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CHAPTER I 

INTRODUCTION 

Chapters II and III of this thesis are separate and complete 

manuscripts to be submitted to Euphytica and Crop Science, respectively. 

1 



CHAPTER II 

Simultaneous Genetic Improvement of Wheat Yield in 

Drought-stressed and Irrigated Environments 

2 



Key words: Triticum aestivum L., selection, mean productivity, 

tolerance, genetic variance, genetic correlation 

Summary 

3 

Wheat (Triticum aestivum L.) cultivars grown in the southern Great 

Plains of the USA are exposed to a wide range of moisture conditions due 

to large fluctuations in the amount and frequency of rainfall. The 

objectives of this investigation were to 1) examine various genetic 

parameters for grain production in drought-stressed and irrigated 

environments and evaluate relationships among those parameters, 2) 

determine a selection criterion which maximizes yield responses in both 

drought-stressed and irrigated environments. 

Seventy F2-derived wheat lines from the cross, TAM W-101/Sturdy, 

were evaluated at Goodwell, OK under irrigated and natural drought­

stressed conditions in 1987 and 1988. 

Genetic variance and heritability estimates were higher in the 

irrigated environment than those in the drought-stressed environment. 

Genetic correlation between yields in the two environments was 0.20 ± 

0.16 indicating that identification of widely adapted genotypes requires 

tests in both environments. The selection index, I= .7Y1 + .3Y2 , where 

Y1 and Y2 are yields in irrigated and drought-stressed environments, 

respectively, was equally efficient or superior to other indices based 

on genetic gain in each environment and was most efficient for genetic 

gain across both environments. The results indicate that an index 

comparable to mean productivity should identify genotypes with superior 

yield potential in both drought-stressed and irrigated environments. 
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Introduction 

Wheat production in the southern Great Plains of the USA is often 

limtted by sub-optimal moisture conditions. Large fluctuations occur in 

the amount and frequency of rainfall events from year to year and among 

locations within years. Hence, wheat producers in this region need 

cultivars that produce high yields under good growing conditions while 

suffering minimum loss during droughty seasons. Wheat breeders are thus 

challenged by the difficult task of developing cultivars with wide 

adaptation, even within a geographically narrow region. Keirn & Kronstad 

(1979) proposed that an ideal cultivar for stress-prone environments 

should have high yield in the most severely stressed environment 

expected yet have a strong response to increasing productivity levels. 

One issue extensively scrutinized is whether breeding for stress 

environments should rely on tandem selection in optimal and stress 

environments, or on direct selection in stress environments only 

(Ceccarelli, 1989). Several researchers have concluded that selection 

under favorable conditions produces genotypes that are suitable for both 

stress and nonstress environments (Frey, 1964; Roy & Murty, 1970; Laing 

& Fischer, 1979; Quisenberry, et al., 1980; Johnson & Geadelmann, 1989). 

Whitehead & Allen (1990) tested the hypothesis that some soybean 

genotypes have superior yield potential in both low- and high-stress 

edaphic conditions and, therefore, evaluation in low-stress environments 

can be used effectively to select such genotypes. On the other hand, 

several other authors have concluded that yield improvement under high­

stress conditions requires selection strictly under those conditions 

(Arboleda-Rivera & Compton, 1974; Ceccarelli, 1987; Ceccarelli, 1989; 

Atlin, 1989). Whether direct or indirect selection is superior depends 
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upon the heritabilities of the selected trait in stress and nonstress 

environments and the genetic correlation between stress and nonstress 

environments (Atlin & Frey, 1989). Ceccarelli (1989) noted that it is 

not the relative magnitude of heritability in nonstress vs. stress 

environments which determines the optimal environment for selection, but 

the extent to which differences between genotypes observed under a given 

environment are maintained in a different environment. Thus, the 

magnitude of genetic correlation between the two environments is more 

important than the relative magnitude of heritability in determining the 

selection environment. 

This issue was theoretically examined by Rosielle & Hamblin (1981) 

who defined stress tolerance as the difference in yield between stress 

and nonstress environments (i.e., the yield loss resulting from stress) 

and mean productivity as mean yield of a genotype across the two 

environments. They showed that selection for tolerance would improve 

yield in the stress environment, albeit at the expense of reducing yield 

in the nonstress environment and therefore mean productivity. Only in 

the rare situation where genetic variance in the stress environment 

exceeds that in the nonstress environment and the genetic correlation 

between environments is high would mean productivity and tolerance be 

positively correlated. Therefore, selection for tolerance would be 

worthwhile only when yield improvement in stress environments is 

imperative. Tolerance and mean productivity are only two of an infinite 

number of linear combinations of yield measured in the two environments 

(treated as two distinct traits). Mean productivity is simply an 

arithmetic average of two traits (equal weighting of the two yield 

measurements), while tolerance is their differential (weights of +1 



and -1). Further study is needed to determine if other linear 

combinations, or indices, better utilize the particular 

variance/covariance parameters of a given population. 

6 

Bruckner and Frohberg (1987) also combined information from stress 

and nonstress environments into a "stress susceptibility" index, defined 

for a genotype as S = (1-Yo/Yp)/D, where Y0 is yield in the stress 

environment, Yp is yield in the nonstress environment (potential yield) 

and D = 1 - (mean Y0 of all genotypes/mean Yp of all genotypes). Spring 

wheat genotypes with low S values for grain yield did not show 

outstanding yield performance in stress environments due to low yield 

potential, but did suffer minimum yield loss (high tolerance) from 

stress. 

Avoiding low yields is important to producers at any production 

level {Eskridge, 1990). Therefore, the objectives of this investigation 

were to 1) examine various genetic parameters for grain production in 

drought-stressed and irrigated environments and evaluate relationships 

among those parameters, and 2) determine an optimum selection criterion 

for simultaneous genetic improvement of grain yield in drought-stressed 

and irrigated environments in an experimental bread wheat population. 



