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CHAPTER 1

INTRODUCTION

1.1 Background. Electronic systems for location of emitters

(radiators of electromagnetic energy) by distant receiving sites have
applications in military reconnaissance and other areas of government
service and to a limited extent in civilianielectronics. - Present day
operational emitter locators employ the techniqﬁe of direction finding.
As an effort to improve the accuracy of location, several other
techniques have been either exéerimentally demonstrated or proposed in
the literature. One of these, which is the éubjéct of this paper, is

emitter location by a time difference hyperboli¢. net.

1.2 Time Difference Hyperbolic Net Defined. In two dimensionms,

let an emitter Be located at unknown point (XO, Yo). Let two receiving
stations be located at known points (Xl, Yl) and <X2’ Y2) as indicated
in Figurg l.1. Let R, and R2 be.the undirected distances from emitter
to the respective receiving sites. Assume an electromagnetic emission
leaves point (Xo, YO) at time to and arrives at point (Xl,.Yl) at time
ty and point (xz,'yz) at tiﬁe toe Assuming uniform speed of propagation

u,
(tl - to)u = Ry | . (1.

and



X
Figure 1.1. A one Baseline Time Difference
Hyperbolic net in two Dimensions
(t2 - to)vu =R, . | (1.2)
One cannot measure t1 - to and t2 - tO sihCe he has no access to

the emitter. However, the time difference tl -‘t2 can be measured by
cooperation of receiving sites at (Xl, Yl) and (Xz, Yz). Subtracting
Equation 1.2 from Equation 1.1, one obtains the one baseline time dif-

ference equation

which may be written



ulty - ty)) = [(X0 - Xl)2 + (Y, - Yl)z]% - [(_XO - Xz)2 + (¥, - YZ)ZE%

Observing Equation 1.3, one notes that it is in the form of the equation

for a hyperbola. Hence, given t - t2, the equation holds not only for

1
point (XO, YO) but for every point (X, Y) such that

aley - tp) = (@ - x4 (- T - L - %)% 4 (v - Y2)2]%1.4>

When t1 - t2 is positive, the branch of the hyperbola defined by Equation

l.4 has its focus at point (X2, Y2) as indicated by the solid curve of
Figure 1.1. The branch defined when t1 - ;2
at point (Xl’ Yl) as indicated by the dashed curve of Figure 1.1.

is negative has its focus

In summary,. knowing speed of electromagnetic propagation u, receiver

site locations (Xl’ Yl) and (XZ’ Y2) and time difference t. - t2 permits

1
one to deduce that emitter location (XO, Yo)'is oﬁ a known branch of a ‘
known hyperbola, i.e., on a curved "line of position”.
A third receiving site at known locatioﬁ (X3, Yj) permifs orie to
generate a secqnd baseline equation
»21% .
(1.5)

aey -t = LG - B L I S 1 LI A S S L O

1 3

Given t1 - t2 and t1 - t3, one may solve Equations- 1,4 and 1.5 simulta-

neously for emitter location (X = X Y= YO). Under certain circum-

0’

stances, the relationship between (t, - t

1 2’ 71

one-to-one, but in general, there will be two solutions (XOl, YOl) and

t, = t3) and (XO, YO) is

(XOZ’ Y02>' One of these solutions is the actual emittef location, and
the other is a "ghost!” location. A third baseline formed by a fourth

receiving site removes the 'ghost! when it exists.



In three dimensions, the basic equation for a one baseline hyper-

bolic net is

2 N2 2%

2 2 2.3
Sl X))+ (YY) + (2 - 2)]" .
2 : 2 2 (1.6)

One defines a K - 1 baseline time difference’hyperbolic net as an opera-
tion of K receiving stations located et points (Xl’ Yl’ Z.),

1
ZK) and instrumented with a capability to

(XZ’ ng ZZ), coey (XK’ YK’
»measure?a sufficient set of K - l.time differences ti - tj where ti and
tj are the arrival times at the ith'aﬁd jth receivers of a signal emitted
from point (XO, YO’ Zo). A set of K - 1 time differences is called
sufficient if no member of the set can be,expressed as a linear combina-
tion of the remaining K - 2 members.

There is no maximum number of baselines for a time difference hyper-
bolic net, but three is the minimum ngmber\pgrmissible (two when»emitter
and receivers are constrained to the X-Y plane) if-a point estimate of
emitter location is to be obtained with no a priori information. How-
ever, when K is the absolute minimum, point estimation is not always
unique. There is an ambiguity between two points as previously men-

tioned. Additional baselines above the minimum remove this ambiguity

and improve the confidence of the estimate.

1.3 Statement of the Problem. The problem considered in this
paper is as follows:
1) To develop a general statistical model of a K - 1 baseline‘time

difference hyperbolic net in three dimensions.



2) To develop special models (as special cases of the general mod-
el) which describe the several projected modes of operation of a time
difference hyperbolic net.

3) To effect a solution of the specialjmodels for an estimate of
emitter location and variance of the estimated location.

4) To test the sensitivity of estimates of location to errors des-

cribed by the model.

1.4 Related Previous Work. Marchand (1) found the maximum likeli-

hood estimate of position for a K element time difference hyperbolic net
in two dimensions. This study is essentially an extension of Marchand's
work. Major extensions not included in his work are:

1) Correlated measurement errors.

2) Three dimensional operation.

3) Receiving site locational errors.

4) Bias errors due to unknown Speed of propagation.

5) Bias errors due to multipath propagétion.

6) Estimation with a priori information.



CHAPTER II

DETERMINISTIC SOLUTION OF EMITTER LOCATION

2.1 Deterministic Solution of Baseline Eqﬁations. In emitter lo-
cation by a time difference hyperbolic net, one inserts numbers obtained
from time difference measurements and receiver locatibn-measurements in-
to the time difference equatioﬁs and then soives for emitter position.
If the measurements were without error, the problem essentially reduces
to that of finding the intersection of two hyperﬁolas when the emitter
and receiving sites are constrained to the X;Y plane, and finding the
intersection of three hyperboloids whén»qfherﬁise. The solutioen for

these intersections 1s derived in this chapter.

2.2 A Two Baseline Hyperbolic Net. 1In a two baseline hyperbolic
net, the emitter and three receiving stations are all constrained to the
X-Y plane as illustrated in Figure 2.l. An emission from point (XO, YO)
travels at speed u and arrives at points (Xl, Yl), (X2, Y2) and (XB’ Y3)

at times ty, ty and ty respectively. The time difference equations are:

, i L

ulty - ty) = [ Xy - x1)2 + (Y - Yl)z]2 - (&g - xz)2 + (Y - Y2)2]2
\ 2.1)

ot -t = [0 - %02 4 (v - ¥02TE - [k - x)% 4 (v - v?)E
1 37~ 0 1 0 1 0 3 0 3 (2.2)

2 2-% 2 2.k

ult, - t3) = (&, - X%+ (¥, - Y2>‘]‘ - Ly - X3)" 4 (Y - Yy) 1B

(2.3)



Note that Equation 2.2 minus Equatipn 2,1 yields Equation 2.3. Hence,
one of the equations is redundant and neqd not be considered further in
solving for (XO, Yo). Arbitrarily let the first two equations constitute
the solution set. Then the lines coqﬁectihg point (Xl, Yl) with (X2, Yy)

and (X;, Yy) with (X5, Yp) are the two baselines.

.¥2, Y2 Receiving Site 2

Receiving Site 3

Figure 2.1. A two Baseline Time Difference Hyperbolic
net in two Dimensions

The problem may be stated: given measurements for &, ),

(XZ’ Yz), (X3, Y3), (t1 - t2) and (tl’7 t3),'901ve Equatipns 2.1 and 2.2

simultaneously for emitter location (XO, YO).

2.2.1 fdIntersection of Two Hyperbolas. With XO and Yy as variables

and all other parameters fixed, Equations 2.1 and 2.2 define two



hyperbolas. 1In general, two hyperbolas may intersect in the X-Y plane
as many as four times. However, the situation here is a special case,
the unique feature being that point (Xl, Yl) is a common focal point for
the two hyperbolas. It will be shown shor;ly that the hyperbolas in
this speical case intersect at most. twice. o

Equations 2.1 and 2.2 may be rewrittén:

Wty -t - L&, - X% + () - ¥ 2P <Lk, - %)% + (¥, - 20
1 2 0 1 0 1 R0 2 0 2
(2.4)
2 20 .o .2 : 2%
ulty - £3) - L&y - X7 + (Y - YO T -D@g - X)" + (¥4 - ¥O7 1
: (2.5)
Squaring both equations and rearranging terms,
ult, - e[, - X%+ (v - vORE o &, - X)X, + (¥, - Y)Y
1 2 0 1 0 1 s T2 1770 2 1770
L 2 : 2 2 2 S \?
+2[X1+Y§-X2-Y2+U(t1‘- ty)"] . (2.6)
ult, - e[& - X2+ (v - ¥)2)%F = &, - XX, + (Y, - Y)Y
1 3 0 1 0 1 3 1770 3 1770
2 L2222 2
+ 2[X1 + Y] - X3 - Y +u (t1 - t3) ] . 2.7)
Squaring the last two equations and summing yields
c X2’+ c Y2 + ¢, X .Y, + é X } ceYa+ ¢, =0 2.8)
170 2°0 37070 470 7370 6 ’ *

The coefficients are defined:

3 2)2 - u2(t1 - t3)2] .

_ 2 2 2
c =4[(x1-x2) +(x1-x) ..u(clft

0
Il

A IR SRR CHES LR OIS I

c, = 8[(xl - X0 - Y + (X - x3>(Y1 - ¥3)] .



: 2 2 2 2 2 2 2 2
C4 = 4[ (xl - X2)(X2 + Y2 - xl -~ Yl) + (Xl - X3)(X3 + Y3 - Xl - Yl)
2 2 : 2 2
+ut (e - ) (X + xz) +u (e - tg) (X + X3)] .
2 2 2 .2 - 2 2 2 .2

2 2 -2 2
+ u (tl - tz) (Yl + Y2> +-u,- (tl - t3) (Yl + Y3)] .
2 2 2 2 2, 2.2
c6=.[x2+Y2 - X] - Y] - u(t - ty) 1™
2 2 2 2 2 2.2
+ [X3 4+ Y3 - Xp - Y] - u(ey - tg)7]

- 4(X§ + Yi)[uzﬁll - tz)z + uz(tl - t3)2] .

It is now desired to eliminate Y. from Equation 2.8. This may be

0

accomplished by solving Equations 2.6 and 2.7 for a linear relation be-

tween X, and Y. Multiplying Equations 2.6 and 2.7 through by ulty - tg)
' 2

and -u(t; - t2) respectively and then summing, the term [(X0 - X))

2.1
+ (Yy - Y)) 1% is eliminated, resulting in the equation

The coefficients are defined:

c, = u(t1 - t2_‘)(Y1 - Y3), - ’u(tlv - t3‘)(Yl - Y2) .

cg = ult) - £ - X)) - ule, - £ )X X)) .

3

L _ 2 2 2,2 . 2 - 2
cg = pult; t3)[X2 + Y, -Xl ¥y -u () - t,) ]

i i 232 42 2 2. _ 32
%u(tl 1:2)[)(.3 + Y3 ; x1 Yl. uv(tl : t3) ] .

Substituting Equation 2.9 into Equation 2.8, one finally obtains

the quadratic equation
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5 )  » .
+ CgCy + c2c9,+ C5CqCo = 0 . (2.10)

Knowing the parameters Xl, Yli x2? Y2, xs, Y3, tl - t2’ and tl - t3,
one may compute C;, Co, «+ss Cg andffhénvsolve for X0 by the quadratic

formula

b4 (b2 - bac)?

X, = - .
0 — , (2.11)

The parameters a, b, and ¢ are obvious from Equation 2.10. Then Y, may

be found by use of Equation 2.9,

Example 2.1: Let Xl’ Yl? X2, Y2’ X3, and Yé equal -30, 10, 50, 10,
10, and 70 kilometers respectively. Assume-t1 -ty and t1 - t3 are
measured to be 400/3 and 200 microseconds respectively. Assume speed of

propagation u = 300,000 kilometers per second., Then:

¢; = 11,200 ¢, = - 1,312,000  ¢; = -2,400
cy = -6,400  cg= 320,000  cg= -3,200
¢y = 19,200  cg = -20,640,000  cg= -8,000 :

Substituting these numbers into Equation 2.10, one obtains the quadratic

equation
143 Xo - 4,940.X0 - 110,500 = O

which has the roots: Xg = 50 and -2,210/143. The corresponding values
for Yo are: Y5 = 70 and -2,470/143 ﬁespectively. The apparent solution

(XO, YO) = (-2,210/143, -2,470/143) does not hold in Equations 2.4 and
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2.5, Hence, in this example, the solution (XO, YO) = (50, 70) kilomeﬁers
for emitter location is unique. Had both points (50, 70) and (-2,210/

143, -2,470/143) held in the baseline equations, then there would remain
an uncertainty as to which were the true emitter location and which were

the "ghost! location.

