial Block Diagonalization of ~eff Accomplished by 
Imposition of Conditions (1) and (2). Without Further 
Conditions ·The~ Remains a!:_ fnteraction Between c:T N and 
a Subspace o~ ~N' namely ~N· • . • • • • • • • . • • • • 24 

3· Final Structure of ~eff Obtained by Satisfying 
Conditions (1), (2), and (3) • • • • • • . • • 26 

4. Explicit Form Required of the Matrix Elements of ~1) 
to Satisfy Conditions (1), (2), and (3). "C" Denotes 
Core Orbitals, "V" Denotes Valence Orbitals, and "e" 
Denotes Excited Orbitals. The "e" Space is in Prin­
ciple Infinite. The Hatching in This.and Subsequent 
Figures Denote Nonvanishing Matrix Elements. . • . . • 29 

5· Explicit Form of Matrix Elements of ~(12) in Order That 
Conditions (1), (2), and (3) be Fulfilled. (cc), (ev), 
etc. Represent the Spaces Spanned by All Antisymmetrized 
Products of Two Spin Orbitals of the Type Denoted. . • . . 30 

6. 

7· 

8. 

9· 

Explicit Form of Matrix Elements of ,.(l23) in Order 
Conditions (1), (2), and (3) be Fulfilled. (eve), 
Represent Antisymmetrized Products of Three Spin-
Orbitals. . . . . . . . . . . . . . . . . . . . . . 

Structure of wl2 on the Two-Particle Space . 
Structure of sl2 on the Two-Particle Space . . . 
Energy Levels of SCF Orbitals. . . . . . . . 

That 
etc. 

. . 

10. Diagram of the N~T Transition Energies Using the Various 

. . 

31 

47 

48 

87 

Approximations and Results of Other Workers. . • • . • 104 

11. Diagram of the N~V Transition Energies Using the Various 
·Approximations and Results of Other Workers. • . • . • 105 

vi 



CHAPTER I 

INTRODUCTION 

This work attempts to transform a many-body problem into a fewer 

body problem explicitly and legally (~anonically). To be more specific 

we are applying the ide~s of the canonical transformation1 to the 

problem of calculating electronic excitation spectra of large 

molecules. Ethylene is the molecule under consideration here but 

larger molecules are included in our plans for future study. 

In considering large molecules, the spectrum of the molecular -electronic hamiltonian ('iii tli nuclei fixed at Rll( , II(. = 1, • • • A), 

" N -'l. A "7. '1 e'2.. Pi ~ . - Lr~.. e 
H ( 1, ... N) = L {- + L \r.- R I + ~ \i' - r I 

j: 1 2.. m a("'\ 1 I <.j 1 j 

(I-la) 

plays a distinct role. The electronic eigenstates 

where 

are in principle, the starting point for considering the dynamic 

electromagnetic properties of the molecule. We will introduce a new 

approach based on an old idea for more accurately obtaining these 

stationary states. 

We will generally be considering the equivalent hamiltonian, 

1 



2 

(I-lb) 

which contains the single-particle potential \Tj • Note this potential 
.. 

has been both added and subtracted, so this H is identical to the 
" 

preceding H. In this work U;is a molecular Hartree-Fock potential, 

but any single-particle potential would be applicable. We further 

introduce notation for the pair potential (the two-body operator in 

I-la): 

u1 + u'Z. 
N-1 

Our attention will ultimately be focused on biological molecules 

involved in photoreception. These molecules usually are medium to 

large size containing more than fifty electrons. This size problem 

is intractable with rigorous quantum chemistry methods. To date there 

have been a few self-consistent-field calculations on large molecules 

and complexes, but none of these really approach the Hartree-Fock 

limit, much less account for electron correlation effects (for instance 

see Clementi 2 ). 

The usual way to tackle these problems is to abandon the rigorous 

quantum chemistry methods in favor of a semi-empirical approach.3 

Here the basic parameters of the theories are defined in terms of 

rigorous quantum mechanical concepts--most often the matrix elements 

of an effective hamiltonian over a finite dimensional subspace spanned 

by atomic valence orbitals. However, most of these matrix elements are 
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set equal to zero by invoking such approximations as zero-differential 

overlap, the remaining matrix elements (the non-vanishing parameters 

of the theory) being evaluated with the help of empirical data. Thus, 

arise the so-called "semi-empirical" theories such as those of 

Hiickel or Pariser, Parr, and Pople (PPP). 

Ruckel theory assumes that all of the two-body matrix elements 

can be eliminated by choosing a suitable U .• This choice reduces the 
J. 

hamiltonian to a sum of one-body operators 

" eff 
H 

Ruckel theory treats a reduced number of electrons (e.g., the valence 

h.eff 
electrons or the pi electrons) • Furthermore, matrix elements of , 

between atomic orbitals not on the same atom or neighboring atoms are 

set equal to zero. The remaining one-electron integrals are chosen 

to reproduce the experimental results (e.g. spectra) of some prototype 

molecule. Notwithstanding all the approximations used, Ruckel theory 

does produce valuable results. 

By not ignoring the two-electron integrals, a higher level of 

pi electron approximation is achieved. However, the enormous number 

of integrals required makes it convenient to invoke a zero-differential 

overlap (ZDO} scheme within the framework of the Pariser-Parr-Pople 

(PPP) method. In this and other similar schemes the "differential" 

overlap is set to zero: 



for all operators, CJ, and where ~ftV is the Kronecker delta symbol. 

The usefulness of this approximation is found when the two-electron 

4 

matrix elements are evaluated. If the ZDO scheme were not used, there 
4 . 

would be on the order of R integrals like 

1 

to calculate. Here R is the number of pi orbitals. However, with 

2 the ZDO approximation we are left with only R integrals like 

Other "Neglect of Differential Overlap" theories have been 

developed. 4,5,6,7,B However, in all of these theories introduction 

of empirical parameters is found to be necessary to make the theory 

conform with experimental results. 

As an example, if a non-empirical calculation of excitation 

energies is performed using Slater functions, the results are discour­

aging.9 Noting this, Pariser and Parr chose empirical values for 

some of the integrals and achieved results much closer to experimental 

10 values. The reasoning for choosing the semiempirical parameters 

follows. We consider two chemical reactions 

C C l ______,. c+ ........ c -+ T + ~ ,- e 

A 

Here I is the ionization potential and A is the electron affinity. 

Now if we write down the energetics of the above reactions, the 

energy of the first term equals the energy of the last term: 
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E. c. + E c. + l 
Now from a theoretically naive point of view we can write for the 

energy of a carbon atom 

L + E-n-L c.ore " 

where E is the energy of the five electron core, and E'IT is the core 

interaction energy between the core and pi electron. The energy of 

the carbon-plus ion is given by 

E = E • c+ · core 

The energy of the carbon-minus ion is given by 

= E + E + E1T I T E 'l'r' _, core l1" .... 

That is, the energy of the core plus the energies of the two pi 

electrons interacting with the core plus the energy of interaction 

between the two pi electrons equals the energy of the carbon-minus ion. 

If we assume E'IT = ETI'' the energy equation balances as follows: 

or 

I- A =r . t:...'n 1T 

E'IT'IT is the interaction energy of two pi electrons on the same carbon 

atom and is given by 

We have reasoned an experimental value for the theoretical 



quantity ( ~TI I TITI). 

I = 11.22eV and A 

. 11 
Considering actual numbers, Mulliken found 

0.69eV, hence 

I-A lO.S3eV 

6 

Using integrals evaluated in this empirical fashion, acceptable 

numbers result for excitation energies. However, the value of (nnlnn) 

using best atomic value Slater .functions is found to be 16.93eV. 

· These purely theoretical numbers lead to poor values for excitation 

energies. 

This discrepancy between experiment and theory is caused by 

the neglect of correlation effects, and the wrong choice of exponent 

for the Slater function. From the unitary transformation point of 

view either an effective (unitarily transformed) operator should be 

represented or a unitarily transformed basis set should represent the 

operator. Each statement is equivalent. The operator to be trans­

formed in this case is l/r12; the basis to be transformed is the 

antisymmetrized product of two atomic pi spin orbitals. The unitary 

transformation mixes the effects of the core and excited orbitals 

into the operator or basis, depending on the point of view. 

When a variational calculation of Z is performed on the carbon 

minus ion, a different value is obtained. Intuitively, it would 

seem more reasonable to use the Z from such a calculation than the 

best a tom values. In fact, when this Z. is used, the ( TITI I TITI) integral 

is reduced. 

The result of this discussion is that it seems the best 

calculations of excitation spectra of molecules are performed by using 

empirical data and guesswork as input parameters. When this is done 



properly, the results of molecular calculations are quite good. 

It appears that these semi-empirical theories will play an 

ever more important role in discussing biological molecules. 12 

Consequently, there have been many valuable efforts put forth in the 

past few years to place these semi-empirical theories on firmer foun-

7 

dations, and even predict the parameters for the effective hamiltonian 

on the valence orbital space. Of course, if this could really be 

carried through, the procedure would cease to be semi-empirical, and 

one could claim to have a firstprinciples calculation of the elec-

tronic states of a large molecule. The past and present programs to 

justify the semi-empirical procedure include work by Harris~3, 
. . •. 14 . 15 16 L1nderberg and Ohrn , Kvasn1cka , and Freed • 

·Harris' approach focuses on the sigma-pi separability and resulting 

effective pi electron hamiltonian arising from a unitary (canonical) 

transformation upon the Coulomb hamiltonian Eq. (I-1). Linderberg and 

Ohrn tackle the same problem with Green's functions. Kvasnicka 

generates a model hamiltonian in the framework of Rayleigh-Schrodinger 

perturbation theory. Recently, Freed has used the cluster decomposi­

tion of the wave function due to Sinanoglu and Silverstone17 to set up 

formally the matrix elements of an effective hamiltonian in the 

model space. 

We want to generate from first principles the valence shell 

hamiltonian and use it to determine the electronic excitation spectrum 

of ethylene. This valence hamiltonian is to operate in a finite 

dimentional N -particle subspace of Fock space. That is, we transform 
v 

the electronic hamiltonian not only from an infinite dimensional 

N-particle space to a finite dimensional N-particle space, but also 
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fr.om the finite dimensional N-particle space to a finite dimensional 

N -particle space (N =number of valence electrons). Consequently, 
v v 

the valence hamiltonian must have built into it the effects of the 

remaining N (N = N - N ) core electrons, as well as the correlation 
c c v 

effects ~mong the valence electrons. If we had explicitly considered 

the infinite dimensional N -particle space, these correlation effects 
v 

would be treated by configuration interaction (CI) involving virtual 

-excitations from valence to excited orbitals. However, since we only 

implicitly consider the excited orbitals, the correlation effects.must 
\ 

be "built-in" to the valence hamiltonian which operates in the finite 

subspace defined by all antisymmetrized products of valence orbitals. 

A CI calculation then yields the eig;envalues and eigenvectors or the 

effective hamiltonian on this subspace. 

In Chapter II we choose an N-electron model space and then use 

a unitary transformation18 to eliminate the interaction between this 

model space and its orthogonal complement. We set forth the conditions 

imposed on one-, two-, and three-body operators necessary to achieve 

a partitioning of the effective hamiltonian in N-electron space. 

These conditions along with certain restrictions on the core orbitals 

ultimately yield the valence shell hamiltonian. 

We then re-examine the unitary transformation in terms of a 

cluster expansion. The resulting reclassification of terms allows 

us to impose the partitioning conditions on the one-, two-, and three-

body operators. 

Finally we develop formulae for the valence shell hamiltonian 

which are constructed as averages over the matrix elements of the 

N-electron effective hamiltonian. These explicit formulae involve 



the one-, two-, and three-body matrix elements in terms of the core, 

valence, and excited orbitals. 

9 

The procedure introduced is general, but depends in a somewhat 

arbitrary fashion on the division of the complete set of orbitals into 

core, valence, and excited sets. However, once this division of one­

particle Hilbert space has been achieved, the remaining part of the 

formalism is well defined and complete. The ultimate result of the 

procedure is the construction_of a valence hamiltonian: 

i) operating on a truncated subspace defined by all anti­

symmetrized products of valence orbitals 

ii) yielding the low-lying electronic excitation spectrum 

of the molecule. 

When these points are achieved, the valence hamiltonian will have built 

into it both the effects of the core and the correlation effects of 

the excited orbitals. 

The method appears applicable to a wide range of problems 

whenever, on the basis of chemical intuition, a division of the one­

electron space into core, valence, and excited orbitals is possible. 

In Chapter III we use the formulae for the valence shell 

hamiltonian to generate an effective pi-electron hamiltonian for 

large planar conjugated molecules; so this discussion will be framed 

in the language of sigma and pi orbitals. In the sigma-pi problem 

certain matrix elements vanish by symmetry considerations beyond what 

we might hope for in the general case. The sigma-pi problem is of 

particular importance to our ultimate goal of understanding photo­

receptors. 