Materials and methods 

Experimental materials used in this study consisted of 70 F2-derived F4 

[F(2)4] lines in 1986-1987 and 70 F(2)5 lines in 1987-1988 having the 

pedigree, TAM W-101/Sturdy. Lines were assigned to two maturity groups 

(early and late) based on heading dates of F3 parents. TAM W-101 is 

7 

considered drought resistant and Sturdy is considered drought 

susceptible (Tahara et al., 1990); therefore, this population was 

expected to provide a wide array of phenotypes for reaction to drought 

stress. Experiments were conducted at Goodwell, OK on a Richfield clay 

loam soil (fine, mixed, montmorillonitic, mesic Aridic Argiustolls), 

under irrigated and dryland (rainfed) conditions. Because Goodwell is 

reputed for drought stress and because furrow irrigation was available 

in neighboring fields, it was a suitable location to impose drought 

stressed and well-watered conditions under otherwise equal environmental 

conditions. Respective average grain yields from 1986 to 1990 in 

breeders' trials were 2066 and 4148 kg ha"1 (E.L. Smith, personal 

communication). 

The experimental design was a nested split-plot in each 

environment (drought-stressed and irrigated). The two maturity groups 

were assigned to main plots while the 35 lines per group, plus one 

parent, were assigned to subplots. TAM W-101 was included in the late 

maturity group while Sturdy was included in the early maturity group. 

There were three replications in each environment. 

Data were collected on heading date and grain yield. Univariate 

and multivariate analyses of variance were conducted within single 

environments and across environments, respectively, to determine genetic 



parameters and overall performance of genotypes. The following 

definitions were used according to Rosielle and Hamblin (1981); 

Yield in the irrigated environment = Y1 

Yield in the stress environment = y2 

Tolerance to stress = y3 = y2 - y1 

Mean productivity = y4 = (Y1 + Y2)/2 

Genetic variances were computed in each environment across years 

from the lines-within-maturity group source of variance. Genetic 

variances were denoted as G11 (irrigated environment) and G22 (drought-

stressed environment). Magnitudes of G11 and G22 were compared on an 

absolute basis and tested for heterogeneity via an F-test of the larger 

variance divided by the smaller variance. Genetic variances were also 

compared on a relative basis (genotypic CV). The ratio of genetic 

variances in stress and nonstress environments was computed as K2G = 

G22/G11 • · Heritability estimates for grain yield in each of the 

irrigated and dry environments were computed on entry-mean basis from 

the components of analysis of variance combined over years to reduce GE 

bias. Standard errors for heritabilities were calculated according to 

formula of Hanson (1989). 

The genetic correlation between grain yields in stress and 

irrigate~ environments (rG12 ) was computed from the lines-within­

maturity group sources of variance and covariance between years, i.e., 

between Y1 in 1987 and Y2 in 1988, and vice versa. The between-year 

analysis of covariance was used to reduce genotype-environment 

interaction bias and thereby provide an approximation of rG12 . A 

standard error for the genetic correlation was calculated according to 

8 
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Falconer (1989). Values of K2G and rG12 were used to determine expected 

relationships between: 

a) stress tolerance and yield in irrigated environments (rG13), 

b) stress tolerance and yield in drought-stressed environments 

(rG23), 

c) mean productivity and yield in irrigated environments (rG14), 

d) mean productivity and yield in drought-stressed environments 

(rG24), and 

e) stress tolerance and mean productivity (rG34), 

using formulae developed by Rosielle and Hamblin (1981). 

Seven selection indices (Table 1) were constructed to determine 

simultaneous genetic advance for yields in irrigated and drought­

stressed environments. These indices were designed to place varying 

proportions (0-100%) of weight on yields in irrigated and drought­

stressed environments (I-1 to I-5), as well as consider two alternative 

indices referred to as stress tolerance (1-6) and a modified 

susceptibility index (1-7), where the constant 0 was removed from the 

expression. The best six lines (three from each maturity group) were 

selected according to their index score. All analyses were performed 

within maturity groups to remove potential bias of maturity differences 

on yield performance. Progeny evaluation (all lines) in 1987-1988 was 

used to assess response to selection on the index. Selection responses 

were computed by subtracting the population mean yield from mean yield 

of the selected lines in each maturity group in each environment. 

Responses from the two environments were added to compute total response 

for each index. Selection efficiency was compared in individual 

environments and across both environments. 
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Results and discussion 

Rainfall during the 1986-87 and 1987-88 crop seasons was slightly higher 

than the long-term average at Goodwell (Table 2) but was still within 

the range of typical dryland environments (Duley & Coyle, 1955). Grain 

yield in the irrigated environment averaged 3484 kg ha-1, whereas grain 

yield under dryland conditions averaged 1663 kg ha-1 , more than a 50% 
-

reduction. Mean grain yields of Sturdy and TAM W-101 (1988 only) were 

4219 and 4609 kg ha-1 under irrigated conditions and 2024 and 2274 kg 

ha-1 under dryland conditions. Classification of lines into groups 

differing by heading date was somewhat successful. Averaged across 

years, the early group headed about 2 days earlier than later group 

under dryland or irrigated conditions (Table 3); however, significant 

variation was still detected among lines within groups for heading date 

(Table 4). Drought tolerance of these lines will be assessed within 

groups to reduce the confounding bias of drought escape. 

Under irrigated conditions, there was no significant difference in 

grain yield between groups (Tables 3 and 4). Under dryland conditions, 

the early group had significantly (P < .01) higher grain yield than the 

late group when compared in each year (data not shown), but no 

significant difference was found when averaged across years due to 

significant year x group interaction (Table 4). Higher grain yield of 

the early group in the dryland environment is consistent with earliness 

providing a drought-escape mechanism (Blum, 1985). 

Significant variation was detected for grain yield among lines 

within groups in each environment (Table 4), indicating the population 

segregated for genes conditioning yield potential and drought tolerance. 
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Genetic variance for grain yield in the irrigated environment was about 

3.5 times greater than in the dryland environment (Table 5). Genetic 

variances were heterogeneous when compared on an absolute basis but were 

similar in magnitude relative to the mean. Genotypic C.V.'s were 6.4% 

(irrigated) and 7.2% (dryland). Error variances were about six- and 

two-times higher than the respective genetic variances in dryland and 

irrigated environments. Blum (1985) also noted that stress causes a 

reduction in the genetic variance and heritability for yield, which 

consequently limits selection efficiency for yield under stress. Allen 

et al. (1978) indicated that the relative magnitude of genotypic 

variance in different environments is crop-specific. In soybean, and 

especially in wheat, the genotypic variance in favorable environments 

was several times greater than in unfavorable environments. Johnson & 

Frey (1967) also found that both genotypic variance and environmental 

variance increased as the value, measured by grain yield, of the 

environment increased. 