2.3 A Three Baseline Hyperbolic Net in Ihfeé Dimensions. Relaﬁive
to a fixed Cartesian coordinate system with arbitfary‘choicé of origin,
let an emitter be located at point (Xo, Yy, 2p) and four receiving sta-
tions be located at points (Xy, Yy, Z;), (Xg, Yy, Zp), (X3, Y3, Z3) and
(X4, Y, 24); A signal is radiated from the emitter at time tg and re-
cevied at the four receiving stations at times tys tyy t3 aﬁd t, respec-
tively. The emitter and receiving stations may be ip'motion, but it is
assumed that all displacements afe negligiﬁly small during the time in-
tervals under consideration. |

The time difference equations are:

1

o o 3

2%

Sy - X0+ (¥ - 1+ (g - 271 L @ua2)
wley - ) = (&g - X7 + (Y = 1%+ (2 - 27

' 2 , 2 2.% '
- [ &g - X307 + (Y - Y307 + (25 - 230°]° . (2.13)

2 2 2 %
u(tl - t4) = [(XO - xl) + (YO - Yl). + (Zo - Zl) ]2
2 2 2. %
- [y =X + (Yo = Y0 + (29 - 24 ] . (2.14)
- 2 2 2
U(tz - t3) = [(XO - Xz) + (Yo - Yz) + (zo - zz) ]%

2 2 2
- [&Xp - X3) + (Yg - Y3) + (Zp - Z3) ]% e (2.15)
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ulty - t,) = [X; - x2)2 + (Y, - \12)2 + (24 - 22)23%

- [ - x-4)2 + (¥, - Y4)2 + (24 - 2452]% . (2.16)
ulty - ) = [y - %)% 4 (YOA-.Y3)2 (2 - 201

- [y - X4)2 + (¥, - ‘Y4)2 + (24 - 24)2]% . (2.17)

Note that only three of the above equations are algebraically independ-
ent. This is an illustration of ﬁﬁelbasiC‘fact that from K receiving
stations, one may write (5) time différence equations., K - 1 of these
are algebié&cally independent and the remaining %(K - 1)(K - 2) are de-
pendent. The convention to be follqwed throughout thislpaber is to se-
lect the time differences (t; - tz); (tl - t3), cens (tl - tK) as the

K - 1 independent set. Hence, the £irst three equations are chosen, and
the three b;selines formed by the fouriféceiving stations are the lines
connecting point (Xl, Yl’ Zl) with point-(Xé, Y2, ZZ)’ poi?t (Xl’ Yl’ Zl)
with point (X, Yas 23) and point'(*l; Y, Zl) with point €X4, Y, 24).
The problem may be stated: given measurements forv(Xl, Yl’ Zl), (X2,
Yoy 2,05 (Xy, Yoo 230, Xy Y5 2,0, () =€), (6] = t5) and (&) - £,)5
solve Equations 2.12, 2.13 and 2.14‘stmultaneously for emitter location
(Xo, Yy Zo). The problem just defined may be recognized as the alge-
braic problem of solving for the point of intersection of‘Lhree‘hyperbo~

loids.

2,3.1 Intersection of Three Hyperboloids. 1In geneiaf} three hy-

perboloids may intersect‘at eight points. However, it will shortly be
seen that the three hyperboloids defined by Equations 2.12, 2.13 and
2.14 present a special case in which there are at most two points of in-

tersection. The procedure to be followed is similar to that of Section
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2.2.1, but the algebra here is somewhat more tedious.

Squaring Equations 2.12, 2.13 and 2,14 and rearranging terms, one

obtains:

2 2 2.%
U(t]_"tz)[(xo-xl)- + (YO-YI) + (ZO-Z]_) ]%= (XZ'XI)XO + (YZ-YI)YO

2 2 2 2 2 2 2 2_°

2 2 ' 2
U(tl-t3)[(xo'xl) -+ (YO-Y].) + (Zo"zl) ]!5'—' (X3-XI)X0 + (Y3'Y]_)Y0

2 2 2 2 2 2 2 2
+ (23‘21)20 + %[Xl + Y]_ + Z]_ - X3 - ¥3 - Z3 +‘ u (t]_-t3) ]o (2.19)

.

‘ 2 2 2
U(tl't4)[(xo'xl) + (YO-YI) + (ZO-Z]_) ]%‘—"- (X4-X1)X0 + (Y4-Y1)YO

2 2 2 2 2 2 2 2
+ (2429029 + 5[X]{ + Y] + 2] - X4 - ¥, - Z4 + u (£1-ty) 1. (2.20)

Squaring the last three equations and summing yields

The

11

12

13

15

14

16 ~

2 2 2 BREE |
11%0 * €12%0 * 13%0 - ©14%0%0 - ©15%0% ~ C1670%0

- c, X\ = c Y c, =0

17%0 ~ “18%0 " ©19%0 " ‘10 . (2.21)

coefficients are defined}
2 2 2 24 2 2 2
= u [t -t,)" + (t1-¢3) et ] - (XX )T - (Kg-X)T - (X, X))

= [ -7 + (£t 4 (2 -t)%] - (1,-v)? - (gev? - P

R 1 (T T N O L (ORI L IR A L A B L (e B

i

20X)-X I (Hy-Y) + Ky=X ) (Y3=Y)) + (X, X)) (¥-Y)))

i

2Ly R))(2y2)) + (K3X))(25-2)) + X,-X)(2,-2)]

2[(¥,-¥,2(2,-2 ) + (Y4-Y,)(24-2,) + (Y4-Y1><z4-zl>]
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18

19

10

tiplying Equation 2.18 through by u(t1

I

(x -X )(X1+Y1+Z =X

2 2 .2 .2 2 2 2 2 2
27 3

2

2 2 .2

14

+ (X)) Koozl X ,_ZZ) . u2[<xl+x2><t1,t2>2 £ KR (£ -5)

+ KK, (e -t ]

) 2
(Yy-¥) (X1+Y§+Zl'x -

20 » 2 .

2.2 .2 2 2

2 2
9=Yy-2 ) + (Yy-¥ )(x1+Y1+z1-x 37Z3)

2 2 2 2 .2 2

2 .2
(25-2)) X +Y 429

2 2 2 2.2 .2 .2 2 2
“Xy-Y,-Z ) + (z -Z )(x1+Y1+z -X5-Yq 23)

2. .2 2 2 2

+ (Z,-2)) X[+Y+2]-X, -V - 4) -u [(Zl+z ) (e -ty ) + (2+24) (¢ -

N 2
+ (242, (y,-y,) ]

14[)(2+
1
Lre2

+ {.[X.1+Y +2

2
+ (tlr-t3) + (tl-t

by -u(t
Yu(l

where

2
1+

2 42 2 52, 2 2 2 2 2 2
2] -X,-Y, ~Z +u (t -t )] +%[X+Y1 x3 32y
2 52 42 2 ;2.2 2 2 2
[FEy Xy Y-z (k) -t)] ~u (X YI+Z] )[(t t)
2
4)]

It is now desired to eliminate Y and Z. from Equation 2.21.

0 0

- t2) and summing yields

3)

3)

+u(t-t)]

Mul -

- t3) and Equation 2.19 through

2c, X 4+ 2¢, Y. + 2¢, 2 =~c, . =0 (2.22)

27°0 2870 290 20

1

g7 = (et ByoKp) - u(t)-ty) (Kp-X,)

gg = Ut =€) (Y=Y ) = ult -£5)(¥)-Y))

2

2

2
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Cpg = ulty=ty)(24-2,) - ult;-t3)(2,-2))

2 2 222 2
o0 = u(tl~t3>[X1+Y +z -Y5 -2y +u (tl-t2> ]

- u(t -t )[X +Y -xg Y§-z +u’ (t -ty ) ] .

l

To obtain a second linear equation independent of Equation 2.22, multiply
Equation 2.18 through by u(t - t4) and Equation 2.20 through by

-u(t1 - t2), and then sum the.two.» The result is

2¢,,X + 2¢50Y +,2?3_9Zb - Cyg = 0 (2.23)
where
37 7 u(tl't2>(Xa'xi)","v“."“i"ta)'(.)(Z'xl)
yp = UCE € (XY - ule) £, (Y,Y)
Cyq = u(tl-tz)(z4-zl) "“("5,1":4) (zz-zl)
cy0 = 8y A 1))

2,2 2
+u (e -t,) 1.

2 2 2
- u(t -t )[x +Y +Z1 R PRt

Note that if tl - t2= tl - t3=-'- tl - t4

sides of both Equations 2.22 and 2.23 are identically zero for every

= 0, then the left hand

point (Xo, Z ). Assume this situation does not exist. Solving

Yor %o
Equations 2.22 and 2.23 simultaneously, first to eliminate Z0 and second

to eliminate YO’ one obtains the two equations

c, .Y X

4870 = S47%0 T 40 (2.24)

¢, Z.=c..X. + ¢

4870 & 5770 50 (2.25)



16
where‘

= 2(cygcyg = CpgC3g)

= 2(cyqC37 = ©7¢3¢)

€40 = ©20%39 " ©26630
57 = 2(cpgc37 = €y703g)

50 T “20°38 T ©28°30 .
Substituting Equations 2.24 and 2,25 into Equation 2.21 one finally:

obtains the quadratic equation
e o2 2 2 | o 2 4 [2
©11%48tC12%471¢13%57 71447487 1548557164757 X0t L2¢19¢40%7
: , y o _ : y -
+2€13%50°577%14%40%48™ 15%48%5 7716 1 ©40° 57747507 "©17°487 184748
=0.

2 2 . , ' .
+¢19C48%570%g + ©12%40TC13%507C16%40%50" 1848407194850 C10%48
(2026)

Af ter solving Equation 2.26 for X0 by . use of Equation 2,11, one may
find Yo and Zo_from Equations 2.24 and'2.25'respectiveiy. In general,
Equation 2.26 will yield two solutjions for‘Xb, say XO1 and X02' One
must test each back into Equatiéns 2.12, 2.13 and 2.14. 1If one of the
two points dees not hold, it is an aﬁbiguity due to squaring and may be
eliminated. If both XO1 and X02 hold, then.a fourth independent baseline
equation (formed by one more receivihg station) is required in order to
remove the ambiguity. It is necessary énly td insert the X and X

01 02

into the new equation to resolve the uncértainty.
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Example 2.2: Let Xy, Yy, 273 X9, Y9, 293 X3, Yq3, Z33 X4, Yy, Zy
be 10, 10, 103 40, 10, 10; 10, 40, 50; 10, -50, ~30 kilometers respec-
tively. Assume t; - ty, tj - t3, and t; - ty are measured to be -100/3,
100/3 and -éOO-microseconds respectively. Then Equations 2.24, 2.25 and

2.26 become
YO = - 5X0 + 60
2
247X0 - 380X0 - 20,900 = O '

These equétions have the two solutions (Xo, Yo, Zo) = (10, 10, 50) and

(-2,0§Q/247, 25,270/247, -1,330/247) kilometers. Testing both solutions
as previously discussed, it is deterﬁiﬁed that the latter does not hold.
Hence; in this example, the solution (10, 10, 50) kilometers for emitter

location is unique.

2.3.1.1 Special Case, all Receiving Sites Located in X-Y Plane.
Suppose all four receiving statioﬁs are locatédtin the X-Y plane. _ Then
2y =29 =12y =2, = 0, and g and C3g pof Equations 2f22 and 2.23 are

zero. Hence,
2c27X0 + 2c28Y0 = Cog (2.27)

The unique solution for (Xo, Yo)'may be found by solving these two linear

equations simultaneously. The solutions are:

C..C -c_C
20738 30 28
€27°38 = ©28°37

X (2.29)

=1
0 2
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c. G - C,C
y, = L 30727 ° "2037 . (2.30)

Z cyy3g = C8%37

Substituting these solutions for Xo'and Y0

into Equation 2.21, the solu-

tion for Zovbecemes

- 2 27]%
¢14%0¥0"¢17%0"%18¥0 10711501270 2.31)

Z. =+
0 —_—
- C13

If the emitter is prohibited below the X-Y plane, then the plus or minus
“ambiguity in Equation 2.31 is elimiﬁatéd:and

. 2 2%
_ | cdfo¥ore1A 01870 1071150120
.0 ‘c1'37T R '

. (2.32)

2.3.1.2 Special Case, a Point With no Unique Solutidn. As previ-

ously mentioned, the solution for (XO, Yy ZO) given above does not hold

at the point (t1 - tgs ty - tg, ty -

1 t4)~= (0, 0, 0). Let the origin be

a; (Xl, Yl’ Zl) for convenience anq suppoese t; - ty = t; - tg=1t; - t,

= 0. Then Equations 2.18, 2.19 and 2.20 become

2 .2 2
2X2X0 + 2Y2Y0 + 22220 = x2 + Y2 + 22 (2.33)
2X.X. + 2Y.Y. + 22 2. =Xt 4+ Y 4 2 (2.34)
3%0 3%0 3% T 37 13 3 .
2X,X 2V, Y. + 22,7 = X2 4+ Y 4+ 22 (2.35)
R B R B R A A . .

The unique solution for (Xgs Yy Zo), if one exists, is immediately ob-~-

tainable from the above three equations. Suppose all receiving sites

are in the X-Y plane., Then Z1 = 22.= Z3 = 24'= 0. The solution for

(XO, YO) may be found from the above equations, but not 2. Referring
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back to Equatiens 2.12, 2.13 and 2.14, it is seen that they hold for

every finite Z Therefore, when all time differences are zero and all

00

receiving sites are in the same plane, there is no unique solution.