In Chapter IV we discuss the programming involved in performing 
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the canonical transformation. 

Chapter V contains a discussion of work on ethylene by other 

people and presents the numerical results of our work. The discussions 

center on the low-lying excited states of ethylene. 

Chapter VI contains a discussion of our results and conclusions 

drawn. Also, we have included suggestions for further work. 
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CHAPTER II 

THE EFFECTIVE HAMILTONIAN 

The calculation of the electronic states of large molecules begins 

by introducing a set of spin-orbitals ~1~2 ••• ~i •• In principle, 

we envision this orbital set to be complete, and thus infinite. In 

practice, however, we can only introduce a finite set of, say, M spin 

orbitals. We shall in general denote complete sets by braces {~.} 
J. 

and finite sets by brackets,[~.]. The orbitals~. are labeled by 
J. J. 

four indices 

c/>i 

That is, i stands collectively for four quantum numbers: y and p 

indicate that the orbital belongs to the pth row of the yth representa-

tion; ms = ±t labels the eigenvalues of Sz; and n differentiates 

among the occurences of the set (ypm ). If one solves some model s 

one-electron problem, then n can be chosen as the single-particle 

energy. 

In this Chapter we will brush aside the precise details of how 

the orbital basis{~.} is to be chosen. Suffice it to say that an 
J. 

elaborate Hartree-Fock calculation or perhaps simply a scattered 

wave computation using an approximate exchange potential might be done 

13 



14 

initially. Even more practically, we can envision introducting a set 

of atomic orbitals and orthonormalizing them by the Lowdin procedure. 

The intuitive physical model motivating our approach is that in 

the· independent particle picture the electrons may be divided into N c 

core electrons and N (=N-N ) valence electrons. Of course, we want to v c 

go beyond an independent-particle model of the system. Thus, on 

the basis of chemical intuition we will divide the one-electron space 

spanned by{~.} into three orthogonal subspaces: 
1 

• , 

and 

[e1 --
In terminology similar to other authors, there are M core orbitals c 

and M valence orbitals; the remaining orbitals outside the "orbital v 

sea" [c] U (v) are called excited orbitals. We will take M = N -­c c 

i.e., there is only one configuration of,the core orbitals--whereas 

in general, M > N • Strictly speaking, such a division of the basis v v 

into core, valence, and excited orbitals is arbitrary. However, 

chemical intuition usually opts in favor of one or two obvious choices. 

With the orbitals {~.}we construct the Slater determinants 
1 

with !£ :: k1 < k2 < • • • ~ being an ordered set of N spin-orbitals. 

Since the orbital basis {~.} is complete, the set of all Slater 
1 . 



determinants {fk} constructed from them is complete over the N 

electron space. In computations the orbitals will comprise a finite 

set from which a finite and thus necessarily incomplete set of 

Slater determinants can arise. In virtually all calculations only a 

15 

subset of this finite set of determinants is actually used, since the 

total number of N-electron Slater determinants able to be constructed 

from a total of M orbitals is astronomical even for the most reasonable 

choices of M. The selection of which determinants to include is the 

subject of many investigations and the starting point of many formal 

analyses of electronic correlation effects. 

In the approach to be pursued here we assume that there can be 

a chosen a' priori a set of Q N-electron determinants which, within 

a configuration interaction context, would emerge as the most signifi-

cant. Intuitively we expect that to compute the ground state and low-

lying excited states, all of the chosen determinants will have in 

common a set of N orbitals which, in fact, define the core. The 
c 

chosen determinants differ from one another in having different sets 

of N (=N-N ) valence orbitals which are selected from a total of v c 

M valence orbitals. Thus, there are v 

Q --

determinants in the chosen set and these span a Q dimensional N­

particle space designated ~N. The infinite-dimensional orthogonal 

complement JrN is spanned by the remaining N-particle Slater deter­

minants in which, if only orbitals from [c] U [v] are used, not all 

core orbitals are occupied, or in which, if all core orbitals are 
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occupied, at least one excited orbital appears. 

Now if the determinantal basis were complete-'-and for the sake or 

the formal development of the theory we now envision this to be the 

case--the set of Q determinants would have the largest coefficients 

in a CI calculation. However, there still are an "infinite ntlm.ber" of· 

other N-particle determinants which would have to be considered in a. 

complete CI calculation. These additional determinants which are 

characterized more fully below span the orthogonal complement to JrN' 

denoted JN· 
We seek an effective hamiltonian )f which does not mix any state 

in '7 N with those in 7 N" Thus, the effective hamiltonian can be 

diagonalized on JrN and JrN separately, and since ~N is Q dimensional, 

the problem of finding Q exact eigenvalues becomes a matrix diagonali-

zation problem. Of course, the difficulty now is explicitly con-

structing the effective hamiltonian which is partitioned in this way. 

Assuming we can accom~lish t~is, we want to go further and define 

an operator acting in the space of valence orbitals and having the 

same eigenspectrum on this space as does the N-particle effective 

hamiltonian on :rN (to within an additive constant). This will be 

possible for the following reason: all basis functions needed .to 

span :rN have a common set of core orbitals and differ from one 

another only in their valence orbital occupation. Consequently, 

matrix elements of the effective hamiltonian on JN need be labeled 

explicitly only by the bra and ket valence orbitals. That is, we 

define the valence shell hamiltonian b.1 a one to one correspondence 

of its matrix elements with those of ?f on JrN. There is, of course, 

an actual dependence of these matrix elements on the core orbitals 
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chosen, and consequently a parameterization of the effective valence 

shell hamiltonian by the core orbitals. 

Considering the first part of the partitioning problem, we know 

in principle the effective hamiltonian in the N-particle space is 

obtained by a unitary (canonical) transformation on the basic elec-

tronic operators of the Schrodinger picture. Thus, we seek to 

S ~eff determine such that the transformed operator /T , diagonalized 

on the space :rN' where 

-\5 
e \-\ e •s (II-1) 

will yield the exact ground state and low-lying excited states, of the 

system. 

We contend that if 

is to be a Q x Q matrix which yields Q exact eigenvalues of ?feff 

(and thus of H) by diagonalizing on ~N' then with lx> any vector 

in JrN we require 

When we introduce a basis which spans JrN' say lxi> (note the basis 

lx.> is infinite though not complete in Hilbert space since it is 
~ 

missing the set of vectors L~i1) we can restate the preceding equations: 
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We emphasize that these conditions are among N-particle vectors. The 

matrix representation of ?feff on the full N-electron Hilbert space 

spanned by 

is schematically shown in Figure 1. We now note that we have not 
-i .s 

determined .5 (from the e term) uniquely. Indeed, it is obvious 

that given L1i1 there are many unitarily equivalent jteff,s which 

will be of the form shown. 

We then can attack the second part of the problem: replacing the 

effective hamiltonian by one which involves only a subset, N , of 
v 

particles. We want an N -particle hamiltonian whose eigenvalues are v 

identical to those of H (to within an additive constant which deter-

mines the zero of energy). The possibility of accomplishing this 

follows from our requirement that all the N-particle wave functions 

in JN contain a specific subset of [¢i) called a "core. 11 We will 

require the core to be "closed shell;" that is, for each occurance 

~of a given representation y all rows and both spin states Ms = ±t 

appear in the configuration. We have called M the number of core 
c 

orbitals. Note.the number of core orbitals equals the number of 

core electrons (i.e., a single configuration for the core electrons). 

The representation of the effective hamiltonian in the space :rN 

is 



-v; 

Figure 1. 
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0 

0 

Block Diagonal lorm Sought for.the·Matrix of Heff on 
N-electron Model Space ':( N and Its Orthogonal 
Complement ~N· Hatch Marks Indicate Nonvanishing 
Matrix Elements 



where in labeling the matrix elements we have dropped explicit 

reference to the core orbitals. This can be done because all wave 

functions in JN have the same set of core orbitals. We define the 
uv 

valence shell hamiltonian ~ by the requirement that to within a 

constant times the identity its matrix elements obey 

We now examine the JIN space in more detail~ There are two 

classes of N particle wave functions in JIN: those which are con­

structed only from orbitals in \_ c] \j ~ v 1 but with one or more core 

orbitals unoccupied, and those with at least one orbital outside 
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[ c] U L v]. Hence, we divide J N into J' N and "J'"N corresponding to 

the two classes of N particle wave functions. To facilitate this 

examination, we will use the language of second quantization. We 

begin by expanding the field operators in terms of the orbital creation 

and destruction operators 

ycx)= L cJ>,()(.) a, +L:ct>it~)a.i L " + cp.t~) ~· I I 

i E [cl i E:(v 1 iE:[e) 

"" A 

1/l(x) 1f'C~) "" + + 1fe~~ifed core valence 



Subsequently, we will show that 

can be written 

/leH 

--

--

-'s \-\ ~s e . e 

where ?f(n) is a sum of "linked" ri particle terms: 

/((n) 

In the language of second quantization this becomes: 

'\ ... < )(; ... X· .. I If ( I . ~ '· \1) \ 't. I .•. X Y\ > l (x ,) • • . i~ n) 
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(II-2a) 

(II-2b) 

= L -L <'A, ... "An\)((\. .. '0) \P.,···JJ.n)~>. .. ···~>-,~p.,···ap.,. 
>-,(, ... <'A" }A,<. ... f-..,. 

Thus, in second quantized form: 

?{eH = L. ('>-., \?{(1)\IJ.,') .;">-, o.,., 
'A,~. 

T I. 2:.. (>..,">..,_ \, (IL) \ ~.q.t,) a,\, c.\, o.f!,al", 
A />-.1. fA I(. ~ 'L. 



+ ... 

The basis states I Jl1 • • • Jln > are normalized, antisymmetrized 

n-particle vectors: 

(x , ... "' ~ \ M. · · · 1--t .. ) 
I 

- jn~ 

c~>,...sx,) 

¢~·()C.~.) 
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In the set A1<A2< ••• An or ].11<· ].12< ••• Jln an orbital index may 

in general stand for either a core, valence, or an excited orbital. 

A general orbital label A may be subscripted with c, v, or e denoting 

a core, valence, or excited orbital, respectively. 

We now make some remarks about the coefficients, 

<Al • An I 'Jf (1. . .n) I Jll • • .j.l > in the second quantized 
n 

expansion of ?f(n): 

"l") --
'A,.(). .. " •.• < ).. .. 



From the N-particle condition on the effective hamiltonian 

we can reduce the necessary conditions the coefficients, 

• .lJ >: 
n 
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(II-2c) 

1) if one or more A i E: l e 1 .!Yl!1 one or more J.l i E: (e) , then our 

unitary transformation imposes no restrictions on the matrix 

element. 

2) if one or more AiE:(e] ~~of the ]Ji£Le) then by choice 

of 5 the matrix elep1ent <A1 . • .Ani~ (1. • .n) IJJ1 . • ·J.ln> 

must be forced to vanish. Similarly if ~ of the A.£ [e] 
~ 

and one or more ]Ji £ [ e] then we must require that S be such 

that the matrix element <A1 ... >..nl ?f(l ••• n)IJJ1 . • ·J.ln> = 0. 

In themselves conditions 1) and 2) will insure ~eff is of the ;orm 

shown in Figure 2. 

The conditions on ')/n) will make blocks [~, ~''1and L~'', J; 1 
vanish as required, but they ·also force blocks [':7;', ~"1 and (J;.,", ~'] 
to vanish. This latter consequence does not gain anything for us; 

but, of course, we do not destroy the intended structure of jVeff 

either. It appears that we could eliminate this superfluous result 

(namely [:&', 'J;"] vanishes) at the expense of making the conditions 

on the matrix elements dependent on the configuration of the remaining 



_, 
~ 

"T.' 

Figure 2. 

_, 
~ 

_, 
?;; 

Partial Block Diagonalization of Heff Accomplished 
by Imposition of Conditions (1) and (2). Without 
Further Conditions There Remains an Interaction 
Between "'] N and a Subspace of' :r N, Namely d" N 



N-n particles. Indeed, such conditions do appear in the formulation 

due to Freed. 9 These conditions would imply that the transformed 

hamiltonian cannot be written as the sum of one-, two-, three-, etc. 

body operators, that each term is really an N-electron operator. 

These compl~cations are eliminated if we accept the vanishing of the 

l :f./ , J: "1 and L :JN '', "J:' J blocks. 
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However, we still must make blocks [J: , J:,'} and t:J:.', Jw J 
vanish in order to meet fully the N-particle condition imposed on the 

effective hamiltonian. We impose a third restriction on the para-

meters (though more stringent than necessary it clearly achieves 

the intended result). 

3) matrix elements off-diagonal in the core orbital indices 

·vanish. 