The genetic correlation between grain yields in dryland and 

irrigated environments was only 0.20 and did not differ significantly 

from zero (Table 5). The correlation indicates that any gain from 

selection in this population in irrigated environments will not be 

expressed under dryland conditions, and vice versa. The assumption that 

lines with high yield potential under optimal conditions also express 

their superiority under drought-stressed conditions could not be 

confirmed in this population. None of the top three yielding lines in 

each group was common to both environments. Therefore, within the 

normal range of selection intensity, no line possessed the best 

combination of favorable genes for high yield potential in both high-



productivity and low-productivity environments. These results agree 

with findings of many researchers (Ceccarelli, 1987; Ceccarelli, 1989; 

Atlin & Frey 1989; Ehdaie et al., 1988), but at the same time they 

contrast with others (Frey, 1964; Roy & Murty, 1970; Quisenberry, et 

al., 1980; Johnson & Geadelman, 1989; Whitehouse & Allen, 1990). 

Identification of widely adapted lines seemingly require tests in both 

stress and nonstress environments. 
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The heritability estimate for grain yield in the irrigated 

environment was slightly higher than that in the dryland environment 

(Table 5); but indistinguishable based on their standard error. High 

heritabilities for grain yields in nonstress environments have been 

previously reported (Frey, 1964; Roy & Murty, 1970). Depending on the 

relative magnitudes of genetic and error variance, heritability for oat 

grain yield was sometimes greater and sometimes less in the better 

environments (Johnson & Frey, 1967). Ceccarelli (1989) reported no 

clear trend of heritabilities for grain yield in barley bulks when grown 

in two contrasting environments. High heritability in nonstress 

environments has been used (Ceccarelli, 1989) as an argument for 

selecting only under nonstress conditions even if the target is stress 

environment. Heritabilities in this study do not suggest that selection 

must be conducted under optimum conditions for improving drought 

tolerance in the dryland environment. Responses in Table 6 indeed 

indicate that selection under irrigated conditions was less effective 

for improving grain yield under drought stress environment than direct 

selection under stress environment. Ceccarelli et al. (1987) reported 

that genetic differences for wheat grain yield in the absence of stress 

were largely unrelated with differences in the presence of severe 



stress. Data obtained with maize (Leffler et al., 1986} lead to the 

same conclusion. Atlin & Frey (1989) demonstrated that grain yield in 

stress or low-productivity environments and grain yield in high­

productivity environments were not controlled by the same genes. 

13 

Drought tolerance can be defined as the yield reduction incurred by 

a genotype under drought stress; thus selection for tolerance would 

favor lower negative values of Y2-Y1• Based on our values of K26 and 

r612 , and formulae provided by Rosielle and Hamblin (1981), the expected 

genetic correlation between stress tolerance (Y3 ) and irrigated yield 

(Y1) i.e., r613 was -0.86 (Table 5). Thus, selection for tolerance 

will decrease yield in the irrigated environment and thus decrease 

average yield in both environments. The expected genetic correlation 

between stress tolerance and yield in the dryland environment (r623) was 

0.33, indicating that selection for stress tolerance should give a 

positive response under stress. Therefore, selection for tolerance will 

be worthwhile only when the target is a stress environment. The 

expected genetic correlations between mean productivity and yields in 

the irrigated (r614 ) and dryland environments (r624 ) were 0.90 and 0.66, 

respectively. Thus selection for mean productivity should give positive 

responses in both environments. The expected genetic correlation 

between stress tolerance and mean productivity was negative (r634 = -

0.59, Table 5) indicating that selection for tolerance will produce 

lines with low yield potential under irrigated conditions or selection 

for mean productivity will produce lines with less tolerance to drought. 

While these results indicate the direction of selection response, 

they do not provide quantitative estimates needed for more detailed 
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comparisons of these and other indices. Using the tests in 1988 to 

measure response to selection in the previous year, we tested the 

hypothesis that some other linear, or possibly a nonlinear combination, 

of Y1 and Y2 result in greater response to selection. Gains from index-

2 (.3Y1 + .7Y2), index-3 or mean productivity (.5Y1 + .5Y2 ) and index-6 

or tolerance (Y2 - Y1) were similar under dryland conditions, averaging 

356 kg ha"1 (Table 7). Response for index-7 (Y2 /Y1) was 191-kg ha"1 

while index-5 (Y1 only) gave only a modest response in dryland 

environment. Selection response for index-1 (Y2 only) was intermediate 

(312 kg ha-1). lndex-4 (.7Y1 + .3Y2 ) gave the maximum response in the 

dryland environment (391 kg ha-1). To maximize selection response in 

the dryland environment, some information (70%) on yield from the 

irrigated environment is apparently beneficial. Responses of all 

indices were positive in the dryland environment. 

Under irrigated conditions, responses of the various indices were 

mixed in sign (Table 8). Index-5 (Y1 only) gave the maximum response 

(768 kg ha-1) but was only slightly better than index-4 (.7Y1 + .3Y2). 

Mean productivity (.5Y1 + .5Y2) also gave a positive but much smaller 

response (244 kg ha"1). Index-1 (Y2 only), index-6 (Y2 - Y1), and index-

7 (Y2 /Y1) gave negative responses in the irrigated environment. 

Because our ultimate breeding objective is to select lines for wide 

adaptation, we also compared selection response pooled across both 

environments. As expected from above, index-4 (.7Y1 + .3Y2 ) gave the 

maximum response of 1070 kg ha"1 (34% of the population mean) for grain 

yield (Table 9). Responses for other indices ranged from 148 (index-7) 

to 864 (index-5) kg ha"1 (8- 23% of population mean). Therefore, 
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index-4 was the only index which provided substantive responses in both 

environments and therefore resulted in maximum total response. 