. CHAPTER III
DEVELOPMENT OF THE SYSTEM MODEL

3.1 Introduction. The system model for estimation of emitter loca-

tion from measurements acquired by operation of a time difference hyper-
bolic net of K receiving stations is developed in this chapter. Aside
from the extensions listed in Section 1.4, the approach hefe is complete-
ly different from that of Marchand (1). Here, the linear model is formu-

lated so as to have the form
A=By+e (3.1

where

is a column vector of observations (measurements).

1>

B is a matrix of known constants.
Y is a vector of constants to be estimated (coordinates of the
emitter position).
e is a random vector of errors.
The advantage of this approach is that Equétibn 3.1 is the standard
linear model which has recei?ed extensive tﬁeoret1¢a1 treatment in the

~ statistical literature. The reader may want to refer to one of the many

texts on the subject (2,3,4).

3.2 The Arrival Time Vector., Relative to a fixed Cartesian coor-~

dinate system with arbitrary choice of origin, let a signal be radiated

from point (Xo, YO’ ZO) at time ty and be received at each of K receiving

20
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th

stations at times t_, t receiver

1 g? *ee tK. The arrival time at the i

may be expressed
t, =t +~R 3.2)

where

th receiver.

ti is the time of reception at the i
ty is the time of radiation by the emitter.

u is the scalar velocity of propagation.

Ri is the distance between emitter endbreceiver i.

Considering all K receiving stations simultaneously, one has a col-

umn vector of K arrival times defined as follows:

Ta=e N 4lp (3.3)
where
Ta is the arrival time vector (tl’ tz, ceey tK)'.
JT is a column vector of K ones. .

- R is the range vector (Rl"RZ’ ooy RK)'.

The symbol ' denotes the transpose of a vector.

in Equation

0

3.3. Measurements are either in the form of time differences t1 - t, or
1

arrival times ti. If the latter, one may convert the data to time dif-

3.3 The Time Difference Vector. One cannot observe t

ferences by taking the difference t1 - ti for i =2, 3, ..., K. Hence,

it is necessary to form a time difference vector frem the arrival time
vector. To do this, it is convenient to use a time difference generating

matrix. The appropriate generating matrix is a K = 1 by K matrix of

zeros and ones defined as follows: C = Jf‘l, -IK_l) where Jl-

is the identity matrix of order K-1,

is a K-1

column vector of ones, and,IK,1
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Example 3.3.1: When K= 4

Td::%CB_ (3.4)

where

Td = (t1 -ty By - By eee, tl - tK)'.

3.4 Boeunds on the Time Difference‘Vector. Consider the ith equa-

tion of the time difference vector,

u(t, -~ ti) = R, = Ri .

1 1

Let the undirected distance between receiving stations one and i be des-

ignated d Reference Figure 3.1 and note Rl’ Ri and d,, form a tri-

1i’ 1i

angle. The magnitude of R, - Ri cannot exceed the magnitude of d ., be-

1i

cause the difference between two sides of a triangle is never greater

1

than the third. Hence,

1 1
E S PES R Sr T .
The vector felation is
~lag<cra<lyg (3.5)
1T - —u -

where
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d= (d,, d dy )

12° 7137 "' TIK

Hence, the time difference vector is bounded between + é.g regardless of
how distant the emitter. This fact could be of practical significance
in the problem of designing instrumentation. to measure time difference
vector Td. As mentioned previously, the‘choice of Td = (t1 - t2,

t, -t

ty - tK)' was arbitrary. For fixed receiving sites, one

1 3’ es ey

might want to choose an independent set of time differences so as to
minimize the maximum dij of the set, where dij is the distance between

receiving sites i and j.

Emitter location

"Receiving Site i

Receiving Site 1

Figure 3.1. Bounds on Time Difference t1 - ti

3.5 The General Model. Observation of the time difference vector

is subject to measurement error. Furthermore, Equation 3.4 is based up-
on the ideal model of electromagnetic waves propagating in straight-line

paths at constant speed. Let the total error due to time difference
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measurement inaccuracies and propagation anomalies be designated_e_Tdu

Then the time difference observations may be written

-1 "
g_UOngTd (3.6)
where
8= (t1 < tys by = gy eees £y - tK)' plus error is the vector of

time difference measurements.
Note that we have replaced u (possibly unknown) by ug (known). The dif-
ference is accounted for in’gTd.

As an introduction to what follows, let us look at the estimation
problem associated with Equation 3.6. Recall R = (Rl, R2, cons RK)'
where Ri is the true distance between emitter and receiver i. R =
[x, -~ X )2 + (Y, - Y')2 + (2, - Z )2]% where (X., Y., Z.) is the true

0 i 0 i 0 i 0* 70 70
emitter location, and (Xi’ Yi’ Zi) is the true site location of the ith
receivef. While (X.,, Y., 2.) and (X,, Y., Z,) may vary with time, we
r 0 0> "0 i i? 71

assume the variation is slow enough that they may be considered as fixed
during the time interval under consideration. There are 3K + 3 constants
contained in R. The basic objective is to estimate three of these, the
emitter location (XO, YO’ ZO); The remaining 3K are glready known; how-

" ever, in general, these 3K constants (le Yl’ Zl; X2, Yy, ZZ; sees XK,
YK’ ZK) are known subject to error. This error will be propagated into
our final estimate of emitter location.

Let the uncertainty associated with receiving site locations be ex-

pressed
A, =0+ e 3.7)

where
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A, is a random vector of recorded site locations.

1
o is the true location of receiving sites.
& is the position measurement error.

o and Ll will be defined more explicitly in Section 3.6.

Let Equations 3.6 and 3.7 be augmented

>
1R
[¢]

. s (3.8)
A

I
5+

|®

Equation 3.8 will be called the general system model. We have a random
vector of 4K - 1 elements (data) equal to a function of 3K + 3 constants
(XO, Yos 25 X5 Yi5 Zgs Xy Yoy 2oy eees Xps Yy, ZK) plus error.  The
general model is nonlinear due to the form of R. 1In the next section,
the case.is considered when the errors are small enough that R may be

approximated by a first order Taylor series.

3.6 The General Linear Model. Consider thé range equation Ri =

X

2 2 2.% . .
[(X0 - Xi) + (Yo - Yi) + (Zo - Zi) 1? where R; 1is the distance between
* * * :
emitter and receiving site i. Let (Xi’ Yi’ Zi) be chosen as a known

point near the true site location (Xi, Yi’ Zi)' One may select the re-
) * 3 *
corded estimate of (Xi, Yi’ Zi) as the point (Xi, Yi’ Zi) if desired.
%

k k3 %
Let (XO, YO, ZO) be chosen as a known point near the true emitter loca-
tion (XO, Yo» ZO). One can find point (Xg, Yz, Zg) by the deterministic
solution derived inVChapter II.

As the two unknown points [(XO, Yys ZO);(Xi, Y Zi)] vary around

i?
kS

i Z;)] respectively, the first

* k.4 * %
the two fixed points [(XO, Yos ZO);(X;, Y

order Taylor series of R, may be written
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% % % * * e o % * %
R, = R, + [ XX ) Kg-X) + (Y=Y ) (Y-Y.) + (24-2,)(24-2))

S * % * ko % *
- X X)X -X.) - (Y=Y )Y -Y.) - (2.-2.)(Z,-2.)] (3.9
O_ i i i 0 i i i 0 i i i

where

ale

% % % % Y g Y L
RS = [xoxH2 4 F-vyH2 4 (25252
i 0 i 0 i 0 1

Letting i range from one to K, the vector R becomes

Ry +ap  By-oyp) + 2, By~ o) + 2y 3(By-0y5)

%
e | B2t e ®roan) ¥ agy Boragy) 4 a3 (By-aps)
Ry + agy By =argy) + agy By~oyo) + ag3(B3-agy))
where .
X
0 1
a1 = *
i R
1
(Y. -Y)
0 i . . . ,
a,, = —/—— ? i.e, the direction cosines.
i2 %
R,
1
. (ZO=Zi)
13 *
Ry )
By = %%
% i.e. displacement of the emitter from
B, = Y5 Yo 0 ,
assumed location.
*
= 7Z =2
®3 = %% J
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* =
o., = X=X,
11 l 1 . o 2 a o .
i.e. displacement of receiving site i
ata
iy = Y=Y, > from assumed location.
7
%3 = Zy724 J

In order to express R in more compact notation, the following vectors

and matrices are defined:

- (ail, aiZ’ aiB)

I
I
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A
A,
_G_ =
Ay

Then

(3.10)

|0
]

and finally

R =R +AB -G o . (3.11)
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Let Equatioen 3.11 be substituted into Equation 3.6, Then the linear

approximation to the time difference model becomes

s=l c® +A8 -ca)+ e . (3.12)

The receiving site model was defined by Equation 3.7 as

>\=Q’ + e ° (3(:13)
_1 — —s .

Let @ be as defined above, that is & = x, X ,Y -Y,zZ z $X_ <X

1’1 1’71 2 72’ 2 2’
:ZZHZ:; ven’ XK XK YK YK ZK ZK)' Then K approximates the true site lo-
cations minus bias vecter (X1 Y1 Zl,X2 Yé 22’ .e.,XK,Y Z ) We require

this arrangement in order to approximate R, by a linear function of XO’
i

ok Kk
Y, Z,X ,Y and Z,. In the linear model, (X ,Y ,Z ) must be near
0 0 i i i i”i7 i
- * Kk %

X ,Y.,Z ), but in the general model (X,,Yf,Z_)‘may be arbitrarily

i i i i1t i
-chosen. Al of Equation 3.13 is the output of the sensor which measures
- site coordinates if the net of receiving stations are in motion. If the
receiving statiens are fixed ground sites, then LlAis the vector of re-

corded site coordinates.

Let Equatiohs 3.12 and 3.13 be augménted

= « + | (3.14)
CR +AB-Ga) e

Equation 3.14 will be called the general linear system model.



CHAPTER IV
SYSTEM ERRORS

4.1 TIntroduction. The general system model of a time difference

hyperbolic net has error components due to: (a) inaccurate receiving
site locations, (b) time difference measurement inaccuracies, (¢) in-
strumental errors associated with the measurement process, and (d) er-
rors due to propagation anomalies. For our purpose, an error component

is characterized by its mean and dispersion matrix.

Definition 4,1 Let A be an n by 1 randem vector. The symbol E
is defined as an operator such that EA is the mean value of A. The
symbol. D is defined as an operétor such that DA 1is the dispersion matrix

of A. That is, DA = E[(A - EM)(A - EM'].

.The form of the dispersion matrix for each error component and for

the total system error is derived in .this chapter.

4,2 Theory of Error Combination. Before proceeding further, it is

necessary to develop some theoretical results, Proofs for the stated
theorems are given in Appendix B,

Let ¥ be an n by n matrix.

Definition 4.2: X is.séid;to be positive definite if and only if

a'X a > 0 for every n by 1 non null vector a.
Definition 4.3: . £ is said to be positive semidefinite if and only

30
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if a' £ a > 0 for every vector a, and a' L a = 0 for some non-null a,

Theorem 4.4t Let 5 be positive definite, and let B be an p by n
matrix. Then B Z B' is positive definite when B is of rank p and posi-

tive semidefinite when B is of rank less than p.

Theorem 4.5: Let ¥ and B be as defined in Theorem 4.4. Then every
diagonal element of B X B' is zero only if B = @ where ¢ is a null

matrix. Also, B Z B' = @ only if B = @.

Theorem 4.6: Let X be positive definite and symmetric. Then Zml

exists and is positive definite and symmetric.

Theorem 4.7: Let Z; be positive definite and X, be positive defi-

nite or positive semidefinite. Then Zl + Iy is positive definite.

In the following theorems, the symbols Y ahd X are used to designate
random column vectors and constant matrices respectively. Y and X should
not be confused with location coordinates Y énd X used elsewhere in this
paper. When the statement is made that a vector or matrix is arbitrary,
it is to be understood that the order of the arbitrary quantity must

be compatible with the indicated algebraic operation.

Theorem 4.8: Let Y =X Y + b where Y; and Y are random vectors,
X is an arbitrary constant matrix, and b is an arbitrary constant vector.

Then DY. = X(DY)X'.

1

Definition 4.9: Let Y, and Y, be two randem vectors, not neces-

1 2

sarily of the same dimensions: The covariance of (Xl, XZ) is defined:

Cov(¥,, ¥,) = E[(Xl - EY)(, - E_Y_Z)r]. Note that Cov(Y;, ¥,)

i _
[COV(Z_Z, ¥,01", and Cov(¥), ¥ ) = DY,.
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Theorem 4.10: Let Xl and XZ be two random vectors, and let Kl and

X, be arbitrary constant matrices. Then Cov(&lzl, szé)

Theorem 4.11: Let Xi and X be two random vectors, and let §1 and

§2 be two constant matrices. Let the dimensions of X 2, Y and Y2 be

such that products XY “and X2Y2 are each n by one where n is arbltrary°

Then DX\ ¥, + X,¥,) = X, (DY R4k o x (DY )x X [COV(Y YOI+

&2[C°V(.Y_2’_ Xl)l&l .