In other words, if a certain subset·of core orbitals appears in 

(.A1.A2 ••• .Ani-- that same subset must appear in !111112 •• ·11n> or the 

matrix element must be made to vanish. Conditions 1), 2), and 3) 

imply the structure of the N-particle effective hamiltonian shown 

in Figure 3· 

Recall we are interested in the [:fN,~] block which, if all 

conditions on the matrix elements are satisfied, can be diagonalized 

to yield Q exact eigenvalues of the many-body system. We noted 

previously that the matrix elements on [~, ~] need be labeled 

only by valence orbitals (since each N-partic1e basis function in JN 
contains the same set of core orbitals). Hence, in constructing 

JHl v from -'feff we need consider only that subset of terms in 

Eq. II-2 which connect~ and cp both in ';TN. Also, we can replace 
m n 

a~~' in all operators by unity (the occupation number of each 
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_, 
7,; 

_, 
~ 

0 0 

-I 

7. 0 0 

0 0 
Figure 3· Final Structure of Heff Obtained by Satisfying Conditions 

_(1), (2), and (3) 
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core orbital in any state in :fN). 

We are now in a position to state the most important result of 

this work. To within a constant the matrix elements of ~eff between 

N-electron basis vectors spanning ~ N will be the same as the matrix 

elements of the valence hamiltonian (for i,jE[v]) 

on the Q dimensional valence space spanned by 

are defined as follows: ~. i,.j 1j1. € [ v]) 

H.~~ = ( i \ /{ ( 1) \ j) + L <c. i I Jt ( 11.) \ cj l + L ( c c • i \ 'II (It;) \c c · j) + · - .. 
C. C<.c:' 

(II-4a) 

(II-4b) 

c. 
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and in general 

(II-4c) 

In the expression for l\v the indices i 1i 2 • • • j 1 j 2 • • 

to valence orbitals (all ~k for kE\_v]); in the definition of 

~~v~ r 1 
[1 the sums are over all core orbitals, Lc • 

i •... i .. j,···jl\ 

• refer 

is an operator in the space of antisymmetrized products of N valence 
v 

orbitals and by explicit construction takes into account the effects 

of the core orbitals and the valence shell correlation effects. 

The problem now turns to computing the (">.1 ·">n\ ")f (1. .• :n) 

~1 .• -~)parameters to fulfill conditions 1), 2), and 3) by an 

appropriate choice of S . According to these conditions the one-, 

two-, and three-body matrices of ~eff must have the structures shown 

in Figure 4, 5, and 6. For instance, in Figure 5 the label (cv) 

denotes the space spanned by all possible two particle kets made 

up of one core and one valence orbital. The subspaces (ce), (ve), 

and (ee) are, of course, infinite dimensional. In these figures, the 

conditions are to be imposed in order to yield explicit zeroes; 

further, the subblocks indicate the representation is block diagonal 

in the core indices. This means a matrix element such as 
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(c) (v) (e) 

(C) 0 0 

(v) 0 0 

(e) 0 0 
Figure 4. Explicit Form Req_uired of the Matrix Elements of .'.6(1) 

to Satisfy Conditions (1), (2), and (3). "C" Denotes 
Core Orbitals, "V" Denotes Valence Orbitals, and 
"e" Denotes Excited Orbitals. The "e" Space is in 
Principle Infinite. The Hatching in This and Subsequent 
Figures Denote Nonvanishing Matrix Elements 



(cc) (cv) (vv) (ce) (ve) (ee) 

(cv) 

( vv) 

( ce) 

( ve) 

(ee) 

Figure 5· 

0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 

0 0 0 

0 0 0 

Explicit Form of Matrix Elements of~l2) in Order 
That Conditions (1), (2), and (3) be Fulfilled. 
(cc), (ev), etc. Represent the Spaces Spanned 
by All Antisymmetrized Products of Two Spin 
Orbitals of the Type Denotes 

30 



(CCC) (CCV) (cvv) (vvv) (cce) (eve) (cee) (vve) (vee) 

( ccc) 0 0 0 0 0 0 0 0 

( ccv) 0 0 0 0 0 0 0 

(cvv) 0 0 0 0 0 0 0 

( vvv) ·0 0 0 0 0 0 

( cce) ·0 0 0 

(eve) ·0 0 0 0 

(cee) ·0 0 0 0 

( vve) ·0 0 0 0 

(vee) 0 0 0 0 

(eee) ·0 0 0 0 

Figure 6. Explicit Form of Matrix Elements of ~123) in Order 
That Conditions (1), (2), and (3) be Fulfilled. 
(eve), etc. Represent Antisymmetrized Products of 
Three Spin-Orbitals 
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(eee) 

0 

0 

0 

0 
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vanishes unless c = c 1 • Finally diagonal hatches indicate no condi--' 

tions need be imposed on the matrix elements onthese subspaces. 

We can now write down the form of the n-body matrix element 

-~ >. n 
There are (n+l) different 

types of n-body basis kets with c and v orbitals but no e orbitals. 

For instance, for one-body kets there are types: lc> and lv>: for 

two-body kets there are three types: Icc'>, lev>, and lvv'>: etc. 

The n-particle matrix elements with m core orbitals and n-m valence 

orbitals must have the form: 

That is, they must be diagonal in the core orbitals. We now turn to 
· ~eff the problem of the cluster expansion of /1 in order to exhibit the 

one-, two-, three-, ••• body operators. 

Cluster Expansion of "eff 

In the preceding section, we set up the conditions that certain 

matrix elements of the effective hamiltonian, ?feff, should vanish. 

These conditions should determine our choice of S . However, there 

remains the problem of explicitly determining the operators, ~(i), 

Jl (ij), /I (ijk), • Since .5 is originally defined only by 

conditions on the N-electron space, the operators on subsets of 
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particles cannot be uniquely defined in any rigorous sense. However, 

the adoption of the following form for S 

s = S,+ 52 + ... s"' + s,l. +S,~+ ... + 5,,_-;+ .. · .s,'1. ... 111 

~ s.. ·,· .. . l....... '•'1. ... \"\ 
1~i,"'-i1.."'-···l., n =-I 

leads to a well defined expansion for '):feff. 

The problem, then, is to arrange and classifY (according to 

the number of interacting particles) the terms of the unitarily 

transformed hamiltonian: 

(II-6) 

.ifeH = e _,s \-\ e'5 _ H- {s, H} ~:~Hs.Ls. H1l + · ·· 

(II -7) 

Although the original hamiltonian, H, contains only one- and two-

particle operators, the transformed hamiltonian contains many-particle 

interactions. Each commutator in the preceding equation contains 

one-, two-, ••• N-body terms due to the nature of 5 . 
We want to re-express equation (II-7) in the following form: 

/(eff • ?f(N) 

N 

L Jl(i,\2.)+ I xci,) + • • • 

i=1 I I,< I 2. (II-8) 
N N 

- L L j{(i, ... inJ 
n~1 i,~ ... <.\n 
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That is 1 we want Jtff to be expressed as a sum of one-body opera tors 

(?{(')=LJf(l) ), two-body operators (~l.)= 'E ?f(i 1ia)), etc. 
i i .t. i 

I :a. 12 13 
This problem is attacked by cluster expansion techniques. ' 

It is_ essential to keep in mind that various cluster expansions are 

based upon different resolutions of the identity operator. Thus, if 

completely summed, a cluster decomposition of the operator is guar-

anteed to yield the original operator. It is in this spirit that 

~eff d defining the N-body operator /r oes not uniquely determine 

")(- (i), /f (ij), J1 (ijk) 1 etc. 

On the other hand, only those expansions which can be meaningfully 

truncated in low order ( ")f eff ::: Jt(l) + :>f(2) + ~(3)) and thus 

presumably lead to a tractable computational procedure are worthwhile 

considering. We now argue that the Van Kampen cluster decomposition13 

leads to a practical scheme .for generating "linked terms" in expanding 

the effective hamiltonian. Our definition .for "linked terms" and 

their importance will be discussed shortly. 

We begin by introducing the following set of operators: N one-

body operators, 

\ is. n, e ' 
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N • (N-1)/2 two-body operators, 

and, in general N t /{ n1lN-n)l) n-body operators 

where 

(II-9b) 

Here the notation E{~1 •. -~p/i1 ••• in} implies our summing over all 

terms with p ordered indices ~1<~2 ••• ~ chosen from the given set 
. p 

i 1 < i 2< ••• in. In these equations the subscripts are particle labels 

and all the operators are assumed to be symmetric functions of the 

particle labels. 

Each operator 9i1 ••• in is defined in terms of a unitary 

transformation on the n-particle subspace. Thus, it may be expanded 

in a commutator series; 



(II-9c) 

The basic insight of the Van-Kampen13 cluster development is 

that we can write a hierarchal series of equations: 

(II-10) 

which implicitly define the opera tors, ')f (,Q,1 • • • ,R, p) in terms of 

the ~•s. Explicitly, we write 

~; = )I ( i ) , i = 1, . . . N 

~ij = 'j{(i) + j{(j\ + :J{(ij), i< j "'1, ... N 

~ijk = j{ {i) + ?t<j )+ ?{( k) + jt{ ij) + :>t ( i k) + ?l(jk) 

+ 'X"(ijk) . 
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etc. Note that in the equation for ~i1 ••• in' all the 

")1- (£1 ... R.p) operators with·p<n have already been defined in terms 

of previous equations in the hierarchy, with the ~i1 ... in itself 

having been explicitly defined (in terms of S ) in equation (II-9c). 

Thus, the equations implicitly define ?f (i1 ... i ) . . n 

The .. transformed hamiltonian ?reff is itself the N-body opera tor 

1f l ••• N' the cluster expansion of which implicitly defines Af(l •.• N). 

However, an essential characteristic of a useful cluster expansion of 

(II-11) 

is that we are able to truncate it after two or three sums: 

In such a case, the required operators }((i), j./{ij), and J((ijk) 

would be expressed in terms of the one-, two-, and three-body ~ 1 s. 

In general, the equation implicitly defining Jf(£1 ••• R.q), can 

be inverted to yield the explicit formula 

(II-12) 



In particular we have that 

/{(i) ~i 

/((ij) = ~ij - ~i- ~j 

»ijl<- ~ij- ~i\<- ~jk + ~i"' ~j + ~~ 

While it is obvious that ?{ (i1 •.• iq) depends only upon operators 

acting upon the kets in the q-particle space labeled i 1 ••• iq, the 

precise structure of these operators is not yet clear. 

We now seek to establish the theorem that a given cluster 

operator (equation II-12) is composed of terms in which: i) all 

factors are "linked" and, ii) all q-particle labels (i1 ••• iq) 

occur. A "linked" term is one in which each factor in the term con-

tains at least one particle label which appears in another factor. 

For example, terms like 512 g'13, S 13 h 3, S 123 812 are linked, 

whereas S 12 h 3, S 12 g 34, 5 13 g 24 are not linked. Thus, all 

terms in the expansion for :>f (ijk) will contain i, j, and k and will 

be linked. 

The proof of these assertions is straight forward. First, since 

each ~£1 ••• £pin equation (II-12) may be written as a sum of nested 

commutators (recall definitions in equation (II-9)) no unlinked terms. 

appear, for clearly, two factors having no particle labels in common 

commute. Second an nth order commutator such as 
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in which k1 .•• kt is a proper subset of i 1 ••• iq occurs in.all 

~t1 .•. tp's for which the set k1 ••• kt is contained in t 1 ... tp. 

Because each ~-t1 •• ~ip enters with a factor± 1 in equation (II-12), 

we find the overall coefficient of such a commutator to be given b.1 

={0 t<t 
1 t: <t 

Hence, all terms containing only a proper subset of the particle 

labels i 1 ••• iq cancel from the expansion of ?{(i1 •.• iq). Thus, 

the theorem is established. 

The result derived here leads us to argue on physical grounds 

that the many-particle terms in the cluster expansion 

){ eff _ 

contain only the linked-parts of the interaction among many particles 

and may be neglected in comparison with, say, the one-, two-, and 

three-particle terms. Of course, any blanket statement such as this 

must be tempered by calculations on the particular system. 

Implicit in this proof is an assumption which must be more 

fully explored. We have assumed, for example, that the two-particle 
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' 

operators, such as 812 and 512 ar~ linked. Yaris11 has argued that 

the generators of the unitary transformation are themselves linked 

in the sense that, for example, sl2 does not contain terms such as 

( sl + S2) or sl s2. On the other hand, it is clear that el2 is 

unlinked in this very sense since, by definition 

812. 
u1 + u2. 
N-1 

Therefore, the three-body commutator in ?i (123), [ S 13, 812], con­

. tains a term 

N - 1 

depending on only two, rather than all three, particle indices. 