By employing Index-4 in this population, yields in both the stress 

and nonstress environments should increase and to a greater extent than 

mean productivity. Neither the irrigated or dryland environment alone 

was optimum for increasing yield under drought stress. In order to 

achieve maximum response in the stress environment information is needed 

from both environments. The most desirable approach would be that 

testing sites should also include stress environments so that stress 

tolerant genotypes are not lost in early segregating generations due to 

selection practiced only in favorable environments. 
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Table 1. Selection indices and their relative weights 

for grain yield in irrigated and dryland environments 

at Goodwell, OK 

Selection 

index 

1 

2 

3 

4 

5 

6 

7 

Relative Weight 

0.0 1.0 

0.3 0.7 

0.5 0.5 

0.7 0.3 

1.0 0.0 

-1.0 1.0 

1/Y1 
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Table 2. Long-term average monthly rainfall and rainfall 

in 1986-1987 and 1987-1988 growing seasons at Goodwell, OK 

Month Long-term 1986-1987 1987-1988 

mm 

September 31.75 9.75 88.75 

October 23.75 17.25 2.50 

November 16.00 53.50 13.50 

December 6.75 12.25 9.25 

January 6.25 11.75 8. 25 

February 7.75 29.25 0.50 

March 19.50 31.06 19.50 

April 27.75 0.00 63.25 

May 71.75 156.50 62.25 

Total 211.25 321.31 267.75 

19 



Table 3. Means for days to heading (days after April 30) and 

grain yield of lines in early and late groups within environments 

and years 

Environment Group 

Irrigated Early 

Dryland 

Late 

Mean 

Early 

Late 

Mean 

1987 

Days to Grain 

heading yield 

no. kg ha"1 

3.4 2818 

5.4 

8.0 

9.5 

2874 

2846 

1159 

1019 

1089 

1988 

Days to Grain 

heading yield 

no. kgha"1 ' 

11.5 4158 

12.9 

12.5 

14.6 

4086 

4122 

2268 

2208 

2238 
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Table 4. Selected mean squares for days to heading, (days after 

April 30) and grain yield (kg ha"1) of 70 wheat lines at Goodwell, 

OK, under irrigated and dryland conditions across two years 

Irrigated Dryland 

Source df Days to Yield Days to Yield 

heading (X 103) heading (X 103) 

Yeara 1 6,529 171,062 2,371 138,651 

Groupb 1 322** 8 340 1,046 

Year X Group 1 14 421 10 160** 

Line/Group 68 6** 495** 4** 199** 

Early group 34 5** 617** 3** 193** 

Late group 34 7** 373** 6** 205** 

Year X Line/Group 68 2** 198** 2** 113 

Pooled error 272 0.9 109 0.8 92 

a Not tested for significance due to lack of true error term. 

b The 70 lines were divided into two groups of 35 lines each 

based on heading dates (early and late) of F3 parents. 
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Table 5. Genetic and error variances for grain yield under 

irrigated and dryland conditions, their ratio, heritabilities of 

and genetic correlation between yields in irrigated and dryland 

environments and genetic correlations among stress tolerance, 

mean productivity and their components 

Statistic8 Value 

G11 49439 ± 15022 

G22 14344 ± 6447 

VE (Irrigated) 109448± 9351 

VE (Dryland) 92056 ± 7865 

K2 G 0.29 

h2 (Irrigated) 0.60 ± 0.10 

h2 (Dryland) 0.43 ± 0.14 

rG12 0.20 ± 0.16 

rG13 -0.86 

rG23 0.33 

rG14 0.90 

rG24 0.66 

rG34 -0.59 

a 1 = Irrigated environment value 2 = Dryland environment value 

3 = Stress tolerance 4 = Mean productivity 
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Table 6. Mean yield (kg/ha) of selected lines (is) and of the whole 

population (i0 ), the selection differential (S), and the response to 

selection (R) of lines selected in either irrigated or drought­

stressed environments 

Selection 
environment 

Irrigated 

Dryland 

Test environment 

Irrigated 

is early group = 4598 

is 1 ate group = 4414 

i 0 early group = 4158 

i 0 late group = 4086 

s early group = 440 

s 1 ate group = 328 

s total = 768 

R = 461 

is early group = 4323 

is 1 ate group = 3880 

i 0 early group = 4158 

i 0 late ·group= 4086 

s early group = 165 

s 1 ate group = -206 

s total = -41 

R = -18 

Dryland 

is early group = 2329 

is 1 ate group = 2243 

i 0 early group = 2268 

i 0 late group = 2208 

s early group = 61 

s 1 ate group = 35 

s total = 96 

R = 41 

is early group = 2356 

is 1 ate group = 2433 

i 0 early group = 2268 

i 0 late group = 2208 

s early group = 88 

s late group = 225 

s total = 313 

R = 134 
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Table 7. Selection responses for grain yield under 

dryland conditions at Goodwell, OK in 1987-1988 

Selection 

index 

1 

2 

3 

4 

5 

6 

7 

0.0 

0.3 

0.5 

0.7 

1.0 

-1.0 

Group 

Early 

1.0 87 

0.7 38 

0.5 38 

0.3 76 

0.0 60 

1.0 136 

1/Y1 136 

Late Combined 

kg ha-1 

225 312 

320 358 

315 353 

315 391 

36 96 

222 358 

55 191 
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Table 8. Selection responses for grain yield under 

irrigated conditions at Goodwell, OK in 1987-1988 

Selection 

index 

1 

2 

3 

4 

5 

6 

7 

Weight 

0.0 1.0 

0.3 0.7 

0.5 0.5 

0.7 0.3 

1.0 0.0 

-1.0 1.0 

1/Y 1 

Group 

Early Late Combined 

kg ha"1 

65 -206 -141 

74 -42 32 

74 170 244 

509 170 679 

440 328 768 

-21 -110 -131 

-21 -22 -43 
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Table 9. Total selection responses for 

grain yield across environments at Goodwell, 

OK in 1987-88 

Selection 

index 

I 

2 

3 

4 

5 

6 

7 

Weight 

0.0 

0.3 

0.5 

0.7 

1.0 

-1.0 

1.0 

0.7 

0.5 

0.3 

0.0 

1.0 

l/Y1 

Grain 

yield 

kg ha-1 

171 

390 

597 

1,070 

864 

227 

148 
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CHAPTER III 

Visual Selection for Forage Yield 

in Winter Wheat 

27 



ABSTRACT 

Winter wheat (Triticum aestivum L.) is used as both a grain and 

forage crop in the southern Great Plains, but wheat improvement programs 

traditionally focus on grain characteristics when determining the 

genetic worth of experimental strains. Conventional clipping tests of 

large populations are cost-prohibitive and often unfeasible due to 

limited seed supply in early generations. Therefore, accurate 

prediction of forage yields from visual estimates of small plots would 

appeal to breeders. The objectives of this study were to measure the 

response to divergent visual selection for forage yield based on a 

season-long visual index and to quantify relationships among forage 

yield and grain yield of clipped and conventional plots. Six high and 6 

low forage-producing lines were selected from each of three F4 

populations based on an index comprised of forage characteristics and 

growth habit during vegetative growth. The 36 selections and their 

parents were tested in the F5 (1988-1989) and F6 (1989-1990) 