X and X be as spec1f1ed in Theorem-

2’ =2

are uncorrelated D(X

Theorem 4.12: Let Y

4,11, Then if Y, and Y

-1 —2

1 Lt EY) =X (YPX] +

52 (Dzz.).)iz *

4.3 Receiving Site Erroré;afThe}receivihgfsite'error~model was de-

fined by Equation 3.7 as

hmEte, o G

where e  is a 3K by 1 raﬁddm‘vector of eitekerrors wirh assumed.zero
mean. Let the dispersion-matrix of ss be designated ES;' That is, re-
corded site coordinate vector Ll,ﬁas meaﬁ'g and dispersieﬁ matrix ZS,
We require Z to be positive definite in.ﬁhevgeherallsystem’model but
this restriction will be removed 1ater in: a: spe01al model yet to be de-
fined. 1In general, we reéulre Z to be known. However,-lf it is not

known, .one may compute an estimated Zs from a given uncertainty in Ll'

Example 4.1: Let the jth element of Al be the one dimensional
random variagble le = Xi.’ xj‘+'és.. Suppose'the uncertainty associated

with a given-meaSurement”Of'Xi:is_f one kilometer. Then assuming an
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' 2 2
equally likely (uniform) distribution, ¢, = 1/3 kilometer . Pro-
- s
ceeding in this manner with each of the 3K elements of Al’ one obtains a

diagonal‘matrix;Zs which expresses the uncertainty associated with Ll'

4,4 Time Difference Measurement Errors. The time difference meas-

urement model was defined by Equation 3.6 as

o =Ll ors

= (4.2)
0

E14

where &rq is a K-1 by 1 random vector of errors. Let

S1q = Sy T &

where ey is an error component due to time difference measurement inac-
curacies and es is an error component due to propagation anomalities.

We require the dispersion matrix Lpy = DgTd to be positive definite. By
Theorem 4,7, Deqy will bé positive definite if Dey is. The dispersion

matrix ZT is required in order to compute the best estimate of. emitter

d

- location. However, if ZT is not known, and if no reasonable estimate

d
. : ~
is otherwise available, one can find an estimated,ETd as discussed in
Section 4.3 above for»Zs. This procedure allows one to compute the un-
certainty of estimated emitter location based.upon uncertainty associated
with an observation of §.

In order to illustrate the effects of measurement methods upon the

form of EM, where ZM,= DEM’ we describe two procedural arrangements. for

measuring time differences.

4.4,1 Arrival Time Measurements. Suppose K receiving stations are

time synchronized such that each can measure real time events relative to

a common time base. Consider the case when an emitted signal has some
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known set of characteristics such that detection of these characteristics
at a receiving site determines (subject to .error) arrival time at that
site. Hence, at station i, (i =1, 2, +.., K) an observation b is
measured where bi is equal to the arrival time £y plus error. Specifi-

cally
b, =t, +e  + ey (4.3)

where

ty is the true arrival time.

e is time synchronization error at station'i.

tg

ey, is the measurement error at station i due to noise on the
i
signal and '"neise!’ in the measurement process.

By nature of the operation, er and ey, may be safely . assumed to be un-
i i

correlated.

Assume that through prior calibration, one knows Eet

= Ee =0
i Ni ’

and one has an estimate for the variance of e Further assume that

ti'

through prior simulation and analysis, one has an "estimator!” which as-
signs a variance to eN.vbased upon signal-to-noise ratio and modulation
i i .

characteristics of the received signal. Hence,

Ebl = t‘i (404)
and
2 2 2
op. =0, + % 4.5)
2 , .
where e and GeN are assumed known,  or at least bonafide estimates
te

i i
are available

Let E= (bl, b2, env oy bK)'n Then
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E_=:I"a +'_G_t + (4.6)

£y
where Ta is the K by 1 arrival time vector defined by Equation 3.3, and

& and ey are arrival time measurement errors, &, being uncorrelated with

th element of Zt,= De, and

ey By the argument above pertaining to the i e,

&y = Dey, we assume X, and Iy are known diagonal matrices.
The time difference measurement is obtained by taking the difference

(b, = b,, b, - b As described in Section 3.3, this is

1 2, 1 3, es 0y b "b

1 K)'
accomplished by multiplying through by the matrix C.

Cb=CTa+Ce +Cep . 4.7)

Recall 6 = C Ta + eyt & where ey is the measurement .error and gé_is

the error due to propagation anomalies.: Hence,

Cb=286 - &5 =CTa+ gy | (4.8)
where ey ="Ce + C ey By Theorem 4.12, ZM = Dey = C(Zt + & ¢!,
Exémple 4.2: For K= 5, let cet = 10 and GeN = 30 nanoseconds2
-1 i
respectively for all i. Find Iy
. -18. .2
Selution: Zt = 100 X 10 I5 seconds .
£, = 900 X 10718 1, seconds’.

Then ZM = C(Zt.+.2ﬁ)C' = 10'15 CC! secondsz,_

From the above example, one may generalize as follows: In the case

; . . 2
of arrival time measurements when et has variance ce at all stations
i t

, 2 ;
and when ex -has variance o, at all stations, then
i N '

2 2
z.= (¢ + ¢ ) cc! .
M ey ey
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. . 1 1 -1 . . .
' - = .

The inverse of C C!' is IK-l =z JK-l Therefore,ZM is readily available
-for the above special case.

Marchand (1) has proposed forming a random.vector of (g) = % K(K-1)
time differences from the K arrival time measurements and then assume

K K ’
the resulting (2) by (2) dispersion matrix has an inverse, Let us show
that this cannot be. Let gN_be thevK,byvl random vector of arrival time
measurement errors with dispersion matrix ZN' Let C, be the time differ-
K
ence generating matrix which blows ey up into a vector of (2) errors des-
ignated e . (We define G, in Appeﬁdix‘A;) Then g = C; ey and by
g K X K

Theorem 4.8, Dey = C1 ZN Ci. Since,gK-has (2) elements, DgK is (2).by
() while Ly is K by K. This implies the rank of Dey is at most K.
Therefore, Dey cannot.have an inverse.

Marchand also propesed thatngK;be assumed diagonal. Let the first
K-1 elements of ex be ordered (e1 5_e2, e, - e3, ceey € - eK). Then if
Dey is partitioned forming a K-l by K-l submatrix in the upper left hand

corner, the result will be DSM defined above in conjunction with Equation

4.8. We have shown by the special. case above that DgM = 02 C C!' =

GZ(IK_1 + Ji:i)"when'the variance at all sites equals 02. Therefore,

Marchand's DEK has no inverse and is in general not diagonal.

4.4.2 Time Difference Measurements. ‘Suppose the signal (after
.detection) is relayed from each of K receiving stations to a central
processing station as illustrated in Figure 4.1 below. In this case,
receiver site time synchroenization is no longer required. Ainstead it is
necessary to know the time delay of the relay link for relay channels 1,
2, «.., K. The total propagation time (neglecting for the moment 36)
from emitter to processing station via the ith receiver is t; - tg +

tr..+ eri, where tri is the mean time‘delay‘over the relay link from
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‘receiver i to the processing station, and e, 1is an additive random fluc-

1

tuation to t. . Assume that e, has the follewing properties: Ee. = 0,

2
g is known, and Cov(e. , e. ) is zero for every i # j. Also assume
Y. 1 J B
1
{ .
change in e. is negligible over time interval under consideration.
1

i Ty i

e

Emitter

Receiving
Site .1

@

Receiving -

ite 1 Receiving

Site K

Central Processing Station

Figure 4.1. Net for RelaYing Signal From Each of K
Receiving Stations to a Remote Fro-
cessing Station

At the processing station where all K signals (the emitted signal
propagated over K paths) are available at .a common terminal, let the

time differencemeas‘urementsvbli for i = 2, 3, ..., K be expressed
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bp = (ey-tgrty ey ) - (p-tghty +ep )+ ey - ey

1 1 2 1 2
b, = (ty~t+t_+e_ ) = (t,-t+t_+e_ )+ e, - e
13 1 70 rytrg 3 -0 ry Iy N1 N3
o 4 e (4.9
b., = (t. -t +t_ +e_ ) - (t -t +t_+e_ ) + e, =~ e
1K 1 70" ry T K0 ry Tk N1 NK

where eNy is the error introduced inteo the measurement due to noise on
signal i, Let us consider the case when the noise on signal i is uncor-
related with that of signal j for i # j. Assume that through prior simu-
lation and analysis, one can estimate Ggi based upon signal-to-noise
ratio and modulation characteristics of the received signal. Further
assume EeNi,= 0 for all i.

Equation 4.9 may be written in vectoer notation

b = C(Ta + Tr + e + e.) (4.10)
- — - -r - —N
where
= co e I = - .

b= (Bpps Bygs e Bpd' = 8- gy

e =1(e , e , +ee, € )' is the relay error vector.

-r I'l r2 rK

SN = (eNl, eN2, oo eNK)' is the error vector due to noise.

m . th : ini E = E =
From the argument above pertaining te eri and e i.,‘assume e EN g,
and £ = De and & _ = De_are known diagonal matrices.

r -r N N -
Recall that 8 - & = C Ta + &y which implies that
e =CGC(T+ e e 4.11
By T+ et _N) ( )
Ee =CT : (4.12)
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and by Theorem 4,12,
= = - ! . °
EM' DgM _ C(Zr +'2N)C | (4.13)

4,5 Propagation Error. To account for the uncertainty due to

propagation gnomalies, the error componentxgéewaS'added*to the . time

difference measurement model

8 =Td = Td ) . 4.14
§=Td+e =Td+e +e (4.14)

5 may be any general function of parameters which causes

gd:-l- CR » (4.15)
u :
te not hold when the true value of R is known and when Td = (tI - t2,
;Fl - t3, fees t1 - tK) i? measured without error. Since Eé is a K-1

element vector formed by differencing a K element vector, Eé'may in gen-

eral be expressed

g, = C(Ip+ gp) | | (4.16)
where Tp §nd Ep are K element vectors which in general are functions of
time. Aséume the time variation is negligibie during the time interval
of measurement. Then Tp is a constaﬁt vector and Eé is a random vector .
with zero mean value.

In general, one may not be able to estimate Ee  and De  individual-

o o
N ~J
ly. 1In this case, he might want to generate a dispersion matrix T
based upon the ‘tetal uncertainty in Tp + e , and then compute the effect
. - P
of this uncertainty in the estimate of emitter location.

As a special case, assume &g may be approximated by a linear func-

' . 2
tion of distance. Let 1/u be written l/u = 1/u0‘+ (uO’U)/uO + +.. where
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u is the true speed of propagation, assumed constant throughout the net,
and uy is the assumed estimate of u. Neglecting all terms above first

order, Equation 4.15 becomes

Un~=u
Td= 2 CR+ 2 CR . (4.17)

vo

Let 60 = (uo-u)/uo, and let gb be a random variable which estimates &§ .

Then
8. .
Tp = 2 R" (4.18)
= o =
0
and
~
60 %
e - — R . (4019)
TP Y T

That is, random vector Ep is an estimator which estimates unknown con-
stant vector Tp. The best available estimate of u is uy which implies
Ego is zero. Therefore, the estimate of Tp is $#. From a given uncer-
tainty in an estimate of u, say + w parts per 106, one may estimate qg

0

and then estimate Dep and Deé.

Exampie 4.3t Let u, have an uncertainty of 4+ 10 parts per million.

Estimate Zé.

. ~ H
Solution: Assume the uncertainty in uy implies 60 {a dimensionless

random variable) is uniformly distributed over the interval + 10_5.
This implies o% = % x 1071%,  Applying Theorem 4.8 to Equations 4.19
0 )
, 1 =10 % % 2 S|
and 4.16. in turn, Zp =3 X'10 R"(R")! seconds” and 25 = —5 X
' '3h0 3u0

. * %
10712 (¢ R")(c ™)' seconds?.

4.6 Total Error Dispersion Matrix. Let Equation 3.12 be rewritten
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ug8 - C R- ugEer, = C(A B- G @) + uglepy - Eepy) (4.20)
and let
. (4.21)
Then the general linear system model defined by Equation 3.14 becomes
A o ’ e

=1 | _ = 4 s (4,22)

A CAp -G 4 ey - B

which for convenience is written in the condensed notation
A=By+e (4.23)

where A is the vector of total measurements, receiving site locations

and coded time difference measurements, coded by Equation 4,21,

IR

y=| (4.24)

o

B is a known constant matrix which does net depend upon Yy so long

as errors are small enough for linearity to hold.

oo
It

(4.25)

e is a randem vector of total system errors.
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e = (4.26)

In general, we make no restrictions on the form of De except that
it be positive definite. That is, the receiving site locational errors
could be correlated with time difference errors. However, let De = I,

and suppose the site errors are uncorrelated with time difference errors.

.Then

3K
Zs ¢K-l .
5= (4.27)
K-1
O3k o
| a

where ¥ = De , and £, = u2De . We further assume estimates of ¥ and
s -s 2 0 —Td s

22 are available. (This problem has been discussed in previous sec-

tions.)



CHAPTER V

LINEAR ESTIMATION OF EMITTER POSITION AND VARIANCE OF THE ESTIMATE

5.1 Introduction. The general linear system model was defined by

Equation 4.23 as

A=By+e (5.1)
where

A is a column vector of measurements.