Generally, if g12 is "split-up," then clearly linked terms enter 

n-body operators which have only n-1 particle indices. Note that such 

terms are multiplied by (N-1)-1 • 

It is evident that if the operators d .. are considered to be 
Ol.J 

split-up, the statement that the n-body ~(i1 .•• in) contains only 

terms with all n indices (i1 ••• in) cannot apply to certain terms 

containing the U. 's. One can easily show, however, that these (n-1)-
J. 

particle terms can be combined with identical terms arising from 

(n-1)-particle clusters. Such a splitting up and rearrangement of 

terms results in one linked expansion for 

-is (L 
e i<J 



and a second linked expansion for 

-iS e (t u,) 
I= I 
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The factor (N-1)-i has disappeared, a fact which formally follows 

from the ,regrouping of n-body and (n-1)-body cluster terms. A little 

reflection indicates this result is obvious since the original opera-

tor can be written: 

I <6ij L L ~.~ - ui + u.i ] N-1 
i<.~ i<j J 

I 
el. Lui -
r .. 

i·<j 'J 

Thus' instead of transforming .r.. a. j ' we may transform _r.< . e 2 /r .. 
~J ~ ~ J ~J 

and- ~U. separately, expanding the results in two linked cluster 
~ ~ 

series. The proof that each series is linked goes through exactly 

as above. 

However, we can look on Bij formally as the basic two-body 

interaction in the sense of a pair potential. Consequently, we will 

keep d . . intact. The matrix elements that enter for the "dressed" 
O~J. 

two-body potential, d .. , will therefore have an explicit dependence 
O~J 

on the potential U. and the total number of electrons, N, in the 
~ 

system. 
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Effective Hamiltonian Operators 

We can now return to the construction of the valence shell 

hamiltonian,frli v. ·For our purposes we take the orbitals in which we 

expand $(x) to be eigenfunctions of h: 

The one-body operator is thus already diagonal in the orbital indices 

and, hence, we take si = 0. Our problem is to choose 512' .5123' 

etc. so the matrices in Figures 5 and 6 will have the required struc-

ture. 

We begin by considering the two-body term. In second quantized 

form they are 

ft(2) == L I (~;~2, ){(12.) \M,Jlt) ~)..c1A1Q_JA~a.JA. 
}..,< )..2 p..< p.l. 

where 

In principle, we can choose 512 so that the matrix representation of 

/{(2 ) has the form shown in Figure 5. That is, we would like, 
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( c c. ' \ /1 ( ll) \ p p' ) either p = c ,, (-.If c ~ c.' ) 

= < ~p' ''Ji(lz.)\cc.')= 0 unless or 

or 

p' = c." (:!i- c,c') (II-14a) 

\ rr') = \ cc' '> 
(c. v \ x t, 1.) \ c r '> 

= ( c p \ ?{ ( n.) \ c v) = 0 unless p = v 
I (II-:l4b) 

<vv'\ "){(11.) \pp'_'> 
= <rp'\?f(n .. ~\vv·)= 0 

unless \ pp') = jv"v'") (II-14c) 

It is impossible in practice to impose these conditions and 

solve for S . By approximating ~(12), we can develop a tractable 

approach to the problem. 

. -iS,~ [h h ] iS,~ h h ,?{(12.) = e ,+ 1.+ g,1. e - , - 1. 

= g,,_ + (- i) [ s 11.' h, + h, + 8·· 1 
+ ( ~t L s,,.,l_s,, h,+ h,_ +a .. ] J + •·. 

(II-15) 

We also partition g12 into the sum of a 11diagonal 11 part and an 11 off­

diagonal11 part) writing 
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where 

and 

off- d iae 
g,~. 

ri . - d diaa 
0'1. 0'1. 

Now, we define the operator w12 over all two-particle space as 

(II-16) 

This could be an approximation to the transformed two-body operator 

/{ (12). Inserting this definition into equation (II-15), we find: 

\. 1 . [s · off - d i a.s ] 
/l(il) = w,l. - ' 11., 8,1 · 

(- ·, y- rs . [ . . . - di•s - '~· -.r,.~ 11 
+ '- ~ l ll , ' wll. s~'L s 

(- i) ~ Is I r s ott- d i ae; J l + ... 
T 2. ~ L 11. ' L ll. ' 8 l'Z.. J 

_i [s. oH-diaa l 
2 11. , e \1. J 
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(II-17) 

We will approximate ')((12) as the sum of w12 plus the first order 

commutators. However, we still cannot impose conditions (II-14) on 

this approximation and find a tractable equation for 5 12• Conse­

quently, we impose conditions analogous to (II-14) on the first term in 

the approximation, w12 • The resulting S 12 can be substituted into our 

approximation for "(12). The corresponding matrix elements of S 12 

are then given by: 

This result follows immediately from inserting a complete set of two-

body states between the operator factors in 

and recognizing that, for example: 



We shall choose the remaining matrix elements of £)12 equal to zero. 

The struct~es of 'vJ12 and 512 are shown in Figures 7 and 8~ 

In general, the symmetry operators for the Coulomb hamiltonian 

. diag commute with h1 + h2 , but not w~th g12 • Imposing the conditions 

(Eq.'s II-14) on w12 then leads to an effective hamiltonian that does 

not possess the original symmetry. The problem arises with our 

choice of the two particle states with respect to which g~~ag is 

defined. These two-particle vectors are antisymmetrized products of 

spin orbitals and, therefore, they are basis vectors for reducible 

representations of the symmetry group. 

The result of this broken symmetry is that when CI calculations 

are performed, the ensuing energy levels which were triplets for 

the l/r12 operator are no longer degenerate. The definition of 

g~~ag in terms of antisymmetrized products of spin orbitals mixes 

the S = 1 m = 0 state with the S = 0 m = 0 state. Our purpose in s s 

defining w12 as in Eq. II-16 was to include in a tractable form as 

much of the dynamics as possible. The destruction of symmetry is a 

very disturbing consequence of this choice and a compelling reason for 

modifying it. There are various modifications of g~~ag which could 

be posed for keeping the symmetry. If gdiag were defined 
12 

L \ 1 > ( l \ 8 ll. Ll > < I \ 
I 



(cc') (cv) (vv) (ce) (ve) (ee) 

(cc) · 0 

(cv) 0 

(vv) 0 0 

(ce) 0 0 0 

(ve) 0 0 0 

(eel 0 0 0 

Figure 7· Structure of w12 on the Two-Particle Space 

0 

0 

0 



(cc) 

(cv) 

(vv) 

(ce) 

(ve) 

(ee) 

(c·c) (cv) (vv) (ce) (vel (e e) 

· . Figure 8. Structure of s12 on the Two-Particle Space 
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where the II> are antisymmetrized two particle singlet and triplet 

bases, then the problem would not occur. 

We might be tempted to quit after the two-body cluster terms. 

As a matter of fact, even if we consider only the two-body generators 

sl2' linked single commutators also occur in the three-body clusters. 

A detailed comparison of Harris' work and our three-body clusters 

indicate these three-body terms play a crucial role in defining 

the pi-electron effective interaction. In principle we should choose 

sl~3 so as to insure the linked three-body operators have the form 

shown in Figure 6. However, for the time being, we shall set 

S 123 = 0 and use the S 12 determined above to evaluate the three­

body clusters. 

In considering the three-body terms we again keep the double 

commutators; however, because of the definition of w12, they can be 

re-expressed in the following form: 

. rl off-diag] ft {. diag }l _,Ls .• ,e.. + \S .• , w"-B" J 

[s [s Jf-di~s J J + I'Z. , · ·~ ., a 1'3 
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We find the three-bo~ terms can be expressed as: 

{ -iS11.[ . l iS,4 -iS,lfih h J iS,;!, 

. - e . h_.i"h~.-+g,l.Je + e L: ,+ '!.-+8·~ e 

+ e_; 5"[ h~ + h, .. g.,] e; 5''} t- h, + h, + h, 

= - i { [ S,, g .. ] + [ S,, g.,] + [S,, g.,)+ [.S,, S•} [ S,,g"J 

+ [ S.,, 8 "1) + (~ r { [ S", [S,,, 8·~ + S·11 •[S,,fs,,, g,. • g .. ]] 

+ [s,.,[s,., g .. + a .. ]]-{ s .,,[ s,, h .• h,+ g.~Hs .. ,ts", h,. h •• g.J] 

+ [s,,[s,, g ... g,J] +[S,,[s .. , g., • gn]] + [ S,, ,[s,,g, .. g.~J 

+ [s .. ,[s .. ,h,-.h,·e·~] + [s,,[s",h,+h,+a,.]] 

+ [ s .. ,[ s,, 8 .. + 8 .. ]] +[ s,.,[s," 8 .... e"]] +[ s,,[s,,g,.g,JJ 

+ [ s" ,[s,, hA,· g.,]] + [s .. , [ s .. , h,. h, + 8 .. ]}} 
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Combining the previous two equations we get (disregarding terms 

with two or more commutators): 

(II-19) 

Valence Shell Hamiltonian 

We are now ready to construct the valence hamiltonian. That is, 

we evaluate the matrix elements which appear in equations II-4a and 

II-4b subject to the approximations stated above in equations II-17. 

From equations II-4a and II-4b we see that the matrix elements needed 

to construct the valence hamiltonian are the following: 

<v\A~Ct) \ v') , <cv \ ?{(12.)\cv''>, a"d (cc'vl-'f(U3)Icc'v) 

Hvl 
for vv' ; and 

for Hv2, 11 111 • To facilitate the discussion of equation II-17, we vv v v 



note 

and 

We further see that 

and 

<cv 1 L_s .. , s~:·e]\cv') = o 

<vv·\[S,., W,~J\vY) = 0 

These results follow from the structure of 5 12 and w12 as shown 

in Figures 7 and 8. Thus, by inserting a complete set of anti­

symmetrized two-body states 

1 = L ,p.p.)(p.p.\ 
f, "f..,_ 
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i r 5 off-diagJ . n L 12, g12 we f1.nd that 

<cv \ Jf(1?.)\cv·) = <c.v \g,~ \ cv') 

-i I { < cv \ S,,_ \ p.p,)\ p,p, \ e~-d<•a\ cv) 
p. < r1. 

- ~ V \ 8~-diag\ p.p.')(p,p,\ S,L\ LV')} 

For convenience, we now define the symbol 

. = ·, <"A),~\S,t "~)..~;"'fJ,fA,_ 5 p,pr M~ ,f.. t. "~}.It { \ "".I · \ off-d·•s\ ~ 
p,fJ-~ fJ-3f4 . 

- <~.\.\ 8~-di.g\ A\t-.)(P·f·\S.J f•f•) J 

_ <~.t-.\ 5~~-diag \ A,A. )(u,f,\ g~-M·a\ p,pq) 

1 . } 
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where the second equation follows from our choice of the matrix 

elements of S 12• Examination of these matrix elements reveals that 

and 

--

Furthermore, interchanging two indices within any of the four pairs 

(:.\1 :.\2 ), (:.\3:.\4), (v1v2), (v3v4) also changes the sign of M. These 

observations simplify the summations in constructing the valence 

hamiltonian. In this notation we find 

(11-l\a) 

Similarly, we obtain 

(II-2lb). 

We now evaluate the. matrix elements of the three-body terms found 

in equation II-19. The general considerations found in the appendix 

are used. Only the first six commutators in equation II-19 yield 

non-vanishing contributions to <cc'vl ?((123) Icc 'v' > and <cvv' 1;¥ (123) I 
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cv''v'''>. That the contributions of the last six commutators vanish 

can be seen by using equation A-4 with 1( = v12 + g~;ag and noting 

the explicit structures of w12 + g~;ag and noting the explicit struc­

tures of W'12 a.nd. S12 as indicated in Figures 7 and 8. Hence, in 

equation A-4 with Y = g~~f-diag and identifying >..1 = p.1 = c, 

>..2 = 112 = c', and A3 = v, p.3 = v', we obtain 

<cc.'v \ )t(123) \cc.'v'> - 1 { M(V c.'p 
z:-~ I · lpc' c v' 

t'\c'v pc. fJ\c.v c.p c'v pc, 

f'/\c + c'v• + c'p c.'vl -t (.vI c.r 

CC. 1 pc 1 Mcc.' P" tt\cv v' r (II-~~) 

+ Mr" cv' + vp c'v• + c'p c.c.' 

pv' 
+ c.c, + c c.' 

Again, the general result of equation A-4 can be used with >..1 =111 = c, 

>..2 = v, 112 = v' 1 , and >..3 = v', 113 = v"' in order to find 



<c v v' \ ?f-(12 3) \c v" v"·) -~ L{ 
' \ 

c v pc. cv • c p vv· fv~· vv' fV" 
+ M t M' ,. t- M ·,. o c.\J" + M ()c. cu'" 1"\v·r v"v'" 1'\vp v v'" /-\ ... , ,.\ .. (II-23) 

M cv pv" 

+ I lev· cv· 

. . cv fV'" 

+ Mv·r cv· 

These results for the two- and three-body matrix elements are 

summed over the core orbitals as indicated in equations II-4a and 

II-4b. Certain two- and three-body cluster terms can be combined. 