generations. The high-selection group generally exceeded the low­

selection group in fall forage yield measured prior to winter dormancy, 

but that response did not prevail for winter forage yield measured after 

dormancy but before jointing. There was no significant relationship 

between forage yield and grain yield of clipped or conventional plots, 

but the correlation between grain yield under clipped and non-clipped 
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conditions was positive (r=0.39, P<O.Ol, df=43). In conclusion, visual 

selection was effective in manipulating fall forage yield., Success in 

improving forage yield, however, does not guarantee the same for grain 

yield. 



INTRODUCTION 

Winter wheat is used as both a grain and forage crop in the 

southern Great Plains. The economic return from wheat includes the 

combined value of grain and beef produced. Generally, the wheat crop is 

grazed during vegetative growth in the fall and winter, before removing 

the cattle in early spring to produce a grain crop {Thompson, 1990). 

Despite the apparent need to apply direct selection for forage 

characteristics during cultivar development, evaluation of forage 

potential usually comes after cultivar release (Worrall and Gilmore, 

1985; Krenzer et al., 1988; West et al., 1988). Conventional clipping 

tests of large populations are prohibitive in cost and time, if not 

unfeasible due to limited seed supply in early generations. Selection 

pressure could be imposed if strains were evaluated visually in 

relatively small plots. 

Published literature on visual selection for forage yield in 

winter wheat and other small grains is limited. However, differences 

exist regarding the success of visual selection for grain yield {Boyce 

et al, 1947; Lupton and Whitehouse, 1955; Mckenzie and Lambart, 1961; 

Krull et al, 1966). Atkins et al. {1969) did find significant 

correlation (r=0.55 to 0.66) between visual estimates of forage yield 

and clipped forage yields of oat and barley strains. They concluded 

that visual estimates can be applied with confidence in a forage 

selection program. Subsequent to their study, very few breeding 

programs have considered forage characters during inbred line 
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development to the same extent as grain characters. Forage characters 

amenable to visual selection are tillering capacity, leaf size, canopy 

height, growth habit (prostrate to upright) and regrowth potential after 

forage removal. 

Visual selection is the oldest form of plant breeding practiced by 

man. Its effectiveness on highly heritable characters in 

self-pollinated species is widely accepted, but for lowly heritable 

traits such as yield, its effectiveness is debatable. The objectives of 

this study were to determine the success of divergent visual selection 

for forage yield based on a season-long visual index and to quantify 

relationships among forage yield and grain yield of clipped and 

conventional plots. 



MATERIALS AND METHODS 

During the 1987-1988 growing season, three F4 populations of 80 

lines each were evaluated in randomized complete blocks with two 

replications near Stillwater, OK {Norge loam, fine-silty, mixed, thermic 

Udic Paleustolls). Their pedigrees were 'Chisholm'//OK79257/0K82377 

{Population 1), '2165'/'Arkan' {Population 2), and Arkan/OK79256 

{Population 3). Parents were chosen on the basis of differences in 

forage and grain yields. Each line was planted in the two center rows 

of a four-row plot {0.3 x 3m). Seed of the corresponding parents were 

blended in equal amounts and planted in the two border rows. Plots were 

visually rated for forage yield using a scale of -2 to +2 to represent 

undesirable {negative values) to desirable {positive values) forage 

characteristics. Ratings were based on leaf size, tillering capacity, 

canopy height, and general vigor relative to the parent blend in 

neighboring border rows of each plot. A value of zero implied no visual 

difference between the experimental line and parent blend. 

Three visual ratings were recorded during the growing season {Oct. 

10, 1987; Feb. 2, 1988; and March 7, 1988) for long-term {LT) forage 

yield. On each date, the entire plot area was cut with a rotary mower 

to an approximate height of 5 em. Seven to ten days later, plots were 

rated for short-term {ST) regrowth using the same scale as before. 

Growth habit was also monitored where forage ratings were made. 

Prostrate types were assigned a score of -1 for their perceived undesir-
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able forage production potential. Semi-erect and erect types were 

assigned a neutral score of 0. A total forage index was constructed by 

summing three LT and two ST forage ratings and five growth habit scores. 

Two selection groups were formed in each population by selecting six 

lines with the highest index values (high-forage, HF, selection group) 

and six with the lowest values (low-forage, LF, selection group). 

The 36 selections were tested the following year (1988-1989) in 

replicated forage and grain yield trials at Perkins (Teller loam , fine­

loamy, mixed, thermic Udic Argiustolls) and Stillwater, OK. Also tested 

were their parents and three checks, including 'TAM 200', 'Thunderbird', 

and a 50:50 blend of TAM 200 and Thunderbird. All plots were 0.3 m x 

3.0 m and planted entirely with each entry, except for one experiment 

planted_ at Stillwater as described later. Genotypes were arranged in a 

randomized complete block design for each trial. Plots were planted 

with seed harvested from plots visually selected in 1987-1988. 

The forage trial at Perkins was planted on Aug. 30, 1988 with four 

replications. Forage yields were obtained during the fall (prior to 

dormancy) and late winter (after dormancy) by clipping a 1.2 m section 

of one interi~r row ca. 5 em above-ground. Harvest dates were Oct. 24, 

1988, Jan. 5, 1989, and March 15, 1989. Each measurement was separated 

by 4 wk or more and therefore designated as LT estimates of forage 

yield. All remaining forage was removed by a rotary mower to a uniform 

canopy height (ca. 5 em) immediately after each harvest. Short-term 

(ST) forage regrowth, when measurable, was clipped 7 to 10 d later from 

a 1.2 m section of a different interior row than that used to determine 

LT forage yield. Forage samples were oven-dried at 49°C for 72 hr 

before weighing. Total fall forage yield was obtained by adding the LT 
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and ST estimates in 1988. Total winter forage was computed by adding 

the two LT estimates in January and March (hereafter referred to as LT-1 

and LT-2) and one ST estimate in March. Total forage yield in 1988-1989 

was obtained by combining total fall and total winter forage yields. 