B is a known constant matrix.

Yy is an unknown constant vector (position coordinates).
e is the total system error.
It is assumed that Ee = @ and that we know, or at least have an estimate
for, De = .
The matrix B is 4K-1 by 3K+3 and is of rank 3K+3 when K > 4. To

show B has rank 3K+3, recall from Equation 4.25

C G and C A have K-1 rows. Let the first three rows of each be desig-

nated 2 and 2, respectively and consider the matrix

43
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3K
I 1)
b= 3K 3
R I

Now a, has an inverse because any three rows of C A form a square full

2
rank matrix. b is 3K+3 by 3K+3 and has inverse

TI 2K
1 3K 3
B -1 -1
28 3

L_ _ .

Therefore, h‘is of rank 3K+3 which implies B is of full rank.

In this chapter, we shall find a linear éstimator ¥ which is un-
biased and has minimum variance. Let ¥ = Elﬁ where El is a given 3K+3
by 4K-1 constant matrix. Then random vector i is a linear estimator of
the constant vector y. If EfY =y, then ¥ is a linear unbiased estimator

of y. Suppose

and
y=EFy

where El is a given constant matrix and F is an arbitrary constant ma-
trix. If E ﬁ_:_E §f= Y, and if each diagonal element of D i'is less
than or equal to the corresponding diagonal element of D iffor every
constant matrix F, then i is the minimum variance unbiased linear esti-

mator of ¥.
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5.2 A Linear Unbiased Estimator of Y. Let Equation 5.1 be
rewritten

(5.2)
and let

q=¢e'Ve (5.3)
where q is a one dimensional random variable and V is an arbitrary 4K-1
by 4K-1 positive definite symmetric matrix.

Substituting Equation 5.2
intoe Equation 5.3 and expanding, one obtains

q=A'VA-Y B'VA-AVBY+Y B VBY

. (5.4)
The partial derivative of q with respect to y is
M _ 9y BIVE-2A VB ,
oY - = -7
Setting 3q/dy = @, and replacing y by ¥,
~
Y'B'VB=A'VE :
Transpesing both sides,
~J
B'VBYy=3B'VA . (5.5)

Recall that B is full rank, i.e., the rank of B is equal to the number

of columns in B. Therefore, B' V B has an inverse. Premultiplying both
sides of Equatioen 5.5 by (B' V E)-l, one obtains

~ ~1

We will now show that'z‘minimizes q defined by Equation 5.3. Let
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d=Q-BY'VQA-BY (5.7)
and let
= - B YOV Q- _l;.i*) (5.8)
where X& is any estimator of'i. Expanding Equétion 5.8

= -ByY"

+BY-BYIVQ-BY' +BY-BY
F=LQ-BY + @-yOBIVIQ-BY+BE -]

A-BY'VQA-BY+ F-Y) B VEF-y9)

0
It

+ A -BY'VBE -y + -y B VQA-BY)

By Equation 5.5,

Hence
(_x_-gi)'vg=¢f ,
and
=9+ F-y) B VEF -y .

Since B has rank 3K+3, B' V B is positive definite by Theorem 4.4, which

implies
-y ved-yr>o0 (5.9)

for every 1% + i. Therefore, ifis the uniqué linear function of A that

minimizes the weighted sum of squares q.
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As mentioned earlier, the estimator i is a random vector since it
is a function of random vector A. Let us find the mean and dispersion

matrix for i. Taking the expectation of both sides of Equation 5.6

t=
(g4
I
t=
[ e |
7~~~
-]
<
o
N
]
—_
|
<
>
-
A
m
7~~~
1t
<
w
o’

Recall E A = E(B Y) + Ee = B y. Therefore,
Ey=y N (5.10)

which proves that ¥ is an unbiased estimator for Y.

Applying Theorem 4.8 to Equation 5.6,

pY=[@ ve) "B vinrle vy B vl

@ ve) B vEV)B @ VB . (5.11)

Note that if £l is chosen as the weighting matrix V, then

DY = (B £ _lg)fl . (5.12)

It was shown that &fminimizes the sum of squares q for arbitrary
weighting matrix V. When V = I,'z is called an unweighted estimator.

We will find the "best!" weight V in'the_next section.

5.3 The Minimum Variance Unbiased Linear Estimator for y. 1In a

one dimensional regression model, Papoulis (5) develops an appealing
sélution to the problem by use of a teéhnique which he calls the orthog-
onality principle, We shall e#tend this idea to the.pfoblém of minimum
variance unbiased estimation of Y.

In order to establish a more general theory, consider the arbitrary

linear model
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(5.13)

I
]
e
I
+
e

where
Y is an n by 1 random vector (;he data)..
e is an n by 1 random vector (the err§r).
X is an n by p matrix of knownvconstaﬁts.
a is an p by 1 vector of unknown constanfs,‘
Assume X is of rank p, Ee = @, and T is known, wﬁere =DY=0De.

We wish to find a matrix F such that the random vector

=FY | (5.14)

1w

is the minimum variance linear unbiased estimator for a. The following

theorem applies.

Theorem 5.1: The estimator §'= F Y is the minimum variance linear
unbiased estimator for a of Equation 5.13 if andvonly_if F is chosen
such that Cov[ (Y - X a), a] = @.

To prove the theorem, let us firs;vfihd Cov[(z - X é), é] for

arbitrary F.
CwUz-é@,ﬂ=¢wUz-§£b,@zn
=@ﬁa-KDL£XT .
Applying Theorem 4.10,
Cov[(z. -Xa)al=<( - XF)XF! . | (5.15)

To find a candidate for F, initially assume E_: El where F. has

1
rank p, and Cov[(Y - X 2] = . Then Equation 5.15 may be written
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Multiplying through by El’

F. XF ZF!'=F T F! N

-1 — -1 it S | z -1
Since El is full rank, El = Fi is pbsitive definite and (E1 = Ei)"l
exists. Therefore

Premultiplying both sides of Equation 5.16 by X! 2-1,

xXs XE SR =X DH =X K

which implies X! 2—1 X = (El z El)’l since X! Ei = 1. Substituting this

result into Equation 5.16 and transposing

R oot (5.18)
Let us test El for bias.
a= El Z .
Ea=~EF Y=F EY=F Xa=Ta=a .

Therefore, the estimator a = El Y is unbiased.

Recall it was specified in advance thatbg be restricted to the

1

class of full rank p by n matrices. To prove the theorem, we must show
El is the unique solution to Equation 5.15 when the left-hand side is

null, and we must show that a has minimum variance when F = El' Let
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where El is defined by Equation 5.18 and EZ is unspecified.

Since F, is completely arbitrary, F is a general p by n matrix with

2

no restrictions. Equation 5.14 becomes
a= (El +,£2)X' . (5.20)
For unbiasedness, E a must equal a. Hence,

F,

o

+E)Xa=
Since El X =1,

T+E,Xa=a . (5.21)

Equation 5.21 is an identity which must hold fof every a in order for é

to be unbiased. Therefore a = F Y is unbiased only if

F

2_}2.—_¢ . ‘ (5.22)

~

Letting Cov[(Y - X 3), 2] = @ and substituting Equation 5.19 into Equa-

tien 5.15,

1<

F F F! + F1) = F! 4+ F! . .
(_1+_2) z (__1+_2) z (__1+_2), (5.23)

Does there exist a non null 22

Upon expansion, Equatien 5.23 becomes:

such that Equations 5.22 and 5.23 hold?

X(E TE +F TF +F TF +F TE)=2IF +F)

@z ol

’ -1 -1
z F! F X X' X X LM X Xt F!
TR ALX@ T 0T+ @ 070 ]

)]

=X X I X +IE .

Applying the unbiasedness condition specified by Equation 5.22 and



clearing,

XF ZF'—'——ZF' . 5024
-2 2 -2 ( )
Multiplying through by EZ’
XL, rE)=51F -

The left-hand side equals zero by Equation 5,223 however, by Theorem 4.5,
the right-hand side can be zero only if EZ = (. Therefore, when esti-

mator & = F Y is unbiased, Gov[(Y - X a), 2] = @ if and only iff F=F

-1 <1 -
o x s

1=

We will now show a has minimum variance when F = F.. Let F=F_ +

1 - -1
F, and let Cov[(Y - X 8), a] be arbitrary. F is a general matrix subject

only to Equation 5.22.

Da= (F F F! 4+ F!
a (_1 + __2) z (_1 + _2)

-1 .- -1 _.-1 -1 -1
= X'z X F TF! +F X X'Z " X) XtZ X)) X!
0.4 ) +EZF +F XX )+ & D X

F!
—2
The last two terms on the right-hand side are zero because of the

biasedness restriction of Equation 5.22. Gonsider the term EQ z Eé.

Since ¥ is positive definite, each diagonal element of F, 2 Eé is equal

to or greater than zero for every E,. ‘Each diagonal element of D a will

be minimized only when EZ z Eé has all zero diagonal elements. By

Theorem 4.5, this can happen only when F, = @. Therefore

—x it sty (5.25)

>

is the minimum variance unbiased linear estimator in the model defined
by Equatien 5.13. This cempletes the preof of Theorem 5.1.

In our time difference hyperbolic net model defined by Equation 5.1,
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the minimum variance unbiased linear estimator for y is

-1 - -1
i=<§'21§)1B'2 A (5.26)

and

DYy=(®B'Z '113)'1 . _ (5.27)

These correspond to the solutions found in Section 5.2 by least squares

if ¥ is chosen for the weighting matrix V.

5.4 A Maximum Likelihood Eétimator for y. Assume A has a multi-

variate normal distribution. 7Tts density function is

1 -%q
ZR-1 e (5.28)

(2m 2 {Z‘

£V =

N

where

4= Q-By)' Tt -By). (5.29)

The maximum likelihood estimator of Y is the particular y that maximizes
f(A). Since f()A) is a decreasing functien of q, the y that minimizes q
will maximize f(A). We have already found this y in Section 5.2.

Therefore

y=(B'Z B) BT A (5.30)

— . — —

is the maximum likelihood estimator for Yy under the assumption of

normality. Applying Theorem 4.8,

py=( =it . (5.31)

Summarizing the results of the last three sections, 2 defined by
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Equation 5.30 is the weighted least squares, minimum variance} and maxi-
mum likelihood estimator for y. The dispersion matrix for ¥ is defined
by Equation 5.31.

Recall ¥ estimates both receiving site locations and the emitter
location. The implication of this is that we allow the time difference
measurements and the total error dispersion-matrixvto influence the
final estimate of receiving site locations. 1In turn, the variance of
the emitter location estimator is minimized.
| As a final result, we are primarily interested in é and D E. é is

the last three elements in ¥, and D B is the three by three submatrix in

the lower right-hand corner of D i.

5.5 8Site Errors Uncorrelated With Time Difference Errors. When

the receiving site locational errors are uncorrelated with the time dif-

ference measurement errors, the total error dispersion matrix may be

written
3K
Py
_ s ¢K-l ,
o= ¢K-1 . (5.32)
3K 2
L _ .
Then
- =1 -1
Zg -G'CIZ CG -GG I CA
-1
B'Y B= 1 1 (5.33)
- A" (¢! 22 CG A' C! 22 CA




The positive definite symmetric matrix

has inverse

|o

where

3

2, b
E =
b &,
-1 -1 -1 -1
b b'! - b
a +a ba b a a ba,
- b! -1
3 - "1 -3
- .
-1 (-1

a = °b' b .
a (52 bt a_ "~ b)

-1

Applying this result to Equation 5.33,

DB = [_{\_'C'ZlCé - évmz;lcg(z;l - GICIT

Let

V12

Then

DQ-_—(Z;l-g' c' I

and

-1
2

-1
s

1 -1

= (5, -G C' g, c_q)"1 @ c I, ca .

1 -1 A
CO T +vV (DB VL,

CG) grc'zglcg’l.

54

(5.34)

(5.35)

(5.36)
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where

[
I
o> R

The product B!' Z_l A upen expansion becomes

-1

-1
T A -GN G E A

1

T
L — ¢

Substituting these results into Equatien 5.30,

. RS | -1 -1

= - Q! C! - T Q! 5.37
&= (& -6 C I A) -V, Ba I, A,)  (5.37)
§= o 8)[A' ¢! sl v g + V! G'C! 571y J . (5.38)
= o= 2 =2 12 s =1 12 = 2 =2

Let us summarize. In general, é (thé.minimum variance linear un-
biased estimator for B) and D E (the dispersion matrix of the estimator)
are defined implicitly by Equations 5.30 and 5.31 as previously de-
scribed. When site errors are uncorrelated with time difference measure-
ment errors, then E and D E are given by Equations 5.38 and 5.34 re-

spectively. The utility of the latter two equations is that the

matrices to be inverted are of lower order than in the former equations.



CHAPTER VI

SPECIAL MODELS

6.1 Introduction. In the general linear system model, the re-

ceiving site error dispersion matrix Zs'must be inverted. If location
of one of the three coordinates Xi’ Yi’ Zi for any i is known with neg-
ligible uncertainty, then ZS has a zero element onbthe'diagonal, and ZS
has no inverse. We will redesign the-model in this chapter so as to
handle the situation when I  is positive semidefinite. Recall that a
null matrix is positive semidefinite.