Furthermore, summing over the core orbitals and taking into account 

the symmetry of the ~ 's results in restricted sums. The resulting 

one- and two-body matrix elements for the valence hamiltonian can now 

be written. 

i 
4 -LLL 

C c' c" 

cv c'c." 

Mc'c" cv' 



Mcc.'~v· 

I· \vp c.c' 
(U-2't) 
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Mev pc. Mev' c p Mvv' pv·· vv· pv" 
. I ~-t . + + 

v p v v vr ~·v·· cr c v· !'\!"- c v" 

Mev pv''' Jv\. cv' v''p JV\cv'v"'(') 
+ .,,t ,. -t vpcv" evc.v '~r cv 

(11-2.7) 
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We now have explicit formulae for the valence hamiltonian. 

Depending on how we choose the core and valence orbitals, we can 

construct the various model hamiltonians of semi-empirical quantum 

chemistry from first principles. Inpractice, this requires the 

approximation of truncating the set of excited orbitals.· The valence 

shell hamiltonian depends on our choice of (c) and [v) which define 

the model space, ~N. Furthermore, given a specific choice of [c] 

and [v] the accuracy of any particular calculation depends on how we 

choose the truncated set of excited orbitals. In the next section 

we construct the pi-electron hamiltonian. 



CHAPTER III 

PI ELECTRON HAMILTONIAN 

We now address the sigma-pi problem. From the formulae developed 

in Chapter II, we can construct a pi-electron hamiltonian. We started 

out with an N-electron problem on the full N-electron space. We then 

transformed the full N-electron hamiltonian to an effective N-

electron hamiltonian operating on a truncated space. We further 

reduced the problem by defining our concept of a valence shell 

hamiltonian H v and the conditions which it must satisfy. We now 

want to consider a planar molecule with a pi electron system and let 

Nv equal the number of pi electrons. Our model consists of a core 

of sigma orbitals--designated a --a set of valence pi orbitals--. c 

labeled 'IT --and an excited set of orbitals consisting of both v 

symmetries--labeled a and 'IT • With this idea in mind, we then can e e 

construct a pi electron hamiltonian which will in principle yield the 

exact low-lying excitation potentials. Such a hamiltonian has been 

the essential starting point of semi-empirical calculations of large 

organic molecules. To the extent we succeed, we would have a non-

empirical basis for applying quantum mechanics to the mobile pi-

electron subsystem of such molecules. 

First, howeve~, we note a traditional ab initio pi electron 

calculation corresponds essentially to choosing the generator of the 
A 

canonical transformation ~12 = O, in Eq. II-24 and II-25, whence we 
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have 

H'Jl 

TI·if· I j 
E.lt;bll;llj +I (o;_n-;\e .. \a;_lTj'> 

<Jc. 
(III-1) 

and 

(III-2) 

Here o~.~. is the Kronecker delta symbol. Thus, the presence of the 
1. J 

core is introduced only into the one-body terms by summing over the 

core orbitals. The effects of the excited orbitals as well as the 

remaining effects of the core orbitals are ignored. We use these 

operators to perform a pi electron approximation calculation. 

The canonically transformed one-particle matrix elements 

<~.I ll{v1 1~.> are given by Eq. II-24 by identifying v ~ ~. and v' ~ ~ .. 
1. J J J 

In fact, simplifications are obtained due to the sigma-pi symmetry 

which implies the vanishing of two-body matrix elements such as 

<~~' lg12 1~"o> and <oo' lg12 1o"~>. Thus, for example, examination of 

the structure of the M's given by Eq. II-20 implies that 

M (fc 1T v (J",' ~ '' 

/'\I, 0 cr c. <fc ere lT v 

and so no terms arise from the three-fold sum over core orbitals, 

(}: L. L ) in Eq. II-24. Similar restrictions in the sums over p 
a;, oc. cr., •• 

in the other terms also occur with the final result that 



< 1fj \ Hvt \ Tij) - En; Sn;llj + L < cr,ll; I en. \<r, lTj) 
~ 

-~IIL 
~c. ~· 1Te 

1 --
4 LLL 

ere. <rc' 1f'l/ 

(Ill -3) 

Here we have labeled the core summation index c as a to emphasize c 
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it is in fact a sigma orbital. The restrictions on the p summations 

are indicated explicitly by specifying the sets over which the 
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· summations extend as L , 1: , 'E , and L. . 
<re <rc. 1T" 1Te 

Turning now to the effective two-body interactions, we identify 

v+ni' v•~nj, v' •~nk' and v'''~n~. 

orbitals c is again rewritten cr • c 

The summation index over core 

Sigma-pi symmetry is invoked to 

restrict the general sums over p to specific subsets of orbitals. This 

time we obtain 

1 
l 

J_IL 
4 1 

1Te ll"e 

+ 
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We now wish to make a specific division of the TI space. We 

envision all pi-orbitals are in the valence space and consequently 

have no pi-orbitals in the excited set; thus, the summations con-

taining TI 's simply do not occur. However, in theory, this leads to 
e 

a valence space defined by an infinite number of orbitals and 

consequently, we would have to perform an infinite CI calculation to 

arrive at the exact energies. In practice, we must perform a limited 

configuration interaction calculation within the N pi-electron space, v 

and thus we compute only approximate excitation energies. With this 

choice in mind, we eliminate three summations in the c,alculations of 

each matrix element of H vl and H v2 • Of the· remaining terms in 

H v2, '\' ~ · the L.. L... sums are the "particle conserving" terms so called by 
Uc. 0'" e 

Harris. These terms arise exclusively from the three body terms in 

the cluster expansion. The relevant matrix elements which enter these 

sums have one valence orbital in each of the initial, final, and 

intermediate states. The two remaining sums, L "£ and L E 
cr.. ere. <fe <r ~ 

result from both two- and three-body cluster contributions and cor-

respond to the scattering of electrons in two pi orbitals to two pi 

orbitals through two intermediate sigma orbitals. 

We note in each particle conserving term of 2: Z: only one 
ere. ere 

excited orbital appears; this limits the number of two-body matrix 

elements <A1A2 jg12 iA3A4> that need be evaluated for use in this 

particular SUIIIJD.ation. We envision the set of excited orbitals, 

which is infinite in principle, to be approximated· by a finite but 

large orbital set, te1. We then find that if we neglect the terms 

the number of two body matrix elements required in the calcu1a­
O"'e<cre: 

tion is a linear function of the number of excited orbitals. Thus, 

• 
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larger basis sets [e] can be used. In the calculations reported 

Hvl here, terms involving two external orbitals ee 1 are kept in both 

Hv2. and 

In neglecting the TI sUJDiil.ations, we have envisioned the number e 

of valence pi orbitals to be infinite. In practice, of course, only 

a finite set of M valence pi orbitals can be introduced. Hence, v 

the effective valence shell hamiltonian is truncated and acts in the 

resulting finite dimensio~al vector space. According to the formalism 

the remaining 7T orbitals should appear in the excited set making 

themselves felt through the canonical transformation. 

We now have the formulae for the coefficients (matrix elements) 

in the second quantized expansion of the valence shell hamiltonian 

(Eq. II-3). These coefficients will be used to calculate the 

representative of the valence shell hamiltonian in N -particle space. v 

The basis which defines this representation consists of antisymmetrized 

products of N spin orbitals from [v1. There are v 

members in this basis. This number could prove to be astronomical so 

even this basis might be truncated. (In the case of ethylene the 

number was small enough for both basis sets to use all Q configurations) 

Once the representative of the valence shell hamiltonian is 

constructed, it is diagonalized. The eigenvalues and eigenvectors 

are then our source for solutions. 



CHAPTER IV 

PROGRAMMING CONSIDERATIONS 

During the last three years we have written, debugged and 

checked the programs necessary for the computations in this thesis. 

As anyone familiar with large scale programming knows, the frustrations 

are many and persistant. However, in the end we feel the struggle 

was worthwhile and rewarding. Our programming must: 

1. obtain a basis set of orbitals. We do a self-consistent­
field calculation (SCF) using contracted gaussian orbitals; 

2. generate the one- and two-body matrix elements in the 
(orthonormal) molecular orbital basis. This involves 
transforming the atomic orbital matrix elements with the 
transformation matrix arising from the SCF procedure. 

3·. evaluate the matrix elements of l[V according to the 
canonical transformation and core averaging formulae 
developed in previous chapters. 

4. perform a configuration interaction calculation on the 
valence shell hamiltonian to determine the excitation 
energies of the molecule. 

The self-consistent-field calculation is performed by a QCPE 

program GAUSSIAN-70. GAUSSIAN-70 requires as input the molecular 

geometry and a basis set. Alternatively, one can specif,y that 

GAUSSIAN-70 use one of its own internally stored basis sets. In either 

case the basis sets consist of groups of contracted gaussian functions. 

These functions usually approximate Slater-type atomic orbitals centered 

on each nucleus. Thus, 



N 

~ I Cj1i 
i-=\. 

where ~ j is a Slater type function and is defined as: 

and '{9-m(S,¢) is the spherical harmonic. The "Xi are gaussian 

functions: 

Stewart1 did calculations on gaussian function expansions of. Slater 
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type orbitals and published the results of one, two,. ; • six function 

expansions of various Slater type orbitals. Stewart's expansion 

coefficients and exponents are used in this work. 

The first part of GAUSSIAN-70 calculates all of the one-body 

integrals 



and all of the two-body integrals 

The second part of GAUSSIAN-70 performs a self-consistent-field 

calculation. That is, the program finds the eigenvalues and eigen-

vectors self-consistently of the closed shell Fock operator 

F(t) = - h7. \11. 
2.m \ 

+ 
A 

L 
-I-. e7. 

a( =1. 

}1 = occ.l.lr i ed. 

where 

GAUSSIAN-70 first diagonalizes the atomic orbital representation of 

+ t 
aC.=l 
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and constructs the eigenvectors of this one-body operator. These 

eigenvectors are then used as an initial guess for the ¢'sin the 

self-consistent-field procedure. The solutions are iterated until 

a desired convergence tolerance is reached. The end result is a 

set of eigenvalues E::. belonging to the set of eigenfunctions ¢.. The 
1 1 

¢i are linear combinations of the input atomic orbitals. 

The resulting output data are one-body matrix elements, two-

body matrix elements, overlap matrix elements (all in the atomic 

orbital representation), the eigenvalues Ei and the coefficient matrix 

which transforms the atomic orbital (AO) basis into the (SCF) molecular 

orbital (MO) basis. 

The second part of our programs uses the coefficient matrix to 

transform the one- and two-body matrix elements into the MO basis, 

The transformation of the two-body matrix elements involves the four-

fold summations. 

where i, j, k, 1 refer to the molecular orbitals and a, b, c, d 

refer to atomic orbitals. The problem as stated involves a computation 

time.proportional to~ where M is the number of spatial orbitals. 

Using Horner's rule2 however, the time for the four-fold summation for 

4 each of the M molecular orbital integrals can be reduced to a time 

proportional to M5. The transformation is broken up and the indices 

are transformed one at a time as follows: 



(o.b\c l) - L C01 (~b\ cd) 
d 

'(o.b\kl) LC~k(ab\cl) 
c. 

(aj\k1) I Cb/a.6\ U) 
b 

('~\kl) - L c a.i ( O.j \ u J 
a 

Because we are working on pi-electron systems, we found that 

the more efficient procedure for transforming the two-body matrix 

elements was to take advantage of the sigma-pi symmetry. Whence, 

four separate subroutines were written, one for each of the following 

types of Md matrix element: 

where 

(<rcr \era-) 

(<JlT \<r1l) 

(<rcr I111T) 

(nn \TITI) 
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Following the MO transformation we construct the Hartree-Fock 

potential U ij : 

The pair potential matrix elements, (ijJg12 Jk~) are then constructed 

from the two-body matrix elements and the Hartree-Fock potential: 

U;k ~Jl + UjlS;k 

N-l 
All these data are then sorted and arranged on various direct 

access files for ease of later manipulations. We found that the 

greatest amount of computer time was spent on these two steps (vis. 

SCF and MO transformation), approximately 80-90%. If the canonical 

transformations could be carried out in a non-orthogonal basis, both 

of these steps could be eliminated. 

The third part of our series of programs uses the (ijJg12 Jk~)'s 

and the E.'s to construct the matrix elements of the effective 
1 

hamiltonian. That is, we construct according to Eqs. III-3 and III-4 
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Here, the angular brackets refer to antisymmetrized products of 

spin orbitals. The output of this series of programs serves as 

input to the configuration interaction programs. 

The fourth and final part of our programs performs a configuration 

interaction calculation on the valence space, or in this case 

the pi electron space. 

The first subroutine in this series sets up the pi space basis 

functions. We have chosen to represent this N -particle basis in the 
v 

occupation number representation and found that the binary bit 

positions in the IBM single precision word do this job admirably. For 

both basis sets the number of possible determinants was sufficiently 

small so that a complete configuration interaction calculation on 

the pi electron space was possible. 