Two trials were conducted at Stillwater. One was planted early 

(Aug. 31, 1988) and conducted similar to the selection experiment in 

1987-1988 but with three replications. Visual ratings were made 

throughout the vegetative stage for forage yield, regrowth, and growth 

habit at the same time forage yield was determined in the Perkins trial. 

Plots were also harvested for grain yield to determine yield potential 

under pseudo-grazing conditions. The second trial in Stillwater was 

planted conventionally (Oct. 13, 1988) with four replications and was 

harvested for grain yield only. The two experiments were placed 

adjacent to each other in the same field so that yield comparisons could 

be made with minimum environmental bias. 

All experiments were repeated in 1989-1990 at the same sites to 

gain another measurement of selection response.' The forage, yield trial 

at Perkins was planted on Aug. 30, 1989; planting dates for the two 

experiments at Stillwater were Sept. 8, 1989 and Oct. 15, 1989. Forage 

harvest dates at Perkins were Oct. 24, 1989 (fall LT-1), Nov. 3, 1989 

(fall ST), Nov. 21, 1989 (fall LT-2), Feb. 6, 1990 (winter LT-1), March 

4, 1990 (winter LT-2), and March 15, 1990 (winter ST). Total fall 
i 

-
forage was computed by summing fall LT-1 and LT-2, while total winter 

forage was computed by summing winter LT-1, LT-2, and ST. Total forage 

yield in 1989-1990 was found by adding total fall and total winter 

forage yields. Harvest procedures and visual ratings at Stillwater were 

conducted as in the previous year. 
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Forage data were analyzed separately for each year due to differ­

ent sampling schedules between the two years. Grain yield was analyzed 

by combining data from both years. Statistical analyses centered upon 

comparison of the HF selection group vs. the LF selection group, i.e., 

the magnitude of the selection response. The hypothesis for testing was 

that the HF selection groups produced higher visual index values and 

therefore higher forage yields than the LF selection groups. The 

association between forage and grain production was also examined to 

determine the potential for preserving high grain yield potential when 

selecting for high forage yield. 



RESULTS AND DISCUSSION 

The 1988-1989 wheat growing season was one of extremes (Krenzer et 

al., 1989). Sufficient rainfall in mid-September was followed by 

unusually low rainfall in October and November, 1988. Hence forage 

production was limited by lack of water. Temperatures were extremely 

moderate in December 1988, January and early February 1989, only to be 

followed by an abrupt freeze in late February. The 1989-1990 growing 

season was also unique (Krenzer et al., 1990) in that no rainfall 

occurred in November and December 1989, and in early January, 1990, 

resulting in drought stress conditions. Rainfall resumed in mid­

January, 1990 and did not cease until May. In contrast, during the 

selection year (1987-1988) conditions for forage production during fall 

of 1987 were unusually good while cold soils and snow cover in much of 

the second half of December, all of January and early February, 1988 

resulted in no growth of wheat (Krenzer et al., 1988). This was an 

unusually long dormant period for wheat in Oklahoma. 

Although final selection of HF and LF groups for this study was 

made only on the basis of total forage index values, greater separation 

was found between selection groups for the fall component than the 

winter component (Table 1). We practiced truncation selection only for 

total forage capacity to limit selections to a feasible number yet 

consider both seasonal components. 

36 



37 

In the first year of testing (1988-1989), significant differences 

were found among entries for total forage yield, fall forage yield, and 

winter forage yield including their long-term and short-term components 

(Table 2). Variation among entries was partitioned into components 

corresponding to three checks, six parents, and the 36 selections. 

Thunderbird is noted in Oklahoma for its high forage yield in the fall, 

while TAM 200 is noted for its winter forage production immediately 

after breaking dormancy (Thompson, 1990). Thunderbird exceeded TAM 200 

in total forage yield and fall forage production, but they did not 

differ in winter forage production (Tables 2 and 3). Blending those two 

cultivars did not result in a significant change in forage yield 

compared to the mean of each grown separately (data not shown). Parents 

differed significantly for most forage traits. Chisholm and Arkan 

showed the highest total forage yield (344 and 342 g m-2 , respectively), 

while OK79256 showed the lowest (234 g m-2). Performance of a particu­

lar parent relative to others was not the same for fall and winter 

production. For example Pioneer 2165 produced 106 and 187 g m-2 in the 

fall and winter, respectively, while Arkan produced 175 and 167 g m-2 . 

The 36 selections differed significantly for all measurements of 

forage production. Variation among selections was partitioned into 

variation among population means, among selection group means within 

populations, and among individual line means within selection groups and 

populations. Populations differed significantly for total forage yield 

and all indicators of winter forage yield. Population 2 (Pioneer 

2165/Arkan) produced the highest total forage (302 g m-2), and popula-

tion 3 (OK79256/Arkan) produced the lowest (272 g m~). Selection 

groups differed significantly for most indicators of forage production, 
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except total winter forage yield and winter LT-2 forage yield. Examina­

tion of selection group means within each population revealed inconsis­

tent responses throughout the growing season, particularly in population 

1. The HF group in population 1 produced significantly more forage than 

the LF group in the fall; however, the reverse trend was observed in the 

winter, making total forage production statistically the same between 

groups (Table 3). In population 2, the HF group significantly out­

yielded the LF group in total forage yield and all indicators of fall 

forage production. In contrast to population 1, a positive selection 

response was observed also in the winter, except for late winter forage 

yields. The winter LT-1 response was highly positive and larger than 

the sum of the negative responses of winter LT-2 and ST. Thus, the 

selection response for total winter production was positive (P<.10). In 

population 3, the HF group was again superior to the LF group for total 

forage and all indicators of fall production. Like population 1, this 

trend was not maintained in the winter. Examination of the mean index 

values for total forage and its fall and winter components showed that 

HF group produced significantly higher values than LF groups in all 

populations; differences were much higher for the fall component 

compared to the winter component (data not shown). 