Also in this chapter, we redesign the model so as to offer an alter-

nate method of accounting for the propagation error component &5+

6.2 Model 3., 1In Equation 5.30, the minimum variance unbiased esti-

L . , -1 .
mator for emitter location contains the term ¥ ~. If one coordinate of
s
. . ; - . -1
one receiving site is known with negligible uncertainty, then ZS does
not exist. Suppose this is the case, and e, has n elements whose vari-
ance is other than zero, where n < 3K, Let us:

(1) Redefine Equation 3.7 by

A =ao + e . (6.1)
“n  “mn ~—sn

(2) Redefine Equation 3.11 by

Lo

R=R +AB - , 6.2)

G o
~n "

where gn and @, are chosen to fit the new situation, and Cen is an'n

56
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element error vector such that De_, is positive definite. With Equations
6.1 and 6.2 we could proceed as before and develop a general linear sys-
tem model with ntK-1 observations and m+3 constants to be estimated.
Rather than proceed as outlined above,:we will now develop an alter-
nate general solution which always holds, éven when Dgs = 0. Let Equa-

tion 6.1 be rewritten

=1 o +e' . (603}
-

A
n —sn

By the theory of Section 5.3, the minimum variance unbiased prior esti-

mator for o is

~ -1 -1 -1
g = (1! an 1) T1 }jsn -)En = -}ln . (6.4)

The remaining 3K-n elements of Al are'con$tants. Hence, the minimum
variance unbiased prior estimator for & is §== Ll regardless of whether
D A, is positive definite or positive semidefinite. Let & = A be sub-

stituted for @ in Equation 3.7. Then after rearranging terms, Equation

3.12 becomes

Uol - ugBepg + CC(E X)) - CR =CAB - CGQy - E X+ uplegy- Bepy).
(6.5)
Let
: *
Ay =u8 -ufe +GCGEA)-CR . (6.6)
Then Equation 6.5 may be written
A, =CAB+e (6.7)

where
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e =e -C . 6.8
& =8, Ee, (6.8)

The usage of all terms in this chapter is compatible with their previous

definitions. Recall that the total system error e was defined

and it was assumed that e had zero mean and that T was known, where

Y = De. This implies that Eg_3 = ¢ and that 22, Zs, and Cov(gz, gs) are

known. By Theorem 4.11,
T. =2 +CGZ G'C!' - [Cov(e , e )IG' C' -~ C G[Cov(e , e )] .
3 2 - s~ 2" Ts T - ~s’ 2

Equations 6.6, 6.7 and 6.8 will be called Model 3. By the theory of

Chapter V,

3

é= (ar ¢ ):;1 C é)'l A' C! 2"1 Ay (6.9

and

-1

Le A) . (6.10)

DE= @' C T

Let us examine Equation 6.10. It will be shown in Section 6.5
that under conditions of general regularity, 23 is of the form such that

its inverse is defined by a‘simple'formula. The total expression

-1
3

cally reduced-the arithmetic problem of comﬁuting B and D é. A second

(A" C' ;" C A) is three by three. Hence, by Model 3, we have drasti-

desirable feature is that it permits dispersion matrix Zs to be positive

semidefinite. That ié, Model 3 holds if some (or even all) of the
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elements of Es have zero variance.

In order to compute E, Equation 6.9 implicitly requires the true
"site locations. Since we do-not know the true site locations, the re-
corded location vector A, is substituted as an estimate for E Al in
Equation 6.6. Due to this approximation, é anq D E defined by Equations
6.9 and 6.10 must be considered as sub;optimal solutions when error e

is significant.

6.3 Model 4. The error due to propagation anomalies was ex-

pressed by Equation 4.16 as

L}

ey = C(2p+gp) (6.11)

where Tp is a K element constant vector and Ep is a random vector with
zero mean. In general, es is not observable. That is, we cannot meas-
ure Tp.

Recall that e5 is a component of‘ETd’ and we have assumed up to now
that Eepy and Deqy were known. In the sqlutionsvpreviously given for @
and D E, one can do either of the following:

(1) Empirically estimate Tp and Dgp from experience {the estimate
may be @) and proceed to compute E and D E'based on these estimates.

(2) Assume Tp and Dgp"may have ah assumed worst case value and

A ~

then compute the impact on 8 and D B.
The approach outlined above was proposed in Section 4.5. We can
offer an alternate approach when the error &5 may be assumed to be due

entirely to an unknown uniform speed of propagation. Under this assump-

tion, it was shown in Section 4.5 that Tp could be approximated by

*
R (6.12)

ClO’*
(@3 (o)

Ir =



60

where

. (6013)

For the remainder of this section, assume in Equation 6.11 that & = g.
This implies that es is now equal to the unknown constant vector C Tp
and D_e;6 = 0. We will account for the propagation error by allowing 60
to be one more constant to be estimated.

We will now redesign the general linear model and Model 3 so that
60, and hence u, can be estimated from the data. 1In practice, one may
not have any utility for an estimate of u, especially if the variance of
the estimate were higher than an estimate already at hand. However, by
allowing u te be unknown, we hope to create a model more descriptive of
nature. | |

Let Al’ AZ’ L3, es & and 24 be as.previously defined except that
DE6 = (. Let K> 5 and let the following matrices and vectors be de-

fined:

A *
A Ry
Ays Ry
_Ii = . (6-14)
A, R
i —Kf K
3K
I3k g,
M= (6.15)
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e
%
- ~
B
XQB = (6:17)
8g |
Then the system models may be written
A=My + e (6.18)
AT,
A =Hy + e . (6.19)
3 T 4B 73

Equations 6.18 and 6.19 will be called Models 4A and 4B respectively.

The solutions are

N -1 -1 -1

Vo=@ M Mz (6.20)

0 2! 6

== 1 o
Dy, =& M) (6.21)
g, = (' H stao o ot (6.22)

4B = %3 = - %3 =3

Dy = E  me)’ (6.23)

Tp = 5ty 2 ' °

The comments at the end of Section 6.2 regarding solutions to Model 3
being sub-optimal also apply to selutions of Model 4B.

We will partition B and D E from the solutions of Model 4B, Ex-

panding Equation 6.23,
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-1 -1 %
A' C' X CA A' C!' I CR
. = 3 U= = 3 7=

oo

* -1 % -1 o
(B)‘C'23 CA (B)‘C‘Z3 CR

Using the algorithm mentioned in Section 5.5 for inverting a partitioned

positive definite symmetric matrix, one obtains

~ 2 * - * * - - - - E »
D=0 = [(R )IC'E 1CR - (R )'C'T lCA(A'C"Z lCA) lA'C'Z 1CR ] 1(6.24)
0 30 = 3 U= = 3 == 3 = = 3 =

Dg = (é'C'Z;lCé)-l[I + (Déo)ércrzglcg*(g*)YCYZ;ICé(érCRZ;lCé)C'l] . (6,25)

Let
b —pd mc slemtarce gtler”
212 0 = 3 U= = 3 C =
Then
S-[m®ar -b ®) e 5 2 (6.26)
= e Ve 3 =3 ’
- N * -1
— D 1 - bt At]C! . 6.27
60 [( 50)(5 ) b, A ] 23 A ( h)

The estimate of the assumed uniform speed of electromagnetic propagation

is
8= updl - 8p) (6.28)

and

Equation 6.25 may be rewritten

!
- -1 1 b,k
DB=(arCr Ty cA) 4+ 22712 : (6.29)
D 5,



63

A =1
Note that (D 60) b is positive semidefinite and recall from

12 21
Model 3,

= (' ¢! z;l cay’! . (6.30)

o
o>

We can now compare the effects of propagation error as computed by

Models 3 and 4B. Recall in Model 3,

ey = uo(gM - EEM + &5 - E35> -CG N (6.31)
while in Model 4B
e =u(e -Ee)-CGe . (6.32)
-3 0(—M M — s

First assume that 23 = DEB where e, is defined by Equation 6.32, and

3
assume u is known (no propagation error). Then D E is given by the first
term on the right-hand side of Equation 6.29. Next let 23 be defined as
before but let u be unknown. Then D E is degraded by the second term on
the right-hand side of Equatien 6.29. Finally, let Es = Deg where e is
defined by Equation 6.31. Then we are defining the propagation error by
a random error vector &5 and solving the problem after specifying EE@
and DE@' As compared to the no propagation error case, the degradation
in D é results from an enlarged 23 in Equation 6.30.

Thus we have two methods for considering propagation error. 1In
Model 3 and the general linear model, one must define this error compo-
nent by specifying the mean and dispersion matrix for a random vector.

In Models 4A and 4B, the problem takes care of itself.
Recall that Models 4A and 4B are defined only when the propagation

error is assumed to be due entirely to a small unknown error in the uni-

form speed of electromagnetic propagation and when K > 5. The question
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now arises as to which is better, Models 4A and 4B, or the previously
defined linear models. Obviously, if one is willing to assume that &5 '
is equal to the unknown constant vector Tp, then Models 4A and 4B more
accurately describe the real world situation. However, if one's experi-
ence dictates &5 should be estimated by a non linear functiom of
distance, and this function has been empirically learned, then the gen-
eral linear system model or Model 3 is best. Such a situation is en-
countered when the sky wave correction is made to time difference meas-

urements in Loran (6).

6,4 Two Dimensional Models. Suppose the emitter and all receiving

sites are constrained to the X-Y plane. If Z0 - ZS is deleted from B,

ol

% % %
the terms (ZO - Zi) deleted from all constant matrices and (Zi - Zi)
deleted from ¢ for i =1, 2, ..., K, then all models previously defined

hold fer estimating XO and YO.

6.5 The Total Error Dispersion Matrix Revisited. In all models of

this paper, the treatment allows for the possibility that any of the 4K-1
elements of total system error e may be correlated with any other element
of e. With this fact reiterated, let us investigate a special case of
the total error dispersion matrix Z4 of Models 3 and 4B.
Recall = - CG where e_ = u_(e - Ee and e is the
call g5 = &) - C Qe where g) = uyleyy - Eepy) =rd *°

total time difference error. It was postulated in Sections 4.4 and 4.5

that &rd be approximated by

erg = Clgyt e + e +<gp) + C(Tr + Tp) (6.33)

where each error vector inside the parenthesis is uncorrelated with the

other three, and some of the four may be ) either because of measurement
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method or by assumption. If Equation 6.33 holds, then

2
— H .
22 = uO C(DeN + Der + Det + Dep)C (6.34)

and De , De , De and De are each diagonal.
N’ =r’ -t ~p

Now consider C G e_, the second component of ey Assume e is un-~

S

~ ~ ~
correlated with X Let (Xi’ Yi’ Zi) be the prior estimator of receiving

~

~ ~F
site location i, and as a special case, permit Xi’ Yi and Zi to be cor-

o~
related with each other, but assume for every i, the random vector (Xi’

~ ~ ~ o~

~
Y. Zi) is uncorrelated with all other 3K-1 site estimators (Xi’ Yi’ Z.).

i’ i
Then Dgs is a diagonal matrix of matrices. The ith submatrix (not

necessarily diagonal itself) is the dispersion matrix of (i_, Y.,mzf‘)°
J J J
Let this submatrix be called De . Then G e G' is a K by K diagonal
si S
th

matrix. The i~ diagonal element is the real number A (De )A'.
i i1

s

Under these assumptions, the dispersion matrix for I, may be written

3

-2 Gz G'Jcr . (6.35)

2
Z=uOC[ZN+Zr+Zt+Zp+uO .

3

The total expression inside the brackets is a K by K diagonal matrix.
Let this matrix be designated a with the ith diagonal element designated
a . Let b be the K-1 by K-1 diagonal'matrix with diagonal element

bi = ai+1/ai. Then

2 K-1
= b J . o3
23 a, us (b + Kalj (6.36)

h

Let ¢ be the K-1 by K-1 diagonal matrix with it diagonal element

c, =a,l/a
i

i . That is, ¢ is the inverse of b. Then

il

K-1

5ol _ 2kl
37 2 £ K-1 9
21% 1+> ¢

i=1 .

<

(6.37)
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Thus under assumptions which are intuitively acceptable as reasonable
for a time difference net, the inverse of 23 can be computed by the

simple formula of Equation 6.37. Should the total expression inside the

brackets of Equation 6.35 be equal to a; Iy then b = ¢ = IK-I’ and
Equation 6.37 becomes
-1 ; K-l |
Iy = 5 [IK=1 -7 Jlej . (6.38)
%1%

Note that under the most simplifying assumptions 23 is not diagonal.
This conflicts with the work of Marchand (1) and Dutko (7) in which they

began with assumptions equivalent to saying 23 is diagonal.



CHAPTER VII

ESTIMATION WITH A PRIORI INFORMATION

7.1 Introduction. In the case of the linear model, we were able

to obtain an analytical solution for estimated emitter location and vari-
ance of the estimate. This we cannot do in general with the non-linear
model. However, the non-linear model is readily suitabie for estimation
with a prieri information. In this chapter, we set up the equation
which must be minimized in order to obtain a nen-linear estimate of
emitter location (XO, Yps ZO)9 and solve the problem of estimation with

a priori informatien.