The next subroutine inserts the effective operator matrix 

elements into the correct locations of the CI matrix. We chose to 

construct the CI matrix elements in this manner rather than do the 

sums explicitly because the number of two-body matrix elements in 

future calculations could become too large for the computer storage 

at hand. 

After the CI matrix is constructed, all that remains is the 

matrix diagonalization and construction of the eigenvectoDs. This 

was done by an IBM scientific subroutine package (SSP) program EIGEN. 

With this series or programs the calculations were performed 

in double precision. Also because of the extensive use of peripheral 

equipment these programs are localized to the IBM 360-370 series of 

computers. However, it is anticipated that only minor modifications 

would be necessary for use on another brand of computer. 
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CHAPTER V 

THE ETHYLENE MOLECULE 

The main objective of this thesis was to write and execute 

programs which do the canonical transformation on pi-electron systems 

in molecules. The first molecule of interest is the ethylene molecule 

which is the smallest pi-electron system. This chapter is concerned 

with the particulars of the ethylene molecule. 

Calculations on the ethylene molecule data back to the 1930's 

and 1940's when semi-empirical methods were used to determine 

vibrational force constants and twisting fi'equency. Parr and Craw­

l ford calculated the out-of-plane vibrational force constants using the 

method of antisymmetrized molecular orbitals. They considered ethylene 

as a two electron problem and claimed no semi-empirical data other 

than molecular geometry. However; in allowing for the interaction of 

the two electrons with the core they ignored altogether the hydrogen 

atoms. Further, they described the interaction of the electrons 

with the carbon atoms as 

H (1) = 
0 

H (1) + H (1) 
cl c2 

where H (1) is "mutual potential energy of electron 1 and the single­a 

bonded H2C-CH2 framework"; Hc1 (1) is the "potential representing 

attraction of electron (1) by carbon atom c1 plus repulsion of 
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electron 1 by the other 5 electrons." Thus, each pi-electron is in a 

field of C+ ions. Obviously some dynamics have been left out of this 

picture. However, this was "a step towards the ideal 'first principle' 

treatment." 

In 1965 Moskowitz and Harrison2 did the first full SCF calculation 

on ethylene including all the sigma and pi electrons. Their results 

showed that gaussian functions could be used in such a calculation 

and accuracy attained. Theirs also was one of the first molecular 

electronic structure calculations to make large scale use of the 

computer. They concluded that the idea of sigma-pi separation is 

a valid one. The calculation of excitation e~ergies achieved only 

fair agreement with experiment, however. Also to be noted is the 

single configuration used. No attempt was made to include configura­

tion mixing. 

About two years later, Schullman, et al3 published results of an 

SCF calculation using contracted gaussian basis sets. They used 

virtual orbitals to construct the excited states and thence the 

excitation energies. Some of their findings are listed in the 

following table (Table I). Again these numbers are the reaults os 

single configurations studies. 



TABLE I 

ENERGIES OF EXCITED STATES RELATIVE TO GROUND STATE 
(Schullman, Moskowitz, and Hollister)3 

lB (n -+ n*) 9-3eV (V) 
lu 

3B 
lu (n -+ n*) 4.19eV (T) 

lB 
3u 

(n-+a *) 9.82eV 

3B 
3u 

(n -+ a*) 9.46eV 

lB 
lg (a -+ n*) 9-79eV 

3B 
lg (a -+ n*) 9.27eV 

McKoy and Dunning4 used the equations of motion method for the 

excitation operator to study the excited states of ethylene. They 

performed SCF calculations with a minimum basis set then used the 

random-phase approximation to calculate the excitation energies. 

Their result on the lowest lying singlet state was 9.44eV above the 

ground state. For reasons of convergence they did not report the 
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triplet energy of interest. However, they did report other low-lying 

excited states. 
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In 1971 Buenker, P~yerimhoff, and Kammer5 published the first 

combined SCF and limited CI calculations on ethylene. They performed 

separate SCF calculations on the ground states and each of several 

excited states. From each SCF calculation came the molecular orbitals 

and corresponding orbital energies. For the calculation of the CI 

ground state the MO's from the SCF calculation of the ground state 

were used to construct the 16-particle determinants. For the calcula-

tion of the first 

MO's from the SCF 

excited triplet state (lb3u ~ lb2g; 

open-shell calculation of the 3Blu 

3B state) the 
lu 

state were used. 

The CI calculations were limited calculations on each state of 

interest. All configurations which differed from the ground state 

by less than four electronic excitations were included in each CI 

calculation. The point of using different MO's for different states 

was the following: If all the·CI states were considered, the need to 

use different orbitals for different states would not arise, since 

the space would then be as complete as the finite number of orbitals 

would allow. However, since there would be a truncation of the number 

of CI states allowed, it was hoped that by using orbitals that were 

constructed with a particular state in mind improved accuracy would 

result. This proved not entirely true, however, when a lower ground 

state was achieved during a calculation aimed at the first excited 

triplet state. 

The calculation of the excited singlet and triplet states ( n ~ n*) 

yielded the following results: 



State 

lB 
lu 

3B 
lu 

TABLE II 

ETHYLENE EXCITATION ENERGIES BY BUENKER, ET AL5 
(Energies in eV) 

Excitation Energy Experiment 

(V) lb3u -+ lb2g 8.323 7.66a 

(T) lb3u -+ lb2g 4.255 4.6b 

aP. G. Wilkinson and R. S. Mulliken, J. Chem. Phys., g}, 1895 
(1955) 0 

bD. F. Evans, J. Chem. Soc., 1960, 1735. 
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The results of the calculations of Buenker et al are encouraging 

to theoreticians because the numbers were closer to experimental 

values than any previous ab initio calculation. 

In a later calculation which also appeared in 1971 Del Bene, 

Ditchfield and Pople8 studied the results of an extended basis set 

and limited CI on the calculations of excited states of ethylene 

(among other molecules). They chose two different basis sets 

ST0-46 (which is close to minimal) and 4-31G (extended basis set) and 

calculated excitation energies with and without CI. The CI calcula-

tions were limited in the following manner: select M highest occupied 

orbitals and M lowest unoccupied orbitals and form from these all 

singly excited configurations. M was allowed to vary from 1 to 8. 
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M = 1 refers to a single configuration (i.e., no configuration inter-

ation). Their results follow: 

State 

lB 
lu 

3B 
lu 

TABLE III 

ETHYLENE EXCITATION ENERGIES BY DEL BENE, ET ALB 
(Energies in eV) . 

ST0-4G 4-31G 
No CI With CI No CI With CI Experiment 

12.83 10.97 10.31 9.16 7.65a 

3.46 3.29 3.85 3.80 4.59a 

aG. Herzberg, Molecular Spectra ~ Molecular Structure (Van 
Nostrand, Princeton, N.J. 1966) Vol. 3· 

10 In August 1972, Bender, Dunning, Schaefer, Goddard, and Hunt 

published work on ethylene using multiconfiguration wave functions. 

They carried out calculations on the T(3B1u) and v(1B1u) states only, 

using previous ground state calculations of Dunning. 11 Their 

calculated singlet-triplet splitting was -3.9eV. When this is added 

to Dunning'.s previous calculation of the N-+ T transition energy of 

4.22eV we find 
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N+T 4.22eV 

N+V 8.leV 

This calculation again involved configuration interaction and studied 

the effects of different "classes of configurations included." The 

largest CI performed included the ground state SCF configuration 

plus all singly- and doubly-excited configurations. 

We have discussed some of the ab initio calculations on ethylene. 

The recurring themes in these calculations follow: 1) The T state 

is better defined both theoretically and experimentally than the V 

state. The experimental value for the N + T excitation energy most 

often quoted is 4.6eV and most large ab initio calculations fall in 

the range 3.6-4.2eV for this excitation. Also, in the calculations 

the triplet state is easy to identify with the spectroscopic T state. 

Experimental discussion of the T state is found in Mullikin 1s12 

paper. Much of his discussion of this state ·is based on the work of 

Evans.13 The paper of Evans reports observations of ethylene spectra 
0 

in the range 3500-2600A (3.54-4.77eV). The light absorption curve 
0 

of ethylene starts at 3500A and increases with humps (showing 
0 

vibrational states) until it reaches a maximum at about 2700A (4.59eV). 

Evans concludes that this particular electronic transition is the 

1A + 3B1 (N + T) transition of ethylene. Mulliken points out that g u 
0 

although the curve should reach a maximum at 2700A it actually is 

swamped by the beginning of anN + V transition. 

2) The singlet V state is not well defined, either theoretically 

or experimentally. Ab initio calculations have found it to be 
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anywhere from 6.5eV to lOeV above the ground state. The interpreta-

tions of the calculations are clouded by the appearance of a diffuse 

singlet very near the V state. This state shows up when diffuse 

orbitals are added to the basis. Theoretically the V state has been 

assigned the (nn*) configuration which in a simple valence-bond 

model yields the first excited singlet state. However, with the 

addition of diffuse orbitals to the basis, not only is the energy of 

the V state lowered but also there appears additional singlet states 

(Rydberg states) very close to the V state. Experimentally, the 

question is whether the first excited state is the V state or a 

Rydberg state. Mlllliken12 states with some assurance that the absorp­
o 

tion curve for the N + V transition starts at 2150A and continues 

increasing with an irregular progression of bands until it disappears 

under the intense bands of the first Rydberg transition. However, 
0 

if the curve were continued, it would have a maximum ab about 1620A 

(7.65eV). Mulliken's extensive discussions about the excited states of 

ethylene conclude that the first excited singlet state is a Rydberg 
0 0 

state occuring at 1744A (?.lleV). The V state occurs at 1620A 

(7.65eV). These conclusions were based on analysis of spectrographs 

and theoretical assignments of states. 

From the above discussion we found the most often quoted 

experimental excitation energies for the T state and the V state are 

4.6eV and 7.6eV, respectively. Further, we feel the best ab initio 

calculation is that of Buenker, et al. We will relate our calculations 

to these numbers. 

Ab initio calculations involving all N electrons (N = 16 in 

ethylene) are difficult and time consuming. Since the number of 
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configurations necessary to span the N particle space is generally 

. very large, severe truncations of the N particle basis are necessary. 

The first serious attempts to reformulate this problem in terms of 

a true valence shell hamiltonian for ethylene was based upon Freed 1 s14 

ab initio derivation of the pi-electron hamiltonian from many­

elec!ron theory. Using two different basis sets (one small, the 

second containing the first plus 1 diffuse 2s orbital and 1 diffuse 

2p shell), Iwata and Freed14 calculated the singlet and triplet 

excitation energies. For the V state they got 9.44eV and 9·73eV 

for the small and large basis sets, respectively. For the T state 

they got 4. 79 eV and 4.84eV. 

This brings us to our calculations on ethylene and comparison 

with other work. 

SCF Calculations 

We begin by doing an SCF calculation on ethylene using GAUSSIAN-

70. We chose three atomic orbital basis sets. The atomic functions 

are linear combinations of gaussian functions which approximated 

best atom value Slater functions. The first basis set contained ls, 

ls', ls", 2s, 2s 1 , 3s, 3s', 4s, 4s 1 , and 2p functions on each carbon 

atom and ls and 2 s functions on each hydrogen atom. The second 

contained ls, 2s, 3s, 2p, and 3p functions on each carbon atom and 

ls and 2s functions on each hydrogen atom. The third basis set 

contained the second plus a diffuse 2s and 2p function on each carbon 

atom. The second and third basis sets were chosen to be very similar 

to Freed's choice for comparison purposes. The diffuse orbitals 

were added in Freed's work to try to lower the excitation energy of 
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the V state. Table IV describes more fully the basis sets. Table V 

and Figure 9 show the SCF results. 

After the SCF calculation the one- and two-body matrix elements 

were transformed to the MO basis, sorted, and arranged for easy 

access on disk,storage. 

The Canonical Transformation 

The canonical transformation was performed using the molecular 

orbital matrix elements generated by GAUSSIAN-?0. The equations 

which were summed follow: 

( 1Ti S i ~ + I < <rc: -rrr \ <6 11. \ ere: l\ j) 
<r, . 