In the second year of forage testing at Perkins, OK (1989-1990), 

entries differed significantly (P<O.OS) for total forage yield and all 

components of winter forage, but differences in fall forage were less 

pronounced (Table 4). Environmental conditions in second year favored 

TAM 200, as TAM 200 significantly outyielded Thunderbird for total 

forage yield, most indicators of fall forage production, and LT-2 forage 
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in the winter (Tables 4 and 5). Their blend again failed to show a 

significant change in forage yield compared to each check grown sepa­

rately (data not shown). Parents did not differ significantly for most 

measurements of forage production except fall LT-2 and total winter 

forage. Arkan showed the highest total forage yield (379 g m"2) and 

OK79256 showed the lowest (315 g m"2). Variation among the 36 selec­

tions was significant for total forage yield, only LT-2 yield in the 

fall, and all indicators of winter forage production. Population means 

differed for the same traits, but with different ranking than the 

previous year. Population 1 (OK79257/0k82377//Chisholm) produced the 

highest total forage yield (355 g m~ ) and population 2 (Pioneer 

2165/Arkan) produced the lowest (315 g m"2). 

In population 1, the HF group significantly (P<0.01) outyielded the 

LF group in total forage yield, as well as all indicators of fall 

production except fall ST regrowth, but the two groups were similar in 

winter forage yields {Table 5). In population 2, the HF group was 

superior to LF group for total fall forage yield (P<.10) including the 

fall LT-1 component (P<.05), but the two groups were similar for LT-2 

and ST fall components measured later in the season. Selection response 

in the winter was generally nonsignificant or negative for ST regrowth. 

These mixed responses led to no significant advantage in the HF group 

for total forage yield. In population 3, HF and LF groups were also 

similar for total forage yield, including most indicators of fall forage 

production. Selection responses were unexpectedly negative for winter 

forage yields {Table 5). Similar to the first year, the HF groups 

consistently had significantly higher mean index values than the LF 
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groups for total forage and its fall and winter components; but differ­

ences for the fall component were larger compared to winter component. 

Visual selection was effective in sorting extreme differences in 

forage capacity, and these visual differences generally translated to 

different forage yields in fall. With one exception where HF and LF 

groups were equal, the HF groups were superior to the LF groups for fall 

forage production in the six population-year combinations. That 

superiority was generally not maintained for winter production except in 

population 2 in 1988-1989. Whenever the selection response for total 

winter forage was positive, a significant selection response was also 

observed in total forage yield. This occurred in three of the six 

population-year combinations. In populations and/or environments where 

winter production does not counteract fall production, improvement in 

total forage production will be feasible and high. 

High forage producing lines were occasionally found in the LF 

groups and vice versa. For example in 1988-1989, an HF line in popula­

tion 1 produced 227 g m~ total forage while a LF line in the same 

population produced 336 g m-2 • Similarly in 1989-1990, an HF line in 

this population produced 340 g m"2 total forage while a LF line produced 

366 g m"2 total forage. In 1989-1990, an HF line in population 3 

produced 320 g m-2 total forage while a LF 1 ine produced 380 g m-2 • 

Similar examples were found in the other populations each year. In 

spite of such overlapping for total forage in few cases, no line in the 

LF groups produced higher forage than the highest forage producing line 

in HF groups in 1988-1989 in any population. The same was true for 

lines in populations 1 and 2 in 1989-1990 but in population 3, two lines 

in the LF group outyielded the highest line in HF group. In some cases 



high forage producing lines in the LF group were classified as pros­

trate. 

41 

Performance of selection groups was generally stable for fall 

forage but varied from year to year for winter forage and consequently 

for total forage production. This indicates that clipping trials of 

selected lines may be necessary in more than one environment. Thompson 

(1990) also reported that genetic differences in winter forage were more 

sensitive to environment while fall forage yields were relatively 

stable. He found no significant difference for late winter forage 

production of 18 winter wheat cultivars. He, therefore, suggested that 

fall forage capability appears more important. Huffine et al. (1960) 

reported that the period of forage production (fall, winter, or spring) 

for any small grain variety is just as important as total forage yield. 

Since producers who graze stocker cattle on wheat pasture frequently 

find that the amount of forage produced in the fall limits the stocking 

rate which wheat pastures can support (Thompson, 1990), the findings of 

this study complement the need to improve fall forage yield and thereby 

enhance the release of more efficient fall-forage producing cultivars. 

The extra forage produced could be used for hay when the wheat pasture 

is dormant or covered by snow. 

No significant relationship (r=0.04, P>0.10, df=43 in 1988-1989; 

r=-0.03, P>0.10, df=43 in 1989-1990) was found between total fall and 

total winter forage yields among entry means. Thompson (1990) found a 

negative relationship between fall and winter forage yields, but Carver 

et al. (1991) found no significant relationship. Thompson (1990) also 

reported that fall forage yield was almost twice that of winter forage 

yield. However, yield differential was not quite so large in this study. 
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The combined analysis of variance over years for grain yield showed 

no significant difference between HF and LF groups in any population in 

the clipped plots (data not shown). In the conventional non-clipped 

plots, the HF group was significantly higher yielding than the LF group 

only in population 2 (P<0.10). Otherwise, selection groups did not 

differ in grain yield. Significant differences were also observed among 

lines within selection groups in populations 1 and 3. Grain yield of 

clipped plots was reduced by 31% compared to grain yield of non-clipped 

plots. Thompson (1990) also reported a 13 to 26% reduction in grain 

yield, even though terminal meristems were not removed during clipping. 

The correlation between grain yields under clipped and non-clipped 

conditions was positive in both years (Table 6). Correlations between 

total forage yield and grain yields under clipped or non-clipped 

conditions were very low and nonsignificant. Atkins et al. (1969) also 

reported no relationship between forage yield and grain yield in barley 

and oats. These results show.that selection for forage yield does not 

produce a correlated response in grain yield. On the other hand, the 

lack of negative correlation makes it possible to develop cultivars with 

both high grain yield and high forage yield potential. 

The positive responses to divergent selection indicate that visual 

selection was effective in manipulating fall forage production. Further 

efforts should be aimed at improving forage production potential prior 

to winter dormancy. Success in improving forage yield, however, does 

not guarantee the same for grain yield. 
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Table 1. Mean index values of groups of six lines selected within three populations near 

Stillwater, OK, in 1987-1988. 