¢

7.2 The Non-Linear Estimation Problem. The general system model

was defined in Chapter ITI by the equation

IR

A= + e (7.1

O
|

For convenience, let

I
fl
s
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Assuming that )\ is distributed according to the multivariate normal den-

sity function,

1 -5Q
FQ) = —x 7
(2m) 2 [z|2
where
-1
Q=G -X' T (O - X) .

When Q iS'minimized, f(\) will be maximized. The maximum likelihood es-

~

~ ~ ~ ~ —~
timate of the 3K+3 unknowns is the particular (XO, Yo, Zps Xl’ ¥is Zys
~ ~ ~ ~ ~
Xo, Yy, 293 «ss5 Xg» Yy, Zy) which upon being inserted into X, minimizes

Q for a given observation A.

Next assume site errors are negligible. Let

= - E . 7.
A, = uy (8 - Ee ) (7.2)
Then the non-linear model may be written
Under the assumption of nermality,
1 Ry
f£(\,) = e 7.4
Ay - (7.4)
2 %
em ? |gy)*
where
= - N - R -
Q4 (Aﬁ C R) 22 (54 CR) (7.5)

The maximum likelihood estimate of emitter location is the particular

(XO, YO’ ?0) which upon being inserted into R, minimizes Q4.
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7.3 The Clustered Emitter Problem. We now consider the clustered

emitter problem, a problem which often arises in emitter locational ap-
plications. Suppose one measures a vector of time difference measure-
ments 6 and is willing to assume with probability one that the unknown
emitter position is at one of M known locations. That is, one knows the
L1 YL1e At Xroe Yope Zo’
L

coordinates (X caes X Y ZLM) of emitter

IM® LM?

locations L ooy LM and he wishes to assign the emitter position

1> 72
to one of these known locations based on the measured data. We consider

two cases below.

7.3.1 Maximum Likelihood Estimation. Let it be assumed that re-

ceiving site locations are known with negligible uncertainty. We will
use the non-linear model defined by Equation 7.3.

For this problem, K > 2. That is, we can make a decision based on
a net with two or more receiving stations.

Suppose one has a vector of time difference measurements 8, but has
no information to cause him to favor one of the possible M locations
over another. First computé A, from 8 by Equation 7.2. By assuming

that (XO, Y ZO) must be one of M known points, it is a simple matter

O,

to sequentially insert L; = X Y

Li?® zLi) for i=1, 2, ..., M into R

Li’
of Equation 7.5, and choose the one, say ﬁ, which gives the lowest Q40
Stated mathematically, the maximum likelihood estimate of position under
these assumptions is

A -1
= i - R ! bad R ‘70
L = Min (A4 CR) z, A, - ¢ R) (7.6)

L

where Li is centained implicitely in R.
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7.3.2 Bayesian Estimate of Emitter Location. Independent of 6 and

based upon characteristics of the received signal and eother informatien,

suppose one is willing to assign an initial probability p(L;) = p; for
each of the M locations. We now show how to blend this a priori estimate

with the data 8 in order to arrive at an a posterior estimate.

From Equations 7.4 and 7.5, the density of A, given L = Li may be

written
-3Q .
fQ, | L=1,) = L e i (7.7)
24 Bt K-1 ’
2 1
@m © |5|*
where
Q =G, -CR ).l -CR ) (7.8)
and BL- is the range vector with (XO, YO, ZO) being set equal to

1

H
(XLi’ YLi’ ZLi)- By Bayes!' Rule,

p(L=LDJEQ, | L=1L,)
PL=L, | A) = 5 1‘_‘*1 L . (7.9)
> P<L=Li>f<A4[ L=1L10)

< i
i=1

Inserting Equations 7.7 and 7.8 into Equation 7.9

30,
(L=L,] A,) = (7.10)
p i =4 M _%QLi
:E: p; &

which is the a posterior probability that the emitter is at location L; o
given the data 8. To obtain the Bayesian estimate of emitter locatien,
one sequentially inserts P; and Li for i=1, 2, «.., M into Equation

7.10 and chooses the largest. Stated mathematically



: -1
~ D%(Alq."CB.L- ) '22 (Al'.'CBL- )
L = Max p. e L a . (7.11)

1
Ly

Note that the denominator of Equation 7.10 is a positive constant.
Hence, we disregarded it when writing Equation 7.11.
To show the maximum likelihood estimate of Section 7.3.1 is equiva-

lent to assuming p; = % for all i, let p; = be inserted into Equation

=

7.11. Then

>
I

1
Max ¥ e

I
=
o e
=]
L
[
.

which is equivalent to Equation 7.6.



CHAPTER VIII
FURTHER CONSIDERATIONS OF THE LINEAR MODEL

8.1 Utility of the Time Difference Hyperbolic Net Linear Model.

The dispersion matrix of the emitter locational estimator, defined by
the solutions for D E, does not depend upon the data. Rather it is a
function of expected measurement accuracy X and the geometry of the net.
From the solutions for D é given in this paper, one may predict (before
design) the locational accuracy of an assumed time difference hyperbolic

net. It is merely a matter of specifying site coordinates and then com-

puting the three diagonal elements of D ﬁ which are c% ’ c% , and c% .
X Yo Zg

Since these vary with geometry, it would be necessary to compute each
over the region of interest.

Performing the indicated operations toe compute E, even in the most
simple case of Model 3, involveé some tedious matrix arithmetic. Fur-
ther, if the emitter is in motion (an aircraft for examplé) the entire
sequence of computations must be repeated for each data sample. This
could place a érohibitive demand upon the data handling subsystem of a
time difference net which must track a moving target in real time. Let
us suggest a sub-optimum procedure for computing E.

Suppose the receivipg sites are all fixed ground stations, and the
problem is to locate the emitter only when it is within a region small
enough for linearity to hold throughout with (Xg; YZ, Zg) remaining

fixed. Then

72
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>y

(8.1)

>
I

|+

|

N>

where F is a 3 by K-1 constant matrix which could be pre-computed. Com-
putation of estimated emitter location under these assumptions is a
simple algebraic operation, and there would be no problem in it being
accomplished in real time. When the region of interest is too large for
linearity to hold, one might have several pre~-computed 3 by K-1 matrices
El’ EQ, oansy En and have the measurement 6 automatically choose the

appropriate one.,

8.2 Utility of the Linear Time Difference Model. Formulating the

linear model in matrix form A = B y + e greatly simplifies matters.
Indeed, it was the matrix model which permitted us to derive a general
solution for é and D é in three dimensions with all the errors con-
sidered.

A similar approach could easily be applied to other types of emitter
locational nets. Consider the K station range only radar problem. Let

the measurement of distance from each of K radar sites to a radar target

be the vector d. Then

. (8.2)

The solution is

~ -1 -1 -1 ¢
B=(@A'Z A A'Z (d-RD) (8.3)
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D= Ty A (8.4)

where A, 5“ and é are as previously defined.

8.3 Comparison of the Radar and Time Difference Net. Assume the

range at each of K radar sites is measured with error u, ¢, Then in the

0

radar model

DB = ucz) @ a7t . (8.5)

Assume the arrival time at each of K receiving sites (at same loca=
tions as radar sites) is measured with error . Then for the time dif-

ference model

DB = u?) Oz[é' ¢t ccntec é]'l . (8.6)

By performing the indicated operation on C as defined,

C' (CCh) C= Ig =

K
Jx (8.7)

i

Substituting Equation 8.7 into Equation 8.6,

2 2 1 K 1 -1
DB=uo A a-1ay
B=uyo[a" A - A T T A

which may be written

-1 K1 -1
22 A'8) AJTAGRA)

DB = ugoz(é'é) + ug

1 -1 K
J (I_~ACA? A')J
(T AGDTAN T

Let

-1, , K1 -1
22 A'8) AT JAGY)

&=" 1 -1 K
J°(I -AA'A) A')J
(1 AGI) AT

where a is a 3 by 3 positive semidefinite matrix. Then
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=1
o (A" A) (8.8)

o>
I
o

Range measurements: D

[\

A w']_
Arrival time measurements: D B = u o [(é' A) + i] . (8.9)

Hence, under the simplified assumptions made here, the accuracy of a
time difference net is degraded by the square root of the diagonal ele-
ments of a when compared with a range only radar net. Another way of
looking at this result is that D é for the time difference net is

degraded by amount a due to net knowing toe



CHAPTER IX

SUMMARY AND CONCLUSIONS

9.1 Summary. The problem of estimating location of an emitter

(radiator of electromagnetic energy) by a time difference hyperbolic net
has been examined. The number of receiving stations in the net is the
arbitrary number K from which K-1 baselines are established. A time
difference hyperbolic net of K-1 baselines is an operation of K receiving
stations instrumented with a capability to measure K-l arrival time dif-
ferences for a sufficient set of K-1 pairs of stations. The problem of
three dimensional location (emitter and receiving stations in X - Y - Z
space) was analyzed as opposed to the less general case of two dimension-
al operation.

Four or more receiving stations in a time difference net are re-
quired to locate an emitter, From three arrival time difference meas-
urements acquired by cooperation of four receiving stations, the deter-
ministic solution for emitter location is derived in Chapter II. Emitter
location is computed by finding the roots of a second order polynomial.,
Since the second order polynomial has two roots, one may not be able to
ascertain which is the applicable root and which represents a "ghost!"
location. Hence, location is not always unique when K= 4, When K is
greater than four, this ambiguity is removed.

As stated above, three or more time differences are required to

compute estimated emitter location. However, one time difference

76
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measurement provides some locational information, i.e., it permits ome
to define a curved "plane!" which passes through the point of emitter lo-
cation. A second time difference measurement (acquired by cooperation
of one additional receiver) places the emitter on a curved "line” of
position. When prior information is available in the form of assignment
of the emitter position to one of M known point locations, then two or
more receiving stations are sufficient to estimate emitter location. In
Chapter VII, this problem is solved first by maximum likelihood and sec~
ond by Bayesian decision theory techniques. The maximum likelihood es-
timator assigns equal weights to each of the assumed M possibilities,
while the Bayes' estimator permits one to weight each of the M possibil-
ities by an a priori probability. 1In both cases, a particular one of
the M points is selected as the a posterior estimate of emitter location
based on the time difference data.

The major effort in this study was devoted to the statistical prob-
lem of estimating the emitter location when K > 4 and determining the
accuracy of the estimate when K > 4., Final results yielded the
following:

(1) A linear estimator which defines the estimated emitter location
as a function of time difference measurements, recorded receiving site
coordinates, and the total error dispersion matrix of system errors.

{2) The dispersion matrix of the estimator. This problem is
solved in Chapters V and VI following development of a mathematical
model in Chapters III and IV. In development of the mathematical model,
the assumption was made that errors were small enough that the change in
distance between emitter and receiver i for i =1, 2, ..., K due to

error variation could be approximated by a first order Taylor series.
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This is equivalent to the !parallel line displacement? assumption com-
monly made in the literature on emitter location.

The solutions in Chapters V and VI extend the theory beyond previous
work as follows:

(1) Correlated time difference measurement errors are permitted.

(2) The three dimensional location problem is solved.

(3) Errors due to true location of receiving stations being unknown
are accounted for.

(4) Errors due to propagation anomalies are accounted for.

9.2 Conclusions. A linear estimator (and dispersion matrix of the

estimator) has been derived which estimates location of an emitter based
upon data obtained from a time difference hyperbolic net of K stations
where K is equal to or greater than four. The estimator satisfies the
three criteria: (1) of minimizing the weighted sum of squared érrors;
(2) of being the minimum variance unbiased linear estimator; and (3)

of being the maximum likelihood estimator under the assumption of
normality.

The approximations mentioned in Section 9.1 above which were neces-
sary in development of the linear model reduces the precision of the
linear estimator as errors become large. Analysis of this effect remains
as an unsolved problem. However, for K= 4, this problem does not exist
because solutions for emitter location is a deterministic operation.

For K= 5, one would expect this problem to be minimal since the data
from one baseline are blended with the best non-linear estimate already
found by the first three baselines.

Computation of estimated emitter location according to the function

defined by the linear estimator requires a lengthy sequence of
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arithmetical operations, including inversion of matrices. It is not
feasible to make these computations except by electrenic computer. For
a time difference net in which there is relative motion between receivers
and the emitter, the entire sequence of arithmetical operations must be
repeated for each data sample. This could have major impact if the time
difference net were requiréd to track the emitter in real time, For

K > 5, one might want to use some sub-optimal estimator instead of the
minimum variance estimator so as to keep the compdtational requirement
within reasonable bounds.

The one theoretical result derived in this paper of greatest utility
is perhaps the dispersion matrix of the linear estimator. This disper-
sion matrix does not depend upon the time of arrival data. Instead, it
is a function of geometry and the accuracy to which one expects to make
the measurements. With expected measurement errors known {(or estimated
as was discussed in Chapter IV) one with an emitter location requirement
may specify a K station time difference hyperbolic net and determine if
its potential accuracy satisfies his requirement. It is necessary to
compute only the three by three dispersion matrix of the estimator. The
square root of the three diagonal elements is a measure of the expected

error in estimating emitter coordinates X,, Y, and Z., respectively.
e 0 0 0 p y



BIBLIOGRAPHY

Marchand, Nathan. !Error Distribution of Best Estimate of Position
From Multiple Time Difference Hyperbolic Networks.” IEEE
Transactions on Aerospace and Navigational Electronics. ANE-
11. (June, 1964).