--.. ~~- _:--_ 

~ L L L(M~.~: 
~ <r.:' <le 

1 
4 

<rc. ere.' 1T" 

+ 

. / 

(v -1) 



Atom 

I 
Carbon 

Hydrogen 

TABLE IV 

TABLE OF THREE BASIS SETS USED 
IN THIS THESIS 

Type Zeta U;) 

1s 32.0 
1s' 16.0 
1s" 8.0 
2s 4.0 
2s' 2.0 
3s 0.8 
3s' 0.2 
4s 0.08 
4s' 0.02 
2p 1.59 
1s 1.24 
2s 1.24 

Number of 
Gaussian Functions 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

----------------------------------------------------------~-----------

II 
Carbon 1s 5.67266 4 

2s 1.60833 3 
3s 1.60833 2 
2p 1.56789 4 
3p 1.56789 4 

Hydrogen 1s 1.24000 3 
2s 1.24000 3 

III 
Carbon 1s 5.67266 4 

2s 1.60833 3 
2s' 0.20000 3 diffuse 
3s 1.60833 2 
2p 1.56789 4 
2p' 0.20000 4 diffuse 
3p 1.56789 4 

Hydrogen 1s 1.24000 3 
2s 1.24000 3 
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TABLE V 

SCF RESULTS 
(lAu = 27.2116eV) 

Orbital· Symmetry Energy (Au) Orbital Symmetry Energy (Au) 

BASIS SET I: M = 7 M = 2 M = 23 c v e 

1 blu -11.1307 17 Tf b2g 0.2614 
2 a -11.1205 18 b2:.u 0.3737 g 
3 a - 1.0219 19 a 0.5092 g g 
4 blu - 0.7750 20 blu 0.5398 

5 b2u - 0.6200 21 b3g 0.5669 
6 a - 0.5478 22 b 0.8928 g lu. 
7 b3g - 0.4797 23 b2u 1.1888 
8 Tf b3u - 0. 3575 24 a 1.5529 g 
9 blu - 0.0000213 25 blu 1.6518 

10 a 0.0000267 26 b3g 1.6572 g 
11 a 0.000414 27 a 7.2611 g g 
12 blu 0.00133 28 blu 8.1619 

13 a 0.00514 29 a 104.18 g g 
14 blu 0.00865 30 blu 106.58 

15 blu 0.1238 31 a 919.07 g 
16 a 0.13?.5 3~ blu 926.27 g 

Total Energy= -77.035802 Au. 



TABLE V (Continued) 

Orbital Symmetry Energy (Au) Orbital Symmetry &Brg-.r (Au) 

BASIS SET II: M = 7 M = 4 M = 15 
c v e 

1 a -11.2020 14 blu 0.7150 
g 

2 blu -11.2008 15 Tr b3u 0.8552 

3 a - 1.0163 16 a 0.8571 
g g 

4 blu - 0.7759 17 b2u 0.9027 

5 b2u - 0.6250 18 a 0.9928 g 
6 a - 0.5641 19 blu 1.0342 g 
7 b3g - 0.4879 20 Tr b2g 1.0860 

8 Tr b3u - 0.3516 21 a 1.5310 g 
9 Tr b2g 0.2330 22 b2u 1. 5835 

10 a 0.3219 23 b3g 1.6014 g 
11 b2u 0.3480 24 blu 1.6080 

12 blu 0.3673 25 b3g 1.9790 

13 b3g 0.5369 26 blu 2.2126 

Total Energy= -77.668159 Au 
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TABLE V (Continued) 

Orbital Symmetry Energy (Au) Orbital Symmetry Energy (Au) 

BASIS SET III: M = 7 M = 6 M = 21 c v e 

1 a -11.2052 18 a 0.3486 g g 
2 blu -11.2040 19 b 2u 0.3560 

3 a - 1.0196 20 blu 0.4261 
g 

4 blu - 0.7788 21 b3g 0.5530 

5 b2u - 0.6280 22 blu 0.7799 
6 a - 0.5674 23 1T b3u 0.8724 g 
7 b3g - 0.4906 24 a 0.8888 g 
8 1T b3u - 0.3541 25 b2u 0.9131 

9 a 0.00887 26 a 1.0056 g g 
10 blu 0.0130 27 1T b2g 1.1049 

11 b2u 0.0199 28 blu 1.1594 

12 TI b3u 0.0234 29 a 1.5674 g 
13 1T b2g 0.0384 30 b2u 1.6099 

14 b3g 0.0387 31 b3g 1.6370 

15 a 0.0504 32 blu 1. 7217 g 
16 blu 0.0981 33 b3g 1.9762 

17 Tf b2g 0.2374 34 blu 2.2250 

Total Energy= -77.670498 Au 
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This is a one-body effective hamiltonian matrix element. Since 

we included no excited pi orbitals, the sums over these orbitals do 

not occur. The effective two-body matrix elements are given by 

1 --
2.. (V-2) 

We chose two definitions for w12 Eq. II-16. The first 

(V-3a) 

is the definition used to develop the formalism. However, the 

resulting effective interaction does not possess the symmetry of 

the original hamiltonian as discussed in Chapter II. To overcome 

this problem, we have chosen an alternate definition for wl2: 



This definition avoids the symmetry problem by simply dropping 

g~~ag • Our calculations were done using both definitions. 

Configuration Interaction 

(V-3b) 

After constructing the one- and two-body terms in the valence 

shell hamiltonian, we next perform configuration interaction 

studies to diagonalize this valence shell hamiltonian on the NV 

particle valence space. In the ethylene problem there are two valence 

electrons (pi electrons), N = 2. The number of configurations is 
v 

given by 

0 

and for basis sets I, II, and III, Q equals 6, 28, and 66, respec-

tively. In all three instances the number of configurations was small 

enough to perform complete CI calculations. For each basis set the 

same determinantal basis was used in i) the pi electron calculation, 

ii) the effective operator calculation without two-body matrix ele-

ments in the denominator and iii) the effective operator calculation 

with two-body matrix elements in the denominator. 

Prior to CI studies with the canonically transformed effective 

operators, we did CI studies in the pi-electron approximation with 
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matrix elements defined in Eq. 1 s III-1 and III-2. 

The third part of our programs generated the necessary matrix 

elements for use in the configuration interaction programs. The 

CI calculations were run with both definitions for w12 and for all 

three basis sets. The results of the CI calculations in the pi 

electron approximation and using the canonically transformed 

operators are in Table VI. The calculations without two-body terms 

in the denominator (Eq. V-3b) are denoted IDENOM = 0; calculations 

with two-body terms in the denominator (Eq~ V-3a) are denoted 

IDENOM = 1. 



TABLE VI 

EXCITATION ENERGIES WITH PI ELECTRON APPROXIMATION, 
WITHOUT TWO-BODY TERMS IN DENOMINATORS, AND 

WITH TWO-BODY TERMS IN DENOMINATORS 
(Energies in eV) 

Basis Set 

I II III 

Pi Electron Approximation 

N T 4.780 

v 13.072 

z 18.277 

Canonical Transformation IDENOM = 0 

T 

v 

z 

3.1527 

10.5909 

15.8824 

Canonical Transformation IDENOM = 1 

v 

z 

10.5724 

15.8899 

4.6616 

11.730 

16.570 

3.4044 

10.1057 

15.3077 

10.0278 

15.6918 

4.6066 

11.993 

17.797 

3.9288 

10.6148 

15.2340 

9.9812 

14.7017 

a Because the spin symmetry is broken when IDENOM = 1, the 
triplet states split and we get one energy form = ±1 and another 
energy forms= 0 (inside parenthesis). s 
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CHAPTER VI 

DISCUSSION AND CONCLUSIONS 

We will discuss our configuration interaction results in the 

context of the ground state IN>, and excited triplet IT> and singlet 

IV> states associated with the single excitation configuration nn*. 

For the purpose of this preliminary discussion we will assume the 

configuration interaction effects can be neglected. The two-electron 

independent particle states are written: 

\N) \ 1Tu~ 1\LL (3) 

\1) ~{\n.nT; B)- \n.~1T; .,(>} 

and 

\V) 

Here n is the lowest energy ungerade pi molecular orbital. It can 
u 

be expressed as (neglecting the overlap <palpb>) 

where pa(pb) is an atomic pi orbital on center a(b). * n is the first 
g 
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excited n orbital. Its inversion symmetry is gerade and it is 

expressed as: 

Our discussion involves only two pi atomic orbitals. If we 

choose to include more, we may consider that they are part of the 

excited set. To include them in this discussion would obscure the 

conclusions with tedious algebra and arguments about overlap. 

The single configuration two-particle ground state can be 

represented in terms of pa and pb: 

\ N) 

~ { P• (1) p. l 2. h p .. l 1) pb t 2) 

+ p .. ( 1) p. ( 2.) + pb ( 1) p. ( 2.) J 
The triplet and singlet states are represented: 

\T) = ~{ \Tiuo1T;(3) +\Tiu~n:o(>J 

{ P• (1) pa (2) - pal1) ?• (1.)) ol.ii t ~. <(, 
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and 

Note the triplet state is purely covalent (electrons 1 and 2 

are always_ on two different centers) and the singlet state is purely 

ionic (the electrons are either both on center "a" or both on center 

"b"). 

If we now examine the expectation value of the effective hamil-

tonian in the N, T, and V states, we find the following: 

Er; = ( N \ Hv\ N) = 2. { ~ ( p·--pb\fn p•+p.) 1 
+ ~ l ( P· fb Iff~\ papa.) + ( P•?a. I \t' I P~>?b) 

+ (P•?biHvl\ p.pa) + (P•P•\iit'l f'fb) 

+ ( ?• ?b \itl\ N·) + ( ?•P• \1ft'-\ N•) 

+ ( P• fb \ HYtl P~>~b') + (~ pb \ HVJ. \ N·)) 



and 

Here 

and 

l, = (T\Hv\T)= ~(patp.\Hv'\r-+p") 

+ ~ ( P·- ?• \ fr' 1 r·- r·) 

+ { ( f• f• \ 1l\'' \ P• f•) - ( f• P• \ fie'-I P• f• ')} 

[v = <viHv\v) = -tl?•+f~,\Hv\f•"'f•) 

+ ~ c r. -Pb 1 fr1 1 r·- r ") 

+ { ~·P• il\''-\ ?·?·)- ( P•P• \ ff'-\ f•fb)~ 

are matrix elements of the effective two-body operators. Now since 

lll v2 is invariant under particle exchange and inversion operations 

we have the following identity: 



The transition energies are given by 

where 

and 

[T -[N = - (pb\ pa) - (pa\ pb) 

- i {(papalp.p~)- ( papbl papb)} 

-[Cpapajpbpo) + (p•pa.\papb) + (p~pbjf•P•) 

+ ( P• Pb I P• fa) + ( P• pa \ fb Pa) - ( f~ fb j fb Pa) J 

( P• / Pb) ==: ( pa l fiv'j fb) 

(Papb I Pafb) == ( papb iHv• IF•Pb) 
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We thus have expressions for the T and V state excitation 

energies. At this point we could discuss the triplet-singlet 

splitting with respect to these calculated single configuration 

energies. However, by invoking the zero·differential overlap 

approximation, we will be better able to relate to the semiempiricists 

point of view. Further, we should see the largest contributions to the 

splitting. Therefore, in the ZDO scheme 

and 

where 

A - (?a\'~\ ?~?a.J- ( \)?. ~h \ p-a ?b J 
-fa:o. - -fa b 
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We are then led to 

Empirical values for 6 depend on the semiempirical parameters 

y and y The success or failure in predicting the V-T splitting aa ab· 

is partly reflected in how well yaa and yab are modified from their 

bare coulomb values towards their semiempirical values. 

From Eq. 1 s V-1 and V-2 we calculate corrections to the one-body 

and two-body operators in the molecular orbital basis. Since 

the y and y b refer only to the two-body terms in the AO basis, aa a 

we transform the corrections of the two-body terms back to the atomic 

orbital basis. These corrections can theri be looked upon as corrections 

to the bare coulomb matrix elements as is shown in Appendix B. Our 

corrected values for y and y b as well as the bare coulomb values and aa a 

semi-empirical values are listed in the following table (Table VII). 

Our Yaa matrix elements are reduced by 0.8 to 1.6eV and Yab 

is raised about 0.2eV (depending on approximations and basis set). 

However, we are still 2.5-3.0eV from the empirical values derived 

from experimental results. 

We have used four basic approximations in our work: 

i) truncating the cluster expansion and including 
only up through the three-body terms 

ii) keeping at most only part of the second order 
commutators 

iii) approximating the solutions to the equations for 
the generator s12 , as well as assuming s123 = 0 

iv) using a finite basis set for the excited orbital 
space to evaluate the formulae 

We feel that of these four sources of error the basis set problem is 

the most serious. The extent of the basis set bears on two conceptually 
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TABLE VII 

TWO BODY ONE AND TWO CENTER MATRIX ELEMENTS 

Y aa Y ab 

_1_ (using STO's) 16.93 9.31 7.62 
r12 

Semiempirica1 10.53a 7.38a 3.15 

CT Basis set I ID = 0 15.47 8.96 6.51 
1 15.46 9.66 5.80 

CT Basis set II 0 15.76 9·50 6.26 
1 16.02 9.44 6.58 

CT Basis set III 0 16.09 9.38 6.70 
1 15.34 9.67 5.67 

aR. Pariser and R. G. Parr, J. Chern. Phys., 21, 767 (1953). 
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distinct questions. The first is the completeness of the pi orbital 

valence space. In principle, we have taken it to be infinite whence, 

the effective valence shell hamiltonian should be represented by an 

infinite matrix. Diagonalizing the effective hamiltonian--assuming 

we have somehow found its exact matrix elements--on a finite subspace 

yields at best approximate stationary states. The second question 

concerns the completeness of the sigma orbital space. Calculation of 

any one matrix element of the effective hamiltonian requires in prin­

ciple a complete set of sigma orbitals (e.g., the sum over a is e 

infinite). 