Selection Total-forage Fall Winter 

Population Pedigree group+ indext component component 

1 OK79257/0K82377//Chisholm High 4.00 2.50 1.50 

Low -7.83 -4.83 -3.00 

2 Pioneer 2165/Arkan High 1.92 1.00 0.92 

Low -9.59 -4.42 -5.17 

3 OK79256/Arkan High 3.17 2.50 0.67 

Low -8.41 -5.08 -3.33 

+ Selection based on either high or low values of the total forage index within each population. 

t Total-forage index for each entry produced by summing the scores of fall and winter components. 



Table 2. Selected mean squares for total, fall, and winter forage yields (g m-2) of checks, parents, 

and selection groups in three wheat populations near Perkins, OK, in 1988-1989. 

Fall foraget Winter foraget 

Source df 

Entries 44 

TAM 200 vs. 
Thunderbird I 

Parents 5 

Selections 35 

Populations (P) 2 

Selection 
groups (SG)/P 3 

l ines/SG/P 

Error 

30 

132 

Total 

forage Total LT ST Total LT-1 

** ** ** * * * 6,163 2,455 1,768 136 3,471 1,702 

** ** ** * 14,340 17,708 13,064 353 177 2 

* -* * 9,964 4,062 3,034 123 2,826 1,040 

* ** ** * * * 5,470 1,897 1,333 140 3,670 1,913 

* * * 11,258 231 268 8 12,489 6,398 

* ** ** ** * 15,967 8,862 5,792 354 4,177 6,362 

4,034 * 1,312 gsa* 3,032+ 1,170 

3,527 798 601 90 2,176 1,106 

+, *, ** Significant at P = .10, .05, and .01, respectively. 

t LT = long-term forage yield; ST = Short-term forage yield. 

LT-2 

* 345 

60 

193 

334+ 

864 

235 

309 

224 

* 

ST 

** 591 

49 

* 622 

** 646 

* 1,102 

* 793 

601* 

225 



Table 3. Means for total, fall, and winter forage yields of selection groups and checks in three 

wheat populations near Perkins, OK, in 1988-1989. 

Fall foraget Winter foraget 
Population Selection Total 

group forage Total LT ST Total LT-1 LT-2 ST 

g m·2 

1 High 295 124 90 34 171 90 40 41 
Low 291 99** 69** 30 192 99 47 46 
Response§ 4 25 21 4 -21 -9 -7+ -5 

2 High 328 130 95 35 198 111 40 47 
Low 275** 100** 73** 27** 175 74** 41 60** 
Response 53 30 22 8 23+ 37 -1 -13 

3 High 288 128 94 34 160 78 35 47 
Low 255. 102** 72** 30 153 69 35 49 
Response 33 26 22 4+ 7 9 0 -2 

Checks TAM 200 272 84 58 26 188 83 52 53 
Thunderbird 356 178 139 39 178 84 46 48 

+, * ** Significant at P = .10, .05, and .01, respectively. ' 
t LT = Long-term forage yield; ST = Short-term forage yield. 

§ Response = Mean of high selection group - Mean of low selection group. .j:>o 
""-..1 



Table 4. Selected mean squares of total, fall, and winter forage yields (g m-2) of checks, parents, 

and selection groups in three wheat populations near Perkins, OK, in 1989-1990. 

Source 

Entries 

TAM 200 vs. 
Thunderbird 

Parents 

Selections 

Populations (P) 

Selection groups 

Total 

df forage Total 

* 44 4,710 2,348 

* * 1 11,409 4,745 

5 

35 

2 

1,813 2, 563 

* 5,187 2,402 

** 19,999 2,501 

Fall forage:t: 

LT-1 LT-2 ST Total 

** ** 787 1,214 262 2,520 

26 

701 

731 

26 

* 4,071 

1 '549+ 

1,044* 

* 2,398 

815+ 1,439 

322 1,429+ 

** 201 2,806 

** 95 22,181 

(SG)/P 3 * * * + 8,511 7,404 2,264 1,567 329 1,894 + 

L ines/SG/P 30 

Error 132 

3,867 

3,073 

1,895 

1,969 

625 

741 

901 

710 

+, *, ** Significant at P = .10, .05, .01, respectively. 

195 1,605 

283 749 

:1: LT = Long-term forage yield; ST = Short-term forage yield. 

** 

Winter forage:t: 

LT-1 

* 374 

382 

205 

* 381 

2, 163** 

180 

282 

229 

LT-2 ST 

** ** 643 531 

* * 2,051 723 

480 51 

** ** 670 631 

** ** 4,739 1888 

* 581 

283 121 



Table 5. Means for total, fall, and winter forage yields of selection groups and checks in three 

wheat populations near Perkins, OK, in 1989-1990. 

Fall foraget Winter foraget 
Popu- Selection Total 

lation group forage Total LT-1 LT-2 ST Total LT-1 LT-2 ST 

g m-2 

1 High 375 188 84 104 59 187 44 63 80 
Low 335** 159. n. 88 55 176 43 56 77 
Response§ 40 29 13 16+ 4 11 1 7 3 

2 High 325 184 84 100 55 141 32 41 68 
Low 304 160 68* 92 53 144 29 40 75* 
Response 21 24+ 16 8 2 -3 3 1 -7 

3 High 339 170 82 88 59 169 35 51 83 
Low 338 151 71 80 51* 187 41 61 85 
Response 1 19 11 8 8 -18+ -6 -10+ -2 

Checks TAM 200 388 201 62 139 79 187 49 72 66 
Thunderbird 312 152 58 94 59 160 35 40 85 

+, * Significant at P = . 10, and .05, respectively . 

t LT = long-term forage yield; ST = Short-term forage yield. 

§ Response = Mean of high selection group - Mean of low selection group. ~ 
1.0 



Table 6. Correlations between grain yield in clipped and non-clipped plots and with forage yield 

among 45 wheat genotypes. 

Year Grain yield (non-clipped) 

1988-1989 

1989-1990 

Grain yield (clipped) 

Grain yield (non-clipped) 

Grain yield (clipped) 

Grain yield (non-clipped) 

** Significant at P = .01;. df = 43. 

** 0.39 

** 0.39 

Forage yield 

0.24 

0.12 

.:o.os 

-0.13 

(J1 

0 
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