Graybill, Franklin A. An Introduction to Linear Statistical Models,
Volume T. New York: McGraw-Hill, 1961.

Rao, C. Radhakrishna. Linear Statistical Inference and its Applica-
tions. New York: John Wiley and Sons, 1965,

Deutsch, Ralph. Estimation Theory. Englewood Cliffs: Prentice-
Hall, Inc., 1965.

Papoulis, Athanasios. Probability, Random Variables, and Stochastic
Processes. New York: McGraw-Hill, 1965.

Pierce, J. A., A. A. McKenzie, and R. H., Woodward. Loran. New
York: McGraw-Hill, 1948,

Dutko, M. !"The Theory of Hyperbolic Position Finding.” Technical

Report HRB-323-TP-104-67, HRB-Singer, Inc., State College,
Pennsylvania. (August, 1967).

80



APPENDIX A
DEFINITION OF TERMS

This Appendix contains a collection of terms used consistently
throughout the paper. Hopefully, it will aid the reader by providing a

central source defining the many symbols used.

1>
Il

81..
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C is the time difference generating matrix when K-1 time differences

are measured.

K
C1 is the time difference generating matrix when (2) time differ-

th

ences are measured. C1 is a matrix of K-1 submatrices. The i sub=~

K-1i K-1i

matrix is C,, = (¢i-1’ 95 K-i

11

K-3  K-3
Cp= 1 % 9 - Igg
1
Pepr T 5 -l

D is an expected value operator such that if A is a random vector,
D A is the dispersion matrix (sometiﬁes called variance-covariance
matrix) of A\« D A=E[(QA -EMNQ -E M'].

E is an expected value operator such that E A is the mean vector of
random vector A.

e is the total system error (a random vector).
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is time difference measurement error (a random vector).
is a component of EM ( a random vector).

is a component of Eé ( a random vector).

is an instrumental error (a randem vector).

is the error in location of receiving statiens (a random vector).

‘_lm mlm Jm ’.Jm %m zlm

is an instrumental error {(a random vector).

ETd is the error due to time difference measurement inaccuracies

and propagation anomalies (a random vector).
e = e +ve
“Td ™

Eé is the error due to propagation anomalies (a random vector).

e =C(Tp+ e )
) - . 7p

= Uu e -
=2 o(de L
= e - CG e
-3 -2 — ~s
— —
A
4y
G = .
Ay

I is the identity matrix. The symbol In is used when it is desired
to show the order of I is n.

n ] ' .

Jm is a matrix of n rows and m columns, and every element is the

number one.
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K is the number of receiving stations in the time difference hyper-

bolic net.

from

(K) _ K!  K(E&-~1)
27 7 2(k-2)1 2

n
@ is the null matrix. The symbol § is used to show § is n by m.

(R,, R

N

!
5 1° 2°? ey RK)

3.
&

% 7% *
R™ = (R]s Rys «oes ROD!

2 2 2-%
R, = [(X, - X)) "+ (Y -Y) + (2, ~2)"]
i 0 i 0 i 0 i

2

g

ola ala 2 o ola 2 o 1/
RY = [} - X%+ (¥F - v + (@ - 20)"]°
0 i 0 i 0 i

Ta is a vector of arrival times.

Td is the time difference vector.

t. is the time of arrival at the ith

; receiving site of a signal

the emitter.

kto is the time of radiation of a signal by the emitter.

u is the true speed of electromagnetic propagation.

Ug is the assumed value of u.

X; is the X coordinate of the ith receiving site.

X, is a point near Xi‘

Xy is the X coordinate of the emitter.

X0 is a point near XO.

Y. is the Y coordinate of the ith receiving site.
is a point near Yi'

Yy is the Y coordinate of the emitter.

Y0 is a point near YO’

Z; is the Z coordinate of the 10 receiving site,



Z, is a point near Zi'
Z0 is the Z coordinate of the emitter.

Z, is a point near Zy

%1
%
a= | .
Ik
@ = @y, @59, @4y
- X _ %
¥ =% - %
Oliz= Yi - Yi
oli3 = Zi - Zl

By=% "%
*x
By =Yy - Yy
o1
X:

™
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o
Yop = B
50
B
Yup =
50
u -
0
6O - u

8 is the vector of time difference

1>

A, is the recorded coordinates

-1

86

measurements (a random vector),

A =1u - C - u_ Ee
-2 0 - - 0 —Td
A =u 8 -u Ee +4+CGEX ~-CR"
-3 o~ 0 —Td - 1 -
A =1u - u_ Ee
4 o~ 0 —T1d
Z=De
2, = 1D
M £
. =1De
N —N
. =D
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APPENDIX B
PROOF OF THEOREMS

Some theorems were stated in Section 4.2 without proof. These

theorems are proven below.

Theorem B.l. Let T be an n by n positive definite matrix, and let
F be an p by n matrix. Then F £ F' is positive definite when F is of
rank p and positive semidefinite when F is of rank less than p.

Proof: Considerjtﬁe'matrix product b' F ¥ F' b where b is any p by
1l vector. Let a' = b' F. By hypothesis ¥ is positive definite which

implies a' Z a > 0 for every a # @ by Definition 4,2. Hence,

bt F X F'Db >0 for every b, and b' F X F!' b > 0 for every b such that
b' F # @. To prove the theorem, let us consider the two cases
separately.

Case I: Assume F has rank p. This implies the p rows of F are
independent. Therefore, there exists no b # @ such that b' F = §.
Hence, b' F Z F!' b > 0 for every b # @ and F Z F' is positive definite

by Definition 4.2.

Case II: Assume F has rank less than p. Then F ¥ F! is p by p and
of rank less than p. This implies there exists a vector b # @ such that
b' F £ F' = . For this particular b, b' F £ F! b = 0. For all b, it

~was shown above that b' F Z F' b > 0. Therefore F £ F' is positive

semidefinite by Definition 4.3.

88
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Theorem B.2: Let ¥ and F be as defined above. Then every diagonal
element of F ¥ F! is zero only if F = ). Also F Z F' = @ only if F = @.
Proof: Let each diagonal element of F ¥ F' be zero. Suppose,
contrary to fact, that F # (. This implies there exists at least ome
non-null row vector F, in F, which by Definition 4.2, implies there
exists a nonzero diagonal element of F ¥ F' equal to Ei pX g{. This
contradicts the initial assumption that each diagonal element of F I F!
is zero. Therefore, every diagonal element of F £ F' is zero only if
F=0.

To see that F X F' = @ only if F = @, observe that when F T F' = §,
each diagonal element of F £ F! is zero which implies F = @ by the above

_proof.

Theorem B.3: Let Z be positive definite and symmetric. Then Zul
exists and is positive definite symmetric.

Proof: Suppose, contrary to fact, that 2_1 does not exist. Then T
is of rank less than n, and there exists a non-null column vector a such
that a' £ = @#. For this particular a, a' £ a = O which contradicts the
hypothesis that ¥ is positive definite. Therefore 251 exists. To show

Z ~ is symmetric, let ¥ be expressed T = I Zml Y. Transposing,

= Z‘(Zul)'Z'. Replacing &t by Z, & = 2(2-1)32. Hence

-1 -1 -1
¥ T =2XZ(3 )'Z. Pre and post multiplying boeth sides by ¥ ', the
result follows. To show Z-l is positive definite, Zml = 2»1 z Zml =

- -1
= 1 (X ")! = a positive definite matrix by Theorem B.l.

Theorem B.4: Let Z; be positive definite and 22 be positive def-
inite or positive semidefinite. Then X = 21 + 22 is positive definite.

H f = 1 —_ 1 1 . PR
Proof a'Xa=a (Zl + Zz)i a Zl a+a 22 a 21 positive
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definite implies a' Zl a > 0 for every a # 0. 22 positive semidefinite
implies a! ¥y a > 0 for every a. Therefore a' £ a > 0 for every a # 0

which implies ¥ is positive definite.

Theorem B.5: Let Y =X Xi+ b where Xl and XZ are randem vectors,

1
X is a constant matrix and b is a constant coelumn vector. Then
DY =X(D DX

Proof:

DY =EB{[(XY+1b) - EX

(I35

+ I Y+Db) - E(X Y+ b)Jt}

E{lXY - E@ VIX Y - EX Y]]

E[X(Y - E V(Y - E ¥)'X']

(B[ - E D - B Y ]Ix

1l

X(D VX! .

Theorem B.6: Let Y and XQ be two random vectors, X, and X  be

1 1 2

two constant matrices, and b, and b, be two constant vectors. Then

1 2

Cov[{X; Y; + b), (X, Y, + by)] = X [Cov(y,, Y;)IX}

Proof:
Cov[(®; ¥, + )&, ¥, +b)] =
E{[X, ¥, +b) - B, ¥, +bDIE, ¥, + b)) - EX, ¥, + b1} =

E{[ql Y - B, y_l>3[(§2 ¥) - EX, 12)]’} =

B, @ - BYDQ, - EY)XT=



o1
X {Bl@ -EY)Q -EY) X =

X [Cov(Y , Y )HIX! .
_1[ ov(¥ _2)]_2

and

Theorem B.7: Let Y, and Y, be two random vectors, and let X

1 2 1

¥, and X, ¥

X, be two constant matrices such X 1 g Y, are each n by 1 random

2 1

vectors. Then
+ X

— 1 1 1
DX, ¥ Y0 =X (0 Y DX+ X, (0 ¥ )X) + X [Cov(¥, ¥,)X)

1 2

: = - =X Y - E(X .
Proof Let Z X X]. E(_}_(_l X]-), and let 2_2 ) ) (.._2 Xz>

Then

DR, Y, + X

I+
N
I

D@z, +2,) = El@ £ 2)E + 2,)]

Z! E ! E ! E 1
E(§1 _1) + (Ez §2) + (El Ez)-t (§2_§1)

I

D 2

Z +Cov(Z , Z)+Cov(Z, Z2) .
TP E kO, )t =2’ =

The statement of the theorem follows by applying Theorems B.5 and B.6.



APPENDIX C
MODEL 5

As has been mentioned pre&iously, (g) = 3K(K~1) arrival time differ-
ences may be obtainted from K arrival times. That is, one can write (g)
deterministic time difference equations, K-l of which are independent,
and the remaining %(K-1)(K-2) are dependent. This was illustrated in
Section 2.3. Previously, we have considered the case when one measures
K-1 time differences associated with a subset of K-1 independent equa-
tions from the (g) set. We will now develob a special model for (g)
time difference measurements.

From Equation 3.3 the arrival time vector at the receiving sites is

Ta =t 1 4
=2 =5

(=S

R .

Assuming site errors are negligible, the linearized approximation to Ta
is

e

Ta=t JN4+ 1 R +AB) (C.1)
- 01 u - - =
0
where Ta = (tl, t2,' ceny tK)'. Let (t:1 - t2, t1 - t3, ey t1 - tK;
- - e o - H ..i. - 1 i i
t2, t3, ty t&’ , t2 tys 3 thl tK) be arbitrarily chosen

K
as an ordered sequence for the (2) time differences to be measured. The
generating matrix C1 such that C1 Ta is the above sequence is defined in
Appendix A.

Let QS be the (g) column vector of measurements. Then
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8. = C. Ta + ¢

=5 1 K (©.2)

where EK is the total error. ESK will not be @ if constant vectors Tr
and Tp (discussed in Chapter IV) are applicable. Assume EEK is known.

Substituting Equation C.l into Equation C.2

C1 %
8 =—= (R +AB)+ e . (C,3)
-5 - - = —K
0

Let
- - Be ) - " (C.4
Ay =u (8, - Ee ) - C R (C.4)

and
5 = uO(EK - EEK) . (C.5)

Then
.}25 = C]_ :A.. .B_ + 25 ® (Coé)

Equation C.6 will be called Model 5. By constructien, Ee_ = @, and

5

Cl A is (?) by 3 and of rank 3.

If De_ = 25 is positive definite, the solution to Model 5 by the

5
theory of Chapter V is

. -1 -1 -1
= (A' C!' T C_A)  A'CI'T A C.7
B=@rcz ¢ A) AT CITo A (©.7)
. -1 -1
DB=(A' C' T C_ A) (C.8)
= = 175 1-

Equations C.7 and C.8 in two dimensions under the aséumption of positive
definite and diagonal Zg is equivalent to results by Marchand (1) and
Dutke (7). However, we are unable to permit Zg to be diagonal when time

differences are measured simultaneously. It was shown by Equation 6.38
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that Z3, the K-1 by K-1 upper left-hand corner submatrix of 259 is not
diagonal even under the most simplifying assumptions. Should time dif-
ferences (not arrival times) be measured sequentially and Zr = 26 = @
(these were defined in Chapter 1IV), then assumption of ZS being diagonal
is reasonable. By sequential measurement of time differences, we mean
that from a repetitive emitter, each time difference £y - tj is measured
during non-overlapping time intervals.

When arrival times are measured (and time differences computed from

5

arrival times), I does not exist, and Model 5 is untenable. This
statement holds whether arrival times are measured simultaneously or

sequentially. The argument behind the statement was provided in Section

4.4,.1.
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