In practice these two questions influence each other because of 

the manner in which the core, valence, ~nd excited orbitals are in 

fact found. A finite atomic orbital basi~ is introduced and a self 

consistent field calculation yields the sigma core orbitals, the 

occupied and virtual pi valence orbitals, and the virtual sigma 

orbitals which carry the burden of mimicing the space of excited sigma 

orbitals. Thus, the finite dimensional pi space will influence the 

division of the sigma orbital space into core and excited orbitals 

through the SCF procedure. 

It is not surprising that the practical considerations associated 

with the extent and character of the finite atomic orbital basis 

set must be thoroughly understood before drawing any conclusions from 

the numerical application application of the formalism. Our 

intuitive feeling--coloured perhaps by the hope that the formalism will 

be a practical aid in performing semiempirical calculations--is that 

we should try to get accurate values for the effective hamiltonian 

on a somewhat restricted valence space, rather than trying to extend 
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the pi orbital space at the outset. Hence, we are led to introduce 

an extended set of sigma orbitals as the most direct way of computing 

the matrix elements of the effective hamiltonian on the limited 

valence space. 

The results of our configuration interaction studies are shown in 

the following table (Table VIII). Energy diagrams of the V state 

and the T state using the data from Table VIII are shown in the 

following figures (Figures 10 and 11). 

These results are rather coarse ahd are to be expected from 

examination of the transformed matrix elements. Our singlet-triplet 

splitting is too high for all three choices of basis. A discussion of 

the shortcomings of these calculations along with suggestions for 

future work follow. 

Conclusions 

Our studies were not aimed at making definite conclusions about 

the lowest singlet and triplet excitation energies of the ethylene 

molecule. Rather, they were to develop the canonical transformation 

approach to quantum chemical calculations. Large molecules of fifty 

or more electrons are inaccessible to rigorous quantum computations 

which include correlation effects. Our intent is to develop a 

rigorous albeit useful scheme for studying such molecules. 

We chose, as a starting point, to calculate the pi-electron 

hamiltonian of ethylene. What now follows is a summary of the 

difficulties we encountered. 

i) Our choice of ethylene as a prototype molecule of pi-electron 

systems seems to have been a poor one. Although the molecular 



Experiment a 

Ab Initiob 

Freed (l)c 

Freed (2)c 

Basis Set I 

Pi Approx 

IDENOM=Od 

IDENOM=l 

Basis Set II 

Pi Approx 

IDENOM=O 

IDENOM=l 

Basis Set III 

Pi Approx 

IDENOM=O 

IDENOM=l 

TABLE VIII 

CONFIGURATION INTERACTION RESULTS 
(Energies in eV) 

N+T 

4.6 

4.25 

4.793 

4.845 

4.780 

3-153 

3-153 

4.662 

3.404; 

3.824 

4.607 

3-929 

3-309 

N+V 

7-65 

8.32 

9.444 

9-729 

13.072 

10.591 

10.572 

11.730 

10.106 

10.028 

11.993 

10.615 

9-981 

V+T 

3-05 

4.07 

4.65 

4.88 

8.29 

7.44 

7.42 

7-07 
6.70 

6.20 

7-39 
6.69 

6.67 

aExperimental values for N+T and N+V transitions are listed 
and discussed in paper by A. J. Merer and R. S. Mulliken, Chem. 
Rev., £2, 639 (1969) • 

bR. J. Buenker, S. D. Peyerimhoff, and E. Kammer, J. Chem. 
Phys. 22, 814 (1971). 

cBasis sets 1 and 2 of S. Iwata and K. F. Freed, J. Chem. Phys. 
61, 1500 (1974). 

d {0} {exclusion} . . IDENOM = 1 refers to . 1 . of two body potent1al 1n · 1nc us1on 
denominators in the calculation of the effective Hamiltonian. 
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orbital approach leads to the inclusion of a pi orbital on each 

carbon atom, the low lying excited states are strongly suspected to 

involve sigma orbitals. Furthermore, the actual interpretation of 

the experimental electronic excitation spectrum is disputed. The 

solution to this problem is to do the calculation in the valence 

electron approach. We need to generalize our programs to compute 

the valence hamiltonian. By choosing some of the highest occupied 

and lowest unoccupied sigma orbitals along with the pi orbitals to 

define the valence space, we feel more satisfying excitation energies 

would result. These changes and improvem~nts are currently in progress. 

ii) Because of the time consuming na~ure of transforming two 

body matrix elements from atomic orbital~ to molecular orbitals, 

we were limited in the size of basis s~t. Our programming further 

limited us to transform basis sets of only thirty orbitals. (The 

symmetry of the sigma and pi orbitals allowed us to perform the 

calculation with basis set III.) Recent results of Westhaus and 

1 Bradford suggest the importance of larger basis sets. They have 

performed canonical transformation calculations on first row atoms 

and have produced excitation energies in excellent agreement with 

experiment and relatively independent of the basis set chosen. 

Thus, the need for larger basis sets in molecular calculations is 

suggested. We have now generalized programs which can transform up 

to one hundred orbitals in approximatel~ 150 kilobytes of core 

storage. The programming problem is now eliminated. Only the amount 

of computer time required remains as a burden. 

iii) Our version of GAUSSIAN-70 has no provisions for 

orbitals with "d" symmetry. Recent results of P. C. Hariharan and 



J. P. Pople2 showed the total SCF energy of ethylene to be lowered 

by o.8eV. We feel that to properly account for the delocalized 

nature of some of the excited states, inclusion of "d" orbitals is 
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a necessity. We require a molecular integral program which can handle 

"d" orbitals. Efforts are in progress to obtain such a program. 

Notwithstanding the above mentioned difficulties, we feel the 

results and progress thus far obtained merit further work. We anti-· 

cipate molecular calculations having the same accuracy as the atomic 

calculations. The canonical transformation required less than 10 per­

cent of the total computation time. If an ab initio N-electron CI 

calculation were desired, it could not be done due to the size of 

the N-electron basis. All other calculations depend on an 

arbitrary truncation of the N-electron basis and thus of the N-electron 

hamiltonian itself. Our method is an~ initio approach to the same 

problem which does not arbitrarily tru.l1ca~:e the hamiltonian. It 

yields calculation times which are amenable to most computing systems 

and budgets and hopefully in the near future accurate results. 
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APPENDIX A 

REDUCTION OF THREE BODY MATRIX ELEMENTS 

We consider the reduction of the three-body matrix elements to 

sums of products of two-body matrix elements. These three-body 

matrix elements arise in the three-body clusters discussed in Chapter 

IV, where the relevant operators are commutators like [s12, g~~f-diag] 

and[s12 , (w13- g~~ag]. Thus, examining equation (IV-7) with the 

view of letting the two-body operator Y13 = g~~f-diag in one case and 

_ diag . 
Y13 - w13 - g13 1n another, we write 

+ {S,~Y,1 -'(7.S,~~ + {S,3Y,~ -Y,_~S,,) +{Sn1,l-"YnS,2.} 

-+ { S,Y,,-Y,,S,} J I f!•/lcfA,) 
(A-1) 

b (">-.", ", \ t s,,"Y,~- 'f,,_ s ") \ f!·r·fk·) 

I L L r{ (}-,).,,_,Is,,_\ p.p.p,)(f. F· P• I"Y,,\II.~·fl) 
P· ~~ ~3 

-<\,\ch\'1',.\ p.p.p:)(p,f>p, \ S.,\ f!'•f!•)l0 J 
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Recall that the normalized three-particle ket 1~1~2~3> is 

constructed as the antisymmetrized product of orbitals. On the other 

hand, IP1P2P3) is simply the direct product of orbitals. The two 

types of three-particle kets and the corresponding bras are distin-

guished by the angular and rounded brackets, respectively. The last 

line of (A-1) follows upon using th~ identify operator 

in the usual fashion. The three independent sums on P1 , P2 , P3 are 

each over the complete set of orbitals. 

It is necessary to use the identify on the entire three-particle 

Hilbert Space rather than just the antisymmetric subspace because 

the operator in line two of Equation (A-1) has no particle exchange 

symmetry. Now it follows that 

(A-2) 
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· where the angular brackets denote normalized antisymmetric products 

of two orbitals: 

I p.p,) = /z:. {I r.>. I p.\- I p,). I p.'>.) 
Similarly; we find that 

(A-3) 

In the above equations A and B can be any two-body operators 

symmetric in their particle labels. Upon inserting the results 

(A-2) and (A-3) into (A-1) and performing the sums on p2 and p3, 

we obtain 

~{<~.A,\ s,\p,.~(pA.\Y,,Ip.r,) -<>--.A,\1., I P~A~(~A,Is .. \p.p,)} 

1-I { (A,A,I S,j prJ(>-.p IY .. IJ-I,f~-('-, A,\Y,.I Pfl·><'-·r I S.,La.r;>} 
r 

+ ~ {<r-.A ,\5,. I p f ,)(A >P 11.1 /A •lA:.> -(A,},, \Y, I p,., :)(A,p Is,. I fi•JA :.>} 

-+I {<A.h, \S,. I fi·r><p>-. IY,. I P·~~-\'-.A,\Y .. I~A·PX~"· \S,. I JA·r·>) 
I 
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+ I{<>-.h, 1 s,1l p !"~( p >-, IY,J fl· t-t.>- (\, \, \Y11 I p J!.)(f"· Is,.\ IA·P~} 
F 

The summation over p is over all spin orbitals; core, valence, and 

excited orbitals. 

In Chapter VI we can use the general result embodied in equation 

(A-4) by identifying Y with g~;f-diag in one set of terms and 

w12 - g~~ag in another, and by specifying A1A2A3~1~2~3 as the appro­

priate core and valence orbitals. As discussed in Chapter IV, these 

specific choices lead to further simplications in the general result. 

For instance, with our choice of S 12 and (w12 - g~~ag) we find that 
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and 

/ I\ [ (w dia.g ) J \ II Ill> ""c vv S,2 , 1;- Sr3 C V V 0 

This can be seen by equation (A-4) and noting that at least one 

factor in each term vanishes. Thus, only the matrix elements such as 

and 

survive in the three-body cluster contributions to the effective 

interaction. 



APPENDIX B 

CORRECTIONS TO TWO BODY MATRIX ELEMENTS 

In this Appendix we will show that from equations II-24 and 

II-25 we can derive 

Hv = '£ f(v\T+V\v')+ ~(cv·\ ~Jcv')+G~v};.a •. 
v v·\. 

+v;J;...{<'IV'\ ~.Jv•v"') + ~v·v·v·} ~v ~v.3.v· O.v" 
(B-1) 

where G1 (G2) is a canonical transformation correction to the one (two) 

body operator. We will show this by writing down the firs~ three 

terms of the valence hamiltonian and showing that the Hartree-Fock 

potential U cancels explicitly. 

~he result of this cancelation is that we can consider G2 

to be a correction to the bare coulomb interaction matrix element, 

(n.n. I r:l lnkn ). The NV particle valence hamiltonian consists of 
l. J 12 1 

(Eq. II-24 and II-25) 

Hv = ~. { Ev bw' + J;. <cv \ ~,.\cv·) + G-1 )i..o. •. 
(B-2) 
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Here 

L Ev~vv'O.~O.v'- I\v\\+V+U\v? -ivav, 
vv' vv· 

v v' VV' 

We want to show the U's cancel in the first two terms in the one-body 
\ 

operator and the first term in the two-body operator except for an 

additive constant. Thus, we will work with the following three sums: 

I, <v\U\v') c{v?..v· -+- L I L. (vc\t- U~~·~\v'c.)a'.a.v• 
V\1' v v· c 

The second sum equals: 

- (ft) L L t Uvv· -+- Dec hvv·) n: a.v. 
vv· c. 

;The third sum equals: 
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+ Uv'v"' bvv· - Uv'V" 6vv'"} a: a.:. dv· a.V'" 
By relabeling the indices and summing over the delta functions, we get 

but 

V" 

when it operates to the left of av on ~n ~V particle ket. Hence, 

the third summation equals 

All three sums give 

1 Dvv· ivo.v' - (Nco~ : ~v - 1 ) L Dvv· c/v O.v' 

- (N\) NV .~ UCL 
When this operator operates on any NV-particle ket, the first two terms 

cancel, and we are left with the third term as an additive constant. 

Hence, we may consider G2 as a correction to the two-body-bare coulomb 

interaction. 
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